1
|
Miles KD, Barker CM, Russell KP, Appel BH, Doll CA. Electrical Synapses Mediate Embryonic Hyperactivity in a Zebrafish Model of Fragile X Syndrome. J Neurosci 2024; 44:e2275232024. [PMID: 38969506 PMCID: PMC11293453 DOI: 10.1523/jneurosci.2275-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
Although hyperactivity is associated with a wide variety of neurodevelopmental disorders, the early embryonic origins of locomotion have hindered investigation of pathogenesis of these debilitating behaviors. The earliest motor output in vertebrate animals is generated by clusters of early-born motor neurons (MNs) that occupy distinct regions of the spinal cord, innervating stereotyped muscle groups. Gap junction electrical synapses drive early spontaneous behavior in zebrafish, prior to the emergence of chemical neurotransmitter networks. We use a genetic model of hyperactivity to gain critical insight into the consequences of errors in motor circuit formation and function, finding that Fragile X syndrome model mutant zebrafish are hyperexcitable from the earliest phases of spontaneous behavior, show altered sensitivity to blockade of electrical gap junctions, and have increased expression of the gap junction protein Connexin 34/35. We further show that this hyperexcitable behavior can be rescued by pharmacological inhibition of electrical synapses. We also use functional imaging to examine MN and interneuron (IN) activity in early embryogenesis, finding genetic disruption of electrical gap junctions uncouples activity between mnx1 + MNs and INs. Taken together, our work highlights the importance of electrical synapses in motor development and suggests that the origins of hyperactivity in neurodevelopmental disorders may be established during the initial formation of locomotive circuits.
Collapse
Affiliation(s)
- Kaleb D Miles
- Section of Developmental Biology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045
| | - Chase M Barker
- Section of Developmental Biology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045
| | - Kristen P Russell
- Section of Developmental Biology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045
| | - Bruce H Appel
- Section of Developmental Biology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045
| | - Caleb A Doll
- Section of Developmental Biology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
2
|
Emery B, Wood TL. Regulators of Oligodendrocyte Differentiation. Cold Spring Harb Perspect Biol 2024; 16:a041358. [PMID: 38503504 PMCID: PMC11146316 DOI: 10.1101/cshperspect.a041358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Myelination has evolved as a mechanism to ensure fast and efficient propagation of nerve impulses along axons. Within the central nervous system (CNS), myelination is carried out by highly specialized glial cells, oligodendrocytes. The formation of myelin is a prolonged aspect of CNS development that occurs well into adulthood in humans, continuing throughout life in response to injury or as a component of neuroplasticity. The timing of myelination is tightly tied to the generation of oligodendrocytes through the differentiation of their committed progenitors, oligodendrocyte precursor cells (OPCs), which reside throughout the developing and adult CNS. In this article, we summarize our current understanding of some of the signals and pathways that regulate the differentiation of OPCs, and thus the myelination of CNS axons.
Collapse
Affiliation(s)
- Ben Emery
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Teresa L Wood
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA
| |
Collapse
|
3
|
Vanherle S, Guns J, Loix M, Mingneau F, Dierckx T, Wouters F, Kuipers K, Vangansewinkel T, Wolfs E, Lins PP, Bronckaers A, Lambrichts I, Dehairs J, Swinnen JV, Verberk SGS, Haidar M, Hendriks JJA, Bogie JFJ. Extracellular vesicle-associated cholesterol supports the regenerative functions of macrophages in the brain. J Extracell Vesicles 2023; 12:e12394. [PMID: 38124258 PMCID: PMC10733568 DOI: 10.1002/jev2.12394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Macrophages play major roles in the pathophysiology of various neurological disorders, being involved in seemingly opposing processes such as lesion progression and resolution. Yet, the molecular mechanisms that drive their harmful and benign effector functions remain poorly understood. Here, we demonstrate that extracellular vesicles (EVs) secreted by repair-associated macrophages (RAMs) enhance remyelination ex vivo and in vivo by promoting the differentiation of oligodendrocyte precursor cells (OPCs). Guided by lipidomic analysis and applying cholesterol depletion and enrichment strategies, we find that EVs released by RAMs show markedly elevated cholesterol levels and that cholesterol abundance controls their reparative impact on OPC maturation and remyelination. Mechanistically, EV-associated cholesterol was found to promote OPC differentiation predominantly through direct membrane fusion. Collectively, our findings highlight that EVs are essential for cholesterol trafficking in the brain and that changes in cholesterol abundance support the reparative impact of EVs released by macrophages in the brain, potentially having broad implications for therapeutic strategies aimed at promoting repair in neurodegenerative disorders.
Collapse
Affiliation(s)
- Sam Vanherle
- Department of Immunology and Infection, Biomedical Research InstituteHasselt UniversityDiepenbeekBelgium
- University MS Center HasseltPeltBelgium
| | - Jeroen Guns
- Department of Immunology and Infection, Biomedical Research InstituteHasselt UniversityDiepenbeekBelgium
- University MS Center HasseltPeltBelgium
| | - Melanie Loix
- Department of Immunology and Infection, Biomedical Research InstituteHasselt UniversityDiepenbeekBelgium
- University MS Center HasseltPeltBelgium
| | - Fleur Mingneau
- Department of Immunology and Infection, Biomedical Research InstituteHasselt UniversityDiepenbeekBelgium
- University MS Center HasseltPeltBelgium
| | - Tess Dierckx
- Department of Immunology and Infection, Biomedical Research InstituteHasselt UniversityDiepenbeekBelgium
- University MS Center HasseltPeltBelgium
| | - Flore Wouters
- Department of Immunology and Infection, Biomedical Research InstituteHasselt UniversityDiepenbeekBelgium
- University MS Center HasseltPeltBelgium
| | - Koen Kuipers
- Department of Immunology and Infection, Biomedical Research InstituteHasselt UniversityDiepenbeekBelgium
- University MS Center HasseltPeltBelgium
| | - Tim Vangansewinkel
- Department of Cardio and Organs Systems, Biomedical Research InstituteHasselt UniversityDiepenbeekBelgium
- VIB, Center for Brain & Disease Research, Laboratory of NeurobiologyUniversity of LeuvenLeuvenBelgium
| | - Esther Wolfs
- Department of Cardio and Organs Systems, Biomedical Research InstituteHasselt UniversityDiepenbeekBelgium
| | - Paula Pincela Lins
- Department of Cardio and Organs Systems, Biomedical Research InstituteHasselt UniversityDiepenbeekBelgium
- Health DepartmentFlemish Institute for Technological ResearchMolBelgium
| | - Annelies Bronckaers
- Department of Cardio and Organs Systems, Biomedical Research InstituteHasselt UniversityDiepenbeekBelgium
| | - Ivo Lambrichts
- Department of Cardio and Organs Systems, Biomedical Research InstituteHasselt UniversityDiepenbeekBelgium
| | - Jonas Dehairs
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven Cancer InstituteUniversity of LeuvenLeuvenBelgium
| | - Johannes V. Swinnen
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven Cancer InstituteUniversity of LeuvenLeuvenBelgium
| | - Sanne G. S. Verberk
- Department of Immunology and Infection, Biomedical Research InstituteHasselt UniversityDiepenbeekBelgium
- University MS Center HasseltPeltBelgium
| | - Mansour Haidar
- Department of Immunology and Infection, Biomedical Research InstituteHasselt UniversityDiepenbeekBelgium
- University MS Center HasseltPeltBelgium
| | - Jerome J. A. Hendriks
- Department of Immunology and Infection, Biomedical Research InstituteHasselt UniversityDiepenbeekBelgium
- University MS Center HasseltPeltBelgium
| | - Jeroen F. J. Bogie
- Department of Immunology and Infection, Biomedical Research InstituteHasselt UniversityDiepenbeekBelgium
- University MS Center HasseltPeltBelgium
| |
Collapse
|
4
|
Song H, Sontz RA, Vance MJ, Morris JM, Sheriff S, Zhu S, Duan S, Zeng J, Koeppe E, Pandey R, Thorne CA, Stoffel EM, Merchant JL. High-fat diet plus HNF1A variant promotes polyps by activating β-catenin in early-onset colorectal cancer. JCI Insight 2023; 8:e167163. [PMID: 37219942 PMCID: PMC10371337 DOI: 10.1172/jci.insight.167163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/19/2023] [Indexed: 05/24/2023] Open
Abstract
The incidence of early-onset colorectal cancer (EO-CRC) is rising and is poorly understood. Lifestyle factors and altered genetic background possibly contribute. Here, we performed targeted exon sequencing of archived leukocyte DNA from 158 EO-CRC participants, which identified a missense mutation at p.A98V within the proximal DNA binding domain of Hepatic Nuclear Factor 1 α (HNF1AA98V, rs1800574). The HNF1AA98V exhibited reduced DNA binding. To test function, the HNF1A variant was introduced into the mouse genome by CRISPR/Cas9, and the mice were placed on either a high-fat diet (HFD) or high-sugar diet (HSD). Only 1% of the HNF1A mutant mice developed polyps on normal chow; however, 19% and 3% developed polyps on the HFD and HSD, respectively. RNA-Seq revealed an increase in metabolic, immune, lipid biogenesis genes, and Wnt/β-catenin signaling components in the HNF1A mutant relative to the WT mice. Mouse polyps and colon cancers from participants carrying the HNF1AA98V variant exhibited reduced CDX2 and elevated β-catenin proteins. We further demonstrated decreased occupancy of HNF1AA98V at the Cdx2 locus and reduced Cdx2 promoter activity compared with WT HNF1A. Collectively, our study shows that the HNF1AA98V variant plus a HFD promotes the formation of colonic polyps by activating β-catenin via decreasing Cdx2 expression.
Collapse
Affiliation(s)
- Heyu Song
- Department of Medicine, Division of Gastroenterology and Hepatology, Arizona Comprehensive Cancer Center, and
| | - Ricky A. Sontz
- Department of Medicine, Division of Gastroenterology and Hepatology, Arizona Comprehensive Cancer Center, and
| | - Matthew J. Vance
- Department of Medicine, Division of Gastroenterology and Hepatology, Arizona Comprehensive Cancer Center, and
| | - Julia M. Morris
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Sulaiman Sheriff
- Department of Medicine, Division of Gastroenterology and Hepatology, Arizona Comprehensive Cancer Center, and
| | - Songli Zhu
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Suzann Duan
- Department of Medicine, Division of Gastroenterology and Hepatology, Arizona Comprehensive Cancer Center, and
| | - Jiping Zeng
- Department of Urology, University of Arizona College of Medicine, Tucson, Arizona, USA
| | | | - Ritu Pandey
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Curtis A. Thorne
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Elena M. Stoffel
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Juanita L. Merchant
- Department of Medicine, Division of Gastroenterology and Hepatology, Arizona Comprehensive Cancer Center, and
| |
Collapse
|
5
|
Mok KKS, Yeung SHS, Cheng GWY, Ma IWT, Lee RHS, Herrup K, Tse KH. Apolipoprotein E ε4 disrupts oligodendrocyte differentiation by interfering with astrocyte-derived lipid transport. J Neurochem 2023; 165:55-75. [PMID: 36549843 DOI: 10.1111/jnc.15748] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/23/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Carriers of the APOE4 (apolipoprotein E ε4) variant of the APOE gene are subject to several age-related health risks, including Alzheimer's disease (AD). The deficient lipid and cholesterol transport capabilities of the APOE4 protein are one reason for the altered risk profile. In particular, APOE4 carriers are at elevated risk for sporadic AD. While deposits o misfolded proteins are present in the AD brain, white matter (WM) myelin is also disturbed. As myelin is a lipid- and cholesterol-rich structure, the connection to APOE makes considerable biological sense. To explore the APOE-WM connection, we have analyzed the impact of human APOE4 on oligodendrocytes (OLs) of the mouse both in vivo and in vitro. We find that APOE proteins is enriched in astrocytes but sparse in OL. In human APOE4 (hAPOE4) knock-in mice, myelin lipid content is increased but the density of major myelin proteins (MBP, MAG, and PLP) is largely unchanged. We also find an unexpected but significant reduction of cell density of the OL lineage (Olig2+ ) and an abnormal accumulation of OL precursors (Nkx 2.2+ ), suggesting a disruption of OL differentiation. Gene ontology analysis of an existing RNA-seq dataset confirms a robust transcriptional response to the altered chemistry of the hAPOE4 mouse brain. In culture, the uptake of astrocyte-derived APOE during Lovastatin-mediated depletion of cholesterol synthesis is sufficient to sustain OL differentiation. While endogenous hAPOE protein isoforms have no effects on OL development, exogenous hAPOE4 abolishes the ability of very low-density lipoprotein to restore myelination in Apoe-deficient, cholesterol-depleted OL. Our data suggest that APOE4 impairs myelination in the aging brain by interrupting the delivery of astrocyte-derived lipids to the oligodendrocytes. We propose that high myelin turnover and OL exhaustion found in APOE4 carriers is a likely explanation for the APOE-dependent myelin phenotypes of the AD brain.
