1
|
Arriero-Cabañero A, García-Vences E, Sánchez-Torres S, Aristizabal-Hernandez S, García-Rama C, Pérez-Rizo E, Fernández-Mayoralas A, Grijalva I, Buzoianu-Anguiano V, Doncel-Pérez E, Mey J. Transplantation of Predegenerated Peripheral Nerves after Complete Spinal Cord Transection in Rats: Effect of Neural Precursor Cells and Pharmacological Treatment with the Sulfoglycolipid Tol-51. Cells 2024; 13:1324. [PMID: 39195214 PMCID: PMC11352494 DOI: 10.3390/cells13161324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Following spinal cord injury (SCI), the regenerative capacity of the central nervous system (CNS) is severely limited by the failure of axonal regeneration. The regeneration of CNS axons has been shown to occur by grafting predegenerated peripheral nerves (PPNs) and to be promoted by the transplantation of neural precursor cells (NPCs). The introduction of a combinatorial treatment of PPNs and NPCs after SCI has to address the additional problem of glial scar formation, which prevents regenerating axons from leaving the implant and making functional connections. Previously, we discovered that the synthetic sulfoglycolipid Tol-51 inhibits astrogliosis. The objective was to evaluate axonal regeneration and locomotor function improvement after SCI in rats treated with a combination of PPN, NPC, and Tol-51. One month after SCI, the scar tissue was removed and replaced with segments of PPN or PPN+Tol-51; PPN+NPC+Tol-51. The transplantation of a PPN segment favors regenerative axonal growth; in combination with Tol-51 and NPC, 30% of the labeled descending corticospinal axons were able to grow through the PPN and penetrate the caudal spinal cord. The animals treated with PPN showed significantly better motor function. Our data demonstrate that PPN implants plus NPC and Tol-51 allow successful axonal regeneration in the CNS.
Collapse
Affiliation(s)
- Alejandro Arriero-Cabañero
- Laboratorio de Regeneración Neural, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain; (A.A.-C.); (S.A.-H.); (C.G.-R.); (J.M.)
| | - Elisa García-Vences
- Facultad de Ciencias de la Salud, Centro de Investigación en Ciencias de la Salud (CICSA), Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico;
- Secretaría de la Defensa Nacional, Escuela Militar de Graduados en Sanidad, Ciudad de Méxcio 11200, Mexico
| | - Stephanie Sánchez-Torres
- Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI. Av. Cuauhtémoc 330, Col. Doctores, Mexico City 06720, Mexico; (S.S.-T.); (I.G.)
| | - Sergio Aristizabal-Hernandez
- Laboratorio de Regeneración Neural, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain; (A.A.-C.); (S.A.-H.); (C.G.-R.); (J.M.)
| | - Concepción García-Rama
- Laboratorio de Regeneración Neural, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain; (A.A.-C.); (S.A.-H.); (C.G.-R.); (J.M.)
| | - Enrique Pérez-Rizo
- Unidad de Ingeniería y Evaluación Motora del Hospital Nacional de Parapléjicos, 45071 Toledo, Spain;
| | | | - Israel Grijalva
- Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI. Av. Cuauhtémoc 330, Col. Doctores, Mexico City 06720, Mexico; (S.S.-T.); (I.G.)
| | - Vinnitsa Buzoianu-Anguiano
- Laboratorio de Regeneración Neural, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain; (A.A.-C.); (S.A.-H.); (C.G.-R.); (J.M.)
| | - Ernesto Doncel-Pérez
- Laboratorio de Regeneración Neural, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain; (A.A.-C.); (S.A.-H.); (C.G.-R.); (J.M.)
| | - Jörg Mey
- Laboratorio de Regeneración Neural, Hospital Nacional de Parapléjicos, 45071 Toledo, Spain; (A.A.-C.); (S.A.-H.); (C.G.-R.); (J.M.)
- EURON Graduate School of Neuroscience, 6229ER Maastricht, The Netherlands
| |
Collapse
|
2
|
Kheirollahi A, Sadeghi S, Orandi S, Moayedi K, Khajeh K, Khoobi M, Golestani A. Chondroitinase as a therapeutic enzyme: Prospects and challenges. Enzyme Microb Technol 2024; 172:110348. [PMID: 37898093 DOI: 10.1016/j.enzmictec.2023.110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/28/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
The chondroitinases (Chase) are bacterial lyases that specifically digest chondroitin sulfate and/or dermatan sulfate glycosaminoglycans via a β-elimination reaction and generate unsaturated disaccharides. In recent decades, these enzymes have attracted the attention of many researchers due to their potential applications in various aspects of medicine from the treatment of spinal cord injury to use as an analytical tool. In spite of this diverse spectrum, the application of Chase is faced with several limitations and challenges such as thermal instability and lack of a suitable delivery system. In the current review, we address potential therapeutic applications of Chase with emphasis on the challenges ahead. Then, we summarize the latest achievements to overcome the problems by considering the studies carried out in the field of enzyme engineering, drug delivery, and combination-based therapy.
Collapse
Affiliation(s)
- Asma Kheirollahi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Solmaz Sadeghi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Orandi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiana Moayedi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Mehdi Khoobi
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Golestani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Chambel SS, Cruz CD. Axonal growth inhibitors and their receptors in spinal cord injury: from biology to clinical translation. Neural Regen Res 2023; 18:2573-2581. [PMID: 37449592 DOI: 10.4103/1673-5374.373674] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Axonal growth inhibitors are released during traumatic injuries to the adult mammalian central nervous system, including after spinal cord injury. These molecules accumulate at the injury site and form a highly inhibitory environment for axonal regeneration. Among these inhibitory molecules, myelin-associated inhibitors, including neurite outgrowth inhibitor A, oligodendrocyte myelin glycoprotein, myelin-associated glycoprotein, chondroitin sulfate proteoglycans and repulsive guidance molecule A are of particular importance. Due to their inhibitory nature, they represent exciting molecular targets to study axonal inhibition and regeneration after central injuries. These molecules are mainly produced by neurons, oligodendrocytes, and astrocytes within the scar and in its immediate vicinity. They exert their effects by binding to specific receptors, localized in the membranes of neurons. Receptors for these inhibitory cues include Nogo receptor 1, leucine-rich repeat, and Ig domain containing 1 and p75 neurotrophin receptor/tumor necrosis factor receptor superfamily member 19 (that form a receptor complex that binds all myelin-associated inhibitors), and also paired immunoglobulin-like receptor B. Chondroitin sulfate proteoglycans and repulsive guidance molecule A bind to Nogo receptor 1, Nogo receptor 3, receptor protein tyrosine phosphatase σ and leucocyte common antigen related phosphatase, and neogenin, respectively. Once activated, these receptors initiate downstream signaling pathways, the most common amongst them being the RhoA/ROCK signaling pathway. These signaling cascades result in actin depolymerization, neurite outgrowth inhibition, and failure to regenerate after spinal cord injury. Currently, there are no approved pharmacological treatments to overcome spinal cord injuries other than physical rehabilitation and management of the array of symptoms brought on by spinal cord injuries. However, several novel therapies aiming to modulate these inhibitory proteins and/or their receptors are under investigation in ongoing clinical trials. Investigation has also been demonstrating that combinatorial therapies of growth inhibitors with other therapies, such as growth factors or stem-cell therapies, produce stronger results and their potential application in the clinics opens new venues in spinal cord injury treatment.
Collapse
Affiliation(s)
- Sílvia Sousa Chambel
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto; Translational NeuroUrology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal
| | - Célia Duarte Cruz
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto; Translational NeuroUrology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal
| |
Collapse
|
4
|
Ou YC, Huang CC, Kao YL, Ho PC, Tsai KJ. Stem Cell Therapy in Spinal Cord Injury-Induced Neurogenic Lower Urinary Tract Dysfunction. Stem Cell Rev Rep 2023; 19:1691-1708. [PMID: 37115409 DOI: 10.1007/s12015-023-10547-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Spinal cord injury (SCI) is a devastating condition that enormously affects an individual's health and quality of life. Neurogenic lower urinary tract dysfunction (NLUTD) is one of the most important sequelae induced by SCI, causing complications including urinary tract infection, renal function deterioration, urinary incontinence, and voiding dysfunction. Current therapeutic methods for SCI-induced NLUTD mainly target on the urinary bladder, but the outcomes are still far from satisfactory. Stem cell therapy has gained increasing attention for years for its ability to rescue the injured spinal cord directly. Stem cell differentiation and their paracrine effects, including exosomes, are the proposed mechanisms to enhance the recovery from SCI. Several animal studies have demonstrated improvement in bladder function using mesenchymal stem cells (MSCs) and neural stem cells (NSCs). Human clinical trials also provide promising results in urodynamic parameters after MSC therapy. However, there is still uncertainty about the ideal treatment window and application protocol for stem cell therapy. Besides, data on the therapeutic effects regarding NSCs and stem cell-derived exosomes in SCI-related NLUTD are scarce. Therefore, there is a pressing need for further well-designed human clinical trials to translate the stem cell therapy into a formal therapeutic option for SCI-induced NLUTD.
Collapse
Affiliation(s)
- Yin-Chien Ou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Chen Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
- Section of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yao-Lin Kao
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Chuan Ho
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan.
- Research Center of Clinical Medicine, National Cheng Kung University Hospital , College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
5
|
Hall A, Fortino T, Spruance V, Niceforo A, Harrop JS, Phelps PE, Priest CA, Zholudeva LV, Lane MA. Cell transplantation to repair the injured spinal cord. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:79-158. [PMID: 36424097 PMCID: PMC10008620 DOI: 10.1016/bs.irn.2022.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Adam Hall
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - Tara Fortino
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - Victoria Spruance
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States; Division of Kidney, Urologic, & Hematologic Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alessia Niceforo
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - James S Harrop
- Department of Neurological and Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Patricia E Phelps
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, CA, United States
| | | | - Lyandysha V Zholudeva
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States; Gladstone Institutes, San Francisco, CA, United States
| | - Michael A Lane
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States.
| |
Collapse
|
6
|
Hong J, Dragas R, Khazaei M, Ahuja CS, Fehlings MG. Hepatocyte Growth Factor-Preconditioned Neural Progenitor Cells Attenuate Astrocyte Reactivity and Promote Neurite Outgrowth. Front Cell Neurosci 2021; 15:741681. [PMID: 34955750 PMCID: PMC8695970 DOI: 10.3389/fncel.2021.741681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
The astroglial scar is a defining hallmark of secondary pathology following central nervous system (CNS) injury that, despite its role in limiting tissue damage, presents a significant barrier to neuroregeneration. Neural progenitor cell (NPC) therapies for tissue repair and regeneration have demonstrated favorable outcomes, the effects of which are ascribed not only to direct cell replacement but trophic support. Cytokines and growth factors secreted by NPCs aid in modifying the inhibitory and cytotoxic post-injury microenvironment. In an effort to harness and enhance the reparative potential of NPC secretome, we utilized the multifunctional and pro-regenerative cytokine, hepatocyte growth factor (HGF), as a cellular preconditioning agent. We first demonstrated the capacity of HGF to promote NPC survival in the presence of oxidative stress. We then assessed the capacity of this modified conditioned media (CM) to attenuate astrocyte reactivity and promote neurite outgrowth in vitro. HGF pre-conditioned NPCs demonstrated significantly increased levels of tissue inhibitor of metalloproteinases-1 and reduced vascular endothelial growth factor compared to untreated NPCs. In reactive astrocytes, HGF-enhanced NPC-CM effectively reduced glial fibrillary acidic protein (GFAP) expression and chondroitin sulfate proteoglycan deposition to a greater extent than either treatment alone, and enhanced neurite outgrowth of co-cultured neurons. in vivo, this combinatorial treatment strategy might enable tactical modification of the post-injury inhibitory astroglial environment to one that is more conducive to regeneration and functional recovery. These findings have important translational implications for the optimization of current cell-based therapies for CNS injury.
