1
|
McKiernan EC, Herrera-Valdez MA, Marrone DF. A biophysical minimal model to investigate age-related changes in CA1 pyramidal cell electrical activity. PLoS One 2024; 19:e0308809. [PMID: 39231135 PMCID: PMC11373847 DOI: 10.1371/journal.pone.0308809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024] Open
Abstract
Aging is a physiological process that is still poorly understood, especially with respect to effects on the brain. There are open questions about aging that are difficult to answer with an experimental approach. Underlying challenges include the difficulty of recording in vivo single cell and network activity simultaneously with submillisecond resolution, and brain compensatory mechanisms triggered by genetic, pharmacologic, or behavioral manipulations. Mathematical modeling can help address some of these questions by allowing us to fix parameters that cannot be controlled experimentally and investigate neural activity under different conditions. We present a biophysical minimal model of CA1 pyramidal cells (PCs) based on general expressions for transmembrane ion transport derived from thermodynamical principles. The model allows directly varying the contribution of ion channels by changing their number. By analyzing the dynamics of the model, we find parameter ranges that reproduce the variability in electrical activity seen in PCs. In addition, increasing the L-type Ca2+ channel expression in the model reproduces age-related changes in electrical activity that are qualitatively and quantitatively similar to those observed in PCs from aged animals. We also make predictions about age-related changes in PC bursting activity that, to our knowledge, have not been reported previously. We conclude that the model's biophysical nature, flexibility, and computational simplicity make it a potentially powerful complement to experimental studies of aging.
Collapse
Affiliation(s)
- Erin C McKiernan
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
| | - Marco A Herrera-Valdez
- Laboratorio de Dinámica, Biofísica y Fisiología de Sistemas, Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
| | - Diano F Marrone
- Department of Psychology, Wilfrid Laurier University, Waterloo, ON, Canada
- McKnight Brain Institute, University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
2
|
Selva-Clemente J, Marcos P, González-Fuentes J, Villaseca-González N, Lagartos-Donate MJ, Insausti R, Arroyo-Jiménez MM. Interneurons in the CA1 stratum oriens expressing αTTP may play a role in the delayed-ageing Pol μ mouse model. Mol Cell Neurosci 2024; 130:103960. [PMID: 39179163 DOI: 10.1016/j.mcn.2024.103960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/24/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024] Open
Abstract
Neurodegeneration associated with ageing is closely linked to oxidative stress (OS) and disrupted calcium homeostasis. Some areas of the brain, like the hippocampus - particularly the CA1 region - have shown a high susceptibility to age-related changes, displaying early signs of pathology and neuronal loss. Antioxidants such as α-tocopherol (αT) have been effective in mitigating the impact of OS during ageing. αT homeostasis is primarily regulated by the α-tocopherol transfer protein (αTTP), which is widely distributed throughout the brain - where it plays a crucial role in maintaining αT levels within neuronal cells. This study investigates the distribution of αTTP in the hippocampus of 4- and 24-month-old Pol μ knockout mice (Pol μ-/-), a delayed-ageing model, and the wild type (Pol μ+/+). We also examine the colocalisation in the stratum oriens (st.or) of CA1 region with the primary interneuron populations expressing calcium-binding proteins (CBPs) (calbindin (CB), parvalbumin (PV), and calretinin (CR)). Our findings reveal that αTTP immunoreactivity (-IR) in the st.or of Pol μ mice is significantly reduced. The density of PV-expressing interneurons (INs) increased in aged mice in both Pol μ genotypes (Pol μ-/- and Pol μ+/+), although the density of PV-positive INs was lower in the aged Pol μ-/- mice compared to wild-type mice. By contrast, CR- and CB-positive INs in Pol μ mice remained unchanged during ageing. Furthermore, double immunohistochemistry reveals the colocalisation of αTTP with CBPs in INs of the CA1 st.or. Our study also shows that the PV/αTTP-positive IN population remains unchanged in all groups. A significant decrease of CB/αTTP-positive INs in young Pol μ-/- mice has been detected, as well as a significant increase in CR/αTTP-IR in older Pol μ-/- animals. These results suggest that the differential expression of αTTP and CBPs could have a crucial effect in aiding the survival and maintenance of the different IN populations in the CA1 st.or, and their coexpression could contribute to the enhancement of their resistance to OS-related damage and neurodegeneration associated with ageing.
Collapse
Affiliation(s)
- J Selva-Clemente
- Human Neuroanatomy Laboratory, University of Castilla-La Mancha and CRIB (Regional Centre for Biomedical Research), Albacete, Spain
| | - P Marcos
- Human Neuroanatomy Laboratory, University of Castilla-La Mancha and CRIB (Regional Centre for Biomedical Research), Albacete, Spain
| | | | - N Villaseca-González
- Human Neuroanatomy Laboratory, University of Castilla-La Mancha and CRIB (Regional Centre for Biomedical Research), Albacete, Spain; School of Pharmacy, University of Castilla-La Mancha, Albacete, Spain
| | - M J Lagartos-Donate
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - R Insausti
- Human Neuroanatomy Laboratory, University of Castilla-La Mancha and CRIB (Regional Centre for Biomedical Research), Albacete, Spain
| | - M M Arroyo-Jiménez
- Human Neuroanatomy Laboratory, University of Castilla-La Mancha and CRIB (Regional Centre for Biomedical Research), Albacete, Spain; School of Pharmacy, University of Castilla-La Mancha, Albacete, Spain.
| |
Collapse
|
3
|
Li H, Lai L, Li X, Wang R, Fang X, Xu N, Zhao J. Electroacupuncture Ameliorates Cognitive Impairment by Regulating γ-Amino Butyric Acidergic Interneurons in the Hippocampus of 5 Familial Alzheimer's Disease Mice. Neuromodulation 2024; 27:730-741. [PMID: 36604241 DOI: 10.1016/j.neurom.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVES γ-amino butyric acid (GABA)-ergic dysfunction in excitatory and inhibitory (E/I) imbalance drives the pathogenesis of Alzheimer's disease (AD). Inhibitory interneurons play an important role in the regulation of E/I balance, synaptic transmission, and network oscillation through manipulation of GABAergic functions, showing positive outcomes in AD animal models. Mice expressing 5 familial AD mutation (5xFAD) exhibited a series of AD-like pathology and learning and memory deficits with age. Because electroacupuncture (EA) treatment has been used for a complementary alternative medicine therapy in patients with AD, we aimed to examine any usefulness of EA therapy in GABA interneuron function and its associated synaptic proteins, to determine whether EA could effectively improve inhibitory transmission and network oscillation and eventually alleviate cognitive impairments in 5xFAD mice, and to further elucidate the GABAergic system function underlying the antidementia response of EA. MATERIALS AND METHODS 5xFAD mice were used to evaluate the potential neuroprotective effect of electroacupuncture at Baihui (DU 20) and Dazhui (DU 14) through behavioral testing, immunofluorescence staining, electrophysiology recording, and molecular biology analysis. RESULTS First, we observed that EA improved memory deficits and inhibitory synaptic protein expression. Second, EA treatment alleviated the decrease of somatostatin-positive interneurons in the dorsal hippocampus. Third, EA attenuated E/I imbalance in 5xFAD mice. Last, EA treatment enhanced theta and gamma oscillation in the hippocampus of 5xFAD mice. CONCLUSIONS EA stimulation at DU20 and DU14 acupoints may be a potential alternative therapy to ameliorate cognitive deficits in AD through the regulation of the function of the GABAergic interneuron.
Collapse
Affiliation(s)
- Hongzhu Li
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Rehabilitation, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lanfeng Lai
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Li
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Runyi Wang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoling Fang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Nenggui Xu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaying Zhao
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
4
|
García-Carlos CA, Basurto-Islas G, Perry G, Mondragón-Rodríguez S. Meta-Analysis in Transgenic Alzheimer's Disease Mouse Models Reveals Opposite Brain Network Effects of Amyloid-β and Phosphorylated Tau Proteins. J Alzheimers Dis 2024; 99:595-607. [PMID: 38669540 DOI: 10.3233/jad-231365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Background Cognitive deficits observed in Alzheimer's disease (AD) patients have been correlated with altered hippocampal activity. Although the mechanism remains under extensive study, neurofibrillary tangles and amyloid plaques have been proposed as responsible for brain activity alterations. Aiming to unveil the mechanism, researchers have developed several transgenic models of AD. Nevertheless, the variability in hippocampal oscillatory alterations found in different genetic backgrounds and ages remains unclear. Objective To assess the oscillatory alterations in relation to animal developmental age and protein inclusion, amyloid-β (Aβ) load, and abnormally phosphorylated tau (pTau), we reviewed and analyzed the published data on peak power, frequency, and quantification of theta-gamma cross-frequency coupling (modulation index values). Methods To ensure that the search was as current as possible, a systematic review was conducted to locate and abstract all studies published from January 2000 to February 2023 that involved in vivo hippocampal local field potential recording in transgenic mouse models of AD. Results The presence of Aβ was associated with electrophysiological alterations that are mainly reflected in power increases, frequency decreases, and lower modulation index values. Concomitantly, pTau accumulation was associated with electrophysiological alterations that are mainly reflected in power decreases, frequency decreases, and no significant alterations in modulation index values. Conclusions In this study, we showed that electrophysiological parameters are altered from prodromal stages to the late stages of pathology. Thus, we found that Aβ deposition is associated with brain network hyperexcitability, whereas pTau deposition mainly leads to brain network hypoexcitability in transgenic models.