Collapse
Affiliation(s)
- Kingston King-Shi Mok
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Sunny Hoi-Sang Yeung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Gerald Wai-Yeung Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Iris Wai-Ting Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ralph Hon-Sun Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Karl Herrup
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kai-Hei Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
6
|
Galkina OV, Vetrovoy OV, Krasovskaya IE, Eschenko ND. Role of Lipids in Regulation of Neuroglial Interactions. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:337-352. [PMID: 37076281 DOI: 10.1134/s0006297923030045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 03/28/2023]
Abstract
Lipids comprise an extremely heterogeneous group of compounds that perform a wide variety of biological functions. Traditional view of lipids as important structural components of the cell and compounds playing a trophic role is currently being supplemented by information on the possible participation of lipids in signaling, not only intracellular, but also intercellular. The review article discusses current data on the role of lipids and their metabolites formed in glial cells (astrocytes, oligodendrocytes, microglia) in communication of these cells with neurons. In addition to metabolic transformations of lipids in each type of glial cells, special attention is paid to the lipid signal molecules (phosphatidic acid, arachidonic acid and its metabolites, cholesterol, etc.) and the possibility of their participation in realization of synaptic plasticity, as well as in other possible mechanisms associated with neuroplasticity. All these new data can significantly expand our knowledge about the regulatory functions of lipids in neuroglial relationships.
Collapse
Affiliation(s)
- Olga V Galkina
- Biochemistry Department, Faculty of Biology, Saint-Petersburg State University, St. Petersburg, 199034, Russia.
| | - Oleg V Vetrovoy
- Biochemistry Department, Faculty of Biology, Saint-Petersburg State University, St. Petersburg, 199034, Russia
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, 199034, Russia
| | - Irina E Krasovskaya
- Biochemistry Department, Faculty of Biology, Saint-Petersburg State University, St. Petersburg, 199034, Russia
| | - Nataliya D Eschenko
- Biochemistry Department, Faculty of Biology, Saint-Petersburg State University, St. Petersburg, 199034, Russia
| |
Collapse
|
7
|
Signore IA, Palma K, Soto G, Sepúlveda S, Suazo J, Aránguiz M, Colombo A. Inhibition of the
3‐hydroxy‐3‐methyl‐glutaryl‐CoA
reductase diminishes the survival and size of chondrocytes during orofacial morphogenesis in zebrafish, and ensures normal cell size and survival. Orthod Craniofac Res 2022. [DOI: 10.1111/ocr.12620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/20/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Iskra A. Signore
- Programa de Anatomía y Biología del Desarrollo, Facultad de Medicina Universidad de Chile Santiago Chile
| | - Karina Palma
- Programa de Anatomía y Biología del Desarrollo, Facultad de Medicina Universidad de Chile Santiago Chile
| | - Gabriela Soto
- Departamento de Anatomía Patológica, Facultad de Medicina Universidad de Chile Santiago Chile
| | - Santiago Sepúlveda
- Departamento de Anatomía Patológica, Facultad de Medicina Universidad de Chile Santiago Chile
| | - José Suazo
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología Universidad de Chile Santiago Chile
| | - Millisent Aránguiz
- Departamento de Anatomía Patológica, Facultad de Medicina Universidad de Chile Santiago Chile
| | - Alicia Colombo
- Departamento de Anatomía Patológica, Facultad de Medicina Universidad de Chile Santiago Chile
- Servicio de Anatomía Patológica Hospital Clínico de la Universidad de Chile Santiago Chile
| |
Collapse
|
8
|
Lu F, Ferriero DM, Jiang X. Cholesterol in Brain Development and Perinatal Brain Injury: More than a Building Block. Curr Neuropharmacol 2022; 20:1400-1412. [PMID: 34766894 PMCID: PMC9881076 DOI: 10.2174/1570159x19666211111122311] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 10/06/2021] [Indexed: 11/22/2022] Open
Abstract
The central nervous system (CNS) is enriched with important classes of lipids, in which cholesterol is known to make up a major portion of myelin sheaths, besides being a structural and functional unit of CNS cell membranes. Unlike in the adult brain, where the cholesterol pool is relatively stable, cholesterol is synthesized and accumulated at the highest rate in the developing brain to meet the needs of rapid brain growth at this stage, which is also a critical period for neuroplasticity. In addition to its biophysical role in membrane organization, cholesterol is crucial for brain development due to its involvement in brain patterning, myelination, neuronal differentiation, and synaptogenesis. Thus any injuries to the immature brain that affect cholesterol homeostasis may have long-term adverse neurological consequences. In this review, we describe the unique features of brain cholesterol biosynthesis and metabolism, cholesterol trafficking between different cell types, and highlight cholesterol-dependent biological processes during brain maturation. We also discuss the association of impaired cholesterol homeostasis with several forms of perinatal brain disorders in term and preterm newborns, including hypoxic-ischemic encephalopathy. Strategies targeting the cholesterol pathways may open new avenues for the diagnosis and treatment of developmental brain injury.
Collapse
Affiliation(s)
- Fuxin Lu
- Departments of Neurology, University of California San Francisco, San Francisco, CA, USA;
| | - Donna M. Ferriero
- Departments of Neurology, University of California San Francisco, San Francisco, CA, USA; ,Departments of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Xiangning Jiang
- Departments of Neurology, University of California San Francisco, San Francisco, CA, USA; ,Address correspondence to this author at the Department of Neurology, University of California, San Francisco, 675 Nelson Rising Lane Room 494, San Francisco, CA 94158, USA; Tel/Fax: 415-502-7285; E-mail:
| |
Collapse
|
9
|
Ruskamo S, Raasakka A, Pedersen JS, Martel A, Škubník K, Darwish T, Porcar L, Kursula P. Human myelin proteolipid protein structure and lipid bilayer stacking. Cell Mol Life Sci 2022; 79:419. [PMID: 35829923 PMCID: PMC9279222 DOI: 10.1007/s00018-022-04428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/28/2022] [Accepted: 06/13/2022] [Indexed: 11/03/2022]
Abstract
The myelin sheath is an essential, multilayered membrane structure that insulates axons, enabling the rapid transmission of nerve impulses. The tetraspan myelin proteolipid protein (PLP) is the most abundant protein of compact myelin in the central nervous system (CNS). The integral membrane protein PLP adheres myelin membranes together and enhances the compaction of myelin, having a fundamental role in myelin stability and axonal support. PLP is linked to severe CNS neuropathies, including inherited Pelizaeus-Merzbacher disease and spastic paraplegia type 2, as well as multiple sclerosis. Nevertheless, the structure, lipid interaction properties, and membrane organization mechanisms of PLP have remained unidentified. We expressed, purified, and structurally characterized human PLP and its shorter isoform DM20. Synchrotron radiation circular dichroism spectroscopy and small-angle X-ray and neutron scattering revealed a dimeric, α-helical conformation for both PLP and DM20 in detergent complexes, and pinpoint structural variations between the isoforms and their influence on protein function. In phosphatidylcholine membranes, reconstituted PLP and DM20 spontaneously induced formation of multilamellar myelin-like membrane assemblies. Cholesterol and sphingomyelin enhanced the membrane organization but were not crucial for membrane stacking. Electron cryomicroscopy, atomic force microscopy, and X-ray diffraction experiments for membrane-embedded PLP/DM20 illustrated effective membrane stacking and ordered organization of membrane assemblies with a repeat distance in line with CNS myelin. Our results shed light on the 3D structure of myelin PLP and DM20, their structure-function differences, as well as fundamental protein-lipid interplay in CNS compact myelin.
Collapse
Affiliation(s)
- Salla Ruskamo
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Jan Skov Pedersen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Anne Martel
- Institut Laue-Langevin (ILL), Grenoble, France
| | - Karel Škubník
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tamim Darwish
- National Deuteration Facility, The Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, Sydney, NSW, 2232, Australia
| | | | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
10
|
Raman spectroscopy and sciatic functional index (SFI) after low-level laser therapy (LLLT) in a rat sciatic nerve crush injury model. Lasers Med Sci 2022; 37:2957-2971. [PMID: 35503388 DOI: 10.1007/s10103-022-03565-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
Abstract
Axonotmesis causes sensorimotor and neurofunctional deficits, and its regeneration can occur slowly or not occur if not treated appropriately. Low-level laser therapy (LLLT) promotes nerve regeneration with the proliferation of myelinating Schwann cells to recover the myelin sheath and the production of glycoproteins for endoneurium reconstruction. This study aimed to evaluate the effects of LLLT on sciatic nerve regeneration after compression injury by means of the sciatic functional index (SFI) and Raman spectroscopy (RS). For this, 64 Wistar rats were divided into two groups according to the length of treatment: 14 days (n = 32) and 21 days (n = 32). These two groups were subdivided into four sub-groups of eight animals each (control 1; control 2; laser 660 nm; laser 808 nm). All animals had surgical exposure to the sciatic nerve, and only control 1 did not suffer nerve damage. To cause the lesion in the sciatic nerve, compression was applied with a Kelly clamp for 6 s. The evaluation of sensory deficit was performed by the painful exteroceptive sensitivity (PES) and neuromotor tests by the SFI. Laser 660 nm and laser 808 nm sub-groups were irradiated daily (100 mW, 40 s, energy density of 133 J/cm2). The sciatic nerve segment was removed for RS analysis. The animals showed accentuated sensory and neurofunctional deficit after injury and their rehabilitation occurred more effectively in the sub-groups treated with 660 nm laser. Control 2 sub-group did not obtain functional recovery of gait. The RS identified sphingolipids (718, 1065, and 1440 cm-1) and collagen (700, 852, 1004, 1270, and 1660 cm-1) as biomolecular characteristics of sciatic nerves. Principal component analysis revealed important differences among sub-groups and a directly proportional correlation with SFI, mainly in the sub-group laser 660 nm treated for 21 days. In the axonotmesis-type lesion model presented herein, the 660 nm laser was more efficient in neurofunctional recovery, and the Raman spectra of lipid and protein properties were attributed to the basic biochemical composition of the sciatic nerve.
Collapse
|
11
|
Khandker L, Jeffries MA, Chang YJ, Mather ML, Evangelou AV, Bourne JN, Tafreshi AK, Ornelas IM, Bozdagi-Gunal O, Macklin WB, Wood TL. Cholesterol biosynthesis defines oligodendrocyte precursor heterogeneity between brain and spinal cord. Cell Rep 2022; 38:110423. [PMID: 35235799 PMCID: PMC8988216 DOI: 10.1016/j.celrep.2022.110423] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 01/04/2022] [Accepted: 02/02/2022] [Indexed: 12/28/2022] Open
Abstract
Brain and spinal cord oligodendroglia have distinct functional characteristics, and cell-autonomous loss of individual genes can result in different regional phenotypes. However, a molecular basis for these distinctions is unknown. Using single-cell analysis of oligodendroglia during developmental myelination, we demonstrate that brain and spinal cord precursors are transcriptionally distinct, defined predominantly by cholesterol biosynthesis. We further identify the mechanistic target of rapamycin (mTOR) as a major regulator promoting cholesterol biosynthesis in oligodendroglia. Oligodendroglia-specific loss of mTOR decreases cholesterol biosynthesis in both the brain and the spinal cord, but mTOR loss in spinal cord oligodendroglia has a greater impact on cholesterol biosynthesis, consistent with more pronounced deficits in developmental myelination. In the brain, mTOR loss results in a later adult myelin deficit, including oligodendrocyte death, spontaneous demyelination, and impaired axonal function, demonstrating that mTOR is required for myelin maintenance in the adult brain. Using single-cell RNA sequencing, Khandker et al. reveal that oligodendroglia in the brain and spinal cord are distinct. These differences arise from mechanisms regulating cholesterol acquisition, necessary for maintenance of the lipid-rich myelin sheath, and involve mTOR in the regulation of cholesterol biosynthesis in oligodendroglia.
