1
|
Zhang Z, Huang R. Stronger stimulus triggers synaptic transmission faster through earlier started action potential. Cell Commun Signal 2024; 22:34. [PMID: 38217015 PMCID: PMC10785377 DOI: 10.1186/s12964-024-01483-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/06/2024] [Indexed: 01/14/2024] Open
Abstract
Synaptic transmission plays an important and time-sensitive role in the nervous system. Although the amplitude of neurotransmission is positively related to the intensity of external stimulus, whether stronger stimulus could trigger synaptic transmission faster remains unsolved. Our present work in the primary sensory system shows that besides the known effect of larger amplitude, stronger stimulus triggers the synaptic transmission faster, which is regulated by the earlier started action potential (AP), independent of the AP's amplitude. More importantly, this model is further extended from the sensory system to the hippocampus, implying broad applicability in the nervous system. Together, we found that stronger stimulus induces AP faster, which suggests to trigger the neurotransmission faster, implying that the occurrence time of neurotransmission, as well as the amplitude, plays an important role in the timely and effective response of nervous system.
Collapse
Affiliation(s)
- Zhuoyu Zhang
- Neurological Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200333, China.
| | - Rong Huang
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China.
| |
Collapse
|
2
|
Li Z, Zhang H, Wang Y, Li Y, Li Q, Zhang L. The distinctive role of menthol in pain and analgesia: Mechanisms, practices, and advances. Front Mol Neurosci 2022; 15:1006908. [PMID: 36277488 PMCID: PMC9580369 DOI: 10.3389/fnmol.2022.1006908] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Menthol is an important flavoring additive that triggers a cooling sensation. Under physiological condition, low to moderate concentrations of menthol activate transient receptor potential cation channel subfamily M member 8 (TRPM8) in the primary nociceptors, such as dorsal root ganglion (DRG) and trigeminal ganglion, generating a cooling sensation, whereas menthol at higher concentration could induce cold allodynia, and cold hyperalgesia mediated by TRPM8 sensitization. In addition, the paradoxical irritating properties of high concentrations of menthol is associated with its activation of transient receptor potential cation channel subfamily A member 1 (TRPA1). Under pathological situation, menthol activates TRPM8 to attenuate mechanical allodynia and thermal hyperalgesia following nerve injury or chemical stimuli. Recent reports have recapitulated the requirement of central group II/III metabotropic glutamate receptors (mGluR) with endogenous κ-opioid signaling pathways for menthol analgesia. Additionally, blockage of sodium channels and calcium influx is a determinant step after menthol exposure, suggesting the possibility of menthol for pain management. In this review, we will also discuss and summarize the advances in menthol-related drugs for pathological pain treatment in clinical trials, especially in neuropathic pain, musculoskeletal pain, cancer pain and postoperative pain, with the aim to find the promising therapeutic candidates for the resolution of pain to better manage patients with pain in clinics.
Collapse
Affiliation(s)
- Ziping Li
- The Graduate School, Tianjin Medical University, Tianjin, China
| | - Haoyue Zhang
- The Graduate School, Tianjin Medical University, Tianjin, China
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yigang Wang
- The Graduate School, Tianjin Medical University, Tianjin, China
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yize Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qing Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Qing Li,
| | - Linlin Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Linlin Zhang,
| |
Collapse
|
3
|
Jawaid S, Herring AI, Getsy PM, Lewis SJ, Watanabe M, Kolesova H. Differential immunostaining patterns of transient receptor potential (TRP) ion channels in the rat nodose ganglion. J Anat 2022; 241:230-244. [PMID: 35396708 PMCID: PMC9296033 DOI: 10.1111/joa.13656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/26/2022] [Accepted: 03/07/2022] [Indexed: 11/27/2022] Open
Abstract
