1
|
Neurotensin in reward processes. Neuropharmacology 2020; 167:108005. [PMID: 32057800 DOI: 10.1016/j.neuropharm.2020.108005] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 12/18/2022]
Abstract
Neurotensin (NTS) is a neuropeptide neurotransmitter expressed in the central and peripheral nervous systems. Many studies over the years have revealed a number of roles for this neuropeptide in body temperature regulation, feeding, analgesia, ethanol sensitivity, psychosis, substance use, and pain. This review provides a general survey of the role of neurotensin with a focus on modalities that we believe to be particularly relevant to the study of reward. We focus on NTS signaling in the ventral tegmental area, nucleus accumbens, lateral hypothalamus, bed nucleus of the stria terminalis, and central amygdala. Studies on the role of NTS outside of the ventral tegmental area are still in their relative infancy, yet they reveal a complex role for neurotensinergic signaling in reward-related behaviors that merits further study. This article is part of the special issue on 'Neuropeptides'.
Collapse
|
2
|
Castro DC, Bruchas MR. A Motivational and Neuropeptidergic Hub: Anatomical and Functional Diversity within the Nucleus Accumbens Shell. Neuron 2019; 102:529-552. [PMID: 31071288 PMCID: PMC6528838 DOI: 10.1016/j.neuron.2019.03.003] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/22/2019] [Accepted: 03/01/2019] [Indexed: 01/14/2023]
Abstract
The mesocorticolimbic pathway is canonically known as the "reward pathway." Embedded within the center of this circuit is the striatum, a massive and complex network hub that synthesizes motivation, affect, learning, cognition, stress, and sensorimotor information. Although striatal subregions collectively share many anatomical and functional similarities, it has become increasingly clear that it is an extraordinarily heterogeneous region. In particular, the nucleus accumbens (NAc) medial shell has repeatedly demonstrated that the rules dictated by more dorsal aspects of the striatum do not apply or are even reversed in functional logic. These discrepancies are perhaps most easily captured when isolating the functions of various neuromodulatory peptide systems within the striatum. Endogenous peptides are thought to play a critical role in modulating striatal signals to either amplify or dampen evoked behaviors. Here we describe the anatomical-functional backdrop upon which several neuropeptides act within the NAc to modulate behavior, with a specific emphasis on nucleus accumbens medial shell and stress responsivity. Additionally, we propose that, as the field continues to dissect fast neurotransmitter systems within the NAc, we must also provide considerable contextual weight to the roles local peptides play in modulating these circuits to more comprehensively understand how this important subregion gates motivated behaviors.
Collapse
Affiliation(s)
- Daniel C Castro
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Michael R Bruchas
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
3
|
Schroeder LE, Leinninger GM. Role of central neurotensin in regulating feeding: Implications for the development and treatment of body weight disorders. Biochim Biophys Acta Mol Basis Dis 2017; 1864:900-916. [PMID: 29288794 DOI: 10.1016/j.bbadis.2017.12.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/11/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
Abstract
The peptide neurotensin (Nts) was discovered within the brain over 40years ago and is implicated in regulating analgesia, body temperature, blood pressure, locomotor activity and feeding. Recent evidence suggests, however, that these disparate processes may be controlled via specific populations of Nts neurons and receptors. The neuronal mediators of Nts anorectic action are now beginning to be understood, and, as such, modulating specific Nts pathways might be useful in treating feeding and body weight disorders. This review considers mechanisms through which Nts normally regulates feeding and how disruptions in Nts signaling might contribute to the disordered feeding and body weight of schizophrenia, Parkinson's disease, anorexia nervosa, and obesity. Defining how Nts specifically mediates feeding vs. other aspects of physiology will inform the design of therapeutics that modify body weight without disrupting other important Nts-mediated physiology.
Collapse
Affiliation(s)
- Laura E Schroeder
- Department of Physiology, Michigan State University, East Lansing, MI 48823, United States
| | - Gina M Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI 48823, United States.
| |
Collapse
|
4
|
5-HT 2C Agonists Modulate Schizophrenia-Like Behaviors in Mice. Neuropsychopharmacology 2017; 42:2163-2177. [PMID: 28294132 PMCID: PMC5603814 DOI: 10.1038/npp.2017.52] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 02/28/2017] [Accepted: 03/07/2017] [Indexed: 01/16/2023]
Abstract
All FDA-approved antipsychotic drugs (APDs) target primarily dopamine D2 or serotonin (5-HT2A) receptors, or both; however, these medications are not universally effective, they may produce undesirable side effects, and provide only partial amelioration of negative and cognitive symptoms. The heterogeneity of pharmacological responses in schizophrenic patients suggests that additional drug targets may be effective in improving aspects of this syndrome. Recent evidence suggests that 5-HT2C receptors may be a promising target for schizophrenia since their activation reduces mesolimbic nigrostriatal dopamine release (which conveys antipsychotic action), they are expressed almost exclusively in CNS, and have weight-loss-promoting capabilities. A difficulty in developing 5-HT2C agonists is that most ligands also possess 5-HT2B and/or 5-HT2A activities. We have developed selective 5-HT2C ligands and herein describe their preclinical effectiveness for treating schizophrenia-like behaviors. JJ-3-45, JJ-3-42, and JJ-5-34 reduced amphetamine-stimulated hyperlocomotion, restored amphetamine-disrupted prepulse inhibition, improved social behavior, and novel object recognition memory in NMDA receptor hypofunctioning NR1-knockdown mice, and were essentially devoid of catalepsy. However, they decreased motivation in a breakpoint assay and did not promote reversal learning in MK-801-treated mice. Somewhat similar effects were observed with lorcaserin, a 5-HT2C agonist with potent 5-HT2B and 5-HT2A agonist activities, which is approved for treating obesity. Microdialysis studies revealed that both JJ-3-42 and lorcaserin reduced dopamine efflux in the infralimbic cortex, while only JJ-3-42 decreased it in striatum. Collectively, these results provide additional evidence that 5-HT2C receptors are suitable drug targets with fewer side effects, greater therapeutic selectivity, and enhanced efficacy for treating schizophrenia and related disorders than current APDs.
