1
|
Santos JM, Deshmukh H, Elmassry MM, Yakhnitsa V, Ji G, Kiritoshi T, Presto P, Antenucci N, Liu X, Neugebauer V, Shen CL. Beneficial Effects of Ginger Root Extract on Pain Behaviors, Inflammation, and Mitochondrial Function in the Colon and Different Brain Regions of Male and Female Neuropathic Rats: A Gut-Brain Axis Study. Nutrients 2024; 16:3563. [PMID: 39458557 PMCID: PMC11510108 DOI: 10.3390/nu16203563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Neuroinflammation and mitochondrial dysfunction have been implicated in the progression of neuropathic pain (NP) but can be mitigated by supplementation with gingerol-enriched ginger (GEG). However, the exact benefits of GEG for each sex in treating neuroinflammation and mitochondrial homeostasis in different brain regions and the colon remain to be determined. OBJECTIVE Evaluate the effects of GEG on emotional/affective pain and spontaneous pain behaviors, neuroinflammation, as well as mitochondria homeostasis in the amygdala, frontal cortex, hippocampus, and colon of male and female rats in the spinal nerve ligation (SNL) NP model. METHODS One hundred rats (fifty males and fifty females) were randomly assigned to five groups: sham + vehicle, SNL + vehicle, and SNL with three different GEG doses (200, 400, and 600 mg/kg BW) for 5 weeks. A rat grimace scale and vocalizations were used to assess spontaneous and emotional/affective pain behaviors, respectively. mRNA gene and protein expression levels for tight junction protein, neuroinflammation, mitochondria homeostasis, and oxidative stress were measured in the amygdala, frontal cortex, hippocampus, and colon using qRT-PCR and Western blot (colon). RESULTS GEG supplementation mitigated spontaneous pain in both male and female rats with NP while decreasing emotional/affective responses only in male NP rats. GEG supplementation increased intestinal integrity (claudin 3) and suppressed neuroinflammation [glial activation (GFAP, CD11b, IBA1) and inflammation (TNFα, NFκB, IL1β)] in the selected brain regions and colon of male and female NP rats. GEG supplementation improved mitochondrial homeostasis [increased biogenesis (TFAM, PGC1α), increased fission (FIS, DRP1), decreased fusion (MFN2, MFN1) and mitophagy (PINK1), and increased Complex III] in the selected brain regions and colon in both sexes. Some GEG dose-response effects in gene expression were observed in NP rats of both sexes. CONCLUSIONS GEG supplementation decreased emotional/affective pain behaviors of males and females via improving gut integrity, suppressing neuroinflammation, and improving mitochondrial homeostasis in the amygdala, frontal cortex, hippocampus, and colon in both male and female SNL rats in an NP model, implicating the gut-brain axis in NP. Sex differences observed in the vocalizations assay may suggest different mechanisms of evoked NP responses in females.
Collapse
Affiliation(s)
- Julianna Maria Santos
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.M.S.); (H.D.); (X.L.)
- Department of Microanatomy and Cellular Biology, Woody L. Hunt School of Dental Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| | - Hemalata Deshmukh
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.M.S.); (H.D.); (X.L.)
| | - Moamen M. Elmassry
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA;
| | - Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (V.Y.); (G.J.); (T.K.); (P.P.); (N.A.); (V.N.)
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (V.Y.); (G.J.); (T.K.); (P.P.); (N.A.); (V.N.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (V.Y.); (G.J.); (T.K.); (P.P.); (N.A.); (V.N.)
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (V.Y.); (G.J.); (T.K.); (P.P.); (N.A.); (V.N.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (V.Y.); (G.J.); (T.K.); (P.P.); (N.A.); (V.N.)
| | - Xiaobo Liu
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.M.S.); (H.D.); (X.L.)
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (V.Y.); (G.J.); (T.K.); (P.P.); (N.A.); (V.N.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.M.S.); (H.D.); (X.L.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79401, USA
| |
Collapse
|
2
|
Singh S, Ellioff KJ, Bruchas MR, Land BB, Stella N. Analgesic Properties of Next-Generation Modulators of Endocannabinoid Signaling: Leveraging Modern Tools for the Development of Novel Therapeutics. J Pharmacol Exp Ther 2024; 391:162-173. [PMID: 39060165 PMCID: PMC11493443 DOI: 10.1124/jpet.124.002119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 07/28/2024] Open
Abstract
Targeting the endocannabinoid (eCB) signaling system for pain relief is an important treatment option that is only now beginning to be mechanistically explored. In this review, we focus on two recently appreciated cannabinoid-based targeting strategies, treatments with cannabidiol (CBD) and α/β-hydrolase domain containing 6 (ABHD6) inhibitors, which have the exciting potential to produce pain relief through distinct mechanisms of action and without intoxication. We review evidence on plant-derived cannabinoids for pain, with an emphasis on CBD and its multiple molecular targets expressed in pain pathways. We also discuss the function of eCB signaling in regulating pain responses and the therapeutic promises of inhibitors targeting ABHD6, a 2-arachidonoylglycerol (2-AG)-hydrolyzing enzyme. Finally, we discuss how the novel cannabinoid biosensor GRABeCB2.0 may be leveraged to enable the discovery of targets modulated by cannabinoids at a circuit-specific level. SIGNIFICANCE STATEMENT: Cannabis has been used by humans as an effective medicine for millennia, including for pain management. Recent evidence emphasizes the therapeutic potential of compounds that modulate endocannabinoid signaling. Specifically, cannabidiol and inhibitors of the enzyme ABHD6 represent promising strategies to achieve pain relief by modulating endocannabinoid signaling in pain pathways via distinct, nonintoxicating mechanisms of action.
Collapse
Affiliation(s)
- Simar Singh
- Departments of Pharmacology (S.S., K.J.E., M.R.B., B.B.L., N.S.), Anesthesiology and Pain Medicine (M.R.B.), and Psychiatry and Behavioral Sciences (N.S.), and Center of Excellence in Neuroscience of Addiction, Pain, and Emotion (S.S., K.J.E., M.R.B., B.B.L., N.S.), University of Washington, Seattle, Washington
| | - Kaylin J Ellioff
- Departments of Pharmacology (S.S., K.J.E., M.R.B., B.B.L., N.S.), Anesthesiology and Pain Medicine (M.R.B.), and Psychiatry and Behavioral Sciences (N.S.), and Center of Excellence in Neuroscience of Addiction, Pain, and Emotion (S.S., K.J.E., M.R.B., B.B.L., N.S.), University of Washington, Seattle, Washington
| | - Michael R Bruchas
- Departments of Pharmacology (S.S., K.J.E., M.R.B., B.B.L., N.S.), Anesthesiology and Pain Medicine (M.R.B.), and Psychiatry and Behavioral Sciences (N.S.), and Center of Excellence in Neuroscience of Addiction, Pain, and Emotion (S.S., K.J.E., M.R.B., B.B.L., N.S.), University of Washington, Seattle, Washington
| | - Benjamin B Land
- Departments of Pharmacology (S.S., K.J.E., M.R.B., B.B.L., N.S.), Anesthesiology and Pain Medicine (M.R.B.), and Psychiatry and Behavioral Sciences (N.S.), and Center of Excellence in Neuroscience of Addiction, Pain, and Emotion (S.S., K.J.E., M.R.B., B.B.L., N.S.), University of Washington, Seattle, Washington
| | - Nephi Stella
- Departments of Pharmacology (S.S., K.J.E., M.R.B., B.B.L., N.S.), Anesthesiology and Pain Medicine (M.R.B.), and Psychiatry and Behavioral Sciences (N.S.), and Center of Excellence in Neuroscience of Addiction, Pain, and Emotion (S.S., K.J.E., M.R.B., B.B.L., N.S.), University of Washington, Seattle, Washington
| |
Collapse
|
3
|
López-Tofiño Y, Hopkins MA, Bagues A, Boullon L, Abalo R, Llorente-Berzal Á. The Endocannabinoid System of the Nervous and Gastrointestinal Systems Changes after a Subnoxious Cisplatin Dose in Male Rats. Pharmaceuticals (Basel) 2024; 17:1256. [PMID: 39458898 PMCID: PMC11509924 DOI: 10.3390/ph17101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Cisplatin, a common chemotherapy agent, is well known to cause severe side effects in the gastrointestinal and nervous systems due to its toxic and pro-inflammatory effects. Although pharmacological manipulation of the endocannabinoid system (ECS) can alleviate these side effects, how chemotherapy affects the ECS components in these systems remains poorly understood. Our aim was to evaluate these changes. Methods: Male Wistar rats received cisplatin (5 mg/kg, i.p.) or saline on day 0 (D0). Immediately after, serial X-rays were taken for 24 h (D0). Body weight was recorded (D0, D1, D2 and D7) and behavioural tests were performed on D4. On D7, animals were euthanized, and gastrointestinal tissue, dorsal root ganglia (DRGs) and brain areas were collected. Expression of genes related to the ECS was assessed via Rt-PCR, while LC-MS/MS was used to analyse endocannabinoid and related N-acylethanolamine levels in tissue and plasma. Results: Animals treated with cisplatin showed a reduction in body weight. Cisplatin reduced gastric emptying during D0 and decreased MAGL gene expression in the antrum at D7. Despite cisplatin not causing mechanical or heat sensitivity, we observed ECS alterations in the prefrontal cortex (PFC) and DRGs similar to those seen in other chronic pain conditions, including an increased CB1 gene expression in L4/L5 DRGs and a decreased MAGL expression in PFC. Conclusions: A single dose of cisplatin (5 mg/kg, i.p.), subnoxious, but capable of inducing acute gastrointestinal effects, caused ECS changes in both gastrointestinal and nervous systems. Modulating the ECS could alleviate or potentially prevent chemotherapy-induced toxicity.
Collapse
Affiliation(s)
- Yolanda López-Tofiño
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (Y.L.-T.); (A.B.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Mary A. Hopkins
- Department of Pharmacology and Therapeutics, School of Medicine, University of Galway, H91W5P7 Galway, Ireland; (L.B.); (M.A.H.)
- Galway Neuroscience Centre, University of Galway, H91W5P7 Galway, Ireland
- Centre for Pain Research, University of Galway, H91W5P7 Galway, Ireland
| | - Ana Bagues
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (Y.L.-T.); (A.B.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Associated R+D+i Unit to the Institute of Medicinal Chemistry (IQM), Spanish National Research Council (CSIC), 28006 Madrid, Spain
| | - Laura Boullon
- Department of Pharmacology and Therapeutics, School of Medicine, University of Galway, H91W5P7 Galway, Ireland; (L.B.); (M.A.H.)
- Galway Neuroscience Centre, University of Galway, H91W5P7 Galway, Ireland
- Centre for Pain Research, University of Galway, H91W5P7 Galway, Ireland
| | - Raquel Abalo
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (Y.L.-T.); (A.B.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Associated R+D+i Unit to the Institute of Medicinal Chemistry (IQM), Spanish National Research Council (CSIC), 28006 Madrid, Spain
- Working Group of Basic Sciences on Pain and Analgesia, Spanish Pain Society, 28046 Madrid, Spain
- Working Group of Basic Sciences on Cannabinoids, Spanish Pain Society, 28046 Madrid, Spain
| | - Álvaro Llorente-Berzal
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Department of Pharmacology and Therapeutics, School of Medicine, University of Galway, H91W5P7 Galway, Ireland; (L.B.); (M.A.H.)
- Galway Neuroscience Centre, University of Galway, H91W5P7 Galway, Ireland
- Centre for Pain Research, University of Galway, H91W5P7 Galway, Ireland
- Department of Physiology, School of Medicine, Autonomous University of Madrid (UAM), 28049 Madrid, Spain
| |
Collapse
|
4
|
Notartomaso S, Antenucci N, Mazzitelli M, Rovira X, Boccella S, Ricciardi F, Liberatore F, Gomez-Santacana X, Imbriglio T, Cannella M, Zussy C, Luongo L, Maione S, Goudet C, Battaglia G, Llebaria A, Nicoletti F, Neugebauer V. A 'double-edged' role for type-5 metabotropic glutamate receptors in pain disclosed by light-sensitive drugs. eLife 2024; 13:e94931. [PMID: 39172042 PMCID: PMC11341090 DOI: 10.7554/elife.94931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/20/2024] [Indexed: 08/23/2024] Open
Abstract
We used light-sensitive drugs to identify the brain region-specific role of mGlu5 metabotropic glutamate receptors in the control of pain. Optical activation of systemic JF-NP-26, a caged, normally inactive, negative allosteric modulator (NAM) of mGlu5 receptors, in cingulate, prelimbic, and infralimbic cortices and thalamus inhibited neuropathic pain hypersensitivity. Systemic treatment of alloswitch-1, an intrinsically active mGlu5 receptor NAM, caused analgesia, and the effect was reversed by light-induced drug inactivation in the prelimbic and infralimbic cortices, and thalamus. This demonstrates that mGlu5 receptor blockade in the medial prefrontal cortex and thalamus is both sufficient and necessary for the analgesic activity of mGlu5 receptor antagonists. Surprisingly, when the light was delivered in the basolateral amygdala, local activation of systemic JF-NP-26 reduced pain thresholds, whereas inactivation of alloswitch-1 enhanced analgesia. Electrophysiological analysis showed that alloswitch-1 increased excitatory synaptic responses in prelimbic pyramidal neurons evoked by stimulation of presumed BLA input, and decreased BLA-driven feedforward inhibition of amygdala output neurons. Both effects were reversed by optical silencing and reinstated by optical reactivation of alloswitch-1. These findings demonstrate for the first time that the action of mGlu5 receptors in the pain neuraxis is not homogenous, and suggest that blockade of mGlu5 receptors in the BLA may limit the overall analgesic activity of mGlu5 receptor antagonists. This could explain the suboptimal effect of mGlu5 NAMs on pain in human studies and validate photopharmacology as an important tool to determine ideal target sites for systemic drugs.