Collapse
Affiliation(s)
- James Hong
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Rachel Dragas
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Mohammad Khazaei
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Christopher S Ahuja
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Michael G Fehlings
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Spinal Program, University Health Network, Toronto Western Hospital, Toronto, ON, Canada
| |
Collapse
|
7
|
Li S, Duan Q, Lu M, Wen X, Chen J, Tan S, Guo Y. CSPGs promote the migration of meningeal fibroblasts via p38 mitogen-activated protein kinase signaling pathway under OGD conditions. Brain Res Bull 2021; 173:37-44. [PMID: 33984430 DOI: 10.1016/j.brainresbull.2021.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
AIMS Usually glial scar that occurs after central nervous system injury has significantly affected the local neural microenvironment. Meningeal fibroblasts play an essential role in the formation of the glial scar. However, how and why meningeal fibroblasts migrate to lesion sites is still unclear. MAIN METHODS Astrocytes were subjected to oxygen-glucose deprivation/reperfusion (OGD/R) injury. And then, we measured the glial fibrillary acidic protein(GFAP) and chondroitin sulfate proteoglycans (CSPGs) expression of reactive astrocytes by western blot and quantitative polymerase chain reaction (qPCR) after they were co-cultured with meningeal fibroblasts. Following, we clarified the possibility that CSPGs induce the migration of meningeal fibroblasts to glial scar by transwell migration assay and the activation of the p38 MAPK signaling pathway during the migration by western blot. KEY FINDINGS We found that co-cultured meningeal fibroblasts could alleviate the significantly increased expression of GFAP and CSPGs in the activation of reactive astrocytes induced by OGD/R. Additionally, CSPGs secreted by reactive astrocytes could induce the migration of meningeal fibroblasts and the expression of phospho-p38 in meningeal fibroblasts when meningeal fibroblasts were co-cultured with supernatant of reactive astrocytes. What's more, we could observe a noticeable increase in CSPGs that chondroitinase ABC could reverse their functions. Moreover, phospho-p38 could cause the expression of phospho-cofilin and the migration of CSPGs-induced meningeal fibroblasts. SIGNIFICANCE Our study provides reliable evidence for explaining scar formation mechanisms and further studying to improve regeneration after an injury to the central nervous system.
Collapse
Affiliation(s)
- Siyi Li
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qingrui Duan
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Minyi Lu
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xinrui Wen
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Chen
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Sheng Tan
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Yang Guo
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Ma J, Chen M, Ai J, Young MJ, Ge J. Enhanced migration of engrafted retinal progenitor cells into the host retina via disruption of glial barriers. Mol Vis 2021; 27:300-308. [PMID: 34035644 PMCID: PMC8131176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/08/2021] [Indexed: 11/18/2022] Open
Abstract
Purpose Migration and integration remain critical challenges for stem cell replacement therapy. Glial barriers play an important role in preventing cell migration and integration. The purpose of this study was to investigate the effect and mechanisms of chondroitinase ABC on the migration of murine retinal progenitor cells (mRPCs) transplanted into the subretinal space of B6 mice. Methods mRPCs were harvested from the neural retinas of P1 enhanced green fluorescent protein (GFP) B6 mice. Two μl containing 2 × 105 expanded RPCs alone or combined with chondroitinase ABC in suspension were injected into the subretinal space of the recipient B6 mice. Immunohistochemistry was performed on the recipient B6 retinas to evaluate the glial barrier formation and migration of the mRPCs. Western blotting was also used to check the expression of the glial barriers. Results Glial fibrillary acidic protein (GFAP) and vimentin could be seen around the transplanted mRPCs in the B6 mice. Formation of glial barriers prevented the migration of donor cells into the retinal layers. Chondroitinase ABC promoted the migration and survival rates of the engrafted retinal progenitor cells in the retinal layers of recipient B6 mice. Injection induced upregulation of GFAP, chondroitin, and CD44 expression. Chondroitinase ABC disrupted the glial barriers. The CD44 around the mRPCs was much lower in the chondroitinase group. However, the CD44 in the retinal layers was considerably higher in the chondroitinase group. With the employment of chondroitinase ABC, more cells migrated into the outer nuclear layer or inner nuclear layer. The chondroitin and CD44 expression decreased 3 weeks after transplantation in the chondroitinase ABC group. Conclusions Chondroitinase ABC degraded glial barriers and enhanced the migration of transplanted mouse retinal progenitor cells. Chondroitinase ABC may also have induced activation of the CD44 signaling pathway to exert the effect.
Collapse
Affiliation(s)
- Jian Ma
- Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Min Chen
- Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Jing Ai
- Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Michael J. Young
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Cheng L, Sami A, Ghosh B, Goudsward HJ, Smith GM, Wright MC, Li S, Lepore AC. Respiratory axon regeneration in the chronically injured spinal cord. Neurobiol Dis 2021; 155:105389. [PMID: 33975016 DOI: 10.1016/j.nbd.2021.105389] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/19/2021] [Accepted: 05/05/2021] [Indexed: 02/01/2023] Open
Abstract
Promoting the combination of robust regeneration of damaged axons and synaptic reconnection of these growing axon populations with appropriate neuronal targets represents a major therapeutic goal following spinal cord injury (SCI). A key impediment to achieving this important aim includes an intrinsic inability of neurons to extend axons in adult CNS, particularly in the context of the chronically-injured spinal cord. We tested whether an inhibitory peptide directed against phosphatase and tensin homolog (PTEN: a central inhibitor of neuron-intrinsic axon growth potential) could restore inspiratory diaphragm function by reconnecting critical respiratory neural circuitry in a rat model of chronic cervical level 2 (C2) hemisection SCI. We found that systemic delivery of PTEN antagonist peptide 4 (PAP4) starting at 8 weeks after C2 hemisection promoted substantial, long-distance regeneration of injured bulbospinal rostral Ventral Respiratory Group (rVRG) axons into and through the lesion and back toward phrenic motor neurons (PhMNs) located in intact caudal C3-C5 spinal cord. Despite this robust rVRG axon regeneration, PAP4 stimulated only minimal recovery of diaphragm function. Furthermore, re-lesion through the hemisection site completely removed PAP4-induced functional improvement, demonstrating that axon regeneration through the lesion was responsible for this partial functional recovery. Interestingly, there was minimal formation of putative excitatory monosynaptic connections between regrowing rVRG axons and PhMN targets, suggesting that (1) limited rVRG-PhMN synaptic reconnectivity was responsible at least in part for the lack of a significant functional effect, (2) chronically-injured spinal cord presents an obstacle to achieving synaptogenesis between regenerating axons and post-synaptic targets, and (3) addressing this challenge is a potentially-powerful strategy to enhance therapeutic efficacy in the chronic SCI setting. In conclusion, our study demonstrates a non-invasive and transient pharmacological approach in chronic SCI to repair the critically-important neural circuitry controlling diaphragmatic respiratory function, but also sheds light on obstacles to circuit plasticity presented by the chronically-injured spinal cord.
Collapse
Affiliation(s)
- Lan Cheng
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Armin Sami
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Biswarup Ghosh
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Hannah J Goudsward
- Department of Biology, Arcadia University, 450 S. Easton Rd., 220 Boyer Hall, Glenside, PA 19038, USA
| | - George M Smith
- Department of Neuroscience, Shriners Hospitals for Pediatric Research Center, Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140-5104, USA
| | - Megan C Wright
- Department of Biology, Arcadia University, 450 S. Easton Rd., 220 Boyer Hall, Glenside, PA 19038, USA
| | - Shuxin Li
- Department of Neuroscience, Shriners Hospitals for Pediatric Research Center, Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140-5104, USA
| | - Angelo C Lepore
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
10
|
Glial Metabolic Rewiring Promotes Axon Regeneration and Functional Recovery in the Central Nervous System. Cell Metab 2020; 32:767-785.e7. [PMID: 32941799 PMCID: PMC7642184 DOI: 10.1016/j.cmet.2020.08.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/07/2020] [Accepted: 08/26/2020] [Indexed: 12/25/2022]
Abstract
Axons in the mature central nervous system (CNS) fail to regenerate after axotomy, partly due to the inhibitory environment constituted by reactive glial cells producing astrocytic scars, chondroitin sulfate proteoglycans, and myelin debris. We investigated this inhibitory milieu, showing that it is reversible and depends on glial metabolic status. We show that glia can be reprogrammed to promote morphological and functional regeneration after CNS injury in Drosophila via increased glycolysis. This enhancement is mediated by the glia derived metabolites: L-lactate and L-2-hydroxyglutarate (L-2HG). Genetically/pharmacologically increasing or reducing their bioactivity promoted or impeded CNS axon regeneration. L-lactate and L-2HG from glia acted on neuronal metabotropic GABAB receptors to boost cAMP signaling. Local application of L-lactate to injured spinal cord promoted corticospinal tract axon regeneration, leading to behavioral recovery in adult mice. Our findings revealed a metabolic switch to circumvent the inhibition of glia while amplifying their beneficial effects for treating CNS injuries.
Collapse
|
11
|
Warren PM, Andrews MR, Smith M, Bartus K, Bradbury EJ, Verhaagen J, Fawcett JW, Kwok JCF. Secretion of a mammalian chondroitinase ABC aids glial integration at PNS/CNS boundaries. Sci Rep 2020; 10:11262. [PMID: 32647242 PMCID: PMC7347606 DOI: 10.1038/s41598-020-67526-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Schwann cell grafts support axonal growth following spinal cord injury, but a boundary forms between the implanted cells and host astrocytes. Axons are reluctant to exit the graft tissue in large part due to the surrounding inhibitory environment containing chondroitin sulphate proteoglycans (CSPGs). We use a lentiviral chondroitinase ABC, capable of being secreted from mammalian cells (mChABC), to examine the repercussions of CSPG digestion upon Schwann cell behaviour in vitro. We show that mChABC transduced Schwann cells robustly secrete substantial quantities of the enzyme causing large-scale CSPG digestion, facilitating the migration and adhesion of Schwann cells on inhibitory aggrecan and astrocytic substrates. Importantly, we show that secretion of the engineered enzyme can aid the intermingling of cells at the Schwann cell-astrocyte boundary, enabling growth of neurites over the putative graft/host interface. These data were echoed in vivo. This study demonstrates the profound effect of the enzyme on cellular motility, growth and migration. This provides a cellular mechanism for mChABC induced functional and behavioural recovery shown in in vivo studies. Importantly, we provide in vitro evidence that mChABC gene therapy is equally or more effective at producing these effects as a one-time application of commercially available ChABC.
Collapse
Affiliation(s)
- Philippa M Warren
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, UK. .,Wolfson Centre for Age Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London Bridge, London, SE1 1UL, UK. .,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 0PY, UK.
| | - Melissa R Andrews
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, UK.,Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Marc Smith
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Katalin Bartus
- Wolfson Centre for Age Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London Bridge, London, SE1 1UL, UK
| | - Elizabeth J Bradbury
- Wolfson Centre for Age Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London Bridge, London, SE1 1UL, UK
| | - Joost Verhaagen
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - James W Fawcett
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, UK.,Centre for Reconstructive Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Jessica C F Kwok
- Centre for Reconstructive Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic.,School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
12
|
Eggers R, de Winter F, Smit L, Luimens M, Muir EM, Bradbury EJ, Tannemaat MR, Verhaagen J. Combining timed GDNF and ChABC gene therapy to promote long-distance regeneration following ventral root avulsion and repair. FASEB J 2020; 34:10605-10622. [PMID: 32543730 DOI: 10.1096/fj.202000559r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/18/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022]
Abstract
Ventral root avulsion leads to severe motoneuron degeneration and prolonged distal nerve denervation. After a critical period, a state of chronic denervation develops as repair Schwann cells lose their pro-regenerative properties and inhibitory factors such as CSPGs accumulate in the denervated nerve. In rats with ventral root avulsion injuries, we combined timed GDNF gene therapy delivered to the proximal nerve roots with the digestion of inhibitory CSPGs in the distal denervated nerve using sustained lentiviral-mediated chondroitinase ABC (ChABC) enzyme expression. Following reimplantation of lumbar ventral roots, timed GDNF-gene therapy enhanced motoneuron survival up to 45 weeks and improved axonal outgrowth, electrophysiological recovery, and muscle reinnervation. Despite a timed GDNF expression period, a subset of animals displayed axonal coils. Lentiviral delivery of ChABC enabled digestion of inhibitory CSPGs for up to 45 weeks in the chronically denervated nerve. ChABC gene therapy alone did not enhance motoneuron survival, but led to improved muscle reinnervation and modest electrophysiological recovery during later stages of the regeneration process. Combining GDNF treatment with digestion of inhibitory CSPGs did not have a significant synergistic effect. This study suggests a delicate balance exists between treatment duration and concentration in order to achieve therapeutic effects.
