1
|
Joyce MKP, Uchendu S, Arnsten AFT. Stress and Inflammation Target Dorsolateral Prefrontal Cortex Function: Neural Mechanisms Underlying Weakened Cognitive Control. Biol Psychiatry 2025; 97:359-371. [PMID: 38944141 PMCID: PMC11671620 DOI: 10.1016/j.biopsych.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/15/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
Most mental disorders involve dysfunction of the dorsolateral prefrontal cortex (dlPFC), a recently evolved brain region that subserves working memory, abstraction, and the thoughtful regulation of attention, action, and emotion. For example, schizophrenia, depression, long COVID, and Alzheimer's disease are all associated with dlPFC dysfunction, with neuropathology often being focused in layer III. The dlPFC has extensive top-down projections, e.g., to the posterior association cortices to regulate attention and to the subgenual cingulate cortex via the rostral and medial PFC to regulate emotional responses. However, the dlPFC is particularly dependent on arousal state and is very vulnerable to stress and inflammation, which are etiological and/or exacerbating factors for most mental disorders. The cellular mechanisms by which stress and inflammation impact the dlPFC are a topic of current research and are summarized in this review. For example, the layer III dlPFC circuits that generate working memory-related neuronal firing have unusual neurotransmission, depending on NMDA receptor and nicotinic α7 receptor actions that are blocked under inflammatory conditions by kynurenic acid. These circuits also have unusual neuromodulation, with the molecular machinery to magnify calcium signaling in spines needed to support persistent firing, which must be tightly regulated to prevent toxic calcium actions. Stress rapidly weakens layer III connectivity by driving feedforward calcium-cAMP (cyclic adenosine monophosphate) opening of potassium channels on spines. This is regulated by postsynaptic noradrenergic α2A adrenergic receptor and mGluR3 (metabotropic glutamate receptor 3) signaling but dysregulated by inflammation and/or chronic stress exposure, which contribute to spine loss. Treatments that strengthen the dlPFC via pharmacological (the α2A adrenergic receptor agonist, guanfacine) or repetitive transcranial magnetic stimulation manipulation provide a rational basis for therapy.
Collapse
Affiliation(s)
- Mary Kate P Joyce
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut
| | - Stacy Uchendu
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut
| | - Amy F T Arnsten
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut.
| |
Collapse
|
2
|
Gonzalez-Burgos G, Miyamae T, Nishihata Y, Krimer OL, Wade K, Fish KN, Arion D, Cai ZL, Xue M, Stauffer WR, Lewis DA. Synaptic alterations in pyramidal cells following genetic manipulation of neuronal excitability in monkey prefrontal cortex. J Neurophysiol 2025; 133:399-413. [PMID: 39740351 DOI: 10.1152/jn.00326.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/02/2025] Open
Abstract
The primate dorsolateral prefrontal cortex (DLPFC) displays unique in vivo activity patterns, but how in vivo activity regulates DLPFC pyramidal neuron (PN) properties remains unclear. We assessed the effects of in vivo Kir2.1 overexpression, a genetic silencing tool, on synapses in monkey DLPFC PNs. We show for the first time that recombinant ion channel expression successfully modifies the excitability of primate cortex neurons, producing effects on synaptic properties apparently different from those in the rodent cortex.
Collapse
Affiliation(s)
| | - Takeaki Miyamae
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Yosuke Nishihata
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Olga L Krimer
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Kirsten Wade
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Kenneth N Fish
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Dominique Arion
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Zhao-Lin Cai
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, United States
| | - Mingshan Xue
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - William R Stauffer
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
3
|
Boroujeni KB, Helfrich RF, Fiebelkorn IC, Bentley N, Lin JJ, Knight RT, Kastner S. Attentional Information Routing in The Human Brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612548. [PMID: 39314423 PMCID: PMC11419049 DOI: 10.1101/2024.09.11.612548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Brain-wide communication supports behaviors that require coordination between sensory and associative regions. However, how large-scale brain networks route sensory information at fast timescales to guide upcoming actions remains unclear. Using spiking neural networks and human intracranial electrophysiology during spatial attention tasks, where participants detected a target at cued locations, we show that high-frequency activity bursts (HFAb) serve as information-carrying events, facilitating fast and long-range communications. HFAbs emerged as bouts of neural population spiking and were coordinated brain-wide through low-frequency rhythms. At the network-level, HFAb coordination identified distinct cue- and target-activated subnetworks. HFAbs following the cue onset in cue-subnetworks predicted successful target detection and preceded the information in target-subnetworks following target onset. Our findings suggest HFAbs as a neural mechanism for fast brain-wide information routing that supports attentional performance.
Collapse
|
4
|
Castro-Mendoza PB, Weaver CM, Chang W, Medalla M, Rockland KS, Lowery L, McDonough E, Varghese M, Hof PR, Meyer DE, Luebke JI. Proteomic features of gray matter layers and superficial white matter of the rhesus monkey neocortex: comparison of prefrontal area 46 and occipital area 17. Brain Struct Funct 2024; 229:1495-1525. [PMID: 38943018 PMCID: PMC11374833 DOI: 10.1007/s00429-024-02819-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/08/2024] [Indexed: 06/30/2024]
Abstract
In this novel large-scale multiplexed immunofluorescence study we comprehensively characterized and compared layer-specific proteomic features within regions of interest of the widely divergent dorsolateral prefrontal cortex (A46) and primary visual cortex (A17) of adult rhesus monkeys. Twenty-eight markers were imaged in rounds of sequential staining, and their spatial distribution precisely quantified within gray matter layers and superficial white matter. Cells were classified as neurons, astrocytes, oligodendrocytes, microglia, or endothelial cells. The distribution of fibers and blood vessels were assessed by quantification of staining intensity across regions of interest. This method revealed multivariate similarities and differences between layers and areas. Protein expression in neurons was the strongest determinant of both laminar and regional differences, whereas protein expression in glia was more important for intra-areal laminar distinctions. Among specific results, we observed a lower glia-to-neuron ratio in A17 than in A46 and the pan-neuronal markers HuD and NeuN were differentially distributed in both brain areas with a lower intensity of NeuN in layers 4 and 5 of A17 compared to A46 and other A17 layers. Astrocytes and oligodendrocytes exhibited distinct marker-specific laminar distributions that differed between regions; notably, there was a high proportion of ALDH1L1-expressing astrocytes and of oligodendrocyte markers in layer 4 of A17. The many nuanced differences in protein expression between layers and regions observed here highlight the need for direct assessment of proteins, in addition to RNA expression, and set the stage for future protein-focused studies of these and other brain regions in normal and pathological conditions.
Collapse
Affiliation(s)
- Paola B Castro-Mendoza
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Christina M Weaver
- Department of Mathematics, Franklin and Marshall College, Lancaster, PA, 17604, USA
| | - Wayne Chang
- Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA
| | - Maria Medalla
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Kathleen S Rockland
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Lisa Lowery
- GE HealthCare Technology and Innovation Center, Niskayuna, NY, 12309, USA
| | | | - Merina Varghese
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Center for Discovery and Innovation, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Center for Discovery and Innovation, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Dan E Meyer
- GE HealthCare Technology and Innovation Center, Niskayuna, NY, 12309, USA
| | - Jennifer I Luebke
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA.
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
5
|
Gonzalez Burgos G, Miyamae T, Nishihata Y, Krimer OL, Wade K, Fish KN, Arion D, Cai ZL, Xue M, Stauffer WR, Lewis DA. Synaptic alterations in pyramidal cells following genetic manipulation of neuronal excitability in monkey prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598658. [PMID: 38915638 PMCID: PMC11195287 DOI: 10.1101/2024.06.12.598658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
In schizophrenia, layer 3 pyramidal neurons (L3PNs) in the dorsolateral prefrontal cortex (DLPFC) are thought to receive fewer excitatory synaptic inputs and to have lower expression levels of activity-dependent genes and of genes involved in mitochondrial energy production. In concert, these findings from previous studies suggest that DLPFC L3PNs are hypoactive in schizophrenia, disrupting the patterns of activity that are crucial for working memory, which is impaired in the illness. However, whether lower PN activity produces alterations in inhibitory and/or excitatory synaptic strength has not been tested in the primate DLPFC. Here, we decreased PN excitability in rhesus monkey DLPFC in vivo using adeno-associated viral vectors (AAVs) to produce Cre recombinase-mediated overexpression of Kir2.1 channels, a genetic silencing tool that efficiently decreases neuronal excitability. In acute slices prepared from DLPFC 7-12 weeks post-AAV microinjections, Kir2.1-overexpressing PNs had a significantly reduced excitability largely attributable to highly specific effects of the AAV-encoded Kir2.1 channels. Moreover, recordings of synaptic currents showed that Kir2.1-overexpressing DLPFC PNs had reduced strength of excitatory synapses whereas inhibitory synaptic inputs were not affected. The decrease in excitatory synaptic strength was not associated with changes in dendritic spine number, suggesting that excitatory synapse quantity was unaltered in Kir2.1-overexpressing DLPFC PNs. These findings suggest that, in schizophrenia, the excitatory synapses on hypoactive L3PNs are weaker and thus might represent a substrate for novel therapeutic interventions. Significance Statement In schizophrenia, dorsolateral prefrontal cortex (DLPFC) pyramidal neurons (PNs) have both transcriptional and structural alterations that suggest they are hypoactive. PN hypoactivity is thought to produce synaptic alterations in schizophrenia, however the effects of lower neuronal activity on synaptic function in primate DLPFC have not been examined. Here, we used, for the first time in primate neocortex, adeno-associated viral vectors (AAVs) to reduce PN excitability with Kir2.1 channel overexpression and tested if this manipulation altered the strength of synaptic inputs onto the Kir2.1-overexpressing PNs. Recordings in DLPFC slices showed that Kir2.1 overexpression depressed excitatory (but not inhibitory), synaptic currents, suggesting that, in schizophrenia, the hypoactivity of PNs might be exacerbated by reduced strength of the excitatory synapses they receive.
Collapse
|
6
|
Magrou L, Joyce MKP, Froudist-Walsh S, Datta D, Wang XJ, Martinez-Trujillo J, Arnsten AFT. The meso-connectomes of mouse, marmoset, and macaque: network organization and the emergence of higher cognition. Cereb Cortex 2024; 34:bhae174. [PMID: 38771244 PMCID: PMC11107384 DOI: 10.1093/cercor/bhae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
The recent publications of the inter-areal connectomes for mouse, marmoset, and macaque cortex have allowed deeper comparisons across rodent vs. primate cortical organization. In general, these show that the mouse has very widespread, "all-to-all" inter-areal connectivity (i.e. a "highly dense" connectome in a graph theoretical framework), while primates have a more modular organization. In this review, we highlight the relevance of these differences to function, including the example of primary visual cortex (V1) which, in the mouse, is interconnected with all other areas, therefore including other primary sensory and frontal areas. We argue that this dense inter-areal connectivity benefits multimodal associations, at the cost of reduced functional segregation. Conversely, primates have expanded cortices with a modular connectivity structure, where V1 is almost exclusively interconnected with other visual cortices, themselves organized in relatively segregated streams, and hierarchically higher cortical areas such as prefrontal cortex provide top-down regulation for specifying precise information for working memory storage and manipulation. Increased complexity in cytoarchitecture, connectivity, dendritic spine density, and receptor expression additionally reveal a sharper hierarchical organization in primate cortex. Together, we argue that these primate specializations permit separable deconstruction and selective reconstruction of representations, which is essential to higher cognition.
Collapse
Affiliation(s)
- Loïc Magrou
- Department of Neural Science, New York University, New York, NY 10003, United States
| | - Mary Kate P Joyce
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Sean Froudist-Walsh
- School of Engineering Mathematics and Technology, University of Bristol, Bristol, BS8 1QU, United Kingdom
| | - Dibyadeep Datta
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Xiao-Jing Wang
- Department of Neural Science, New York University, New York, NY 10003, United States
| | - Julio Martinez-Trujillo
- Departments of Physiology and Pharmacology, and Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, United States
| |
Collapse
|
7
|
Cano-Astorga N, Plaza-Alonso S, Turegano-Lopez M, Rodrigo-Rodríguez J, Merchan-Perez A, DeFelipe J. Unambiguous identification of asymmetric and symmetric synapses using volume electron microscopy. Front Neuroanat 2024; 18:1348032. [PMID: 38645671 PMCID: PMC11026665 DOI: 10.3389/fnana.2024.1348032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/08/2024] [Indexed: 04/23/2024] Open
Abstract
The brain contains thousands of millions of synapses, exhibiting diverse structural, molecular, and functional characteristics. However, synapses can be classified into two primary morphological types: Gray's type I and type II, corresponding to Colonnier's asymmetric (AS) and symmetric (SS) synapses, respectively. AS and SS have a thick and thin postsynaptic density, respectively. In the cerebral cortex, since most AS are excitatory (glutamatergic), and SS are inhibitory (GABAergic), determining the distribution, size, density, and proportion of the two major cortical types of synapses is critical, not only to better understand synaptic organization in terms of connectivity, but also from a functional perspective. However, several technical challenges complicate the study of synapses. Potassium ferrocyanide has been utilized in recent volume electron microscope studies to enhance electron density in cellular membranes. However, identifying synaptic junctions, especially SS, becomes more challenging as the postsynaptic densities become thinner with increasing concentrations of potassium ferrocyanide. Here we describe a protocol employing Focused Ion Beam Milling and Scanning Electron Microscopy for studying brain tissue. The focus is on the unequivocal identification of AS and SS types. To validate SS observed using this protocol as GABAergic, experiments with immunocytochemistry for the vesicular GABA transporter were conducted on fixed mouse brain tissue sections. This material was processed with different concentrations of potassium ferrocyanide, aiming to determine its optimal concentration. We demonstrate that using a low concentration of potassium ferrocyanide (0.1%) improves membrane visualization while allowing unequivocal identification of synapses as AS or SS.