Collapse
Affiliation(s)
- Luipa Khandker
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Marisa A Jeffries
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Yun-Juan Chang
- Office of Advance Research Computing, Rutgers University, Piscataway, NJ 08854, USA
| | - Marie L Mather
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Angelina V Evangelou
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Jennifer N Bourne
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Azadeh K Tafreshi
- Department of Psychiatry, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Isis M Ornelas
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Ozlem Bozdagi-Gunal
- Department of Psychiatry, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Wendy B Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Teresa L Wood
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
| |
Collapse
|
12
|
Brain cell type-specific cholesterol metabolism and implications for learning and memory. Trends Neurosci 2022; 45:401-414. [DOI: 10.1016/j.tins.2022.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/06/2022] [Accepted: 01/25/2022] [Indexed: 12/21/2022]
|
13
|
Vachon L, Smaani A, Tessier N, Jean G, Demers A, Milasan A, Ardo N, Jarry S, Villeneuve L, Alikashani A, Finherty V, Ruiz M, Sorci-Thomas MG, Mayer G, Martel C. Downregulation of low-density lipoprotein receptor mRNA in lymphatic endothelial cells impairs lymphatic function through changes in intracellular lipids. Theranostics 2022; 12:1440-1458. [PMID: 35154499 PMCID: PMC8771568 DOI: 10.7150/thno.58780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
Rationale: Impairment in lymphatic transport is associated with the onset and progression of atherosclerosis in animal models. The downregulation of low-density-lipoprotein receptor (LDLR) expression, rather than increased circulating cholesterol level per se, is involved in early atherosclerosis-related lymphatic dysfunction. Enhancing lymphatic function in Ldlr-/- mice with a mutant form of VEGF-C (VEGF-C 152s), a selective VEGFR-3 agonist, successfully delayed atherosclerotic plaque onset when mice were subsequently fed a high-fat diet. However, the specific mechanisms by which LDLR protects against lymphatic function impairment is unknown. Methods and results: We have thus injected wild-type and Pcsk9-/- mice with an adeno-associated virus type 1 expressing a shRNA for silencing Ldlr in vivo. We herein report that lymphatic contractility is reduced upon Ldlr dowregulation in wild-type mice only. Our in vitro experiments reveal that a decrease in LDLR expression at the mRNA level reduces the chromosome duplication phase and the protein expression of VEGFR-3, a membrane-bound key lymphatic marker. Furthermore, it also significantly reduced the levels of 18 lipid subclasses, including key constituents of lipid rafts as well as the transcription of several genes involved in cholesterol biosynthesis and cellular and metabolic processes. Exogenous PCSK9 only reduces lymphatic endothelial-LDLR at the protein level and does not affect lymphatic endothelial cell integrity. This puts forward that PCSK9 may act upon lymphatic muscle cells to mediate its effect on lymphatic contraction capacity in vivo. Conclusion: Our results suggest that treatments that specifically palliate the down regulation of LDLR mRNA in lymphatic endothelial cells preserve the integrity of the lymphatic endothelium and sustain lymphatic function, a prerequisite player in atherosclerosis.
Collapse
Affiliation(s)
- Laurent Vachon
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Ali Smaani
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Nolwenn Tessier
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Gabriel Jean
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Annie Demers
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Andreea Milasan
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Nadine Ardo
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Stéphanie Jarry
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Louis Villeneuve
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | | | - Vincent Finherty
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Matthieu Ruiz
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Metabolomics platform, Montreal, Quebec, Canada
| | | | - Gaétan Mayer
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
| | - Catherine Martel
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Neely SA, Lyons DA. Insights Into Central Nervous System Glial Cell Formation and Function From Zebrafish. Front Cell Dev Biol 2021; 9:754606. [PMID: 34912801 PMCID: PMC8666443 DOI: 10.3389/fcell.2021.754606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/05/2021] [Indexed: 12/23/2022] Open
Abstract
The term glia describes a heterogenous collection of distinct cell types that make up a large proportion of our nervous system. Although once considered the glue of the nervous system, the study of glial cells has evolved significantly in recent years, with a large body of literature now highlighting their complex and diverse roles in development and throughout life. This progress is due, in part, to advances in animal models in which the molecular and cellular mechanisms of glial cell development and function as well as neuron-glial cell interactions can be directly studied in vivo in real time, in intact neural circuits. In this review we highlight the instrumental role that zebrafish have played as a vertebrate model system for the study of glial cells, and discuss how the experimental advantages of the zebrafish lend themselves to investigate glial cell interactions and diversity. We focus in particular on recent studies that have provided insight into the formation and function of the major glial cell types in the central nervous system in zebrafish.
Collapse
Affiliation(s)
- Sarah A. Neely
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - David A. Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
15
|
Xia W, Fancy SPJ. Mechanisms of oligodendrocyte progenitor developmental migration. Dev Neurobiol 2021; 81:985-996. [PMID: 34643996 DOI: 10.1002/dneu.22856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/25/2021] [Accepted: 09/08/2021] [Indexed: 01/01/2023]
Abstract
Oligodendrocytes, the myelinating cells of the central nervous system (CNS), develop from oligodendrocyte progenitor cells (OPCs) that must first migrate extensively throughout the developing brain and spinal cord. Specified at particular times from discrete regions in the developing CNS, OPCs are one of the most migratory of cell types and disperse rapidly. A variety of factors act on OPCs to trigger intracellular changes that regulate their migration. We will discuss factors that act as long-range guidance cues, those that act to regulate cellular motility, and those that are critical in determining the final positioning of OPCs. In addition, recent evidence has identified the vasculature as the physical substrate used by OPCs for their migration. Several new findings relating to this oligodendroglial-vascular signaling axis reveal new insight on the relationship between OPCs and blood vessels in the developing and adult brain.
Collapse
Affiliation(s)
- Wenlong Xia
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA.,Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA.,Division of Neuroimmunology and Glial Biology, University of California, San Francisco, San Francisco, California, USA.,Newborn Brain Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Stephen P J Fancy
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA.,Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA.,Division of Neuroimmunology and Glial Biology, University of California, San Francisco, San Francisco, California, USA.,Newborn Brain Research Institute, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
16
|
Di(isononyl) cyclohexane-1,2-dicarboxylate (DINCH) alters transcriptional profiles, lipid metabolism and behavior in zebrafish larvae. Heliyon 2021; 7:e07951. [PMID: 34553086 PMCID: PMC8441171 DOI: 10.1016/j.heliyon.2021.e07951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 01/11/2023] Open
Abstract
Plasticizers are commonly used in different consumer goods and personal care products to provide flexibility, durability and elasticity to polymers. Due to their reported toxicity, the use of several plasticizers, including phthalates has been regulated and/or banned from the market. Di(isononyl) cyclohexane-1,2-dicarboxylate (DINCH) is an alternative plasticizer that was introduced to replace toxic plasticizers. Increasing global demand and lack of toxicity data and safety assessment of DINCH have raised the concern to human and animal health. Hence, in the present study, we investigated the adverse effects of DINCH (at concentrations ranging from 0.01 to 10 μM) in early developmental stages of zebrafish using different endpoints such as hatching rate, developmental abnormalities, lipid content, behavior analysis and gene expression. We found that DINCH caused hatching delay in a dose-dependent manner and altered the expression of genes involved in stress response. Lipid staining using Oil Red O stain showed a slight lipid accumulation around the yolk, brain, eye and neck with increasing concentration. Genes associated with lipid transport such as fatty acid synthesis, β-oxidation, elongation, lipid transport were significantly altered by DINCH. Genes involved in cholesterol biosynthesis and homeostasis were also affected by DINCH indicating possible developmental neurotoxicity. Behavioral analysis of larvae demonstrated a distinct locomotor activity upon exposure to DINCH. The present data shows that DINCH could induce physiological and metabolic toxicity to aquatic organisms. Hence, further analyses and environmental monitoring of DINCH should be conducted to determine its safety and toxicity levels.
Collapse
|
17
|
Larochelle C, Wasser B, Jamann H, Löffel JT, Cui QL, Tastet O, Schillner M, Luchtman D, Birkenstock J, Stroh A, Antel J, Bittner S, Zipp F. Pro-inflammatory T helper 17 directly harms oligodendrocytes in neuroinflammation. Proc Natl Acad Sci U S A 2021. [PMID: 34417310 DOI: 10.1071/pnas.2025813118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
T helper (Th)17 cells are considered to contribute to inflammatory mechanisms in diseases such as multiple sclerosis (MS). However, the discussion persists regarding their true role in patients. Here, we visualized central nervous system (CNS) inflammatory processes in models of MS live in vivo and in MS brains and discovered that CNS-infiltrating Th17 cells form prolonged stable contact with oligodendrocytes. Strikingly, compared to Th2 cells, direct contact with Th17 worsened experimental demyelination, caused damage to human oligodendrocyte processes, and increased cell death. Importantly, we found that in comparison to Th2 cells, both human and murine Th17 cells express higher levels of the integrin CD29, which is linked to glutamate release pathways. Of note, contact of human Th17 cells with oligodendrocytes triggered release of glutamate, which induced cell stress and changes in biosynthesis of cholesterol and lipids, as revealed by single-cell RNA-sequencing analysis. Finally, exposure to glutamate decreased myelination, whereas blockade of CD29 preserved oligodendrocyte processes from Th17-mediated injury. Our data provide evidence for the direct and deleterious attack of Th17 cells on the myelin compartment and show the potential for therapeutic opportunities in MS.
Collapse
Affiliation(s)
- Catherine Larochelle
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; .,Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Department of Neurosciences, Montreal, QC H2X 0A9, Canada
| | - Beatrice Wasser
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Hélène Jamann
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Department of Neurosciences, Montreal, QC H2X 0A9, Canada
| | - Julian T Löffel
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Qiao-Ling Cui
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Olivier Tastet
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Department of Neurosciences, Montreal, QC H2X 0A9, Canada
| | - Miriam Schillner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Dirk Luchtman
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Jérôme Birkenstock
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Albrecht Stroh
- Institute for Pathophysiology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Jack Antel
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany;
| |
Collapse
|
18
|
Abstract
T helper (Th)17 cells are considered to contribute to inflammatory mechanisms in diseases such as multiple sclerosis (MS). However, the discussion persists regarding their true role in patients. Here, we visualized central nervous system (CNS) inflammatory processes in models of MS live in vivo and in MS brains and discovered that CNS-infiltrating Th17 cells form prolonged stable contact with oligodendrocytes. Strikingly, compared to Th2 cells, direct contact with Th17 worsened experimental demyelination, caused damage to human oligodendrocyte processes, and increased cell death. Importantly, we found that in comparison to Th2 cells, both human and murine Th17 cells express higher levels of the integrin CD29, which is linked to glutamate release pathways. Of note, contact of human Th17 cells with oligodendrocytes triggered release of glutamate, which induced cell stress and changes in biosynthesis of cholesterol and lipids, as revealed by single-cell RNA-sequencing analysis. Finally, exposure to glutamate decreased myelination, whereas blockade of CD29 preserved oligodendrocyte processes from Th17-mediated injury. Our data provide evidence for the direct and deleterious attack of Th17 cells on the myelin compartment and show the potential for therapeutic opportunities in MS.
Collapse
|
19
|
Statins: Neurobiological underpinnings and mechanisms in mood disorders. Neurosci Biobehav Rev 2021; 128:693-708. [PMID: 34265321 DOI: 10.1016/j.neubiorev.2021.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/28/2021] [Accepted: 07/10/2021] [Indexed: 12/26/2022]
Abstract
Statins (3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors) treat dyslipidaemia and cardiovascular disease by inhibiting cholesterol biosynthesis. They also have immunomodulatory and anti-inflammatory properties. Beyond cardiovascular disease, cholesterol and inflammation appear to be components of the pathogenesis and pathophysiology of neuropsychiatric disorders. Statins may therefore afford some therapeutic benefit in mood disorders. In this paper, we review the pathophysiology of mood disorders with a focus on pharmacologically relevant pathways, using major depressive disorder and bipolar disorder as exemplars. Statins are discussed in the context of these disorders, with particular focus on the putative mechanisms involved in their anti-inflammatory and immunomodulatory effects. Recent clinical data suggest that statins may have antidepressant properties, however given their interactions with many known biological pathways, it has not been fully elucidated which of these are the major determinants of clinical outcomes in mood disorders. Moreover, it remains unclear what the appropriate dose, or appropriate patient phenotype for adjunctive treatment may be. High quality randomised control trials in concert with complementary biological investigations are needed if the potential clinical effects of statins on mood disorders, as well as their biological correlates, are to be better understood.