Collapse
Affiliation(s)
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences CenterLubbockUnited States
| | - Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences CenterLubbockUnited States
| | - Xavier Rovira
- MCS - Medicinal Chemistry & Synthesis, Institute for Advanced Chemistry of CataloniaBarcelonaSpain
| | - Serena Boccella
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”NaplesItaly
| | - Flavia Ricciardi
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”NaplesItaly
| | | | - Xavier Gomez-Santacana
- MCS - Medicinal Chemistry & Synthesis, Institute for Advanced Chemistry of CataloniaBarcelonaSpain
| | | | - Milena Cannella
- Mediterranean Neurological Institute, IRCCS NeuromedPozzilliItaly
| | - Charleine Zussy
- Institute of Functional Genomics IGF, National Centre for Scientific Research CNRS, INSERM, University of MontpellierMontpellierFrance
| | - Livio Luongo
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”NaplesItaly
| | - Sabatino Maione
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”NaplesItaly
| | - Cyril Goudet
- Institute of Functional Genomics IGF, National Centre for Scientific Research CNRS, INSERM, University of MontpellierMontpellierFrance
| | - Giuseppe Battaglia
- Mediterranean Neurological Institute, IRCCS NeuromedPozzilliItaly
- Department of Physiology and Pharmacology, Sapienza University of RomeRomeItaly
| | - Amadeu Llebaria
- MCS - Medicinal Chemistry & Synthesis, Institute for Advanced Chemistry of CataloniaBarcelonaSpain
| | - Ferdinando Nicoletti
- Mediterranean Neurological Institute, IRCCS NeuromedPozzilliItaly
- Department of Physiology and Pharmacology, Sapienza University of RomeRomeItaly
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences CenterLubbockUnited States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences CenterLubbockUnited States
- Garrison Institute on Aging, Texas Tech University Health Sciences CenterLubbockUnited States
| |
Collapse
|
5
|
Tian X, Russo SJ, Li L. Behavioral Animal Models and Neural-Circuit Framework of Depressive Disorder. Neurosci Bull 2024:10.1007/s12264-024-01270-7. [PMID: 39120643 DOI: 10.1007/s12264-024-01270-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/26/2024] [Indexed: 08/10/2024] Open
Abstract
Depressive disorder is a chronic, recurring, and potentially life-endangering neuropsychiatric disease. According to a report by the World Health Organization, the global population suffering from depression is experiencing a significant annual increase. Despite its prevalence and considerable impact on people, little is known about its pathogenesis. One major reason is the scarcity of reliable animal models due to the absence of consensus on the pathology and etiology of depression. Furthermore, the neural circuit mechanism of depression induced by various factors is particularly complex. Considering the variability in depressive behavior patterns and neurobiological mechanisms among different animal models of depression, a comparison between the neural circuits of depression induced by various factors is essential for its treatment. In this review, we mainly summarize the most widely used behavioral animal models and neural circuits under different triggers of depression, aiming to provide a theoretical basis for depression prevention.
Collapse
Affiliation(s)
- Xiangyun Tian
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Scott J Russo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Long Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Ma L, Yue L, Liu S, Zhang Y, Zhang M, Cui S, Liu FY, Yi M, Wan Y. Dynamic Changes of the Infralimbic Cortex and Its Regulation of the Prelimbic Cortex in Rats with Chronic Inflammatory Pain. Neurosci Bull 2024; 40:872-886. [PMID: 38180711 PMCID: PMC11250740 DOI: 10.1007/s12264-023-01159-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/19/2023] [Indexed: 01/06/2024] Open
Abstract
The prelimbic cortex (PL) is actively engaged in pain modulation. The infralimbic cortex (IL) has been reported to regulate the PL. However, how this regulation affects pain remains unclear. In the present study, we recorded temporary hyper-activity of PL pyramidal neurons responding to nociceptive stimuli, but a temporary hypo-function of the IL by in vivo electrophysiological recording in rats with peripheral inflammation. Manipulation of the PL or IL had opposite effects on thermal hyperalgesia. Furthermore, the functional connectivity and chemogenetic regulation between the subregions indicated an inhibitory influence of the IL on the PL. Activation of the pathway from the IL to the PL alleviated thermal hyperalgesia, whereas its inhibition exacerbated chronic pain. Overall, our results suggest a new mechanism underlying the role of the medial prefrontal cortex in chronic pain: hypo-function of the IL leads to hyperactivity of the PL, which regulates thermal hyperalgesia, and thus contributes to the chronicity of pain.
Collapse
Affiliation(s)
- Longyu Ma
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Peking University, Beijing, 100083, China
| | - Lupeng Yue
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Science, Beijing, 100101, China
| | - Shuting Liu
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Peking University, Beijing, 100083, China
| | - Yu Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Peking University, Beijing, 100083, China
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS & PUMC, Beijing, 100021, China
| | - Meng Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Peking University, Beijing, 100083, China
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Shuang Cui
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Peking University, Beijing, 100083, China
| | - Feng-Yu Liu
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Peking University, Beijing, 100083, China
| | - Ming Yi
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Peking University, Beijing, 100083, China.
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100083, China.
| | - You Wan
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Peking University, Beijing, 100083, China.
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100083, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
7
|
Kummer K, Sheets PL. Targeting Prefrontal Cortex Dysfunction in Pain. J Pharmacol Exp Ther 2024; 389:268-276. [PMID: 38702195 PMCID: PMC11125798 DOI: 10.1124/jpet.123.002046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 05/06/2024] Open
Abstract
The prefrontal cortex (PFC) has justifiably become a significant focus of chronic pain research. Collectively, decades of rodent and human research have provided strong rationale for studying the dysfunction of the PFC as a contributing factor in the development and persistence of chronic pain and as a key supraspinal mechanism for pain-induced comorbidities such as anxiety, depression, and cognitive decline. Chronic pain alters the structure, chemistry, and connectivity of PFC in both humans and rodents. In this review, we broadly summarize the complexities of reported changes within both rodent and human PFC caused by pain and offer insight into potential pharmacological and nonpharmacological approaches for targeting PFC to treat chronic pain and pain-associated comorbidities. SIGNIFICANCE STATEMENT: Chronic pain is a significant unresolved medical problem causing detrimental changes to physiological, psychological, and behavioral aspects of life. Drawbacks of currently approved pain therapeutics include incomplete efficacy and potential for abuse producing a critical need for novel approaches to treat pain and comorbid disorders. This review provides insight into how manipulation of prefrontal cortex circuits could address this unmet need of more efficacious and safer pain therapeutics.
Collapse
Affiliation(s)
- Kai Kummer
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria (K.K.); Department of Pharmacology and Toxicology (P.L.S.), Medical Neurosciences Graduate Program (P.L.S.), and Stark Neurosciences Research Institute (P.L.S.), Indiana University School of Medicine, Indianapolis, Indiana
| | - Patrick L Sheets
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria (K.K.); Department of Pharmacology and Toxicology (P.L.S.), Medical Neurosciences Graduate Program (P.L.S.), and Stark Neurosciences Research Institute (P.L.S.), Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
8
|
Lv SS, Lv XJ, Cai YQ, Hou XY, Zhang ZZ, Wang GH, Chen LQ, Lv N, Zhang YQ. Corticotropin-releasing hormone neurons control trigeminal neuralgia-induced anxiodepression via a hippocampus-to-prefrontal circuit. SCIENCE ADVANCES 2024; 10:eadj4196. [PMID: 38241377 PMCID: PMC10798562 DOI: 10.1126/sciadv.adj4196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024]
Abstract
Anxiety and depression are frequently observed in patients suffering from trigeminal neuralgia (TN), but neural circuits and mechanisms underlying this association are poorly understood. Here, we identified a dedicated neural circuit from the ventral hippocampus (vHPC) to the medial prefrontal cortex (mPFC) that mediates TN-related anxiodepression. We found that TN caused an increase in excitatory synaptic transmission from vHPCCaMK2A neurons to mPFC inhibitory neurons marked by the expression of corticotropin-releasing hormone (CRH). Activation of CRH+ neurons subsequently led to feed-forward inhibition of layer V pyramidal neurons in the mPFC via activation of the CRH receptor 1 (CRHR1). Inhibition of the vHPCCaMK2A-mPFCCRH circuit ameliorated TN-induced anxiodepression, whereas activating this pathway sufficiently produced anxiodepressive-like behaviors. Thus, our studies identified a neural pathway driving pain-related anxiodepression and a molecular target for treating pain-related psychiatric disorders.
Collapse
Affiliation(s)
- Su-Su Lv
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Xue-Jing Lv
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ya-Qi Cai
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Xin-Yu Hou
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhi-Zhe Zhang
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Guo-Hong Wang
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Li-Qiang Chen
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ning Lv
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | | |
Collapse
|
9
|
Liang Y, Zhou Y, Moneruzzaman M, Wang Y. Optogenetic Neuromodulation in Inflammatory Pain. Neuroscience 2024; 536:104-118. [PMID: 37977418 DOI: 10.1016/j.neuroscience.2023.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Inflammatory pain is one of the most prevalent forms of pain and negatively influences the quality of life. Neuromodulation has been an expanding field of pain medicine and is accepted by patients who have failed to respond to several conservative treatments. Despite its effectiveness, neuromodulation still lacks clinically robust evidence on inflammatory pain management. Optogenetics, which controls particular neurons or brain circuits with high spatiotemporal accuracy, has recently been an emerging area for inflammatory pain management and studying its mechanism. This review considers the fundamentals of optogenetics, including using opsins, targeting gene expression, and wavelength-specific light delivery techniques. The recent evidence on application and development of optogenetic neuromodulation in inflammatory pain is also summarised. The current limitations and challenges restricting the progression and clinical transformation of optogenetics in pain are addressed. Optogenetic neuromodulation in inflammatory pain has many potential targets, and developing strategies enabling clinical application is a desirable therapeutic approach and outcome.
Collapse
Affiliation(s)
- Yanan Liang
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China; University of Health and Rehabilitation Sciences, Qingdao, China; Research Center for Basic Medical Sciences, Jinan, China
| | - Yaping Zhou
- Shandong Maternal and Child Health Hospital, Jinan, China
| | - Md Moneruzzaman
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China
| | - Yonghui Wang
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
10
|
Notartomaso S, Antenucci N, Mazzitelli M, Rovira X, Boccella S, Ricciardi F, Liberatore F, Gomez-Santacana X, Imbriglio T, Cannella M, Zussy C, Luongo L, Maione S, Goudet C, Battaglia G, Llebaria A, Nicoletti F, Neugebauer V. A "double-edged" role for type-5 metabotropic glutamate receptors in pain disclosed by light-sensitive drugs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573945. [PMID: 38260426 PMCID: PMC10802266 DOI: 10.1101/2024.01.02.573945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Knowing the site of drug action is important to optimize effectiveness and address any side effects. We used light-sensitive drugs to identify the brain region-specific role of mGlu5 metabotropic glutamate receptors in the control of pain. Optical activation of systemic JF-NP-26, a caged, normally inactive, negative allosteric modulator (NAM) of mGlu5 receptors, in cingulate, prelimbic and infralimbic cortices and thalamus inhibited neuropathic pain hypersensitivity. Systemic treatment of alloswitch-1, an intrinsically active mGlu5 receptor NAM, caused analgesia, and the effect was reversed by light-induced drug inactivation in in the prelimbic and infralimbic cortices, and thalamus. This demonstrates that mGlu5 receptor blockade in the medial prefrontal cortex and thalamus is both sufficient and necessary for the analgesic activity of mGlu5 receptor antagonists. Surprisingly, when light was delivered in the basolateral amygdala, local activation of systemic JF-NP-26 reduced pain thresholds, whereas inactivation of alloswitch-1 enhanced analgesia. Electrophysiological analysis showed that alloswitch-1 increased excitatory synaptic responses in prelimbic pyramidal neurons evoked by stimulation of BLA input, and decreased feedforward inhibition of amygdala output neurons by BLA. Both effects were reversed by optical silencing and reinstated by optical reactivation of alloswitch-1. These findings demonstrate for the first time that the action of mGlu5 receptors in the pain neuraxis is not homogenous, and suggest that blockade of mGlu5 receptors in the BLA may limit the overall analgesic activity of mGlu5 receptor antagonists. This could explain the suboptimal effect of mGlu5 NAMs on pain in human studies and validate photopharmacology as an important tool to determine ideal target sites for systemic drugs.