Collapse
Affiliation(s)
- Nicolás Cano-Astorga
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University-Cajal Institute, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Sergio Plaza-Alonso
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Turegano-Lopez
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - José Rodrigo-Rodríguez
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Angel Merchan-Perez
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Arquitectura y Tecnología de Sistemas Informáticos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
DeVries SA, Conner B, Dimovasili C, Moore TL, Medalla M, Mortazavi F, Rosene DL. Immune proteins C1q and CD47 may contribute to aberrant microglia-mediated synapse loss in the aging monkey brain that is associated with cognitive impairment. GeroScience 2024; 46:2503-2519. [PMID: 37989825 PMCID: PMC10828237 DOI: 10.1007/s11357-023-01014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
Cognitive impairment in learning, memory, and executive function occurs in normal aging even in the absence of Alzheimer's disease (AD). While neurons do not degenerate in humans or monkeys free of AD, there are structural changes including synapse loss and dendritic atrophy, especially in the dorsolateral prefrontal cortex (dlPFC), and these correlate with cognitive age-related impairment. Developmental studies revealed activity-dependent neuronal properties that lead to synapse remodeling by microglia. Microglia-mediated phagocytosis that may eliminate synapses is regulated by immune "eat me" and "don't eat me" signaling proteins in an activity-dependent manner, so that less active synapses are eliminated. Whether this process contributes to age-related synapse loss remains unknown. The present study used a rhesus monkey model of normal aging to investigate the balance between the "eat me" signal, complement component C1q, and the "don't eat me" signal, transmembrane glycoprotein CD47, relative to age-related synapse loss in dlPFC Area 46. Results showed an age-related elevation of C1q and reduction of CD47 at PSD95+ synapses that is associated with cognitive impairment. Additionally, reduced neuronal CD47 RNA expression was found, indicating that aged neurons were less able to produce the protective signal CD47. Interestingly, microglia do not show the hypertrophic morphology indicative of phagocytic activity. These findings suggest that in the aging brain, changes in the balance of immunologic proteins give microglia instructions favoring synapse elimination of less active synapses, but this may occur by a process other than classic phagocytosis such as trogocytosis.
Collapse
Affiliation(s)
- Sarah A DeVries
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, Boston, MA, USA.
| | - Bryce Conner
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, Boston, MA, USA
| | - Christina Dimovasili
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, Boston, MA, USA
| | - Tara L Moore
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Maria Medalla
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Farzad Mortazavi
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, Boston, MA, USA
| | - Douglas L Rosene
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston University Medical Campus, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| |
Collapse
|
9
|
Karbowski J, Urban P. Information encoded in volumes and areas of dendritic spines is nearly maximal across mammalian brains. Sci Rep 2023; 13:22207. [PMID: 38097675 PMCID: PMC10721930 DOI: 10.1038/s41598-023-49321-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
Many experiments suggest that long-term information associated with neuronal memory resides collectively in dendritic spines. However, spines can have a limited size due to metabolic and neuroanatomical constraints, which should effectively limit the amount of encoded information in excitatory synapses. This study investigates how much information can be stored in the population of sizes of dendritic spines, and whether it is optimal in any sense. It is shown here, using empirical data for several mammalian brains across different regions and physiological conditions, that dendritic spines nearly maximize entropy contained in their volumes and surface areas for a given mean size in cortical and hippocampal regions. Although both short- and heavy-tailed fitting distributions approach [Formula: see text] of maximal entropy in the majority of cases, the best maximization is obtained primarily for short-tailed gamma distribution. We find that most empirical ratios of standard deviation to mean for spine volumes and areas are in the range [Formula: see text], which is close to the theoretical optimal ratios coming from entropy maximization for gamma and lognormal distributions. On average, the highest entropy is contained in spine length ([Formula: see text] bits per spine), and the lowest in spine volume and area ([Formula: see text] bits), although the latter two are closer to optimality. In contrast, we find that entropy density (entropy per spine size) is always suboptimal. Our results suggest that spine sizes are almost as random as possible given the constraint on their size, and moreover the general principle of entropy maximization is applicable and potentially useful to information and memory storing in the population of cortical and hippocampal excitatory synapses, and to predicting their morphological properties.
Collapse
Affiliation(s)
- Jan Karbowski
- Institute of Applied Mathematics and Mechanics, University of Warsaw, Warsaw, Poland.
| | - Paulina Urban
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
- Laboratory of Databases and Business Analytics, National Information Processing Institute, National Research Institute, Warsaw, Poland
| |
Collapse
|
10
|
Banaie Boroujeni K, Womelsdorf T. Routing states transition during oscillatory bursts and attentional selection. Neuron 2023; 111:2929-2944.e11. [PMID: 37463578 PMCID: PMC10529654 DOI: 10.1016/j.neuron.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/22/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023]
Abstract
Brain-wide information routing relies on the spatio-temporal dynamics of neural activity, but it remains unclear how routing states emerge at fast spiking timescales and relate to slower activity dynamics during cognitive processes. Here, we show that localized spiking events participate in directional routing states with spiking activity in distant brain areas that dynamically switch or amplify states during oscillatory bursts, attentional selection, and decision-making. Modeling and neural recordings from lateral prefrontal cortex (LPFC), anterior cingulate cortex (ACC), and striatum of nonhuman primates revealed that cross-regional routing states arise within 20 ms following individual neuron spikes, with LPFC spikes leading the activity in ACC and striatum. The baseline routing state amplified during LPFC beta bursts between LPFC and striatum and switched direction during ACC theta/alpha bursts between ACC and LPFC. Selective attention amplified theta-/alpha-band-specific lead ensembles in ACC, while decision-making increased the lead of ACC and LPFC spikes to the striatum.
Collapse
Affiliation(s)
- Kianoush Banaie Boroujeni
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Thilo Womelsdorf
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
11
|
Zhou Y, Bhatt H, Mojica CA, Xin H, Pessina MA, Rosene DL, Moore TL, Medalla M. Mesenchymal-derived extracellular vesicles enhance microglia-mediated synapse remodeling after cortical injury in aging Rhesus monkeys. J Neuroinflammation 2023; 20:201. [PMID: 37660145 PMCID: PMC10475204 DOI: 10.1186/s12974-023-02880-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023] Open
Abstract
Understanding the microglial neuro-immune interactions in the primate brain is vital to developing therapeutics for cortical injury, such as stroke or traumatic brain injury. Our previous work showed that mesenchymal-derived extracellular vesicles (MSC-EVs) enhanced motor recovery in aged rhesus monkeys following injury of primary motor cortex (M1), by promoting homeostatic ramified microglia, reducing injury-related neuronal hyperexcitability, and enhancing synaptic plasticity in perilesional cortices. A focal lesion was induced via surgical ablation of pial blood vessels over lying the cortical hand representation of M1 of aged female rhesus monkeys, that received intravenous infusions of either vehicle (veh) or EVs 24 h and again 14 days post-injury. The current study used this same cohort to address how these injury- and recovery-associated changes relate to structural and molecular interactions between microglia and neuronal synapses. Using multi-labeling immunohistochemistry, high-resolution microscopy, and gene expression analysis, we quantified co-expression of synaptic markers (VGLUTs, GLURs, VGAT, GABARs), microglia markers (Iba1, P2RY12), and C1q, a complement pathway protein for microglia-mediated synapse phagocytosis, in perilesional M1 and premotor cortices (PMC). We compared this lesion cohort to age-matched non-lesion controls (ctr). Our findings revealed a lesion-related loss of excitatory synapses in perilesional areas, which was ameliorated by EV treatment. Further, we found region-dependent effects of EVs on microglia and C1q expression. In perilesional M1, EV treatment and enhanced functional recovery were associated with increased expression of C1q + hypertrophic microglia, which are thought to have a role in debris-clearance and anti-inflammatory functions. In PMC, EV treatment was associated with decreased C1q + synaptic tagging and microglia-spine contacts. Our results suggest that EV treatment may enhance synaptic plasticity via clearance of acute damage in perilesional M1, and thereby preventing chronic inflammation and excessive synaptic loss in PMC. These mechanisms may act to preserve synaptic cortical motor networks and a balanced normative M1/PMC synaptic function to support functional recovery after injury.
Collapse
Affiliation(s)
- Yuxin Zhou
- Department of Anatomy & Neurobiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Hrishti Bhatt
- Department of Anatomy & Neurobiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Chromewell A Mojica
- Department of Anatomy & Neurobiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Hongqi Xin
- Department of Neurology, Henry Ford Health Systems, Detroit, MI, 48202, USA
| | - Monica A Pessina
- Department of Anatomy & Neurobiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Douglas L Rosene
- Department of Anatomy & Neurobiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Tara L Moore
- Department of Anatomy & Neurobiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Maria Medalla
- Department of Anatomy & Neurobiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA.
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
12
|
Gonzalez-Burgos G, Miyamae T, Nishihata Y, Krimer OL, Lewis DA. Strength of Excitatory Inputs to Layer 3 Pyramidal Neurons During Synaptic Pruning in the Monkey Prefrontal Cortex: Relevance for the Pathogenesis of Schizophrenia. Biol Psychiatry 2023; 94:288-296. [PMID: 36736420 PMCID: PMC10394116 DOI: 10.1016/j.biopsych.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/06/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND In schizophrenia, layer 3 pyramidal neurons (L3PNs) of the dorsolateral prefrontal cortex exhibit deficits in markers of excitatory synaptic inputs that are thought to disrupt the patterns of neural network activity essential for cognitive function. These deficits are usually interpreted under Irwin Feinberg's hypothesis of altered synaptic pruning, which postulates that normal periadolescent pruning, thought to preferentially eliminate weak/immature synapses, is altered in schizophrenia. However, it remains unknown whether periadolescent pruning on L3PNs in the primate dorsolateral prefrontal cortex selectively eliminates weak excitatory synapses or uniformly eliminates excitatory synapses across the full distribution of synaptic strengths. METHODS To distinguish between these alternative models of synaptic pruning, we assessed the densities of dendritic spines, the site of most excitatory inputs to L3PNs, and the distributions of excitatory synaptic strengths in dorsolateral prefrontal cortex L3PNs from male and female monkeys across the periadolescent period of synaptic pruning. We used patch-clamp methods in acute brain slices to record miniature excitatory synaptic currents and intracellular filling with biocytin to quantify dendritic spines. RESULTS On L3PNs, dendritic spines exhibited the expected age-related decline in density, but mean synaptic strength and the shape of synaptic strength distributions remained stable with age. CONCLUSIONS The absence of age-related differences in mean synaptic strength and synaptic strength distributions supports the model of a uniform pattern of synaptic pruning across the full range of synaptic strengths. The implications of these findings for the pathogenesis and functional consequences of dendritic spine deficits in schizophrenia are discussed.
Collapse
Affiliation(s)
- Guillermo Gonzalez-Burgos
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Takeaki Miyamae
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yosuke Nishihata
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Olga L Krimer
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
13
|
Gonzalez-Burgos G, Miyamae T, Reddy N, Dawkins S, Chen C, Hill A, Enwright J, Ermentrout B, Lewis DA. Mechanisms regulating the properties of inhibition-based gamma oscillations in primate prefrontal and parietal cortices. Cereb Cortex 2023; 33:7754-7770. [PMID: 36971419 PMCID: PMC10267634 DOI: 10.1093/cercor/bhad077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 09/21/2024] Open
Abstract
In primates, the dorsolateral prefrontal (DLPFC) and posterior parietal (PPC) cortices are key nodes in the working memory network. The working memory-related gamma oscillations induced in these areas, predominantly in layer 3, exhibit higher frequency in DLPFC. Although these regional differences in oscillation frequency are likely essential for information transfer between DLPFC and PPC, the mechanisms underlying these differences remain poorly understood. We investigated, in rhesus monkey, the DLPFC and PPC layer 3 pyramidal neuron (L3PN) properties that might regulate oscillation frequency and assessed the effects of these properties simulating oscillations in computational models. We found that GABAAR-mediated synaptic inhibition synchronizes L3PNs in both areas, but analysis of GABAAR mRNA levels and inhibitory synaptic currents suggested similar mechanisms of inhibition-mediated synchrony in DLPFC and PPC. Basal dendrite spine density and AMPAR/NMDAR mRNA levels were higher in DLPFC L3PNs, whereas excitatory synaptic currents were similar between areas. Therefore, synaptically evoked excitation might be stronger in DLPFC L3PNs due to a greater quantity of synapses in basal dendrites, a main target of recurrent excitation. Simulations in computational networks showed that oscillation frequency and power increased with increasing recurrent excitation, suggesting a mechanism by which the DLPFC-PPC differences in oscillation properties are generated.
Collapse
Affiliation(s)
- Guillermo Gonzalez-Burgos
- Department of Psychiatry, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15261, United States
| | - Takeaki Miyamae
- Department of Psychiatry, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15261, United States
| | - Nita Reddy
- Department of Psychiatry, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15261, United States
| | - Sidney Dawkins
- Department of Psychiatry, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15261, United States
| | - Chloe Chen
- Department of Mathematics, University of Pittsburgh, 512 Thackeray, Pittsburgh, PA 15260, United States
| | - Avyi Hill
- Department of Mathematics, University of Pittsburgh, 512 Thackeray, Pittsburgh, PA 15260, United States
| | - John Enwright
- Department of Psychiatry, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15261, United States
| | - Bard Ermentrout
- Department of Mathematics, University of Pittsburgh, 512 Thackeray, Pittsburgh, PA 15260, United States
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15261, United States
| |
Collapse
|
14
|
Zhou Y, Bhatt H, Mojica CA, Xin H, Pessina M, Rosene DL, Moore TL, Medalla M. Mesenchymal-Derived Extracellular Vesicles Enhance Microglia-mediated Synapse Remodeling after Cortical Injury in Rhesus Monkeys. RESEARCH SQUARE 2023:rs.3.rs-2917340. [PMID: 37292805 PMCID: PMC10246272 DOI: 10.21203/rs.3.rs-2917340/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Understanding the microglial neuro-immune interactions in the primate brain is vital to developing therapeutics for cortical injury, such as stroke. Our previous work showed that mesenchymal-derived extracellular vesicles (MSC-EVs) enhanced motor recovery in aged rhesus monkeys post-injury of primary motor cortex (M1), by promoting homeostatic ramified microglia, reducing injury-related neuronal hyperexcitability, and enhancing synaptic plasticity in perilesional cortices. The current study addresses how these injury- and recovery-associated changes relate to structural and molecular interactions between microglia and neuronal synapses. Using multi-labeling immunohistochemistry, high resolution microscopy, and gene expression analysis, we quantified co-expression of synaptic markers (VGLUTs, GLURs, VGAT, GABARs), microglia markers (Iba-1, P2RY12), and C1q, a complement pathway protein for microglia-mediated synapse phagocytosis, in perilesional M1 and premotor cortices (PMC) of monkeys with intravenous infusions of either vehicle (veh) or EVs post-injury. We compared this lesion cohort to aged-matched non-lesion controls. Our findings revealed a lesion-related loss of excitatory synapses in perilesional areas, which was ameliorated by EV treatment. Further, we found region-dependent effects of EV on microglia and C1q expression. In perilesional M1, EV treatment and enhanced functional recovery were associated with increased expression of C1q + hypertrophic microglia, which are thought to have a role in debris-clearance and anti-inflammatory functions. In PMC, EV treatment was associated with decreased C1q + synaptic tagging and microglial-spine contacts. Our results provided evidence that EV treatment facilitated synaptic plasticity by enhancing clearance of acute damage in perilesional M1, and thereby preventing chronic inflammation and excessive synaptic loss in PMC. These mechanisms may act to preserve synaptic cortical motor networks and a balanced normative M1/PMC synaptic connectivity to support functional recovery after injury.
