1
|
Barber HM, Ali MF, Kucenas S. Glial Patchwork: Oligodendrocyte Progenitor Cells and Astrocytes Blanket the Central Nervous System. Front Cell Neurosci 2022; 15:803057. [PMID: 35069117 PMCID: PMC8766310 DOI: 10.3389/fncel.2021.803057] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
Tiling is a developmental process where cell populations become evenly distributed throughout a tissue. In this review, we discuss the developmental cellular tiling behaviors of the two major glial populations in the central nervous system (CNS)—oligodendrocyte progenitor cells (OPCs) and astrocytes. First, we discuss OPC tiling in the spinal cord, which is comprised of the three cellular behaviors of migration, proliferation, and contact-mediated repulsion (CMR). These cellular behaviors occur simultaneously during OPC development and converge to produce the emergent behavior of tiling which results in OPCs being evenly dispersed and occupying non-overlapping domains throughout the CNS. We next discuss astrocyte tiling in the cortex and hippocampus, where astrocytes migrate, proliferate, then ultimately determine their exclusive domains by gradual removal of overlap rather than sustained CMR. This results in domains that slightly overlap, allowing for both exclusive control of “synaptic islands” and astrocyte-astrocyte communication. We finally discuss the similarities and differences in the tiling behaviors of these glial populations and what remains unknown regarding glial tiling and how perturbations to this process may impact injury and disease.
Collapse
Affiliation(s)
- Heather M. Barber
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
- Cell & Developmental Biology Graduate Program, University of Virginia, Charlottesville, VA, United States
| | - Maria F. Ali
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Sarah Kucenas
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
- Cell & Developmental Biology Graduate Program, University of Virginia, Charlottesville, VA, United States
- Department of Biology, University of Virginia, Charlottesville, VA, United States
- *Correspondence: Sarah Kucenas
| |
Collapse
|
2
|
Turan F, Yilmaz Ö, Schünemann L, Lindenberg TT, Kalanithy JC, Harder A, Ahmadi S, Duman T, MacDonald RB, Winter D, Liu C, Odermatt B. Effect of modulating glutamate signaling on myelinating oligodendrocytes and their development-A study in the zebrafish model. J Neurosci Res 2021; 99:2774-2792. [PMID: 34520578 DOI: 10.1002/jnr.24940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 07/12/2021] [Accepted: 07/21/2021] [Indexed: 01/02/2023]
Abstract
Myelination is crucial for the development and maintenance of axonal integrity, especially fast axonal action potential conduction. There is increasing evidence that glutamate signaling and release through neuronal activity modulates the myelination process. In this study, we examine the effect of manipulating glutamate signaling on myelination of oligodendrocyte (OL) lineage cells and their development in zebrafish (zf). We use the "intensity-based glutamate-sensing fluorescent reporter" (iGluSnFR) in the zf model (both sexes) to address the hypothesis that glutamate is implicated in regulation of myelinating OLs. Our results show that glial iGluSnFR expression significantly reduces OL lineage cell number and the expression of myelin markers in larvae (zfl) and adult brains. The specific glutamate receptor agonist, L-AP4, rescues this iGluSnFR effect by significantly increasing the expression of the myelin-related genes, plp1b and mbpa, and enhances myelination in L-AP4-injected zfl compared to controls. Furthermore, we demonstrate that degrading glutamate using Glutamat-Pyruvate Transaminase (GPT) or the blockade of glutamate reuptake by L-trans-pyrrolidine-2,4-dicarboxylate (PDC) significantly decreases myelin-related genes and drastically declines myelination in brain ventricle-injected zfl. Moreover, we found that myelin-specific ClaudinK (CldnK) and 36K protein expression is significantly decreased in iGluSnFR-expressing zfl and adult brains compared to controls. Taken together, this study confirms that glutamate signaling is directly required for the preservation of myelinating OLs and for the myelination process itself. These findings further suggest that glutamate signaling may provide novel targets to therapeutically boost remyelination in several demyelinating diseases of the CNS.
Collapse
Affiliation(s)
- Funda Turan
- Medical Faculty, Institute of Neuroanatomy, University of Bonn, Bonn, Germany.,Faculty of Science, Biology Department, Ankara University, Ankara, Turkey
| | - Öznur Yilmaz
- Medical Faculty, Institute of Anatomy and Cell-Biology, University of Bonn, Bonn, Germany
| | - Lena Schünemann
- Medical Faculty, Institute of Anatomy and Cell-Biology, University of Bonn, Bonn, Germany
| | - Tobias T Lindenberg
- Medical Faculty, Institute of Neuroanatomy, University of Bonn, Bonn, Germany
| | - Jeshurun C Kalanithy
- Medical Faculty, Institute of Anatomy and Cell-Biology, University of Bonn, Bonn, Germany
| | - Alexander Harder
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Shiva Ahmadi
- Medical Faculty, Institute for Biochemistry and Molecular Biology (IBMB), University of Bonn, Bonn, Germany
| | - Türker Duman
- Faculty of Science, Biology Department, Ankara University, Ankara, Turkey
| | - Ryan B MacDonald
- Institute of Ophthalmology, University College London, London, UK
| | - Dominic Winter
- Medical Faculty, Institute for Biochemistry and Molecular Biology (IBMB), University of Bonn, Bonn, Germany
| | - Changsheng Liu
- Medical Faculty, Institute of Anatomy and Cell-Biology, University of Bonn, Bonn, Germany
| | - Benjamin Odermatt
- Medical Faculty, Institute of Neuroanatomy, University of Bonn, Bonn, Germany.,Medical Faculty, Institute of Anatomy and Cell-Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
3
|
Gao ZZ, Li YC, Shao CY, Xiao J, Shen Y, Zhou L. EPAC Negatively Regulates Myelination via Controlling Proliferation of Oligodendrocyte Precursor Cells. Neurosci Bull 2020; 36:639-648. [PMID: 32303914 DOI: 10.1007/s12264-020-00495-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/05/2020] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence suggests that a cyclic adenosine monophosphate (cAMP)-dependent intracellular signal drives the process of myelination. Yet, the signal transduction underlying the action of cAMP on central nervous system myelination remains undefined. In the present work, we sought to determine the role of EPAC (exchange protein activated by cAMP), a downstream effector of cAMP, in the development of the myelin sheath using EPAC1 and EPAC2 double-knockout (EPACdKO) mice. The results showed an age-dependent regulatory effect of EPAC1 and EPAC2 on myelin development, as their deficiency caused more myelin sheaths in postnatal early but not late adult mice. Knockout of EPAC promoted the proliferation of oligodendrocyte precursor cells and had diverse effects on myelin-related transcription factors, which in turn increased the expression of myelin-related proteins. These results indicate that EPAC proteins are negative regulators of myelination and may be promising targets for the treatment of myelin-related diseases.