Collapse
Affiliation(s)
- Ruben Eggers
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Fred de Winter
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Lotte Smit
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Maruelle Luimens
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Elizabeth M Muir
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Elizabeth J Bradbury
- King's College London, Regeneration Group, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), London, UK
| | - Martijn R Tannemaat
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, the Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Joost Verhaagen
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, the Netherlands.,Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognition Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
13
|
Buzoianu-Anguiano V, Rivera-Osorio J, Orozco-Suárez S, Vega-García A, García-Vences E, Sánchez-Torres S, Jiménez-Estrada I, Guizar-Sahagún G, Mondragon-Caso J, Fernández-Valverde F, Madrazo I, Grijalva I. Single vs. Combined Therapeutic Approaches in Rats With Chronic Spinal Cord Injury. Front Neurol 2020; 11:136. [PMID: 32210903 PMCID: PMC7076126 DOI: 10.3389/fneur.2020.00136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/06/2020] [Indexed: 12/30/2022] Open
Abstract
The regenerative capability of the central nervous system is limited after traumatic spinal cord injury (SCI) due to intrinsic and extrinsic factors that inhibit spinal cord regeneration, resulting in deficient functional recovery. It has been shown that strategies, such as pre-degenerated peripheral nerve (PPN) grafts or the use of bone marrow stromal cells (BMSCs) or exogenous molecules, such as chondroitinase ABC (ChABC) promote axonal growth and remyelination, resulting in an improvement in locomotor function. These treatments have been primarily assessed in acute injury models. The aim of the present study is to evaluate the ability of several single and combined treatments in order to modify the course of chronic complete SCI in rats. A complete cord transection was performed at the T9 level. One month later, animals were divided into five groups: original injury only (control group), and original injury plus spinal cord re-transection to create a gap to accommodate BMSCs, PPN, PPN + BMSCs, and PPN + BMSCs + ChABC. In comparison with control and single-treatment groups (PPN and BMSCs), combined treatment groups (PPN + BMSCs and PPN + BMSCs + ChABC) showed significative axonal regrowth, as revealed by an increase in GAP-43 and MAP-1B expression in axonal fibers, which correlated with an improvement in locomotor function. In conclusion, the combined therapies tested here improve locomotor function by enhancing axonal regeneration in rats with chronic SCI. Further studies are warranted to refine this promising line of research for clinical purposes.
Collapse
Affiliation(s)
- Vinnitsa Buzoianu-Anguiano
- Hospital de Especialidades CMN Siglo XXI IMSS, Unidad de Investigación Médica en Enfermedades Neurologicas, Mexico City, Mexico
| | - Jared Rivera-Osorio
- Hospital de Especialidades CMN Siglo XXI IMSS, Unidad de Investigación Médica en Enfermedades Neurologicas, Mexico City, Mexico
| | - Sandra Orozco-Suárez
- Hospital de Especialidades CMN Siglo XXI IMSS, Unidad de Investigación Médica en Enfermedades Neurologicas, Mexico City, Mexico
| | - Angélica Vega-García
- Hospital de Especialidades CMN Siglo XXI IMSS, Unidad de Investigación Médica en Enfermedades Neurologicas, Mexico City, Mexico
| | - Elisa García-Vences
- Centro de Investigación en Ciencias de la Salud, Universidad Anahuac México Campus Norte, Mexico City, Mexico
| | - Stephanie Sánchez-Torres
- Hospital de Especialidades CMN Siglo XXI IMSS, Unidad de Investigación Médica en Enfermedades Neurologicas, Mexico City, Mexico
| | - Ismael Jiménez-Estrada
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV, IPN, Mexico City, Mexico
| | - Gabriel Guizar-Sahagún
- Hospital de Especialidades CMN Siglo XXI IMSS, Unidad de Investigación Médica en Enfermedades Neurologicas, Mexico City, Mexico.,Departamento de Cirugía Experimental, Proyecto Camina AC, Mexico City, Mexico
| | - Jose Mondragon-Caso
- Centro de Investigación en Ciencias de la Salud, Universidad Anahuac México Campus Norte, Mexico City, Mexico
| | | | - Ignacio Madrazo
- Hospital de Especialidades CMN Siglo XXI IMSS, Unidad de Investigación Médica en Enfermedades Neurologicas, Mexico City, Mexico
| | - Israel Grijalva
- Hospital de Especialidades CMN Siglo XXI IMSS, Unidad de Investigación Médica en Enfermedades Neurologicas, Mexico City, Mexico
| |
Collapse
|
14
|
Laliberte AM, Goltash S, Lalonde NR, Bui TV. Propriospinal Neurons: Essential Elements of Locomotor Control in the Intact and Possibly the Injured Spinal Cord. Front Cell Neurosci 2019; 13:512. [PMID: 31798419 PMCID: PMC6874159 DOI: 10.3389/fncel.2019.00512] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/29/2019] [Indexed: 12/22/2022] Open
Abstract
Propriospinal interneurons (INs) communicate information over short and long distances within the spinal cord. They act to coordinate different parts of the body by linking motor circuits that control muscles across the forelimbs, trunk, and hindlimbs. Their role in coordinating locomotor circuits near and far may be invaluable to the recovery of locomotor function lost due to injury to the spinal cord where the flow of motor commands from the brain and brainstem to spinal motor circuits is disrupted. The formation and activation of circuits established by spared propriospinal INs may promote the re-emergence of locomotion. In light of progress made in animal models of spinal cord injury (SCI) and in human patients, we discuss the role of propriospinal INs in the intact spinal cord and describe recent studies investigating the assembly and/or activation of propriospinal circuits to promote recovery of locomotion following SCI.
Collapse
Affiliation(s)
- Alex M Laliberte
- Department of Biology, Faculty of Science, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Sara Goltash
- Department of Biology, Faculty of Science, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Nicolas R Lalonde
- Department of Biology, Faculty of Science, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Tuan Vu Bui
- Department of Biology, Faculty of Science, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
15
|
Bradbury EJ, Burnside ER. Moving beyond the glial scar for spinal cord repair. Nat Commun 2019; 10:3879. [PMID: 31462640 PMCID: PMC6713740 DOI: 10.1038/s41467-019-11707-7] [Citation(s) in RCA: 416] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 07/25/2019] [Indexed: 02/08/2023] Open
Abstract
Traumatic spinal cord injury results in severe and irreversible loss of function. The injury triggers a complex cascade of inflammatory and pathological processes, culminating in formation of a scar. While traditionally referred to as a glial scar, the spinal injury scar in fact comprises multiple cellular and extracellular components. This multidimensional nature should be considered when aiming to understand the role of scarring in limiting tissue repair and recovery. In this Review we discuss recent advances in understanding the composition and phenotypic characteristics of the spinal injury scar, the oversimplification of defining the scar in binary terms as good or bad, and the development of therapeutic approaches to target scar components to enable improved functional outcome after spinal cord injury.
Collapse
Affiliation(s)
- Elizabeth J Bradbury
- King's College London, Regeneration Group, The Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), Guy's Campus, London Bridge, London, SE1 1UL, UK.
| | - Emily R Burnside
- King's College London, Regeneration Group, The Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), Guy's Campus, London Bridge, London, SE1 1UL, UK
| |
Collapse
|
16
|
Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Front Neurol 2019; 10:282. [PMID: 30967837 PMCID: PMC6439316 DOI: 10.3389/fneur.2019.00282] [Citation(s) in RCA: 688] [Impact Index Per Article: 114.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/05/2019] [Indexed: 12/11/2022] Open
Abstract
Traumatic spinal cord injury (SCI) is a life changing neurological condition with substantial socioeconomic implications for patients and their care-givers. Recent advances in medical management of SCI has significantly improved diagnosis, stabilization, survival rate and well-being of SCI patients. However, there has been small progress on treatment options for improving the neurological outcomes of SCI patients. This incremental success mainly reflects the complexity of SCI pathophysiology and the diverse biochemical and physiological changes that occur in the injured spinal cord. Therefore, in the past few decades, considerable efforts have been made by SCI researchers to elucidate the pathophysiology of SCI and unravel the underlying cellular and molecular mechanisms of tissue degeneration and repair in the injured spinal cord. To this end, a number of preclinical animal and injury models have been developed to more closely recapitulate the primary and secondary injury processes of SCI. In this review, we will provide a comprehensive overview of the recent advances in our understanding of the pathophysiology of SCI. We will also discuss the neurological outcomes of human SCI and the available experimental model systems that have been employed to identify SCI mechanisms and develop therapeutic strategies for this condition.
Collapse
Affiliation(s)
- Arsalan Alizadeh
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Spinal Cord Research Center, University of Manitoba, Winnipeg, MB, Canada
| | - Scott Matthew Dyck
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Spinal Cord Research Center, University of Manitoba, Winnipeg, MB, Canada
| | - Soheila Karimi-Abdolrezaee
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Spinal Cord Research Center, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
17
|
Warren PM, Alilain WJ. Plasticity Induced Recovery of Breathing Occurs at Chronic Stages after Cervical Contusion. J Neurotrauma 2019; 36:1985-1999. [PMID: 30565484 DOI: 10.1089/neu.2018.6186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Severe midcervical contusion injury causes profound deficits throughout the respiratory motor system that last from acute to chronic time points post-injury. We use chondroitinase ABC (ChABC) to digest chondroitin sulphate proteoglycans within the extracellular matrix (ECM) surrounding the respiratory system at both acute and chronic time points post-injury to explore whether augmentation of plasticity can recover normal motor function. We demonstrate that, regardless of time post-injury or treatment application, the lesion cavity remains consistent, showing little regeneration or neuroprotection within our model. Through electromyography (EMG) recordings of multiple inspiratory muscles, however, we show that application of the enzyme at chronic time points post-injury initiates the recovery of normal breathing in previously paralyzed respiratory muscles. This reduced the need for compensatory activity throughout the motor system. Application of ChABC at acute time points recovered only modest amounts of respiratory function. To further understand this effect, we assessed the anatomical mechanism of this recovery. Increased EMG activity in previously paralyzed muscles was brought about by activation of spared bulbospinal pathways through the site of injury and/or sprouting of spared serotonergic fibers from the contralateral side of the cord. Accordingly, we demonstrate that alterations to the ECM and augmentation of plasticity at chronic time points post-cervical contusion can cause functional recovery of the respiratory motor system and reveal mechanistic evidence of the pathways that govern this effect.
Collapse
Affiliation(s)
- Philippa Mary Warren
- 1 Department of Neurosciences, MetroHealth Medical Centre, Case Western Reserve University, Cleveland, Ohio.,2 King's College London, Regeneration Group, The Wolfson Centre for Age-Related Diseases, Guy's Campus, London Bridge, London, United Kingdom
| | - Warren Joseph Alilain
- 1 Department of Neurosciences, MetroHealth Medical Centre, Case Western Reserve University, Cleveland, Ohio.,3 Department of Neuroscience, Spinal Cord and Brain Injury Research Centre, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
18
|
Ruzicka J, Romanyuk N, Jirakova K, Hejcl A, Janouskova O, Machova LU, Bochin M, Pradny M, Vargova L, Jendelova P. The Effect of iPS-Derived Neural Progenitors Seeded on Laminin-Coated pHEMA-MOETACl Hydrogel with Dual Porosity in a Rat Model of Chronic Spinal Cord Injury. Cell Transplant 2019; 28:400-412. [PMID: 30654639 PMCID: PMC6628561 DOI: 10.1177/0963689718823705] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI), is a devastating condition leading to the loss of locomotor and sensory function below the injured segment. Despite some progress in acute SCI treatment using stem cells and biomaterials, chronic SCI remains to be addressed. We have assessed the use of laminin-coated hydrogel with dual porosity, seeded with induced pluripotent stem cell-derived neural progenitors (iPSC-NPs), in a rat model of chronic SCI. iPSC-NPs cultured for 3 weeks in hydrogel in vitro were positive for nestin, glial fibrillary acidic protein (GFAP) and microtubule-associated protein 2 (MAP2). These cell-polymer constructs were implanted into a balloon compression lesion, 5 weeks after lesion induction. Animals were behaviorally tested, and spinal cord tissue was immunohistochemically analyzed 28 weeks after SCI. The implanted iPSC-NPs survived in the scaffold for the entire experimental period. Host axons, astrocytes and blood vessels grew into the implant and an increased sprouting of host TH+ fibers was observed in the lesion vicinity. The implantation of iPSC-NP-LHM cell-polymer construct into the chronic SCI led to the integration of material into the injured spinal cord, reduced cavitation and supported the iPSC-NPs survival, but did not result in a statistically significant improvement of locomotor recovery.