Collapse
|
20
|
Hubler Z, Friedrich RM, Sax JL, Allimuthu D, Gao F, Rivera-León AM, Pleshinger MJ, Bederman I, Adams DJ. Modulation of lanosterol synthase drives 24,25-epoxysterol synthesis and oligodendrocyte formation. Cell Chem Biol 2021; 28:866-875.e5. [PMID: 33636107 PMCID: PMC8217109 DOI: 10.1016/j.chembiol.2021.01.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/23/2020] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
Small molecules that promote the formation of new myelinating oligodendrocytes from oligodendrocyte progenitor cells (OPCs) are potential therapeutics for demyelinating diseases. We recently established inhibition of specific cholesterol biosynthesis enzymes and resulting accumulation of 8,9-unsaturated sterols as a unifying mechanism through which many such molecules act. To identify more potent sterol enhancers of oligodendrocyte formation, we synthesized a collection of 8,9-unsaturated sterol derivatives and found that 24,25-epoxylanosterol potently promoted oligodendrocyte formation. In OPCs, 24,25-epoxylanosterol was metabolized to 24,25-epoxycholesterol via the epoxycholesterol shunt pathway. Increasing flux through the epoxycholesterol shunt using genetic manipulation or small-molecule inhibition of lanosterol synthase (LSS) increased endogenous 24,25-epoxycholesterol levels and OPC differentiation. Notably, exogenously supplied 24,25-epoxycholesterol promoted oligodendrocyte formation despite lacking an 8,9-unsaturation. This work highlights epoxycholesterol shunt usage, controlled by inhibitors of LSS, as a target to promote oligodendrocyte formation. Additionally, sterols beyond the 8,9-unsaturated sterols, including 24,25-epoxycholesterol, drive oligodendrocyte formation.
Collapse
Affiliation(s)
- Zita Hubler
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ryan M Friedrich
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Joel L Sax
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Dharmaraja Allimuthu
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Farrah Gao
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Adrianna M Rivera-León
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Matthew J Pleshinger
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ilya Bederman
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Drew J Adams
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
21
|
Hughes AN. Glial Cells Promote Myelin Formation and Elimination. Front Cell Dev Biol 2021; 9:661486. [PMID: 34046407 PMCID: PMC8144722 DOI: 10.3389/fcell.2021.661486] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Building a functional nervous system requires the coordinated actions of many glial cells. In the vertebrate central nervous system (CNS), oligodendrocytes myelinate neuronal axons to increase conduction velocity and provide trophic support. Myelination can be modified by local signaling at the axon-myelin interface, potentially adapting sheaths to support the metabolic needs and physiology of individual neurons. However, neurons and oligodendrocytes are not wholly responsible for crafting the myelination patterns seen in vivo. Other cell types of the CNS, including microglia and astrocytes, modify myelination. In this review, I cover the contributions of non-neuronal, non-oligodendroglial cells to the formation, maintenance, and pruning of myelin sheaths. I address ways that these cell types interact with the oligodendrocyte lineage throughout development to modify myelination. Additionally, I discuss mechanisms by which these cells may indirectly tune myelination by regulating neuronal activity. Understanding how glial-glial interactions regulate myelination is essential for understanding how the brain functions as a whole and for developing strategies to repair myelin in disease.
Collapse
Affiliation(s)
- Alexandria N. Hughes
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, Aurora, CO, United States
| |
Collapse
|
22
|
Castro VL, Reyes-Nava NG, Sanchez BB, Gonzalez CG, Paz D, Quintana AM. Activation of WNT signaling restores the facial deficits in a zebrafish with defects in cholesterol metabolism. Genesis 2020; 58:e23397. [PMID: 33197123 PMCID: PMC7816230 DOI: 10.1002/dvg.23397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 11/10/2022]
Abstract
Inborn errors of cholesterol metabolism occur as a result of mutations in the cholesterol synthesis pathway (CSP). Although mutations in the CSP cause a multiple congenital anomaly syndrome, craniofacial abnormalities are a hallmark phenotype associated with these disorders. Previous studies have established that mutation of the zebrafish hmgcs1 gene (Vu57 allele), which encodes the first enzyme in the CSP, causes defects in craniofacial development and abnormal neural crest cell (NCC) differentiation. However, the molecular mechanisms by which the products of the CSP disrupt NCC differentiation are not completely known. Cholesterol is known to regulate the activity of WNT signaling, an established regulator of NCC differentiation. We hypothesized that defects in cholesterol synthesis are associated with reduced WNT signaling, consequently resulting in abnormal craniofacial development. To test our hypothesis we performed a combination of pharmaceutical inhibition, gene expression assays, and targeted rescue experiments to understand the function of the CSP and WNT signaling during craniofacial development. We demonstrate reduced expression of four canonical WNT downstream target genes in homozygous carriers of the Vu57 allele and reduced axin2 expression, a known WNT target gene, in larvae treated with Ro-48-8071, an inhibitor of cholesterol synthesis. Moreover, activation of WNT signaling via treatment with WNT agonist I completely restored the craniofacial defects present in a subset of animals carrying the Vu57 allele. Collectively, these data suggest interplay between the CSP and WNT signaling during craniofacial development.
Collapse
Affiliation(s)
- Victoria L Castro
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas, El Paso, Texas, USA
| | - Nayeli G Reyes-Nava
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas, El Paso, Texas, USA
| | - Brianna B Sanchez
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas, El Paso, Texas, USA
| | - Cesar G Gonzalez
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas, El Paso, Texas, USA
| | - David Paz
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas, El Paso, Texas, USA
| | - Anita M Quintana
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas, El Paso, Texas, USA
| |
Collapse
|
23
|
Hornemann T. Mini review: Lipids in Peripheral Nerve Disorders. Neurosci Lett 2020; 740:135455. [PMID: 33166639 DOI: 10.1016/j.neulet.2020.135455] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023]
Abstract
Neurons are polarized cells whose fundamental functions are to receive, conduct and transmit signals. In bilateral animals, the nervous system is divided into the central (CNS) and peripheral (PNS) nervous system. The main function of the PNS is to connect the CNS to the limbs and organs, essentially serving as a relay between the brain and spinal cord and the rest of the body. Sensory axons can be up to 3 feet in length. Because of its long-reaching and complex structure, the peripheral nervous system (PNS) is exposed and vulnerable to many genetic, metabolic and environmental predispositions. Lipids and lipid intermediates are essential components of nerves. About 50 % of the brain dry weight consist of lipids, which makes it the second highest lipid rich tissue after adipose tissue. However, the role of lipids in neurological disorders in particular of the peripheral nerves is not well understood. This review aims to provide an overview about the role of lipids in the disorders of the PNS.
Collapse
Affiliation(s)
- Th Hornemann
- Institute for Clinical Chemistry, University Hospital and University Zurich, 8091, Zürich, Switzerland.
| |
Collapse
|
24
|
Umbilical cord plasma-derived exosomes from preeclamptic women induce vascular dysfunction by targeting HMGCS1 in endothelial cells. Placenta 2020; 103:86-93. [PMID: 33120050 DOI: 10.1016/j.placenta.2020.10.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/28/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Hypertension is one of the major clinical manifestations of preeclampsia. Vascular dysfunction is crucial for the occurrence and progression of hypertension. Exosomes are emerging as mediators of intercellular communication and can participate in angiogenesis. In this study, we hypothesize that umbilical cord plasma-derived exosomes from preeclamptic women (PE-uexo) impair vascular development by regulating endothelial cells. Here, umbilical cord plasma samples from women with normal pregnancies and matched preeclamptic patients were used to isolate circulating exosomes. Proliferation, Transwell and tube formation assays indicated that PE-uexo impaired the angiogenesis of human umbilical vein endothelial cells (HUVECs). On the basis of microarray analysis of HUVECs treated with PE-uexo or exosomes from women with normal pregnancies, we showed that the expression of 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) was decreased in the PE-uexo-treated HUVECs. Furthermore, downregulation of HMGCS1 in HUVECs attenuated the proliferation and migration of these cells. Interestingly, HMGCS1 was decreased in P0 HUVECs from preeclamptic pregnancies compared with normotensive pregnancies. Together, these observations suggest that PE-uexo disrupts normal function in vascular endothelial cells by targeting HMGCS1, which may result in vascular disorders in the offspring.
Collapse
|
25
|
He R, Zhao Z, Yang Y, Liang X. Using bioinformatics and metabolomics to identify altered granulosa cells in patients with diminished ovarian reserve. PeerJ 2020; 8:e9812. [PMID: 32923184 PMCID: PMC7457930 DOI: 10.7717/peerj.9812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/04/2020] [Indexed: 11/20/2022] Open
Abstract
Background During fertility treatment, diminished ovarian reserve (DOR) is a challenge that can seriously affect a patient's reproductive potential. However, the pathogenesis of DOR is still unclear and its treatment options are limited. This study aimed to explore DOR's molecular mechanisms. Methods We used R software to analyze the mRNA microarray dataset E-MTAB-391 downloaded from ArrayExpress, screen for differentially expressed genes (DEGs), and perform functional enrichment analyses. We also constructed the protein-protein interaction (PPI) and miRNA-mRNA networks. Ovarian granulosa cells (GCs) from women with DOR and the control group were collected to perform untargeted metabolomics analyses. Additionally, small molecule drugs were identified using the Connectivity Map database. Results We ultimately identified 138 DEGs. Our gene ontology (GO) analysis indicated that DEGs were mainly enriched in cytokine and steroid biosynthetic processes. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG), the DEGs were mainly enriched in the AGE (advanced glycation end-product)-RAGE (receptor for AGE) signaling pathway in diabetic complications and steroid biosynthesis. In the PPI network, we determined that JUN, EGR1, HMGCR, ATF3, and SQLE were hub genes that may be involved in steroid biosynthesis and inflammation. miRNAs also played a role in DOR development by regulating target genes. We validated the differences in steroid metabolism across GCs using liquid chromatography-tandem mass spectrometry (LC-MS/MS). We selected 31 small molecules with potentially positive or negative influences on DOR development. Conclusion We found that steroidogenesis and inflammation played critical roles in DOR development, and our results provide promising insights for predicting and treating DOR.
Collapse
Affiliation(s)
- Ruifen He
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Zhongying Zhao
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yongxiu Yang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory for Gynecologic Oncology Gansu Province, Lanzhou, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory for Gynecologic Oncology Gansu Province, Lanzhou, China
| |
Collapse
|
26
|
Perlman K, Couturier CP, Yaqubi M, Tanti A, Cui QL, Pernin F, Stratton JA, Ragoussis J, Healy L, Petrecca K, Dudley R, Srour M, Hall JA, Kennedy TE, Mechawar N, Antel JP. Developmental trajectory of oligodendrocyte progenitor cells in the human brain revealed by single cell RNA sequencing. Glia 2020; 68:1291-1303. [PMID: 31958186 DOI: 10.1002/glia.23777] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 12/30/2022]
Abstract
Characterizing the developmental trajectory of oligodendrocyte progenitor cells (OPC) is of great interest given the importance of these cells in the remyelination process. However, studies of human OPC development remain limited by the availability of whole cell samples and material that encompasses a wide age range, including time of peak myelination. In this study, we apply single cell RNA sequencing to viable whole cells across the age span and link transcriptomic signatures of oligodendrocyte-lineage cells with stage-specific functional properties. Cells were isolated from surgical tissue samples of second-trimester fetal, 2-year-old pediatric, 13-year-old adolescent, and adult donors by mechanical and enzymatic digestion, followed by percoll gradient centrifugation. Gene expression was analyzed using droplet-based RNA sequencing (10X Chromium). Louvain clustering analysis identified three distinct cellular subpopulations based on 5,613 genes, comprised of an early OPC (e-OPC) group, a late OPC group (l-OPC), and a mature OL (MOL) group. Gene ontology terms enriched for e-OPCs included cell cycle and development, for l-OPCs included extracellular matrix and cell adhesion, and for MOLs included myelination and cytoskeleton. The e-OPCs were mostly confined to the premyelinating fetal group, and the l-OPCs were most highly represented in the pediatric age group, corresponding to the peak age of myelination. Cells expressing a signature characteristic of l-OPCs were identified in the adult brain in situ using RNAScope. These findings highlight the transcriptomic variability in OL-lineage cells before, during, and after peak myelination and contribute to identifying novel pathways required to achieve remyelination.