Collapse
|
5
|
Antipsychotic-like effects of a neurotensin receptor type 1 agonist. Behav Brain Res 2016; 305:8-17. [PMID: 26909848 DOI: 10.1016/j.bbr.2016.02.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 12/26/2022]
Abstract
Although neurotensin (NT) analogs are known to produce antipsychotic-like effects, the therapeutic possibility of a brain penetrant NTS1 agonist in treating psychiatric disorders has not been well studied. Here, we examined whether PD149163, a brain-penetrant NTS1-specific agonist, displays antipsychotic-like effects in C57BL/6J mice by investigating the effect of PD149163 on amphetamine-mediated hyperactivity and amphetamine-induced disruption of prepulse inhibition. In addition, we assessed the effect of PD149163 on glycogen synthase kinase-3 (GSK-3) activity, a downstream molecular target of antipsychotics and mood stabilizers, using phospho-specific antibodies. PD149163 (0.1 and 0.5mg/kg) inhibited amphetamine-induced hyperactivity in mice, indicating that NTS1 activation inhibits psychomotor agitation. PD149163 (0.5mg/kg) also increased prepulse inhibition, suggesting that NTS1 activation reduces prepulse inhibition deficits which often co-occur with psychosis in humans. Interestingly, PD149163 increased the inhibitory serine phosphorylation on both GSK-3α and GSK-3β in a dose- and time-dependent manner in the nucleus accumbens and medial prefrontal cortex of the mice. Moreover, PD149163 inhibited GSK-3 activity in the nucleus accumbens and medial prefrontal cortex in the presence of amphetamine. Thus, like most current antipsychotics and mood stabilizers, PD149163 inhibited GSK-3 activity in cortico-striatal circuitry. Together, our findings indicate that PD149163 may be a novel antipsychotic.
Collapse
|
6
|
Rare variants in neuronal excitability genes influence risk for bipolar disorder. Proc Natl Acad Sci U S A 2015; 112:3576-81. [PMID: 25730879 DOI: 10.1073/pnas.1424958112] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We sequenced the genomes of 200 individuals from 41 families multiply affected with bipolar disorder (BD) to identify contributions of rare variants to genetic risk. We initially focused on 3,087 candidate genes with known synaptic functions or prior evidence from genome-wide association studies. BD pedigrees had an increased burden of rare variants in genes encoding neuronal ion channels, including subunits of GABAA receptors and voltage-gated calcium channels. Four uncommon coding and regulatory variants also showed significant association, including a missense variant in GABRA6. Targeted sequencing of 26 of these candidate genes in an additional 3,014 cases and 1,717 controls confirmed rare variant associations in ANK3, CACNA1B, CACNA1C, CACNA1D, CACNG2, CAMK2A, and NGF. Variants in promoters and 5' and 3' UTRs contributed more strongly than coding variants to risk for BD, both in pedigrees and in the case-control cohort. The genes and pathways identified in this study regulate diverse aspects of neuronal excitability. We conclude that rare variants in neuronal excitability genes contribute to risk for BD.
Collapse
|
7
|
Hypothalamic neurotensin projections promote reward by enhancing glutamate transmission in the VTA. J Neurosci 2013; 33:7618-26. [PMID: 23637156 DOI: 10.1523/jneurosci.2588-12.2013] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The lateral hypothalamus (LH) sends a dense glutamatergic and peptidergic projection to dopamine neurons in the ventral tegmental area (VTA), a cell group known to promote reinforcement and aspects of reward. The role of the LH to VTA projection in reward-seeking behavior can be informed by using optogenetic techniques to dissociate the actions of LH neurons from those of other descending forebrain inputs to the VTA. In the present study, we identify the effect of neurotensin (NT), one of the most abundant peptides in the LH to VTA projection, on excitatory synaptic transmission in the VTA and reward-seeking behavior. Mice displayed robust intracranial self-stimulation of LH to VTA fibers, an operant behavior mediated by NT 1 receptors (Nts1) and NMDA receptors. Whole-cell patch-clamp recordings of VTA dopamine neurons demonstrated that NT (10 nm) potentiated NMDA-mediated EPSCs via Nts1. Results suggest that NT release from the LH into the VTA activates Nts1, thereby potentiating NMDA-mediated EPSCs and promoting reward. The striking behavioral and electrophysiological effects of NT and glutamate highlight the LH to VTA pathway as an important component of reward.