Collapse
Affiliation(s)
- Yuxin Zhou
- Boston University Chobanian & Avedisian School of Medicine
| | - Hrishti Bhatt
- Boston University Chobanian & Avedisian School of Medicine
| | | | | | - Monica Pessina
- Boston University Chobanian & Avedisian School of Medicine
| | | | - Tara L Moore
- Boston University Chobanian & Avedisian School of Medicine
| | - Maria Medalla
- Boston University Chobanian & Avedisian School of Medicine
| |
Collapse
|
15
|
Moore TL, Medalla M, Ibañez S, Wimmer K, Mojica CA, Killiany RJ, Moss MB, Luebke JI, Rosene DL. Neuronal properties of pyramidal cells in lateral prefrontal cortex of the aging rhesus monkey brain are associated with performance deficits on spatial working memory but not executive function. GeroScience 2023:10.1007/s11357-023-00798-2. [PMID: 37106282 PMCID: PMC10400510 DOI: 10.1007/s11357-023-00798-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Age-related declines in cognitive abilities occur as early as middle-age in humans and rhesus monkeys. Specifically, performance by aged individuals on tasks of executive function (EF) and working memory (WM) is characterized by greater frequency of errors, shorter memory spans, increased frequency of perseverative responses, impaired use of feedback and reduced speed of processing. However, how aging precisely differentially impacts specific aspects of these cognitive functions and the distinct brain areas mediating cognition are not well understood. The prefrontal cortex (PFC) is known to mediate EF and WM and is an area that shows a vulnerability to age-related alterations in neuronal morphology. In the current study, we show that performance on EF and WM tasks exhibited significant changes with age, and these impairments correlate with changes in biophysical properties of layer 3 (L3) pyramidal neurons in lateral LPFC (LPFC). Specifically, there was a significant age-related increase in excitability of L3 LPFC pyramidal neurons, consistent with previous studies. Further, this age-related hyperexcitability of LPFC neurons was significantly correlated with age-related decline on a task of WM, but not an EF task. The current study characterizes age-related performance on tasks of WM and EF and provides insight into the neural substrates that may underlie changes in both WM and EF with age.
Collapse
Affiliation(s)
- Tara L Moore
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 700 Albany Street, W701, MA, 02118, Boston, USA.
- Center for Systems Neuroscience, Boston University, MA, 02115, Boston, USA.
| | - Maria Medalla
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 700 Albany Street, W701, MA, 02118, Boston, USA
- Center for Systems Neuroscience, Boston University, MA, 02115, Boston, USA
| | - Sara Ibañez
- Centre de Recerca Matemàtica, Edifici C, Campus Bellaterra, 08193, Bellaterra, Spain
| | - Klaus Wimmer
- Centre de Recerca Matemàtica, Edifici C, Campus Bellaterra, 08193, Bellaterra, Spain
| | - Chromewell A Mojica
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 700 Albany Street, W701, MA, 02118, Boston, USA
| | - Ronald J Killiany
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 700 Albany Street, W701, MA, 02118, Boston, USA
- Center for Systems Neuroscience, Boston University, MA, 02115, Boston, USA
| | - Mark B Moss
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 700 Albany Street, W701, MA, 02118, Boston, USA
- Center for Systems Neuroscience, Boston University, MA, 02115, Boston, USA
| | - Jennifer I Luebke
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 700 Albany Street, W701, MA, 02118, Boston, USA
- Center for Systems Neuroscience, Boston University, MA, 02115, Boston, USA
| | - Douglas L Rosene
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 700 Albany Street, W701, MA, 02118, Boston, USA
- Center for Systems Neuroscience, Boston University, MA, 02115, Boston, USA
| |
Collapse
|
16
|
Moore TL, Medalla M, Iba Ez S, Wimmer K, Mojica CA, Killiany RJ, Moss MB, Luebke JI, Rosene DL. Neuronal properties of pyramidal cells in lateral prefrontal cortex of the aging rhesus monkey brain are associated with performance deficits on spatial working memory but not executive function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527321. [PMID: 36798388 PMCID: PMC9934587 DOI: 10.1101/2023.02.07.527321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Age-related declines in cognitive abilities occur as early as middle-age in humans and rhesus monkeys. Specifically, performance by aged individuals on tasks of executive function (EF) and working memory (WM) is characterized by greater frequency of errors, shorter memory spans, increased frequency of perseverative responses, impaired use of feedback and reduced speed of processing. However, how aging precisely differentially impacts specific aspects of these cognitive functions and the distinct brain areas mediating cognition are not well understood. The prefrontal cortex (PFC) is known to mediate EF and WM and is an area that shows a vulnerability to age-related alterations in neuronal morphology. In the current study, we show that performance on EF and WM tasks exhibited significant changes with age and these impairments correlate with changes in biophysical properties of L3 pyramidal neurons in lateral LPFC (LPFC). Specifically, there was a significant age-related increase in excitability of Layer 3 LPFC pyramidal neurons, consistent with previous studies. Further, this age-related hyperexcitability of LPFC neurons was significantly correlated with age-related decline on a task of WM, but not an EF task. The current study characterizes age-related performance on tasks of WM and EF and provides insight into the neural substrates that may underlie changes in both WM and EF with age.
Collapse
|
17
|
Shrestha AP, Saravanakumar A, Konadu B, Madireddy S, Gibert Y, Vaithianathan T. Embryonic Hyperglycemia Delays the Development of Retinal Synapses in a Zebrafish Model. Int J Mol Sci 2022; 23:ijms23179693. [PMID: 36077087 PMCID: PMC9456524 DOI: 10.3390/ijms23179693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022] Open
Abstract
Embryonic hyperglycemia negatively impacts retinal development, leading to abnormal visual behavior, altered timing of retinal progenitor differentiation, decreased numbers of retinal ganglion cells and Müller glia, and vascular leakage. Because synaptic disorganization is a prominent feature of many neurological diseases, the goal of the current work was to study the potential impact of hyperglycemia on retinal ribbon synapses during embryonic development. Our approach utilized reverse transcription quantitative PCR (RT-qPCR) and immunofluorescence labeling to compare the transcription of synaptic proteins and their localization in hyperglycemic zebrafish embryos, respectively. Our data revealed that the maturity of synaptic ribbons was compromised in hyperglycemic zebrafish larvae, where altered ribeye expression coincided with the delay in establishing retinal ribbon synapses and an increase in the immature synaptic ribbons. Our results suggested that embryonic hyperglycemia disrupts retinal synapses by altering the development of the synaptic ribbon, which can lead to visual defects. Future studies using zebrafish models of hyperglycemia will allow us to study the underlying mechanisms of retinal synapse development.
Collapse
Affiliation(s)
- Abhishek P. Shrestha
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ambalavanan Saravanakumar
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Program in Biology, Rhodes College, Memphis, TN 38112, USA
| | - Bridget Konadu
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Saivikram Madireddy
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yann Gibert
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Thirumalini Vaithianathan
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Correspondence: ; Tel.: +1-901-448-2786
| |
Collapse
|
18
|
Medalla M, Chang W, Ibañez S, Guillamon-Vivancos T, Nittmann M, Kapitonava A, Busch SE, Moore TL, Rosene DL, Luebke JI. Layer-specific pyramidal neuron properties underlie diverse anterior cingulate cortical motor and limbic networks. Cereb Cortex 2022; 32:2170-2196. [PMID: 34613380 PMCID: PMC9113240 DOI: 10.1093/cercor/bhab347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
The laminar cellular and circuit mechanisms by which the anterior cingulate cortex (ACC) exerts flexible control of motor and affective information for goal-directed behavior have not been elucidated. Using multimodal tract-tracing, in vitro patch-clamp recording and computational approaches in rhesus monkeys (M. mulatta), we provide evidence that specialized motor and affective network dynamics can be conferred by layer-specific biophysical and structural properties of ACC pyramidal neurons targeting two key downstream structures -the dorsal premotor cortex (PMd) and the amygdala (AMY). AMY-targeting neurons exhibited significant laminar differences, with L5 more excitable (higher input resistance and action potential firing rates) than L3 neurons. Between-pathway differences were found within L5, with AMY-targeting neurons exhibiting greater excitability, apical dendritic complexity, spine densities, and diversity of inhibitory inputs than PMd-targeting neurons. Simulations using a pyramidal-interneuron network model predict that these layer- and pathway-specific single-cell differences contribute to distinct network oscillatory dynamics. L5 AMY-targeting networks are more tuned to slow oscillations well-suited for affective and contextual processing timescales, while PMd-targeting networks showed strong beta/gamma synchrony implicated in rapid sensorimotor processing. These findings are fundamental to our broad understanding of how layer-specific cellular and circuit properties can drive diverse laminar activity found in flexible behavior.
Collapse
Affiliation(s)
- Maria Medalla
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Wayne Chang
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Sara Ibañez
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Teresa Guillamon-Vivancos
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Instituto de Neurociencias de Alicante, Alicante, Spain
| | - Mathias Nittmann
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- University of South Florida, Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Anastasia Kapitonava
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Silas E Busch
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
| | - Tara L Moore
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Douglas L Rosene
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Jennifer I Luebke
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
19
|
Tsolias A, Medalla M. Muscarinic Acetylcholine Receptor Localization on Distinct Excitatory and Inhibitory Neurons Within the ACC and LPFC of the Rhesus Monkey. Front Neural Circuits 2022; 15:795325. [PMID: 35087381 PMCID: PMC8786743 DOI: 10.3389/fncir.2021.795325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022] Open
Abstract
Acetylcholine (ACh) can act on pre- and post-synaptic muscarinic receptors (mAChR) in the cortex to influence a myriad of cognitive processes. Two functionally-distinct regions of the prefrontal cortex-the lateral prefrontal cortex (LPFC) and the anterior cingulate cortex (ACC)-are differentially innervated by ascending cholinergic pathways yet, the nature and organization of prefrontal-cholinergic circuitry in primates are not well understood. Using multi-channel immunohistochemical labeling and high-resolution microscopy, we found regional and laminar differences in the subcellular localization and the densities of excitatory and inhibitory subpopulations expressing m1 and m2 muscarinic receptors, the two predominant cortical mAChR subtypes, in the supragranular layers of LPFC and ACC in rhesus monkeys (Macaca mulatta). The subset of m1+/m2+ expressing SMI-32+ pyramidal neurons labeled in layer 3 (L3) was denser in LPFC than in ACC, while m1+/m2+ SMI-32+ neurons co-expressing the calcium-binding protein, calbindin (CB) was greater in ACC. Further, we found between-area differences in laminar m1+ dendritic expression, and m2+ presynaptic localization on cortico-cortical (VGLUT1+) and sub-cortical inputs (VGLUT2+), suggesting differential cholinergic modulation of top-down vs. bottom-up inputs in the two areas. While almost all inhibitory interneurons-identified by their expression of parvalbumin (PV+), CB+, and calretinin (CR+)-expressed m1+, the localization of m2+ differed by subtype and area. The ACC exhibited a greater proportion of m2+ inhibitory neurons compared to the LPFC and had a greater density of presynaptic m2+ localized on inhibitory (VGAT+) inputs targeting proximal somatodendritic compartments and axon initial segments of L3 pyramidal neurons. These data suggest a greater capacity for m2+-mediated cholinergic suppression of inhibition in the ACC compared to the LPFC. The anatomical localization of muscarinic receptors on ACC and LPFC micro-circuits shown here contributes to our understanding of diverse cholinergic neuromodulation of functionally-distinct prefrontal areas involved in goal-directed behavior, and how these interactions maybe disrupted in neuropsychiatric and neurological conditions.
Collapse
Affiliation(s)
- Alexandra Tsolias
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Maria Medalla
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| |
Collapse
|
20
|
Chang W, Weaver CM, Medalla M, Moore TL, Luebke JI. Age-related alterations to working memory and to pyramidal neurons in the prefrontal cortex of rhesus monkeys begin in early middle-age and are partially ameliorated by dietary curcumin. Neurobiol Aging 2022; 109:113-124. [PMID: 34715442 PMCID: PMC8671373 DOI: 10.1016/j.neurobiolaging.2021.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 01/03/2023]
Abstract
Layer 3 (L3) pyramidal neurons in aged rhesus monkey lateral prefrontal cortex (LPFC) exhibit significantly elevated excitability in vitro and reduced spine density compared to neurons in young subjects. The time-course of these alterations, and whether they can be ameliorated in middle age by the powerful anti-oxidant curcumin is unknown. We compared the properties of L3 pyramidal neurons from the LPFC of behaviorally characterized rhesus monkeys over the adult lifespan using whole-cell patch clamp recordings and neuronal reconstructions. Working memory (WM) impairment, neuronal hyperexcitability, and spine loss began in middle age. There was no significant relationship between neuronal properties and WM performance. Middle-aged subjects given curcumin exhibited better WM performance and less neuronal excitability compared to control subjects. These findings suggest that the appropriate time frame for intervention for age-related cognitive changes is early middle age, and points to the efficacy of curcumin in delaying WM decline. Because there was no relationship between excitability and behavior, the effects of curcumin on these measures appear to be independent.