Collapse
Affiliation(s)
- Carlos Antonio García-Carlos
- UNAM Division of Neurosciences, Institute of Cellular Physiology, National Autonomous University of México, México City, México
| | | | - George Perry
- UTSA Neuroscience Institute and Department of Biology, College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - Siddhartha Mondragón-Rodríguez
- UAQ Centre for Applied Biomedical Research - CIBA, School of Medicine, Autonomous University of Querétaro, Querétaro, México
- CONAHCYT National Council for Science and Technology, México City, México
| |
Collapse
|
5
|
Platholi J, Marongiu R, Park L, Yu F, Sommer G, Weinberger R, Tower W, Milner TA, Glass MJ. Hippocampal glial inflammatory markers are differentially altered in a novel mouse model of perimenopausal cerebral amyloid angiopathy. Front Aging Neurosci 2023; 15:1280218. [PMID: 38035277 PMCID: PMC10684955 DOI: 10.3389/fnagi.2023.1280218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Dementia is often characterized by age-dependent cerebrovascular pathology, neuroinflammation, and cognitive deficits with notable sex differences in risk, disease onset, progression and severity. Women bear a disproportionate burden of dementia, and the onset of menopause (i.e., perimenopause) may be a critical period conferring increased susceptibility. However, the contribution of early ovarian decline to the neuroinflammatory processes associated with cerebrovascular dementia risks, particularly at the initial stages of pathology that may be more amenable to proactive intervention, is unknown. To better understand the influence of early ovarian failure on dementia-associated neuroinflammation we developed a model of perimenopausal cerebral amyloid angiopathy (CAA), an important contributor to dementia. For this, accelerated ovarian failure (AOF) was induced by 4-vinylcyclohexene diepoxide (VCD) treatment to isolate early-stage ovarian failure comparable to human perimenopause (termed "peri-AOF") in transgenic SWDI mice expressing human vasculotropic mutant amyloid beta (Aβ) precursor protein, that were also tested at an early stage of amyloidosis. We found that peri-AOF SWDI mice showed increased astrocyte activation accompanied by elevated Aβ in select regions of the hippocampus, a brain system involved in learning and memory that is severely impacted during dementia. However, although SWDI mice showed signs of increased hippocampal microglial activation and impaired cognitive function, this was not further affected by peri-AOF. In sum, these results suggest that elevated dysfunction of key elements of the neurovascular unit in select hippocampal regions characterizes the brain pathology of mice at early stages of both CAA and AOF. However, neurovascular unit pathology may not yet have passed a threshold that leads to further behavioral compromise at these early periods of cerebral amyloidosis and ovarian failure. These results are consistent with the hypothesis that the hormonal dysregulation associated with perimenopause onset represents a stage of emerging vulnerability to dementia-associated neuropathology, thus providing a selective window of opportunity for therapeutic intervention prior to the development of advanced pathology that has proven difficult to repair or reverse.
Collapse
Affiliation(s)
- Jimcy Platholi
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States
- Anesthesiology Department, Weill Cornell Medicine, New York, NY, United States
| | - Roberta Marongiu
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States
- Neurological Surgery Department, Weill Cornell Medicine, New York, NY, United States
- Genetic Medicine Department, Weill Cornell Medicine, New York, NY, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Laibaik Park
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States
| | - Fangmin Yu
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States
| | - Garrett Sommer
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States
| | - Rena Weinberger
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States
| | - William Tower
- Neurological Surgery Department, Weill Cornell Medicine, New York, NY, United States
| | - Teresa A. Milner
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States
- Harold and Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, United States
| | - Michael J. Glass
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States
| |
Collapse
|
6
|
Ceanga M, Rahmati V, Haselmann H, Schmidl L, Hunter D, Brauer AK, Liebscher S, Kreye J, Prüss H, Groc L, Hallermann S, Dalmau J, Ori A, Heckmann M, Geis C. Human NMDAR autoantibodies disrupt excitatory-inhibitory balance, leading to hippocampal network hypersynchrony. Cell Rep 2023; 42:113166. [PMID: 37768823 DOI: 10.1016/j.celrep.2023.113166] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/30/2023] [Accepted: 09/07/2023] [Indexed: 09/30/2023] Open
Abstract
Anti-NMDA receptor autoantibodies (NMDAR-Abs) in patients with NMDAR encephalitis cause severe disease symptoms resembling psychosis and cause cognitive dysfunction. After passive transfer of patients' cerebrospinal fluid or human monoclonal anti-GluN1-autoantibodies in mice, we find a disrupted excitatory-inhibitory balance resulting from CA1 neuronal hypoexcitability, reduced AMPA receptor (AMPAR) signaling, and faster synaptic inhibition in acute hippocampal slices. Functional alterations are also reflected in widespread remodeling of the hippocampal proteome, including changes in glutamatergic and GABAergic neurotransmission. NMDAR-Abs amplify network γ oscillations and disrupt θ-γ coupling. A data-informed network model reveals that lower AMPAR strength and faster GABAA receptor current kinetics chiefly account for these abnormal oscillations. As predicted in silico and evidenced ex vivo, positive allosteric modulation of AMPARs alleviates aberrant γ activity, reinforcing the causative effects of the excitatory-inhibitory imbalance. Collectively, NMDAR-Ab-induced aberrant synaptic, cellular, and network dynamics provide conceptual insights into NMDAR-Ab-mediated pathomechanisms and reveal promising therapeutic targets that merit future in vivo validation.
Collapse
Affiliation(s)
- Mihai Ceanga
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, 07747 Jena, Germany
| | - Vahid Rahmati
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, 07747 Jena, Germany
| | - Holger Haselmann
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, 07747 Jena, Germany
| | - Lars Schmidl
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, 07747 Jena, Germany
| | - Daniel Hunter
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France
| | - Anna-Katherina Brauer
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Martinsried, Germany; Biomedical Center, Ludwig Maximilians University Munich, Martinsried, Germany
| | - Sabine Liebscher
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Martinsried, Germany; Biomedical Center, Ludwig Maximilians University Munich, Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jakob Kreye
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany; Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Laurent Groc
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France
| | - Stefan Hallermann
- Carl Ludwig Institute for Physiology, Faculty of Medicine, Leipzig University, 04103 Leipzig, Germany
| | - Josep Dalmau
- Catalan Institution for Research and Advanced Studies (ICREA) and IDIBAPS-Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Manfred Heckmann
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany
| | - Christian Geis
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, 07747 Jena, Germany.
| |
Collapse
|
7
|
Mysin I. Phase relations of interneuronal activity relative to theta rhythm. Front Neural Circuits 2023; 17:1198573. [PMID: 37484208 PMCID: PMC10358363 DOI: 10.3389/fncir.2023.1198573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
The theta rhythm plays a crucial role in synchronizing neural activity during attention and memory processes. However, the mechanisms behind the formation of neural activity during theta rhythm generation remain unknown. To address this, we propose a mathematical model that explains the distribution of interneurons in the CA1 field during the theta rhythm phase. Our model consists of a network of seven types of interneurons in the CA1 field that receive inputs from the CA3 field, entorhinal cortex, and local pyramidal neurons in the CA1 field. By adjusting the parameters of the connections in the model. We demonstrate that it is possible to replicate the experimentally observed phase relations between interneurons and the theta rhythm. Our model predicts that populations of interneurons receive unimodal excitation and inhibition with coinciding peaks, and that excitation dominates to determine the firing dynamics of interneurons.
Collapse
|
8
|
Evans SW, Shi DQ, Chavarha M, Plitt MH, Taxidis J, Madruga B, Fan JL, Hwang FJ, van Keulen SC, Suomivuori CM, Pang MM, Su S, Lee S, Hao YA, Zhang G, Jiang D, Pradhan L, Roth RH, Liu Y, Dorian CC, Reese AL, Negrean A, Losonczy A, Makinson CD, Wang S, Clandinin TR, Dror RO, Ding JB, Ji N, Golshani P, Giocomo LM, Bi GQ, Lin MZ. A positively tuned voltage indicator for extended electrical recordings in the brain. Nat Methods 2023; 20:1104-1113. [PMID: 37429962 PMCID: PMC10627146 DOI: 10.1038/s41592-023-01913-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/15/2023] [Indexed: 07/12/2023]
Abstract
Genetically encoded voltage indicators (GEVIs) enable optical recording of electrical signals in the brain, providing subthreshold sensitivity and temporal resolution not possible with calcium indicators. However, one- and two-photon voltage imaging over prolonged periods with the same GEVI has not yet been demonstrated. Here, we report engineering of ASAP family GEVIs to enhance photostability by inversion of the fluorescence-voltage relationship. Two of the resulting GEVIs, ASAP4b and ASAP4e, respond to 100-mV depolarizations with ≥180% fluorescence increases, compared with the 50% fluorescence decrease of the parental ASAP3. With standard microscopy equipment, ASAP4e enables single-trial detection of spikes in mice over the course of minutes. Unlike GEVIs previously used for one-photon voltage recordings, ASAP4b and ASAP4e also perform well under two-photon illumination. By imaging voltage and calcium simultaneously, we show that ASAP4b and ASAP4e can identify place cells and detect voltage spikes with better temporal resolution than commonly used calcium indicators. Thus, ASAP4b and ASAP4e extend the capabilities of voltage imaging to standard one- and two-photon microscopes while improving the duration of voltage recordings.