Collapse
|
8
|
Different Interactions of Prolyl Oligopeptidase and Neurotensin in Dopaminergic Function of the Rat Nigrostriatal and Mesolimbic Pathways. Neurochem Res 2012; 37:2033-41. [DOI: 10.1007/s11064-012-0825-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/05/2012] [Accepted: 06/08/2012] [Indexed: 10/28/2022]
|
9
|
Cáceda R, Binder EB, Kinkead B, Nemeroff CB. The role of endogenous neurotensin in psychostimulant-induced disruption of prepulse inhibition and locomotion. Schizophr Res 2012; 136:88-95. [PMID: 22104138 PMCID: PMC3595536 DOI: 10.1016/j.schres.2011.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 11/20/2022]
Abstract
The neuropeptide neurotensin (NT) is closely associated with dopaminergic and glutamatergic systems in the rat brain. Central injection of NT into the nucleus accumbens (NAcc) or peripheral administration of NT receptor agonists, reduces many of the behavioral effects of psychostimulants. However, the role of endogenous NT in the behavioral effects of psychostimulants (e.g. DA agonists and NMDA receptor antagonists) remains unclear. Using a NTR antagonist, SR142948A, the current studies were designed to examine the role of endogenous NT in DA receptor agonist- and NMDA receptor antagonist-induced disruption of prepulse inhibition of the acoustic startle response (PPI), locomotor hyperactivity and brain-region specific c-fos mRNA expression. Adult male rats received a single i.p. injection of SR142948A or vehicle followed by D-amphetamine, apomorphine or dizocilpine challenge. SR142948A had no effect on baseline PPI, but dose-dependently attenuated d-amphetamine- and dizocilpine-induced PPI disruption and enhanced apomorphine-induced PPI disruption. SR142948A did not significantly affect either baseline locomotor activity or stimulant-induced hyperlocomotion. Systemic SR142948A administration prevented c-fos mRNA induction in mesolimbic terminal fields (prefrontal cortex, lateral septum, NAcc, ventral subiculum) induced by all three psychostimulants implicating the VTA as the site for NT modulation of stimulant-induced PPI disruption. Further characterization of the NT system may be valuable to find clinical useful compounds for schizophrenia and drug addiction.
Collapse
Affiliation(s)
- Ricardo Cáceda
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Suite 4000 WMB, 101 Woodruff Circle, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
10
|
The α₂-adrenergic antagonist idazoxan counteracts prepulse inhibition deficits caused by amphetamine or dizocilpine in rats. Psychopharmacology (Berl) 2012; 219:99-108. [PMID: 21710169 DOI: 10.1007/s00213-011-2377-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 06/08/2011] [Indexed: 10/18/2022]
Abstract
RATIONALE Prepulse inhibition (PPI) is the reduction in startle response magnitude when intense stimuli are closely preceded by other weak stimuli. Animal models used to investigate sensorimotor gating deficits include both the stimulation of dopamine receptors (e.g., amphetamine or apomorphine) and the blockade of NMDA-glutamate receptors (e.g., dizocilpine or phencyclidine). OBJECTIVES We assessed the effects of idazoxan (an α(2)-adrenergic antagonist) on amphetamine- and dizocilpine-induced PPI disruptions in adult female Sprague-Dawley rats. METHODS In experiment 1, rats were tested for PPI in a bimodal paradigm with an acoustic prepulse and a tactile startle stimulus. Interactions of amphetamine (1 mg/kg) and idazoxan (0.5, 1, and 2 mg/kg) were assessed, with all rats receiving all drug doses in a counterbalanced order. In experiment 2, dizocilpine (0.05 mg/kg) and idazoxan (0.5, 1, and 2 mg/kg) interactions were analyzed. RESULTS Amphetamine (1 mg/kg) caused a significant reduction in PPI. Both the 1- and 2-mg/kg doses of idazoxan significantly counteracted this effect. Dizocilpine (.05 mg/kg) effectively inhibited PPI, and the 2-mg/kg idazoxan dose significantly counteracted this impairment. CONCLUSIONS These results suggest that the effectiveness of atypical antipsychotics such as clozapine in counteracting sensorimotor gating deficits reported in previous studies (e.g., Swerdlow and Geyer, Pharmacol Biochem Behav 44:741-744, 1993; Bakshi et al., J Pharmacol Exp Ther 271:787-794, 1994) may be related to their α(2)-antagonist effects, which may be a critical mechanism of the therapeutic effects of atypical antipsychotics in schizophrenia.
Collapse
|
11
|
Oliveros A, Heckman MG, Del Pilar Corena-McLeod M, Williams K, Boules M, Richelson E. Sensorimotor gating in NTS1 and NTS2 null mice: effects of d-amphetamine, dizocilpine, clozapine and NT69L. ACTA ACUST UNITED AC 2011; 213:4232-9. [PMID: 21113004 DOI: 10.1242/jeb.046318] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pre-pulse inhibition (PPI) of the acoustic startle reflex is deficient in patients with schizophrenia. This deficiency is mimicked in mice by the use of the psychotomimetic drugs d-amphetamine and dizolcipine. Antipsychotic drugs such as clozapine are used to treat schizophrenic patients and are also administered to mice to prevent PPI disruption. Neurotensin (NT) produces antipsychotic-like effects when injected into rodent brain through its effects at NT subtype 1 (NTS1) and 2 (NTS2) receptors. We hypothesized that the NT receptor agonist (NT69L) would prevent PPI disruption in mice challenged with d-amphetamine (10 mg kg(-1)) and dizocilpine (1 mg kg(-1)). We investigated the role of NTS1 and NTS2 in PPI using wild-type (WT), NTS1 (NTS1(-/-)) and NTS2 (NTS2(-/-)) knockout mice, via its disruption by psychotomimetic drugs, as well as the ability of clozapine and NT69L to block these PPI disruptions. There were no differences in baseline PPI across the three genotypes. d-Amphetamine and dizocilpine disrupted PPI in WT and NTS2(-/-) mice but not in NTS1(-/-) mice. In WT mice, clozapine (1 mg kg(-1)) and NT69L (1 mg kg(-1)) significantly blocked d-amphetamine-induced disruption of PPI. Similarly, in WT mice, clozapine significantly blocked dizocilpine-induced PPI disruption, but NT69L did not. In NTS2(-/-) mice clozapine blocked d-amphetamine-but not dizocilpine-induced PPI disruption, while NT69L blocked both d-amphetamine- and dizocilpine-induced PPI disruption. Our results indicate that NTS1 seems essential for d-amphetamine and dizocilpine disruption of PPI. Additionally, this report provides support to the hypothesis that NT analogs could be used as novel antipsychotic drugs.