Collapse
Affiliation(s)
- Serena Notartomaso
- Mediterranean Neurological Institute, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Xavier Rovira
- MCS - Medicinal Chemistry & Synthesis, Institute for Advanced Chemistry of Catalonia (IQAC−CSIC), Barcelona 08034, Spain
| | - Serena Boccella
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Flavia Ricciardi
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | | | - Xavier Gomez-Santacana
- MCS - Medicinal Chemistry & Synthesis, Institute for Advanced Chemistry of Catalonia (IQAC−CSIC), Barcelona 08034, Spain
| | - Tiziana Imbriglio
- Mediterranean Neurological Institute, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Milena Cannella
- Mediterranean Neurological Institute, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Charleine Zussy
- Institute of Functional Genomics IGF, National Centre for Scientific Research CNRS, INSERM, University of Montpellier, F-34094 Montpellier, France
| | - Livio Luongo
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Cyril Goudet
- Institute of Functional Genomics IGF, National Centre for Scientific Research CNRS, INSERM, University of Montpellier, F-34094 Montpellier, France
| | - Giuseppe Battaglia
- Mediterranean Neurological Institute, IRCCS Neuromed, 86077 Pozzilli, Italy
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome 00185, Italy
| | - Amadeu Llebaria
- MCS - Medicinal Chemistry & Synthesis, Institute for Advanced Chemistry of Catalonia (IQAC−CSIC), Barcelona 08034, Spain
| | - Ferdinando Nicoletti
- Mediterranean Neurological Institute, IRCCS Neuromed, 86077 Pozzilli, Italy
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome 00185, Italy
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
11
|
Yao D, Chen Y, Chen G. The role of pain modulation pathway and related brain regions in pain. Rev Neurosci 2023; 34:899-914. [PMID: 37288945 DOI: 10.1515/revneuro-2023-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
Pain is a multifaceted process that encompasses unpleasant sensory and emotional experiences. The essence of the pain process is aversion, or perceived negative emotion. Central sensitization plays a significant role in initiating and perpetuating of chronic pain. Melzack proposed the concept of the "pain matrix", in which brain regions associated with pain form an interconnected network, rather than being controlled by a singular brain region. This review aims to investigate distinct brain regions involved in pain and their interconnections. In addition, it also sheds light on the reciprocal connectivity between the ascending and descending pathways that participate in pain modulation. We review the involvement of various brain areas during pain and focus on understanding the connections among them, which can contribute to a better understanding of pain mechanisms and provide opportunities for further research on therapies for improved pain management.
Collapse
Affiliation(s)
- Dandan Yao
- Department of Anesthesiology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Gang Chen
- Department of Anesthesiology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
12
|
Moura-Pacheco TL, Martins-Pereira RC, Medeiros P, Sbragia L, Ramos Andrade Leite-Panissi C, Machado HR, Coimbra NC, de Freitas RL. Effect of electrical and chemical (activation versus inactivation) stimulation of the infralimbic division of the medial prefrontal cortex in rats with chronic neuropathic pain. Exp Brain Res 2023; 241:2591-2604. [PMID: 37725136 DOI: 10.1007/s00221-023-06657-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/20/2023] [Indexed: 09/21/2023]
Abstract
Neuropathic pain (NP) represents a complex disorder with sensory, cognitive, and emotional symptoms. The medial prefrontal cortex (mPFC) takes critical regulatory roles and may change functionally and morphologically during chronic NP. There needs to be a complete understanding of the neurophysiological and psychopharmacological bases of the NP phenomenon. This study aimed to investigate the participation of the infralimbic division (IFL) of the mPFC in chronic NP, as well as the role of the N-methyl-D-aspartic acid receptor (NMDAr) in the elaboration of chronic NP. Male Wistar rats were submitted to the von Frey and acetone tests to assess mechanical and cold allodynia after 21 days of chronic constriction injury (CCI) of the sciatic nerve or Sham-procedure ("false operated"). Electrical neurostimulation of the IFL/mPFC was performed by low-frequency stimuli (20 μA, 100 Hz) applied for 15 s by deep brain stimulation (DBS) device 21 days after CCI. Either cobalt chloride (CoCl2 at 1.0 mM/200 nL), NMDAr agonist (at 0.25, 1.0, and 2.0 nmol/200 nL) or physiological saline (200 nL) was administered into the IFL/mPFC. CoCl2 administration in the IFL cortex did not alter either mechanical or cold allodynia. DBS stimulation of the IFL cortex decreased mechanical allodynia in CCI rats. Chemical stimulation of the IFL cortex by an NMDA agonist (at 2.0 nmol) decreased mechanical allodynia. NMDA at any dose (0.25, 1.0, and 2.0 nmol) reduced the flicking/licking duration in the cold test. These findings suggest that the IFL/mPFC and the NMDAr of the neocortex are involved in attenuating chronic NP in rats.
Collapse
Affiliation(s)
- Thais Lohanny Moura-Pacheco
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
- Laboratory of Neurosciences of Pain and Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
- Pediatric Surgery Laboratory, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Renata Cristina Martins-Pereira
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
- Laboratory of Neurosciences of Pain and Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
- Protection Laboratory in Childhood, Division of Neurosurgery, Department of Surgery and Anatomy, FMRP-USP, Avenida Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Priscila Medeiros
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
- Laboratory of Neurosciences of Pain and Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
- Department of General and Specialized Nursing, Ribeirão Preto Nursing School of the University of São Paulo (EERP-USP), Avenida Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Lourenço Sbragia
- Pediatric Surgery Laboratory, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Christie Ramos Andrade Leite-Panissi
- Department of Psychology,, Faculty of Philosophy, Science and Letters of Ribeirão Preto of the University of São Paulo (FFCLRP-USP), Ribeirão Preto, SP, 14040-901, Brazil
| | - Hélio Rubens Machado
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
- Department of Psychology,, Faculty of Philosophy, Science and Letters of Ribeirão Preto of the University of São Paulo (FFCLRP-USP), Ribeirão Preto, SP, 14040-901, Brazil
| | - Norberto Cysne Coimbra
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Renato Leonardo de Freitas
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil.
- Laboratory of Neurosciences of Pain and Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
13
|
Kenefati G, Rockholt MM, Ok D, McCartin M, Zhang Q, Sun G, Maslinski J, Wang A, Chen B, Voigt EP, Chen ZS, Wang J, Doan LV. Changes in alpha, theta, and gamma oscillations in distinct cortical areas are associated with altered acute pain responses in chronic low back pain patients. Front Neurosci 2023; 17:1278183. [PMID: 37901433 PMCID: PMC10611481 DOI: 10.3389/fnins.2023.1278183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Chronic pain negatively impacts a range of sensory and affective behaviors. Previous studies have shown that the presence of chronic pain not only causes hypersensitivity at the site of injury but may also be associated with pain-aversive experiences at anatomically unrelated sites. While animal studies have indicated that the cingulate and prefrontal cortices are involved in this generalized hyperalgesia, the mechanisms distinguishing increased sensitivity at the site of injury from a generalized site-nonspecific enhancement in the aversive response to nociceptive inputs are not well known. Methods We compared measured pain responses to peripheral mechanical stimuli applied to a site of chronic pain and at a pain-free site in participants suffering from chronic lower back pain (n = 15) versus pain-free control participants (n = 15) by analyzing behavioral and electroencephalographic (EEG) data. Results As expected, participants with chronic pain endorsed enhanced pain with mechanical stimuli in both back and hand. We further analyzed electroencephalographic (EEG) recordings during these evoked pain episodes. Brain oscillations in theta and alpha bands in the medial orbitofrontal cortex (mOFC) were associated with localized hypersensitivity, while increased gamma oscillations in the anterior cingulate cortex (ACC) and increased theta oscillations in the dorsolateral prefrontal cortex (dlPFC) were associated with generalized hyperalgesia. Discussion These findings indicate that chronic pain may disrupt multiple cortical circuits to impact nociceptive processing.
Collapse
Affiliation(s)
- George Kenefati
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Mika M. Rockholt
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Deborah Ok
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
| | - Michael McCartin
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Guanghao Sun
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Julia Maslinski
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Aaron Wang
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Baldwin Chen
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Erich P. Voigt
- Department of Otolaryngology-Head and Neck Surgery, New York University Grossman School of Medicine, New York, NY, United States
| | - Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, United States
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Lisa V. Doan
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
14
|
Zhang M, Li C, Xue Q, Lu CB, Zhao H, Meng FC, Zhang Y, Wu SX, Zhang Y, Xu H. Activation of Cannabinoid Receptor 1 in GABAergic Neurons in the Rostral Anterior Insular Cortex Contributes to the Analgesia Following Common Peroneal Nerve Ligation. Neurosci Bull 2023; 39:1348-1362. [PMID: 36773215 PMCID: PMC10465468 DOI: 10.1007/s12264-023-01029-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/25/2022] [Indexed: 02/12/2023] Open
Abstract
The rostral agranular insular cortex (RAIC) has been associated with pain modulation. Although the endogenous cannabinoid system (eCB) has been shown to regulate chronic pain, the roles of eCBs in the RAIC remain elusive under the neuropathic pain state. Neuropathic pain was induced in C57BL/6 mice by common peroneal nerve (CPN) ligation. The roles of the eCB were tested in the RAIC of ligated CPN C57BL/6J mice, glutamatergic, or GABAergic neuron cannabinoid receptor 1 (CB1R) knockdown mice with the whole-cell patch-clamp and pain behavioral methods. The E/I ratio (amplitude ratio between mEPSCs and mIPSCs) was significantly increased in layer V pyramidal neurons of the RAIC in CPN-ligated mice. Depolarization-induced suppression of inhibition but not depolarization-induced suppression of excitation in RAIC layer V pyramidal neurons were significantly increased in CPN-ligated mice. The analgesic effect of ACEA (a CB1R agonist) was alleviated along with bilateral dorsolateral funiculus lesions, with the administration of AM251 (a CB1R antagonist), and in CB1R knockdown mice in GABAergic neurons, but not glutamatergic neurons of the RAIC. Our results suggest that CB1R activation reinforces the function of the descending pain inhibitory pathway via reducing the inhibition of glutamatergic layer V neurons by GABAergic neurons in the RAIC to induce an analgesic effect in neuropathic pain.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032, China
- Department of Basic Medical Laboratory, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Cong Li
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032, China
- Department of Anesthesiology, Heze Municipal Hospital, Heze, 274031, China
| | - Qian Xue
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Chang-Bo Lu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Huan Zhao
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Fan-Cheng Meng
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Ying Zhang
- Department of Cardiovascular Surgery, Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | - Sheng-Xi Wu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yan Zhang
- Department of Anesthesiology, Heze Municipal Hospital, Heze, 274031, China.
| | - Hui Xu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
15
|
McNabb CT, Salcido CA, Argenbright CM, Fuchs PN. The role of the male rat infralimbic cortex in distraction analgesia. Behav Brain Res 2023; 452:114552. [PMID: 37352978 DOI: 10.1016/j.bbr.2023.114552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Cognitive interventions, including distraction, have been successfully utilized in the manipulation of experimental pain and the treatment of clinical pain. Attentional diversions can reduce the experience of pain, a phenomenon known as distraction analgesia (DA). Prior research has suggested that variations in stimulus intensity may influence the magnitude of DA. However, the neural substrates of DA remain largely unknown. Converging evidence suggests that the infralimbic cortex (IL) in the brains of rats may contribute to the phenomenon of DA. The function of the rat IL in DA has never been directly investigated, therefore, this study sought to identify the role of the IL at two levels of noxious stimulus intensity among brain-intact and IL lesioned male rats within an established rat model of DA. A distractor object reduced formalin-induced nociceptive behavior in brain-intact rats, and this DA effect was detectable during low- (0.5% formalin) and high-intensity (1% formalin) stimulation. IL lesion resulted in a near-complete elimination of the DA effect and an overall reduction in formalin pain. These results provide the first known evidence that (i) the IL is involved in processing DA in rats, (ii) the IL contributes to formalin-induced nociceptive behavior irrespective of distraction, and (iii) a high-intensity stimulation was generally more susceptible to DA than low-intensity stimulation. These findings may further inform the mechanisms and future development of non-pharmacological strategies to reduce pain.