Collapse
Affiliation(s)
- Zhen-Zhen Gao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ying-Cong Li
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Chong-Yu Shao
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ying Shen
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Liang Zhou
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Key Laboratory of Brain Science, Guizhou Institution of Higher Education, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
4
|
Zhou L, Shao CY, Xie YJ, Wang N, Xu SM, Luo BY, Wu ZY, Ke YH, Qiu M, Shen Y. Gab1 mediates PDGF signaling and is essential to oligodendrocyte differentiation and CNS myelination. eLife 2020; 9:52056. [PMID: 31944179 PMCID: PMC6984811 DOI: 10.7554/elife.52056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
Oligodendrocytes (OLs) myelinate axons and provide electrical insulation and trophic support for neurons in the central nervous system (CNS). Platelet-derived growth factor (PDGF) is critical for steady-state number and differentiation of oligodendrocyte precursor cells (OPCs), but its downstream targets are unclear. Here, we show for the first time that Gab1, an adaptor protein of receptor tyrosine kinase, is specifically expressed in OL lineage cells and is an essential effector of PDGF signaling in OPCs in mice. Gab1 is downregulated by PDGF stimulation and upregulated during OPC differentiation. Conditional deletions of Gab1 in OLs cause CNS hypomyelination by affecting OPC differentiation. Moreover, Gab1 binds to downstream GSK3β and regulated its activity, and thereby affects the nuclear accumulation of β-catenin and the expression of a number of transcription factors critical to myelination. Our work uncovers a novel downstream target of PDGF signaling, which is essential to OPC differentiation and CNS myelination.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Physiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Brain Science, Guizhou Institution of Higher Education, Zunyi Medical University, Zunyi, China
| | - Chong-Yu Shao
- Department of Physiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ya-Jun Xie
- Department of Physiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Na Wang
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Si-Min Xu
- Department of Physiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ben-Yan Luo
- Department of Physiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Hai Ke
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengsheng Qiu
- Institute of Life Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ying Shen
- Department of Physiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Thomason EJ, Escalante M, Osterhout DJ, Fuss B. The oligodendrocyte growth cone and its actin cytoskeleton: A fundamental element for progenitor cell migration and CNS myelination. Glia 2019; 68:1329-1346. [PMID: 31696982 DOI: 10.1002/glia.23735] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 01/06/2023]
Abstract
Cells of the oligodendrocyte (OLG) lineage engage in highly motile behaviors that are crucial for effective central nervous system (CNS) myelination. These behaviors include the guided migration of OLG progenitor cells (OPCs), the surveying of local environments by cellular processes extending from differentiating and pre-myelinating OLGs, and during the process of active myelin wrapping, the forward movement of the leading edge of the myelin sheath's inner tongue along the axon. Almost all of these motile behaviors are driven by actin cytoskeletal dynamics initiated within a lamellipodial structure that is located at the tip of cellular OLG/OPC processes and is structurally as well as functionally similar to the neuronal growth cone. Accordingly, coordinated stoichiometries of actin filament (F-actin) assembly and disassembly at these OLG/OPC growth cones have been implicated in directing process outgrowth and guidance, and the initiation of myelination. Nonetheless, the functional importance of the OLG/OPC growth cone still remains to be fully understood, and, as a unique aspect of actin cytoskeletal dynamics, F-actin depolymerization and disassembly start to predominate at the transition from myelination initiation to myelin wrapping. This review provides an overview of the current knowledge about OLG/OPC growth cones, and it proposes a model in which actin cytoskeletal dynamics in OLG/OPC growth cones are a main driver for morphological transformations and motile behaviors. Remarkably, these activities, at least at the later stages of OLG maturation, may be regulated independently from the transcriptional gene expression changes typically associated with CNS myelination.
Collapse
Affiliation(s)
- Elizabeth J Thomason
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Miguel Escalante
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Donna J Osterhout
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
6
|
Abstract
Oligodendrocytes generate myelin sheaths to promote rapid neurotransmission in the central nervous system (CNS). During brain development, oligodendrocyte precursor cells (OPCs) are generated in the medial ganglionic eminence, lateral ganglionic eminence, and dorsal pallium. OPCs proliferate and migrate throughout the CNS at the embryonic stage. After birth, OPCs differentiate into mature oligodendrocytes, which then insulate axons. Oligodendrocyte development is regulated by the extrinsic environment including neurons, astrocytes, and immune cells. During brain development, B lymphocytes are present in the meningeal space, and are involved in oligodendrocyte development by promoting OPC proliferation. T lymphocytes mediate oligodendrocyte development during the remyelination process. Moreover, a subset of microglia contributes to oligodendrocyte development during the neonatal periods. Therefore, the immune system, especially lymphocytes and microglia, contribute to oligodendrocyte development during brain development and remyelination.
Collapse
Affiliation(s)
- Shogo Tanabe
- Department of Molecular Neuroscience, World Premier International Immunology Frontier Research Center, Osaka University, Suita-shi, Osaka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, World Premier International Immunology Frontier Research Center, Osaka University, Suita-shi, Osaka, Japan.,Graduate School of Medicine, Osaka University, Suita-shi, Osaka, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita-shi, Osaka, Japan
| |
Collapse
|
7
|
To Be or Not to Be: Environmental Factors that Drive Myelin Formation during Development and after CNS Trauma. ACTA ACUST UNITED AC 2018. [DOI: 10.3390/neuroglia1010007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oligodendrocytes are specialized glial cells that myelinate central nervous system (CNS) axons. Historically, it was believed that the primary role of myelin was to compactly ensheath axons, providing the insulation necessary for rapid signal conduction. However, mounting evidence demonstrates the dynamic importance of myelin and oligodendrocytes, including providing metabolic support to neurons and regulating axon protein distribution. As such, the development and maintenance of oligodendrocytes and myelin are integral to preserving CNS homeostasis and supporting proper functioning of widespread neural networks. Environmental signals are critical for proper oligodendrocyte lineage cell progression and their capacity to form functional compact myelin; these signals are markedly disturbed by injury to the CNS, which may compromise endogenous myelin repair capabilities. This review outlines some key environmental factors that drive myelin formation during development and compares that to the primary factors that define a CNS injury milieu. We aim to identify developmental factors disrupted after CNS trauma as well as pathogenic factors that negatively impact oligodendrocyte lineage cells, as these are potential therapeutic targets to promote myelin repair after injury or disease.
Collapse
|
8
|
Multipotency and therapeutic potential of NG2 cells. Biochem Pharmacol 2017; 141:42-55. [DOI: 10.1016/j.bcp.2017.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/12/2017] [Indexed: 12/20/2022]
|
9
|
Friocourt F, Lafont AG, Kress C, Pain B, Manceau M, Dufour S, Chédotal A. Recurrent DCC gene losses during bird evolution. Sci Rep 2017; 7:37569. [PMID: 28240285 PMCID: PMC5327424 DOI: 10.1038/srep37569] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/31/2016] [Indexed: 01/07/2023] Open
Abstract
During development, midline crossing by axons brings into play highly conserved families of receptors and ligands. The interaction between the secreted ligand Netrin-1 and its receptor Deleted in Colorectal Carcinoma (DCC) is thought to control midline attraction of crossing axons. Here, we studied the evolution of this ligand/receptor couple in birds taking advantage of a wealth of newly sequenced genomes. From phylogeny and synteny analyses we can infer that the DCC gene has been conserved in most extant bird species, while two independent events have led to its loss in two avian groups, passeriformes and galliformes. These convergent accidental gene loss events are likely related to chromosome Z rearrangement. We show, using whole-mount immunostaining and 3Disco clearing, that in the nervous system of all birds that have a DCC gene, DCC protein expression pattern is similar to other vertebrates. Surprisingly, we show that the early developmental pattern of commissural tracts is comparable in all birds, whether or not they have a DCC receptor. Interestingly, only 4 of the 5 genes encoding secreted netrins, the DCC ligands in vertebrates, were found in birds, but Netrin-5 was absent. Together, these results support a remarkable plasticity of commissural axon guidance mechanisms in birds.