Collapse
Affiliation(s)
- Alfredo Oliveros
- Neuropsychopharmacology Laboratory, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | | | | | | | | | | |
Collapse
|
12
|
Thibault D, Albert PR, Pineyro G, Trudeau LÉ. Neurotensin triggers dopamine D2 receptor desensitization through a protein kinase C and beta-arrestin1-dependent mechanism. J Biol Chem 2011; 286:9174-84. [PMID: 21233215 PMCID: PMC3059057 DOI: 10.1074/jbc.m110.166454] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 01/12/2011] [Indexed: 11/06/2022] Open
Abstract
The peptide neurotensin (NT) is known to exert a potent excitatory effect on the dopaminergic system by inhibiting D2 dopamine (DA) receptor (D2R) function. This regulation is dependent on activation of PKC, a well known effector of the type 1 NT receptor (NTR1). Because PKC phosphorylation of the D2R has recently been shown to induce its internalization, we hypothesized that NT acts to reduce D2R function through heterologous desensitization of the D2R. In the present study, we first used HEK-293 cells to demonstrate that NT induces PKC-dependent D2R internalization. Furthermore, internalization displayed faster kinetics in cells expressing the D2R short isoform, known to act as an autoreceptor in DA neurons, than in cells expressing the long isoform, known to act as a postsynaptic D2R. In patch clamp experiments on cultured DA neurons, overexpression of a mutant D2S lacking three key PKC phosphorylation sites abrogated the ability of NT to reduce D2R-mediated cell firing inhibition. Short interfering RNA-mediated inhibition of β-arrestin1 and dynamin2, proteins important for receptor desensitization, reduced agonist-induced desensitization of D2R function, but only the inhibition of β-arrestin1 reduced the effect of NT on D2R function. Taken together, our data suggest that NT acutely regulates D2 autoreceptor function and DA neuron excitability through PKC-mediated phosphorylation of the D2R, leading to heterologous receptor desensitization.
Collapse
Affiliation(s)
- Dominic Thibault
- From the Department of Pharmacology
- Department of Physiology
- the Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Québec H3C 3J7, Canada
| | - Paul R. Albert
- the Ottawa Hospital Research Institute, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Graciela Pineyro
- From the Department of Pharmacology
- Department of Psychiatry, Faculty of Medicine, and
- the Centre de Recherche du Centre Hospitalier Universitaire Sainte Justine, Université de Montréal, Quebec H3T 1C5, Canada, and
| | - Louis-Éric Trudeau
- From the Department of Pharmacology
- Department of Physiology
- Department of Psychiatry, Faculty of Medicine, and
- the Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
13
|
PPI deficit induced by amphetamine is attenuated by the histamine H1 antagonist pyrilamine, but is exacerbated by the serotonin 5-HT2 antagonist ketanserin. Psychopharmacology (Berl) 2010; 212:551-8. [PMID: 20811878 DOI: 10.1007/s00213-010-2005-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 07/26/2010] [Indexed: 10/19/2022]
Abstract
RATIONALE Prepulse inhibition (PPI) of the startle response is a classic model of sensorimotor gating. Robust PPI impairments can be induced by dopamine agonists such as the indirect agonist amphetamine. The antipsychotic clozapine can attenuate PPI impairment induced by dopamine agonists. Clozapine is a complex drug with antagonistic effects on a variety of receptors, including serotonin and histamine. The relative contribution of its component actions to its efficacy is still unclear. OBJECTIVES To better characterize the role of histamine and serotonin receptors in the modulation of PPI in rats, we studied the effects of the H(1) histamine antagonist pyrilamine (10, 20, and 40 mg/kg) on amphetamine-induced (1 mg/kg) PPI deficits (Experiment 1); and the interaction of pyrilamine (20 mg/kg) with the 5-HT(2) antagonist ketanserin (1 and 2 mg/kg) on the amphetamine-induced PPI disruption (Experiment 2). METHODS Tactile startle stimuli consisted of 30 PSI air-puffs. Three acoustic prepulse intensity levels were used: 68, 71, and 77 dB, presented on a 65-dB background noise. In both experiments, all animals received all drug doses and combinations with different counterbalanced orders. RESULTS Pyrilamine (20 mg/kg) was effective in counteracting the PPI impairment caused by amphetamine administration, whereas ketanserin exacerbated the amphetamine-induced PPI deficit. CONCLUSIONS Based on its ability to reverse amphetamine-induced PPI deficits, blockade of histamine H(1) receptors seems to contribute to the therapeutic effect of the antipsychotic clozapine. Serotonin 5-HT(2)-receptor blockade, though, does not appear to contribute to this effect, and may in fact detract from it.