Collapse
Affiliation(s)
- Christopher T McNabb
- Bayer US LLC, Medical Affairs, Oncology, 100 Bayer Blvd, Whippany, NJ 07981, United States; The University of Texas at Arlington, Department of Psychology, Life Science Building, Room 313, 501 S Nedderman Dr., Arlington, TX 76013, United States.
| | - Celina A Salcido
- The University of Texas at Arlington, Department of Psychology, Life Science Building, Room 313, 501 S Nedderman Dr., Arlington, TX 76013, United States; University of the Incarnate Word, School of Osteopathic Medicine, 7615 Kennedy Hill, Building 1, San Antonio, TX 78235, United States
| | - Cassie M Argenbright
- The University of Texas at Arlington, Department of Psychology, Life Science Building, Room 313, 501 S Nedderman Dr., Arlington, TX 76013, United States
| | - Perry N Fuchs
- The University of Texas at Arlington, Department of Psychology, Life Science Building, Room 313, 501 S Nedderman Dr., Arlington, TX 76013, United States
| |
Collapse
|
16
|
Shen CL, Newman JW, Elmassry MM, Borkowski K, Chyu MC, Kahathuduwa C, Neugebauer V, Watkins BA. Tai Chi exercise reduces circulating levels of inflammatory oxylipins in postmenopausal women with knee osteoarthritis: results from a pilot study. Front Med (Lausanne) 2023; 10:1210170. [PMID: 37654656 PMCID: PMC10466388 DOI: 10.3389/fmed.2023.1210170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/25/2023] [Indexed: 09/02/2023] Open
Abstract
Background Tai Chi (TC) controls pain through mind-body exercise and appears to alter inflammatory mediators. TC actions on lipid biomarkers associated with inflammation and brain neural networks in women with knee osteoarthritic pain were investigated. Methods A single-center, pre- and post-TC group (baseline and 8 wk) exercise pilot study in postmenopausal women with knee osteoarthritic pain was performed. 12 eligible women participated in TC group exercise. The primary outcome was liquid chromatography tandem mass spectrometry determination of circulating endocannabinoids (eCB) and oxylipins (OxL). Secondary outcomes were correlations between eCB and OxL levels and clinical pain/limitation assessments, and brain resting-state function magnetic resonance imaging (rs-fMRI). Results Differences in circulating quantitative levels (nM) of pro-inflammatory OxL after TC were found in women. TC exercise resulted in lower OxL PGE1 and PGE2 and higher 12-HETE, LTB4, and 12-HEPE compared to baseline. Pain assessment and eCB and OxL levels suggest crucial relationships between TC exercise, inflammatory markers, and pain. Higher plasma levels of eCB AEA, and 1, 2-AG were found in subjects with increased pain. Several eCB and OxL levels were positively correlated with left and right brain amygdala-medial prefrontal cortex functional connectivity. Conclusion TC exercise lowers pro-inflammatory OxL in women with knee osteoarthritic pain. Correlations between subject pain, functional limitations, and brain connectivity with levels of OxL and eCB showed significance. Findings indicate potential mechanisms for OxL and eCB and their biosynthetic endogenous PUFA precursors that alter brain connectivity, neuroinflammation, and pain. Clinical Trial Registration ClinicalTrials.gov, identifier: NCT04046003.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - John W. Newman
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, United States
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- West Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, CA, United States
| | - Moamen M. Elmassry
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Kamil Borkowski
- West Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, CA, United States
| | - Ming-Chien Chyu
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Medical Engineering, Texas Tech University, Lubbock, TX, United States
| | - Chanaka Kahathuduwa
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Psychiatry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Volker Neugebauer
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Bruce A. Watkins
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| |
Collapse
|
17
|
Neugebauer V, Presto P, Yakhnitsa V, Antenucci N, Mendoza B, Ji G. Pain-related cortico-limbic plasticity and opioid signaling. Neuropharmacology 2023; 231:109510. [PMID: 36944393 PMCID: PMC10585936 DOI: 10.1016/j.neuropharm.2023.109510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
Neuroplasticity in cortico-limbic circuits has been implicated in pain persistence and pain modulation in clinical and preclinical studies. The amygdala has emerged as a key player in the emotional-affective dimension of pain and pain modulation. Reciprocal interactions with medial prefrontal cortical regions undergo changes in pain conditions. Other limbic and paralimbic regions have been implicated in pain modulation as well. The cortico-limbic system is rich in opioids and opioid receptors. Preclinical evidence for their pain modulatory effects in different regions of this highly interactive system, potentially opposing functions of different opioid receptors, and knowledge gaps will be described here. There is little information about cell type- and circuit-specific functions of opioid receptor subtypes related to pain processing and pain-related plasticity in the cortico-limbic system. The important role of anterior cingulate cortex (ACC) and amygdala in MOR-dependent analgesia is most well-established, and MOR actions in the mesolimbic system appear to be similar but remain to be determined in mPFC regions other than ACC. Evidence also suggests that KOR signaling generally serves opposing functions whereas DOR signaling in the ACC has similar, if not synergistic effects, to MOR. A unifying picture of pain-related neuronal mechanisms of opioid signaling in different elements of the cortico-limbic circuitry has yet to emerge. This article is part of the Special Issue on "Opioid-induced changes in addiction and pain circuits".
Collapse
Affiliation(s)
- Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Brianna Mendoza
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
18
|
Liu Y, Li A, Bair-Marshall C, Xu H, Jee HJ, Zhu E, Sun M, Zhang Q, Lefevre A, Chen ZS, Grinevich V, Froemke RC, Wang J. Oxytocin promotes prefrontal population activity via the PVN-PFC pathway to regulate pain. Neuron 2023; 111:1795-1811.e7. [PMID: 37023755 PMCID: PMC10272109 DOI: 10.1016/j.neuron.2023.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/02/2022] [Accepted: 03/08/2023] [Indexed: 04/08/2023]
Abstract
Neurons in the prefrontal cortex (PFC) can provide top-down regulation of sensory-affective experiences such as pain. Bottom-up modulation of sensory coding in the PFC, however, remains poorly understood. Here, we examined how oxytocin (OT) signaling from the hypothalamus regulates nociceptive coding in the PFC. In vivo time-lapse endoscopic calcium imaging in freely behaving rats showed that OT selectively enhanced population activity in the prelimbic PFC in response to nociceptive inputs. This population response resulted from the reduction of evoked GABAergic inhibition and manifested as elevated functional connectivity involving pain-responsive neurons. Direct inputs from OT-releasing neurons in the paraventricular nucleus (PVN) of the hypothalamus are crucial to maintaining this prefrontal nociceptive response. Activation of the prelimbic PFC by OT or direct optogenetic stimulation of oxytocinergic PVN projections reduced acute and chronic pain. These results suggest that oxytocinergic signaling in the PVN-PFC circuit constitutes a key mechanism to regulate cortical sensory processing.
Collapse
Affiliation(s)
- Yaling Liu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Anna Li
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA; Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, USA
| | - Chloe Bair-Marshall
- Skirball Institute for Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA; Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Helen Xu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA; Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, USA
| | - Hyun Jung Jee
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA; Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, USA
| | - Elaine Zhu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA; Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, USA
| | - Mengqi Sun
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA; Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, USA
| | - Arthur Lefevre
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Zhe Sage Chen
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA; Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Robert C Froemke
- Skirball Institute for Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA; Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, USA; Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA; Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
19
|
Zhang Q, Hu S, Talay R, Xiao Z, Rosenberg D, Liu Y, Sun G, Li A, Caravan B, Singh A, Gould JD, Chen ZS, Wang J. A prototype closed-loop brain-machine interface for the study and treatment of pain. Nat Biomed Eng 2023; 7:533-545. [PMID: 34155354 PMCID: PMC9516430 DOI: 10.1038/s41551-021-00736-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/22/2021] [Indexed: 12/25/2022]
Abstract
Chronic pain is characterized by discrete pain episodes of unpredictable frequency and duration. This hinders the study of pain mechanisms and contributes to the use of pharmacological treatments associated with side effects, addiction and drug tolerance. Here, we show that a closed-loop brain-machine interface (BMI) can modulate sensory-affective experiences in real time in freely behaving rats by coupling neural codes for nociception directly with therapeutic cortical stimulation. The BMI decodes the onset of nociception via a state-space model on the basis of the analysis of online-sorted spikes recorded from the anterior cingulate cortex (which is critical for pain processing) and couples real-time pain detection with optogenetic activation of the prelimbic prefrontal cortex (which exerts top-down nociceptive regulation). In rats, the BMI effectively inhibited sensory and affective behaviours caused by acute mechanical or thermal pain, and by chronic inflammatory or neuropathic pain. The approach provides a blueprint for demand-based neuromodulation to treat sensory-affective disorders, and could be further leveraged for nociceptive control and to study pain mechanisms.
Collapse
Affiliation(s)
- Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, USA
| | - Sile Hu
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Robert Talay
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, USA
| | - Zhengdong Xiao
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - David Rosenberg
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Yaling Liu
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, USA
| | - Guanghao Sun
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Anna Li
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, USA
| | - Bassir Caravan
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Amrita Singh
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, USA
| | - Jonathan D Gould
- College of Arts and Sciences, New York University, New York, NY, USA
| | - Zhe S Chen
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, New York University School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, New York University School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
20
|
Amygdala Metabotropic Glutamate Receptor 1 Influences Synaptic Transmission to Participate in Fentanyl-Induced Hyperalgesia in Rats. Cell Mol Neurobiol 2023; 43:1401-1412. [PMID: 35798932 DOI: 10.1007/s10571-022-01248-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/22/2022] [Indexed: 11/03/2022]
Abstract
The underlying mechanisms of opioid-induced hyperalgesia (OIH) remain unclear. Herein, we found that the protein expression of metabotropic glutamate receptor 1 (mGluR1) was significantly increased in the right but not in the left laterocapsular division of central nucleus of the amygdala (CeLC) in OIH rats. In CeLC neurons, the frequency and the amplitude of mini-excitatory postsynaptic currents (mEPSCs) were significantly increased in fentanyl group which were decreased by acute application of a mGluR1 antagonist, A841720. Finally, the behavioral hypersensitivity could be reversed by A841720 microinjection into the right CeLC. These results show that the right CeLC mGluR1 is an important factor associated with OIH that enhances synaptic transmission and could be a potential drug target to alleviate fentanyl-induced hyperalgesia.
Collapse
|
21
|
Zhou S, Yin Y, Sheets PL. Mouse models of surgical and neuropathic pain produce distinct functional alterations to prodynorphin expressing neurons in the prelimbic cortex. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100121. [PMID: 36864928 PMCID: PMC9971546 DOI: 10.1016/j.ynpai.2023.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
The medial prefrontal cortex (mPFC) consists of a heterogeneous population of neurons that respond to painful stimuli, and our understanding of how different pain models alter these specific mPFC cell types remains incomplete. A distinct subpopulation of mPFC neurons express prodynorphin (Pdyn+), the endogenous peptide agonist for kappa opioid receptors (KORs). Here, we used whole cell patch clamp for studying excitability changes to Pdyn expressing neurons in the prelimbic region of the mPFC (PLPdyn+ neurons) in mouse models of surgical and neuropathic pain. Our recordings revealed that PLPdyn+ neurons consist of both pyramidal and inhibitory cell types. We find that the plantar incision model (PIM) of surgical pain increases intrinsic excitability only in pyramidal PLPdyn+ neurons one day after incision. Following recovery from incision, excitability of pyramidal PLPdyn+ neurons did not differ between male PIM and sham mice, but was decreased in PIM female mice. Moreover, the excitability of inhibitory PLPdyn+ neurons was increased in male PIM mice, but was with no difference between female sham and PIM mice. In the spared nerve injury model (SNI), pyramidal PLPdyn+ neurons were hyperexcitable at both 3 days and 14 days after SNI. However, inhibitory PLPdyn+ neurons were hypoexcitable at 3 days but hyperexcitable at 14 days after SNI. Our findings suggest different subtypes of PLPdyn+ neurons manifest distinct alterations in the development of different pain modalities and are regulated by surgical pain in a sex-specific manner. Our study provides information on a specific neuronal population that is affected by surgical and neuropathic pain.
Collapse
Affiliation(s)
- Shudi Zhou
- Medical Neurosciences Graduate Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yuexi Yin
- Medical Neurosciences Graduate Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Patrick L. Sheets
- Medical Neurosciences Graduate Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA,Corresponding author at: Indiana University School of Medicine, Neuroscience Research Building 400 D, 320 West 15th St, Indianapolis, IN 46202, USA.
| |
Collapse
|
22
|
Sun G, McCartin M, Liu W, Zhang Q, Kenefati G, Chen ZS, Wang J. Temporal pain processing in the primary somatosensory cortex and anterior cingulate cortex. Mol Brain 2023; 16:3. [PMID: 36604739 PMCID: PMC9817351 DOI: 10.1186/s13041-022-00991-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023] Open
Abstract
Pain is known to have sensory and affective components. The sensory pain component is encoded by neurons in the primary somatosensory cortex (S1), whereas the emotional or affective pain experience is in large part processed by neural activities in the anterior cingulate cortex (ACC). The timing of how a mechanical or thermal noxious stimulus triggers activation of peripheral pain fibers is well-known. However, the temporal processing of nociceptive inputs in the cortex remains little studied. Here, we took two approaches to examine how nociceptive inputs are processed by the S1 and ACC. We simultaneously recorded local field potentials in both regions, during the application of a brain-computer interface (BCI). First, we compared event related potentials in the S1 and ACC. Next, we used an algorithmic pain decoder enabled by machine-learning to detect the onset of pain which was used during the implementation of the BCI to automatically treat pain. We found that whereas mechanical pain triggered neural activity changes first in the S1, the S1 and ACC processed thermal pain with a reasonably similar time course. These results indicate that the temporal processing of nociceptive information in different regions of the cortex is likely important for the overall pain experience.
Collapse
Affiliation(s)
- Guanghao Sun
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, 10016, USA
| | - Michael McCartin
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Weizhuo Liu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, 10016, USA
| | - George Kenefati
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, 10016, USA
| | - Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, 10016, USA
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, 10016, USA.