Collapse
Affiliation(s)
- François Friocourt
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France
| | - Anne-Gaelle Lafont
- Muséum National d’Histoire Naturelle, Sorbonne Universités, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208, IRD207, UPMC, UCN, Paris, France
| | - Clémence Kress
- Université Lyon 1, INSERM, INRA, Stem Cell and Brain Research Institute, U1208, USC1361, 69500 Bron, France
| | - Bertrand Pain
- Université Lyon 1, INSERM, INRA, Stem Cell and Brain Research Institute, U1208, USC1361, 69500 Bron, France
| | - Marie Manceau
- Center for Interdisciplinary Research in Biology, CNRS UMR 7241, Collège de France, 75005 Paris, France
| | - Sylvie Dufour
- Muséum National d’Histoire Naturelle, Sorbonne Universités, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS 7208, IRD207, UPMC, UCN, Paris, France
| | - Alain Chédotal
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France
| |
Collapse
|
10
|
Wheeler NA, Fuss B. Extracellular cues influencing oligodendrocyte differentiation and (re)myelination. Exp Neurol 2016; 283:512-30. [PMID: 27016069 PMCID: PMC5010977 DOI: 10.1016/j.expneurol.2016.03.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/03/2016] [Accepted: 03/18/2016] [Indexed: 02/07/2023]
Abstract
There is an increasing number of neurologic disorders found to be associated with loss and/or dysfunction of the CNS myelin sheath, ranging from the classic demyelinating disease, multiple sclerosis, through CNS injury, to neuropsychiatric diseases. The disabling burden of these diseases has sparked a growing interest in gaining a better understanding of the molecular mechanisms regulating the differentiation of the myelinating cells of the CNS, oligodendrocytes (OLGs), and the process of (re)myelination. In this context, the importance of the extracellular milieu is becoming increasingly recognized. Under pathological conditions, changes in inhibitory as well as permissive/promotional cues are thought to lead to an overall extracellular environment that is obstructive for the regeneration of the myelin sheath. Given the general view that remyelination is, even though limited in human, a natural response to demyelination, targeting pathologically 'dysregulated' extracellular cues and their downstream pathways is regarded as a promising approach toward the enhancement of remyelination by endogenous (or if necessary transplanted) OLG progenitor cells. In this review, we will introduce the extracellular cues that have been implicated in the modulation of (re)myelination. These cues can be soluble, part of the extracellular matrix (ECM) or mediators of cell-cell interactions. Their inhibitory and permissive/promotional roles with regard to remyelination as well as their potential for therapeutic intervention will be discussed.
Collapse
Affiliation(s)
- Natalie A Wheeler
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States.
| |
Collapse
|
11
|
Hakanen J, Salminen M. Defects in neural guidepost structures and failure to remove leptomeningeal cells from the septal midline behind the interhemispheric fusion defects in Netrin1 deficient mice. Int J Dev Neurosci 2015; 47:206-15. [PMID: 26397040 DOI: 10.1016/j.ijdevneu.2015.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/19/2015] [Accepted: 08/19/2015] [Indexed: 11/18/2022] Open
Abstract
Corpus callosum (CC) is the largest commissural tract in mammalian brain and it acts to coordinate information between the two cerebral hemispheres. During brain development CC forms at the boundary area between the cortex and the septum and special transient neural and glial guidepost structures in this area are thought to be critical for CC formation. In addition, it is thought that the fusion of the two hemispheres in the septum area is a prerequisite for CC formation. However, very little is known of the molecular mechanisms behind the fusion of the two hemispheres. Netrin1 (NTN1) acts as an axon guidance molecule in the developing central nervous system and Ntn1 deficiency leads to the agenesis of CC in mouse. Here we have analyzed Ntn1 deficient mice to better understand the reasons behind the observed lack of CC. We show that Ntn1 deficiency leads to defects in neural, but not in glial guidepost structures that may contribute to the agenesis of CC. In addition, Nnt1 was expressed by the leptomeningeal cells bordering the two septal walls prior to fusion. Normally these cells are removed when the septal fusion occurs. At the same time, the Laminin containing basal lamina produced by the leptomeningeal cells is disrupted in the midline area to allow the cells to mix and the callosal axons to cross. In Ntn1 deficient embryos however, the leptomeninges and the basal lamina were not removed properly from the midline area and the septal fusion did not occur. Thus, NTN1 contributes to the formation of the CC by promoting the preceding removal of the midline leptomeningeal cells and interhemispheric fusion.
Collapse
Affiliation(s)
- Janne Hakanen
- Department of Veterinary Biosciences, University of Helsinki, Finland.
| | - Marjo Salminen
- Department of Veterinary Biosciences, University of Helsinki, Finland.
| |
Collapse
|
12
|
Rosenzweig S, Carmichael ST. The axon-glia unit in white matter stroke: mechanisms of damage and recovery. Brain Res 2015; 1623:123-34. [PMID: 25704204 PMCID: PMC4545468 DOI: 10.1016/j.brainres.2015.02.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 02/10/2015] [Indexed: 01/07/2023]
Abstract
Approximately one quarter of all strokes in humans occur in white matter, and the progressive nature of white matter lesions often results in severe physical and mental disability. Unlike cortical grey matter stroke, the pathology of white matter stroke revolves around disrupted connectivity and injured axons and glial cells, rather than neuronal cell bodies. Consequently, the mechanisms behind ischemic damage to white matter elements, the regenerative responses of glial cells and their signaling pathways, all differ significantly from those in grey matter. Development of effective therapies for white matter stroke would require an enhanced understanding of the complex cellular and molecular interactions within the white matter, leading to the identification of new therapeutic targets. This review will address the unique properties of the axon-glia unit during white matter stroke, describe the challenging process of promoting effective white matter repair, and discuss recently-identified signaling pathways which may hold potential targets for repair in this disease. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.
Collapse
Affiliation(s)
- Shira Rosenzweig
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
13
|
Sidik H, Talbot WS. A zinc finger protein that regulates oligodendrocyte specification, migration and myelination in zebrafish. Development 2015; 142:4119-28. [PMID: 26459222 DOI: 10.1242/dev.128215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/01/2015] [Indexed: 12/21/2022]
Abstract
Precise control of oligodendrocyte migration and development is crucial for myelination of axons in the central nervous system (CNS), but important questions remain unanswered about the mechanisms controlling these processes. In a zebrafish screen for myelination mutants, we identified a mutation in zinc finger protein 16-like (znf16l). znf16l mutant larvae have reduced myelin basic protein (mbp) expression and reduced CNS myelin. Marker, time-lapse and ultrastructural studies indicated that oligodendrocyte specification, migration and myelination are disrupted in znf16l mutants. Transgenic studies indicated that znf16l acts autonomously in oligodendrocytes. Expression of Zfp488 from mouse rescued mbp expression in znf16l mutants, indicating that these homologs have overlapping functions. Our results defined the function of a new zinc finger protein with specific function in oligodendrocyte specification, migration and myelination in the developing CNS.
Collapse
Affiliation(s)
- Harwin Sidik
- Department of Developmental Biology, Stanford University, CA 94305, USA
| | - William S Talbot
- Department of Developmental Biology, Stanford University, CA 94305, USA
| |
Collapse
|
14
|
Age-Dependent Netrin-1 Signaling Regulates NG2+ Glial Cell Spatial Homeostasis in Normal Adult Gray Matter. J Neurosci 2015; 35:6946-51. [PMID: 25926469 DOI: 10.1523/jneurosci.0356-15.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuron-glial antigen 2-positive (NG2(+)) glial cells are the most proliferative glia type in the adult CNS, and their tile-like arrangement in adult gray matter is under tight regulation. However, little is known about the cues that govern this unique distribution. To this end, using a NG2(+) glial cell ablation model in mice, we examined the repopulation dynamics of NG2(+) glial cells in the mature and aged mice gray matter. We found that some resident NG2(+) glial cells that escaped depletion rapidly enter the cell cycle to repopulate the cortex with altered spatial distribution. We reveal that netrin-1 signaling is involved in the NG2(+) glial cell early proliferative, late repopulation, and distribution response after ablation in the gray matter. However, ablation of NG2(+) glial cell in older animals failed to stimulate a similar repopulation response, possibly because of a decrease in the sensitivity to netrin-1. Our findings indicate that endogenous netrin-1 plays a role in NG2(+) glial cell homeostasis that is distinct from its role in myelination.
Collapse
|
15
|
Migration of oligodendrocyte progenitor cells is controlled by transforming growth factor β family proteins during corticogenesis. J Neurosci 2015; 34:14973-83. [PMID: 25378163 DOI: 10.1523/jneurosci.1156-14.2014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During embryonic development oligodendrocyte precursor cells (OPCs) are generated first in the ventral forebrain and migrate dorsally to occupy the cortex. The molecular cues that guide this migratory route are currently completely unknown. Here, we show that bone morphogenetic protein-4 (Bmp4), Bmp7, and Tgfβ1 produced by the meninges and pericytes repelled ventral OPCs into the cortex at mouse embryonic stages. Ectopic activation of Bmp or Tgfβ1 signaling before the entrance of OPCs into the cortex hindered OPC migration into the cortical areas. OPCs without Smad4 signaling molecules also failed to migrate into the cortex efficiently and formed heterotopia in ventral areas. OPC migration into the cortex was also dramatically reduced by conditional inhibition of Tgfβ1 or Bmp expression from mesenchymal cells. The data suggest that mesenchymal Tgfβ family proteins promote migration of ventral OPCs into the cortex during corticogenesis.