Collapse
|
14
|
Girgenti MJ, Nisenbaum LK, Bymaster F, Terwilliger R, Duman RS, Newton SS. Antipsychotic-induced gene regulation in multiple brain regions. J Neurochem 2010; 113:175-87. [PMID: 20070867 DOI: 10.1111/j.1471-4159.2010.06585.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The molecular mechanism of action of antipsychotic drugs is not well understood. Their complex receptor affinity profiles indicate that their action could extend beyond dopamine receptor blockade. Single gene expression studies and high-throughput gene profiling have shown the induction of genes from several molecular classes and functional categories. Using a focused microarray approach, we investigated gene regulation in rat striatum, frontal cortex, and hippocampus after chronic administration of haloperidol or olanzapine. Regulated genes were validated by in situ hybridization, real-time PCR, and immunohistochemistry. Only limited overlap was observed in genes regulated by haloperidol and olanzapine. Both drugs elicited maximal gene regulation in the striatum and least in the hippocampus. Striatal gene induction by haloperidol was predominantly in neurotransmitter signaling, G-protein coupled receptors, and transcription factors. Olanzapine prominently induced retinoic acid and trophic factor signaling genes in the frontal cortex. The data also revealed the induction of several genes that could be targeted in future drug development efforts. The study uncovered the induction of several novel genes, including somatostatin receptors and metabotropic glutamate receptors. The results demonstrating the regulation of multiple receptors and transcription factors suggests that both typical and atypical antipsychotics could possess a complex molecular mechanism of action.
Collapse
Affiliation(s)
- Matthew James Girgenti
- Division of Molecular Psychiatry, Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, Yale University School of Medicine, New Haven, Connecticut 06508, USA
| | | | | | | | | | | |
Collapse
|
15
|
Sensorimotor gating in neurotensin-1 receptor null mice. Neuropharmacology 2009; 58:173-8. [PMID: 19596359 DOI: 10.1016/j.neuropharm.2009.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 06/29/2009] [Accepted: 07/02/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Converging evidence has implicated endogenous neurotensin (NT) in the pathophysiology of brain processes relevant to schizophrenia. Prepulse inhibition of the startle reflex (PPI) is a measure of sensorimotor gating and considered to be of strong relevance to neuropsychiatric disorders associated with psychosis and cognitive dysfunction. Mice genetically engineered to not express NT display deficits in PPI that model the PPI deficits seen in schizophrenia patients. NT1 receptors have been most strongly implicated in mediating the psychosis relevant effects of NT such as attenuating PPI deficits. To investigate the role of NT1 receptors in the regulation of PPI, we measured baseline PPI in wildtype (WT) and NT1 knockout (KO) mice. We also tested the effects of amphetamine and dizocilpine, a dopamine agonist and NMDA antagonist, respectively, that reduce PPI as well as the NT1 selective receptor agonist PD149163, known to increase PPI in rats. METHODS Baseline PPI and acoustic startle response were measured in WT and NT1 KO mice. After baseline testing, mice were tested again after receiving intraperatoneal (IP) saline or one of three doses of amphetamine (1.0, 3.0 and 10.0 mg/kg), dizocilpine (0.3, 1.0 and 3.0 mg/kg) and PD149163 (0.5, 2.0 and 6.0 mg/kg) on separate test days. RESULTS Baseline PPI and acoustic startle response in NT1 KO mice were not significantly different from NT1 WT mice. WT and KO mice exhibited similar responses to the PPI-disrupting effects of dizocilpine and amphetamine. PD149163 significantly facilitated PPI (P < 0.004) and decreased the acoustic startle response (P < 0.001) in WT but not NT1 KO mice. CONCLUSIONS The data does not support the regulation of baseline PPI or the PPI disruptive effects of amphetamine or dizocilpine by endogenous NT acting at the NT1 receptor, although they support the antipsychotic potential of pharmacological activation of NT1 receptors by NT1 agonists.
Collapse
|
16
|
Heightened amygdala long-term potentiation in neurotensin receptor type-1 knockout mice. Neuropsychopharmacology 2008; 33:3135-45. [PMID: 18354386 DOI: 10.1038/npp.2008.38] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neurotensin receptor type-1 (Ntsr1) is the main receptor subtype that underlies neurotensin (NT)-mediated modulation of the dopamine (DA) system. Although NT and DA coexist in the basolateral nucleus of the amygdala (BLA), the function of Ntsr1 in the amygdala is not well characterized. In the present study, we utilized Ntsr1 knockout (Ntsr1-KO) mice to examine the role of Ntsr1 in the amygdala. In acute brain slices of Ntsr1-KO mice, synaptic currents elicited in BLA pyramidal neurons by electrical stimulation of the lateral nucleus of the amygdala (LA) were greatly potentiated by tetanic stimulation (BLA-long-term potentiation (LTP)). Such potentiation was not evident in pyramidal neurons of wild-type mice. In the presence of an antagonist of Ntsr1, SR48692, BLA-LTP was consistently observed in the neurons of wild-type mice, suggesting that both inherited deletion and acute pharmacological blockade of Ntsr1 induce BLA-LTP. BLA-LTP in Ntsr1-KO mice was impaired by sulpiride, a DA D(2)-like receptor antagonist. Conversely, quinpirole, a D(2)-like receptor agonist, induced pronounced BLA-LTP in wild-type mice, suggesting the upregulation of D(2)-like receptor activity in Ntsr1-KO mice. The ratio of NMDA receptor-mediated to non-NMDA receptor-mediated synaptic currents in Ntsr1-KO mouse BLA neurons was approximately double that measured in wild-type mouse neurons. Furthermore, quinpirole potentiated NMDA receptor-mediated synaptic currents in the BLA of wild-type mice. These results suggest that, without Ntsr1, synaptic responses from the LA to BLA pyramidal neurons undergo LTP in response to tetanus stimulation through facilitation of D(2)-like receptor-induced activation of NMDA receptors.