Collapse
Affiliation(s)
- Kelly Perlman
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.,Department of Psychiatry, Douglas Mental Health University Institute, Montreal, Canada
| | - Charles P Couturier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Moein Yaqubi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Arnaud Tanti
- Department of Psychiatry, Douglas Mental Health University Institute, Montreal, Canada
| | - Qiao-Ling Cui
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Florian Pernin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics and Bioengineering, McGill University and Genome Quebec Innovation Centre, Montreal, Canada
| | - Luke Healy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Kevin Petrecca
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Roy Dudley
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.,Department of Pediatric Neurosurgery, Montreal Children's Hospital, Montreal, Canada
| | - Myriam Srour
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada.,Department of Pediatric Neurosurgery, Montreal Children's Hospital, Montreal, Canada
| | - Jeffrey A Hall
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Timothy E Kennedy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Naguib Mechawar
- Department of Psychiatry, Douglas Mental Health University Institute, Montreal, Canada
| | - Jack P Antel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| |
Collapse
|
27
|
Conditional Deletion of LRP1 Leads to Progressive Loss of Recombined NG2-Expressing Oligodendrocyte Precursor Cells in a Novel Mouse Model. Cells 2019; 8:cells8121550. [PMID: 31801252 PMCID: PMC6953036 DOI: 10.3390/cells8121550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 02/08/2023] Open
Abstract
The low-density lipoprotein receptor-related protein 1 (LRP1) is a transmembrane receptor, mediating endocytosis and activating intracellular signaling cascades. LRP1 is highly expressed in the central nervous system (CNS), especially in oligodendrocyte precursor cells (OPCs). Previous studies have suggested LRP1 as a regulator in early oligodendrocyte development, repair of chemically induced white matter lesions, and cholesterol homeostasis. To circumvent embryonic lethality observed in the case of global LRP1 deletion, we generated a new inducible conditional knockout (KO) mouse model, which enabled an NG2-restricted LRP1 deficiency (NG2-CreERT2ct2/wtxR26eGFPflox/floxxLRP1flox/flox). When characterizing our triple transgenic mouse model, we noticed a substantial and progressive loss of recombined LRP1-deficient cells in the oligodendrocyte lineage. On the other hand, we found comparable distributions and fractions of oligodendroglia within the Corpus callosum of the KO and control animals, indicating a compensation of these deficits. An initial study on experimental autoimmune encephalomyelitis (EAE) was performed in triple transgenic and control mice and the cell biology of oligodendrocytes obtained from the animals was studied in an in vitro myelination assay. Differences could be observed in these assays, which, however, did not achieve statistical significance, presumably because the majority of recombined LRP1-deficient cells has been replaced by non-recombined cells. Thus, the analysis of the role of LRP1 in EAE will require the induction of acute recombination in the context of the disease process. As LRP1 is necessary for the survival of OPCs in vivo, we assume that it will play an important role in myelin repair.
Collapse
|
28
|
Doll CA, Yergert KM, Appel BH. The RNA binding protein fragile X mental retardation protein promotes myelin sheath growth. Glia 2019; 68:495-508. [PMID: 31626382 DOI: 10.1002/glia.23731] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 12/13/2022]
Abstract
During development, oligodendrocytes in the central nervous system extend a multitude of processes that wrap axons with myelin. The highly polarized oligodendrocytes generate myelin sheaths on many different axons, which are far removed from the cell body. Neurons use RNA binding proteins to transport, stabilize, and locally translate mRNA in distal domains of neurons. Local synthesis of synaptic proteins during neurodevelopment facilitates the rapid structural and functional changes underlying neural plasticity and avoids extensive protein transport. We hypothesize that RNA binding proteins also regulate local mRNA regulation in oligodendrocytes to promote myelin sheath growth. Fragile X mental retardation protein (FMRP), an RNA binding protein that plays essential roles in the growth and maturation of neurons, is also expressed in oligodendrocytes. To determine whether oligodendrocytes require FMRP for myelin sheath development, we examined fmr1-/- mutant zebrafish and drove FMR1 expression specifically in oligodendrocytes. We found oligodendrocytes in fmr1-/- mutants developed myelin sheaths of diminished length, a phenotype that can be autonomously rescued in oligodendrocytes with FMR1 expression. Myelin basic protein (Mbp), an essential myelin protein, was reduced in myelin tracts of fmr1-/- mutants, but loss of FMRP function did not impact the localization of mbpa transcript in myelin. Finally, expression of FMR1-I304N, a missense allele that abrogates FMRP association with ribosomes, failed to rescue fmr1-/- mutant sheath growth and induced short myelin sheaths in oligodendrocytes of wild-type larvae. Taken together, these data suggest that FMRP promotes sheath growth through local regulation of translation.
Collapse
Affiliation(s)
- Caleb A Doll
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Katie M Yergert
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Bruce H Appel
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
29
|
Zhou S, Xu H, Tang Q, Xia H, Bi F. Dipyridamole Enhances the Cytotoxicities of Trametinib against Colon Cancer Cells through Combined Targeting of HMGCS1 and MEK Pathway. Mol Cancer Ther 2019; 19:135-146. [PMID: 31554653 DOI: 10.1158/1535-7163.mct-19-0413] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/19/2019] [Accepted: 09/18/2019] [Indexed: 02/05/2023]
Abstract
Both the MAPK pathway and mevalonate (MVA) signaling pathway play an increasingly significant role in the carcinogenesis of colorectal carcinoma, whereas the cross-talk between these two pathways and its implication in targeted therapy remains unclear in colorectal carcinoma. Here, we identified that HMGCS1 (3-hydroxy-3-methylglutaryl-CoA synthase 1), the rate-limiting enzyme of the MVA pathway, is overexpressed in colon cancer tissues and positively regulates the cell proliferation, migration, and invasion of colon cancer cells. In addition, HMGCS1 could enhance the activity of pERK independent of the MVA pathway, and the suppression of HMGCS1 could completely reduce the EGF-induced proliferation of colon cancer cells. Furthermore, we found that trametinib, a MEK inhibitor, could only partially abolish the upregulation of HMGCS1 induced by EGF treatment, while combination with HMGCS1 knockdown could completely reverse the upregulation of HMGCS1 induced by EGF treatment and increase the sensitivity of colon cancer cells to trametinib. Finally, we combined trametinib and dipyridamole, a common clinically used drug that could suppress the activity of SREBF2 (sterol regulatory element-binding transcription factor 2), a transcription factor regulating HMGCS1 expression, and identified its synergistic effect in inhibiting the proliferation and survival of colon cancer cells in vitro as well as the in vivo tumorigenic potential of colon cancer cells. Together, the current data indicated that HMGCS1 may be a novel biomarker, and the combination of targeting HMGCS1 and MEK might be a promising therapeutic strategy for patients with colon cancer.
Collapse
Affiliation(s)
- Sheng Zhou
- Department of Abdominal Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Huanji Xu
- Department of Abdominal Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qiulin Tang
- Department of Abdominal Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hongwei Xia
- Department of Abdominal Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Feng Bi
- Department of Abdominal Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
30
|
Engel DF, Grzyb AN, de Oliveira J, Pötzsch A, Walker TL, Brocardo PS, Kempermann G, de Bem AF. Impaired adult hippocampal neurogenesis in a mouse model of familial hypercholesterolemia: A role for the LDL receptor and cholesterol metabolism in adult neural precursor cells. Mol Metab 2019; 30:1-15. [PMID: 31767163 PMCID: PMC6812372 DOI: 10.1016/j.molmet.2019.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Abstract
Objective In familial hypercholesterolemia (FH), mutations in the low-density lipoprotein (LDL) receptor (LDLr) gene result in increased plasma LDL cholesterol. Clinical and preclinical studies have revealed an association between FH and hippocampus-related memory and mood impairment. We here asked whether hippocampal pathology in FH might be a consequence of compromised adult hippocampal neurogenesis. Methods We evaluated hippocampus-dependent behavior and neurogenesis in adult C57BL/6JRj and LDLr−/− mice. We investigated the effects of elevated cholesterol and the function of LDLr in neural precursor cells (NPC) isolated from adult C57BL/6JRj mice in vitro. Results Behavioral tests revealed that adult LDLr−/− mice showed reduced performance in a dentate gyrus (DG)-dependent metric change task. This phenotype was accompanied by a reduction in cell proliferation and adult neurogenesis in the DG of LDLr−/− mice, suggesting a potential direct impact of LDLr mutation on NPC. Exposure of NPC to LDL as well as LDLr gene knockdown reduced proliferation and disrupted transcriptional activity of genes involved in endogenous cholesterol synthesis and metabolism. The LDL treatment also induced an increase in intracellular lipid storage. Functional analysis of differentially expressed genes revealed parallel modulation of distinct regulatory networks upon LDL treatment and LDLr knockdown. Conclusions Together, these results suggest that high LDL levels and a loss of LDLr function, which are characteristic to individuals with FH, might contribute to a disease-related impairment in adult hippocampal neurogenesis and, consequently, cognitive functions. The LDLr −/− mice show impaired hippocampal related behaviour and adult neurogenesis. In vitro exposure of NPC to LDL and LDLr knock-down reduces cell proliferation. LDL exposure induces lipid storage in NPC. In vitro LDL and LDLr knock-down in NPC modulates distinct regulatory networks.
Collapse
Affiliation(s)
- Daiane F Engel
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil; German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany.
| | - Anna N Grzyb
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Jade de Oliveira
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Alexandra Pötzsch
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Tara L Walker
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Patricia S Brocardo
- Department of Morphological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany; CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Andreza F de Bem
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil; Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil.
| |
Collapse
|
31
|
Ren J, Han P, Ma X, Farah EN, Bloomekatz J, Zeng XXI, Zhang R, Swim MM, Witty AD, Knight HG, Deshpande R, Xu W, Yelon D, Chen S, Chi NC. Canonical Wnt5b Signaling Directs Outlying Nkx2.5+ Mesoderm into Pacemaker Cardiomyocytes. Dev Cell 2019; 50:729-743.e5. [PMID: 31402282 DOI: 10.1016/j.devcel.2019.07.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/01/2019] [Accepted: 07/11/2019] [Indexed: 12/21/2022]
Abstract
Pacemaker cardiomyocytes that create the sinoatrial node are essential for the initiation and maintenance of proper heart rhythm. However, illuminating developmental cues that direct their differentiation has remained particularly challenging due to the unclear cellular origins of these specialized cardiomyocytes. By discovering the origins of pacemaker cardiomyocytes, we reveal an evolutionarily conserved Wnt signaling mechanism that coordinates gene regulatory changes directing mesoderm cell fate decisions, which lead to the differentiation of pacemaker cardiomyocytes. We show that in zebrafish, pacemaker cardiomyocytes derive from a subset of Nkx2.5+ mesoderm that responds to canonical Wnt5b signaling to initiate the cardiac pacemaker program, including activation of pacemaker cell differentiation transcription factors Isl1 and Tbx18 and silencing of Nkx2.5. Moreover, applying these developmental findings to human pluripotent stem cells (hPSCs) notably results in the creation of hPSC-pacemaker cardiomyocytes, which successfully pace three-dimensional bioprinted hPSC-cardiomyocytes, thus providing potential strategies for biological cardiac pacemaker therapy.
Collapse
Affiliation(s)
- Jie Ren
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Peidong Han
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xuanyi Ma
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elie N Farah
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joshua Bloomekatz
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Biology, University of Mississippi, Oxford, MS 38677, USA
| | - Xin-Xin I Zeng
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ruilin Zhang
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Megan M Swim
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alec D Witty
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hannah G Knight
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rima Deshpande
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Weizhe Xu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shaochen Chen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Neil C Chi
- Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
32
|
Deng L, Wang R, Li H, Zhang C, Zhao L, Zhang M. miRNA-Gene Regulatory Network in Gnotobiotic Mice Stimulated by Dysbiotic Gut Microbiota Transplanted From a Genetically Obese Child. Front Microbiol 2019; 10:1517. [PMID: 31333621 PMCID: PMC6624655 DOI: 10.3389/fmicb.2019.01517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 06/18/2019] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota (GM) dysbiosis has been considered a pathogenic origin of many chronic diseases. In our previous trial, a shift in GM structure caused by a complex fiber-rich diet was associated with the health improvement of obese Prader-Willi syndrome (PWS) children. The pre- and post-intervention GMs (pre- and post-group, respectively) from one child were then transplanted into gnotobiotic mice, which resulted in significantly different physiological phenotypes, each of which was similar to the phenotype of the corresponding GM donor. This study was designed to investigate the miRNA-gene regulatory networks involved in causing these phenotypic differences. Using the post-group as a reference, we systematically identified and annotated the differentially expressed (DE) miRNAs and genes in the colon and liver of the pre-group in the second and fourth weeks after GM inoculation. Most of the significantly enriched GO terms and KEGG pathways were observed in the liver and were in the second week after GM transplantation. We screened 23 key genes along with their 73 miRNA regulators relevant to the host phenotype changes and constructed a network. The network contained 92 miRNA-gene regulation relationships, 51 of which were positive, and 41 of which were negative. Both the colon and liver had upregulated pro-inflammatory genes, and genes involved in fatty acid oxidation, lipolysis, and plasma cholesterol clearance were downregulated in only the liver. These changes were consistent with lipid and cholesterol accumulation in the host and with a high inflammation level. In addition, the colon showed an impacted glucagon-like peptide 1 (GLP-1) signaling pathway, while the liver displayed decreased insulin receptor signaling pathway activity. These molecular changes were mainly found in the second week, 2 weeks before changes in body fat occurred. This time lag indicated that GM dysbiosis might initially induce cholesterol and lipid metabolism-related miRNA and gene expression disorder and then lead to lipid accumulation and obesity development, which implicates a causative role of GM dysbiosis in obesity development rather than a result of obesity. This study provides fundamental molecular information that elucidates how dysbiotic GM increases host inflammation and disturbs host lipid and glucose metabolism.