Collapse
|
16
|
Mitew S, Hay C, Peckham H, Xiao J, Koenning M, Emery B. Mechanisms regulating the development of oligodendrocytes and central nervous system myelin. Neuroscience 2014; 276:29-47. [DOI: 10.1016/j.neuroscience.2013.11.029] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/13/2013] [Accepted: 11/14/2013] [Indexed: 12/29/2022]
|
17
|
Pathak GK, Aranda-Espinoza H, Shah SB. Mouse hippocampal explant culture system to study isolated axons. J Neurosci Methods 2014; 232:157-64. [PMID: 24861423 DOI: 10.1016/j.jneumeth.2014.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/10/2014] [Accepted: 05/14/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Studies of neuronal regeneration require examination of axons independently of their cell bodies. Several effective strategies have been deployed to compartmentalize long axons of the peripheral nervous system (PNS). However, current strategies to compartmentalize axons of the central nervous system (CNS) may be limited by physical damage to cells during tissue dissociation or slicing, perturbation of three-dimensional tissue architecture, or insufficient axonal tissue for biological analysis. NEW METHODS We developed a novel mouse neonate whole-hippocampus explant culture system, to probe neuronal regeneration in the central nervous system. This system enables imaging, biological, and biophysical analysis of isolated axons. RESULTS We validated this model by isolating pure axonal populations. Additionally, cells within the explant were viable and amenable to transfection. We implemented the explant system to characterize axonal outgrowth following crush injury to the explant at the time of harvest, and also a secondary axonal transection injury 2 days post-culture. The initial crush injury delayed axonal outgrowth; however, axotomy did not alter rates of outgrowth up to 1h post-injury, with or without initial tissue crush injury. COMPARISON WITH EXISTING METHODS Our explant system addresses shortcomings of other strategies developed to compartmentalize CNS axons. It provides a simple method to examine axonal activity and function without requiring additional equipment to slice tissue or segregate axons. CONCLUSION Our hippocampal explant model may be used to study axonal response to injury. We have demonstrated the feasibility of probing axonal biology, biochemistry, and outgrowth free from confounding effects of neuronal cell bodies.
Collapse
Affiliation(s)
- Gunja K Pathak
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Helim Aranda-Espinoza
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Sameer B Shah
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States; Departments of Orthopaedic Surgery and Bioengineering, University of California, San Diego, La Jolla, CA, United States.
| |
Collapse
|
18
|
He X, Li Y, Lu H, Zhang Z, Wang Y, Yang GY. Netrin-1 overexpression promotes white matter repairing and remodeling after focal cerebral ischemia in mice. J Cereb Blood Flow Metab 2013; 33:1921-7. [PMID: 23963365 PMCID: PMC3851901 DOI: 10.1038/jcbfm.2013.150] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 07/19/2013] [Accepted: 07/19/2013] [Indexed: 01/03/2023]
Abstract
Damage of oligodendrocytes after ischemia has negative impact on white matter integrity and neuronal function. In this work, we explore whether Netrin-1 (NT-1) overexpression facilitates white matter repairing and remodeling. Adult CD-1 mice received stereotactic injection of adeno-associated virus carrying NT-1 gene (AAV-NT-1). One week after gene transfer, mice underwent 60 minutes of middle cerebral artery occlusion. The effect of NT-1 on neural function was evaluated by neurobehavioral tests. Proliferated oligodendrocyte progenitor cells (OPCs), newly matured oligodendrocytes, and remyelination were semi-quantified by immunohistochemistry. The role of NT-1 in oligodendrogenesis was further explored by examining specific NT-1 receptors and their function. Netrin-1 overexpression was detected in neurons and astrocytes 2 weeks after AAV-NT-1 gene transfer and significantly improved the neurobehavioral outcomes compared with the control (P<0.05). In comparison with the control, proliferated OPCs, newly matured oligodendrocytes, and remyelination were greatly increased in the ipsilateral hemisphere of AAV-NT-1-transduced mice. Furthermore, both NT-1 receptors deleted in colorectal carcinoma and UNC5H2 were expressed on OPCs whereas only UNC5H2 was expressed in myelinated axons. Our study indicated that NT-1 promoted OPC proliferation, differentiation, and increased remyelination, suggesting that NT-1 is a promising factor for white matter repairing and remodeling after ischemia.
Collapse
Affiliation(s)
- Xiaosong He
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
19
|
de Castro F, Bribián A, Ortega MC. Regulation of oligodendrocyte precursor migration during development, in adulthood and in pathology. Cell Mol Life Sci 2013; 70:4355-68. [PMID: 23689590 PMCID: PMC11113994 DOI: 10.1007/s00018-013-1365-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 05/03/2013] [Accepted: 05/07/2013] [Indexed: 12/25/2022]
Abstract
Oligodendrocytes are the myelin-forming cells in the central nervous system (CNS). These cells originate from oligodendrocyte precursor cells (OPCs) during development, and they migrate extensively from oligodendrogliogenic niches along the neural tube to colonise the entire CNS. Like many other such events, this migratory process is precisely regulated by a battery of positional and signalling cues that act via their corresponding receptors and that are expressed dynamically by OPCs. Here, we will review the cellular and molecular basis of this important event during embryonic and postnatal development, and we will discuss the relevance of the substantial number of OPCs existing in the adult CNS. Similarly, we will consider the behaviour of OPCs in normal and pathological conditions, especially in animal models of demyelination and of the demyelinating disease, multiple sclerosis. The spontaneous remyelination observed after damage in demyelinating pathologies has a limited effect. Understanding the cellular and molecular mechanisms underlying the biology of OPCs, particularly adult OPCs, should help in the design of neuroregenerative strategies to combat multiple sclerosis and other demyelinating diseases.
Collapse
Affiliation(s)
- Fernando de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos-SESCAM, Finca "La Peraleda" s/n, 45071, Toledo, Spain,
| | | | | |
Collapse
|
20
|
Promoting return of function in multiple sclerosis: An integrated approach. Mult Scler Relat Disord 2013; 2:S2211-0348(13)00044-8. [PMID: 24363985 DOI: 10.1016/j.msard.2013.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis is a disease characterized by inflammatory demyelination, axonal degeneration and progressive brain atrophy. Most of the currently available disease modifying agents proved to be very effective in managing the relapse rate, however progressive neuronal damage continues to occur and leads to progressive accumulation of irreversible disability. For this reason, any therapeutic strategy aimed at restoration of function must take into account not only immunomodulation, but also axonal protection and new myelin formation. We further highlight the importance of an holistic approach, which considers the variability of therapeutic responsiveness as the result of the interplay between genetic differences and the epigenome, which is in turn affected by gender, age and differences in life style including diet, exercise, smoking and social interaction.