Collapse
|
17
|
Gaur N, Gautam S, Gaur M, Sharma P, Dadheech G, Mishra S. The biochemical womb of schizophrenia: A review. Indian J Clin Biochem 2008; 23:307-27. [PMID: 23105779 PMCID: PMC3453132 DOI: 10.1007/s12291-008-0071-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The conclusive identification of specific etiological factors or pathogenic processes in the illness of schizophrenia has remained elusive despite great technological progress. The convergence of state-of-art scientific studies in molecular genetics, molecular neuropathophysiology, in vivo brain imaging and psychopharmacology, however, indicates that we may be coming much closer to understanding the genesis of schizophrenia. In near future, the diagnosis and assessment of schizophrenia using biochemical markers may become a "dream come true" for the medical community as well as for the general population. An understanding of the biochemistry/ visa vis pathophysiology of schizophrenia is essential to the discovery of preventive measures and therapeutic intervention.
Collapse
Affiliation(s)
- N. Gaur
- Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - S. Gautam
- Post Graduate Institute of Medical Education & Research, Chandigarh, India
- Psychiatric Centre, SMS Medical College, Jaipur, India
| | - M. Gaur
- Post Graduate Institute of Medical Education & Research, Chandigarh, India
- Psychiatric Centre, SMS Medical College, Jaipur, India
| | - P. Sharma
- Post Graduate Institute of Medical Education & Research, Chandigarh, India
- Department of Biochemistry, SMS Medical College, Jaipur, India
| | - G. Dadheech
- Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - S. Mishra
- Post Graduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
18
|
Swerdlow NR, Weber M, Qu Y, Light GA, Braff DL. Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology (Berl) 2008; 199:331-88. [PMID: 18568339 PMCID: PMC2771731 DOI: 10.1007/s00213-008-1072-4] [Citation(s) in RCA: 428] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 01/03/2008] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Under specific conditions, a weak lead stimulus, or "prepulse", can inhibit the startling effects of a subsequent intense abrupt stimulus. This startle-inhibiting effect of the prepulse, termed "prepulse inhibition" (PPI), is widely used in translational models to understand the biology of brainbased inhibitory mechanisms and their deficiency in neuropsychiatric disorders. In 1981, four published reports with "prepulse inhibition" as an index term were listed on Medline; over the past 5 years, new published Medline reports with "prepulse inhibition" as an index term have appeared at a rate exceeding once every 2.7 days (n=678). Most of these reports focus on the use of PPI in translational models of impaired sensorimotor gating in schizophrenia. This rapid expansion and broad application of PPI as a tool for understanding schizophrenia has, at times, outpaced critical thinking and falsifiable hypotheses about the relative strengths vs. limitations of this measure. OBJECTIVES This review enumerates the realistic expectations for PPI in translational models for schizophrenia research, and provides cautionary notes for the future applications of this important research tool. CONCLUSION In humans, PPI is not "diagnostic"; levels of PPI do not predict clinical course, specific symptoms, or individual medication responses. In preclinical studies, PPI is valuable for evaluating models or model organisms relevant to schizophrenia, "mapping" neural substrates of deficient PPI in schizophrenia, and advancing the discovery and development of novel therapeutics. Across species, PPI is a reliable, robust quantitative phenotype that is useful for probing the neurobiology and genetics of gating deficits in schizophrenia.
Collapse
Affiliation(s)
- Neal R Swerdlow
- Department of Psychiatry, UCSD School of Medicine, La Jolla, CA, 92093-0804, USA,
| | | | | | | | | |
Collapse
|
19
|
Norman C, Beckett SRG, Spicer CH, Ashton D, Langlois X, Bennett GW. Effects of chronic infusion of neurotensin and a neurotensin NT1 selective analogue PD149163 on amphetamine-induced hyperlocomotion. J Psychopharmacol 2008; 22:300-7. [PMID: 18208905 DOI: 10.1177/0269881107083838] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neurotensin (NT) has been proposed as an endogenous antipsychotic based in part on the similarity in behavioural effects to antipsychotic drugs, for example, attenuation of both amphetamine-induced hyperlocomotion (AH) and amphetamine disrupted pre-pulse inhibition in the rat. However, there is some evidence that repeated administration of NT or an analogue produces behavioural tolerance to such effects. The present experiments sought to confirm and extend these findings by testing the effects on AH of 7 days central administration of NT and the NT1 selective analogue PD 149163 and the effects of 21 days central administration of NT. NT and PD149163 continuously administered for 7 days produced no effect on AH (in contrast to attenuation with a single injection here and previously reported), whereas 21 days of NT administration potentiated AH. Together, these studies report that the effects of NT or a NT analogue on AH depends on the duration of administration of peptide. The results are discussed in comparison with the reported antipsychotic properties of acute administration of NT and possible mechanisms involving NT1 receptors.