Vagal afferents regulate numerous physiological functions including arterial blood pressure, heart rate, breathing, and nociception. Cell bodies of vagal afferents reside in the inferior vagal (nodose) ganglia and their stimulation by various means is being considered as a way to regulate cardiorespiratory responses and control pain sensations. Stimulation of the nodose by exposure to infrared light is recently being considered as a precise way to elicit responses. These responses would likely involve the activity of temperature-sensitive membrane-bound channels. While papers have been published to track the expression of these transient receptor potential ion channels (TRPs), further studies are warranted to determine the in situ expression of the endogenous TRP proteins in the nodose ganglia to fully understand their pattern of expression, subcellular locations, and functions in this animal model. TRP ion channels are a superfamily of Na+ /Ca2+ -channels whose members are temperature- and/or mechano-sensitive and therefore represent a potential set of proteins that will be activated directly or indirectly by infrared light. Here, we report the spatial localization of six TRP channels, TRPV1, TRPV4, TRPM3, TRPM8, TRPA1, and TRPC1, from nodose ganglia taken from juvenile male Sprague-Dawley rats. The channels were detected using immunohistology with fluorescent tags on cryosections and imaged using confocal microscopy. All six TRP channels were detected with different levels of intensity in neuronal cell bodies and some were also detected in axonal fibers and blood vessels. The TRP receptors differed in their prevalence, in their patterns of expression, and in subcellular expression/localization. More specifically, TRPV1, TRPV4, TRPA1, TRPM8, TRPC1, and TRPM3 were found in vagal afferent cell bodies with a wide range of immunostaining intensity from neuron to neuron. Immunostaining for TRPV1, TRPV4, and TRPA1 appeared as fine particles scattered throughout the cytoplasm of the cell body. Intense TRPV1 immunostaining was also evident in a subset of axonal fibers. TRPM8 and TRPC1 were expressed in courser particles suggesting different subcellular compartments than for TRPV1. The localization of TRPM3 differed markedly from the other TRP channels with an immunostaining pattern that was localized to the periphery of a subset of cell bodies, whereas a scattering or no immunostaining was detected within the bulk of the cytoplasm. TRPV4 and TRPC1 were also expressed on the walls of blood vessels. The finding that all six TRP channels (representing four subfamilies) were present in the nodose ganglia provides the basis for studies designed to understand the roles of these channels in sensory transmission within vagal afferent fibers and in the responses elicited by exposure of nodose ganglia to infrared light and other stimuli. Depending on the location and functionality of the TRP channels, they may regulate the flux of Na+ /Ca2+ -across the membranes of cell bodies and axons of sensory afferents, efferent (motor) fibers coursing through the ganglia, and in vascular smooth muscle.
Collapse
Affiliation(s)
- Safdar Jawaid
- Divisions of Pediatric CardiologyCase Western Reserve University School of MedicineClevelandOHUSA
| | - Amanda I. Herring
- Divisions of Pediatric CardiologyCase Western Reserve University School of MedicineClevelandOHUSA
| | - Paulina M. Getsy
- Pediatric Pulmonology, Department of PediatricsCase Western Reserve University School of MedicineClevelandOHUSA
| | - Stephen J. Lewis
- Pediatric Pulmonology, Department of PediatricsCase Western Reserve University School of MedicineClevelandOHUSA
| | - Michiko Watanabe
- Divisions of Pediatric CardiologyCase Western Reserve University School of MedicineClevelandOHUSA
| | - Hana Kolesova
- Department of Anatomy, First Faculty of MedicineCharles UniversityPragueCzech Republic
| |
Collapse
|
4
|
Moriyama H, Nomura S, Imoto H, Inoue T, Fujiyama Y, Haji K, Maruta Y, Ishihara H, Suzuki M. Suppressive Effects of Transient Receptor Potential Melastatin 8 Agonist on Epileptiform Discharges and Epileptic Seizures. Front Pharmacol 2021; 12:766782. [PMID: 34658898 PMCID: PMC8517222 DOI: 10.3389/fphar.2021.766782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/16/2021] [Indexed: 01/12/2023] Open
Abstract
Epilepsy is a relatively common condition, but more than 30% of patients have refractory epilepsy that is inadequately controlled by or is resistant to multiple drug treatments. Thus, new antiepileptic drugs based on newly identified mechanisms are required. A previous report revealed the suppressive effects of transient receptor potential melastatin 8 (TRPM8) activation on penicillin G-induced epileptiform discharges (EDs). However, it is unclear whether TRPM8 agonists suppress epileptic seizures or affect EDs or epileptic seizures in TRPM8 knockout (TRPM8KO) mice. We investigated the effects of TRPM8 agonist and lack of TRPM8 channels on EDs and epileptic seizures. Mice were injected with TRPM8 agonist 90 min after or 30 min before epilepsy-inducer injection, and electrocorticograms (ECoGs) were recorded under anesthesia, while behavior was monitored when awake. TRPM8 agonist suppressed EDs and epileptic seizures in wildtype (WT) mice, but not in TRPM8KO mice. In addition, TRPM8KO mice had a shorter firing latency of EDs, and EDs and epileptic seizures were deteriorated by the epilepsy inducer compared with those in WT mice, with the EDs being more easily propagated to the contralateral side. These findings suggest that TRPM8 activation in epileptic regions has anti-epileptic effects.