Collapse
|
21
|
Yang Y, Wang H, Zhang J, Luo F, Herrup K, Bibb JA, Lu R, Miller RH. Cyclin dependent kinase 5 is required for the normal development of oligodendrocytes and myelin formation. Dev Biol 2013; 378:94-106. [PMID: 23583582 DOI: 10.1016/j.ydbio.2013.03.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 03/02/2013] [Accepted: 03/04/2013] [Indexed: 11/17/2022]
Abstract
The development of oligodendrocytes, the myelinating cells of the vertebrate CNS, is regulated by a cohort of growth factors and transcription factors. Less is known about the signaling pathways that integrate extracellular signals with intracellular transcriptional regulators to control oligodendrocyte development. Cyclin dependent kinase 5 (Cdk5) and its co-activators play critical roles in the regulation of neuronal differentiation, cortical lamination, neuronal cell migration and axon outgrowth. Here we demonstrate a previously unrecognized function of Cdk5 in regulating oligodendrocyte maturation and myelination. During late embryonic development Cdk5 null animals displayed a reduction in the number of MBP+ cells in the spinal cord, but no difference in the number of OPCs. To determine whether the reduction of oligodendrocytes reflected a cell-intrinsic loss of Cdk5, it was selectively deleted from Olig1+ oligodendrocyte lineage cells. In Olig1(Cre/+); Cdk5(fl/fl) conditional mutants, reduced levels of expression of MBP and PLP mRNA were observed throughout the CNS and ultrastructural analyses demonstrated a significant reduction in the proportion of myelinated axons in the optic nerve and spinal cord. Pharmacological inhibition or RNAi knockdown of Cdk5 in vitro resulted in the reduction in oligodendrocyte maturation, but had no effect on OPC cell proliferation. Conversely, over-expression of Cdk5 promoted oligodendrocyte maturation and enhanced process outgrowth. Consistent with this data, Cdk5(-/-) oligodendrocytes developed significantly fewer primary processes and branches than control cells. Together, these findings suggest that Cdk5 function as a signaling integrator to regulate oligodendrocyte maturation and myelination.
Collapse
Affiliation(s)
- Yan Yang
- Department of Neurology, Case Western Reserve University, School of Medicine, 10900 Euclid, Ave., Cleveland, OH 44106, United States
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Myelin-based inhibitors of oligodendrocyte myelination: clues from axonal growth and regeneration. Neurosci Bull 2013; 29:177-88. [PMID: 23516141 DOI: 10.1007/s12264-013-1319-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/06/2013] [Indexed: 12/20/2022] Open
Abstract
The differentiation of and myelination by oligodendrocytes (OLs) are exquisitely regulated by a series of intrinsic and extrinsic mechanisms. As each OL can make differing numbers of myelin segments with variable lengths along similar axon tracts, myelination can be viewed as a graded process shaped by inhibitory/inductive cues during development. Myelination by OLs is a prime example of an adaptive process determined by the microenvironment and architecture of the central nervous system (CNS). in this review, we discuss how myelin formation by OLs may be controlled by the heterogeneous microenvironment of the CNS. Then we address recent findings demonstrating that neighboring OLs may compete for available axon space, and highlight our current understanding of myelin-based inhibitors of axonal regeneration that are potentially responsible for the reciprocal dialogue between OLs and determine the numbers and lengths of myelin internodes. Understanding the mechanisms that control the spatiotemporal regulation of myelinogenic potential during development may provide valuable insight into therapeutic strategies for promoting remyelination in an inhibitory microenvironment.
Collapse
|
23
|
Piao JH, Wang Y, Duncan ID. CD44 is required for the migration of transplanted oligodendrocyte progenitor cells to focal inflammatory demyelinating lesions in the spinal cord. Glia 2012; 61:361-7. [DOI: 10.1002/glia.22438] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 09/25/2012] [Indexed: 11/06/2022]
|
24
|
Tsai HH, Li H, Fuentealba LC, Molofsky AV, Taveira-Marques R, Zhuang H, Tenney A, Murnen AT, Fancy SPJ, Merkle F, Kessaris N, Alvarez-Buylla A, Richardson WD, Rowitch DH. Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science 2012; 337:358-62. [PMID: 22745251 PMCID: PMC4059181 DOI: 10.1126/science.1222381] [Citation(s) in RCA: 374] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Astrocytes, the most abundant cell population in the central nervous system (CNS), are essential for normal neurological function. We show that astrocytes are allocated to spatial domains in mouse spinal cord and brain in accordance with their embryonic sites of origin in the ventricular zone. These domains remain stable throughout life without evidence of secondary tangential migration, even after acute CNS injury. Domain-specific depletion of astrocytes in ventral spinal cord resulted in abnormal motor neuron synaptogenesis, which was not rescued by immigration of astrocytes from adjoining regions. Our findings demonstrate that region-restricted astrocyte allocation is a general CNS phenomenon and reveal intrinsic limitations of the astroglial response to injury.
Collapse
Affiliation(s)
- Hui-Hsin Tsai
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
| | - Huiliang Li
- Wolfson Institute for Biomedical Research and Research Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Luis C. Fuentealba
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
| | - Anna V. Molofsky
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Psychiatry/Langley-Porter Institute, University of California San Francisco, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
| | - Raquel Taveira-Marques
- Wolfson Institute for Biomedical Research and Research Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Helin Zhuang
- Wolfson Institute for Biomedical Research and Research Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - April Tenney
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Alice T. Murnen
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
| | - Stephen P. J. Fancy
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
| | - Florian Merkle
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Nicoletta Kessaris
- Wolfson Institute for Biomedical Research and Research Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Arturo Alvarez-Buylla
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
| | - William D. Richardson
- Wolfson Institute for Biomedical Research and Research Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - David H. Rowitch
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
25
|
Bernard F, Moreau-Fauvarque C, Heitz-Marchaland C, Zagar Y, Dumas L, Fouquet S, Lee X, Shao Z, Mi S, Chédotal A. Role of transmembrane semaphorin Sema6A in oligodendrocyte differentiation and myelination. Glia 2012; 60:1590-604. [DOI: 10.1002/glia.22378] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 06/05/2012] [Indexed: 11/09/2022]
|
26
|
Liu X, Lu Y, Zhang Y, Li Y, Zhou J, Yuan Y, Gao X, Su Z, He C. Slit2 regulates the dispersal of oligodendrocyte precursor cells via Fyn/RhoA signaling. J Biol Chem 2012; 287:17503-17516. [PMID: 22433866 PMCID: PMC3366791 DOI: 10.1074/jbc.m111.317610] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 03/15/2012] [Indexed: 11/06/2022] Open
Abstract
Oligodendrocyte precursor cells (OPCs) are a unique type of glia that are responsible for the myelination of the central nervous system. OPC migration is important for myelin formation during central nervous system development and repair. However, the precise extracellular and intracellular mechanisms that regulate OPC migration remain elusive. Slits were reported to regulate neurodevelopmental processes such as migration, adhesion, axon guidance, and elongation through binding to roundabout receptors (Robos). However, the potential roles of Slits/Robos in oligodendrocytes remain unknown. In this study, Slit2 was found to be involved in regulating the dispersal of OPCs through the association between Robo1 and Fyn. Initially, we examined the expression of Robos in OPCs both in vitro and in vivo. Subsequently, the Boyden chamber assay showed that Slit2 could inhibit OPC migration. RoboN, a specific inhibitor of Robos, could significantly attenuate this effect. The effects were confirmed through the explant migration assay. Furthermore, treating OPCs with Slit2 protein deactivated Fyn and increased the level of activated RhoA-GTP. Finally, Fyn was found to form complexes with Robo1, but this association was decreased after Slit2 stimulation. Thus, we demonstrate for the first time that Slit2 regulates the dispersal of oligodendrocyte precursor cells through Fyn and RhoA signaling.