Collapse
Affiliation(s)
- S Wenceslao Evans
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Dong-Qing Shi
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mariya Chavarha
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Mark H Plitt
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Jiannis Taxidis
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Blake Madruga
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jiang Lan Fan
- UC Berkeley/UCSF Joint Program in Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Fuu-Jiun Hwang
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, USA
| | - Siri C van Keulen
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | | | - Michelle M Pang
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Sharon Su
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Sungmoo Lee
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Yukun A Hao
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Guofeng Zhang
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Dongyun Jiang
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Lagnajeet Pradhan
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Richard H Roth
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, USA
| | - Yu Liu
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, USA
- Department of Ophthalmology, Stanford University Medical Center, Stanford, CA, USA
| | - Conor C Dorian
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Austin L Reese
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - Adrian Negrean
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, USA
- Kavli Institute for Brain Science, New York, NY, USA
| | - Christopher D Makinson
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
| | - Sui Wang
- Department of Ophthalmology, Stanford University Medical Center, Stanford, CA, USA
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, USA
| | - Jun B Ding
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University Medical Center, Stanford, CA, USA
| | - Na Ji
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Department of Physics, University of California Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Peyman Golshani
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
- Semel Institute for Neuroscience and Human Behavior, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Lisa M Giocomo
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Guo-Qiang Bi
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Interdisciplinary Center for Brain Information, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Michael Z Lin
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Chemical and Systems Biology, Stanford University, Stanford, USA.
| |
Collapse
|
9
|
Andrade-Talavera Y, Fisahn A, Rodríguez-Moreno A. Timing to be precise? An overview of spike timing-dependent plasticity, brain rhythmicity, and glial cells interplay within neuronal circuits. Mol Psychiatry 2023; 28:2177-2188. [PMID: 36991134 PMCID: PMC10611582 DOI: 10.1038/s41380-023-02027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/31/2023]
Abstract
In the mammalian brain information processing and storage rely on the complex coding and decoding events performed by neuronal networks. These actions are based on the computational ability of neurons and their functional engagement in neuronal assemblies where precise timing of action potential firing is crucial. Neuronal circuits manage a myriad of spatially and temporally overlapping inputs to compute specific outputs that are proposed to underly memory traces formation, sensory perception, and cognitive behaviors. Spike-timing-dependent plasticity (STDP) and electrical brain rhythms are suggested to underlie such functions while the physiological evidence of assembly structures and mechanisms driving both processes continues to be scarce. Here, we review foundational and current evidence on timing precision and cooperative neuronal electrical activity driving STDP and brain rhythms, their interactions, and the emerging role of glial cells in such processes. We also provide an overview of their cognitive correlates and discuss current limitations and controversies, future perspectives on experimental approaches, and their application in humans.
Collapse
Affiliation(s)
- Yuniesky Andrade-Talavera
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013, Seville, Spain.
| | - André Fisahn
- Department of Biosciences and Nutrition and Department of Women's and Children's Health, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013, Seville, Spain.
| |
Collapse
|
10
|
Hirota Y, Sakakibara Y, Takei K, Nishijima R, Sekiya M, Iijima KM. Alzheimer's Disease-Related Phospho-Tau181 Signals Are Localized to Demyelinated Axons of Parvalbumin-Positive GABAergic Interneurons in an App Knock-In Mouse Model of Amyloid-β Pathology. J Alzheimers Dis 2023:JAD230121. [PMID: 37212118 DOI: 10.3233/jad-230121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
BACKGROUND The tau protein phosphorylated at Thr181 (p-tau181) in cerebrospinal fluid and blood is a sensitive biomarker for Alzheimer's disease (AD). Increased p-tau181 levels correlate well with amyloid-β (Aβ) pathology and precede neurofibrillary tangle formation in the early stage of AD; however, the relationship between p-tau181 and Aβ-mediated pathology is less well understood. We recently reported that p-tau181 represents axonal abnormalities in mice with Aβ pathology (AppNLGF). However, from which neuronal subtype(s) these p-tau181-positive axons originate remains elusive. OBJECTIVE The main purpose of this study is to differentiate neuronal subtype(s) and elucidate damage associated with p-tau181-positive axons by immunohistochemical analysis of AppNLGF mice brains. METHODS Colocalization between p-tau181 and (1) unmyelinated axons positive for vesicular acetylcholine transporter or norepinephrine transporter and (2) myelinated axons positive for vesicular glutamate transporter, vesicular GABA transporter, or parvalbumin in the brains of 24-month-old AppNLGF and control mice without Aβ pathology were analyzed. The density of these axons was also compared. RESULTS Unmyelinated axons of cholinergic or noradrenergic neurons did not overlap with p-tau181. By contrast, p-tau181 signals colocalized with myelinated axons of parvalbumin-positive GABAergic interneurons but not of glutamatergic neurons. Interestingly, the density of unmyelinated axons was significantly decreased in AppNLGF mice, whereas that of glutamatergic, GABAergic, or p-tau181-positive axons was less affected. Instead, myelin sheaths surrounding p-tau181-positive axons were significantly reduced in AppNLGF mice. CONCLUSION This study demonstrates that p-tau181 signals colocalize with axons of parvalbumin-positive GABAergic interneurons with disrupted myelin sheaths in the brains of a mouse model of Aβ pathology.
Collapse
Affiliation(s)
- Yu Hirota
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Yasufumi Sakakibara
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kimi Takei
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Risa Nishijima
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Michiko Sekiya
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Koichi M Iijima
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
11
|
Ponzi A, Dura-Bernal S, Migliore M. Theta-gamma phase amplitude coupling in a hippocampal CA1 microcircuit. PLoS Comput Biol 2023; 19:e1010942. [PMID: 36952558 PMCID: PMC10072417 DOI: 10.1371/journal.pcbi.1010942] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/04/2023] [Accepted: 02/13/2023] [Indexed: 03/25/2023] Open
Abstract
Phase amplitude coupling (PAC) between slow and fast oscillations is found throughout the brain and plays important functional roles. Its neural origin remains unclear. Experimental findings are often puzzling and sometimes contradictory. Most computational models rely on pairs of pacemaker neurons or neural populations tuned at different frequencies to produce PAC. Here, using a data-driven model of a hippocampal microcircuit, we demonstrate that PAC can naturally emerge from a single feedback mechanism involving an inhibitory and excitatory neuron population, which interplay to generate theta frequency periodic bursts of higher frequency gamma. The model suggests the conditions under which a CA1 microcircuit can operate to elicit theta-gamma PAC, and highlights the modulatory role of OLM and PVBC cells, recurrent connectivity, and short term synaptic plasticity. Surprisingly, the results suggest the experimentally testable prediction that the generation of the slow population oscillation requires the fast one and cannot occur without it.
Collapse
Affiliation(s)
- Adam Ponzi
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Salvador Dura-Bernal
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, New York, United States of America
| | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| |
Collapse
|
12
|
van Nifterick AM, Gouw AA, van Kesteren RE, Scheltens P, Stam CJ, de Haan W. A multiscale brain network model links Alzheimer’s disease-mediated neuronal hyperactivity to large-scale oscillatory slowing. Alzheimers Res Ther 2022; 14:101. [PMID: 35879779 PMCID: PMC9310500 DOI: 10.1186/s13195-022-01041-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 07/02/2022] [Indexed: 01/30/2023]
Abstract
Background Neuronal hyperexcitability and inhibitory interneuron dysfunction are frequently observed in preclinical animal models of Alzheimer’s disease (AD). This study investigates whether these microscale abnormalities explain characteristic large-scale magnetoencephalography (MEG) activity in human early-stage AD patients. Methods To simulate spontaneous electrophysiological activity, we used a whole-brain computational network model comprised of 78 neural masses coupled according to human structural brain topology. We modified relevant model parameters to simulate six literature-based cellular scenarios of AD and compare them to one healthy and six contrast (non-AD-like) scenarios. The parameters include excitability, postsynaptic potentials, and coupling strength of excitatory and inhibitory neuronal populations. Whole-brain spike density and spectral power analyses of the simulated data reveal mechanisms of neuronal hyperactivity that lead to oscillatory changes similar to those observed in MEG data of 18 human prodromal AD patients compared to 18 age-matched subjects with subjective cognitive decline. Results All but one of the AD-like scenarios showed higher spike density levels, and all but one of these scenarios had a lower peak frequency, higher spectral power in slower (theta, 4–8Hz) frequencies, and greater total power. Non-AD-like scenarios showed opposite patterns mainly, including reduced spike density and faster oscillatory activity. Human AD patients showed oscillatory slowing (i.e., higher relative power in the theta band mainly), a trend for lower peak frequency and higher total power compared to controls. Combining model and human data, the findings indicate that neuronal hyperactivity can lead to oscillatory slowing, likely due to hyperexcitation (by hyperexcitability of pyramidal neurons or greater long-range excitatory coupling) and/or disinhibition (by reduced excitability of inhibitory interneurons or weaker local inhibitory coupling strength) in early AD. Conclusions Using a computational brain network model, we link findings from different scales and models and support the hypothesis of early-stage neuronal hyperactivity underlying E/I imbalance and whole-brain network dysfunction in prodromal AD. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-01041-4.
Collapse
|
13
|
Goode LK, Fusilier AR, Remiszewski N, Reeves JM, Abiraman K, Defenderfer M, Paul JR, McMahon LL, Gamble KL. Examination of Diurnal Variation and Sex Differences in Hippocampal Neurophysiology and Spatial Memory. eNeuro 2022; 9:ENEURO.0124-22.2022. [PMID: 36265903 PMCID: PMC9668349 DOI: 10.1523/eneuro.0124-22.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
Circadian rhythms are biological processes that cycle across 24 h and regulate many facets of neurophysiology, including learning and memory. Circadian variation in spatial memory task performance is well documented; however, the effect of sex across circadian time (CT) remains unclear. Additionally, little is known regarding the impact of time-of-day on hippocampal neuronal physiology. Here, we investigated the influence of both sex and time-of-day on hippocampal neurophysiology and memory in mice. Performance on the object location memory (OLM) task depended on both circadian time and sex, with memory enhanced at night in males but during the day in females. Long-term synaptic potentiation (LTP) magnitude at CA3-CA1 synapses was greater at night compared with day in both sexes. Next, we measured spontaneous synaptic excitation and inhibition onto CA1 pyramidal neurons. Frequency and amplitude of inhibition was greater during the day compared with night, regardless of sex. Frequency and amplitude of excitation was larger in females, compared with males, independent of time-of-day, although both time-of-day and sex influenced presynaptic release probability. At night, CA1 pyramidal neurons showed enhanced excitability (action potential firing and/or baseline potential) that was dependent on synaptic excitation and inhibition, regardless of sex. This study emphasizes the importance of sex and time-of-day in hippocampal physiology, especially given that many neurologic disorders impacting the hippocampus are linked to circadian disruption and present differently in men and women. Knowledge about how sex and circadian rhythms affect hippocampal physiology can improve the translational relevancy of therapeutics and inform the appropriate timing of existing treatments.