Collapse
Affiliation(s)
- W Chang
- Department of Anatomy & Neurobiology, Boston University School of Medicine 650 Albany St., Boston MA 02118 USA
| | - C M Weaver
- Department of Mathematics, Franklin and Marshall College, Lancaster PA 17604 USA
| | - M Medalla
- Department of Anatomy & Neurobiology, Boston University School of Medicine 650 Albany St., Boston MA 02118 USA
| | - T L Moore
- Department of Anatomy & Neurobiology, Boston University School of Medicine 650 Albany St., Boston MA 02118 USA
| | - J I Luebke
- Department of Anatomy & Neurobiology, Boston University School of Medicine 650 Albany St., Boston MA 02118 USA.
| |
Collapse
|
21
|
Wildenberg GA, Rosen MR, Lundell J, Paukner D, Freedman DJ, Kasthuri N. Primate neuronal connections are sparse in cortex as compared to mouse. Cell Rep 2021; 36:109709. [PMID: 34525373 DOI: 10.1016/j.celrep.2021.109709] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 12/29/2022] Open
Abstract
Detailing how primate and mouse neurons differ is critical for creating generalized models of how neurons process information. We reconstruct 15,748 synapses in adult Rhesus macaques and mice and ask how connectivity differs on identified cell types in layer 2/3 of primary visual cortex. Primate excitatory and inhibitory neurons receive 2-5 times fewer excitatory and inhibitory synapses than similar mouse neurons. Primate excitatory neurons have lower excitatory-to-inhibitory (E/I) ratios than mouse but similar E/I ratios in inhibitory neurons. In both species, properties of inhibitory axons such as synapse size and frequency are unchanged, and inhibitory innervation of excitatory neurons is local and specific. Using artificial recurrent neural networks (RNNs) optimized for different cognitive tasks, we find that penalizing networks for creating and maintaining synapses, as opposed to neuronal firing, reduces the number of connections per node as the number of nodes increases, similar to primate neurons compared with mice.
Collapse
Affiliation(s)
- Gregg A Wildenberg
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Matt R Rosen
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Jack Lundell
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Dawn Paukner
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - David J Freedman
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Narayanan Kasthuri
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; Argonne National Laboratory, Lemont, IL 60439, USA.
| |
Collapse
|
22
|
Lee EK, Balasubramanian H, Tsolias A, Anakwe SU, Medalla M, Shenoy KV, Chandrasekaran C. Non-linear dimensionality reduction on extracellular waveforms reveals cell type diversity in premotor cortex. eLife 2021; 10:e67490. [PMID: 34355695 PMCID: PMC8452311 DOI: 10.7554/elife.67490] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Cortical circuits are thought to contain a large number of cell types that coordinate to produce behavior. Current in vivo methods rely on clustering of specified features of extracellular waveforms to identify putative cell types, but these capture only a small amount of variation. Here, we develop a new method (WaveMAP) that combines non-linear dimensionality reduction with graph clustering to identify putative cell types. We apply WaveMAP to extracellular waveforms recorded from dorsal premotor cortex of macaque monkeys performing a decision-making task. Using WaveMAP, we robustly establish eight waveform clusters and show that these clusters recapitulate previously identified narrow- and broad-spiking types while revealing previously unknown diversity within these subtypes. The eight clusters exhibited distinct laminar distributions, characteristic firing rate patterns, and decision-related dynamics. Such insights were weaker when using feature-based approaches. WaveMAP therefore provides a more nuanced understanding of the dynamics of cell types in cortical circuits.
Collapse
Affiliation(s)
- Eric Kenji Lee
- Psychological and Brain Sciences, Boston UniversityBostonUnited States
| | - Hymavathy Balasubramanian
- Bernstein Center for Computational Neuroscience, Bernstein Center for Computational NeuroscienceBerlinGermany
| | - Alexandra Tsolias
- Department of Anatomy and Neurobiology, Boston UniversityBostonUnited States
| | | | - Maria Medalla
- Department of Anatomy and Neurobiology, Boston UniversityBostonUnited States
| | - Krishna V Shenoy
- Department of Electrical Engineering, Stanford UniversityStanfordUnited States
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- Department of Neurobiology, Stanford UniversityStanfordUnited States
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordUnited States
- Bio-X Institute, Stanford UniversityStanfordUnited States
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Chandramouli Chandrasekaran
- Psychological and Brain Sciences, Boston UniversityBostonUnited States
- Department of Anatomy and Neurobiology, Boston UniversityBostonUnited States
- Center for Systems Neuroscience, Boston UniversityBostonUnited States
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
| |
Collapse
|
23
|
Liu W, Liu Q, Crozier RA, Davis RL. Analog Transmission of Action Potential Fine Structure in Spiral Ganglion Axons. J Neurophysiol 2021; 126:888-905. [PMID: 34346782 DOI: 10.1152/jn.00237.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Action potential waveforms generated at the axon initial segment (AIS) are specialized between and within neuronal classes. But is the fine structure of each electrical event retained when transmitted along myelinated axons or is it rapidly and uniformly transmitted to be modified again at the axon terminal? To address this issue action potential axonal transmission was evaluated in a class of primary sensory afferents that possess numerous types of voltage-gated ion channels underlying a complex repertoire of endogenous firing patterns. In addition to their signature intrinsic electrophysiological heterogeneity, spiral ganglion neurons are uniquely designed. The bipolar, myelinated somata of type I neurons are located within the conduction pathway, requiring that action potentials generated at the first heminode must be conducted through their electrically excitable membrane. We utilized this unusual axonal-like morphology to serve as a window into action potential transmission to compare locally-evoked action potential profiles to those generated peripherally at their glutamatergic synaptic connections with hair cell receptors. These comparisons showed that the distinctively-shaped somatic action potentials were highly correlated with the nodally-generated, invading ones for each neuron. This result indicates that the fine structure of the action potential waveform is maintained axonally, thus supporting the concept that analog signaling is incorporated into each digitally-transmitted action potential in the specialized primary auditory afferents.
Collapse
Affiliation(s)
- Wenke Liu
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.,Institute for System Genetics, New York University School of Medicine, New York, NY, United States
| | - Qing Liu
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.,Inscopix, Inc., Palo Alto, California, United States
| | - Robert A Crozier
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.,Synergy Pharmaceuticals Inc., New York, NY, United States
| | - Robin L Davis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| |
Collapse
|
24
|
Ikezu S, Yeh H, Delpech JC, Woodbury ME, Van Enoo AA, Ruan Z, Sivakumaran S, You Y, Holland C, Guillamon-Vivancos T, Yoshii-Kitahara A, Botros MB, Madore C, Chao PH, Desani A, Manimaran S, Kalavai SV, Johnson WE, Butovsky O, Medalla M, Luebke JI, Ikezu T. Inhibition of colony stimulating factor 1 receptor corrects maternal inflammation-induced microglial and synaptic dysfunction and behavioral abnormalities. Mol Psychiatry 2021; 26:1808-1831. [PMID: 32071385 PMCID: PMC7431382 DOI: 10.1038/s41380-020-0671-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/21/2020] [Accepted: 01/29/2020] [Indexed: 12/23/2022]
Abstract
Maternal immune activation (MIA) disrupts the central innate immune system during a critical neurodevelopmental period. Microglia are primary innate immune cells in the brain although their direct influence on the MIA phenotype is largely unknown. Here we show that MIA alters microglial gene expression with upregulation of cellular protrusion/neuritogenic pathways, concurrently causing repetitive behavior, social deficits, and synaptic dysfunction to layer V intrinsically bursting pyramidal neurons in the prefrontal cortex of mice. MIA increases plastic dendritic spines of the intrinsically bursting neurons and their interaction with hyper-ramified microglia. Treating MIA offspring by colony stimulating factor 1 receptor inhibitors induces depletion and repopulation of microglia, and corrects protein expression of the newly identified MIA-associated neuritogenic molecules in microglia, which coalesces with correction of MIA-associated synaptic, neurophysiological, and behavioral abnormalities. Our study demonstrates that maternal immune insults perturb microglial phenotypes and influence neuronal functions throughout adulthood, and reveals a potent effect of colony stimulating factor 1 receptor inhibitors on the correction of MIA-associated microglial, synaptic, and neurobehavioral dysfunctions.
Collapse
Affiliation(s)
- Seiko Ikezu
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| | - Hana Yeh
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Graduate Program in Neuroscience, Boston University, Boston, MA, USA
| | - Jean-Christophe Delpech
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Maya E Woodbury
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Graduate Program in Neuroscience, Boston University, Boston, MA, USA
| | - Alicia A Van Enoo
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Zhi Ruan
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Sudhir Sivakumaran
- Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Yang You
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Carl Holland
- Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | | | - Asuka Yoshii-Kitahara
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Mina B Botros
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Charlotte Madore
- Ann Romney Center for Neurologic Diseases, Department of Neurology and Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pin-Hao Chao
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Ankita Desani
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Solaiappan Manimaran
- Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Srinidhi Venkatesan Kalavai
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - W Evan Johnson
- Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology and Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria Medalla
- Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Jennifer I Luebke
- Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Tsuneya Ikezu
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
- Center for Systems Neuroscience, Boston University, Boston, MA, USA.
- Department of Neurology and Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
25
|
Wiring of higher-order cortical areas: Spatiotemporal development of cortical hierarchy. Semin Cell Dev Biol 2021; 118:35-49. [PMID: 34034988 DOI: 10.1016/j.semcdb.2021.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/27/2021] [Accepted: 05/08/2021] [Indexed: 01/04/2023]
Abstract
A hierarchical development of cortical areas was suggested over a century ago, but the diversity and complexity of cortical hierarchy properties have so far prevented a formal demonstration. The aim of this review is to clarify the similarities and differences in the developmental processes underlying cortical development of primary and higher-order areas. We start by recapitulating the historical and recent advances underlying the biological principle of cortical hierarchy in adults. We then revisit the arguments for a hierarchical maturation of cortical areas, and further integrate the principles of cortical areas specification during embryonic and postnatal development. We highlight how the dramatic expansion in cortical size might have contributed to the increased number of association areas sustaining cognitive complexification in evolution. Finally, we summarize the recent observations of an alteration of cortical hierarchy in neuropsychiatric disorders and discuss their potential developmental origins.
Collapse
|
26
|
Levy WB, Calvert VG. Communication consumes 35 times more energy than computation in the human cortex, but both costs are needed to predict synapse number. Proc Natl Acad Sci U S A 2021; 118:e2008173118. [PMID: 33906943 PMCID: PMC8106317 DOI: 10.1073/pnas.2008173118] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Darwinian evolution tends to produce energy-efficient outcomes. On the other hand, energy limits computation, be it neural and probabilistic or digital and logical. Taking a particular energy-efficient viewpoint, we define neural computation and make use of an energy-constrained computational function. This function can be optimized over a variable that is proportional to the number of synapses per neuron. This function also implies a specific distinction between adenosine triphosphate (ATP)-consuming processes, especially computation per se vs. the communication processes of action potentials and transmitter release. Thus, to apply this mathematical function requires an energy audit with a particular partitioning of energy consumption that differs from earlier work. The audit points out that, rather than the oft-quoted 20 W of glucose available to the human brain, the fraction partitioned to cortical computation is only 0.1 W of ATP [L. Sokoloff, Handb. Physiol. Sect. I Neurophysiol. 3, 1843-1864 (1960)] and [J. Sawada, D. S. Modha, "Synapse: Scalable energy-efficient neurosynaptic computing" in Application of Concurrency to System Design (ACSD) (2013), pp. 14-15]. On the other hand, long-distance communication costs are 35-fold greater, 3.5 W. Other findings include 1) a [Formula: see text]-fold discrepancy between biological and lowest possible values of a neuron's computational efficiency and 2) two predictions of N, the number of synaptic transmissions needed to fire a neuron (2,500 vs. 2,000).
Collapse
Affiliation(s)
- William B Levy
- Department of Neurosurgery, University of Virginia, Charlottesville, VA 22908;
- Department of Psychology, University of Virginia, Charlottesville, VA 22904
| | - Victoria G Calvert
- College of Arts and Sciences, University of Virginia, Charlottesville, VA 22903
| |
Collapse
|
27
|
Hoftman GD, Bazmi HH, Ciesielski AJ, Dinka LA, Chen K, Lewis DA. Postnatal Development of Glutamate and GABA Transcript Expression in Monkey Visual, Parietal, and Prefrontal Cortices. Cereb Cortex 2021; 31:2026-2037. [PMID: 33279960 DOI: 10.1093/cercor/bhaa342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 11/14/2022] Open
Abstract
Visuospatial working memory (vsWM) requires information transfer among multiple cortical regions, from primary visual (V1) to prefrontal (PFC) cortices. This information is conveyed via layer 3 glutamatergic neurons whose activity is regulated by gamma-aminobutyric acid (GABA)ergic interneurons. In layer 3 of adult human neocortex, molecular markers of glutamate neurotransmission were lowest in V1 and highest in PFC, whereas GABA markers had the reverse pattern. Here, we asked if these opposite V1-visual association cortex (V2)-posterior parietal cortex (PPC)-PFC gradients across the vsWM network are present in layer 3 of monkey neocortex, when they are established during postnatal development, and if they are specific to this layer. We quantified transcript levels of glutamate and GABA markers in layers 3 and 6 of four vsWM cortical regions in a postnatal developmental series of 30 macaque monkeys. In adult monkeys, glutamate transcript levels in layer 3 increased across V1-V2-PPC-PFC regions, whereas GABA transcripts showed the opposite V1-V2-PPC-PFC gradient. Glutamate transcripts established adult-like expression patterns earlier during postnatal development than GABA transcripts. These V1-V2-PPC-PFC gradients and developmental patterns were less evident in layer 6. These findings demonstrate that expression of glutamate and GABA transcripts differs across cortical regions and layers during postnatal development, revealing potential molecular substrates for vsWM functional maturation.