Collapse
Affiliation(s)
- Xiujie Liu
- Institute of Neuroscience and MOE Key Laboratory of Molecular Neurobiology, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yan Lu
- Institute of Neuroscience and MOE Key Laboratory of Molecular Neurobiology, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yong Zhang
- Institute of Neuroscience and MOE Key Laboratory of Molecular Neurobiology, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yuanyuan Li
- Institute of Neuroscience and MOE Key Laboratory of Molecular Neurobiology, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jiazhen Zhou
- Institute of Neuroscience and MOE Key Laboratory of Molecular Neurobiology, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yimin Yuan
- Institute of Neuroscience and MOE Key Laboratory of Molecular Neurobiology, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xiaofei Gao
- Institute of Neuroscience and MOE Key Laboratory of Molecular Neurobiology, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Zhida Su
- Institute of Neuroscience and MOE Key Laboratory of Molecular Neurobiology, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Cheng He
- Institute of Neuroscience and MOE Key Laboratory of Molecular Neurobiology, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
27
|
Possible roles of Plexin-A4 in positioning of oligodendrocyte precursor cells in developing cerebral cortex. Neurosci Lett 2012; 516:259-64. [DOI: 10.1016/j.neulet.2012.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/26/2012] [Accepted: 04/02/2012] [Indexed: 12/29/2022]
|
28
|
Autocrine netrin function inhibits glioma cell motility and promotes focal adhesion formation. PLoS One 2011; 6:e25408. [PMID: 21980448 PMCID: PMC3182204 DOI: 10.1371/journal.pone.0025408] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 09/02/2011] [Indexed: 01/09/2023] Open
Abstract
Deregulation of mechanisms that control cell motility plays a key role in tumor progression by promoting tumor cell dissemination. Secreted netrins and their receptors, Deleted in Colorectal Cancer (DCC), neogenin, and the UNC5 homologues, regulate cell and axon migration, cell adhesion, and tissue morphogenesis. Netrin and netrin receptor expression have previously been shown to be disrupted in invasive tumors, including glioblastoma. We determined that the human glioblastoma cell lines U87, U343, and U373 all express neogenin, UNC5 homologues, and netrin-1 or netrin-3, but only U87 cells express DCC. Using transfilter migration assays, we demonstrate DCC-dependent chemoattractant migration of U87 cells up a gradient of netrin-1. In contrast, U343 and U373 cells, which do not express DCC, were neither attracted nor repelled. Ectopic expression of DCC by U343 and U373 cells resulted in these cells becoming competent to respond to a gradient of netrin-1 as a chemoattractant, and also slowed their rate of spontaneous migration. Here, in addition to netrins' well-characterized chemotropic activity, we demonstrate an autocrine function for netrin-1 and netrin-3 in U87 and U373 cells that slows migration. We provide evidence that netrins promote the maturation of focal complexes, structures associated with cell movement, into focal adhesions. Consistent with this, netrin, DCC, and UNC5 homologues were associated with focal adhesions, but not focal complexes. Disrupting netrin or DCC function did not alter cell proliferation or survival. Our findings provide evidence that DCC can slow cell migration, and that neogenin and UNC5 homologues are not sufficient to substitute for DCC function in these cells. Furthermore, we identify a role for netrins as autocrine inhibitors of cell motility that promote focal adhesion formation. These findings suggest that disruption of netrin signalling may disable a mechanism that normally restrains inappropriate cell migration.
Collapse
|
29
|
Lai Wing Sun K, Correia JP, Kennedy TE. Netrins: versatile extracellular cues with diverse functions. Development 2011; 138:2153-69. [PMID: 21558366 DOI: 10.1242/dev.044529] [Citation(s) in RCA: 318] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Netrins are secreted proteins that were first identified as guidance cues, directing cell and axon migration during neural development. Subsequent findings have demonstrated that netrins can influence the formation of multiple tissues, including the vasculature, lung, pancreas, muscle and mammary gland, by mediating cell migration, cell-cell interactions and cell-extracellular matrix adhesion. Recent evidence also implicates the ongoing expression of netrins and netrin receptors in the maintenance of cell-cell organisation in mature tissues. Here, we review the mechanisms involved in netrin signalling in vertebrate and invertebrate systems and discuss the functions of netrin signalling during the development of neural and non-neural tissues.
Collapse
Affiliation(s)
- Karen Lai Wing Sun
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | | | | |
Collapse
|
30
|
Netrin1 is required for neural and glial precursor migrations into the olfactory bulb. Dev Biol 2011; 355:101-14. [DOI: 10.1016/j.ydbio.2011.04.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/23/2011] [Accepted: 04/15/2011] [Indexed: 11/23/2022]
|
31
|
Chung AY, Kim S, Kim H, Bae YK, Park HC. Microarray screening for genes involved in oligodendrocyte differentiation in the zebrafish CNS. Exp Neurobiol 2011; 20:85-91. [PMID: 22110365 PMCID: PMC3213698 DOI: 10.5607/en.2011.20.2.85] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 04/24/2011] [Indexed: 11/19/2022] Open
Abstract
Within the vertebrate nervous system, myelination is required for the normal function of neurons by facilitating the rapid conduction of action potentials along axons. Oligodendrocytes are glial cells which myelinate axons in the central nervous system. Disruption of myelination and remyelination failure can cause human diseases such as multiple sclerosis. Despite the importance of myelination, the molecular basis of oligodendrocyte differentiation and myelination are still poorly understood. To understand the molecular mechanisms which regulate oligodendrocyte differentiation and myelination, novel genes were identified using a microarray analysis. The analysis used oligodendrocyte lineage cells isolated from transgenic zebrafish expressing fluorescent proteins in the oligodendrocyte lineage cells. Seven genes not previously known to be involved in oligodendrocyte differentiation were identified, and their expression during oligodendrocyte development was validated.
Collapse
Affiliation(s)
- Ah-Young Chung
- Graduate School of Medicine, Korea University, Ansan 425-707, Korea
| | | | | | | | | |
Collapse
|
32
|
Qian-hua W, Shao-ping Z, Jian-wen Z, Yun Y, Li Z. Reduced expression of netrin-1 is associated with fetal growth restriction. Mol Cell Biochem 2010; 350:81-7. [PMID: 21193949 DOI: 10.1007/s11010-010-0684-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 12/02/2010] [Indexed: 10/18/2022]
Abstract
The objective of this study was to investigate the expression of netrin-1 in placenta from patients with fetal growth restriction (FGR) and its effect on the viability and apoptosis of human placental microvascular endothelial cells. Thirty-three patients with FGR (including eighteen severe cases) and twenty-four normal late pregnant women were investigated. The expression of netrin-1 in placental tissues was detected by employing immunohistochemistry, real-time PCR, and Western blotting. Human placental microvascular endothelial cells were isolated and, after treatment with netrin-1, examined for their viability and apoptosis by using MTT assay and flow cytometry. We demonstrated that the netrin-1 was present in placenta. Netrin-1 was significantly reduced in pregnant women with FGR as compared with the controls. Furthermore, netrin-1 enhanced the viability of human placental microvascular endothelial cells and inhibited their apoptosis. Netrin-1 may regulate the development of placental vessels and plays a key role in the pathogenesis of FGR.
Collapse
Affiliation(s)
- Wang Qian-hua
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | | | | | | | | |
Collapse
|
33
|
Systemic human Netrin-1 gene delivery by adeno-associated virus type 8 alters leukocyte accumulation and atherogenesis in vivo. Gene Ther 2010; 18:437-44. [PMID: 21160531 DOI: 10.1038/gt.2010.155] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Atherosclerosis is an inflammatory disorder of arteries. Atherosclerotic plaque, in its early to intermediate stages, is composed largely of lipid-engorged foam cells. These foam cells are derived from the trafficking of monocytes (Mo) into the arterial intima, attracted to the site by chemoattractants. Given that foam cells are derived from the trafficking of Mo, the use of Netrin-1, an Mo chemorepellent, may be useful in limiting Mo accumulation and subsequent plaque formation. To investigate the potential of Netrin-1 for limiting atherosclerosis, we systemically delivered its human (h) cDNA by adeno-associated virus type 8 (AAV8, single-stranded structure) delivery into low-density lipoprotein receptor knockout (LDLR-/-) mice and placed the animals on a high cholesterol diet (HCD). Compared with control neomycin resistance (Neo) gene delivery/HCD, hNetrin-1 delivery resulted in a significant reduction in plaque formation, as determined by larger aortic lumen size, thinner intima-media thickness and lower blood velocity than the Neo/HCD control (all statistically significant). Indices of monocyte/macrophage (Mo/MΦ) accumulation, CD68, integrin, alpha M (ITGAM) and egf-like module containing, mucin-like, hormone receptor-like 1 (EMR-1), were reduced in hNetrin-1/HCD-treated animal's aortas and spleens compared with Neo/HCD-treated animals. Unexpectedly, CD25 and foxp3 (regulatory T cells (Tregs)) in the aorta were strongly upregulated. This is the first time the Mo/MΦ chemorepellent approach, and specific Netrin-1 gene delivery, has been performed for the reduction of Mo/MΦ burden and atherosclerosis. In addition, Netrin-1 has never before been linked to altered Treg levels. These data strongly suggest that hNetrin-1 gene delivery can reduce Mo/MΦ accumulation, inflammation and subsequent plaque formation.