Collapse
Affiliation(s)
- Lacy K Goode
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham 35233, AL
| | - Allison R Fusilier
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham 35233, AL
| | - Natalie Remiszewski
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham 35233, AL
| | - Jacob M Reeves
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham 35233, AL
| | | | - Matthew Defenderfer
- Research Computing, Information Technology, University of Alabama at Birmingham, Birmingham 35233, AL
| | - Jodi R Paul
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham 35233, AL
| | - Lori L McMahon
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham 35233, AL
| | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham 35233, AL
| |
Collapse
|
14
|
The role of inhibitory circuits in hippocampal memory processing. Nat Rev Neurosci 2022; 23:476-492. [DOI: 10.1038/s41583-022-00599-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 11/08/2022]
|
15
|
Urrutia-Piñones J, Morales-Moraga C, Sanguinetti-González N, Escobar AP, Chiu CQ. Long-Range GABAergic Projections of Cortical Origin in Brain Function. Front Syst Neurosci 2022; 16:841869. [PMID: 35392440 PMCID: PMC8981584 DOI: 10.3389/fnsys.2022.841869] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
The study of long-range GABAergic projections has traditionally been focused on those with subcortical origin. In the last few years, cortical GABAergic neurons have been shown to not only mediate local inhibition, but also extend long-range axons to remote cortical and subcortical areas. In this review, we delineate the different types of long-range GABAergic neurons (LRGNs) that have been reported to arise from the hippocampus and neocortex, paying attention to the anatomical and functional circuits they form to understand their role in behavior. Although cortical LRGNs are similar to their interneuron and subcortical counterparts, they comprise distinct populations that show specific patterns of cortico-cortical and cortico-fugal connectivity. Functionally, cortical LRGNs likely induce timed disinhibition in target regions to synchronize network activity. Thus, LRGNs are emerging as a new element of cortical output, acting in concert with long-range excitatory projections to shape brain function in health and disease.
Collapse
Affiliation(s)
- Jocelyn Urrutia-Piñones
- Ph.D. Program in Neuroscience, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Camila Morales-Moraga
- Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Nicole Sanguinetti-González
- Ph.D. Program in Neuroscience, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Angelica P. Escobar
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Neurobiología y Fisiopatología Integrativa, Universidad de Valparaíso, Valparaíso, Chile
| | - Chiayu Q. Chiu
- Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
16
|
Raven F, Aton SJ. The Engram's Dark Horse: How Interneurons Regulate State-Dependent Memory Processing and Plasticity. Front Neural Circuits 2021; 15:750541. [PMID: 34588960 PMCID: PMC8473837 DOI: 10.3389/fncir.2021.750541] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022] Open
Abstract
Brain states such as arousal and sleep play critical roles in memory encoding, storage, and recall. Recent studies have highlighted the role of engram neurons-populations of neurons activated during learning-in subsequent memory consolidation and recall. These engram populations are generally assumed to be glutamatergic, and the vast majority of data regarding the function of engram neurons have focused on glutamatergic pyramidal or granule cell populations in either the hippocampus, amygdala, or neocortex. Recent data suggest that sleep and wake states differentially regulate the activity and temporal dynamics of engram neurons. Two potential mechanisms for this regulation are either via direct regulation of glutamatergic engram neuron excitability and firing, or via state-dependent effects on interneuron populations-which in turn modulate the activity of glutamatergic engram neurons. Here, we will discuss recent findings related to the roles of interneurons in state-regulated memory processes and synaptic plasticity, and the potential therapeutic implications of understanding these mechanisms.
Collapse
Affiliation(s)
| | - Sara J. Aton
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Sciences, and the Arts, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
17
|
Frey M, Tanni S, Perrodin C, O'Leary A, Nau M, Kelly J, Banino A, Bendor D, Lefort J, Doeller CF, Barry C. Interpreting wide-band neural activity using convolutional neural networks. eLife 2021; 10:e66551. [PMID: 34338632 PMCID: PMC8328518 DOI: 10.7554/elife.66551] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022] Open
Abstract
Rapid progress in technologies such as calcium imaging and electrophysiology has seen a dramatic increase in the size and extent of neural recordings. Even so, interpretation of this data requires considerable knowledge about the nature of the representation and often depends on manual operations. Decoding provides a means to infer the information content of such recordings but typically requires highly processed data and prior knowledge of the encoding scheme. Here, we developed a deep-learning framework able to decode sensory and behavioral variables directly from wide-band neural data. The network requires little user input and generalizes across stimuli, behaviors, brain regions, and recording techniques. Once trained, it can be analyzed to determine elements of the neural code that are informative about a given variable. We validated this approach using electrophysiological and calcium-imaging data from rodent auditory cortex and hippocampus as well as human electrocorticography (ECoG) data. We show successful decoding of finger movement, auditory stimuli, and spatial behaviors - including a novel representation of head direction - from raw neural activity.
Collapse
Affiliation(s)
- Markus Frey
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU, Norwegian University of Science and TechnologyTrondheimNorway
- Max-Planck-Insitute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Sander Tanni
- Cell & Developmental Biology, UCLLondonUnited Kingdom
| | | | - Alice O'Leary
- Cell & Developmental Biology, UCLLondonUnited Kingdom
| | - Matthias Nau
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU, Norwegian University of Science and TechnologyTrondheimNorway
- Max-Planck-Insitute for Human Cognitive and Brain SciencesLeipzigGermany
| | | | | | - Daniel Bendor
- Institute of Behavioural Neuroscience, UCLLondonUnited Kingdom
| | - Julie Lefort
- Cell & Developmental Biology, UCLLondonUnited Kingdom
| | - Christian F Doeller
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU, Norwegian University of Science and TechnologyTrondheimNorway
- Max-Planck-Insitute for Human Cognitive and Brain SciencesLeipzigGermany
- Institute of Psychology, Leipzig UniversityLeipzigGermany
| | - Caswell Barry
- Cell & Developmental Biology, UCLLondonUnited Kingdom
| |
Collapse
|
18
|
Ying Y, Wang JZ. Illuminating Neural Circuits in Alzheimer's Disease. Neurosci Bull 2021; 37:1203-1217. [PMID: 34089505 PMCID: PMC8353043 DOI: 10.1007/s12264-021-00716-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/06/2021] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and there is currently no cure. Neural circuit dysfunction is the fundamental mechanism underlying the learning and memory deficits in patients with AD. Therefore, it is important to understand the structural features and mechanisms underlying the deregulated circuits during AD progression, by which new tools for intervention can be developed. Here, we briefly summarize the most recently established cutting-edge experimental approaches and key techniques that enable neural circuit tracing and manipulation of their activity. We also discuss the advantages and limitations of these approaches. Finally, we review the applications of these techniques in the discovery of circuit mechanisms underlying β-amyloid and tau pathologies during AD progression, and as well as the strategies for targeted AD treatments.
Collapse
Affiliation(s)
- Yang Ying
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
19
|
Chatzikalymniou AP, Gumus M, Skinner FK. Linking minimal and detailed models of CA1 microcircuits reveals how theta rhythms emerge and their frequencies controlled. Hippocampus 2021; 31:982-1002. [PMID: 34086375 DOI: 10.1002/hipo.23364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/08/2021] [Indexed: 01/18/2023]
Abstract
The wide variety of cell types and their biophysical complexities pose a challenge in our ability to understand oscillatory activities produced by cellular-based computational network models. This challenge stems from their high-dimensional and multiparametric natures. To overcome this, we implement a solution by linking minimal and detailed models of CA1 microcircuits that generate intrahippocampal (3-12 Hz) theta rhythms. We leverage insights from minimal models to guide explorations of more detailed models and obtain a cellular perspective of theta generation. Our findings distinguish the pyramidal cells as the theta rhythm initiators and reveal that their activity is regularized by the inhibitory cell populations, supporting a proposed hypothesis of an "inhibition-based tuning" mechanism. We find a strong correlation between input current to the pyramidal cells and the resulting local field potential theta frequency, indicating that intrinsic pyramidal cell properties underpin network frequency characteristics. This work provides a cellular-based foundation from which in vivo theta activities can be explored.
Collapse
Affiliation(s)
- Alexandra Pierri Chatzikalymniou
- Krembil Brain Institute, University Health Network, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Melisa Gumus
- Krembil Brain Institute, University Health Network, Toronto, Canada
| | - Frances K Skinner
- Krembil Brain Institute, University Health Network, Toronto, Canada.,Departments of Medicine (Neurology) and Physiology, University of Toronto, Toronto, Canada
| |
Collapse
|
20
|
Booker SA, Wyllie DJA. NMDA receptor function in inhibitory neurons. Neuropharmacology 2021; 196:108609. [PMID: 34000273 DOI: 10.1016/j.neuropharm.2021.108609] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/26/2022]
Abstract
N-methyl-d-aspartate receptors (NMDARs) are present in the majority of brain circuits and play a key role in synaptic information transfer and synaptic plasticity. A key element of many brain circuits are inhibitory GABAergic interneurons that in themselves show diverse and cell-type-specific NMDAR expression and function. Indeed, NMDARs located on interneurons control cellular excitation in a synapse-type specific manner which leads to divergent dendritic integration properties amongst the plethora of interneuron subtypes known to exist. In this review, we explore the documented diversity of NMDAR subunit expression in identified subpopulations of interneurons and assess the NMDAR subtype-specific control of their function. We also highlight where knowledge still needs to be obtained, if a full appreciation is to be gained of roles played by NMDARs in controlling GABAergic modulation of synaptic and circuit function. This article is part of the 'Special Issue on Glutamate Receptors - NMDA receptors'.