Collapse
Affiliation(s)
- Gil D Hoftman
- Department of Psychiatry, University of California, Los Angeles, CA 90095, USA
| | - H Holly Bazmi
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Andrew J Ciesielski
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Liban A Dinka
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kehui Chen
- Department of Statistics, School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - David A Lewis
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
28
|
Go V, Sarikaya D, Zhou Y, Bowley BGE, Pessina MA, Rosene DL, Zhang ZG, Chopp M, Finklestein SP, Medalla M, Buller B, Moore TL. Extracellular vesicles derived from bone marrow mesenchymal stem cells enhance myelin maintenance after cortical injury in aged rhesus monkeys. Exp Neurol 2021; 337:113540. [PMID: 33264634 PMCID: PMC7946396 DOI: 10.1016/j.expneurol.2020.113540] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022]
Abstract
Cortical injury, such as stroke, causes neurotoxic cascades that lead to rapid death and/or damage to neurons and glia. Axonal and myelin damage in particular, are critical factors that lead to neuronal dysfunction and impair recovery of function after injury. These factors can be exacerbated in the aged brain where white matter damage is prevalent. Therapies that can ameliorate myelin damage and promote repair by targeting oligodendroglia, the cells that produce and maintain myelin, may facilitate recovery after injury, especially in the aged brain where these processes are already compromised. We previously reported that a novel therapeutic, Mesenchymal Stem Cell derived extracellular vesicles (MSC-EVs), administered intravenously at both 24 h and 14 days after cortical injury, reduced microgliosis (Go et al. 2019), reduced neuronal pathology (Medalla et al. 2020), and improved motor recovery (Moore et al. 2019) in aged female rhesus monkeys. Here, we evaluated the effect of MSC-EV treatment on changes in oligodendrocyte maturation and associated myelin markers in the sublesional white matter using immunohistochemistry, confocal microscopy, stereology, qRT-PCR, and ELISA. Compared to vehicle control monkeys, EV-treated monkeys showed a reduction in the density of damaged oligodendrocytes. Further, EV-treatment was associated with enhanced myelin maintenance, evidenced by upregulation of myelin-related genes and increases in actively myelinating oligodendrocytes in sublesional white matter. These changes in myelination correlate with the rate of motor recovery, suggesting that improved myelin maintenance facilitates this recovery. Overall, our results suggest that EVs act on oligodendrocytes to support myelination and improves functional recovery after injury in the aged brain. SIGNIFICANCE: We previously reported that EVs facilitate recovery of function after cortical injury in the aged monkey brain, while also reducing neuronal pathology (Medalla et al. 2020) and microgliosis (Go et al. 2019). However, the effect of injury and EVs on oligodendrocytes and myelination has not been characterized in the primate brain (Dewar et al. 1999; Sozmen et al. 2012; Zhang et al. 2013). In the present study, we assessed changes in myelination after cortical injury in aged monkeys. Our results show, for the first time, that MSC-EVs support recovery of function after cortical injury by enhancing myelin maintenance in the aged primate brain.
Collapse
Affiliation(s)
- Veronica Go
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, United States.
| | - Deniz Sarikaya
- Research Center for Translational Medicine, Koç University School of Medicine, Turkey
| | - Yuxin Zhou
- Department of Anatomy & Neurobiology, Boston University School of Medicine, United States
| | - Bethany G E Bowley
- Department of Anatomy & Neurobiology, Boston University School of Medicine, United States
| | - Monica A Pessina
- Department of Anatomy & Neurobiology, Boston University School of Medicine, United States
| | - Douglas L Rosene
- Department of Anatomy & Neurobiology, Boston University School of Medicine, United States; Yerkes National Primate Research Center, Emory University, United States; Center for Systems Neuroscience, Boston University, United States
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health Systems, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Health Systems, United States; Department of Physics, Oakland University, United States
| | - Seth P Finklestein
- Department of Neurology, Massachusetts General Hospital, United States; Stemetix, Inc., United States
| | - Maria Medalla
- Department of Anatomy & Neurobiology, Boston University School of Medicine, United States; Center for Systems Neuroscience, Boston University, United States
| | - Benjamin Buller
- Department of Neurology, Henry Ford Health Systems, United States
| | - Tara L Moore
- Department of Anatomy & Neurobiology, Boston University School of Medicine, United States; Center for Systems Neuroscience, Boston University, United States
| |
Collapse
|
29
|
Wang J, John Y, Barbas H. Pathways for Contextual Memory: The Primate Hippocampal Pathway to Anterior Cingulate Cortex. Cereb Cortex 2021; 31:1807-1826. [PMID: 33207365 PMCID: PMC7869091 DOI: 10.1093/cercor/bhaa333] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/27/2022] Open
Abstract
The anterior cingulate cortex (ACC) is one of the few prefrontal areas that receives robust direct hippocampal terminations. This pathway may enable current context and past experience to influence goal-directed actions and emotional regulation by prefrontal cortices. We investigated the still ill-understood organization of the pathway from anterior hippocampus to ACC (A24a, A25, A32) to identify laminar termination patterns and their postsynaptic excitatory and inhibitory targets from system to synapse in rhesus monkeys. The densest hippocampal terminations targeted posterior A25, a region that is involved in affective and autonomic regulation. Hippocampal terminations innervated mostly excitatory neurons (~90%), suggesting strong excitatory effects. Among the smaller fraction of inhibitory targets, hippocampal terminations in A25 preferentially innervated calretinin neurons, a pattern that differs markedly from rodents. Further, hippocampal terminations innervated spines with D1 receptors, particularly in the deep layers of A25, where D1 receptors are enriched in comparison with the upper layers. The proximity of hippocampal terminations to D1 receptors may enable dopamine to enhance information transfer from the hippocampus to A25 and contribute to dopaminergic influence downstream on goal-directed action and emotional control by prefrontal cortices, in processes that may be disrupted by excessive dopamine release during uncontrollable stress.
Collapse
Affiliation(s)
- Jingyi Wang
- Department of Health Sciences, Neural Systems Laboratory, Boston University, Boston, MA 02215, USA
| | - Yohan John
- Department of Health Sciences, Neural Systems Laboratory, Boston University, Boston, MA 02215, USA
| | - Helen Barbas
- Department of Health Sciences, Neural Systems Laboratory, Boston University, Boston, MA 02215, USA
- Graduate Program in Neuroscience, Boston University and School of Medicine, Boston, MA 02215, USA
| |
Collapse
|
30
|
Datta D, Enwright JF, Arion D, Paspalas CD, Morozov YM, Lewis DA, Arnsten AFT. Mapping Phosphodiesterase 4D (PDE4D) in Macaque Dorsolateral Prefrontal Cortex: Postsynaptic Compartmentalization in Layer III Pyramidal Cell Circuits. Front Neuroanat 2020; 14:578483. [PMID: 33328902 PMCID: PMC7714912 DOI: 10.3389/fnana.2020.578483] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022] Open
Abstract
cAMP signaling has powerful, negative effects on cognitive functions of the primate dorsolateral prefrontal cortex (dlPFC), opening potassium channels to reduce firing and impair working memory, and increasing tau phosphorylation in aging neurons. This contrasts with cAMP actions in classic circuits, where it enhances plasticity and transmitter release. PDE4 isozymes regulate cAMP actions, and thus have been a focus of research and drug discovery. Previous work has focused on the localization of PDE4A and PDE4B in dlPFC, but PDE4D is also of great interest, as it is the predominant PDE4 isoform in primate association cortex, and PDE4D expression decreases with aging in human dlPFC. Here we used laser-capture microdissection transcriptomics and found that PDE4D message is enriched in pyramidal cells compared to GABAergic PV-interneurons in layer III of the human dlPFC. A parallel study in rhesus macaques using high-spatial resolution immunoelectron microscopy revealed the ultrastructural locations of PDE4D in primate dlPFC with clarity not possible in human post-mortem tissue. PDE4D was especially prominent in dendrites associated with microtubules, mitochondria, and likely smooth endoplasmic reticulum (SER). There was substantial postsynaptic labeling in dendritic spines, associated with the SER spine-apparatus near glutamatergic-like axospinous synapses, but sparse labeling in axon terminals. We also observed dense PDE4D labeling perisynaptically in astroglial leaflets ensheathing glutamatergic connections. These data suggest that PDE4D is strategically positioned to regulate cAMP signaling in dlPFC glutamatergic synapses and circuits, especially in postsynaptic compartments where it is localized to influence cAMP actions on intracellular trafficking, mitochondrial physiology, and internal calcium release.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - John F. Enwright
- Department of Psychiatry, Translational Neuroscience Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Dominique Arion
- Department of Psychiatry, Translational Neuroscience Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Constantinos D. Paspalas
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Yury M. Morozov
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - David A. Lewis
- Department of Psychiatry, Translational Neuroscience Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Amy F. T. Arnsten
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
31
|
Joyce MKP, García-Cabezas MÁ, John YJ, Barbas H. Serial Prefrontal Pathways Are Positioned to Balance Cognition and Emotion in Primates. J Neurosci 2020; 40:8306-8328. [PMID: 32989097 PMCID: PMC7577604 DOI: 10.1523/jneurosci.0860-20.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/18/2020] [Accepted: 08/15/2020] [Indexed: 12/11/2022] Open
Abstract
The delicate balance among primate prefrontal networks is necessary for homeostasis and behavioral flexibility. Dorsolateral prefrontal cortex (dlPFC) is associated with cognition, while the most ventromedial subgenual cingulate area 25 (A25) is associated with emotion and emotional expression. Yet A25 is weakly connected with dlPFC, and it is unknown how the two regions communicate. In rhesus monkeys of both sexes, we investigated how these functionally distinct areas may interact through pregenual anterior cingulate area 32 (A32), which is strongly connected with both. We found that dlPFC innervated the deep layers of A32, while A32 innervated all layers of A25, mostly targeting spines of excitatory neurons. Approximately 20% of A32 terminations formed synapses on inhibitory neurons in A25, notably the powerful parvalbumin inhibitory neurons in the deep layers, and the disinhibitory calretinin neurons in the superficial layers. By innervating distinct inhibitory microenvironments in laminar compartments, A32 is positioned to tune activity in columns of A25. The circuitry of the sequential pathway indicates that when dlPFC is engaged, A32 can dampen A25 output through the parvalbumin inhibitory microsystem in the deep layers of A25. A32 thus may flexibly recruit or reduce activity in A25 to maintain emotional equilibrium, a process that is disrupted in depression. Moreover, pyramidal neurons in A25 had a heightened density of NMDARs, which are the targets of novel rapid-acting antidepressants. Pharmacologic antagonism of NMDARs in patients with depression may reduce excitability in A25, mimicking the effects of the neurotypical serial pathway identified here.SIGNIFICANCE STATEMENT The anterior cingulate is a critical hub in prefrontal networks through connections with functionally distinct areas. Dorsolateral and polar prefrontal areas that are associated with complex cognition are connected with the anterior cingulate in a pattern that allows them to indirectly control downstream activity from the anterior cingulate to the subgenual cingulate, which is associated with heightened activity and negative affect in depression. This set of pathways provides a circuit mechanism for emotional regulation, with the anterior cingulate playing a balancing role for integration of cognitive and emotional processes. Disruption of these pathways may perturb network function and the ability to regulate cognitive and affective processes based on context.
Collapse
Affiliation(s)
- Mary Kate P Joyce
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts 02215
- Graduate Program in Neuroscience, Boston University School of Medicine, Boston, Massachusetts 02215
| | - Miguel Ángel García-Cabezas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts 02215
- Department of Anatomy, Histology, and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain 28029
| | - Yohan J John
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts 02215
| | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
32
|
Synaptic Organization of the Human Temporal Lobe Neocortex as Revealed by High-Resolution Transmission, Focused Ion Beam Scanning, and Electron Microscopic Tomography. Int J Mol Sci 2020; 21:ijms21155558. [PMID: 32756507 PMCID: PMC7432700 DOI: 10.3390/ijms21155558] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 01/02/2023] Open
Abstract
Modern electron microscopy (EM) such as fine-scale transmission EM, focused ion beam scanning EM, and EM tomography have enormously improved our knowledge about the synaptic organization of the normal, developmental, and pathologically altered brain. In contrast to various animal species, comparably little is known about these structures in the human brain. Non-epileptic neocortical access tissue from epilepsy surgery was used to generate quantitative 3D models of synapses. Beside the overall geometry, the number, size, and shape of active zones and of the three functionally defined pools of synaptic vesicles representing morphological correlates for synaptic transmission and plasticity were quantified. EM tomography further allowed new insights in the morphological organization and size of the functionally defined readily releasable pool. Beside similarities, human synaptic boutons, although comparably small (approximately 5 µm), differed substantially in several structural parameters, such as the shape and size of active zones, which were on average 2 to 3-fold larger than in experimental animals. The total pool of synaptic vesicles exceeded that in experimental animals by approximately 2 to 3-fold, in particular the readily releasable and recycling pool by approximately 2 to 5-fold, although these pools seemed to be layer-specifically organized. Taken together, synaptic boutons in the human temporal lobe neocortex represent unique entities perfectly adapted to the “job” they have to fulfill in the circuitry in which they are embedded. Furthermore, the quantitative 3D models of synaptic boutons are useful to explain and even predict the functional properties of synaptic connections in the human neocortex.