Collapse
Affiliation(s)
- Liman Deng
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ruirui Wang
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Li
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers New Jersey Institute for Food, Nutrition, and Health, Rutgers University-New Brunswick, New Brunswick, NJ, United States
| | - Menghui Zhang
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
33
|
Hernandez JA, Castro VL, Reyes-Nava N, Montes LP, Quintana AM. Mutations in the zebrafish hmgcs1 gene reveal a novel function for isoprenoids during red blood cell development. Blood Adv 2019; 3:1244-1254. [PMID: 30987969 PMCID: PMC6482358 DOI: 10.1182/bloodadvances.2018024539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 03/09/2019] [Indexed: 12/22/2022] Open
Abstract
Erythropoiesis is the process by which new red blood cells (RBCs) are formed and defects in this process can lead to anemia or thalassemia. The GATA1 transcription factor is an established mediator of RBC development. However, the upstream mechanisms that regulate the expression of GATA1 are not completely characterized. Cholesterol is 1 potential upstream mediator of GATA1 expression because previously published studies suggest that defects in cholesterol synthesis disrupt RBC differentiation. Here we characterize RBC development in a zebrafish harboring a single missense mutation in the hmgcs1 gene (Vu57 allele). hmgcs1 encodes the first enzyme in the cholesterol synthesis pathway and mutation of hmgcs1 inhibits cholesterol synthesis. We analyzed the number of RBCs in hmgcs1 mutants and their wild-type siblings. Mutation of hmgcs1 resulted in a decrease in the number of mature RBCs, which coincides with reduced gata1a expression. We combined these experiments with pharmacological inhibition and confirmed that cholesterol and isoprenoid synthesis are essential for RBC differentiation, but that gata1a expression is isoprenoid dependent. Collectively, our results reveal 2 novel upstream regulators of RBC development and suggest that appropriate cholesterol homeostasis is critical for primitive erythropoiesis.
Collapse
Affiliation(s)
- Jose A Hernandez
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX
| | - Victoria L Castro
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX
| | - Nayeli Reyes-Nava
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX
| | - Laura P Montes
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX
| | - Anita M Quintana
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX
| |
Collapse
|
34
|
Rezaei-Tavirani M, Rezaei Tavirani M, Zamanian Azodi M. The bioinformatics aspects of gene screening of HT-29, human colon cell line treated with caffeic acid. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2019; 12:246-253. [PMID: 31528309 PMCID: PMC6668765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AIM To better understand the anticancer properties of coffee, bioinformatics analysis of gene expression profile of HT-29, human colon cell line in the exposure of caffeic acid (CA) is proposed in this study. BACKGROUND Coffee as a popular beverage has been shown to be a potential health promoter as well as being effective on different kinds of diseases including cancer. METHODS The differentially expressed genes (DEGs) across the comparison of groups of samples including none-treated HT-29 and HT-29 tread with CA were applied for the protein-protein interaction mapping. Cytoscape v.3.7.1 constructed a network and analyzed the topological features of the most noteworthy DEGs. RESULTS The genes of CTSZ, AFF4, DHRS2, and HMGCS1 known as active agents in cancer progression, were identified as the central DEGs in the constructed PPI network in this study. Especially, HMGCS1 is the most central gene is also linked to one of the important colon cancer altered processes, cholesterol metabolism. CONCLUSION Lowering the risk of colon cancer could be perhaps through nominated DEGs and therefore, regulation of serum cholesterol as well as protection against cancer development.
Collapse
Affiliation(s)
- Majid Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mona Zamanian Azodi
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Treichel AJ, Hines JH. Development of an Embryonic Zebrafish Oligodendrocyte-Neuron Mixed Coculture System. Zebrafish 2018; 15:586-596. [PMID: 30300571 DOI: 10.1089/zeb.2018.1625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During vertebrate neural development, oligodendrocytes insulate nerve axons with myelin sheaths. Zebrafish (Danio rerio) has emerged as a useful model organism for studying oligodendrocyte development. However, the absence of an in vitro culture system necessitates in vivo manipulations and analyses, which, in some instances, limits the questions that can be addressed. To fill this gap we developed a mixed coculture system for embryonic zebrafish neurons and oligodendrocyte-lineage cells. Cultures harvested from embryos ≥30 hours postfertilization (hpf) yielded oligodendrocyte progenitor cells (OPCs) positive for olig2 and sox10 transgenic reporters. Cultured OPCs exhibited dynamic, exploratory membrane processes, and cell morphologies resembled those established in vivo. Cells harvested from advanced stage embryos possessed more arborized processes than those from early stage embryos. Advanced stage (>60 hpf) embryo culture produced differentiated, mbp+ oligodendrocytes. Genetically tractable neuron subtypes extended neurites when harvested from embryos ≥19 hpf. Coculture produced juxtaposed oligodendrocytes and neurons, demonstrating the practical usefulness of this technique for future studies examining axon-oligodendrocyte interactions under defined conditions. We expect that zebrafish oligodendrocyte culture will complement existing in vivo strengths and may facilitate future studies elucidating the mechanisms of oligodendrocyte specification, proliferation, differentiation, motility, and axon-oligodendrocyte interactions that shape adult myelination patterns.
Collapse
Affiliation(s)
| | - Jacob H Hines
- Department of Biology, Winona State University , Winona, Minnesota
| |
Collapse
|
36
|
Altered Brain Cholesterol/Isoprenoid Metabolism in a Rat Model of Autism Spectrum Disorders. Neuroscience 2018; 372:27-37. [PMID: 29309878 DOI: 10.1016/j.neuroscience.2017.12.053] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/28/2017] [Accepted: 12/28/2017] [Indexed: 12/11/2022]
Abstract
Autism spectrum disorders (ASDs) present a wide range of symptoms characterized by altered sociability, compromised communication and stereotypic/repetitive behaviors. These symptoms are caused by developmental changes, but the mechanisms remain largely unknown. Some lines of evidence suggest an impairment of the cholesterol/isoprenoid metabolism in the brain as a possible cause, but systematic analyses in rodent models of ASDs are lacking. Prenatal exposure to the antiepileptic drug valproate (VPA) is a risk factor for ASDs in humans and generates a well-established model for the disease in rodents. Here, we studied cholesterol/isoprenoid metabolism in different brain areas of infant, adolescent and adult rats prenatally exposed to VPA. VPA-treated rats present autistic-like symptoms, they show changes in cholesterol/isoprenoid homeostasis in some brain areas, a decreased number of oligodendrocytes and impaired myelination in the hippocampus. Together, our data suggest a relation between brain cholesterol/isoprenoid homeostasis and ASDs.
Collapse
|
37
|
Thangaraj MP, Furber KL, Sobchishin L, Ji S, Doucette JR, Nazarali AJ. Does Sirt2 Regulate Cholesterol Biosynthesis During Oligodendroglial Differentiation In Vitro and In Vivo? Cell Mol Neurobiol 2018; 38:329-340. [PMID: 28828594 DOI: 10.1007/s10571-017-0537-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/10/2017] [Indexed: 12/25/2022]
Abstract
Sirtuin2 (SIRT2) is a deacetylase enzyme predominantly expressed in myelinating glia of the central nervous system (CNS). We have previously demonstrated that Sirt2 expression enhances oligodendrocyte (OL) differentiation and arborization in vitro, but the molecular targets of SIRT2 in OLs remain speculative. SIRT2 has been implicated in cholesterol biosynthesis by promoting the nuclear translocation of sterol regulatory element binding protein (SREBP)-2. We investigated this further in CNS myelination by examining the role of Sirt2 in cholesterol biosynthesis in vivo and in vitro employing Sirt2 -/- mice, primary OL cells and CG4-OL cells. Our results demonstrate that expression of cholesterol biosynthetic genes in the CNS white matter or cholesterol content in purified myelin fractions did not differ between Sirt2 -/- and age-matched wild-type mice. Cholesterol biosynthetic gene expression profiles and total cholesterol content were not altered in primary OLs from Sirt2 -/- mice and in CG4-OLs when Sirt2 was either down-regulated with RNAi or overexpressed. In addition, Sirt2 knockdown or overexpression in CG4-OLs had no effect on SREBP-2 nuclear translocation. Our results indicate that Sirt2 does not impact the expression of genes encoding enzymes involved in cholesterol biosynthesis, total cholesterol content, or nuclear translocation of SREBP-2 during OL differentiation and myelination.
Collapse
Affiliation(s)
- Merlin P Thangaraj
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.
- Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Kendra L Furber
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
- Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada
| | - LaRhonda Sobchishin
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
- Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada
| | - Shaoping Ji
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
- Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry and Molecular Biology, Medical School, Henan University, Kaifeng, China
| | - J Ronald Doucette
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada
- Cameco Multiple Sclerosis Neuroscience Research Center, City Hospital, Saskatoon, SK, Canada
| | - Adil J Nazarali
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
- Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada
- Cameco Multiple Sclerosis Neuroscience Research Center, City Hospital, Saskatoon, SK, Canada
| |
Collapse
|
38
|
Lin JP, Mironova YA, Shrager P, Giger RJ. LRP1 regulates peroxisome biogenesis and cholesterol homeostasis in oligodendrocytes and is required for proper CNS myelin development and repair. eLife 2017; 6:30498. [PMID: 29251594 PMCID: PMC5752207 DOI: 10.7554/elife.30498] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/15/2017] [Indexed: 01/01/2023] Open
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP1) is a large endocytic and signaling molecule broadly expressed by neurons and glia. In adult mice, global inducible (Lrp1flox/flox;CAG-CreER) or oligodendrocyte (OL)-lineage specific ablation (Lrp1flox/flox;Pdgfra-CreER) of Lrp1 attenuates repair of damaged white matter. In oligodendrocyte progenitor cells (OPCs), Lrp1 is required for cholesterol homeostasis and differentiation into mature OLs. Lrp1-deficient OPC/OLs show a strong increase in the sterol-regulatory element-binding protein-2 yet are unable to maintain normal cholesterol levels, suggesting more global metabolic deficits. Mechanistic studies revealed a decrease in peroxisomal biogenesis factor-2 and fewer peroxisomes in OL processes. Treatment of Lrp1−/− OPCs with cholesterol or activation of peroxisome proliferator-activated receptor-γ with pioglitazone alone is not sufficient to promote differentiation; however, when combined, cholesterol and pioglitazone enhance OPC differentiation into mature OLs. Collectively, our studies reveal a novel role for Lrp1 in peroxisome biogenesis, lipid homeostasis, and OPC differentiation during white matter development and repair.