Collapse
Affiliation(s)
- Hiroshi Moriyama
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Sadahiro Nomura
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Japan.,Epilepsy Center, Yamaguchi University Hospital, Ube, Japan
| | - Hirochika Imoto
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Japan.,Epilepsy Center, Yamaguchi University Hospital, Ube, Japan
| | - Takao Inoue
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Yuichi Fujiyama
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Kohei Haji
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Yuichi Maruta
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Hideyuki Ishihara
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Michiyasu Suzuki
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| |
Collapse
|
5
|
Clowez S, Renicke C, Pringle JR, Grossman AR. Impact of Menthol on Growth and Photosynthetic Function of Breviolum Minutum (Dinoflagellata, Dinophyceae, Symbiodiniaceae) and Interactions with its Aiptasia Host. JOURNAL OF PHYCOLOGY 2021; 57:245-257. [PMID: 33025575 DOI: 10.1111/jpy.13081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/01/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Environmental change, including global warming and chemical pollution, can compromise cnidarian-(e.g., coral-) dinoflagellate symbioses and cause coral bleaching. Understanding the mechanisms that regulate these symbioses will inform strategies for sustaining healthy coral-reef communities. A model system for corals is the symbiosis between the sea anemone Exaiptasia pallida (common name Aiptasia) and its dinoflagellate partners (family Symbiodiniaceae). To complement existing studies of the interactions between these organisms, we examined the impact of menthol, a reagent often used to render cnidarians aposymbiotic, on the dinoflagellate Breviolum minutum, both in culture and in hospite. In both environments, the growth and photosynthesis of this alga were compromised at either 100 or 300 µM menthol. We observed reduction in PSII and PSI functions, the abundances of reaction-center proteins, and, at 300 µM menthol, of total cellular proteins. Interestingly, for free-living algae exposed to 100 µM menthol, an initial decline in growth, photosynthetic activities, pigmentation, and protein abundances reversed after 5-15 d, eventually approaching control levels. This behavior was observed in cells maintained in continuous light, but not in cells experiencing a light-dark regimen, suggesting that B. minutum can detoxify menthol or acclimate and repair damaged photosynthetic complexes in a light- and/or energy-dependent manner. Extended exposures of cultured algae to 300 µM menthol ultimately resulted in algal death. Most symbiotic anemones were also unable to survive this menthol concentration for 30 d. Additionally, cells impaired for photosynthesis by pre-treatment with 300 µM menthol exhibited reduced efficiency in re-populating the anemone host.