Collapse
Affiliation(s)
- Jiri Ruzicka
- 1 Department of Tissue Culture and Stem Cells, Institute of Experimental Medicine, CAS, Prague, Czech Republic
| | - Nataliya Romanyuk
- 1 Department of Tissue Culture and Stem Cells, Institute of Experimental Medicine, CAS, Prague, Czech Republic
| | - Klara Jirakova
- 1 Department of Tissue Culture and Stem Cells, Institute of Experimental Medicine, CAS, Prague, Czech Republic
| | - Ales Hejcl
- 1 Department of Tissue Culture and Stem Cells, Institute of Experimental Medicine, CAS, Prague, Czech Republic
| | - Olga Janouskova
- 2 Department of Polymer Networks and Gels, Institute of Macromolecular Chemistry, CAS, Prague, Czech Republic
| | - Lucia Urdzikova Machova
- 1 Department of Tissue Culture and Stem Cells, Institute of Experimental Medicine, CAS, Prague, Czech Republic
| | - Marcel Bochin
- 1 Department of Tissue Culture and Stem Cells, Institute of Experimental Medicine, CAS, Prague, Czech Republic.,3 Department of Neurosciences, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Pradny
- 2 Department of Polymer Networks and Gels, Institute of Macromolecular Chemistry, CAS, Prague, Czech Republic
| | - Lydia Vargova
- 1 Department of Tissue Culture and Stem Cells, Institute of Experimental Medicine, CAS, Prague, Czech Republic.,3 Department of Neurosciences, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavla Jendelova
- 1 Department of Tissue Culture and Stem Cells, Institute of Experimental Medicine, CAS, Prague, Czech Republic.,3 Department of Neurosciences, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
19
|
Guest JD, Moore SW, Aimetti AA, Kutikov AB, Santamaria AJ, Hofstetter CP, Ropper AE, Theodore N, Ulich TR, Layer RT. Internal decompression of the acutely contused spinal cord: Differential effects of irrigation only versus biodegradable scaffold implantation. Biomaterials 2018; 185:284-300. [DOI: 10.1016/j.biomaterials.2018.09.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/04/2018] [Accepted: 09/16/2018] [Indexed: 12/13/2022]
|
20
|
Tran AP, Warren PM, Silver J. The Biology of Regeneration Failure and Success After Spinal Cord Injury. Physiol Rev 2018. [PMID: 29513146 DOI: 10.1152/physrev.00017.2017] [Citation(s) in RCA: 530] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Since no approved therapies to restore mobility and sensation following spinal cord injury (SCI) currently exist, a better understanding of the cellular and molecular mechanisms following SCI that compromise regeneration or neuroplasticity is needed to develop new strategies to promote axonal regrowth and restore function. Physical trauma to the spinal cord results in vascular disruption that, in turn, causes blood-spinal cord barrier rupture leading to hemorrhage and ischemia, followed by rampant local cell death. As subsequent edema and inflammation occur, neuronal and glial necrosis and apoptosis spread well beyond the initial site of impact, ultimately resolving into a cavity surrounded by glial/fibrotic scarring. The glial scar, which stabilizes the spread of secondary injury, also acts as a chronic, physical, and chemo-entrapping barrier that prevents axonal regeneration. Understanding the formative events in glial scarring helps guide strategies towards the development of potential therapies to enhance axon regeneration and functional recovery at both acute and chronic stages following SCI. This review will also discuss the perineuronal net and how chondroitin sulfate proteoglycans (CSPGs) deposited in both the glial scar and net impede axonal outgrowth at the level of the growth cone. We will end the review with a summary of current CSPG-targeting strategies that help to foster axonal regeneration, neuroplasticity/sprouting, and functional recovery following SCI.
Collapse
Affiliation(s)
- Amanda Phuong Tran
- Department of Neurosciences, Case Western Reserve University , Cleveland, Ohio ; and School of Biomedical Sciences, University of Leeds , Leeds , United Kingdom
| | - Philippa Mary Warren
- Department of Neurosciences, Case Western Reserve University , Cleveland, Ohio ; and School of Biomedical Sciences, University of Leeds , Leeds , United Kingdom
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University , Cleveland, Ohio ; and School of Biomedical Sciences, University of Leeds , Leeds , United Kingdom
| |
Collapse
|
21
|
Anti-Chondroitin Sulfate Proteoglycan Strategies in Spinal Cord Injury: Temporal and Spatial Considerations Explain the Balance between Neuroplasticity and Neuroprotection. J Neurotrauma 2018. [DOI: 10.1089/neu.2018.5928] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
22
|
Patil N, Truong V, Holmberg MH, Lavoie NS, McCoy MR, Dutton JR, Holmberg EG, Parr AM. Safety and Efficacy of Rose Bengal Derivatives for Glial Scar Ablation in Chronic Spinal Cord Injury. J Neurotrauma 2018; 35:1745-1754. [PMID: 29373946 PMCID: PMC6033306 DOI: 10.1089/neu.2017.5398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There are no effective therapies available currently to ameliorate loss of function for patients with spinal cord injuries (SCIs). In addition, proposed treatments that demonstrated functional recovery in animal models of acute SCI have failed almost invariably when applied to chronic injury models. Glial scar formation in chronic injury is a likely contributor to limitation on regeneration. We have removed existing scar tissue in chronically contused rat spinal cord using a rose Bengal-based photo ablation approach. In this study, we compared two chemically modified rose bengal derivatives to unmodified rose bengal, both confirming and expanding on our previously published report. Rats were treated with unmodified rose bengal (RB1) or rose bengal modified with hydrocarbon (RB2) or polyethylene glycol (RB3), to determine the effects on scar components and spared tissue post-treatment. Our results showed that RB1 was more efficacious than RB2, while still maintaining minimal collateral effects on spared tissue. RB3 was not taken up by the cells, likely because of its size, and therefore had no effect. Treatment with RB1 also resulted in an increase in serotonin eight days post-treatment in chronically injured spinal cords. Thus, we suggest that unmodified rose Bengal is a potent candidate agent for the development of a therapeutic strategy for scar ablation in chronic SCI.
Collapse
Affiliation(s)
- Nandadevi Patil
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| | - Vincent Truong
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| | - Mackenzie H. Holmberg
- Department of Chemistry, University of Alaska Anchorage, Anchorage, Alaska
- University of Washington School of Medicine, Seattle, Washington
| | - Nicolas S. Lavoie
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| | - Mark R. McCoy
- Department of Chemistry, University of Alaska Anchorage, Anchorage, Alaska
| | - James R. Dutton
- Department of Genetics, Cell Biology and Development, Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| | - Eric G. Holmberg
- Department of Chemistry, University of Alaska Anchorage, Anchorage, Alaska
| | - Ann M. Parr
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
23
|
Abstract
Glial cell types were classified less than 100 years ago by del Rio-Hortega. For instance, he correctly surmised that microglia in pathologic central nervous system (CNS) were "voracious monsters" that helped clean the tissue. Although these historical predictions were remarkably accurate, innovative technologies have revealed novel molecular, cellular, and dynamic physiologic aspects of CNS glia. In this review, we integrate recent findings regarding the roles of glia and glial interactions in healthy and injured spinal cord. The three major glial cell types are considered in healthy CNS and after spinal cord injury (SCI). Astrocytes, which in the healthy CNS regulate neurotransmitter and neurovascular dynamics, respond to SCI by becoming reactive and forming a glial scar that limits pathology and plasticity. Microglia, which in the healthy CNS scan for infection/damage, respond to SCI by promoting axon growth and remyelination-but also with hyperactivation and cytotoxic effects. Oligodendrocytes and their precursors, which in healthy tissue speed axon conduction and support axonal function, respond to SCI by differentiating and producing myelin, but are susceptible to death. Thus, post-SCI responses of each glial cell can simultaneously stimulate and stifle repair. Interestingly, potential therapies could also target interactions between these cells. Astrocyte-microglia cross-talk creates a feed-forward loop, so shifting the response of either cell could amplify repair. Astrocytes, microglia, and oligodendrocytes/precursors also influence post-SCI cell survival, differentiation, and remyelination, as well as axon sparing. Therefore, optimizing post-SCI responses of glial cells-and interactions between these CNS cells-could benefit neuroprotection, axon plasticity, and functional recovery.
Collapse
Affiliation(s)
- Andrew D Gaudet
- Department of Psychology and Neuroscience, University of Colorado Boulder, Muenzinger D244 | 345 UCB, Boulder, CO, 80309, USA.
- Center for Neuroscience, University of Colorado Boulder, Muenzinger D244 | 345 UCB, Boulder, CO, 80309, USA.
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
24
|
Cornelison RC, Gonzalez-Rothi EJ, Porvasnik SL, Wellman SM, Park JH, Fuller DD, Schmidt CE. Injectable hydrogels of optimized acellular nerve for injection in the injured spinal cord. Biomed Mater 2018; 13:034110. [PMID: 29380749 PMCID: PMC5911159 DOI: 10.1088/1748-605x/aaab82] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Spinal cord injury (SCI) affects a quarter million individuals in the United States, and there is currently no clinical treatment. Both fresh and acellular peripheral nerve grafts can induce spinal axon regeneration and support functional recovery in experimental injury models. Nonetheless, a scaffold that can be injected into a spinal contusion would be far less invasive to apply. We aimed to develop the first injectable acellular nerve graft for promoting repair after contusion SCI. APPROACH We report a method to enzymatically solubilize optimized acellular (OA) nerve-a decellularized peripheral nerve graft developed in our laboratory and currently used clinically-to obtain an injectable solution that undergoes thermal gelation under physiological conditions. We quantified multiple physical and compositional properties of this novel material as well as tested its efficacy at acute and chronic time points following cervical contusion SCI. MAIN RESULTS This injectable optimized acellular (iOA) nerve graft retains native chemical cues such as collagens and glycosaminoglycans. By varying hydrogel concentration, the rheological properties and compressive modulus of iOA were similar to that previous reported for rat central nervous tissue. iOA solution was compatible with rat Schwann cells in culture, and hydrogel injection into a rat cervical contusion model significantly reduced the ratio of M1:M2 macrophages after one week, favoring regenerative phenotypes (p < 0.05). Furthermore, while iOA treatment did not affect locomotor or respiratory recovery over an eight week period, the percentage of axonal coverage increased at the distal tissue interface (p < 0.05), suggesting enhanced axonal extension within this region. SIGNIFICANCE Our data indicate that this novel injectable form of acellular nerve grafts is amenable for use after contusion SCI and may bolster a simultaneous therapy by acutely modulating the inflammatory milieu and supporting axonal growth.
Collapse
Affiliation(s)
- R. Chase Cornelison
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
| | | | - Stacy L. Porvasnik
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
| | - Steven M. Wellman
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
| | - James H. Park
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
| | - David D. Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL 32611
| | - Christine E. Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
| |
Collapse
|
25
|
Rosich K, Hanna BF, Ibrahim RK, Hellenbrand DJ, Hanna A. The Effects of Glial Cell Line-Derived Neurotrophic Factor after Spinal Cord Injury. J Neurotrauma 2017; 34:3311-3325. [DOI: 10.1089/neu.2017.5175] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Konstantin Rosich
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| | - Bishoy F. Hanna
- Department of Neurological Surgery, Ross University School of Medicine, Dominica, West Indies
| | - Rami K. Ibrahim
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| | - Daniel J. Hellenbrand
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin
| | - Amgad Hanna
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
26
|
Goganau I, Sandner B, Weidner N, Fouad K, Blesch A. Depolarization and electrical stimulation enhance in vitro and in vivo sensory axon growth after spinal cord injury. Exp Neurol 2017; 300:247-258. [PMID: 29183676 DOI: 10.1016/j.expneurol.2017.11.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/20/2017] [Accepted: 11/23/2017] [Indexed: 11/28/2022]
Abstract
Activity dependent plasticity is a key mechanism for the central nervous system (CNS) to adapt to its environment. Whether neuronal activity also influences axonal regeneration in the injured CNS, and whether electrical stimulation (ES) can activate regenerative programs in the injured CNS remains incompletely understood. Using KCl-induced depolarization, in vivo ES followed by ex-vivo neurite growth assays and ES after spinal cord lesions and cell grafting, we aimed to identify parameters important for ES-enhanced neurite growth and axonal regeneration. Using cultures of sensory neurons, neurite growth was analyzed after KCl-induced depolarization for 1-72h. Increased neurite growth was detected after short-term stimulation and after longer stimulation if a sufficient delay between stimulation and growth measurements was provided. After in vivo ES (20Hz, 2× motor threshold, 0.2ms, 1h) of the intact sciatic nerve in adult Fischer344 rats, sensory neurons showed a 2-fold increase in in vitro neurite length one week later compared to sham animals, an effect not observed one day after ES. Longer ES (7h) and repeated ES (7days, 1h each) also increased growth by 56-67% one week later, but provided no additional benefit. In vivo growth of dorsal column sensory axons into a graft of bone marrow stromal cells 4weeks after a cervical spinal cord lesion was also enhanced with a single post-injury 1h ES of the intact sciatic nerve and was also observed after repeated ES without inducing pain-like behavior. While ES did not result in sensory functional recovery, our data indicate that ES has time-dependent influences on the regenerative capacity of sensory neurons and might further enhance axonal regeneration in combinatorial approaches after SCI.