Collapse
|
33
|
Goodliffe J, Rubakovic A, Chang W, Pathak D, Luebke J. Structural and functional features of medium spiny neurons in the BACHDΔN17 mouse model of Huntington's Disease. PLoS One 2020; 15:e0234394. [PMID: 32574176 PMCID: PMC7310706 DOI: 10.1371/journal.pone.0234394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 05/26/2020] [Indexed: 11/25/2022] Open
Abstract
In the BACHD mouse model of Huntington’s disease (HD), deletion of the N17 domain of the Huntingtin gene (BACHDΔN17, Q97) has been reported to lead to nuclear accumulation of mHTT and exacerbation of motor deficits, neuroinflammation and striatal atrophy (Gu et al., 2015). Here we characterized the effect of N17 deletion on dorsolateral striatal medium spiny neurons (MSNs) in BACHDΔN17 (Q97) and BACWTΔN17 (Q31) mice by comparing them to MSNs in wildtype (WT) mice. Mice were characterized on a series of motor tasks and subsequently whole cell patch clamp recordings with simultaneous biocytin filling of MSNs in in vitro striatal slices from these mice were used to comprehensively assess their physiological and morphological features. Key findings include that: Q97 mice exhibit impaired gait and righting reflexes but normal tail suspension reflexes and normal coats while Q31 mice do not differ from WT; intrinsic membrane and action potential properties are altered -but differentially so- in MSNs from Q97 and from Q31 mice; excitatory and inhibitory synaptic currents exhibit higher amplitudes in Q31 but not Q97 MSNs, while excitatory synaptic currents occur at lower frequency in Q97 than in WT and Q31 MSNs; there is a reduced total dendritic length in Q31 -but not Q97- MSNs compared to WT, while spine density and number did not differ in MSNs in the three groups. The findings that Q31 MSNs differed from Q97 and WT neurons with regard to some physiological features and structurally suggest a novel role of the N17 domain in the function of WT Htt. The motor phenotype seen in Q97 mice was less robust than that reported in an earlier study (Gu et al., 2015), and the alterations to MSN physiological properties were largely consistent with changes reported previously in a number of other mouse models of HD. Together this study indicates that N17 plays a role in the modulation of the properties of MSNs in both mHtt and WT-Htt mice, but does not markedly exacerbate HD-like pathogenesis in the BACHD model.
Collapse
Affiliation(s)
- Joseph Goodliffe
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| | - Anastasia Rubakovic
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Wayne Chang
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Dhruba Pathak
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Jennifer Luebke
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
34
|
Sherwood CC, Miller SB, Karl M, Stimpson CD, Phillips KA, Jacobs B, Hof PR, Raghanti MA, Smaers JB. Invariant Synapse Density and Neuronal Connectivity Scaling in Primate Neocortical Evolution. Cereb Cortex 2020; 30:5604-5615. [PMID: 32488266 DOI: 10.1093/cercor/bhaa149] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/31/2020] [Accepted: 05/07/2020] [Indexed: 12/20/2022] Open
Abstract
Synapses are involved in the communication of information from one neuron to another. However, a systematic analysis of synapse density in the neocortex from a diversity of species is lacking, limiting what can be understood about the evolution of this fundamental aspect of brain structure. To address this, we quantified synapse density in supragranular layers II-III and infragranular layers V-VI from primary visual cortex and inferior temporal cortex in a sample of 25 species of primates, including humans. We found that synapse densities were relatively constant across these levels of the cortical visual processing hierarchy and did not significantly differ with brain mass, varying by only 1.9-fold across species. We also found that neuron densities decreased in relation to brain enlargement. Consequently, these data show that the number of synapses per neuron significantly rises as a function of brain expansion in these neocortical areas of primates. Humans displayed the highest number of synapses per neuron, but these values were generally within expectations based on brain size. The metabolic and biophysical constraints that regulate uniformity of synapse density, therefore, likely underlie a key principle of neuronal connectivity scaling in primate neocortical evolution.
Collapse
Affiliation(s)
- Chet C Sherwood
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Sarah B Miller
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Molly Karl
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Cheryl D Stimpson
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | | | - Bob Jacobs
- Department of Psychology, Laboratory of Quantitative Neuromorphology, Colorado College, Colorado Springs, CO 80946, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mary Ann Raghanti
- Department of Anthropology, School of Biomedical Sciences, Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| | - Jeroen B Smaers
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA.,Division of Anthropology, American Museum of Natural History, New York, NY 10024, USA
| |
Collapse
|
35
|
Vanni S, Hokkanen H, Werner F, Angelucci A. Anatomy and Physiology of Macaque Visual Cortical Areas V1, V2, and V5/MT: Bases for Biologically Realistic Models. Cereb Cortex 2020; 30:3483-3517. [PMID: 31897474 PMCID: PMC7233004 DOI: 10.1093/cercor/bhz322] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/02/2019] [Indexed: 12/22/2022] Open
Abstract
The cerebral cortex of primates encompasses multiple anatomically and physiologically distinct areas processing visual information. Areas V1, V2, and V5/MT are conserved across mammals and are central for visual behavior. To facilitate the generation of biologically accurate computational models of primate early visual processing, here we provide an overview of over 350 published studies of these three areas in the genus Macaca, whose visual system provides the closest model for human vision. The literature reports 14 anatomical connection types from the lateral geniculate nucleus of the thalamus to V1 having distinct layers of origin or termination, and 194 connection types between V1, V2, and V5, forming multiple parallel and interacting visual processing streams. Moreover, within V1, there are reports of 286 and 120 types of intrinsic excitatory and inhibitory connections, respectively. Physiologically, tuning of neuronal responses to 11 types of visual stimulus parameters has been consistently reported. Overall, the optimal spatial frequency (SF) of constituent neurons decreases with cortical hierarchy. Moreover, V5 neurons are distinct from neurons in other areas for their higher direction selectivity, higher contrast sensitivity, higher temporal frequency tuning, and wider SF bandwidth. We also discuss currently unavailable data that could be useful for biologically accurate models.
Collapse
Affiliation(s)
- Simo Vanni
- HUS Neurocenter, Department of Neurology, Helsinki University Hospital, 00290 Helsinki, Finland
- Department of Neurosciences, University of Helsinki, 00100 Helsinki, Finland
| | - Henri Hokkanen
- HUS Neurocenter, Department of Neurology, Helsinki University Hospital, 00290 Helsinki, Finland
- Department of Neurosciences, University of Helsinki, 00100 Helsinki, Finland
| | - Francesca Werner
- HUS Neurocenter, Department of Neurology, Helsinki University Hospital, 00290 Helsinki, Finland
- Department of Neurosciences, University of Helsinki, 00100 Helsinki, Finland
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Alessandra Angelucci
- Department of Ophthalmology and Visual Sciences, Moran Eye Institute, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
36
|
LeBlang CJ, Medalla M, Nicoletti NW, Hays EC, Zhao J, Shattuck J, Cruz AL, Wolozin B, Luebke JI. Reduction of the RNA Binding Protein TIA1 Exacerbates Neuroinflammation in Tauopathy. Front Neurosci 2020; 14:285. [PMID: 32327969 PMCID: PMC7161592 DOI: 10.3389/fnins.2020.00285] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammatory processes play an integral role in the exacerbation and progression of pathology in tauopathies, a class of neurodegenerative disease characterized by aggregation of hyperphosphorylated tau protein. The RNA binding protein (RBP) T-cell Intracellular Antigen 1 (TIA1) is an important regulator of the innate immune response in the periphery, dampening cytotoxic inflammation and apoptosis during cellular stress, however, its role in neuroinflammation is unknown. We have recently shown that TIA1 regulates tau pathophysiology and toxicity in part through the binding of phospho-tau oligomers into pathological stress granules, and that haploinsufficiency of TIA1 in the P301S mouse model of tauopathy results in reduced accumulation of toxic tau oligomers, pathologic stress granules, and the development of downstream pathological features of tauopathy. The putative role of TIA1 as a regulator of the peripheral immune response led us to investigate the effects of TIA1 on neuroinflammation in the context of tauopathy, a chronic stressor in the neural environment. Here, we evaluated indicators of neuroinflammation including; reactive microgliosis and phagocytosis, pro-inflammatory cytokine release, and oxidative stress in hippocampal neurons and glia of wildtype and P301S transgenic mice expressing TIA1+/+, TIA1+/-, and TIA1-/- in both early (5 month) and advanced (9 month) disease states through biochemical, ultrastructural, and histological analyses. Our data show that both TIA1 haploinsufficiency and TIA1 knockout exacerbate neuroinflammatory processes in advanced stages of tauopathy, suggesting that TIA1 dampens the immune response in the central nervous system during chronic stress.
Collapse
Affiliation(s)
- Chelsey Jenna LeBlang
- Laboratory of Cellular Neuroscience, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Maria Medalla
- Laboratory of Cellular Neuroscience, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Nicholas William Nicoletti
- Laboratory of Cellular Neuroscience, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Emma Catherine Hays
- Laboratory of Cellular Neuroscience, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - James Zhao
- Laboratory of Cellular Neuroscience, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Jenifer Shattuck
- Laboratory of Neurodegeneration, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Anna Lourdes Cruz
- Laboratory of Neurodegeneration, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Benjamin Wolozin
- Laboratory of Neurodegeneration, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
- Department of Neuroscience, Boston University, Boston, MA, United States
| | - Jennifer Irene Luebke
- Laboratory of Cellular Neuroscience, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
37
|
Treatment with Mesenchymal-Derived Extracellular Vesicles Reduces Injury-Related Pathology in Pyramidal Neurons of Monkey Perilesional Ventral Premotor Cortex. J Neurosci 2020; 40:3385-3407. [PMID: 32241837 DOI: 10.1523/jneurosci.2226-19.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Functional recovery after cortical injury, such as stroke, is associated with neural circuit reorganization, but the underlying mechanisms and efficacy of therapeutic interventions promoting neural plasticity in primates are not well understood. Bone marrow mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), which mediate cell-to-cell inflammatory and trophic signaling, are thought be viable therapeutic targets. We recently showed, in aged female rhesus monkeys, that systemic administration of MSC-EVs enhances recovery of function after injury of the primary motor cortex, likely through enhancing plasticity in perilesional motor and premotor cortices. Here, using in vitro whole-cell patch-clamp recording and intracellular filling in acute slices of ventral premotor cortex (vPMC) from rhesus monkeys (Macaca mulatta) of either sex, we demonstrate that MSC-EVs reduce injury-related physiological and morphologic changes in perilesional layer 3 pyramidal neurons. At 14-16 weeks after injury, vPMC neurons from both vehicle- and EV-treated lesioned monkeys exhibited significant hyperexcitability and predominance of inhibitory synaptic currents, compared with neurons from nonlesioned control brains. However, compared with vehicle-treated monkeys, neurons from EV-treated monkeys showed lower firing rates, greater spike frequency adaptation, and excitatory:inhibitory ratio. Further, EV treatment was associated with greater apical dendritic branching complexity, spine density, and inhibition, indicative of enhanced dendritic plasticity and filtering of signals integrated at the soma. Importantly, the degree of EV-mediated reduction of injury-related pathology in vPMC was significantly correlated with measures of behavioral recovery. These data show that EV treatment dampens injury-related hyperexcitability and restores excitatory:inhibitory balance in vPMC, thereby normalizing activity within cortical networks for motor function.SIGNIFICANCE STATEMENT Neuronal plasticity can facilitate recovery of function after cortical injury, but the underlying mechanisms and efficacy of therapeutic interventions promoting this plasticity in primates are not well understood. Our recent work has shown that intravenous infusions of mesenchymal-derived extracellular vesicles (EVs) that are involved in cell-to-cell inflammatory and trophic signaling can enhance recovery of motor function after injury in monkey primary motor cortex. This study shows that this EV-mediated enhancement of recovery is associated with amelioration of injury-related hyperexcitability and restoration of excitatory-inhibitory balance in perilesional ventral premotor cortex. These findings demonstrate the efficacy of mesenchymal EVs as a therapeutic to reduce injury-related pathologic changes in the physiology and structure of premotor pyramidal neurons and support recovery of function.
Collapse
|
38
|
Go V, Bowley BGE, Pessina MA, Zhang ZG, Chopp M, Finklestein SP, Rosene DL, Medalla M, Buller B, Moore TL. Extracellular vesicles from mesenchymal stem cells reduce microglial-mediated neuroinflammation after cortical injury in aged Rhesus monkeys. GeroScience 2020; 42:1-17. [PMID: 31691891 PMCID: PMC7031476 DOI: 10.1007/s11357-019-00115-w] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022] Open
Abstract
Cortical injury, such as injuries after stroke or age-related ischemic events, triggers a cascade of degeneration accompanied by inflammatory responses that mediate neurological deficits. Therapeutics that modulate such neuroinflammatory responses in the aging brain have the potential to reduce neurological dysfunction and promote recovery. Extracellular vesicles (EVs) from mesenchymal stem cells (MSCs) are lipid-bound, nanoscale vesicles that can modulate inflammation and enhance recovery in rodent stroke models. We recently assessed the efficacy of intravenous infusions of MSC-EVs (24-h and 14-days post-injury) as a treatment in aged rhesus monkeys (Macaca mulatta) with cortical injury that induced impairment of fine motor function of the hand. Aged monkeys treated with EVs after injury recovered motor function more rapidly and more fully than aged monkeys given a vehicle control. Here, we describe EV-mediated inflammatory changes using histological assays to quantify differences in markers of neuroinflammation in brain tissue between EV and vehicle-treated aged monkeys. The activation status of microglia, the innate macrophages of the brain, is critical to cell fate after injury. Our findings demonstrate that EV treatment after injury is associated with greater densities of ramified, homeostatic microglia, along with reduced pro-inflammatory microglial markers. These findings are consistent with a phenotypic switch of inflammatory hypertrophic microglia towards anti-inflammatory, homeostatic functions, which was correlated with enhanced functional recovery. Overall, our data suggest that EVs reduce neuroinflammation and shift microglia towards restorative functions. These findings demonstrate the therapeutic potential of MSC-derived EVs for reducing neuroinflammation after cortical injury in the aged brain.