Collapse
Affiliation(s)
- Jing-Ping Lin
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Yevgeniya A Mironova
- Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Peter Shrager
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI, United States.,Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States.,Interdepartmental Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
39
|
Liu M, Xu P, Guan Z, Qian X, Dockery P, Fitzgerald U, O'Brien T, Shen S. Ulk4 deficiency leads to hypomyelination in mice. Glia 2017; 66:175-190. [PMID: 29034508 DOI: 10.1002/glia.23236] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 12/14/2022]
Abstract
Brain nerve fibers are insulated by myelin which is produced by oligodendrocytes. Defects in myelination are increasingly recognized as a common pathology underlying neuropsychiatric and neurodevelopmental disorders, which are associated with deletions of the Unc-51-like kinase 4 (ULK4) gene. Key transcription factors have been identified for oligodendrogenesis, but little is known about their associated regulators. Here we report that Ulk4 acts as a key regulator of myelination. Myelination is reduced by half in the Ulk4tm1a/tm1a hypomorph brain, whereas expression of axonal marker genes Tubb3, Nefh, Nefl and Nefm remains unaltered. Transcriptome analyses reveal that 8 (Gfap, Mbp, Mobp, Plp1, Slc1a2, Ttr, Cnp, Scd2) of the 10 most significantly altered genes in the Ulk4tm1a/tm1a brain are myelination-related. Ulk4 is co-expressed in Olig2+ (pan-oligodendrocyte marker) and CC1+ (mature myelinated oligodendrocyte marker) cells during postnatal development. Major oligodendrogeneic transcription factors, including Olig2, Olig1, Myrf, Sox10, Sox8, Sox6, Sox17, Nkx2-2, Nkx6-2 and Carhsp1, are significantly downregulated in the mutants. mRNA transcripts enriched in oligodendrocyte progenitor cells (OPCs), the newly formed oligodendrocytes (NFOs) and myelinating oligodendrocytes (MOs), are significantly attenuated. Expression of stage-specific oligodendrocyte factors including Cspg4, Sox17, Nfasc, Enpp6, Sirt2, Cnp, Plp1, Mbp, Ugt8, Mag and Mog are markedly decreased. Indirect effects of axon caliber and neuroinflammation may also contribute to the hypomyelination, as Ulk4 mutants display smaller axons and increased neuroinflammation. This is the first evidence demonstrating that ULK4 is a crucial regulator of myelination, and ULK4 may therefore become a novel therapeutic target for hypomyelination diseases.
Collapse
Affiliation(s)
- Min Liu
- Regenerative Medicine Institute, School of Medicine, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Ping Xu
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, Beijing Institute of Radiation Medicine, Beijing, 102206, China
| | - Zhenlong Guan
- Department of Physiology, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Xiaohong Qian
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, Beijing Institute of Radiation Medicine, Beijing, 102206, China
| | - Peter Dockery
- Anatomy, School of Medicine, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Una Fitzgerald
- National Centre for Biomedical Engineering Science, Galway Neuroscience Centre, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute, School of Medicine, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, National University of Ireland (NUI) Galway, Galway, Ireland
| |
Collapse
|
40
|
Cholesterol Biosynthesis Supports Myelin Gene Expression and Axon Ensheathment through Modulation of P13K/Akt/mTor Signaling. J Neurosci 2017; 36:7628-39. [PMID: 27445141 DOI: 10.1523/jneurosci.0726-16.2016] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/06/2016] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Myelin, which ensheaths and insulates axons, is a specialized membrane highly enriched with cholesterol. During myelin formation, cholesterol influences membrane fluidity, associates with myelin proteins such as myelin proteolipid protein, and assembles lipid-rich microdomains within membranes. Surprisingly, cholesterol also is required by oligodendrocytes, glial cells that make myelin, to express myelin genes and wrap axons. How cholesterol mediates these distinct features of oligodendrocyte development is not known. One possibility is that cholesterol promotes myelination by facilitating signal transduction within the cell, because lipid-rich microdomains function as assembly points for signaling molecules. Signaling cascades that localize to cholesterol-rich regions of the plasma membrane include the PI3K/Akt pathway, which acts upstream of mechanistic target of rapamycin (mTOR), a major driver of myelination. Through manipulation of cholesterol levels and PI3K/Akt/mTOR signaling in zebrafish, we discovered that mTOR kinase activity in oligodendrocytes requires cholesterol. Drawing on a combination of pharmacological and rescue experiments, we provide evidence that mTOR kinase activity is required for cholesterol-mediated myelin gene expression. On the other hand, cholesterol-dependent axon ensheathment is mediated by Akt signaling, independent of mTOR kinase activity. Our data reveal that cholesterol-dependent myelin gene expression and axon ensheathment are facilitated by distinct signaling cascades downstream of Akt. Because mTOR promotes cholesterol synthesis, our data raise the possibility that cholesterol synthesis and mTOR signaling engage in positive feedback to promote the formation of myelin membrane. SIGNIFICANCE STATEMENT The speed of electrical impulse movement through axons is increased by myelin, a specialized, cholesterol-rich glial cell membrane that tightly wraps axons. During development, myelin membrane grows dramatically, suggesting a significant demand on mechanisms that produce and assemble myelin components, while it spirally wraps axons. Our studies indicate that cholesterol is necessary for both myelin growth and axon wrapping. Specifically, we found that cholesterol facilitates signaling mediated by the PI3K/Akt/mTOR pathway, a powerful driver of myelination. Because mTOR promotes the expression of genes necessary for cholesterol synthesis, cholesterol formation and PI3K/Akt/mTOR signaling might function as a feedforward mechanism to produce the large amounts of myelin membrane necessary for axon ensheathment.
Collapse
|
41
|
Quintana AM, Hernandez JA, Gonzalez CG. Functional analysis of the zebrafish ortholog of HMGCS1 reveals independent functions for cholesterol and isoprenoids in craniofacial development. PLoS One 2017; 12:e0180856. [PMID: 28686747 PMCID: PMC5501617 DOI: 10.1371/journal.pone.0180856] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/05/2017] [Indexed: 12/13/2022] Open
Abstract
There are 8 different human syndromes caused by mutations in the cholesterol synthesis pathway. A subset of these disorders such as Smith-Lemli-Opitz disorder, are associated with facial dysmorphia. However, the molecular and cellular mechanisms underlying such facial deficits are not fully understood, primarily because of the diverse functions associated with the cholesterol synthesis pathway. Recent evidence has demonstrated that mutation of the zebrafish ortholog of HMGCR results in orofacial clefts. Here we sought to expand upon these data, by deciphering the cholesterol dependent functions of the cholesterol synthesis pathway from the cholesterol independent functions. Moreover, we utilized loss of function analysis and pharmacological inhibition to determine the extent of sonic hedgehog (Shh) signaling in animals with aberrant cholesterol and/or isoprenoid synthesis. Our analysis confirmed that mutation of hmgcs1, which encodes the first enzyme in the cholesterol synthesis pathway, results in craniofacial abnormalities via defects in cranial neural crest cell differentiation. Furthermore targeted pharmacological inhibition of the cholesterol synthesis pathway revealed a novel function for isoprenoid synthesis during vertebrate craniofacial development. Mutation of hmgcs1 had no effect on Shh signaling at 2 and 3 days post fertilization (dpf), but did result in a decrease in the expression of gli1, a known Shh target gene, at 4 dpf, after morphological deficits in craniofacial development and chondrocyte differentiation were observed in hmgcs1 mutants. These data raise the possibility that deficiencies in cholesterol modulate chondrocyte differentiation by a combination of Shh independent and Shh dependent mechanisms. Moreover, our results describe a novel function for isoprenoids in facial development and collectively suggest that cholesterol regulates craniofacial development through versatile mechanisms.
Collapse
Affiliation(s)
- Anita M. Quintana
- Department of Biological Sciences, University of Texas El Paso, El Paso, TX, United States of America
- Border Biomedical Research Center, NeuroModulation Cluster, University of Texas El Paso, El Paso, TX, United States of America
- * E-mail:
| | - Jose A. Hernandez
- Department of Biological Sciences, University of Texas El Paso, El Paso, TX, United States of America
| | - Cesar G. Gonzalez
- Department of Biological Sciences, University of Texas El Paso, El Paso, TX, United States of America
| |
Collapse
|
42
|
Expression profiles of cholesterol metabolism-related genes are altered during development of experimental autoimmune encephalomyelitis in the rat spinal cord. Sci Rep 2017; 7:2702. [PMID: 28578430 PMCID: PMC5457442 DOI: 10.1038/s41598-017-02638-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/12/2017] [Indexed: 12/04/2022] Open
Abstract
Increased evidence suggests that dysregulation of cholesterol metabolism may be a key event contributing to progression of multiple sclerosis (MS). Using an experimental autoimmune encephalomyelitis (EAE) model of MS we revealed specific changes in the mRNA and protein expression of key molecules involved in the maintaining of cholesterol homeostasis in the rat spinal cord: 3-hydroxy-3-methylglutaryl-coenzyme-A reductase (HMGCR), apolipoprotein E (ApoE) and cholesterol 24-hydroxylase (CYP46A1) during the course of disease. The presence of myelin lipid debris was seen only at the peak of EAE in demyelination loci being efficiently removed during the recovery period. Since CYP46A1 is responsible for removal of cholesterol excess, we performed a detailed profiling of CYP46A1 expression and revealed regional and temporal specificities in its distribution. Double immunofluorescence staining demonstrated CYP46A1 localization with neurons, infiltrated macrophages, microglia and astrocytes in the areas of demyelination, suggesting that these cells play a role in cholesterol turnover in EAE. We propose that alterations in the regulation of cholesterol metabolism at the onset and peak of EAE may add to the progression of disease, while during the recovery period may have beneficial effects contributing to the regeneration of myelin sheath and restoration of neuronal function.
Collapse
|
43
|
Porseryd T, Volkova K, Reyhanian Caspillo N, Källman T, Dinnetz P, Porsh Hällström I. Persistent Effects of Developmental Exposure to 17α-Ethinylestradiol on the Zebrafish ( Danio rerio) Brain Transcriptome and Behavior. Front Behav Neurosci 2017; 11:69. [PMID: 28473760 PMCID: PMC5397488 DOI: 10.3389/fnbeh.2017.00069] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/03/2017] [Indexed: 11/18/2022] Open
Abstract
The synthetic estrogen 17α-ethinylestradiol (EE2) is an endocrine disrupting compound of concern due to its persistence and widespread presence in the aquatic environment. Effects of developmental exposure to low concentrations of EE2 in fish on reproduction and behavior not only persisted to adulthood, but have also been observed to be transmitted to several generations of unexposed progeny. To investigate the possible biological mechanisms of the persistent anxiogenic phenotype, we exposed zebrafish embryos for 80 days post fertilization to 0, 3, and 10 ng/L EE2 (measured concentrations 2.14 and 7.34 ng/L). After discontinued exposure, the animals were allowed to recover for 120 days in clean water. Adult males and females were later tested for changes in stress response and shoal cohesion, and whole-brain gene expression was analyzed with RNA sequencing. The results show increased anxiety in the novel tank and scototaxis tests, and increased shoal cohesion in fish exposed during development to EE2. RNA sequencing revealed 34 coding genes differentially expressed in male brains and 62 in female brains as a result of EE2 exposure. Several differences were observed between males and females in differential gene expression, with only one gene, sv2b, coding for a synaptic vesicle protein, that was affected by EE2 in both sexes. Functional analyses showed that in female brains, EE2 had significant effects on pathways connected to the circadian rhythm, cytoskeleton and motor proteins and synaptic proteins. A large number of non-coding sequences including 19 novel miRNAs were also differentially expressed in the female brain. The largest treatment effect in male brains was observed in pathways related to cholesterol biosynthesis and synaptic proteins. Circadian rhythm and cholesterol biosynthesis, previously implicated in anxiety behavior, might represent possible candidate pathways connecting the transcriptome changes to the alterations to behavior. Further the observed alteration in expression of genes involved in synaptogenesis and synaptic function may be important for the developmental modulations resulting in an anxiety phenotype. This study represents an initial survey of the fish brain transcriptome by RNA sequencing after long-term recovery from developmental exposure to an estrogenic compound.
Collapse
Affiliation(s)
- Tove Porseryd
- School of Natural Sciences, Technology and Environmental Studies, Södertörn UniversityHuddinge, Sweden
| | - Kristina Volkova
- School of Natural Sciences, Technology and Environmental Studies, Södertörn UniversityHuddinge, Sweden.,Örebro Life Science Center, School of Science and Technology, Örebro UniversityÖrebro, Sweden
| | - Nasim Reyhanian Caspillo
- School of Natural Sciences, Technology and Environmental Studies, Södertörn UniversityHuddinge, Sweden.,Örebro Life Science Center, School of Science and Technology, Örebro UniversityÖrebro, Sweden
| | - Thomas Källman
- National Bioinformatics Infrastructure Sweden, Uppsala UniversityUppsala, Sweden.,Science for Life Laboratory and Department of Medical Biochemistry and Microbiology, Uppsala UniversityUppsala, Sweden
| | - Patrik Dinnetz
- School of Natural Sciences, Technology and Environmental Studies, Södertörn UniversityHuddinge, Sweden
| | - Inger Porsh Hällström
- School of Natural Sciences, Technology and Environmental Studies, Södertörn UniversityHuddinge, Sweden
| |
Collapse
|
44
|
Berghoff SA, Gerndt N, Winchenbach J, Stumpf SK, Hosang L, Odoardi F, Ruhwedel T, Böhler C, Barrette B, Stassart R, Liebetanz D, Dibaj P, Möbius W, Edgar JM, Saher G. Dietary cholesterol promotes repair of demyelinated lesions in the adult brain. Nat Commun 2017; 8:14241. [PMID: 28117328 PMCID: PMC5286209 DOI: 10.1038/ncomms14241] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 12/12/2016] [Indexed: 12/15/2022] Open
Abstract
Multiple Sclerosis (MS) is an inflammatory demyelinating disorder in which remyelination failure contributes to persistent disability. Cholesterol is rate-limiting for myelin biogenesis in the developing CNS; however, whether cholesterol insufficiency contributes to remyelination failure in MS, is unclear. Here, we show the relationship between cholesterol, myelination and neurological parameters in mouse models of demyelination and remyelination. In the cuprizone model, acute disease reduces serum cholesterol levels that can be restored by dietary cholesterol. Concomitant with blood-brain barrier impairment, supplemented cholesterol directly supports oligodendrocyte precursor proliferation and differentiation, and restores the balance of growth factors, creating a permissive environment for repair. This leads to attenuated axon damage, enhanced remyelination and improved motor learning. Remarkably, in experimental autoimmune encephalomyelitis, cholesterol supplementation does not exacerbate disease expression. These findings emphasize the safety of dietary cholesterol in inflammatory diseases and point to a previously unrecognized role of cholesterol in promoting repair after demyelinating episodes. Cholesterol is important for axonal myelination during development. Here the authors show that cholesterol levels are reduced in a cuprizone mouse model of multiple sclerosis and that dietary cholesterol supplementation enhances remyelination and recovery.