Collapse
Affiliation(s)
- Ioana Goganau
- Spinal Cord Injury Center, Heidelberg University Hospital, Schlierbacher Landstr. 200A, 69118 Heidelberg, Germany
| | - Beatrice Sandner
- Spinal Cord Injury Center, Heidelberg University Hospital, Schlierbacher Landstr. 200A, 69118 Heidelberg, Germany
| | - Norbert Weidner
- Spinal Cord Injury Center, Heidelberg University Hospital, Schlierbacher Landstr. 200A, 69118 Heidelberg, Germany
| | - Karim Fouad
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry and Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, 3-87 Corbett Hall, Edmonton, Alberta T6G 2G4, Canada
| | - Armin Blesch
- Spinal Cord Injury Center, Heidelberg University Hospital, Schlierbacher Landstr. 200A, 69118 Heidelberg, Germany; Stark Neurosciences Research Institute, Indiana University School of Medicine, Dept. of Neurological Surgery and Goodman Campbell Brain and Spine, 320 West 15th St., Indianapolis, IN 46202, USA.
| |
Collapse
|
27
|
DePaul MA, Lin CY, Silver J, Lee YS. Combinatory repair strategy to promote axon regeneration and functional recovery after chronic spinal cord injury. Sci Rep 2017; 7:9018. [PMID: 28827771 PMCID: PMC5567101 DOI: 10.1038/s41598-017-09432-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/26/2017] [Indexed: 01/08/2023] Open
Abstract
Eight weeks post contusive spinal cord injury, we built a peripheral nerve graft bridge (PNG) through the cystic cavity and treated the graft/host interface with acidic fibroblast growth factor (aFGF) and chondroitinase ABC (ChABC). This combinatorial strategy remarkably enhanced integration between host astrocytes and graft Schwann cells, allowing for robust growth, especially of catecholaminergic axons, through the graft and back into the distal spinal cord. In the absence of aFGF+ChABC fewer catecholaminergic axons entered the graft, no axons exited, and Schwann cells and astrocytes failed to integrate. In sharp contrast with the acutely bridge-repaired cord, in the chronically repaired cord only low levels of serotonergic axons regenerated into the graft, with no evidence of re-entry back into the spinal cord. The failure of axons to regenerate was strongly correlated with a dramatic increase of SOCS3 expression. While regeneration was more limited overall than at acute stages, our combinatorial strategy in the chronically injured animals prevented a decline in locomotor behavior and bladder physiology outcomes associated with an invasive repair strategy. These results indicate that PNG+aFGF+ChABC treatment of the chronically contused spinal cord can provide a permissive substrate for the regeneration of certain neuronal populations that retain a growth potential over time, and lead to functional improvements.
Collapse
Affiliation(s)
- Marc A DePaul
- Case Western Reserve Univ., Dept. of Neurosciences, 10900 Euclid Ave., SOM E654, Cleveland, OH, 44106, USA
| | - Ching-Yi Lin
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, USA
| | - Jerry Silver
- Case Western Reserve Univ., Dept. of Neurosciences, 10900 Euclid Ave., SOM E654, Cleveland, OH, 44106, USA
| | - Yu-Shang Lee
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, USA.
| |
Collapse
|
28
|
Wu D, Klaw MC, Connors T, Kholodilov N, Burke RE, Côté MP, Tom VJ. Combining Constitutively Active Rheb Expression and Chondroitinase Promotes Functional Axonal Regeneration after Cervical Spinal Cord Injury. Mol Ther 2017; 25:2715-2726. [PMID: 28967557 DOI: 10.1016/j.ymthe.2017.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/13/2017] [Accepted: 08/15/2017] [Indexed: 11/16/2022] Open
Abstract
After spinal cord injury (SCI), severed axons in the adult mammalian CNS are unable to mount a robust regenerative response. In addition, the glial scar at the lesion site further restricts the regenerative potential of axons. We hypothesized that a combinatorial approach coincidentally targeting these obstacles would promote axonal regeneration. We combined (1) transplantation of a growth-permissive peripheral nerve graft (PNG) into an incomplete, cervical lesion cavity; (2) transduction of neurons rostral to the SCI site to express constitutively active Rheb (caRheb; a Ras homolog enriched in brain), a GTPase that directly activates the growth-promoting pathway mammalian target of rapamycin (mTOR) via AAV-caRheb injection; and (3) digestion of growth-inhibitory chondroitin sulfate proteoglycans within the glial scar at the distal PNG interface using the bacterial enzyme chondroitinase ABC (ChABC). We found that expressing caRheb in neurons post-SCI results in modestly yet significantly more axons regenerating across a ChABC-treated distal graft interface into caudal spinal cord than either treatment alone. Excitingly, we found that caRheb+ChABC treatment significantly potentiates the formation of synapses in the host spinal cord and improves the animals' ability to use the affected forelimb. Thus, this combination strategy enhances functional axonal regeneration following a cervical SCI.
Collapse
Affiliation(s)
- Di Wu
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Michelle C Klaw
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Theresa Connors
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | - Robert E Burke
- Department of Neurology, Columbia University, New York, NY, 10032 USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Marie-Pascale Côté
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Veronica J Tom
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
29
|
Theisen CC, Sachdeva R, Austin S, Kulich D, Kranz V, Houle JD. Exercise and Peripheral Nerve Grafts as a Strategy To Promote Regeneration after Acute or Chronic Spinal Cord Injury. J Neurotrauma 2017; 34:1909-1914. [PMID: 28437223 DOI: 10.1089/neu.2016.4640] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Therapeutic interventions after spinal cord injury (SCI) routinely are designed to address multiple aspects of the primary and/or secondary damage that occurs. Exercise has a demonstrated efficacy for post-SCI complications such as cardiovascular dysfunction, neuropathic pain, and chronic inflammation, yet there is little understanding of the mechanisms by which improvements might result from this non-invasive approach. Here we review several of our observations of molecular and cellular changes within the injured spinal cord following acute or delayed exercise regimens that illustrate the potential for positive effects on neuroprotection and rehabilitation. Further, we provide new information about the role of exercise in promoting the regeneration of spinal axons into peripheral nerve grafts (PNGs) placed immediately or 6 weeks after injury. Acute and chronically injured propriospinal neurons within the lumbar spinal cord displayed the greatest propensity for enhanced regeneration after exercise, which correlates with the direct sensory input to this region from exercised hindlimb muscles. Future studies will extend these observations by testing whether exercise will boost the regenerative effort of axons to extend beyond the graft, interact with intraspinal targets, and establish functional connections across a lesion.
Collapse
Affiliation(s)
- Catherine C Theisen
- 1 Department of Neurobiology and Anatomy, Drexel Spinal Cord Research Center, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Rahul Sachdeva
- 2 University of British Columbia , Autonomic Research Laboratory, International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
| | - Scarlett Austin
- 1 Department of Neurobiology and Anatomy, Drexel Spinal Cord Research Center, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Danielle Kulich
- 1 Department of Neurobiology and Anatomy, Drexel Spinal Cord Research Center, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Victoria Kranz
- 1 Department of Neurobiology and Anatomy, Drexel Spinal Cord Research Center, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - John D Houle
- 1 Department of Neurobiology and Anatomy, Drexel Spinal Cord Research Center, Drexel University College of Medicine , Philadelphia, Pennsylvania
| |
Collapse
|
30
|
Shultz RB, Wang Z, Nong J, Zhang Z, Zhong Y. Local delivery of thyroid hormone enhances oligodendrogenesis and myelination after spinal cord injury. J Neural Eng 2017; 14:036014. [PMID: 28358726 DOI: 10.1088/1741-2552/aa6450] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Traumatic spinal cord injury (SCI) causes apoptosis of myelin-forming oligodendrocytes (OLs) and demyelination of surviving axons, resulting in conduction failure. Remyelination of surviving denuded axons provides a promising therapeutic target for spinal cord repair. While cell transplantation has demonstrated efficacy in promoting remyelination and functional recovery, the lack of ideal cell sources presents a major obstacle to clinical application. The adult spinal cord contains oligodendrocyte precursor cells and multipotent neural stem/progenitor cells that have the capacity to differentiate into mature, myelinating OLs. However, endogenous oligodendrogenesis and remyelination processes are limited by the upregulation of remyelination-inhibitory molecules in the post-injury microenvironment. Multiple growth factors/molecules have been shown to promote OL differentiation and myelination. APPROACH In this study we screened these therapeutics and found that 3, 3', 5-triiodothyronine (T3) is the most effective in promoting oligodendrogenesis and OL maturation in vitro. However, systemic administration of T3 to achieve therapeutic doses in the injured spinal cord is likely to induce hyperthyroidism, resulting in serious side effects. MAIN RESULTS In this study we developed a novel hydrogel-based drug delivery system for local delivery of T3 to the injury site without eliciting systemic toxicity. SIGNIFICANCE Using a clinically relevant cervical contusion injury model, we demonstrate that local delivery of T3 at doses comparable to safe human doses promoted new mature OL formation and myelination after SCI.
Collapse
Affiliation(s)
- Robert B Shultz
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, United States of America
| | | | | | | | | |
Collapse
|
31
|
Lemarchant S, Wojciechowski S, Vivien D, Koistinaho J. ADAMTS-4 in central nervous system pathologies. J Neurosci Res 2017; 95:1703-1711. [DOI: 10.1002/jnr.24021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/23/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Sighild Lemarchant
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio; University of Eastern Finland; P.O. BOX 1627 70211 Kuopio Finland
| | - Sara Wojciechowski
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio; University of Eastern Finland; P.O. BOX 1627 70211 Kuopio Finland
| | - Denis Vivien
- INSERM, INSERM UMR-S 919, “Serine Proteases and Pathophysiology of the Neurovascular Unit”; University of Caen Basse-Normandie; GIP Cyceron, Bd H. Becquerel, BP 5229 14074 Caen Cedex France
| | - Jari Koistinaho
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio; University of Eastern Finland; P.O. BOX 1627 70211 Kuopio Finland
| |
Collapse
|
32
|
Dell'Anno MT, Strittmatter SM. Rewiring the spinal cord: Direct and indirect strategies. Neurosci Lett 2016; 652:25-34. [PMID: 28007647 DOI: 10.1016/j.neulet.2016.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/15/2016] [Accepted: 12/02/2016] [Indexed: 12/23/2022]
Abstract
Spinal cord injury is currently incurable. Treatment is limited to minimizing secondary complications and maximizing residual function by rehabilitation. Neurologic recovery is prevented by the poor intrinsic regenerative capacity of neurons in the adult central nervous system and by the presence of growth inhibitors in the adult brain and spinal cord. Here we identify three approaches to rewire the spinal cord after injury: axonal regeneration (direct endogenous reconnection), axonal sprouting (indirect endogenous reconnection) and neural stem cell transplantation (indirect exogenous reconnection). Regeneration and sprouting of axonal fibers can be both enhanced through the neutralization of myelin- and extracellular matrix-associated inhibitors described in the first part of this review. Alternatively, in the second part we focus on the formation of a novel circuit through the grafting of neural stem cells in the lesion site. Transplanted neural stem cells differentiate in vivo into neurons and glial cells which form an intermediate station between the rostral and caudal segment of the recipient spinal cord. In particular, here we describe how neural stem cells-derived neurons are endowed with the ability to extend long-distance axons to regain the transmission of motor and sensory information.