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
23
|
Tanaka M, Zhang Y. Preclinical Studies of Posttraumatic Headache and the Potential Therapeutics. Cells 2022; 12:cells12010155. [PMID: 36611947 PMCID: PMC9818317 DOI: 10.3390/cells12010155] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/13/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Posttraumatic headache (PTH) attributed to traumatic brain injury (TBI) is a secondary headache developed within 7 days after head injury, and in a substantial number of patients PTH becomes chronic and lasts for more than 3 months. Current medications are almost entirely relied on the treatment of primary headache such as migraine, due to its migraine-like phenotype and the limited understanding on the PTH pathogenic mechanisms. To this end, increasing preclinical studies have been conducted in the last decade. We focus in this review on the trigeminovascular system from the animal studies since it provides the primary nociceptive sensory afferents innervating the head and face region, and the pathological changes in the trigeminal pathway are thought to play a key role in the development of PTH. In addition to the pathologies, PTH-like behaviors induced by TBI and further exacerbated by nitroglycerin, a general headache inducer through vasodilation are reviewed. We will overview the current pharmacotherapies including calcitonin gene-related peptide (CGRP) monoclonal antibody and sumatriptan in the PTH animal models. Given that modulation of the endocannabinoid (eCB) system has been well-documented in the treatment of migraine and TBI, the therapeutic potential of eCB in PTH will also be discussed.
Collapse
|
24
|
Cao J, Liu X, Liu JX, Zhao S, Guo YX, Wang GY, Wang XL. Inhibition of glutamatergic neurons in layer II/III of the medial prefrontal cortex alleviates paclitaxel-induced neuropathic pain and anxiety. Eur J Pharmacol 2022; 936:175351. [DOI: 10.1016/j.ejphar.2022.175351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022]
|
25
|
Alizamini MM, Li Y, Zhang JJ, Liang J, Haghparast A. Endocannabinoids and addiction memory: Relevance to methamphetamine/morphine abuse. World J Biol Psychiatry 2022; 23:743-763. [PMID: 35137652 DOI: 10.1080/15622975.2022.2039408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
AIM This review aims to summarise the role of endocannabinoid system (ECS), incluing cannabinoid receptors and their endogenous lipid ligands in the modulation of methamphetamine (METH)/morphine-induced memory impairments. METHODS Here, we utilized the results from researches which have investigated regulatory role of ECS (including cannabinoid receptor agonists and antagonists) on METH/morphine-induced memory impairments. RESULTS Among the neurotransmitters, glutamate and dopamine seem to play a critical role in association with the ECS to heal the drug-induced memory damages. Also, the amygdala, hippocampus, and prefrontal cortex are three important brain regions that participate in both drug addiction and memory task processes, and endocannabinoid neurotransmission have been investigated. CONCLUSION ECS can be regarded as a treatment for the side effects of METH and morphine, and their memory-impairing effects.
Collapse
Affiliation(s)
- Mirmohammadali Mirramezani Alizamini
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yonghui Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Jun Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Liang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Vizcarra VS, Barber KR, Franca-Solomon G, Majuta L, Smith A, Langlais PR, Largent-Milnes TM, Vanderah TW, Riegel AC. Targeting 5-HT 2A receptors and Kv7 channels in PFC to attenuate chronic neuropathic pain in rats using a spared nerve injury model. Neurosci Lett 2022; 789:136864. [PMID: 36063980 PMCID: PMC10088904 DOI: 10.1016/j.neulet.2022.136864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
Chronic pain remains a disabling disease with limited therapeutic options. Pyramidal neurons in the prefrontal cortex (PFC) express excitatory Gq-coupled 5-HT2A receptors (5-HT2AR) and their effector system, the inhibitory Kv7 ion channel. While recent publications show these cells innervate brainstem regions important for regulating pain, the cellular mechanisms underlying the transition to chronic pain are not well understood. The present study examined whether local blockade of 5-HT2AR or enhanced Kv7 ion channel activity in the PFC would attenuate mechanical allodynia associated with spared nerve injury (SNI) in rats. Following SNI, we show that inhibition of PFC 5-HT2ARs with M100907 or opening of PFC Kv7 channels with retigabine reduced mechanical allodynia. Parallel proteomic and RNAScope experiments evaluated 5-HT2AR/Kv7 channel protein and mRNA. Our results support the role of 5-HT2ARs and Kv7 channels in the PFC in the maintenance of chronic pain.
Collapse
Affiliation(s)
- Velia S Vizcarra
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA; Translational Biomedical Sciences Graduate Program, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Box URNI, Rochester, NY, 14642, USA
| | - Kara R Barber
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA
| | - Gabriela Franca-Solomon
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA
| | - Lisa Majuta
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA
| | - Angela Smith
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 52242, USA
| | - Paul R Langlais
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona, 85721, USA
| | - Tally M Largent-Milnes
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA; Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, 85721, USA; Comprehensive Pain and Addiction-Center (CPA-C), University of Arizona Health Sciences, 85721, USA; The Center of Excellence in Addiction Studies (CEAS), University of Arizona, Tucson, Arizona, 85721, USA
| | - Todd W Vanderah
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA; Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, 85721, USA; Comprehensive Pain and Addiction-Center (CPA-C), University of Arizona Health Sciences, 85721, USA; The Center of Excellence in Addiction Studies (CEAS), University of Arizona, Tucson, Arizona, 85721, USA
| | - Arthur C Riegel
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, 85721, USA; Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, 85721, USA; Comprehensive Pain and Addiction-Center (CPA-C), University of Arizona Health Sciences, 85721, USA; The Center of Excellence in Addiction Studies (CEAS), University of Arizona, Tucson, Arizona, 85721, USA; Department of Neuroscience, College of Science, University of Arizona, Tucson, Arizona, 85721, USA; James C. Wyant College of Optical Sciences, the University of Arizona, Tucson, Arizona, 85721, USA.
| |
Collapse
|
27
|
Mazzitelli M, Presto P, Antenucci N, Meltan S, Neugebauer V. Recent Advances in the Modulation of Pain by the Metabotropic Glutamate Receptors. Cells 2022; 11:2608. [PMID: 36010684 PMCID: PMC9406805 DOI: 10.3390/cells11162608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 01/22/2023] Open
Abstract
Metabotropic glutamate receptors (mGluR or mGlu) are G-protein coupled receptors activated by the binding of glutamate, the main classical neurotransmitter of the nervous system. Eight different mGluR subtypes (mGluR1-8) have been cloned and are classified in three groups based on their molecular, pharmacological and signaling properties. mGluRs mediate several physiological functions such as neuronal excitability and synaptic plasticity, but they have also been implicated in numerous pathological conditions including pain. The availability of new and more selective allosteric modulators together with the canonical orthosteric ligands and transgenic technologies has led to significant advances in our knowledge about the role of the specific mGluR subtypes in the pathophysiological mechanisms of various diseases. Although development of successful compounds acting on mGluRs for clinical use has been scarce, the subtype-specific-pharmacological manipulation might be a compelling approach for the treatment of several disorders in humans, including pain; this review aims to summarize and update on preclinical evidence for the roles of different mGluRs in the pain system and discusses knowledge gaps regarding mGluR-related sex differences and neuroimmune signaling in pain.
Collapse
Affiliation(s)
- Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Shakira Meltan
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
28
|
Shen CL, Wang R, Yakhnitsa V, Santos JM, Watson C, Kiritoshi T, Ji G, Hamood AN, Neugebauer V. Gingerol-Enriched Ginger Supplementation Mitigates Neuropathic Pain via Mitigating Intestinal Permeability and Neuroinflammation: Gut-Brain Connection. Front Pharmacol 2022; 13:912609. [PMID: 35873544 PMCID: PMC9305072 DOI: 10.3389/fphar.2022.912609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
Objectives: Emerging evidence suggests an important role of the gut-brain axis in the development of neuropathic pain (NP). We investigated the effects of gingerol-enriched ginger (GEG) on pain behaviors, as well as mRNA expressions of inflammation via tight junction proteins in GI tissues (colon) and brain tissues (amygdala, both left and right) in animals with NP. Methods: Seventeen male rats were randomly divided into three groups: Sham, spinal nerve ligation (SNL, pain model), and SNL+0.375% GEG (wt/wt in diet) for 4 weeks. Mechanosensitivity was assessed by von Frey filament tests and hindpaw compression tests. Emotional responsiveness was measured from evoked audible and ultrasonic vocalizations. Ongoing spontaneous pain was measured in rodent grimace tests. Intestinal permeability was assessed by the lactulose/D-mannitol ratio in urine. The mRNA expression levels of neuroinflammation (NF-κB, TNF-α) in the colon and amygdala (right and left) were determined by qRT-PCR. Data was analyzed statistically. Results: Compared to the sham group, the SNL group had significantly greater mechanosensitivity (von Frey and compression tests), emotional responsiveness (audible and ultrasonic vocalizations to innocuous and noxious mechanical stimuli), and spontaneous pain (rodent grimace tests). GEG supplementation significantly reduced mechanosensitivity, emotional responses, and spontaneous pain measures in SNL rats. GEG supplementation also tended to decrease SNL-induced intestinal permeability markers. The SNL group had increased mRNA expression of NF-κB and TNF-α in the right amygdala and colon; GEG supplementation mitigated these changes in SNL-treated rats. Conclusion: This study suggests GEG supplementation palliated a variety of pain spectrum behaviors in a preclinical NP animal model. GEG also decreased SNL-induced intestinal permeability and neuroinflammation, which may explain the behavioral effects of GEG.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Lubbock, TX, United States
- Center of Excellence for Integrative Health, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Lubbock, TX, United States
- *Correspondence: Chwan-Li Shen,
| | - Rui Wang
- Department of Pathology, Lubbock, TX, United States
| | - Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, Lubbock, TX, United States
| | | | - Carina Watson
- Department of Medical Education, Lubbock, TX, United States
| | - Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, Lubbock, TX, United States
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Lubbock, TX, United States
| | - Abdul Naji Hamood
- Department of Microbiology and Infectious Disease, Lubbock, TX, United States
| | - Volker Neugebauer
- Center of Excellence for Integrative Health, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Lubbock, TX, United States
- Department of Pharmacology and Neuroscience, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
29
|
The altered state of consciousness induced by Δ9-THC. Conscious Cogn 2022; 102:103357. [DOI: 10.1016/j.concog.2022.103357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/07/2022] [Accepted: 05/19/2022] [Indexed: 11/22/2022]
|
30
|
Sun G, Zeng F, McCartin M, Zhang Q, Xu H, Liu Y, Chen ZS, Wang J. Closed-loop stimulation using a multiregion brain-machine interface has analgesic effects in rodents. Sci Transl Med 2022; 14:eabm5868. [PMID: 35767651 DOI: 10.1126/scitranslmed.abm5868] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Effective treatments for chronic pain remain limited. Conceptually, a closed-loop neural interface combining sensory signal detection with therapeutic delivery could produce timely and effective pain relief. Such systems are challenging to develop because of difficulties in accurate pain detection and ultrafast analgesic delivery. Pain has sensory and affective components, encoded in large part by neural activities in the primary somatosensory cortex (S1) and anterior cingulate cortex (ACC), respectively. Meanwhile, studies show that stimulation of the prefrontal cortex (PFC) produces descending pain control. Here, we designed and tested a brain-machine interface (BMI) combining an automated pain detection arm, based on simultaneously recorded local field potential (LFP) signals from the S1 and ACC, with a treatment arm, based on optogenetic activation or electrical deep brain stimulation (DBS) of the PFC in freely behaving rats. Our multiregion neural interface accurately detected and treated acute evoked pain and chronic pain. This neural interface is activated rapidly, and its efficacy remained stable over time. Given the clinical feasibility of LFP recordings and DBS, our findings suggest that BMI is a promising approach for pain treatment.
Collapse
Affiliation(s)
- Guanghao Sun
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA.,Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA.,Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY 10016, USA
| | - Fei Zeng
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Michael McCartin
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA.,Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY 10016, USA
| | - Helen Xu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Yaling Liu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA.,Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY 10016, USA.,Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA.,Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA.,Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY 10016, USA.,Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA.,Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
31
|
Presto P, Neugebauer V. Sex Differences in CGRP Regulation and Function in the Amygdala in a Rat Model of Neuropathic Pain. Front Mol Neurosci 2022; 15:928587. [PMID: 35726298 PMCID: PMC9206543 DOI: 10.3389/fnmol.2022.928587] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/12/2022] [Indexed: 12/02/2022] Open
Abstract
The amygdala has emerged as a key player in the emotional response to pain and pain modulation. The lateral and capsular regions of the central nucleus of the amygdala (CeA) represent the “nociceptive amygdala” due to their high content of neurons that process pain-related information. These CeA divisions are the targets of the spino-parabrachio-amygdaloid pain pathway, which is the predominant source of calcitonin gene-related peptide (CGRP) within the amygdala. Changes in lateral and capsular CeA neurons have previously been observed in pain models, and synaptic plasticity in these areas has been linked to pain-related behavior. CGRP has been demonstrated to play an important role in peripheral and spinal mechanisms, and in pain-related amygdala plasticity in male rats in an acute arthritis pain model. However, the role of CGRP in chronic neuropathic pain-related amygdala function and behaviors remains to be determined for both male and female rats. Here we tested the hypothesis that the CGRP1 receptor is involved in neuropathic pain-related amygdala activity, and that blockade of this receptor can inhibit neuropathic pain behaviors in both sexes. CGRP mRNA expression levels in the CeA of male rats were upregulated at the acute stage of the spinal nerve ligation (SNL) model of neuropathic pain, whereas female rats had significantly higher CGRP and CGRP receptor component expression at the chronic stage. A CGRP1 receptor antagonist (CGRP 8-37) administered into the CeA in chronic neuropathic rats reduced mechanical hypersensitivity (von Frey and paw compression tests) in both sexes but showed female-predominant effects on emotional-affective responses (ultrasonic vocalizations) and anxiety-like behaviors (open field test). CGRP 8-37 inhibited the activity of CeA output neurons assessed with calcium imaging in brain slices from chronic neuropathic pain rats. Together, these findings may suggest that CGRP1 receptors in the CeA are involved in neuropathic pain-related amygdala activity and contribute to sensory aspects in both sexes but to emotional-affective pain responses predominantly in females. The sexually dimorphic function of CGRP in the amygdala would make CGRP1 receptors a potential therapeutic target for neuropathic pain relief, particularly in females in chronic pain conditions.