Collapse
Affiliation(s)
- Stefan A Berghoff
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Nina Gerndt
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Jan Winchenbach
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Sina K Stumpf
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Leon Hosang
- Institute of Neuroimmunology and Institute for Multiple Sclerosis Research, University Medical Centre Göttingen, Waldweg 33, 37073 Göttingen, Germany
| | - Francesca Odoardi
- Institute of Neuroimmunology and Institute for Multiple Sclerosis Research, University Medical Centre Göttingen, Waldweg 33, 37073 Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Carolin Böhler
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Benoit Barrette
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Ruth Stassart
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany.,Department of Neuropathology, University Medical Center, Georg-August-University, Robert Koch Str. 40, 37075 Göttingen, Germany
| | - David Liebetanz
- Department of Clinical Neurophysiology, Georg-August University, Robert Koch Str. 40, 37075 Göttingen, Germany
| | - Payam Dibaj
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany.,Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Wilhelmsplatz 1, 37073 Göttingen, Germany
| | - Julia M Edgar
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany.,Applied Neurobiology Group, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12-8TA, UK
| | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| |
Collapse
|
45
|
Cruz JND, Magro DDD, Lima DDD, Cruz JGPD. Simvastatin treatment reduces the cholesterol content of membrane/lipid rafts, implicating the N -methyl-D-aspartate receptor in anxiety: a literature review. BRAZ J PHARM SCI 2017. [DOI: 10.1590/s2175-97902017000116102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
46
|
Wong MJ, Kantores C, Ivanovska J, Jain A, Jankov RP. Simvastatin prevents and reverses chronic pulmonary hypertension in newborn rats via pleiotropic inhibition of RhoA signaling. Am J Physiol Lung Cell Mol Physiol 2016; 311:L985-L999. [DOI: 10.1152/ajplung.00345.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/30/2016] [Indexed: 11/22/2022] Open
Abstract
Chronic neonatal pulmonary hypertension (PHT) frequently results in early death. Systemically administered Rho-kinase (ROCK) inhibitors prevent and reverse chronic PHT in neonatal rats, but at the cost of severe adverse effects, including systemic hypotension and growth restriction. Simvastatin has pleiotropic inhibitory effects on isoprenoid intermediates that may limit activity of RhoA, which signals upstream of ROCK. We therefore hypothesized that statin treatment would safely limit pulmonary vascular RhoA activity and prevent and reverse experimental chronic neonatal PHT via downstream inhibitory effects on pathological ROCK activity. Sprague-Dawley rats in normoxia (room air) or moderate normobaric hypoxia (13% O2) received simvastatin (2 mg·kg−1·day−1 ip) or vehicle from postnatal days 1–14 (prevention protocol) or from days 14–21 (rescue protocol). Chronic hypoxia increased RhoA and ROCK activity in lung tissue. Simvastatin reduced lung content of the isoprenoid intermediate farnesyl pyrophosphate and decreased RhoA/ROCK signaling in the hypoxia-exposed lung. Preventive or rescue treatment of chronic hypoxia-exposed animals with simvastatin decreased pulmonary vascular resistance, right ventricular hypertrophy, and pulmonary arterial remodeling. Preventive simvastatin treatment improved weight gain, did not lower systemic blood pressure, and did not cause apparent toxic effects on skeletal muscle, liver or brain. Rescue therapy with simvastatin improved exercise capacity. We conclude that simvastatin limits RhoA/ROCK activity in the chronic hypoxia-exposed lung, thus preventing or ameliorating hemodynamic and structural markers of chronic PHT and improving long-term outcome, without causing adverse effects.
Collapse
Affiliation(s)
- Mathew J. Wong
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Crystal Kantores
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Julijana Ivanovska
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Amish Jain
- Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Robert P. Jankov
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Abstract
Myelin is a lipid-rich sheath formed by the spiral wrapping of specialized glial cells around axon segments. Myelinating glia allow for rapid transmission of nerve impulses and metabolic support of axons, and the absence of or disruption to myelin results in debilitating motor, cognitive, and emotional deficits in humans. Because myelin is a jawed vertebrate innovation, zebrafish are one of the simplest vertebrate model systems to study the genetics and development of myelinating glia. The morphogenetic cellular movements and genetic program that drive myelination are conserved between zebrafish and mammals, and myelin develops rapidly in zebrafish larvae, within 3-5days postfertilization. Myelin ultrastructure can be visualized in the zebrafish from larval to adult stages via transmission electron microscopy, and the dynamic development of myelinating glial cells may be observed in vivo via transgenic reporter lines in zebrafish larvae. Zebrafish are amenable to genetic and pharmacological screens, and screens for myelinating glial phenotypes have revealed both genes and drugs that promote myelin development, many of which are conserved in mammalian glia. Recently, zebrafish have been employed as a model to understand the complex dynamics of myelinating glia during development and regeneration. In this chapter, we describe these key methodologies and recent insights into mechanisms that regulate myelination using the zebrafish model.
Collapse
Affiliation(s)
- M D'Rozario
- Washington University School of Medicine, St. Louis, MO, United States
| | - K R Monk
- Washington University School of Medicine, St. Louis, MO, United States; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States
| | | |
Collapse
|
48
|
Espinosa-Jeffrey A, Nguyen K, Kumar S, Toshimasa O, Hirose R, Reue K, Vergnes L, Kinchen J, Vellis JD. Simulated microgravity enhances oligodendrocyte mitochondrial function and lipid metabolism. J Neurosci Res 2016; 94:1434-1450. [PMID: 27680492 DOI: 10.1002/jnr.23958] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/06/2016] [Accepted: 09/06/2016] [Indexed: 01/01/2023]
Abstract
The primary energy sources of mammalian cells are proteins, fats, and sugars that are processed by well-known biochemical mechanisms that have been discovered and studied in 1G (terrestrial gravity). Here we sought to determine how simulated microgravity (sim-µG) impacts both energy and lipid metabolism in oligodendrocytes (OLs), the myelin-forming cells in the central nervous system. We report increased mitochondrial respiration and increased glycolysis 24 hr after exposure to sim-µG. Moreover, examination of the secretome after 3 days' exposure of OLs to sim-µG increased the Krebs cycle (Krebs and Weitzman, ) flux in sim-µG. The secretome study also revealed a significant increase in the synthesis of fatty acids and complex lipids such as 1,2-dipalmitoyl-GPC (5.67); lysolipids like 1-oleoyl-GPE (4.48) were also increased by microgravity. Although longer-chain lipids were not observed in this study, it is possible that at longer time points OLs would have continued moving forward toward the synthesis of lipids that constitute myelin. For centuries, basic developmental biology research has been the pillar of an array of discoveries that have led to clinical applications; we believe that studies using microgravity will open new avenues to our understanding of the brain in health and disease-in particular, to the discovery of new molecules and mechanisms impossible to unveil while in 1G. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Araceli Espinosa-Jeffrey
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California.
| | - Kevin Nguyen
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Shalini Kumar
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Ochiai Toshimasa
- Space Systems Engineering Department, Integrated Defense & Space Systems, Mitsubishi Heavy Industries, LTD, Kobe, Japan
| | - Ryuji Hirose
- Space Systems Engineering Department, Integrated Defense & Space Systems, Mitsubishi Heavy Industries, LTD, Kobe, Japan
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California
| | - Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Jason Kinchen
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jean de Vellis
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
49
|
Wang F, Xiang H, Fischer G, Liu Z, Dupont MJ, Hogan QH, Yu H. HMG-CoA synthase isoenzymes 1 and 2 localize to satellite glial cells in dorsal root ganglia and are differentially regulated by peripheral nerve injury. Brain Res 2016; 1652:62-70. [PMID: 27671501 DOI: 10.1016/j.brainres.2016.09.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 12/19/2022]
Abstract
In dorsal root ganglia (DRG), satellite glial cells (SGCs) tightly ensheathe the somata of primary sensory neurons to form functional sensory units. SGCs are identified by their flattened and irregular morphology and expression of a variety of specific marker proteins. In this report, we present evidence that the 3-hydroxy-3-methylglutaryl coenzyme A synthase isoenzymes 1 and 2 (HMGCS1 and HMGCS2) are abundantly expressed in SGCs. Immunolabeling with the validated antibodies revealed that both HMGCS1 and HMGCS2 are highly colabeled with a selection of SGC markers, including GS, GFAP, Kir4.1, GLAST1, GDNF, and S100 but not with microglial cell marker Iba1, myelin sheath marker MBP, and neuronal marker β3-tubulin or phosphorylated CaMKII. HMGCS1 but not HMGCS2 immunoreactivity in SGCs is reduced in the fifth lumbar (L5) DRGs that contain axotomized neurons following L5 spinal nerve ligation (SNL) in rats. Western blot showed that HMGCS1 protein level in axotomized L5 DRGs is reduced after SNL to 66±8% at 3 days (p<0.01, n=4 animals in each group) and 58±13% at 28 days (p<0.001, n=9 animals in each group) of its level in control samples, whereas HMGCS2 protein was comparable between injured and control DRGs. These results identify HMGCSs as the alternative markers for SGCs in DRGs. Downregulated HMGCS1 expression in DRGs after spinal nerve injury may reflect a potential role of abnormal sterol metabolism of SGCs in the nerve injured-induced neuropathic pain.
Collapse
Affiliation(s)
- Fei Wang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, PR China
| | - Hongfei Xiang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Orthopedic Surgery, Affiliated Hospitals of Qingdao University, Qingdao 266000, PR China
| | - Gregory Fischer
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Zhen Liu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Matthew J Dupont
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295, USA.
| |
Collapse
|
50
|
Genome-wide RNAi analysis reveals that simultaneous inhibition of specific mevalonate pathway genes potentiates tumor cell death. Oncotarget 2016; 6:26909-21. [PMID: 26353928 PMCID: PMC4694962 DOI: 10.18632/oncotarget.4817] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/12/2015] [Indexed: 01/03/2023] Open
Abstract
The mevalonate (MVA) pathway is often dysregulated or overexpressed in many cancers suggesting tumor dependency on this classic metabolic pathway. Statins, which target the rate-limiting enzyme of this pathway, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), are promising agents currently being evaluated in clinical trials for anti-cancer efficacy. To uncover novel targets that potentiate statin-induced apoptosis when knocked down, we carried out a pooled genome-wide short hairpin RNA (shRNA) screen. Genes of the MVA pathway were amongst the top-scoring targets, including sterol regulatory element binding transcription factor 2 (SREBP2), 3-hydroxy-3-methylglutaryl-coenzyme A synthase 1 (HMGCS1) and geranylgeranyl diphosphate synthase 1 (GGPS1). Each gene was independently validated and shown to significantly sensitize A549 cells to statin-induced apoptosis when knocked down. SREBP2 knockdown in lung and breast cancer cells completely abrogated the fluvastatin-induced upregulation of sterol-responsive genes HMGCR and HMGCS1. Knockdown of SREBP2 alone did not affect three-dimensional growth of lung and breast cancer cells, yet in combination with fluvastatin cell growth was disrupted. Taken together, these results show that directly targeting multiple levels of the MVA pathway, including blocking the sterol-feedback loop initiated by statin treatment, is an effective and targetable anti-tumor strategy.
Collapse
|