Collapse
Affiliation(s)
- Veronica Go
- Deparment of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 700 Albany Street, W701, Boston, MA, 02118, USA.
| | - Bethany G E Bowley
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, 02118, USA
| | - Monica A Pessina
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, 02118, USA
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health Systems, Detroit, 48202, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Health Systems, Detroit, 48202, USA
- Department of Physics, Oakland University, Rochester, 48309, USA
| | - Seth P Finklestein
- Stemetix, Inc., Needham, 02492, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, USA
| | - Douglas L Rosene
- Deparment of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 700 Albany Street, W701, Boston, MA, 02118, USA
- Yerkes Primate Center, Emory University, Atlanta, 30322, USA
| | - Maria Medalla
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, 02118, USA
| | - Benjamin Buller
- Department of Neurology, Henry Ford Health Systems, Detroit, 48202, USA
| | - Tara L Moore
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, 02118, USA
| |
Collapse
|
39
|
Ibañez S, Luebke JI, Chang W, Draguljić D, Weaver CM. Network Models Predict That Pyramidal Neuron Hyperexcitability and Synapse Loss in the dlPFC Lead to Age-Related Spatial Working Memory Impairment in Rhesus Monkeys. Front Comput Neurosci 2020; 13:89. [PMID: 32009920 PMCID: PMC6979278 DOI: 10.3389/fncom.2019.00089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/18/2019] [Indexed: 01/04/2023] Open
Abstract
Behavioral studies have shown spatial working memory impairment with aging in several animal species, including humans. Persistent activity of layer 3 pyramidal dorsolateral prefrontal cortex (dlPFC) neurons during delay periods of working memory tasks is important for encoding memory of the stimulus. In vitro studies have shown that these neurons undergo significant age-related structural and functional changes, but the extent to which these changes affect neural mechanisms underlying spatial working memory is not understood fully. Here, we confirm previous studies showing impairment on the Delayed Recognition Span Task in the spatial condition (DRSTsp), and increased in vitro action potential firing rates (hyperexcitability), across the adult life span of the rhesus monkey. We use a bump attractor model to predict how empirically observed changes in the aging dlPFC affect performance on the Delayed Response Task (DRT), and introduce a model of memory retention in the DRSTsp. Persistent activity-and, in turn, cognitive performance-in both models was affected much more by hyperexcitability of pyramidal neurons than by a loss of synapses. Our DRT simulations predict that additional changes to the network, such as increased firing of inhibitory interneurons, are needed to account for lower firing rates during the DRT with aging reported in vivo. Synaptic facilitation was an essential feature of the DRSTsp model, but it did not compensate fully for the effects of the other age-related changes on DRT performance. Modeling pyramidal neuron hyperexcitability and synapse loss simultaneously led to a partial recovery of function in both tasks, with the simulated level of DRSTsp impairment similar to that observed in aging monkeys. This modeling work integrates empirical data across multiple scales, from synapse counts to cognitive testing, to further our understanding of aging in non-human primates.
Collapse
Affiliation(s)
- Sara Ibañez
- Department of Mathematics, Franklin and Marshall College, Lancaster, PA, United States
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Jennifer I. Luebke
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Wayne Chang
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Danel Draguljić
- Department of Mathematics, Franklin and Marshall College, Lancaster, PA, United States
| | - Christina M. Weaver
- Department of Mathematics, Franklin and Marshall College, Lancaster, PA, United States
| |
Collapse
|
40
|
Parra A, Baker CA, Bolton MM. Regional Specialization of Pyramidal Neuron Morphology and Physiology in the Tree Shrew Neocortex. Cereb Cortex 2019; 29:4488-4505. [PMID: 30715235 DOI: 10.1093/cercor/bhy326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 10/12/2018] [Accepted: 12/07/2018] [Indexed: 01/08/2023] Open
Abstract
The mammalian cerebral cortex is divided into different areas according to their function and pattern of connections. Studies comparing primary visual (V1) and prefrontal cortex (PFC) of primates have demonstrated striking pyramidal neuron (PN) specialization not present in comparable areas of the mouse neocortex. To better understand PFC evolution and regional PN specialization, we studied the tree shrew, a species with a close phylogenetic relationship to primates. We defined the tree shrew PFC based on cytoarchitectonic borders, thalamic connectivity and characterized the morphology and electrophysiology of layer II/III PNs in V1 and PFC. Similar to primates, the PFC PNs in the tree shrew fire with a regular spiking pattern and have larger dendritic tree and spines than those in V1. However, V1 PNs showed strikingly large basal dendritic arbors with high spine density, firing at higher rates and in a more varied pattern than PFC PNs. Yet, unlike in the mouse and unreported in the primate, medial prefrontal PN are more easily recruited than either the dorsolateral or V1 neurons. This specialization of PN morphology and physiology is likely to be a significant factor in the evolution of cortex, contributing to differences in the computational capacities of individual cortical areas.
Collapse
Affiliation(s)
- Andres Parra
- Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter, USA.,Functional Architecture of the Cerebral Cortex, Max Planck Florida Institute for Neuroscience, Jupiter, USA.,Cellular and Systems Neurobiology, Instituto de Neurociencias de Alicante, Alicante, Spain
| | - Christopher A Baker
- Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter, USA
| | - M McLean Bolton
- Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter, USA
| |
Collapse
|
41
|
Liu XB, Haney JR, Cantero G, Lambert JR, Otero-Garcia M, Truong B, Gropman A, Cobos I, Cederbaum SD, Lipshutz GS. Hepatic arginase deficiency fosters dysmyelination during postnatal CNS development. JCI Insight 2019; 4:130260. [PMID: 31484827 DOI: 10.1172/jci.insight.130260] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/01/2019] [Indexed: 12/26/2022] Open
Abstract
Deficiency of arginase is associated with hyperargininemia, and prominent features include spastic diplegia/tetraplegia, clonus, and hyperreflexia; loss of ambulation, intellectual disability and progressive neurological decline are other signs. To gain greater insight into the unique neuromotor features, we performed gene expression profiling of the motor cortex of a murine model of the disorder. Coexpression network analysis suggested an abnormality with myelination, which was supported by limited existing human data. Utilizing electron microscopy, marked dysmyelination was detected in 2-week-old homozygous Arg1-KO mice. The corticospinal tract was found to be adversely affected, supporting dysmyelination as the cause of the unique neuromotor features and implicating oligodendrocyte impairment in a deficiency of hepatic Arg1. Following neonatal hepatic gene therapy to express Arg1, the subcortical white matter, pyramidal tract, and corticospinal tract all showed a remarkable recovery in terms of myelinated axon density and ultrastructural integrity with active wrapping of axons by nearby oligodendrocyte processes. These findings support the following conclusions: arginase deficiency is a leukodystrophy affecting the brain and spinal cord while sparing the peripheral nervous system, and neonatal AAV hepatic gene therapy can rescue the defects associated with myelinated axons, strongly implicating the functional recovery of oligodendrocytes after restoration of hepatic arginase activity.
Collapse
Affiliation(s)
| | - Jillian R Haney
- Department of Psychiatry.,Intellectual and Developmental Disabilities Research Center, and.,Semel Institute for Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Gloria Cantero
- Neuromuscular Disorders Unit, Department of Neurology, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | | | - Brian Truong
- Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Andrea Gropman
- Neurogenetics and Neurodevelopmental Pediatrics and Genetics, Children's National Health System, Washington, DC, USA
| | - Inma Cobos
- Department of Pathology and Laboratory Medicine and
| | - Stephen D Cederbaum
- Department of Psychiatry.,Intellectual and Developmental Disabilities Research Center, and.,Semel Institute for Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Gerald S Lipshutz
- Department of Surgery.,Department of Psychiatry.,Intellectual and Developmental Disabilities Research Center, and.,Semel Institute for Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, California.,Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Molecular Biology Institute, UCLA, Los Angeles, California, USA
| |
Collapse
|
42
|
Distinct Properties of Layer 3 Pyramidal Neurons from Prefrontal and Parietal Areas of the Monkey Neocortex. J Neurosci 2019; 39:7277-7290. [PMID: 31341029 DOI: 10.1523/jneurosci.1210-19.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022] Open
Abstract
In primates, working memory function depends on activity in a distributed network of cortical areas that display different patterns of delay task-related activity. These differences are correlated with, and might depend on, distinctive properties of the neurons located in each area. For example, layer 3 pyramidal neurons (L3PNs) differ significantly between primary visual and dorsolateral prefrontal (DLPFC) cortices. However, to what extent L3PNs differ between DLPFC and other association cortical areas is less clear. Hence, we compared the properties of L3PNs in monkey DLPFC versus posterior parietal cortex (PPC), a key node in the cortical working memory network. Using patch-clamp recordings and biocytin cell filling in acute brain slices, we assessed the physiology and morphology of L3PNs from monkey DLPFC and PPC. The L3PN transcriptome was studied using laser microdissection combined with DNA microarray or quantitative PCR. We found that in both DLPFC and PPC, L3PNs were divided into regular spiking (RS-L3PNs) and bursting (B-L3PNs) physiological subtypes. Whereas regional differences in single-cell excitability were modest, B-L3PNs were rare in PPC (RS-L3PN:B-L3PN, 94:6), but were abundant in DLPFC (50:50), showing greater physiological diversity. Moreover, DLPFC L3PNs display larger and more complex basal dendrites with higher dendritic spine density. Additionally, we found differential expression of hundreds of genes, suggesting a transcriptional basis for the differences in L3PN phenotype between DLPFC and PPC. These data show that the previously observed differences between DLPFC and PPC neuron activity during working memory tasks are associated with diversity in the cellular/molecular properties of L3PNs.SIGNIFICANCE STATEMENT In the human and nonhuman primate neocortex, layer 3 pyramidal neurons (L3PNs) differ significantly between dorsolateral prefrontal (DLPFC) and sensory areas. Hence, L3PN properties reflect, and may contribute to, a greater complexity of computations performed in DLPFC. However, across association cortical areas, L3PN properties are largely unexplored. We studied the physiology, dendrite morphology and transcriptome of L3PNs from macaque monkey DLPFC and posterior parietal cortex (PPC), two key nodes in the cortical working memory network. L3PNs from DLPFC had greater diversity of physiological properties and larger basal dendrites with higher spine density. Moreover, transcriptome analysis suggested a molecular basis for the differences in the physiological and morphological phenotypes of L3PNs from DLPFC and PPC.
Collapse
|
43
|
Abstract
The primate cerebral cortex displays a hierarchy that extends from primary sensorimotor to association areas, supporting increasingly integrated function underpinned by a gradient of heterogeneity in the brain's microcircuits. The extent to which these hierarchical gradients are unique to primate or may reflect a conserved mammalian principle of brain organization remains unknown. Here we report the topographic similarity of large-scale gradients in cytoarchitecture, gene expression, interneuron cell densities, and long-range axonal connectivity, which vary from primary sensory to prefrontal areas of mouse cortex, highlighting an underappreciated spatial dimension of mouse cortical specialization. Using the T1-weighted:T2-weighted (T1w:T2w) magnetic resonance imaging map as a common spatial reference for comparison across species, we report interspecies agreement in a range of large-scale cortical gradients, including a significant correspondence between gene transcriptional maps in mouse cortex with their human orthologs in human cortex, as well as notable interspecies differences. Our results support the view of systematic structural variation across cortical areas as a core organizational principle that may underlie hierarchical specialization in mammalian brains.
Collapse
Affiliation(s)
- Ben D Fulcher
- School of Physics, Sydney University, Sydney, NSW 2006, Australia;
| | - John D Murray
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511
| | - Valerio Zerbi
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich, 8057 Zürich, Switzerland
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY 10003;
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China
| |
Collapse
|
44
|
Holley ZL, Bland KM, Casey ZO, Handwerk CJ, Vidal GS. Cross-Regional Gradient of Dendritic Morphology in Isochronically-Sourced Mouse Supragranular Pyramidal Neurons. Front Neuroanat 2018; 12:103. [PMID: 30564104 PMCID: PMC6288488 DOI: 10.3389/fnana.2018.00103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/15/2018] [Indexed: 11/13/2022] Open
Abstract
Architectonic heterogeneity in neurons is thought to be important for equipping the mammalian cerebral cortex with an adaptable network that can organize the manifold totality of information it receives. To this end, the dendritic arbors of supragranular pyramidal neurons, even those of the same class, are known to vary substantially. This diversity of dendritic morphology appears to have a rostrocaudal configuration in some brain regions of various species. For example, in humans and non-human primates, neurons in more rostral visual association areas (e.g., V4) tend to have more complex dendritic arbors than those in the caudal primary visual cortex. A rostrocaudal configuration is not so clear in any region of the mouse, which is increasingly being used as a model for neurodevelopmental disorders that arise from dysfunctional cerebral cortical circuits. Therefore, in this study we investigated the complexity of dendritic arbors of neurons distributed throughout a broad area of the mouse cerebral cortex. We reduced selection bias by labeling neurons restricted to become supragranular pyramidal neurons using in utero electroporation. While we observed that the simple rostrocaudal position, cortical depth, or even functional region of a neuron was not directly related to its dendritic morphology, a model that instead included a caudomedial-to-rostrolateral gradient accounted for a significant amount of the observed dendritic morphological variance. In other words, rostrolateral neurons from our data set were generally more complex when compared to caudomedial neurons. Furthermore, dividing the cortex into a visual area and a non-visual area maintained the power of the relationship between caudomedial-to-rostrolateral position and dendritic complexity. Our observations therefore support the idea that dendritic morphology of mouse supragranular excitatory pyramidal neurons across much of the tangential plane of the cerebral cortex is partly shaped by a developmental gradient spanning several functional regions.