Collapse
Affiliation(s)
- Maria Teresa Dell'Anno
- Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Stephen M Strittmatter
- Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT 06536, USA.
| |
Collapse
|
33
|
Wang Z, Winsor K, Nienhaus C, Hess E, Blackmore MG. Combined chondroitinase and KLF7 expression reduce net retraction of sensory and CST axons from sites of spinal injury. Neurobiol Dis 2016; 99:24-35. [PMID: 27988344 DOI: 10.1016/j.nbd.2016.12.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 12/02/2016] [Accepted: 12/13/2016] [Indexed: 11/26/2022] Open
Abstract
Axon regeneration in the central nervous system is limited both by inhibitory extracellular cues and by an intrinsically low capacity for axon growth in some CNS populations. Chondroitin sulfate proteoglycans (CSPGs) are well-studied inhibitors of axon growth in the CNS, and degradation of CSPGs by chondroitinase has been shown to improve the extension of injured axons. Alternatively, axon growth can be improved by targeting the neuron-intrinsic growth capacity through forced expression of regeneration-associated transcription factors. For example, a transcriptionally active chimera of Krüppel-like Factor 7 (KLF7) and a VP16 domain improves axon growth when expressed in corticospinal tract neurons. Here we tested the hypothesis that combined expression of chondroitinase and VP16-KLF7 would lead to further improvements in axon growth after spinal injury. Chondroitinase was expressed by viral transduction of cells in the spinal cord, while VP16-KLF7 was virally expressed in sensory neurons of the dorsal root ganglia or corticospinal tract (CST) neurons. After transection of the dorsal columns, both chondroitinase and VP16-KLF7 increased the proximity of severed sensory axons to the injury site. Similarly, after complete crush injuries, VP16-KLF7 expression increased the approach of CST axons to the injury site. In neither paradigm however, did single or combined treatment with chondroitinase or VP16-KLF7 enable regenerative growth distal to the injury. These results substantiate a role for CSPG inhibition and low KLF7 activity in determining the net retraction of axons from sites of spinal injury, while suggesting that additional factors act to limit a full regenerative response.
Collapse
Affiliation(s)
- Zimei Wang
- Department of Biomedical Sciences, Marquette University, 53201, USA
| | - Kristen Winsor
- Department of Biomedical Sciences, Marquette University, 53201, USA
| | | | - Evan Hess
- Department of Biomedical Sciences, Marquette University, 53201, USA
| | | |
Collapse
|
34
|
Hellenbrand DJ, Kaeppler KE, Ehlers ME, Thompson CD, Zurko JC, Buchholz MM, Springer AR, Thompson DL, Ibrahim RK, Hanna A. Immunohistochemical assessment of rat nerve isografts and immunosuppressed allografts. Neurol Res 2016; 38:1094-1101. [PMID: 27809726 DOI: 10.1080/01616412.2016.1248626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Autologous peripheral nerve grafts are commonly used clinically as a treatment for peripheral nerve injuries. However, in research using an autologous graft is not always feasible due to loss of function, which in many cases is assessed to determine the efficacy of the peripheral nerve graft. In addition, using allografts for research require the use of an immunosuppressant, which creates unwanted side effects and another variable within the experiment that can affect regeneration. The objective of this study was to analyze graft rejection in peripheral nerve grafts and the effects of cyclosporine A (CSA) on axonal regeneration. METHODS Peripheral nerve grafts in inbred Lewis rats were compared with Sprague-Dawley (SD) rats to assess graft rejection, CSA side effects, immune responses, and regenerative capability. Macrophages and CD8+ cells were labeled to determine graft rejection, and neurofilaments were labeled to determine axonal regeneration. RESULTS SD rats without CSA had significantly more macrophages and CD8+ cells compared to Lewis autografts, Lewis isografts, and SD allografts treated with CSA. Lewis autografts, Lewis isografts, and SD autografts had significantly more regenerated axons than SD rat allografts. Moreover, allografts in immunosuppressed SD rats had significantly less axons than Lewis rat autograft and isografts. DISCUSSION Autografts have long been the gold standard for treating major nerve injuries and these data suggest that even though CSA is effective at reducing graft rejection, axon regeneration is still superior in autografts versus immunosuppressed allografts.
Collapse
Affiliation(s)
- Daniel J Hellenbrand
- a Department of Neurological Surgery , University of Wisconsin , Madison , WI , USA
| | - Katie E Kaeppler
- a Department of Neurological Surgery , University of Wisconsin , Madison , WI , USA
| | - Mark E Ehlers
- a Department of Neurological Surgery , University of Wisconsin , Madison , WI , USA
| | - Colton D Thompson
- a Department of Neurological Surgery , University of Wisconsin , Madison , WI , USA
| | - Joanna C Zurko
- a Department of Neurological Surgery , University of Wisconsin , Madison , WI , USA
| | - Morgan M Buchholz
- a Department of Neurological Surgery , University of Wisconsin , Madison , WI , USA
| | - Alexandra R Springer
- a Department of Neurological Surgery , University of Wisconsin , Madison , WI , USA
| | - Daniel L Thompson
- a Department of Neurological Surgery , University of Wisconsin , Madison , WI , USA
| | - Rami K Ibrahim
- a Department of Neurological Surgery , University of Wisconsin , Madison , WI , USA
| | - Amgad Hanna
- a Department of Neurological Surgery , University of Wisconsin , Madison , WI , USA
| |
Collapse
|
35
|
Yuan XB, Haas C, Fischer I. Guiding the migration of grafted cells to promote axon regeneration. Neural Regen Res 2016; 11:1224-5. [PMID: 27651760 PMCID: PMC5020811 DOI: 10.4103/1673-5374.189169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Xiao-Bing Yuan
- Hussman Institute for Autism, Baltimore, MD, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher Haas
- Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Itzhak Fischer
- Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
36
|
Wu D, Klaw MC, Kholodilov N, Burke RE, Detloff MR, Côté MP, Tom VJ. Expressing Constitutively Active Rheb in Adult Dorsal Root Ganglion Neurons Enhances the Integration of Sensory Axons that Regenerate Across a Chondroitinase-Treated Dorsal Root Entry Zone Following Dorsal Root Crush. Front Mol Neurosci 2016; 9:49. [PMID: 27458339 PMCID: PMC4932115 DOI: 10.3389/fnmol.2016.00049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/07/2016] [Indexed: 11/13/2022] Open
Abstract
While the peripheral branch of dorsal root ganglion neurons (DRG) can successfully regenerate after injury, lesioned central branch axons fail to regrow across the dorsal root entry zone (DREZ), the interface between the dorsal root and the spinal cord. This lack of regeneration is due to the limited regenerative capacity of adult sensory axons and the growth-inhibitory environment at the DREZ, which is similar to that found in the glial scar after a central nervous system (CNS) injury. We hypothesized that transduction of adult DRG neurons using adeno-associated virus (AAV) to express a constitutively-active form of the GTPase Rheb (caRheb) will increase their intrinsic growth potential after a dorsal root crush. Additionally, we posited that if we combined that approach with digestion of upregulated chondroitin sulfate proteoglycans (CSPG) at the DREZ with chondroitinase ABC (ChABC), we would promote regeneration of sensory axons across the DREZ into the spinal cord. We first assessed if this strategy promotes neuritic growth in an in vitro model of the glial scar containing CSPG. ChABC allowed for some regeneration across the once potently inhibitory substrate. Combining ChABC treatment with expression of caRheb in DRG significantly improved this growth. We then determined if this combination strategy also enhanced regeneration through the DREZ after dorsal root crush in adult rats in vivo. After unilaterally crushing C4-T1 dorsal roots, we injected AAV5-caRheb or AAV5-GFP into the ipsilateral C5-C8 DRGs. ChABC or PBS was injected into the ipsilateral dorsal horn at C5-C8 to digest CSPG, for a total of four animal groups (caRheb + ChABC, caRheb + PBS, GFP + ChABC, GFP + PBS). Regeneration was rarely observed in PBS-treated animals, whereas short-distance regrowth across the DREZ was observed in ChABC-treated animals. No difference in axon number or length between the ChABC groups was observed, which may be related to intraganglionic inflammation induced by the injection. ChABC-mediated regeneration is functional, as stimulation of ipsilateral median and ulnar nerves induced neuronal c-Fos expression in deafferented dorsal horn in both ChABC groups. Interestingly, caRheb + ChABC animals had significantly more c-Fos+ nuclei indicating that caRheb expression in DRGs promoted functional synaptogenesis of their axons that regenerated beyond a ChABC-treated DREZ.
Collapse
Affiliation(s)
- Di Wu
- Department of Neurobiology and Anatomy, Drexel University College of Medicine Philadelphia, PA, USA
| | - Michelle C Klaw
- Department of Neurobiology and Anatomy, Drexel University College of Medicine Philadelphia, PA, USA
| | - Nikolai Kholodilov
- Department of Neurology, Columbia University in the City of New York New York, NY, USA
| | - Robert E Burke
- Department of Neurology, Columbia University in the City of New YorkNew York, NY, USA; Department of Pathology and Cell Biology, Columbia University in the City of New YorkNew York, NY, USA
| | - Megan R Detloff
- Department of Neurobiology and Anatomy, Drexel University College of Medicine Philadelphia, PA, USA
| | - Marie-Pascale Côté
- Department of Neurobiology and Anatomy, Drexel University College of Medicine Philadelphia, PA, USA
| | - Veronica J Tom
- Department of Neurobiology and Anatomy, Drexel University College of Medicine Philadelphia, PA, USA
| |
Collapse
|
37
|
Dynamic Changes in Local Protein Synthetic Machinery in Regenerating Central Nervous System Axons after Spinal Cord Injury. Neural Plast 2016; 2016:4087254. [PMID: 27375904 PMCID: PMC4914735 DOI: 10.1155/2016/4087254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/19/2016] [Accepted: 05/10/2016] [Indexed: 01/23/2023] Open
Abstract
Intra-axonal localization of mRNAs and protein synthesis machinery (PSM) endows neurons with the capacity to generate proteins locally, allowing precise spatiotemporal regulation of the axonal response to extracellular stimuli. A number of studies suggest that this local translation is a promising target to enhance the regenerative capacity of damaged axons. Using a model of central nervous system (CNS) axons regenerating into intraspinal peripheral nerve grafts (PNGs) we established that adult regenerating CNS axons contain several different mRNAs and protein synthetic machinery (PSM) components in vivo. After lower thoracic level spinal cord transection, ascending sensory axons regenerate into intraspinal PNGs but axon growth is stalled when they reach the distal end of the PNG (3 versus 7 weeks after grafting, resp.). By immunofluorescence with optical sectioning of axons by confocal microscopy, the total and phosphorylated forms of PSMs are significantly lower in stalled compared with actively regenerating axons. Reinjury of these stalled axons increased axonal localization of the PSM proteins, indicative of possible priming for a subcellular response to axotomy. These results suggest that axons downregulate protein synthetic capacity as they cease growing, yet they retain the ability to upregulate PSM after a second injury.