Collapse
Affiliation(s)
- Sam A Booker
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, UK; Patrick Wild Centre for Research into Autism, Fragile X Syndrome & Intellectual Disabilities, University of Edinburgh, Edinburgh, EH8 9XD, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK.
| | - David J A Wyllie
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, UK; Patrick Wild Centre for Research into Autism, Fragile X Syndrome & Intellectual Disabilities, University of Edinburgh, Edinburgh, EH8 9XD, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK; Centre for Brain Development and Repair, InStem, Bangalore, 560065, India.
| |
Collapse
|
21
|
Skinner FK, Rich S, Lunyov AR, Lefebvre J, Chatzikalymniou AP. A Hypothesis for Theta Rhythm Frequency Control in CA1 Microcircuits. Front Neural Circuits 2021; 15:643360. [PMID: 33967702 PMCID: PMC8097141 DOI: 10.3389/fncir.2021.643360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/24/2021] [Indexed: 12/16/2022] Open
Abstract
Computational models of neural circuits with varying levels of biophysical detail have been generated in pursuit of an underlying mechanism explaining the ubiquitous hippocampal theta rhythm. However, within the theta rhythm are at least two types with distinct frequencies associated with different behavioral states, an aspect that must be considered in pursuit of these mechanistic explanations. Here, using our previously developed excitatory-inhibitory network models that generate theta rhythms, we investigate the robustness of theta generation to intrinsic neuronal variability by building a database of heterogeneous excitatory cells and implementing them in our microcircuit model. We specifically investigate the impact of three key "building block" features of the excitatory cell model that underlie our model design: these cells' rheobase, their capacity for post-inhibitory rebound, and their spike-frequency adaptation. We show that theta rhythms at various frequencies can arise dependent upon the combination of these building block features, and we find that the speed of these oscillations are dependent upon the excitatory cells' response to inhibitory drive, as encapsulated by their phase response curves. Taken together, these findings support a hypothesis for theta frequency control that includes two aspects: (i) an internal mechanism that stems from the building block features of excitatory cell dynamics; (ii) an external mechanism that we describe as "inhibition-based tuning" of excitatory cell firing. We propose that these mechanisms control theta rhythm frequencies and underlie their robustness.
Collapse
Affiliation(s)
- Frances K. Skinner
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Scott Rich
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Anton R. Lunyov
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Jeremie Lefebvre
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Alexandra P. Chatzikalymniou
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Impaired Expression of GABA Signaling Components in the Alzheimer's Disease Middle Temporal Gyrus. Int J Mol Sci 2020; 21:ijms21228704. [PMID: 33218044 PMCID: PMC7698927 DOI: 10.3390/ijms21228704] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022] Open
Abstract
γ-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter, playing a central role in the regulation of cortical excitability and the maintenance of the excitatory/inhibitory (E/I) balance. Several lines of evidence point to a remodeling of the cerebral GABAergic system in Alzheimer’s disease (AD), with past studies demonstrating alterations in GABA receptor and transporter expression, GABA synthesizing enzyme activity and focal GABA concentrations in post-mortem tissue. AD is a chronic neurodegenerative disorder with a poorly understood etiology and the temporal cortex is one of the earliest regions in the brain to be affected by AD neurodegeneration. Utilizing NanoString nCounter analysis, we demonstrate here the transcriptional downregulation of several GABA signaling components in the post-mortem human middle temporal gyrus (MTG) in AD, including the GABAA receptor α1, α2, α3, α5, β1, β2, β3, δ, γ2, γ3, and θ subunits and the GABAB receptor 2 (GABABR2) subunit. In addition to this, we note the transcriptional upregulation of the betaine-GABA transporter (BGT1) and GABA transporter 2 (GAT2), and the downregulation of the 67 kDa isoform of glutamate decarboxylase (GAD67), the primary GABA synthesizing enzyme. The functional consequences of these changes require further investigation, but such alterations may underlie disruptions to the E/I balance that are believed to contribute to cognitive decline in AD.
Collapse
|
23
|
Adams RA, Bush D, Zheng F, Meyer SS, Kaplan R, Orfanos S, Marques TR, Howes OD, Burgess N. Impaired theta phase coupling underlies frontotemporal dysconnectivity in schizophrenia. Brain 2020; 143:1261-1277. [PMID: 32236540 PMCID: PMC7174039 DOI: 10.1093/brain/awaa035] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/21/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022] Open
Abstract
Frontotemporal dysconnectivity is a key pathology in schizophrenia. The specific nature of this dysconnectivity is unknown, but animal models imply dysfunctional theta phase coupling between hippocampus and medial prefrontal cortex (mPFC). We tested this hypothesis by examining neural dynamics in 18 participants with a schizophrenia diagnosis, both medicated and unmedicated; and 26 age, sex and IQ matched control subjects. All participants completed two tasks known to elicit hippocampal-prefrontal theta coupling: a spatial memory task (during magnetoencephalography) and a memory integration task. In addition, an overlapping group of 33 schizophrenia and 29 control subjects underwent PET to measure the availability of GABAARs expressing the α5 subunit (concentrated on hippocampal somatostatin interneurons). We demonstrate-in the spatial memory task, during memory recall-that theta power increases in left medial temporal lobe (mTL) are impaired in schizophrenia, as is theta phase coupling between mPFC and mTL. Importantly, the latter cannot be explained by theta power changes, head movement, antipsychotics, cannabis use, or IQ, and is not found in other frequency bands. Moreover, mPFC-mTL theta coupling correlated strongly with performance in controls, but not in subjects with schizophrenia, who were mildly impaired at the spatial memory task and no better than chance on the memory integration task. Finally, mTL regions showing reduced phase coupling in schizophrenia magnetoencephalography participants overlapped substantially with areas of diminished α5-GABAAR availability in the wider schizophrenia PET sample. These results indicate that mPFC-mTL dysconnectivity in schizophrenia is due to a loss of theta phase coupling, and imply α5-GABAARs (and the cells that express them) have a role in this process.
Collapse
Affiliation(s)
- Rick A Adams
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AZ, UK.,Division of Psychiatry, University College London, 149 Tottenham Court Road, London, W1T 7NF, UK.,Max Planck-UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London, WC1B 5EH, UK.,Centre for Medical Image Computing, Department of Computer Science, University College London, Malet Place, London, WC1E 7JE, UK.,Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London, WC1N 3BG, UK
| | - Daniel Bush
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AZ, UK.,Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Fanfan Zheng
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AZ, UK.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, 100190 Beijing, China
| | - Sofie S Meyer
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AZ, UK.,Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Raphael Kaplan
- Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London, WC1N 3BG, UK.,Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Stelios Orfanos
- South West London and St George's Mental Health NHS Trust, Springfield University Hospital, 61 Glenburnie Rd, London SW17 7DJ, UK.,Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | - Tiago Reis Marques
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE5 8AF, UK
| | - Oliver D Howes
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE5 8AF, UK
| | - Neil Burgess
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AZ, UK.,Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London, WC1N 3BG, UK.,Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| |
Collapse
|
24
|
Navas-Olive A, Valero M, Jurado-Parras T, de Salas-Quiroga A, Averkin RG, Gambino G, Cid E, de la Prida LM. Multimodal determinants of phase-locked dynamics across deep-superficial hippocampal sublayers during theta oscillations. Nat Commun 2020; 11:2217. [PMID: 32371879 PMCID: PMC7200700 DOI: 10.1038/s41467-020-15840-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Theta oscillations play a major role in temporarily defining the hippocampal rate code by translating behavioral sequences into neuronal representations. However, mechanisms constraining phase timing and cell-type-specific phase preference are unknown. Here, we employ computational models tuned with evolutionary algorithms to evaluate phase preference of individual CA1 pyramidal cells recorded in mice and rats not engaged in any particular memory task. We applied unbiased and hypothesis-free approaches to identify effects of intrinsic and synaptic factors, as well as cell morphology, in determining phase preference. We found that perisomatic inhibition delivered by complementary populations of basket cells interacts with input pathways to shape phase-locked specificity of deep and superficial pyramidal cells. Somatodendritic integration of fluctuating glutamatergic inputs defined cycle-by-cycle by unsupervised methods demonstrated that firing selection is tuneable across sublayers. Our data identify different mechanisms of phase-locking selectivity that are instrumental for flexible dynamical representations of theta sequences. Theta oscillations have been implicated in hippocampal processing but mechanisms constraining phase timing of specific cell types are unknown. Here, the authors combine single-cell and multisite recordings with evolutionary computational models to evaluate mechanisms of phase preference of deep and superficial CA1 pyramidal cells.
Collapse
Affiliation(s)
| | | | | | - Adan de Salas-Quiroga
- Instituto Cajal, CSIC, 28002, Madrid, Spain.,Department of Biochemistry and Molecular Biology, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain
| | - Robert G Averkin
- MTA-SZTE Research Group for Cortical Microcircuits, University of Szeged, Szeged, Hungary
| | - Giuditta Gambino
- Instituto Cajal, CSIC, 28002, Madrid, Spain.,Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Elena Cid
- Instituto Cajal, CSIC, 28002, Madrid, Spain
| | | |
Collapse
|
25
|
Dissociation of somatostatin and parvalbumin interneurons circuit dysfunctions underlying hippocampal theta and gamma oscillations impaired by amyloid β oligomers in vivo. Brain Struct Funct 2020; 225:935-954. [PMID: 32107637 PMCID: PMC7166204 DOI: 10.1007/s00429-020-02044-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 02/06/2020] [Indexed: 12/18/2022]
Abstract
Accumulation of amyloid β oligomers (AβO) in Alzheimer’s disease (AD) impairs hippocampal theta and gamma oscillations. These oscillations are important in memory functions and depend on distinct subtypes of hippocampal interneurons such as somatostatin-positive (SST) and parvalbumin-positive (PV) interneurons. Here, we investigated whether AβO causes dysfunctions in SST and PV interneurons by optogenetically manipulating them during theta and gamma oscillations in vivo in AβO-injected SST-Cre or PV-Cre mice. Hippocampal in vivo multi-electrode recordings revealed that optogenetic activation of channelrhodopsin-2 (ChR2)-expressing SST and PV interneurons in AβO-injected mice selectively restored AβO-induced reduction of the peak power of theta and gamma oscillations, respectively, and resynchronized CA1 pyramidal cell (PC) spikes. Moreover, SST and PV interneuron spike phases were resynchronized relative to theta and gamma oscillations, respectively. Whole-cell voltage-clamp recordings in CA1 PC in ex vivo hippocampal slices from AβO-injected mice revealed that optogenetic activation of SST and PV interneurons enhanced spontaneous inhibitory postsynaptic currents (IPSCs) selectively at theta and gamma frequencies, respectively. Furthermore, analyses of the stimulus–response curve, paired-pulse ratio, and short-term plasticity of SST and PV interneuron-evoked IPSCs ex vivo showed that AβO increased the initial GABA release probability to depress SST/PV interneuron’s inhibitory input to CA1 PC selectively at theta and gamma frequencies, respectively. Our results reveal frequency-specific and interneuron subtype-specific presynaptic dysfunctions of SST and PV interneurons’ input to CA1 PC as the synaptic mechanisms underlying AβO-induced impairments of hippocampal network oscillations and identify them as potential therapeutic targets for restoring hippocampal network oscillations in early AD.