Collapse
|
34
|
Yang Y, Lewis R, Miller RH. Interactions between oligodendrocyte precursors control the onset of CNS myelination. Dev Biol 2010; 350:127-38. [PMID: 21144846 DOI: 10.1016/j.ydbio.2010.11.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 10/29/2010] [Accepted: 11/24/2010] [Indexed: 01/13/2023]
Abstract
The formation of CNS myelin is dependent on the differentiation of oligodendrocyte precursor cells (OPCs) and oligodendrocyte maturation. How the initiation of myelination is regulated is unclear, but it is likely to depend on the development of competence by oligodendrocytes and receptivity by target axons. Here we identify an additional level of control of oligodendrocyte maturation mediated by interactions between the different cellular components of the oligodendrocyte lineage. During development oligodendrocyte precursors mature through a series of stages defined by labeling with monoclonal antibodies A2B5 and O4. Newly differentiated oligodendrocytes begin to express galactocerebroside recognized by O1 antibodies and subsequently mature to myelin basic protein (MBP)-positive cells prior to formation of compact myelin. Using an in vitro brain slice culture system that supports robust myelination, the consequences of ablating cells at different stages of the oligodendrocyte lineage on myelination have been assayed. Elimination of all OPC lineage cells through A2B5+, O4+, and O1+ complement-mediated cell lysis resulted in a delay in development of MBP cells and myelination. Selective elimination of early OPCs (A2B5+) also unexpectedly resulted in delayed MBP expression compared to controls suggesting that early OPCs contribute to the timing of myelination onset. By contrast, elimination of differentiated (O1+) immature oligodendrocytes permanently inhibited the appearance of MBP+ cells suggesting that oligodendrocytes are critical to facilitate the maturation of OPCs. These data illuminate that the presence of intra-lineage feed-forward and feedback cues are important for timely myelination by oligodendrocytes.
Collapse
Affiliation(s)
- Yan Yang
- Department of Neurology, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | | | | |
Collapse
|
35
|
Rajasekharan S, Bin JM, Antel JP, Kennedy TE. A central role for RhoA during oligodendroglial maturation in the switch from netrin-1-mediated chemorepulsion to process elaboration. J Neurochem 2010; 113:1589-97. [PMID: 20367748 DOI: 10.1111/j.1471-4159.2010.06717.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The guidance cue netrin-1 and its receptor Deleted in Colorectal Cancer play distinct roles during different stages of oligodendrocyte development. A gradient of netrin-1 repels migrating oligodendrocyte precursor cells (OPCs) in the embryonic spinal cord by promoting process collapse, but later in development netrin-1 increases oligodendrocyte process extension and branching. Here we investigate the intracellular mechanism that governs this switch in response to netrin-1, and focus on the role of the GTPase RhoA and its effector Rho Kinase (ROCK) downstream of netrin-1 in OPCs and maturing oligodendrocytes. In OPCs, we show that netrin-1 induces a sustained increase in RhoA activity that requires Deleted in Colorectal Cancer function. Furthermore, we demonstrate that activation of RhoA and ROCK is required for the reduction in OPC process length triggered by netrin-1, and for the chemorepellent response made by OPCs to netrin-1. Unlike OPCs, application of netrin-1 to oligodendrocytes decreases RhoA activity. We demonstrate that inactivation of RhoA is essential for netrin-1 to increase oligodendrocyte process branching. We conclude that netrin-1 induces distinct morphological responses in OPCs and oligodendrocytes through differential regulation of RhoA activity.
Collapse
Affiliation(s)
- Sathyanath Rajasekharan
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3A 2B4
| | | | | | | |
Collapse
|
36
|
Tsai HH, Macklin WB, Miller RH. Distinct modes of migration position oligodendrocyte precursors for localized cell division in the developing spinal cord. J Neurosci Res 2010; 87:3320-30. [PMID: 19301427 DOI: 10.1002/jnr.22058] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Establishment of the cytoarchitecture of the central nervous system reflects the stereotyped cell migration and proliferation of precursor cells during development. In vitro analyses have provided extensive information on the control of proliferation and differentiation of oligodendrocyte precursors (OPCs), but less is known about the migratory behavior of these cells in vivo. Here we utilize a transgenic mouse line expressing enhanced green fluorescent protein (EGFP) under the proteolipid protein promoter (PLP-EGFP mice) to visualize directly the behaviors of OPCs in developing spinal cord slices. During early development, OPCs disperse from their origin at the ventricular zone by using saltatory migration. This involves orientation of the cell with a leading edge toward the pial surface and alternating stationary and fast-moving phases and dramatic shape changes. Once cells exit the ventricular zone, they exhibit an exploratory mode of migration characterized by persistent translocation without dramatic changes in cell morphology. The control of migration, proliferation, and cytokinesis of OPCs appear to be closely linked. In netrin-1 mutant spinal cords that lack dispersal cues, OPC migration rates were not significantly different, but the trajectories were altered, and numbers of migrating cells were dramatically reduced. In contrast to DNA replication that occurs at the ventricular zone or throughout the spinal cord neuropil, cell division or cytokinesis of OPCs occurs predominantly at the interface between gray and white matters, with the majority of cleavage planes parallel to the pial surface. These studies suggest that positional cues are critical for regulating OPC behavior during spinal cord development.
Collapse
Affiliation(s)
- Hui-Hsin Tsai
- Center for Translational Neuroscience, Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | | | |
Collapse
|
37
|
Abstract
Neurons and glial cells show mutual interdependence in many developmental and functional aspects of their biology. To establish their intricate relationships with neurons, glial cells must migrate over what are often long distances. In the CNS glial cells generally migrate as single cells, whereas PNS glial cells tend to migrate as cohorts of cells. How are their journeys initiated and directed, and what stops the migratory phase once glial cells are aligned with their neuronal counterparts? A deeper understanding of glial migration and the underlying neuron-glia interactions may contribute to the development of therapeutics for demyelinating diseases or glial tumours.
Collapse
|
38
|
Rajasekharan S, Baker KA, Horn KE, Jarjour AA, Antel JP, Kennedy TE. Netrin 1 and Dcc regulate oligodendrocyte process branching and membrane extension via Fyn and RhoA. Development 2009; 136:415-26. [PMID: 19141671 DOI: 10.1242/dev.018234] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The molecular mechanisms underlying the elaboration of branched processes during the later stages of oligodendrocyte maturation are not well understood. Here we describe a novel role for the chemotropic guidance cue netrin 1 and its receptor deleted in colorectal carcinoma (Dcc) in the remodeling of oligodendrocyte processes. Postmigratory, premyelinating oligodendrocytes express Dcc but not netrin 1, whereas mature myelinating oligodendrocytes express both. We demonstrate that netrin 1 promotes process extension by premyelinating oligodendrocytes in vitro and in vivo. Addition of netrin 1 to mature oligodendrocytes in vitro evoked a Dcc-dependent increase in process branching. Furthermore, expression of netrin 1 and Dcc by mature oligodendrocytes was required for the elaboration of myelin-like membrane sheets. Maturation of oligodendrocyte processes requires intracellular signaling mechanisms involving Fyn, focal adhesion kinase (FAK), neuronal Wiscott-Aldrich syndrome protein (N-WASP) and RhoA; however, the extracellular cues upstream of these proteins in oligodendrocytes are poorly defined. We identify a requirement for Src family kinase activity downstream of netrin-1-dependent process extension and branching. Using oligodendrocytes derived from Fyn knockout mice, we demonstrate that Fyn is essential for netrin-1-induced increases in process branching. Netrin 1 binding to Dcc on mature oligodendrocytes recruits Fyn to a complex with the Dcc intracellular domain that includes FAK and N-WASP, resulting in the inhibition of RhoA and inducing process remodeling. These findings support a novel role for netrin 1 in promoting oligodendrocyte process branching and myelin-like membrane sheet formation. These essential steps in oligodendroglial maturation facilitate the detection of target axons, a key step towards myelination.