Collapse
Affiliation(s)
- Peyton Presto
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- *Correspondence: Volker Neugebauer
| |
Collapse
|
32
|
Yakhnitsa V, Ji G, Hein M, Presto P, Griffin Z, Ponomareva O, Navratilova E, Porreca F, Neugebauer V. Kappa Opioid Receptor Blockade in the Amygdala Mitigates Pain Like-Behaviors by Inhibiting Corticotropin Releasing Factor Neurons in a Rat Model of Functional Pain. Front Pharmacol 2022; 13:903978. [PMID: 35694266 PMCID: PMC9177060 DOI: 10.3389/fphar.2022.903978] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/09/2022] [Indexed: 01/06/2023] Open
Abstract
Functional pain syndromes (FPS) occur in the absence of identifiable tissue injury or noxious events and include conditions such as migraine, fibromyalgia, and others. Stressors are very common triggers of pain attacks in various FPS conditions. It has been recently demonstrated that kappa opioid receptors (KOR) in the central nucleus of amygdala (CeA) contribute to FPS conditions, but underlying mechanisms remain unclear. The CeA is rich in KOR and encompasses major output pathways involving extra-amygdalar projections of corticotropin releasing factor (CRF) expressing neurons. Here we tested the hypothesis that KOR blockade in the CeA in a rat model of FPS reduces pain-like and nocifensive behaviors by restoring inhibition of CeA-CRF neurons. Intra-CeA administration of a KOR antagonist (nor-BNI) decreased mechanical hypersensitivity and affective and anxiety-like behaviors in a stress-induced FPS model. In systems electrophysiology experiments in anesthetized rats, intra-CeA application of nor-BNI reduced spontaneous firing and responsiveness of CeA neurons to peripheral stimulation. In brain slice whole-cell patch-clamp recordings, nor-BNI increased feedforward inhibitory transmission evoked by optogenetic and electrical stimulation of parabrachial afferents, but had no effect on monosynaptic excitatory transmission. Nor-BNI decreased frequency, but not amplitude, of spontaneous inhibitory synaptic currents, suggesting a presynaptic action. Blocking KOR receptors in stress-induced FPS conditions may therefore represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Matthew Hein
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Zack Griffin
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Olga Ponomareva
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
33
|
Optogenetic manipulations of CeA-CRF neurons modulate pain- and anxiety-like behaviors in neuropathic pain and control rats. Neuropharmacology 2022; 210:109031. [PMID: 35304173 DOI: 10.1016/j.neuropharm.2022.109031] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 11/23/2022]
Abstract
The amygdala plays a critical role in the emotional-affective component of pain and pain modulation. The central nucleus of amygdala (CeA) serves major output functions and has been linked to pain-related behaviors. Corticotropin releasing factor (CRF) in the CeA has emerged as an important modulator of pain and affective disorders. Here we measured the effects of optogenetic manipulation of CeA-CRF neurons on pain-related behaviors in a rat neuropathic pain model and under control conditions. Emotional-affective behaviors (vocalizations), mechanosensitivity (electronic von Frey anesthesiometer and calibrated forceps), and anxiety-like behaviors (open field test and elevated plus maze) were assessed in adult rats 1 week and 4 weeks after spinal nerve ligation (SNL model) and sham surgery (control). For optogenetic silencing or activation of CRF neurons, a Cre-inducible viral vector encoding enhanced halorhodopsin (eNpHR3.0) or channelrhodopsin 2 (ChR2) was injected stereotaxically into the right CeA of transgenic Crh-Cre rats. Light of the appropriate wavelength (590 nm for eNpHR3.0; 473 nm for ChR2) was delivered into the CeA with an LED optic fiber. Optical silencing of CeA-CRF neurons decreased the emotional-affective responses in the acute and chronic phases of the neuropathic pain model but had anxiolytic effects only at the chronic stage and no effect on mechanosensitivity. Optogenetic activation of CeA-CRF neurons increased the emotional-affective responses and induced anxiety-like behaviors but had no effect on mechanosensitivity in control rats. The data show the critical contribution of CeA-CRF neurons to pain-related behaviors under normal conditions and beneficial effects of inhibiting CeA-CRF neurons in neuropathic pain.
Collapse
|
34
|
Shen CL, Watkins BA, Kahathuduwa C, Chyu MC, Zabet-Moghaddam M, Elmassry MM, Luk HY, Brismée JM, Knox A, Lee J, Zumwalt M, Wang R, Wager TD, Neugebauer V. Tai Chi Improves Brain Functional Connectivity and Plasma Lysophosphatidylcholines in Postmenopausal Women With Knee Osteoarthritis: An Exploratory Pilot Study. Front Med (Lausanne) 2022; 8:775344. [PMID: 35047525 PMCID: PMC8761802 DOI: 10.3389/fmed.2021.775344] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/15/2021] [Indexed: 01/08/2023] Open
Abstract
Objective: A pre/post pilot study was designed to investigate neurobiological mechanisms and plasma metabolites in an 8-week Tai-Chi (TC) group intervention in subjects with knee osteoarthritis. Methods: Twelve postmenopausal women underwent Tai-Chi group exercise for 8 weeks (60 min/session, three times/week). Outcomes were measured before and after Tai Chi intervention including pain intensity (VAS), Brief Pain Inventory (BPI), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), plasma metabolites (amino acids and lipids), as well as resting-state functional magnetic resonance imaging (rs-fMRI, 10 min, eyes open), diffusion tensor imaging (DTI, 12 min), and structural MRI (4.5 min) in a subgroup. Clinical data was analyzed using paired t-tests; plasma metabolites were analyzed using Wilcoxon signed-rank tests; and rs-fMRI data were analyzed using seed-based correlations of the left and right amygdala in a two-level mixed-effects model (FSL software). Correlations between amygdala-medial prefrontal cortex (mPFC) connectivity and corresponding changes in clinical outcomes were examined. DTI connectivity of each amygdala was modeled using a Bayesian approach and probabilistic tractography. The associations between neurobiological effects and pain/physical function were examined. Results: Significant pre/post changes were observed with reduced knee pain (VAS with most pain: p = 0.018; WOMAC-pain: p = 0.021; BPI with worst level: p = 0.018) and stiffness (WOMAC-stiffness, p = 0.020), that likely contributed to improved physical function (WOMAC-physical function: p = 0.018) with TC. Moderate to large effect sizes pre/post increase in rs-fMRI connectivity were observed between bilateral mPFC and the amygdala seed regions (i.e., left: d = 0.988, p = 0.355; right: d = 0.600, p = 0.282). Increased DTI connectivity was observed between bilateral mPFC and left amygdala (d = 0.720, p = 0.156). There were moderate-high correlations (r = 0.28–0.60) between TC-associated pre-post changes in amygdala-mPFC functional connectivity and pain/physical function improvement. Significantly higher levels of lysophosphatidylcholines were observed after TC but lower levels of some essential amino acids. Amino acid levels (alanine, lysine, and methionine) were lower after 8 weeks of TC and many of the lipid metabolites were higher after TC. Further, plasma non-HDL cholesterol levels were lower after TC. Conclusion: This pilot study showed moderate to large effect sizes, suggesting an important role that cortico-amygdala interactions related to TC have on pain and physical function in subjects with knee osteoarthritis pain. Metabolite analyses revealed a metabolic shift of higher lyso-lipids and lower amino acids that might suggest greater fatty acid catabolism, protein turnover and changes in lipid redistribution in response to TC exercise. The results also support therapeutic strategies aimed at strengthening functional and structural connectivity between the mPFC and the amygdala. Controlled clinical trials are warranted to confirm these observed preliminary effects.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Bruce A Watkins
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Chanaka Kahathuduwa
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Laboratory Sciences and Primary Care, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Psychiatry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Ming-Chien Chyu
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Medical Engineering, Texas Tech University, Lubbock, TX, United States
| | - Masoud Zabet-Moghaddam
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, United States
| | - Moamen M Elmassry
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Hui-Ying Luk
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, United States
| | - Jean-Michel Brismée
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Rehabilitation Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Ami Knox
- Clinical Research Institute, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Jaehoon Lee
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Educational Psychology and Leadership, Texas Tech University, Lubbock, TX, United States
| | - Mimi Zumwalt
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Orthopedic Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Rui Wang
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| | - Volker Neugebauer
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
35
|
Ashraf-Uz-Zaman M, Ji G, Tidwell D, Yin L, Thakolwiboon S, Pan J, Junell R, Griffin Z, Shahi S, Barthels D, Sajib MS, Trippier PC, Mikelis CM, Das H, Avila M, Neugebauer V, German NA. Evaluation of Urea-Based Inhibitors of the Dopamine Transporter Using the Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis. ACS Chem Neurosci 2022; 13:217-228. [PMID: 34978174 DOI: 10.1021/acschemneuro.1c00647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The dopaminergic system is involved in the regulation of immune responses in various homeostatic and disease conditions. For conditions such as Parkinson's disease and multiple sclerosis (MS), pharmacological modulation of dopamine (DA) system activity is thought to have therapeutic relevance, providing the basis for using dopaminergic agents as a treatment of relevant states. In particular, it was proposed that restoration of DA levels may inhibit neuroinflammation. We have recently reported a new class of dopamine transporter (DAT) inhibitors with high selectivity to the DAT over other G-protein coupled receptors tested. Here, we continue their evaluation as monoamine transporter inhibitors. Furthermore, we show that the urea-like DAT inhibitor (compound 5) has statistically significant anti-inflammatory effects and attenuates motor deficits and pain behaviors in the experimental autoimmune encephalomyelitis model mimicking clinical signs of MS. To the best of our knowledge, this is the first study reporting the beneficial effects of DAT inhibitor-based treatment in animals with induced autoimmune encephalomyelitis, and the observed results provide additional support to the model of DA-related neuroinflammation.
Collapse
Affiliation(s)
- Md Ashraf-Uz-Zaman
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Dalton Tidwell
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Linda Yin
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Smathorn Thakolwiboon
- Neurology Department, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Jie Pan
- Neurology Department, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Riley Junell
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Zach Griffin
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Sadisna Shahi
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Derek Barthels
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Md Sanaullah Sajib
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Paul C. Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Constantinos M. Mikelis
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Hiranmoy Das
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Mirla Avila
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
- Multiple Sclerosis and Demyelinating Diseases Clinic; Department of Neurology, Texas Tech University Health Science Center,Lubbock, Texas 79430, United States
- Neurology Department, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Nadezhda A. German
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| |
Collapse
|
36
|
Jefferson T, Kelly CJ, Martina M. Differential Rearrangement of Excitatory Inputs to the Medial Prefrontal Cortex in Chronic Pain Models. Front Neural Circuits 2022; 15:791043. [PMID: 35002635 PMCID: PMC8738091 DOI: 10.3389/fncir.2021.791043] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic pain patients suffer a disrupted quality of life not only from the experience of pain itself, but also from comorbid symptoms such as depression, anxiety, cognitive impairment, and sleep disturbances. The heterogeneity of these symptoms support the idea of a major involvement of the cerebral cortex in the chronic pain condition. Accordingly, abundant evidence shows that in chronic pain the activity of the medial prefrontal cortex (mPFC), a brain region that is critical for executive function and working memory, is severely impaired. Excitability of the mPFC depends on the integrated effects of intrinsic excitability and excitatory and inhibitory inputs. The main extracortical sources of excitatory input to the mPFC originate in the thalamus, hippocampus, and amygdala, which allow the mPFC to integrate multiple information streams necessary for cognitive control of pain including sensory information, context, and emotional salience. Recent techniques, such as optogenetic methods of circuit dissection, have made it possible to tease apart the contributions of individual circuit components. Here we review the synaptic properties of these main glutamatergic inputs to the rodent mPFC, how each is altered in animal models of chronic pain, and how these alterations contribute to pain-associated mPFC deactivation. By understanding the contributions of these individual circuit components, we strive to understand the broad spectrum of chronic pain and comorbid pathologies, how they are generated, and how they might be alleviated.