Collapse
|
26
|
Booker SA, Harada H, Elgueta C, Bank J, Bartos M, Kulik A, Vida I. Presynaptic GABA B receptors functionally uncouple somatostatin interneurons from the active hippocampal network. eLife 2020; 9:51156. [PMID: 32073397 PMCID: PMC7060044 DOI: 10.7554/elife.51156] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/18/2020] [Indexed: 01/04/2023] Open
Abstract
Information processing in cortical neuronal networks relies on properly balanced excitatory and inhibitory neurotransmission. A ubiquitous motif for maintaining this balance is the somatostatin interneuron (SOM-IN) feedback microcircuit. Here, we investigated the modulation of this microcircuit by presynaptic GABAB receptors (GABABRs) in the rodent hippocampus. Whole-cell recordings from SOM-INs revealed that both excitatory and inhibitory synaptic inputs are strongly inhibited by GABABRs, while optogenetic activation of the interneurons shows that their inhibitory output is also strongly suppressed. Electron microscopic analysis of immunogold-labelled freeze-fracture replicas confirms that GABABRs are highly expressed presynaptically at both input and output synapses of SOM-INs. Activation of GABABRs selectively suppresses the recruitment of SOM-INs during gamma oscillations induced in vitro. Thus, axonal GABABRs are positioned to efficiently control the input and output synapses of SOM-INs and can functionally uncouple them from local network with implications for rhythmogenesis and the balance of entorhinal versus intrahippocampal afferents.
Collapse
Affiliation(s)
- Sam A Booker
- Institute for Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Harumi Harada
- Institute for Physiology II, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudio Elgueta
- Institute for Physiology I, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julia Bank
- Institute for Physiology II, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Marlene Bartos
- Institute for Physiology I, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Akos Kulik
- Institute for Physiology II, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Imre Vida
- Institute for Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
27
|
Sritharan SY, Contreras-Hernández E, Richardson AG, Lucas TH. Primate somatosensory cortical neurons are entrained to both spontaneous and peripherally evoked spindle oscillations. J Neurophysiol 2019; 123:300-307. [PMID: 31800329 DOI: 10.1152/jn.00471.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recurrent thalamocortical circuits produce a number of rhythms critical to brain function. In slow-wave sleep, spindles (7-16 Hz) are a prominent spontaneous oscillation generated by thalamic circuits and triggered by cortical slow waves. In wakefulness and under anesthesia, brief peripheral sensory stimuli can evoke 10-Hz reverberations due potentially to similar thalamic mechanisms. Functionally, sleep spindles and peripherally evoked spindles may play a role in memory consolidation and perception, respectively. Yet, rarely have the circuits involved in these two rhythms been compared in the same animals and never in primates. Here, we investigated the entrainment of primary somatosensory cortex (S1) neurons to both rhythms in ketamine-sedated macaques. First, we compared spontaneous spindles in sedation and natural sleep to validate the model. Then, we quantified entrainment with spike-field coherence and phase-locking statistics. We found that S1 neurons entrained to spontaneous sleep spindles were also entrained to the evoked spindles, although entrainment strength and phase systematically differed. Our results indicate that the spindle oscillations triggered by top-down spontaneous cortical activity and bottom-up peripheral input share a common cortical substrate.NEW & NOTEWORTHY Brief sensory stimuli evoke 10-Hz oscillations in thalamocortical neuronal activity and in perceptual thresholds. The mechanisms underlying this evoked rhythm are not well understood but are thought to be similar to those generating sleep spindles. We directly compared the entrainment of cortical neurons to both spontaneous spindles and peripherally evoked oscillations in sedated monkeys. We found that the entrainment strengths to each rhythm were positively correlated, although with differing entrainment phases, implying involvement of similar networks.
Collapse
Affiliation(s)
- Srihari Y Sritharan
- Department of Neurosurgery, Center for Neuroengineering and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Enrique Contreras-Hernández
- Department of Neurosurgery, Center for Neuroengineering and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew G Richardson
- Department of Neurosurgery, Center for Neuroengineering and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Timothy H Lucas
- Department of Neurosurgery, Center for Neuroengineering and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Royzen F, Williams S, Fernandez FR, White JA. Balanced synaptic currents underlie low-frequency oscillations in the subiculum. Hippocampus 2019; 29:1178-1189. [PMID: 31301195 DOI: 10.1002/hipo.23131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/31/2022]
Abstract
Numerous synaptic and intrinsic membrane mechanisms have been proposed for generating oscillatory activity in the hippocampus. Few studies, however, have directly measured synaptic conductances and membrane properties during oscillations. The time course and relative contribution of excitatory and inhibitory synaptic conductances, as well as the role of intrinsic membrane properties in amplifying synaptic inputs, remains unclear. To address this issue, we used an isolated whole hippocampal preparation that generates autonomous low-frequency oscillations near the theta range. Using 2-photon microscopy and expression of genetically encoded fluorophores, we obtained on-cell and whole-cell patch recordings of pyramidal cells and fast-firing interneurons in the distal subiculum. Pyramidal cell and interneuron spiking shared similar phase-locking to local field potential oscillations. In pyramidal cells, spiking resulted from a concomitant and balanced increase in excitatory and inhibitory synaptic currents. In contrast, interneuron spiking was driven almost exclusively by excitatory synaptic current. Thus, similar to tightly balanced networks underlying hippocampal gamma oscillations and ripples, balanced synaptic inputs in the whole hippocampal preparation drive highly phase-locked spiking at the peak of slower network oscillations.
Collapse
Affiliation(s)
- Feliks Royzen
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, Utah.,Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Sylvain Williams
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Fernando R Fernandez
- Department of Biomedical Engineering, Center for Systems Neuroscience, Boston University, Boston, Massachusetts
| | - John A White
- Department of Biomedical Engineering, Center for Systems Neuroscience, Boston University, Boston, Massachusetts
| |
Collapse
|
29
|
Vico Varela E, Etter G, Williams S. Excitatory-inhibitory imbalance in Alzheimer's disease and therapeutic significance. Neurobiol Dis 2019; 127:605-615. [DOI: 10.1016/j.nbd.2019.04.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 11/29/2022] Open
|
30
|
Murthy S, Kane GA, Katchur NJ, Lara Mejia PS, Obiofuma G, Buschman TJ, McEwen BS, Gould E. Perineuronal Nets, Inhibitory Interneurons, and Anxiety-Related Ventral Hippocampal Neuronal Oscillations Are Altered by Early Life Adversity. Biol Psychiatry 2019; 85:1011-1020. [PMID: 31027646 PMCID: PMC6590696 DOI: 10.1016/j.biopsych.2019.02.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/26/2019] [Accepted: 02/19/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND In humans, accumulated adverse experiences during childhood increase the risk of anxiety disorders and attention-deficit/hyperactivity disorder. In rodents, the ventral hippocampus (vHIP) is associated with anxiety regulation, and lesions in this region alter both anxiety-like behavior and activity levels. Neuronal oscillations in the vHIP of the theta frequency range (4-12 Hz) have been implicated in anxious states and derive in part from the activity of inhibitory interneurons in the hippocampus, some of which are enwrapped with perineuronal nets (PNNs), extracellular matrix structures known to regulate plasticity. We sought to investigate the associations among early life stress-induced anxiety and hyperactivity with vHIP neuronal oscillations, inhibitory interneurons, and PNNs in mice. METHODS We used repeated maternal separation with early weaning (MSEW) to model accumulated early life adversity in mouse offspring and studied the underlying cellular and electrophysiological changes in the vHIP that are associated with excessive anxiety and hyperactivity. RESULTS We found increased anxiety-like behavior and activity levels in MSEW adult males, along with increased theta power and enhanced theta-gamma coupling in the vHIP. MSEW mice showed reduced intensity of parvalbumin as well as increased PNN intensity around parvalbumin-positive interneurons in the vHIP. We further observed that MSEW increased orthodenticle homeobox protein 2, a transcription factor promoting PNN development, in the choroid plexus, where it is produced, as well as in parvalbumin-positive interneurons, where it is sequestered. CONCLUSIONS These findings raise the possibility of causal links among parvalbumin-positive interneurons, PNNs, orthodenticle homeobox protein 2, and MSEW-induced anxiety and hyperactivity.