Collapse
|
38
|
Mironets E, Wu D, Tom VJ. Manipulating extrinsic and intrinsic obstacles to axonal regeneration after spinal cord injury. Neural Regen Res 2016; 11:224-5. [PMID: 27073365 PMCID: PMC4810976 DOI: 10.4103/1673-5374.177719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Eugene Mironets
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, PA, USA
| | - Di Wu
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, PA, USA
| | - Veronica J Tom
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, PA, USA
| |
Collapse
|
39
|
Hanna A, Thompson DL, Hellenbrand DJ, Lee JS, Madura CJ, Wesley MG, Dillon NJ, Sharma T, Enright CJ, Murphy WL. Sustained release of neurotrophin-3 via calcium phosphate-coated sutures promotes axonal regeneration after spinal cord injury. J Neurosci Res 2016; 94:645-52. [DOI: 10.1002/jnr.23730] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Amgad Hanna
- Department of Neurological Surgery; University of Wisconsin; Madison Wisconsin
| | - Daniel L. Thompson
- Department of Neurological Surgery; University of Wisconsin; Madison Wisconsin
- Department of Biomedical Engineering; University of Wisconsin; Madison Wisconsin
| | - Daniel J. Hellenbrand
- Department of Neurological Surgery; University of Wisconsin; Madison Wisconsin
- Department of Biomedical Engineering; University of Wisconsin; Madison Wisconsin
| | - Jae-Sung Lee
- Department of Biomedical Engineering; University of Wisconsin; Madison Wisconsin
- Department of Orthopedics and Rehabilitation; University of Wisconsin; Madison Wisconsin
| | - Casey J. Madura
- Department of Neurological Surgery; University of Wisconsin; Madison Wisconsin
| | - Meredith G. Wesley
- Department of Neurological Surgery; University of Wisconsin; Madison Wisconsin
| | - Natalie J. Dillon
- Department of Neurological Surgery; University of Wisconsin; Madison Wisconsin
| | - Tapan Sharma
- Department of Neurological Surgery; University of Wisconsin; Madison Wisconsin
| | - Connor J. Enright
- Department of Neurological Surgery; University of Wisconsin; Madison Wisconsin
| | - William L. Murphy
- Department of Biomedical Engineering; University of Wisconsin; Madison Wisconsin
- Department of Orthopedics and Rehabilitation; University of Wisconsin; Madison Wisconsin
| |
Collapse
|
40
|
Jin Y, Bouyer J, Shumsky JS, Haas C, Fischer I. Transplantation of neural progenitor cells in chronic spinal cord injury. Neuroscience 2016; 320:69-82. [PMID: 26852702 DOI: 10.1016/j.neuroscience.2016.01.066] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 01/07/2016] [Accepted: 01/29/2016] [Indexed: 01/24/2023]
Abstract
Previous studies demonstrated that neural progenitor cells (NPCs) transplanted into a subacute contusion injury improve motor, sensory, and bladder function. In this study we tested whether transplanted NPCs can also improve functional recovery after chronic spinal cord injury (SCI) alone or in combination with the reduction of glial scar and neurotrophic support. Adult rats received a T10 moderate contusion. Thirteen weeks after the injury they were divided into four groups and received either: 1. Medium (control), 2. NPC transplants, 3. NPC+lentivirus vector expressing chondroitinase, or 4. NPC+lentivirus vectors expressing chondroitinase and neurotrophic factors. During the 8 weeks post-transplantation the animals were tested for functional recovery and eventually analyzed by anatomical and immunohistochemical assays. The behavioral tests for motor and sensory function were performed before and after injury, and weekly after transplantation, with some animals also tested for bladder function at the end of the experiment. Transplant survival in the chronic injury model was variable and showed NPCs at the injury site in 60% of the animals in all transplantation groups. The NPC transplants comprised less than 40% of the injury site, without significant anatomical or histological differences among the groups. All groups also showed similar patterns of functional deficits and recovery in the 12 weeks after injury and in the 8 weeks after transplantation using the Basso, Beattie, and Bresnahan rating score, the grid test, and the Von Frey test for mechanical allodynia. A notable exception was group 4 (NPC together with chondroitinase and neurotrophins), which showed a significant improvement in bladder function. This study underscores the therapeutic challenges facing transplantation strategies in a chronic SCI in which even the inclusion of treatments designed to reduce scarring and increase neurotrophic support produce only modest functional improvements. Further studies will have to identify the combination of acute and chronic interventions that will augment the survival and efficacy of neural cell transplants.
Collapse
Affiliation(s)
- Y Jin
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia PA 19129, United States.
| | - J Bouyer
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia PA 19129, United States
| | - J S Shumsky
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia PA 19129, United States
| | - C Haas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia PA 19129, United States
| | - I Fischer
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia PA 19129, United States.
| |
Collapse
|
41
|
Rost S, Akyüz N, Martinovic T, Huckhagel T, Jakovcevski I, Schachner M. Germline ablation of dermatan-4O-sulfotransferase1 reduces regeneration after mouse spinal cord injury. Neuroscience 2016; 312:74-85. [PMID: 26586562 DOI: 10.1016/j.neuroscience.2015.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 02/05/2023]
Abstract
Chondroitin/dermatan sulfate proteoglycans (CSPGs/DSPGs) are major components of the extracellular matrix. Their expression is generally upregulated after injuries to the adult mammalian central nervous system, which is known for its low ability to restore function after injury. Several studies support the view that CSPGs inhibit regeneration after injury, whereas the functions of DSPGs in injury paradigms are less certain. To characterize the functions of DSPGs in the presence of CSPGs, we studied young adult dermatan-4O-sulfotransferase1-deficient (Chst14(-/-)) mice, which express chondroitin sulfates (CSs), but not dermatan sulfates (DSs), to characterize the functional outcome after severe compression injury of the spinal cord. In comparison to their wild-type (Chst14(+/+)) littermates, regeneration was reduced in Chst14(-/-) mice. No differences between genotypes were seen in the size of spinal cords, numbers of microglia and astrocytes neither in intact nor injured spinal cords after injury. Monoaminergic innervation and re-innervation of the spinal cord caudal to the lesion site as well as expression levels of glial fibrillary acidic protein (GFAP) and myelin basic protein (MBP) were similar in both genotypes, independent of whether they were injured and examined 6weeks after injury or not injured. These results suggest that, in contrast to CSPGs, DSPGs, being the products of Chst14 enzymatic activity, promote regeneration after injury of the adult mouse central nervous system.
Collapse
Affiliation(s)
- S Rost
- Center for Molecular Neurobiology Hamburg, University Hospital Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - N Akyüz
- Center for Molecular Neurobiology Hamburg, University Hospital Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - T Martinovic
- Center for Molecular Neurobiology Hamburg, University Hospital Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany; Institute of Histology and Embryology, School of Medicine, University of Belgrade, Višegradska 26, Belgrade, Serbia
| | - T Huckhagel
- Center for Molecular Neurobiology Hamburg, University Hospital Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - I Jakovcevski
- Center for Molecular Neurobiology Hamburg, University Hospital Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany; Experimental Neurophysiology, University Hospital Cologne, Joseph-Stelzmann-Str. 9, D-50931 Köln, Germany; German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, D-53175 Bonn, Germany.
| | - M Schachner
- Center for Molecular Neurobiology Hamburg, University Hospital Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany; Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, PR China; Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
42
|
The Morphofunctional Effect of the Transplantation of Bone Marrow Stromal Cells and Predegenerated Peripheral Nerve in Chronic Paraplegic Rat Model via Spinal Cord Transection. Neural Plast 2015; 2015:389520. [PMID: 26634157 PMCID: PMC4655076 DOI: 10.1155/2015/389520] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/27/2015] [Accepted: 06/07/2015] [Indexed: 01/09/2023] Open
Abstract
Functional recovery following spinal cord injury (SCI) is limited by poor axonal and cellular regeneration as well as the failure to replace damaged myelin. Employed separately, both the transplantation of the predegenerated peripheral nerve (PPN) and the transplantation of bone marrow stromal cells (BMSCs) have been shown to promote the regrowth and remyelination of the damaged central axons in SCI models of hemisection, transection, and contusion injury. With the aim to test the effects of the combined transplantation of PPN and BMSC on regrowth, remyelination, and locomotor function in an adult rat model of spinal cord (SC) transection, 39 Fischer 344 rats underwent SC transection at T9 level. Four weeks later they were randomly assigned to traumatic spinal cord injury (TSCI) without treatment, TSCI + Fibrin Glue (FG), TSCI + FG + PPN, and TSCI + FG + PPN + BMSCs. Eight weeks after, transplantation was carried out on immunofluorescence and electron microscope studies. The results showed greater axonal regrowth and remyelination in experimental groups TSCI + FG + PPN and TSCI + FG + PPN + BMSCs analyzed with GAP-43, neuritin, and myelin basic protein. It is concluded that the combined treatment of PPN and BMSCs is a favorable strategy for axonal regrowth and remyelination in a chronic SC transection model.
Collapse
|
43
|
Expressing Constitutively Active Rheb in Adult Neurons after a Complete Spinal Cord Injury Enhances Axonal Regeneration beyond a Chondroitinase-Treated Glial Scar. J Neurosci 2015; 35:11068-80. [PMID: 26245968 DOI: 10.1523/jneurosci.0719-15.2015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED After a spinal cord injury (SCI), CNS axons fail to regenerate, resulting in permanent deficits. This is due to: (1) the presence of inhibitory molecules, e.g., chondroitin sulfate proteoglycans (CSPG), in the glial scar at the lesion; and (2) the diminished growth capacity of adult neurons. We sought to determine whether expressing a constitutively active form of the GTPase Rheb (caRheb) in adult neurons after a complete SCI in rats improves intrinsic growth potential to result in axon regeneration out of a growth-supportive peripheral nerve grafted (PNG) into the SCI cavity. We also hypothesized that treating the glial scar with chondroitinase ABC (ChABC), which digests CSPG, would further allow caRheb-transduced neurons to extend axons across the distal graft interface. We found that targeting this pathway at a clinically relevant post-SCI time point improves both sprouting and regeneration of axons. CaRheb increased the number of axons, but not the number of neurons, that projected into the PNG, indicative of augmented sprouting. We also saw that caRheb enhanced sprouting far rostral to the injury. CaRheb not only increased growth rostral and into the graft, it also resulted in significantly more regrowth of axons across a ChABC-treated scar into caudal spinal cord. CaRheb(+) neurons had higher levels of growth-associated-43, suggestive of a newly identified mechanism for mTOR-mediated enhancement of regeneration. Thus, we demonstrate for the first time that simultaneously addressing intrinsic and scar-associated, extrinsic impediments to regeneration results in significant regrowth beyond an extremely challenging, complete SCI site. SIGNIFICANCE STATEMENT After spinal cord injury (SCI), CNS axons fail to regenerate, resulting in permanent deficits. This is due to the diminished growth capacity of adult neurons and the presence of inhibitory molecules in the scar at the lesion. We sought to simultaneously counter both of these obstacles to achieve more robust regeneration after complete SCI. We transduced neurons postinjury to express a constitutively active Rheb to enhance their intrinsic growth potential, transplanted a growth supporting peripheral nerve graft into the lesion cavity, and enzymatically modulated the inhibitory glial scar distal to the graft. We demonstrate, for the first time, that simultaneously addressing neuron-related, intrinsic deficits in axon regrowth and extrinsic, scar-associated impediments to regeneration results in significant regeneration after SCI.
Collapse
|
44
|
Sachdeva R, Theisen CC, Ninan V, Twiss JL, Houlé JD. Exercise dependent increase in axon regeneration into peripheral nerve grafts by propriospinal but not sensory neurons after spinal cord injury is associated with modulation of regeneration-associated genes. Exp Neurol 2015; 276:72-82. [PMID: 26366525 DOI: 10.1016/j.expneurol.2015.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/28/2015] [Accepted: 09/08/2015] [Indexed: 01/04/2023]
Abstract
Insufficient regeneration of central nervous system (CNS) axons contributes to persisting neurological dysfunction after spinal cord injury (SCI). Peripheral nerve grafts (PNGs) support regeneration by thousands of injured intraspinal axons and help them bypass some of the extracellular barriers that form after SCI. However this number represents but a small portion of the total number of axons that are injured. Here we tested if rhythmic sensory stimulation during cycling exercise would boost the intrinsic regenerative state of neurons to enhance axon regeneration into PNGs after a lower thoracic (T12) spinal transection of adult rats. Using True Blue retrograde tracing, we show that 4 weeks of cycling improves regeneration into a PNG from lumbar interneurons but not by primary sensory neurons. The majority of neurons that regenerate their axon are within 5 mm of the lesion and their number increased 70% with exercise. Importantly propriospinal neurons in more distant regions (5-20 mm from the lesion) that routinely exhibit very limited regeneration responded to exercise by increasing the number of regenerating neurons by 900%. There was no exercise-associated increase in regeneration from sensory neurons. Analyses using fluorescent in situ hybridization showed that this increase in regenerative response is associated with changes in levels of mRNAs encoding the regeneration associated genes (RAGs) GAP43, β-actin and Neuritin. While propriospinal neurons showed increased mRNA levels in response to SCI alone and then to grafting and exercise, sensory neurons did not respond to SCI, but there was a response to the presence of a PNG. Thus, exercise is a non-invasive approach to modulate gene expression in injured neurons leading to an increase in regeneration. This sets the stage for future studies to test whether exercise will promote axon outgrowth beyond the PNG and reconnection with spinal cord neurons, thereby demonstrating a potential clinical application of this combined therapeutic intervention.