Collapse
Affiliation(s)
- C Norman
- Division of Psychology, Nottingham Trent University, Burton Street, Nottingham, UK.
| | | | | | | | | | | |
Collapse
|
20
|
Roegge CS, Perraut C, Hao X, Levin ED. Histamine H1 receptor involvement in prepulse inhibition and memory function: relevance for the antipsychotic actions of clozapine. Pharmacol Biochem Behav 2007; 86:686-92. [PMID: 17382376 PMCID: PMC2699266 DOI: 10.1016/j.pbb.2007.02.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 02/13/2007] [Accepted: 02/13/2007] [Indexed: 11/26/2022]
Abstract
Histamine H(1) blockade is one of the more prominent actions of the multi-receptor acting antipsychotic clozapine. It is currently not known how much this H(1) antagonism of clozapine contributes to the therapeutic or adverse side effects of clozapine. The current studies with Sprague-Dawley rats were conducted to determine the participation of histaminergic H(1) receptor subtype in sensorimotor plasticity and memory function affected by clozapine using tests of prepulse inhibition (PPI) and radial-arm maze choice accuracy. The PPI impairment caused by the glutamate antagonist dizocilpine (MK-801) was significantly attenuated by clozapine. In the current project, we found that the selective H(1) antagonist pyrilamine also reversed the dizocilpine-induced impairment in PPI of tactile startle with an auditory prepulse. In the radial-arm maze (RAM), pyrilamine, like clozapine, impaired working memory and caused a significant dose-related slowing of response. Pyrilamine, however, decreased the number of reference memory errors. We have previously shown that nicotine effectively attenuates the clozapine-induced working memory impairment, but in the current study, nicotine did not significantly alter the effects of pyrilamine on the RAM. In summary, the therapeutic effect of clozapine in reversing PPI impairment was mimicked by the H(1) antagonist pyrilamine, while pyrilamine had a mixed effect on cognition. Pyrilamine impaired working memory but improved reference memory in rats. Thus, H(1) antagonism seems to play a role in part of the beneficial actions of antipsychotics, such as clozapine.
Collapse
Affiliation(s)
- Cindy S Roegge
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
21
|
Cáceda R, Kinkead B, Nemeroff CB. Involvement of neuropeptide systems in schizophrenia: human studies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 78:327-76. [PMID: 17349866 DOI: 10.1016/s0074-7742(06)78011-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Neuropeptides are heterogeneously distributed throughout the digestive, circulatory, and nervous systems and serve as neurotransmitters, neuromodulators, and hormones. Neuropeptides are phylogenetically conserved and have been demonstrated to regulate numerous behaviors. They have been hypothesized to be pathologically involved in several psychiatric disorders, including schizophrenia. On the basis of preclinical data, numerous studies have sought to examine the role of neuropeptide systems in schizophrenia. This chapter reviews the clinical data, linking alterations in neuropeptide systems to the etiology, pathophysiology, and treatment of schizophrenia. Data for the following neuropeptide systems are included: arginine-vasopressin, cholecystokinin (CCK), corticotropin-releasing factor (CRF), interleukins, neuregulin 1 (NRG1), neurotensin (NT), neuropeptide Y (NPY), opioids, secretin, somatostatin, tachykinins, thyrotropin-releasing hormone (TRH), and vasoactive intestinal peptide (VIP). Data from cerebrospinal fluid (CSF), postmortem and genetic studies, as well as clinical trials are described. Despite the inherent difficulties associated with human studies (including small sample size, variable duration of illness, medication status, the presence of comorbid psychiatric disorders, and diagnostic heterogeneity), several findings are noteworthy. Postmortem studies support disease-related alterations in several neuropeptide systems in the frontal and temporal cortices. The strongest genetic evidence supporting a role for neuropeptides in schizophrenia are those studies linking polymorphisms in NRG1 and the CCKA receptor with schizophrenia. Finally, the only compounds that act directly on neuropeptide systems that have demonstrated therapeutic efficacy in schizophrenia are neurokinin receptor antagonists. Clearly, additional investigation into the role of neuropeptide systems in the etiology, pathophysiology, and treatment of schizophrenia is warranted.
Collapse
Affiliation(s)
- Ricardo Cáceda
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
22
|
Chavez JC, Baranova O, Lin J, Pichiule P. The transcriptional activator hypoxia inducible factor 2 (HIF-2/EPAS-1) regulates the oxygen-dependent expression of erythropoietin in cortical astrocytes. J Neurosci 2006; 26:9471-81. [PMID: 16971531 PMCID: PMC6674587 DOI: 10.1523/jneurosci.2838-06.2006] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the ischemic or hypoxic brain, astrocytes appear to be one of the main sources of erythropoietin (EPO). In this study, we investigated the differential contribution of hypoxia inducible factor (HIF) isoforms to the regulation of hypoxic EPO expression in cultured astrocytes. In addition, using an in vitro model of oxygen-glucose deprivation (OGD), we studied the role of HIF-1alpha and HIF-2alpha in the generation of paracrine protective signals by astrocytes that modulate the survival of neurons exposed to OGD. Expression of HIF-1alpha or HIF-2alpha was abrogated by infecting astrocytes with lentiviral particles encoding small interference RNA specific for HIF-1alpha or HIF-2alpha (siHIF-1alpha or siHIF-2alpha). Astrocytes infected with siHIF-1alpha showed abrogated hypoxic induction of vascular endothelial growth factor (VEGF) and lactate dehydrogenase (LDH) but normal EPO induction. In contrast, reduction of HIF-2alpha expression by siHIF-2alpha led to a drastic decrease of EPO hypoxic expression, but it did not affect LDH or VEGF upregulation. To further test whether HIF-2 is sufficient to drive EPO upregulation, we expressed oxygen-insensitive mutant forms of HIF-1alpha (mtHIF-1alpha) (P402A/P577A) and HIF-2alpha (mtHIF-2alpha) (P405A/P530A). Expression of mtHIF-2alpha but not mtHIF-1alpha in normoxic astrocytes resulted in a significant upregulation of EPO mRNA and protein. Accordingly, HIF-2alpha but not HIF-1alpha was found to be associated with the EPO hypoxia-response element by a chromatin immunoprecipitation assay. Interestingly, conditioned medium from astrocytes challenged by sublethal OGD improved neuronal survival to OGD; however, this effect was abolished during the downregulation of astrocytic HIF-2alpha using siHIF-2alpha. These results indicate that HIF-2alpha mediates the transcriptional activation of EPO expression in astrocytes, and this pathway may promote astrocytic paracrine-dependent neuronal survival during ischemia.