Collapse
Affiliation(s)
- Sahana Murthy
- Princeton Neuroscience Institute and Department of Psychology, Princeton NJ 08544
| | - Gary A. Kane
- Princeton Neuroscience Institute and Department of Psychology, Princeton NJ 08544
| | - Nicole J. Katchur
- Princeton Neuroscience Institute and Department of Psychology, Princeton NJ 08544
| | - Paula S. Lara Mejia
- Princeton Neuroscience Institute and Department of Psychology, Princeton NJ 08544
| | - Gracious Obiofuma
- Princeton Neuroscience Institute and Department of Psychology, Princeton NJ 08544
| | - Timothy J. Buschman
- Princeton Neuroscience Institute and Department of Psychology, Princeton NJ 08544
| | - Bruce S. McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, NY, NY 10021
| | - Elizabeth Gould
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, New Jersey.
| |
Collapse
|
31
|
Friend LN, Williamson RC, Merrill CB, Newton ST, Christensen MT, Petersen J, Wu B, Ostlund I, Edwards JG. Hippocampal Stratum Oriens Somatostatin-Positive Cells Undergo CB1-Dependent Long-Term Potentiation and Express Endocannabinoid Biosynthetic Enzymes. Molecules 2019; 24:molecules24071306. [PMID: 30987110 PMCID: PMC6479520 DOI: 10.3390/molecules24071306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 11/28/2022] Open
Abstract
The hippocampus is thought to encode information by altering synaptic strength via synaptic plasticity. Some forms of synaptic plasticity are induced by lipid-based endocannabinoid signaling molecules that act on cannabinoid receptors (CB1). Endocannabinoids modulate synaptic plasticity of hippocampal pyramidal cells and stratum radiatum interneurons; however, the role of endocannabinoids in mediating synaptic plasticity of stratum oriens interneurons is unclear. These feedback inhibitory interneurons exhibit presynaptic long-term potentiation (LTP), but the exact mechanism is not entirely understood. We examined whether oriens interneurons produce endocannabinoids, and whether endocannabinoids are involved in presynaptic LTP. Using patch-clamp electrodes to extract single cells, we analyzed the expression of endocannabinoid biosynthetic enzyme mRNA by reverse transcription and then real-time PCR (RT-PCR). The cellular expression of calcium-binding proteins and neuropeptides were used to identify interneuron subtype. RT-PCR results demonstrate that stratum oriens interneurons express mRNA for both endocannabinoid biosynthetic enzymes and the type I metabotropic glutamate receptors (mGluRs), necessary for endocannabinoid production. Immunohistochemical staining further confirmed the presence of diacylglycerol lipase alpha, an endocannabinoid-synthesizing enzyme, in oriens interneurons. To test the role of endocannabinoids in synaptic plasticity, we performed whole-cell experiments using high-frequency stimulation to induce long-term potentiation in somatostatin-positive cells. This plasticity was blocked by AM-251, demonstrating CB1-dependence. In addition, in the presence of a fatty acid amide hydrolase inhibitor (URB597; 1 µM) and MAG lipase inhibitor (JZL184; 1 µM) that increase endogenous anandamide and 2-arachidonyl glycerol, respectively, excitatory current responses were potentiated. URB597-induced potentiation was blocked by CB1 antagonist AM-251 (2 µM). Collectively, this suggests somatostatin-positive oriens interneuron LTP is CB1-dependent.
Collapse
Affiliation(s)
- Lindsey N Friend
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA.
| | - Ryan C Williamson
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA.
| | - Collin B Merrill
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Scott T Newton
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA.
| | - Michael T Christensen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Jake Petersen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Bridget Wu
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Isaac Ostlund
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Jeffrey G Edwards
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA.
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
32
|
Phase Coherent Currents Underlying Neocortical Seizure-Like State Transitions. eNeuro 2019; 6:eN-NWR-0426-18. [PMID: 30923739 PMCID: PMC6437657 DOI: 10.1523/eneuro.0426-18.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/25/2019] [Accepted: 03/01/2019] [Indexed: 02/07/2023] Open
Abstract
In the epileptic brain, phase amplitude cross-frequency coupling (CFC) features have been used to objectively classify seizure-related states, and the inter-seizure state has been demonstrated as being random, in contrast to the seizure state being predictable; however, the excitatory and inhibitory networks underlying their dynamics remain unclear. Therefore, the objectives of this study are to classify the dynamics of seizure sub-states labeling seizure-like event (SLE) onset and termination intervals using CFC features and to obtain their underlying excitatory/inhibitory cellular correlates. SLEs were induced in mouse neocortical brain slices using a low-magnesium perfusate, and were recorded in Layer II/III using simultaneous local field potential (LFP) and whole-cell voltage clamp electrodes. Classification of onset and termination of SLE transitions was investigated using CFC features in conjunction with an unsupervised two-state hidden Markov model (HMM). γ-Distributions of their durations indicated that both are predictable. Furthermore, omitting 4 Hz from the HMM classifier switched both SLE sub-states from statistically deterministic to random without changing the dynamics of the SLE state. These results were generalized to 4-aminopyridine (4-AP)-induced SLEs and human seizure traces. Only during these sub-states, both excitatory and inhibitory currents coupled with the field. Where excitatory currents phase locked to a broad range of frequencies between 1 and 12 Hz, inhibitory currents dominantly phase locked at 4 Hz. We conclude that inhibition underlies the predictability of neocortical CFC-defined SLE transition sub-states.
Collapse
|
33
|
Using computational models to predict in vivo synaptic inputs to interneuron specific 3 (IS3) cells of CA1 hippocampus that also allow their recruitment during rhythmic states. PLoS One 2019; 14:e0209429. [PMID: 30620732 PMCID: PMC6324795 DOI: 10.1371/journal.pone.0209429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/05/2018] [Indexed: 12/05/2022] Open
Abstract
Brain coding strategies are enabled by the balance of synaptic inputs that individual neurons receive as determined by the networks in which they reside. Inhibitory cell types contribute to brain function in distinct ways but recording from specific, inhibitory cell types during behaviour to determine their contributions is highly challenging. In particular, the in vivo activities of vasoactive intestinal peptide-expressing interneuron specific 3 (IS3) cells in the hippocampus that only target other inhibitory cells are unknown at present. We perform a massive, computational exploration of possible synaptic inputs to IS3 cells using multi-compartment models and optimized synaptic parameters. We find that asynchronous, in vivo-like states that are sensitive to additional theta-timed inputs (8 Hz) exist when excitatory and inhibitory synaptic conductances are approximately equally balanced and with low numbers of activated synapses receiving correlated inputs. Specifically, under these balanced conditions, the input resistance is larger with higher mean spike firing rates relative to other activated synaptic conditions investigated. Incoming theta-timed inputs result in strongly increased spectral power relative to baseline. Thus, using a generally applicable computational approach we predict the existence and features of background, balanced states in hippocampal circuits.
Collapse
|
34
|
Miri ML, Vinck M, Pant R, Cardin JA. Altered hippocampal interneuron activity precedes ictal onset. eLife 2018; 7:40750. [PMID: 30387711 PMCID: PMC6245730 DOI: 10.7554/elife.40750] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/02/2018] [Indexed: 12/29/2022] Open
Abstract
Although failure of GABAergic inhibition is a commonly hypothesized mechanism underlying seizure disorders, the series of events that precipitate a rapid shift from healthy to ictal activity remain unclear. Furthermore, the diversity of inhibitory interneuron populations poses a challenge for understanding local circuit interactions during seizure initiation. Using a combined optogenetic and electrophysiological approach, we examined the activity of identified mouse hippocampal interneuron classes during chemoconvulsant seizure induction in vivo. Surprisingly, synaptic inhibition from parvalbumin- (PV) and somatostatin-expressing (SST) interneurons remained intact throughout the preictal period and early ictal phase. However, these two sources of inhibition exhibited cell-type-specific differences in their preictal firing patterns and sensitivity to input. Our findings suggest that the onset of ictal activity is not associated with loss of firing by these interneurons or a failure of synaptic inhibition but is instead linked with disruptions of the respective roles these interneurons play in the hippocampal circuit.
Collapse
Affiliation(s)
- Mitra L Miri
- Department of Neuroscience, Yale University School of Medicine, New Haven, United States
| | - Martin Vinck
- Department of Neuroscience, Yale University School of Medicine, New Haven, United States
| | - Rima Pant
- Department of Neuroscience, Yale University School of Medicine, New Haven, United States
| | - Jessica A Cardin
- Department of Neuroscience, Yale University School of Medicine, New Haven, United States.,Kavli Institute for Neuroscience, Yale University, New Haven, United States
| |
Collapse
|
35
|
Lévesque M, Avoli M. Carbachol-Induced theta-like oscillations in the rodent brain limbic system: Underlying mechanisms and significance. Neurosci Biobehav Rev 2018; 95:406-420. [PMID: 30381251 DOI: 10.1016/j.neubiorev.2018.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/25/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022]
Abstract
Theta oscillations (4-12 Hz) represent one of the most prominent physiological oscillatory activity in the mammalian EEG. They are observed in several areas of the hippocampus and in parahippocampal structures. Theta oscillations play important roles in modulating synaptic plasticity during memory and learning; moreover, they are dependent on septal cholinergic inputs. Theta oscillations can be reproduced in vitro in several regions of the temporal lobe in the absence of the septum by employing the cholinergic agonist carbachol (CCh). Here, we review the mechanisms underlying CCh-induced theta oscillations. We address: (i) the ability of temporal lobe neuronal networks to oscillate independently at theta frequency during CCh treatment; (ii) the contribution of intrinsic ionic currents; (iii) the participation of principal cells and interneurons; and (iv) their pharmacological profiles. We also discuss the similarities between CCh-induced theta oscillations and physiological type II theta activity, as well as their roles in synaptic plasticity. Finally, we consider experimental evidence pointing to the contribution of spontaneous and CCh-induced theta activity to epileptiform synchronization.
Collapse
Affiliation(s)
- Maxime Lévesque
- Montreal Neurological Institute and Departments of Neurology & Neurosurgery, and of Physiology, McGill University, 3801 University Street, Montréal, PQ, H3A 2B4, Canada
| | - Massimo Avoli
- Montreal Neurological Institute and Departments of Neurology & Neurosurgery, and of Physiology, McGill University, 3801 University Street, Montréal, PQ, H3A 2B4, Canada; Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
36
|
Deciphering the Contribution of Oriens-Lacunosum/Moleculare (OLM) Cells to Intrinsic θ Rhythms Using Biophysical Local Field Potential (LFP) Models. eNeuro 2018; 5:eN-NWR-0146-18. [PMID: 30225351 PMCID: PMC6140113 DOI: 10.1523/eneuro.0146-18.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/03/2018] [Accepted: 07/10/2018] [Indexed: 11/21/2022] Open
Abstract
Oscillations in local field potentials (LFPs) are prevalent and contribute to brain function. An understanding of the cellular correlates and pathways affecting LFPs is needed, but many overlapping pathways in vivo make this difficult to achieve. A prevalent LFP rhythm in the hippocampus associated with memory processing and spatial navigation is the θ (3–12 Hz) oscillation. θ rhythms emerge intrinsically in an in vitro whole hippocampus preparation and this reduced preparation makes it possible to assess the contribution of different cell types to LFP generation. We focus on oriens-lacunosum/moleculare (OLM) cells as a major class of interneurons in the hippocampus. OLM cells can influence pyramidal (PYR) cells through two distinct pathways: by direct inhibition of PYR cell distal dendrites, and by indirect disinhibition of PYR cell proximal dendrites. We use previous inhibitory network models and build biophysical LFP models using volume conductor theory. We examine the effect of OLM cells to ongoing intrinsic LFP θ rhythms by directly comparing our model LFP features with experiment. We find that OLM cell inputs regulate the robustness of LFP responses without affecting their average power and that this robust response depends on coactivation of distal inhibition and basal excitation. We use our models to estimate the spatial extent of the region generating LFP θ rhythms, leading us to predict that about 22,000 PYR cells participate in intrinsic θ generation. Besides obtaining an understanding of OLM cell contributions to intrinsic LFP θ rhythms, our work can help decipher cellular correlates of in vivo LFPs.