Collapse
Affiliation(s)
- Taylor Jefferson
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | | - Marco Martina
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
37
|
Liu J, Li D, Huang J, Cao J, Cai G, Guo Y, Wang G, Zhao S, Wang X, Wu S. Glutamatergic Neurons in the Amygdala Are Involved in Paclitaxel-Induced Pain and Anxiety. Front Psychiatry 2022; 13:869544. [PMID: 35492735 PMCID: PMC9049739 DOI: 10.3389/fpsyt.2022.869544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/21/2022] [Indexed: 11/18/2022] Open
Abstract
Paclitaxel is widely used as a first-line chemotherapy agent to treat malignant tumors. However, paclitaxel causes peripheral nerve fiber damage and neuropathic pain in some patients. In addition, patients received paclitaxel chemotherapy are often accompanied by negative emotions such as anxiety. The amygdala is critically involved in regulating pain signals, as well as anxiety. The purpose of this study is to clarify the role of Ca2+/calmodulin-dependent protein kinase II (CaMKII)-positive glutamatergic neurons in the amygdala in paclitaxel-induced pain and negative affective symptoms. Intraperitoneal injection of paclitaxel into mice caused mechanical and thermal allodynia, as measured by Von Frey test and Hargreaves test, and anxiety, as measured by open field test and elevated plus maze test. Immunofluorescence staining revealed that c-fos-positive neurons were significantly more in the basolateral amygdala (BLA) and central amygdala (CeA) in paclitaxel-treated mice than untreated mice. Furthermore, part of c-fos-positive neurons in the BLA were immunoreactive of CaMKII. Engineered Designer receptors exclusively activated by designer drugs (DREADD) receptor hM4Di or hM3Dq was selectively expressed on CaMKII neurons by injection of adeno-associated virus (AAV) vectors containing CaMKII and hM4Di or hM3Dq. Administration of DREADD agonist CNO to selectively inhibit the CaMKII neurons in the BLA significantly increased the paw withdrawal thresholds and paw withdrawal latencies. In addition, selectively inhibition of CaMKII neurons in the BLA alleviated anxiety behavior without affecting the motor activity. In summary, our findings suggest that CaMKII neurons in the amygdala are critical for neuropathic pain and anxiety behaviors induced by paclitaxel chemotherapy.
Collapse
Affiliation(s)
- Jiaxin Liu
- Department of Anesthesiology, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dangchao Li
- Department of Anesthesiology, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Huang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jing Cao
- Department of Anesthesiology, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guohong Cai
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yuexian Guo
- Department of Surgery, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guiying Wang
- Department of Surgery, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuang Zhao
- Department of Anesthesiology, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiuli Wang
- Department of Anesthesiology, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
38
|
The Role of Mesostriatal Dopamine System and Corticostriatal Glutamatergic Transmission in Chronic Pain. Brain Sci 2021; 11:brainsci11101311. [PMID: 34679376 PMCID: PMC8533867 DOI: 10.3390/brainsci11101311] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/21/2022] Open
Abstract
There is increasing recognition of the involvement of the nigrostriatal and mesolimbic dopamine systems in the modulation of chronic pain. The first part of the present article reviews the evidence indicating that dopamine exerts analgesic effects during persistent pain by stimulating the D2 receptors in the dorsal striatum and nucleus accumbens (NAc). Thereby, dopamine inhibits striatal output via the D2 receptor-expressing medium spiny neurons (D2-MSN). Dopaminergic neurotransmission in the mesostriatal pathways is hampered in chronic pain states and this alteration maintains and exacerbates pain. The second part of this article focuses on the glutamatergic inputs from the medial prefrontal cortex to the NAc, their activity changes in chronic pain, and their role in pain modulation. Finally, interactions between dopaminergic and glutamatergic inputs to the D2-MSN are considered in the context of persistent pain. Studies using novel techniques indicate that pain is regulated oppositely by two independent dopaminergic circuits linking separate parts of the ventral tegmental area and of the NAc, which also interact with distinct regions of the medial prefrontal cortex.
Collapse
|
39
|
Liu Y, Xu H, Sun G, Vemulapalli B, Jee HJ, Zhang Q, Wang J. Frequency Dependent Electrical Stimulation of PFC and ACC for Acute Pain Treatment in Rats. FRONTIERS IN PAIN RESEARCH 2021; 2:728045. [PMID: 35295497 PMCID: PMC8915567 DOI: 10.3389/fpain.2021.728045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
As pain consists of both sensory and affective components, its management by pharmaceutical agents remains difficult. Alternative forms of neuromodulation, such as electrical stimulation, have been studied in recent years as potential pain treatment options. Although electrical stimulation of the brain has shown promise, more research into stimulation frequency and targets is required to support its clinical applications. Here, we studied the effect that stimulation frequency has on pain modulation in the prefrontal cortex (PFC) and the anterior cingulate cortex (ACC) in acute pain models in rats. We found that low-frequency stimulation in the prelimbic region of the PFC (PL-PFC) provides reduction of sensory and affective pain components. Meanwhile, high-frequency stimulation of the ACC, a region involved in processing pain affect, reduces pain aversive behaviors. Our results demonstrate that frequency-dependent neuromodulation of the PFC or ACC has the potential for pain modulation.
Collapse
Affiliation(s)
- Yaling Liu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, United States
| | - Helen Xu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, United States
| | - Guanghao Sun
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, United States
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States
| | - Bharat Vemulapalli
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, United States
| | - Hyun Jung Jee
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, United States
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, United States
- *Correspondence: Qiaosheng Zhang
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, United States
- Department of Neuroscience & Physiology, New York University School of Medicine, New York, NY, United States
- Neuroscience Institute, New York University School of Medicine, New York, NY, United States
- Jing Wang
| |
Collapse
|
40
|
Winters BL, Vaughan CW. Mechanisms of endocannabinoid control of synaptic plasticity. Neuropharmacology 2021; 197:108736. [PMID: 34343612 DOI: 10.1016/j.neuropharm.2021.108736] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/13/2023]
Abstract
The endogenous cannabinoid transmitter system regulates synaptic transmission throughout the nervous system. Unlike conventional transmitters, specific stimuli induce synthesis of endocannabinoids (eCBs) in the postsynaptic neuron, and these travel backwards to modulate presynaptic inputs. In doing so, eCBs can induce short-term changes in synaptic strength and longer-term plasticity. While this eCB regulation is near ubiquitous, it displays major regional and synapse specific variations with different synapse specific forms of short-versus long-term plasticity throughout the brain. These differences are due to the plethora of pre- and postsynaptic mechanisms which have been implicated in eCB signalling, the intricacies of which are only just being realised. In this review, we shall describe the current understanding and highlight new advances in this area, with a focus on the retrograde action of eCBs at CB1 receptors (CB1Rs).
Collapse
Affiliation(s)
- Bryony Laura Winters
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, NSW, Australia.
| | - Christopher Walter Vaughan
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, NSW, Australia
| |
Collapse
|
41
|
Xu X, Wu K, Ma X, Wang W, Wang H, Huang M, Luo L, Su C, Yuan T, Shi H, Han J, Wang A, Xu T. mGluR5-Mediated eCB Signaling in the Nucleus Accumbens Controls Vulnerability to Depressive-Like Behaviors and Pain After Chronic Social Defeat Stress. Mol Neurobiol 2021; 58:4944-4958. [PMID: 34227060 DOI: 10.1007/s12035-021-02469-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022]
Abstract
Stress contributes to major depressive disorder (MDD) and chronic pain, which affect a significant portion of the global population, but researchers have not clearly determined how these conditions are initiated or amplified by stress. The chronic social defeat stress (CSDS) model is a mouse model of psychosocial stress that exhibits depressive-like behavior and chronic pain. We hypothesized that metabotropic glutamate receptor 5 (mGluR5) expressed in the nucleus accumbens (NAc) normalizes the depressive-like behaviors and pain following CSDS. Here, we show that CSDS induced both pain and social avoidance and that the level of mGluR5 decreased in susceptible mice. Overexpression of mGluR5 in the NAc shell and core prevented the development of depressive-like behaviors and pain in susceptible mice, respectively. Conversely, depression-like behaviors and pain were exacerbated in mice with mGluR5 knockdown in the NAc shell and core, respectively, compared to control mice subjected to 3 days of social defeat stress. Furthermore, (RS)-2-chloro-5-hydroxyphenylglycine (CHPG), an mGluR5 agonist, reversed the reduction in the level of the endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG) in the NAc of susceptible mice, an effect that was blocked by 3-((2-methyl-1, 3-thiazol-4-yl) ethynyl) pyridine hydrochloride (MTEP), an mGluR5 antagonist. In addition, the injection of CHPG into the NAc shell and core normalized depressive-like behaviors and pain, respectively, and these effects were inhibited by AM251, a cannabinoid type 1 receptor (CB1R) antagonist. Based on these results, mGluR5-mediated eCB production in the NAc relieves stress-induced depressive-like behaviors and pain.
Collapse
Affiliation(s)
- Xiaotao Xu
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Kaixuan Wu
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Xiaqing Ma
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Wenying Wang
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Haiyan Wang
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Min Huang
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Limin Luo
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Chen Su
- Department of Anesthesiology and Pain Medicine, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, 410013, People's Republic of China
| | - Tifei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China
| | - Haibo Shi
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, People's Republic of China
| | - Ji Han
- Internal medicine of TCM, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No.164 Lanxi Road, Shanghai, 200062, China.
| | - Aizhong Wang
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Tao Xu
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China. .,Department of Anesthesiology, Tongzhou People's Hospital, Nantong, 226300, China.
| |
Collapse
|
42
|
Bononi G, Tuccinardi T, Rizzolio F, Granchi C. α/β-Hydrolase Domain (ABHD) Inhibitors as New Potential Therapeutic Options against Lipid-Related Diseases. J Med Chem 2021; 64:9759-9785. [PMID: 34213320 PMCID: PMC8389839 DOI: 10.1021/acs.jmedchem.1c00624] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Much of the experimental evidence in the literature has linked altered lipid metabolism to severe diseases such as cancer, obesity, cardiovascular pathologies, diabetes, and neurodegenerative diseases. Therefore, targeting key effectors of the dysregulated lipid metabolism may represent an effective strategy to counteract these pathological conditions. In this context, α/β-hydrolase domain (ABHD) enzymes represent an important and diversified family of proteins, which are involved in the complex environment of lipid signaling, metabolism, and regulation. Moreover, some members of the ABHD family play an important role in the endocannabinoid system, being designated to terminate the signaling of the key endocannabinoid regulator 2-arachidonoylglycerol. This Perspective summarizes the research progress in the development of ABHD inhibitors and modulators: design strategies, structure-activity relationships, action mechanisms, and biological studies of the main ABHD ligands will be highlighted.
Collapse
Affiliation(s)
- Giulia Bononi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy.,Department of Molecular Sciences and Nanosystems, Ca' Foscari University, 30123 Venezia, Italy
| | - Carlotta Granchi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
43
|
Tsotsokou G, Nikolakopoulou M, Kouvelas ED, Mitsacos A. Neonatal maternal separation affects metabotropic glutamate receptor 5 expression and anxiety-related behavior of adult rats. Eur J Neurosci 2021; 54:4550-4564. [PMID: 34137089 DOI: 10.1111/ejn.15358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 01/15/2023]
Abstract
Exposure to early life stress leads to long-term neurochemical and behavioral alterations. Stress-induced psychiatric disorders, such as depression, have recently been linked to dysregulation of glutamate signaling, mainly via its postsynaptic receptors. The role of metabotropic glutamate receptor 5 (mGluR5) in stress-induced psychopathology has been the target of several studies in humans. In rodents, blockade of mGluR5 produces antidepressant-like actions, whereas mice lacking mGluR5 exhibit altered anxiety-like behaviors and learning. In this study, we used well-known rodent models of early life stress based on mother-infant separation during the first 3 weeks of life in order to examine the effects of neonatal maternal separation on mGluR5 expression and on anxiety-related behavior in adulthood. We observed that brief (15 min) neonatal maternal separation, but not prolonged (3 h), induced increases in mGluR5 mRNA and protein expression levels in medial prefrontal cortex and mGluR5 protein levels in dorsal, but not ventral, hippocampus of adult rat brain. Behavioral testing using the open-field and the elevated-plus maze tasks showed that brief maternal separations resulted in increased exploratory and decreased anxiety-related behavior, whereas prolonged maternal separations resulted in increased anxiety-related behavior in adulthood. The data indicate that the long-lasting effects of neonatal mother-offspring separation on anxiety-like behavior and mGluR5 expression depend on the duration of maternal separation and suggest that the increased mGluR5 receptors in medial prefrontal cortex and hippocampus of adult rats exposed to brief neonatal maternal separations may underlie their heightened ability to cope with stress.