Collapse
Affiliation(s)
- Juan C Chavez
- Burke Medical Research Institute, White Plains, New York 10605, USA.
| | | | | | | |
Collapse
|
23
|
Geisler S, Bérod A, Zahm DS, Rostène W. Brain neurotensin, psychostimulants, and stress--emphasis on neuroanatomical substrates. Peptides 2006; 27:2364-84. [PMID: 16934369 DOI: 10.1016/j.peptides.2006.03.037] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 03/05/2006] [Indexed: 12/29/2022]
Abstract
Neurotensin (NT) is a peptide that is widely distributed throughout the brain. NT is involved in locomotion, reward, stress and pain modulation, and in the pathophysiology of drug addiction and depression. In its first part this review brings together relevant literature about the neuroanatomy of NT and its receptors. The second part focuses on functional-anatomical interactions between NT, the mesotelencephalic dopamine system and structures targeted by dopaminergic projections. Finally, recent data about the actions of NT in processes underlying behavioral sensitization to psychostimulant drugs and the involvement of NT in the regulation of the hypothalamo-pituitary-adrenal gland axis are considered.
Collapse
Affiliation(s)
- Stefanie Geisler
- Department of Pharmacological and Physiological Science, Saint Louis University, School of Medicine, St. Louis, MO 63104, USA
| | | | | | | |
Collapse
|
24
|
Cáceda R, Kinkead B, Nemeroff CB. Neurotensin: role in psychiatric and neurological diseases. Peptides 2006; 27:2385-404. [PMID: 16891042 DOI: 10.1016/j.peptides.2006.04.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 04/01/2006] [Indexed: 10/24/2022]
Abstract
Neurotensin (NT), an endogenous brain-gut peptide, has a close anatomical and functional relationship with the mesocorticolimbic and neostriatal dopamine system. Dysregulation of NT neurotransmission in this system has been hypothesized to be involved in the pathogenesis of schizophrenia. Additionally, NT containing circuits have been demonstrated to mediate some of the mechanisms of action of antipsychotic drugs, as well as the rewarding and/or sensitizing properties of drugs of abuse. NT receptors have been suggested to be novel targets for the treatment of psychoses or drug addiction.
Collapse
Affiliation(s)
- Ricardo Cáceda
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Suite 4000 WMRB, 101 Woodruff Circle, Atlanta, GA 30322 4990, USA.
| | | | | |
Collapse
|
25
|
Reynolds SM, Geisler S, Bérod A, Zahm DS. Neurotensin antagonist acutely and robustly attenuates locomotion that accompanies stimulation of a neurotensin-containing pathway from rostrobasal forebrain to the ventral tegmental area. Eur J Neurosci 2006; 24:188-96. [PMID: 16882016 DOI: 10.1111/j.1460-9568.2006.04791.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurotensin exerts complex effects on the mesolimbic dopamine system that alter motivation and contribute to neuroadaptations associated with psychostimulant drug administration. Activation of abundant neurotensin receptors in the ventral tegmental area (VTA) enhances dopamine neuron activity and associated release of dopamine in the nucleus accumbens (Acb) and cortex. In view of recent anatomical studies demonstrating that 70% of all neurotensin-containing neurons projecting to the VTA occupy the lateral preoptic area-rostral lateral hypothalamus (LPH) and lateral part of the medial preoptic area (MPOA), the present study examined functionality in the LPH-MPOA neurotensinergic pathway in the rat. Disinhibition (resulting ultimately in stimulation-like effects) of LPH-MPOA neurons with microinjected bicuculline (50 or 100 ng in 0.25 microL) produced locomotor activation that was considerably attenuated by systemic administration of the neurotensin antagonist SR 142948 A (0.03 and 0.1 mg/kg). In contrast, locomotion elicited in this manner was completely blocked by SR 142948 A infused directly into the VTA (5.0 and 15.0 ng in 0.25 microL). Baseline locomotion was unaffected by systemic or intra-VTA administration of SR 142948 A and LPH-MPOA-elicited locomotion was unaffected by infusion of SR 142948 A into the substantia nigra pars compacta and sites rostral and dorsal to the VTA. Locomotion was not elicited by infusions of bicuculline into the lateral hypothalamus at sites caudal to the LPH-MPOA, where neurotensin neurons projecting to the VTA are fewer. The results demonstrate the capacity of a neurotensin-containing pathway from LPH-MPOA to VTA to modulate locomotion. This pathway may be important in linking hippocampal and mesolimbic mechanisms in normal behaviour and drug addiction.
Collapse
Affiliation(s)
- Sheila M Reynolds
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Blvd., St Louis, MO 63104, USA
| | | | | | | |
Collapse
|