Collapse
|
37
|
Booker SA, Vida I. Morphological diversity and connectivity of hippocampal interneurons. Cell Tissue Res 2018; 373:619-641. [PMID: 30084021 PMCID: PMC6132631 DOI: 10.1007/s00441-018-2882-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/03/2018] [Indexed: 12/21/2022]
Abstract
The mammalian forebrain is constructed from ensembles of neurons that form local microcircuits giving rise to the exquisite cognitive tasks the mammalian brain can perform. Hippocampal neuronal circuits comprise populations of relatively homogenous excitatory neurons, principal cells and exceedingly heterogeneous inhibitory neurons, the interneurons. Interneurons release GABA from their axon terminals and are capable of controlling excitability in every cellular compartment of principal cells and interneurons alike; thus, they provide a brake on excess activity, control the timing of neuronal discharge and provide modulation of synaptic transmission. The dendritic and axonal morphology of interneurons, as well as their afferent and efferent connections within hippocampal circuits, is central to their ability to differentially control excitability, in a cell-type- and compartment-specific manner. This review aims to provide an up-to-date compendium of described hippocampal interneuron subtypes, with respect to their morphology, connectivity, neurochemistry and physiology, a full understanding of which will in time help to explain the rich diversity of neuronal function.
Collapse
Affiliation(s)
- Sam A Booker
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK.
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, UK.
| | - Imre Vida
- Institute for Integrative Neuroanatomy, Charité - Universitätmedizin Berlin, Berlin, Germany.
| |
Collapse
|
38
|
Nichol H, Amilhon B, Manseau F, Badrinarayanan S, Williams S. Electrophysiological and Morphological Characterization of Chrna2 Cells in the Subiculum and CA1 of the Hippocampus: An Optogenetic Investigation. Front Cell Neurosci 2018; 12:32. [PMID: 29487503 PMCID: PMC5816824 DOI: 10.3389/fncel.2018.00032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/25/2018] [Indexed: 12/21/2022] Open
Abstract
The nicotinic acetylcholine receptor alpha2 subunit (Chrna2) is a specific marker for oriens lacunosum-moleculare (OLM) interneurons in the dorsal CA1 region of the hippocampus. It was recently shown using a Chrna2-cre mice line that OLM interneurons can modulate entorhinal cortex and CA3 inputs and may therefore have an important role in gating, encoding, and recall of memory. In this study, we have used a combination of electrophysiology and optogenetics using Chrna2-cre mice to determine the role of Chrna2 interneurons in the subiculum area, the main output region of the hippocampus. We aimed to assess the similarities between Chrna2 subiculum and CA1 neurons in terms of the expression of interneuron markers, their membrane properties, and their inhibitory input to pyramidal neurons. We found that subiculum and CA1 dorsal Chrna2 cells similarly expressed the marker somatostatin and had comparable membrane and firing properties. The somas of Chrna2 cells in both regions were found in the deepest layer with axons projecting superficially. However, subiculum Chrna2 cells displayed more extensive projections with dendrites which occupied a significantly larger area than in CA1. The post-synaptic responses elicited by Chrna2 cells in pyramidal cells of both regions revealed comparable inhibitory responses elicited by GABAA receptors and, interestingly, GABAB receptor mediated components. This study provides the first in-depth characterization of Chrna2 cells in the subiculum, and suggests that subiculum and CA1 Chrna2 cells are generally similar and may play comparable roles in both sub-regions.
Collapse
Affiliation(s)
- Heather Nichol
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Bénédicte Amilhon
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Department of Neuroscience, CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Frédéric Manseau
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Saishree Badrinarayanan
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Sylvain Williams
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
39
|
Harris KD, Dashevskiy T, Mendoza J, Garcia AJ, Ramirez JM, Shea-Brown E. Different roles for inhibition in the rhythm-generating respiratory network. J Neurophysiol 2017; 118:2070-2088. [PMID: 28615332 PMCID: PMC5626906 DOI: 10.1152/jn.00174.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/25/2017] [Accepted: 06/12/2017] [Indexed: 12/20/2022] Open
Abstract
Unraveling the interplay of excitation and inhibition within rhythm-generating networks remains a fundamental issue in neuroscience. We use a biophysical model to investigate the different roles of local and long-range inhibition in the respiratory network, a key component of which is the pre-Bötzinger complex inspiratory microcircuit. Increasing inhibition within the microcircuit results in a limited number of out-of-phase neurons before rhythmicity and synchrony degenerate. Thus unstructured local inhibition is destabilizing and cannot support the generation of more than one rhythm. A two-phase rhythm requires restructuring the network into two microcircuits coupled by long-range inhibition in the manner of a half-center. In this context, inhibition leads to greater stability of the two out-of-phase rhythms. We support our computational results with in vitro recordings from mouse pre-Bötzinger complex. Partial excitation block leads to increased rhythmic variability, but this recovers after blockade of inhibition. Our results support the idea that local inhibition in the pre-Bötzinger complex is present to allow for descending control of synchrony or robustness to adverse conditions like hypoxia. We conclude that the balance of inhibition and excitation determines the stability of rhythmogenesis, but with opposite roles within and between areas. These different inhibitory roles may apply to a variety of rhythmic behaviors that emerge in widespread pattern-generating circuits of the nervous system.NEW & NOTEWORTHY The roles of inhibition within the pre-Bötzinger complex (preBötC) are a matter of debate. Using a combination of modeling and experiment, we demonstrate that inhibition affects synchrony, period variability, and overall frequency of the preBötC and coupled rhythmogenic networks. This work expands our understanding of ubiquitous motor and cognitive oscillatory networks.
Collapse
Affiliation(s)
| | - Tatiana Dashevskiy
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Joshua Mendoza
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Alfredo J Garcia
- Institute for Integrative Physiology and Section of Emergency Medicine, University of Chicago, Chicago, Illinois; and
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington
| | - Eric Shea-Brown
- Department of Applied Mathematics, University of Washington, Seattle, Washington
| |
Collapse
|
40
|
Combining Theory, Model, and Experiment to Explain How Intrinsic Theta Rhythms Are Generated in an In Vitro Whole Hippocampus Preparation without Oscillatory Inputs. eNeuro 2017; 4:eN-TNC-0131-17. [PMID: 28791333 PMCID: PMC5547196 DOI: 10.1523/eneuro.0131-17.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/11/2017] [Accepted: 07/15/2017] [Indexed: 11/21/2022] Open
Abstract
Scientists have observed local field potential theta rhythms (3-12 Hz) in the hippocampus for decades, but understanding the mechanisms underlying their generation is complicated by their diversity in pharmacological and frequency profiles. In addition, interactions with other brain structures and oscillatory drives to the hippocampus during distinct brain states has made it difficult to identify hippocampus-specific properties directly involved in theta generation. To overcome this, we develop cellular-based network models using a whole hippocampus in vitro preparation that spontaneously generates theta rhythms. Building on theoretical and computational analyses, we find that spike frequency adaptation and postinhibitory rebound constitute a basis for theta generation in large, minimally connected CA1 pyramidal (PYR) cell network models with fast-firing parvalbumin-positive (PV+) inhibitory cells. Sparse firing of PYR cells and large excitatory currents onto PV+ cells are present as in experiments. The particular theta frequency is more controlled by PYR-to-PV+ cell interactions rather than PV+-to-PYR cell interactions. We identify two scenarios by which theta rhythms can emerge, and they can be differentiated by the ratio of excitatory to inhibitory currents to PV+ cells, but not to PYR cells. Only one of the scenarios is consistent with data from the whole hippocampus preparation, which leads to the prediction that the connection probability from PV+ to PYR cells needs to be larger than from PYR to PV+ cells. Our models can serve as a platform on which to build and develop an understanding of in vivo theta generation.
Collapse
|
41
|
Manseau F, Williams S. Tuning in the Hippocampal Theta Band In Vitro: Methodologies for Recording from the Isolated Rodent Septohippocampal Circuit. J Vis Exp 2017. [PMID: 28809843 DOI: 10.3791/55851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
This protocol outlines the procedures for preparing and recording from the isolated whole hippocampus, of WT and transgenic mice, along with recent improvements in methodologies and applications for the study of theta oscillations. A simple characterization of the isolated hippocampal preparation is presented whereby the relationship between internal hippocampal theta oscillators is examined together with the activity of pyramidal cells, and GABAergic interneurons, of the cornu ammonis-1 (CA1) and subiculum (SUB) areas. Overall, we show that the isolated hippocampus is capable of generating intrinsic theta oscillations in vitro and that rhythmicity generated within the hippocampus can be precisely manipulated by optogenetic stimulation of parvalbumin-positive (PV) interneurons. The in vitro isolated hippocampal preparation offers a unique opportunity to use simultaneous field and intracellular patch-clamp recordings from visually-identified neurons to better understand the mechanisms underlying theta rhythm generation.
Collapse
Affiliation(s)
- Frédéric Manseau
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University;
| | - Sylvain Williams
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University
| |
Collapse
|