Collapse
Affiliation(s)
- Sathyanath Rajasekharan
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Cayre M, Canoll P, Goldman JE. Cell migration in the normal and pathological postnatal mammalian brain. Prog Neurobiol 2009; 88:41-63. [PMID: 19428961 DOI: 10.1016/j.pneurobio.2009.02.001] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 12/23/2008] [Accepted: 02/05/2009] [Indexed: 02/07/2023]
Abstract
In the developing brain, cell migration is a crucial process for structural organization, and is therefore highly regulated to allow the correct formation of complex networks, wiring neurons, and glia. In the early postnatal brain, late developmental processes such as the production and migration of astrocyte and oligodendrocyte progenitors still occur. Although the brain is completely formed and structured few weeks after birth, it maintains a degree of plasticity throughout life, including axonal remodeling, synaptogenesis, but also neural cell birth, migration and integration. The subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampus are the two main neurogenic niches in the adult brain. Neural stem cells reside in these structures and produce progenitors that migrate toward their ultimate location: the olfactory bulb and granular cell layer of the DG respectively. The aim of this review is to synthesize the increasing information concerning the organization, regulation and function of cell migration in a mature brain. In a normal brain, proteins involved in cell-cell or cell-matrix interactions together with secreted proteins acting as chemoattractant or chemorepellant play key roles in the regulation of neural progenitor cell migration. In addition, recent data suggest that gliomas arise from the transformation of neural stem cells or progenitor cells and that glioma cell infiltration recapitulates key aspects of glial progenitor migration. Thus, we will consider glioma migration in the context of progenitor migration. Finally, many observations show that brain lesions and neurological diseases trigger neural stem/progenitor cell activation and migration toward altered structures. The factors involved in such cell migration/recruitment are just beginning to be understood. Inflammation which has long been considered as thoroughly disastrous for brain repair is now known to produce some positive effects on stem/progenitor cell recruitment via the regulation of growth factor signaling and the secretion of a number of chemoattractant cytokines. This knowledge is crucial for the development of new therapeutic strategies. One of these strategies could consist in increasing the mobilization of endogenous progenitor cells that could replace lost cells and improve functional recovery.
Collapse
Affiliation(s)
- Myriam Cayre
- Institut de Biologie du Developpement de Marseille Luminy (IBDML), Parc scientifique de Luminy, case 907, 13288 Marseille Cedex 09, France.
| | | | | |
Collapse
|
40
|
Piaton G, Williams A, Seilhean D, Lubetzki C. Remyelination in multiple sclerosis. PROGRESS IN BRAIN RESEARCH 2009; 175:453-64. [PMID: 19660673 DOI: 10.1016/s0079-6123(09)17530-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Remyelination in multiple sclerosis is in most cases insufficient, leading to irreversible disability. Different and nonexclusive factors account for this repair deficit. Local inhibitors of the differentiation of oligodendrocyte progenitor cells (OPCs) might play a role, as well as axonal factors impairing the wrapping process. Alternatively, a defect in the recruitment of OPCs toward the demyelinated area may be involved in lesions with oligodendroglial depopulation. Deciphering the mechanisms underlying myelin repair success or failure should open new avenues for designing strategies aimed at favoring endogenous remyelination.
Collapse
|
41
|
Uziel D, Rozental R. Neurologic birth defects after prenatal exposure to antiepileptic drugs. Epilepsia 2008; 49 Suppl 9:35-42. [DOI: 10.1111/j.1528-1167.2008.01925.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Kirby BB, Takada N, Latimer AJ, Shin J, Carney TJ, Kelsh RN, Appel B. In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development. Nat Neurosci 2006; 9:1506-11. [PMID: 17099706 DOI: 10.1038/nn1803] [Citation(s) in RCA: 307] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 10/24/2006] [Indexed: 01/31/2023]
Abstract
Myelinating oligodendrocytes arise from migratory and proliferative oligodendrocyte progenitor cells (OPCs). Complete myelination requires that oligodendrocytes be uniformly distributed and form numerous, periodically spaced membrane sheaths along the entire length of target axons. Mechanisms that determine spacing of oligodendrocytes and their myelinating processes are not known. Using in vivo time-lapse confocal microscopy, we show that zebrafish OPCs continuously extend and retract numerous filopodium-like processes as they migrate and settle into their final positions. Process remodeling and migration paths are highly variable and seem to be influenced by contact with neighboring OPCs. After laser ablation of oligodendrocyte-lineage cells, nearby OPCs divide more frequently, orient processes toward the ablated cells and migrate to fill the unoccupied space. Thus, process activity before axon wrapping might serve as a surveillance mechanism by which OPCs determine the presence or absence of nearby oligodendrocyte-lineage cells, facilitating uniform spacing of oligodendrocytes and complete myelination.
Collapse
Affiliation(s)
- Brandon B Kirby
- Department of Biological Sciences, Vanderbilt University, 465 21st Avenue South, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Padovani-Claudio DA, Liu L, Ransohoff RM, Miller RH. Alterations in the oligodendrocyte lineage, myelin, and white matter in adult mice lacking the chemokine receptor CXCR2. Glia 2006; 54:471-83. [PMID: 16886211 DOI: 10.1002/glia.20383] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oligodendrocyte precursor cell (OPC) proliferation and migration are critical for the development of myelin in the central nervous system (CNS). Previous studies showed that localized expression of the chemokine CXCL1 signals through the receptor CXCR2 to inhibit the migration and enhance the proliferation of spinal cord OPCs during development. Here, we report structural and functional alterations in the adult CNS of Cxcr2-/- mice. In Cxcr2-/- adult mice, we observed regional alterations in the density of oligodendrocyte lineage cells in Cxcr2-/- adult mice, with decreases in the cortex and anterior commissure but increases in the corpus callosum and spinal cord. An increase in the density and arborization of spinal cord NG2 positive cells was also observed in Cxcr2-/- adult mice. Compared with wild-type (WT) littermates, Cxcr2-/- mice exhibited a significant decrease in spinal cord white matter area, reduced thickness of myelin sheaths, and a slowing in the rate of central conduction of spinally elicited evoked potentials without significant changes in axonal caliber or number. Biochemical analyses showed decreased levels of myelin basic protein (MBP), proteolipid protein (PLP), and glial fibrillary acidic protein (GFAP). In vitro studies showed reduced numbers of differentiated oligodendrocytes in Cxcr2-/- spinal cord cultures. Together, these findings indicate that the chemokine receptor CXCR2 is important for the development and maintenance of the oligodendrocyte lineage, myelination, and white matter in the vertebrate CNS.
Collapse
|
44
|
Baker KA, Moore SW, Jarjour AA, Kennedy TE. When a diffusible axon guidance cue stops diffusing: roles for netrins in adhesion and morphogenesis. Curr Opin Neurobiol 2006; 16:529-34. [PMID: 16935486 DOI: 10.1016/j.conb.2006.08.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 08/17/2006] [Indexed: 10/24/2022]
Abstract
Netrins are a small family of secreted proteins that are best known for their role as secreted long-range chemotropic guidance cues. Extracellular gradients of netrin protein, established by diffusion, are thought to direct cell and axon migration during neural development. In addition to this long-range role, recent findings provide increasing support for short-range functions, in which secreted netrin protein remains closely associated with its cellular source. Emerging evidence for short-range actions of netrins suggests that they contribute to tissue morphogenesis by regulating cell-cell and cell-matrix adhesion.
Collapse
Affiliation(s)
- K Adam Baker
- Centre for Neuronal Survival, Montréal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, H3A 2B4, Canada
| | | | | | | |
Collapse
|