Collapse
Affiliation(s)
- Giota Tsotsokou
- School of Health Sciences, Department of Medicine, Laboratory of Physiology, University Campus, University of Patras, Patras, Greece
| | - Maria Nikolakopoulou
- School of Health Sciences, Department of Medicine, Laboratory of Physiology, University Campus, University of Patras, Patras, Greece
| | - Elias D Kouvelas
- School of Health Sciences, Department of Medicine, Laboratory of Physiology, University Campus, University of Patras, Patras, Greece
| | - Ada Mitsacos
- School of Health Sciences, Department of Medicine, Laboratory of Physiology, University Campus, University of Patras, Patras, Greece
| |
Collapse
|
44
|
Mazzitelli M, Marshall K, Pham A, Ji G, Neugebauer V. Optogenetic Manipulations of Amygdala Neurons Modulate Spinal Nociceptive Processing and Behavior Under Normal Conditions and in an Arthritis Pain Model. Front Pharmacol 2021; 12:668337. [PMID: 34113253 PMCID: PMC8185300 DOI: 10.3389/fphar.2021.668337] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022] Open
Abstract
The amygdala is an important neural substrate for the emotional–affective dimension of pain and modulation of pain. The central nucleus (CeA) serves major amygdala output functions and receives nociceptive and affected–related information from the spino-parabrachial and lateral–basolateral amygdala (LA–BLA) networks. The CeA is a major site of extra–hypothalamic expression of corticotropin releasing factor (CRF, also known as corticotropin releasing hormone, CRH), and amygdala CRF neurons form widespread projections to target regions involved in behavioral and descending pain modulation. Here we explored the effects of modulating amygdala neurons on nociceptive processing in the spinal cord and on pain-like behaviors, using optogenetic activation or silencing of BLA to CeA projections and CeA–CRF neurons under normal conditions and in an acute pain model. Extracellular single unit recordings were made from spinal dorsal horn wide dynamic range (WDR) neurons, which respond more strongly to noxious than innocuous mechanical stimuli, in normal and arthritic adult rats (5–6 h postinduction of a kaolin/carrageenan–monoarthritis in the left knee). For optogenetic activation or silencing of CRF neurons, a Cre–inducible viral vector (DIO–AAV) encoding channelrhodopsin 2 (ChR2) or enhanced Natronomonas pharaonis halorhodopsin (eNpHR3.0) was injected stereotaxically into the right CeA of transgenic Crh–Cre rats. For optogenetic activation or silencing of BLA axon terminals in the CeA, a viral vector (AAV) encoding ChR2 or eNpHR3.0 under the control of the CaMKII promoter was injected stereotaxically into the right BLA of Sprague–Dawley rats. For wireless optical stimulation of ChR2 or eNpHR3.0 expressing CeA–CRF neurons or BLA–CeA axon terminals, an LED optic fiber was stereotaxically implanted into the right CeA. Optical activation of CeA–CRF neurons or of BLA axon terminals in the CeA increased the evoked responses of spinal WDR neurons and induced pain-like behaviors (hypersensitivity and vocalizations) under normal condition. Conversely, optical silencing of CeA–CRF neurons or of BLA axon terminals in the CeA decreased the evoked responses of spinal WDR neurons and vocalizations, but not hypersensitivity, in the arthritis pain model. These findings suggest that the amygdala can drive the activity of spinal cord neurons and pain-like behaviors under normal conditions and in a pain model.
Collapse
Affiliation(s)
- Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Kendall Marshall
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Andrew Pham
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
45
|
Sex-Specific Disruption of Distinct mPFC Inhibitory Neurons in Spared-Nerve Injury Model of Neuropathic Pain. Cell Rep 2021; 31:107729. [PMID: 32521254 DOI: 10.1016/j.celrep.2020.107729] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/13/2020] [Accepted: 05/13/2020] [Indexed: 12/27/2022] Open
Abstract
The medial prefrontal cortex (mPFC) modulates a range of behaviors, including responses to noxious stimuli. While various pain modalities alter mPFC function, our understanding of changes to specific cell types underlying pain-induced mPFC dysfunction remains incomplete. Proper activity of cortical GABAergic interneurons is essential for normal circuit function. We find that nerve injury increases excitability of layer 5 parvalbumin-expressing neurons in the prelimbic (PL) region of the mPFC from male, but not female, mice. Conversely, nerve injury dampens excitability in somatostatin-expressing neurons in layer 2/3 of the PL region; however, effects are differential between males and females. Nerve injury slightly increases the frequency of spontaneous excitatory post-synaptic currents (sEPSCs) in layer 5 parvalbumin-expressing neurons in males but reduces frequency of sEPSCs in layer 2/3 somatostatin-expressing neurons in females. Our findings provide key insight into how nerve injury drives maladaptive and sex-specific alterations to GABAergic circuits in cortical regions implicated in chronic pain.
Collapse
|
46
|
Phelps CE, Navratilova E, Porreca F. Cognition in the Chronic Pain Experience: Preclinical Insights. Trends Cogn Sci 2021; 25:365-376. [PMID: 33509733 PMCID: PMC8035230 DOI: 10.1016/j.tics.2021.01.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022]
Abstract
Acutely, pain is protective. It promotes escape from, and future avoidance of, noxious stimuli through strong and often lifetime associative memories. However, with persistent acute pain or when pain becomes chronic, these memories can promote negative emotions and poor decisions often associated with deleterious behaviors. In this review, we discuss how preclinical studies can provide insights into the relationship between cognition and chronic pain. We also discuss the concept of pain as a cognitive disorder and new strategies for treating chronic pain that emphasize inhibiting the formation of pain memories or promoting 'forgetting' of established pain memories.
Collapse
Affiliation(s)
- Caroline E Phelps
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ 85724, USA.
| | - Edita Navratilova
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ 85724, USA
| | - Frank Porreca
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
47
|
Zeng F, Zhang Q, Liu Y, Sun G, Li A, Talay RS, Wang J. AMPAkines potentiate the corticostriatal pathway to reduce acute and chronic pain. Mol Brain 2021; 14:45. [PMID: 33653395 PMCID: PMC7923831 DOI: 10.1186/s13041-021-00757-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
The corticostriatal circuit plays an important role in the regulation of reward- and aversion-types of behaviors. Specifically, the projection from the prelimbic cortex (PL) to the nucleus accumbens (NAc) has been shown to regulate sensory and affective aspects of pain in a number of rodent models. Previous studies have shown that enhancement of glutamate signaling through the NAc by AMPAkines, a class of agents that specifically potentiate the function of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, reduces acute and persistent pain. However, it is not known whether postsynaptic potentiation of the NAc with these agents can achieve the full anti-nociceptive effects of PL activation. Here we compared the impact of AMPAkine treatment in the NAc with optogenetic activation of the PL on pain behaviors in rats. We found that not only does AMPAkine treatment partially reconstitute the PL inhibition of sensory withdrawals, it fully occludes the effect of the PL on reducing the aversive component of pain. These results indicate that the NAc is likely one of the key targets for the PL, especially in the regulation of pain aversion. Furthermore, our results lend support for neuromodulation or pharmacological activation of the corticostriatal circuit as an important analgesic approach.
Collapse
Affiliation(s)
- Fei Zeng
- Department of Pain, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People's Republic of China
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, USA
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, USA
| | - Yaling Liu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, USA
| | - Guanghao Sun
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, USA
| | - Anna Li
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, USA
| | - Robert S Talay
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, USA
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
48
|
Hein M, Ji G, Tidwell D, D'Souza P, Kiritoshi T, Yakhnitsa V, Navratilova E, Porreca F, Neugebauer V. Kappa opioid receptor activation in the amygdala disinhibits CRF neurons to generate pain-like behaviors. Neuropharmacology 2021; 185:108456. [PMID: 33444637 PMCID: PMC7887082 DOI: 10.1016/j.neuropharm.2021.108456] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
Recent evidence suggests that kappa opioid receptors (KOR) in limbic brain regions such as the amygdala contribute to pain conditions, but underlying mechanisms remain to be determined. The amygdala is an important player in averse-affective aspects of pain and pain modulation. The central nucleus (CeA) serves output functions through projection neurons that include corticotropin releasing factor (CRF) expressing neurons. The CeA is also rich in KOR. Here we tested the novel hypothesis that KOR activation in the CeA generates pain-like behaviors through a mechanism that involves inhibition of synaptic inhibition (disinhibition) of CRF neurons. Intra-CeA administration of a KOR agonist (U-69,593) increased vocalizations of naïve rats to noxious stimuli, and induced anxiety-like behaviors in the open field test (OFT) and avoidance in the conditioned place preference test, without affecting mechanosensory thresholds. Optogenetic silencing of CeA-CRF neurons blocked the facilitatory effects of systemically applied U-69,593 in naïve rats. Patch-clamp recordings of CRF neurons in rat brain slices found that U-69,593 decreased feedforward inhibitory transmission evoked by optogenetic stimulation of parabrachial afferents, but had no effect on monosynaptic excitatory transmission. U-69,593 decreased frequency, but not amplitude, of inhibitory synaptic currents, suggesting a presynaptic action. Multiphoton imaging of CeA-CRF neurons in rat brain slices showed that U-69,593 increased calcium signals evoked by electrical stimulation of presumed parabrachial input. This study shows for the first time that KOR activation increases activity of amygdala CRF neurons through synaptic disinhibition, resulting in averse-affective pain-like behaviors. Blocking KOR receptors may therefore represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- Matthew Hein
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Dalton Tidwell
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Preston D'Souza
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Edita Navratilova
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
49
|
Drake RAR, Steel KA, Apps R, Lumb BM, Pickering AE. Loss of cortical control over the descending pain modulatory system determines the development of the neuropathic pain state in rats. eLife 2021; 10:e65156. [PMID: 33555256 PMCID: PMC7895525 DOI: 10.7554/elife.65156] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/07/2021] [Indexed: 12/21/2022] Open
Abstract
The loss of descending inhibitory control is thought critical to the development of chronic pain but what causes this loss in function is not well understood. We have investigated the dynamic contribution of prelimbic cortical neuronal projections to the periaqueductal grey (PrL-P) to the development of neuropathic pain in rats using combined opto- and chemogenetic approaches. We found PrL-P neurons to exert a tonic inhibitory control on thermal withdrawal thresholds in uninjured animals. Following nerve injury, ongoing activity in PrL-P neurons masked latent hypersensitivity and improved affective state. However, this function is lost as the development of sensory hypersensitivity emerges. Despite this loss of tonic control, opto-activation of PrL-P neurons at late post-injury timepoints could restore the anti-allodynic effects by inhibition of spinal nociceptive processing. We suggest that the loss of cortical drive to the descending pain modulatory system underpins the expression of neuropathic sensitisation after nerve injury.
Collapse
Affiliation(s)
- Robert AR Drake
- School of Physiology, Pharmacology & Neuroscience, University of BristolBristolUnited Kingdom
| | - Kenneth A Steel
- School of Biosciences, University of CardiffCardiffUnited States
| | - Richard Apps
- School of Physiology, Pharmacology & Neuroscience, University of BristolBristolUnited Kingdom
| | - Bridget M Lumb
- School of Physiology, Pharmacology & Neuroscience, University of BristolBristolUnited Kingdom
| | - Anthony E Pickering
- School of Physiology, Pharmacology & Neuroscience, University of BristolBristolUnited Kingdom
- Bristol Anaesthesia, Pain & Critical Care Sciences, Bristol Medical School, Bristol Royal InfirmaryBristolUnited Kingdom
| |
Collapse
|
50
|
Talay RS, Liu Y, Michael M, Li A, Friesner ID, Zeng F, Sun G, Chen ZS, Zhang Q, Wang J. Pharmacological restoration of anti-nociceptive functions in the prefrontal cortex relieves chronic pain. Prog Neurobiol 2021; 201:102001. [PMID: 33545233 DOI: 10.1016/j.pneurobio.2021.102001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/14/2021] [Accepted: 01/24/2021] [Indexed: 12/30/2022]
Abstract
Chronic pain affects one in four adults, and effective non-sedating and non-addictive treatments are urgently needed. Chronic pain causes maladaptive changes in the cerebral cortex, which can lead to impaired endogenous nociceptive processing. However, it is not yet clear if drugs that restore endogenous cortical regulation could provide an effective therapeutic strategy for chronic pain. Here, we studied the nociceptive response of neurons in the prelimbic region of the prefrontal cortex (PL-PFC) in freely behaving rats using a spared nerve injury (SNI) model of chronic pain, and the impact of AMPAkines, a class of drugs that increase central glutamate signaling, on such response. We found that neurons in the PL-PFC increase their firing rates in response to noxious stimulations; chronic neuropathic pain, however, suppressed this important cortical pain response. Meanwhile, CX546, a well-known AMPAkine, restored the anti-nociceptive response of PL-PFC neurons in the chronic pain condition. In addition, both systemic administration and direct delivery of CX546 into the PL-PFC inhibited symptoms of chronic pain, whereas optogenetic inactivation of the PFC neurons or administration of AMPA receptor antagonists in the PL-PFC blocked the anti-nociceptive effects of CX546. These results indicate that restoration of the endogenous anti-nociceptive functions in the PL-PFC by pharmacological agents such as AMPAkines constitutes a successful strategy to treat chronic neuropathic pain.
Collapse
Affiliation(s)
- Robert S Talay
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Health, New York, NY 10016, United States
| | - Yaling Liu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Health, New York, NY 10016, United States; Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Matthew Michael
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Health, New York, NY 10016, United States
| | - Anna Li
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Health, New York, NY 10016, United States
| | - Isabel D Friesner
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Health, New York, NY 10016, United States
| | - Fei Zeng
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Health, New York, NY 10016, United States
| | - Guanghao Sun
- Department of Psychiatry, New York University Langone Health, New York, NY 10016, United States
| | - Zhe Sage Chen
- Department of Psychiatry, New York University Langone Health, New York, NY 10016, United States; Neuroscience Institute, New York University Langone Health, New York, NY 10016, United States
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Health, New York, NY 10016, United States.
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Health, New York, NY 10016, United States; Neuroscience Institute, New York University Langone Health, New York, NY 10016, United States; Department of Neuroscience and Physiology, New York University Langone Health, New York, NY 10016, United States.
| |
Collapse
|