Collapse
Affiliation(s)
- Zachary Logan Holley
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Katherine M Bland
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Zachary O Casey
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | | | - George S Vidal
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| |
Collapse
|
45
|
Sonntag M, Blosa M, Schmidt S, Reimann K, Blum K, Eckrich T, Seeger G, Hecker D, Schick B, Arendt T, Engel J, Morawski M. Synaptic coupling of inner ear sensory cells is controlled by brevican-based extracellular matrix baskets resembling perineuronal nets. BMC Biol 2018; 16:99. [PMID: 30253762 PMCID: PMC6156866 DOI: 10.1186/s12915-018-0566-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/15/2018] [Indexed: 02/08/2023] Open
Abstract
Background Perineuronal nets (PNNs) are specialized aggregations of extracellular matrix (ECM) molecules surrounding specific neurons in the central nervous system (CNS). PNNs are supposed to control synaptic transmission and are frequently associated with neurons firing at high rates, including principal neurons of auditory brainstem nuclei. The origin of high-frequency activity of auditory brainstem neurons is the indefatigable sound-driven transmitter release of inner hair cells (IHCs) in the cochlea. Results Here, we show that synaptic poles of IHCs are ensheathed by basket-like ECM complexes formed by the same molecules that constitute PNNs of neurons in the CNS, including brevican, aggreccan, neurocan, hyaluronan, and proteoglycan link proteins 1 and 4 and tenascin-R. Genetic deletion of brevican, one of the main components, resulted in a massive degradation of ECM baskets at IHCs, a significant impairment in spatial coupling of pre- and postsynaptic elements and mild impairment of hearing. Conclusions These ECM baskets potentially contribute to control of synaptic transmission at IHCs and might be functionally related to PNNs of neurons in the CNS. Electronic supplementary material The online version of this article (10.1186/s12915-018-0566-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mandy Sonntag
- Paul-Flechsig-Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Maren Blosa
- Paul-Flechsig-Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Sophie Schmidt
- Paul-Flechsig-Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Katja Reimann
- Paul-Flechsig-Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Kerstin Blum
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Tobias Eckrich
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Gudrun Seeger
- Paul-Flechsig-Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Dietmar Hecker
- Department of Otorhinolaryngology, School of Medicine, Saarland University, Homburg, Germany
| | - Bernhard Schick
- Department of Otorhinolaryngology, School of Medicine, Saarland University, Homburg, Germany
| | - Thomas Arendt
- Paul-Flechsig-Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Jutta Engel
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Markus Morawski
- Paul-Flechsig-Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
46
|
Specificity of Primate Amygdalar Pathways to Hippocampus. J Neurosci 2018; 38:10019-10041. [PMID: 30249799 DOI: 10.1523/jneurosci.1267-18.2018] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/16/2018] [Accepted: 09/13/2018] [Indexed: 12/30/2022] Open
Abstract
The amygdala projects to hippocampus in pathways through which affective or social stimuli may influence learning and memory. We investigated the still unknown amygdalar termination patterns and their postsynaptic targets in hippocampus from system to synapse in rhesus monkeys of both sexes. The amygdala robustly innervated the stratum lacunosum-moleculare layer of cornu ammonis fields and uncus anteriorly. Sparser terminations in posterior hippocampus innervated the radiatum and pyramidal layers at the prosubicular/CA1 juncture. The terminations, which were larger than other afferents in the surrounding neuropil, position the amygdala to influence hippocampal input anteriorly, and its output posteriorly. Most amygdalar boutons (76-80%) innervated spines of excitatory hippocampal neurons, and most of the remaining innervated presumed inhibitory neurons, identified by morphology and label with parvalbumin or calretinin, which distinguished nonoverlapping neurochemical classes of hippocampal inhibitory neurons. In CA1, amygdalar axons innervated some calretinin neurons, which disinhibit pyramidal neurons. By contrast, in CA3 the amygdala innervated both calretinin and parvalbumin neurons; the latter strongly inhibit nearby excitatory neurons. In CA3, amygdalar pathways also made closely spaced dual synapses on excitatory neurons. The strong excitatory synapses in CA3 may facilitate affective context representations and trigger sharp-wave ripples associated with memory consolidation. When the amygdala is excessively activated during traumatic events, the specialized innervation of excitatory neurons and the powerful parvalbumin inhibitory neurons in CA3 may allow the suppression of activity of nearby neurons that receive weaker nonamygdalar input, leading to biased passage of highly charged affective stimuli and generalized fear.SIGNIFICANCE STATEMENT Strong pathways from the amygdala targeted the anterior hippocampus, and more weakly its posterior sectors, positioned to influence a variety of emotional and cognitive functions. In hippocampal field CA1, the amygdala innervated some calretinin neurons, which disinhibit excitatory neurons. By contrast, in CA3 the amygdala innervated calretinin as well as some of the powerful parvalbumin inhibitory neurons and may help balance the activity of neural ensembles to allow social interactions, learning, and memory. These results suggest that when the amygdala is hyperactive during emotional upheaval, it strongly activates excitatory hippocampal neurons and parvalbumin inhibitory neurons in CA3, which can suppress nearby neurons that receive weaker input from other sources, biasing the passage of stimuli with high emotional import and leading to generalized fear.
Collapse
|
47
|
Datta D, Arnsten AF. Unique Molecular Regulation of Higher-Order Prefrontal Cortical Circuits: Insights into the Neurobiology of Schizophrenia. ACS Chem Neurosci 2018; 9:2127-2145. [PMID: 29470055 DOI: 10.1021/acschemneuro.7b00505] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Schizophrenia is associated with core deficits in cognitive abilities and impaired functioning of the newly evolved prefrontal association cortex (PFC). In particular, neuropathological studies of schizophrenia have found selective atrophy of the pyramidal cell microcircuits in deep layer III of the dorsolateral PFC (dlPFC) and compensatory weakening of related GABAergic interneurons. Studies in monkeys have shown that recurrent excitation in these layer III microcircuits generates the precisely patterned, persistent firing needed for working memory and abstract thought. Importantly, excitatory synapses on layer III spines are uniquely regulated at the molecular level in ways that may render them particularly vulnerable to genetic and/or environmental insults. Glutamate actions are remarkably dependent on cholinergic stimulation, and there are inherent mechanisms to rapidly weaken connectivity, e.g. during stress. In particular, feedforward cyclic adenosine monophosphate (cAMP)-calcium signaling rapidly weakens network connectivity and neuronal firing by opening nearby potassium channels. Many mechanisms that regulate this process are altered in schizophrenia and/or associated with genetic insults. Current data suggest that there are "dual hits" to layer III dlPFC circuits: initial insults to connectivity during the perinatal period due to genetic errors and/or inflammatory insults that predispose the cortex to atrophy, followed by a second wave of cortical loss during adolescence, e.g. driven by stress, at the descent into illness. The unique molecular regulation of layer III circuits may provide a nexus where inflammation disinhibits the neuronal response to stress. Understanding these mechanisms may help to illuminate dlPFC susceptibility in schizophrenia and provide insights for novel therapeutic targets.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| | - Amy F.T. Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| |
Collapse
|
48
|
Tripon RG, Oláh J, Nasir T, Csincsik L, Li CL, Szunyogh S, Gong H, Flinn JM, Ovádi J, Lengyel I. Localization of the zinc binding tubulin polymerization promoting protein in the mice and human eye. J Trace Elem Med Biol 2018; 49:222-230. [PMID: 29317136 DOI: 10.1016/j.jtemb.2017.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/15/2017] [Accepted: 12/21/2017] [Indexed: 11/20/2022]
Abstract
Tubulin Polymerization Promoting Protein (TPPP/p25) modulates the dynamics and stability of the microtubule network by its bundling and acetylation enhancing activities that can be modulated by the binding of zinc to TPPP/p25. Its expression is essential for the differentiation of oligodendrocytes, the major constituents of the myelin sheath, and has been associated with neuronal inclusions. In this paper, evidence is provided for the expression and localization of TPPP/p25 in the zinc-rich retina and in the oligodendrocytes in the optic nerve. Localization of TPPP/p25 was established by confocal microscopy using calbindin and synaptophysin as markers of specific striations in the inner plexiform layer (IPL) and presynaptic terminals, respectively. Postsynaptic nerve terminals in striations S1, S3 and S5 in the IPL and a subset of amacrine cells show immunopositivity against TPPP/p25 both in mice and human eyes. The co-localization of TPPP/p25 with acetylated tubulin was detected in amacrine cells, oligodendrocyte cell bodies and in synapses in the IPL. Quantitative Western blot revealed that the TPPP/p25 level in the retina was 0.05-0.13 ng/μg protein, comparable to that in the brain. There was a central (from optic nerve head) to peripheral retinal gradient in TPPP/p25 protein levels. Our in vivo studies revealed that the oral zinc supplementation of mice significantly increased TPPP/p25 as well as acetylated tubulin levels in the IPL. These results suggest that TPPP/p25, a microtubule stabilizer can play a role in the organization and reorganization of synaptic connections and visual integration in the eye.
Collapse
Affiliation(s)
- Robert G Tripon
- UCL Institute of Ophthalmology, University College London, London, EC1Y 8TB, UK; Department of Histology, University of Medicine and Pharmacy, Tîrgu Mureş, Romania.
| | - Judit Oláh
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1117, Hungary.
| | - Tajwar Nasir
- UCL Institute of Ophthalmology, University College London, London, EC1Y 8TB, UK.
| | - Lajos Csincsik
- UCL Institute of Ophthalmology, University College London, London, EC1Y 8TB, UK; Center of Experimental Medicine, The Queen's University Belfast, BT9 7BL, UK.
| | - Chee Lok Li
- UCL Institute of Ophthalmology, University College London, London, EC1Y 8TB, UK.
| | - Sándor Szunyogh
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1117, Hungary.
| | - Haiyan Gong
- Department of Ophthalmology, Boston University School of Medicine, MA, USA.
| | - Jane M Flinn
- Department of Psychology, George Mason University Fairfax, VA, USA.
| | - Judit Ovádi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1117, Hungary.
| | - Imre Lengyel
- UCL Institute of Ophthalmology, University College London, London, EC1Y 8TB, UK; Center of Experimental Medicine, The Queen's University Belfast, BT9 7BL, UK.
| |
Collapse
|
49
|
Goodliffe JW, Song H, Rubakovic A, Chang W, Medalla M, Weaver CM, Luebke JI. Differential changes to D1 and D2 medium spiny neurons in the 12-month-old Q175+/- mouse model of Huntington's Disease. PLoS One 2018; 13:e0200626. [PMID: 30118496 PMCID: PMC6097649 DOI: 10.1371/journal.pone.0200626] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/29/2018] [Indexed: 12/04/2022] Open
Abstract
Huntington's Disease (HD) is an autosomal dominant, progressive neurodegenerative disorder caused by deleterious expansion of CAG repeats in the Huntingtin gene and production of neurotoxic mutant Huntingtin protein (mHTT). The key pathological feature of HD is a profound degeneration of the striatum and a loss of cortical volume. The initial loss of indirect pathway (D2) medium spiny neuron (MSN) projections in early stages of HD, followed by a loss of direct pathway (D1) projections in advanced stages has important implications for the trajectory of motor and cognitive dysfunction in HD, but is not yet understood. Mouse models of HD have yielded important information on the effects and mechanisms of mHTT toxicity; however, whether these models recapitulate differential vulnerability of D1 vs. D2 MSNs is unknown. Here, we employed 12-month-old Q175+/- x D2-eGFP mice to examine the detailed structural and functional properties of D1 vs. D2 MSNs. While both D1 and D2 MSNs exhibited increased input resistance, depolarized resting membrane potentials and action potential threshold, only D1 MSNs showed reduced rheobase, action potential amplitude and frequency of spontaneous excitatory postsynaptic currents. Furthermore, D1 but not D2 MSNs showed marked proliferative changes to their dendritic arbors and reductions in spine density. Immunohistochemical assessment showed no loss of glutamatergic afferent inputs from cortical and subcortical sources onto identified D1 and D2 MSNs. Computational models constrained by empirical data predict that the increased dendritic complexity in Q175+/- D1 MSNs likely leads to greater dendritic filtering and attenuation of signals propagating to the soma from the dendrites. Together these findings reveal that, by twelve months, D1 and D2 MSNs exhibit distinctive responses to the presence of mHTT in this important mouse model of HD. This further highlights the need to incorporate findings from D1 and D2 MSNs independently in the context of HD models.
Collapse
Affiliation(s)
- Joseph W. Goodliffe
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| | - Hanbing Song
- Department of Mathematics and Computer Science, Franklin & Marshall College, Lancaster, Pennsylvania
| | - Anastasia Rubakovic
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| | - Wayne Chang
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| | - Maria Medalla
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| | - Christina M. Weaver
- Department of Mathematics and Computer Science, Franklin & Marshall College, Lancaster, Pennsylvania
| | - Jennifer I. Luebke
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
50
|
García-Cabezas MÁ, Joyce MKP, John YJ, Zikopoulos B, Barbas H. Mirror trends of plasticity and stability indicators in primate prefrontal cortex. Eur J Neurosci 2017; 46:2392-2405. [PMID: 28921934 DOI: 10.1111/ejn.13706] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 12/21/2022]
Abstract
Research on plasticity markers in the cerebral cortex has largely focused on their timing of expression and role in shaping circuits during critical and normal periods. By contrast, little attention has been focused on the spatial dimension of plasticity-stability across cortical areas. The rationale for this analysis is based on the systematic variation in cortical structure that parallels functional specialization and raises the possibility of varying levels of plasticity. Here, we investigated in adult rhesus monkeys the expression of markers related to synaptic plasticity or stability in prefrontal limbic and eulaminate areas that vary in laminar structure. Our findings revealed that limbic areas are impoverished in three markers of stability: intracortical myelin, the lectin Wisteria floribunda agglutinin, which labels perineuronal nets, and parvalbumin, which is expressed in a class of strong inhibitory neurons. By contrast, prefrontal limbic areas were enriched in the enzyme calcium/calmodulin-dependent protein kinase II (CaMKII), known to enhance plasticity. Eulaminate areas have more elaborate laminar architecture than limbic areas and showed the opposite trend: they were enriched in markers of stability and had lower expression of the plasticity-related marker CaMKII. The expression of glial fibrillary acidic protein (GFAP), a marker of activated astrocytes, was also higher in limbic areas, suggesting that cellular stress correlates with the rate of circuit reshaping. Elevated markers of plasticity may endow limbic areas with flexibility necessary for learning and memory within an affective context, but may also render them vulnerable to abnormal structural changes, as seen in neurologic and psychiatric diseases.
Collapse
Affiliation(s)
- Miguel Á García-Cabezas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, 635 Commonwealth Ave, Boston, MA, 02215, USA
| | - Mary Kate P Joyce
- Neural Systems Laboratory, Department of Health Sciences, Boston University, 635 Commonwealth Ave, Boston, MA, 02215, USA
| | - Yohan J John
- Neural Systems Laboratory, Department of Health Sciences, Boston University, 635 Commonwealth Ave, Boston, MA, 02215, USA
| | - Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Boston University, Boston, MA, USA
| | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, 635 Commonwealth Ave, Boston, MA, 02215, USA
| |
Collapse
|