Collapse
Affiliation(s)
- Rahul Sachdeva
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Catherine C Theisen
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Vinu Ninan
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - John D Houlé
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
45
|
Dyck SM, Karimi-Abdolrezaee S. Chondroitin sulfate proteoglycans: Key modulators in the developing and pathologic central nervous system. Exp Neurol 2015; 269:169-87. [PMID: 25900055 DOI: 10.1016/j.expneurol.2015.04.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/11/2015] [Accepted: 04/14/2015] [Indexed: 12/15/2022]
Abstract
Chondroitin Sulfate Proteoglycans (CSPGs) are a major component of the extracellular matrix in the central nervous system (CNS) and play critical role in the development and pathophysiology of the brain and spinal cord. Developmentally, CSPGs provide guidance cues for growth cones and contribute to the formation of neuronal boundaries in the developing CNS. Their presence in perineuronal nets plays a crucial role in the maturation of synapses and closure of critical periods by limiting synaptic plasticity. Following injury to the CNS, CSPGs are dramatically upregulated by reactive glia which form a glial scar around the lesion site. Increased level of CSPGs is a hallmark of all CNS injuries and has been shown to limit axonal plasticity, regeneration, remyelination, and conduction after injury. Additionally, CSPGs create a non-permissive milieu for cell replacement activities by limiting cell migration, survival and differentiation. Mounting evidence is currently shedding light on the potential benefits of manipulating CSPGs in combination with other therapeutic strategies to promote spinal cord repair and regeneration. Moreover, the recent discovery of multiple receptors for CSPGs provides new therapeutic targets for targeted interventions in blocking the inhibitory properties of CSPGs following injury. Here, we will provide an in depth discussion on the impact of CSPGs in normal and pathological CNS. We will also review the recent preclinical therapies that have been developed to target CSPGs in the injured CNS.
Collapse
Affiliation(s)
- Scott M Dyck
- Regenerative Medicine Program, Department of Physiology and the Spinal Cord Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Regenerative Medicine Program, Department of Physiology and the Spinal Cord Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
46
|
Mammalian target of rapamycin's distinct roles and effectiveness in promoting compensatory axonal sprouting in the injured CNS. J Neurosci 2015; 34:15347-55. [PMID: 25392502 DOI: 10.1523/jneurosci.1935-14.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mammalian target of rapamycin (mTOR) functions as a master sensor of nutrients and energy, and controls protein translation and cell growth. Deletion of phosphatase and tensin homolog (PTEN) in adult CNS neurons promotes regeneration of injured axons in an mTOR-dependent manner. However, others have demonstrated mTOR-independent axon regeneration in different cell types, raising the question of how broadly mTOR regulates axonal regrowth across different systems. Here we define the role of mTOR in promoting collateral sprouting of spared axons, a key axonal remodeling mechanism by which functions are recovered after CNS injury. Using pharmacological inhibition, we demonstrate that mTOR is dispensable for the robust spontaneous sprouting of corticospinal tract axons seen after pyramidotomy in postnatal mice. In contrast, moderate spontaneous axonal sprouting and induced-sprouting seen under different conditions in young adult mice (i.e., PTEN deletion or degradation of chondroitin proteoglycans; CSPGs) are both reduced upon mTOR inhibition. In addition, to further determine the potency of mTOR in promoting sprouting responses, we coinactivate PTEN and CSPGs, and demonstrate that this combination leads to an additive increase in axonal sprouting compared with single treatments. Our findings reveal a developmental switch in mTOR dependency for inducing axonal sprouting, and indicate that PTEN deletion in adult neurons neither recapitulates the regrowth program of postnatal animals, nor is sufficient to completely overcome an inhibitory environment. Accordingly, exploiting mTOR levels by targeting PTEN combined with CSPG degradation represents a promising strategy to promote extensive axonal plasticity in adult mammals.
Collapse
|
47
|
Bonner JF, Steward O. Repair of spinal cord injury with neuronal relays: From fetal grafts to neural stem cells. Brain Res 2015; 1619:115-23. [PMID: 25591483 DOI: 10.1016/j.brainres.2015.01.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/29/2014] [Accepted: 01/05/2015] [Indexed: 02/01/2023]
Abstract
Spinal cord injury (SCI) disrupts the long axonal tracts of the spinal cord leading to devastating loss of function. Cell transplantation in the injured spinal cord has the potential to lead to recovery after SCI via a variety of mechanisms. One such strategy is the formation of neuronal relays between injured long tract axons and denervated neurons. The idea of creating a neuronal relay was first proposed over 25 years ago when fetal tissue was first successfully transplanted into the injured rodent spinal cord. Advances in labeling of grafted cells and the development of neural stem cell culturing techniques have improved the ability to create and refine such relays. Several recent studies have examined the ability to create a novel neuronal circuit between injured axons and denervated targets. This approach is an alternative to long-distance regeneration of damaged axons that may provide a meaningful degree of recovery without direct recreation of lost pathways. This brief review will examine the contribution of fetal grafting to current advances in neuronal grafting. Of particular interest will be the ability of transplanted neurons derived from fetal grafts, neural precursor cells and neural stem cells to reconnect long distance motor and sensory pathways of the injured spinal cord. This article is part of a Special Issue entitled SI: Spinal cord injury.
Collapse
Affiliation(s)
- Joseph F Bonner
- Reeve-Irvine Research Center, University of California, 1105 Gillespie Neuroscience Research Facility, Irvine, CA 92697-4265, USA.
| | - Oswald Steward
- Reeve-Irvine Research Center, University of California, 1105 Gillespie Neuroscience Research Facility, Irvine, CA 92697-4265, USA; Departments of Anatomy & Neurobiology, Neurobiology & Behavior, and Neurosurgery, University of California at Irvine School of Medicine, Irvine, CA 92697-4265, USA
| |
Collapse
|
48
|
Abstract
Three theories of regeneration dominate neuroscience today, all purporting to explain why the adult central nervous system (CNS) cannot regenerate. One theory proposes that Nogo, a molecule expressed by myelin, prevents axonal growth. The second theory emphasizes the role of glial scars. The third theory proposes that chondroitin sulfate proteoglycans (CSPGs) prevent axon growth. Blockade of Nogo, CSPG, and their receptors indeed can stop axon growth in vitro and improve functional recovery in animal spinal cord injury (SCI) models. These therapies also increase sprouting of surviving axons and plasticity. However, many investigators have reported regenerating spinal tracts without eliminating Nogo, glial scar, or CSPG. For example, many motor and sensory axons grow spontaneously in contused spinal cords, crossing gliotic tissue and white matter surrounding the injury site. Sensory axons grow long distances in injured dorsal columns after peripheral nerve lesions. Cell transplants and treatments that increase cAMP and neurotrophins stimulate motor and sensory axons to cross glial scars and to grow long distances in white matter. Genetic studies deleting all members of the Nogo family and even the Nogo receptor do not always improve regeneration in mice. A recent study reported that suppressing the phosphatase and tensin homolog (PTEN) gene promotes prolific corticospinal tract regeneration. These findings cannot be explained by the current theories proposing that Nogo and glial scars prevent regeneration. Spinal axons clearly can and will grow through glial scars and Nogo-expressing tissue under some circumstances. The observation that deleting PTEN allows corticospinal tract regeneration indicates that the PTEN/AKT/mTOR pathway regulates axonal growth. Finally, many other factors stimulate spinal axonal growth, including conditioning lesions, cAMP, glycogen synthetase kinase inhibition, and neurotrophins. To explain these disparate regenerative phenomena, I propose that the spinal cord has evolved regenerative mechanisms that are normally suppressed by multiple extrinsic and intrinsic factors but can be activated by injury, mediated by the PTEN/AKT/mTOR, cAMP, and GSK3b pathways, to stimulate neural growth and proliferation.
Collapse
Affiliation(s)
- Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
49
|
Walker CL, Wang X, Bullis C, Liu NK, Lu Q, Fry C, Deng L, Xu XM. Biphasic bisperoxovanadium administration and Schwann cell transplantation for repair after cervical contusive spinal cord injury. Exp Neurol 2014; 264:163-72. [PMID: 25510318 DOI: 10.1016/j.expneurol.2014.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 11/30/2014] [Accepted: 12/03/2014] [Indexed: 11/20/2022]
Abstract
Schwann cells (SCs) hold promise for spinal cord injury (SCI) repair; however, there are limitations for its use as a lone treatment. We showed that acute inhibition of the phosphatase and tensin homolog deleted on chromosome ten (PTEN) by bisperoxovanadium (bpV) was neuroprotective and enhanced function following cervical hemicontusion SCI. We hypothesized that combining acute bpV therapy and delayed SC engraftment would further improve neuroprotection and recovery after cervical SCI. Adult female Sprague-Dawley (SD) rats were randomly sorted into 5 groups: sham, vehicle, bpV, SC transplantation, and bpV+SC transplantation. SCs were isolated from adult green fluorescent protein (GFP)-expressing SD rats (GFP-SCs). 200 μg/kg bpV(pic) was administered intraperitoneally (IP) twice daily for 7 days post-SCI in bpV-treated groups. GFP-SCs (1×10(6) in 5 μl medium) were transplanted into the lesion epicenter at the 8th day post-SCI. Forelimb function was tested for 10 weeks and histology was assessed. bpV alone significantly reduced lesion (by 40%, p<0.05) and cavitation (by 65%, p<0.05) and improved functional recovery (p<0.05) compared to injury alone. The combination promoted similar neuroprotection (p<0.01 vs. injury); however, GFP-SCs alone did not. Both SC-transplanted groups exhibited remarkable long-term SC survival, SMI-31(+) axon ingrowth and RECA-1(+) vasculature presence in the SC graft; however, bpV+SCs promoted an 89% greater axon-to-lesion ratio than SCs only. We concluded that bpV likely contributed largely to the neuroprotective and functional benefits while SCs facilitated considerable host-tissue interaction and modification. The combination of the two shows promise as an attractive strategy to enhance recovery after SCI.
Collapse
Affiliation(s)
- Chandler L Walker
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiaofei Wang
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Carli Bullis
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Qingbo Lu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Colin Fry
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lingxiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
50
|
Harvey AR, Lovett SJ, Majda BT, Yoon JH, Wheeler LPG, Hodgetts SI. Neurotrophic factors for spinal cord repair: Which, where, how and when to apply, and for what period of time? Brain Res 2014; 1619:36-71. [PMID: 25451132 DOI: 10.1016/j.brainres.2014.10.049] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/20/2014] [Accepted: 10/23/2014] [Indexed: 12/22/2022]
Abstract
A variety of neurotrophic factors have been used in attempts to improve morphological and behavioural outcomes after experimental spinal cord injury (SCI). Here we review many of these factors, their cellular targets, and their therapeutic impact on spinal cord repair in different, primarily rodent, models of SCI. A majority of studies report favourable outcomes but results are by no means consistent, thus a major aim of this review is to consider how best to apply neurotrophic factors after SCI to optimize their therapeutic potential. In addition to which factors are chosen, many variables need be considered when delivering trophic support, including where and when to apply a given factor or factors, how such factors are administered, at what dose, and for how long. Overall, the majority of studies have applied neurotrophic support in or close to the spinal cord lesion site, in the acute or sub-acute phase (0-14 days post-injury). Far fewer chronic SCI studies have been undertaken. In addition, comparatively fewer studies have administered neurotrophic factors directly to the cell bodies of injured neurons; yet in other instructive rodent models of CNS injury, for example optic nerve crush or transection, therapies are targeted directly at the injured neurons themselves, the retinal ganglion cells. The mode of delivery of neurotrophic factors is also an important variable, whether delivered by acute injection of recombinant proteins, sub-acute or chronic delivery using osmotic minipumps, cell-mediated delivery, delivery using polymer release vehicles or supporting bridges of some sort, or the use of gene therapy to modify neurons, glial cells or precursor/stem cells. Neurotrophic factors are often used in combination with cell or tissue grafts and/or other pharmacotherapeutic agents. Finally, the dose and time-course of delivery of trophic support should ideally be tailored to suit specific biological requirements, whether they relate to neuronal survival, axonal sparing/sprouting, or the long-distance regeneration of axons ending in a different mode of growth associated with terminal arborization and renewed synaptogenesis. This article is part of a Special Issue entitled SI: Spinal cord injury.
Collapse
Affiliation(s)
- Alan R Harvey
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Sarah J Lovett
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Bernadette T Majda
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Jun H Yoon
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Lachlan P G Wheeler
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Stuart I Hodgetts
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|