Collapse
Affiliation(s)
- Sophie Clowez
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, California, 94305, USA
| | - Christian Renicke
- Department of Genetics, Stanford University, Stanford, California, 94305, USA
| | - John R Pringle
- Department of Genetics, Stanford University, Stanford, California, 94305, USA
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, California, 94305, USA
| |
Collapse
|
6
|
Richard SA, Kampo S, Sackey M, Hechavarria ME, Buunaaim ADB. The Pivotal Potentials of Scorpion Buthus Martensii Karsch-Analgesic-Antitumor Peptide in Pain Management and Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:4234273. [PMID: 33178316 PMCID: PMC7647755 DOI: 10.1155/2020/4234273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/13/2020] [Accepted: 10/20/2020] [Indexed: 01/26/2023]
Abstract
Scorpion Buthus martensii Karsch -analgesic-antitumor peptide (BmK AGAP) has been used to treat diseases like tetanus, tuberculosis, apoplexy, epilepsy, spasm, migraine headaches, rheumatic pain, and cancer in China. AGAP is a distinctive long-chain scorpion toxin with a molecular mass of 7142 Da and composed of 66 amino acids cross-linked by four disulfide bridges. Voltage-gated sodium channels (VGSCs) are present in excitable membranes and partakes in essential roles in action potentials generation as compared to the significant function of voltage-gated calcium channels (VGCCs). A total of nine genes (Nav1.1-Nav1.9) have been recognized to encode practical sodium channel isoforms. Nav1.3, Nav1.7, Nav1.8, and Nav1.9 have been recognized as potential targets for analgesics. Nav1.8 and Nav1.9 are associated with nociception initiated by inflammation signals in the neuronal pain pathway, while Nav1.8 is fundamental for neuropathic pain at low temperatures. AGAP has a sturdy inhibitory influence on both viscera and soma pain. AGAP potentiates the effects of MAPK inhibitors on neuropathic as well as inflammation-associated pain. AGAP downregulates the secretion of phosphorylated p38, phosphorylated JNK, and phosphorylated ERK 1/2 in vitro. AGAP has an analgesic activity which may be an effective therapeutic agent for pain management because of its downregulation of PTX3 via NF-κB and Wnt/beta-catenin signaling pathway. In cancers like colon cancer, breast cancer, lymphoma, and glioma, rAGAP was capable of blocking the proliferation. Thus, AGAP is a promising therapy for these tumors. Nevertheless, research is needed with other tumors.
Collapse
Affiliation(s)
- Seidu A. Richard
- Department of Medicine, Princefield University, P.O. Box MA128, Ho, Ghana
| | - Sylvanus Kampo
- Department of Anesthesia and Critical Care, School of Medicine, University of Health and Allied Sciences, Ho, Ghana
| | - Marian Sackey
- Department of Pharmacy, Ho Teaching Hospital, P.O. Box MA-374, Ho, Ghana
| | | | - Alexis D. B. Buunaaim
- Department of Surgery, School of Medicine and Health Science, University for Development Studies, Tamale, Ghana
| |
Collapse
|
7
|
Choi IS, Cho JH, Nakamura M, Jang IS. Menthol facilitates excitatory and inhibitory synaptic transmission in rat medullary dorsal horn neurons. Brain Res 2020; 1750:147149. [PMID: 33035497 DOI: 10.1016/j.brainres.2020.147149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/14/2020] [Accepted: 10/02/2020] [Indexed: 10/23/2022]
Abstract
Menthol, which acts as an agonist for transient receptor potential melastatin 8 (TRPM8), has complex effects on nociceptive transmission, including pain relief and hyperalgesia. Here, we addressed the effects of menthol on spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs, respectively) in medullary dorsal horn neurons, using a whole-cell patch-clamp technique. Menthol significantly increased sEPSC frequency, in a concentration-dependent manner, without affecting current amplitudes. The menthol-induced increase in sEPSC frequency could be completely blocked by AMTB, a TRPM8 antagonist, but was not blocked by HC-030031, a transient receptor potential ankyrin 1 (TRPA1) antagonist. Menthol still increased sEPSC frequency in the presence of Cd2+, a general voltage-gated Ca2+ channel blocker, suggesting that voltage-gated Ca2+ channels are not involved in the menthol-induced increase in sEPSC frequency. However, menthol failed to increase sEPSC frequency in the absence of extracellular Ca2+, suggesting that TRPM8 on primary afferent terminals is Ca2+ permeable. On the other hand, menthol also increased sIPSC frequency, without affecting current amplitudes. The menthol-induced increase in sIPSC frequency could be completely blocked by either AMTB or CNQX, an AMPA/KA receptor antagonist, suggesting that the indirect increase in excitability of inhibitory interneurons may lead to the facilitation of spontaneous GABA and/or glycine release. The present results suggested that menthol exerts analgesic effects, via the enhancement of inhibitory synaptic transmission, through central feed-forward neural circuits within the medullary dorsal horn region.
Collapse
Affiliation(s)
- In-Sun Choi
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Jin-Hwa Cho
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Michiko Nakamura
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea; Brain Science & Engineering Institute, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea; Brain Science & Engineering Institute, Kyungpook National University, Daegu 41940, Republic of Korea.
| |
Collapse
|
8
|
Nakamura M, Jang IS, Yamaga T, Kotani N, Akaike N. Effects of nitrous oxide on glycinergic transmission in rat spinal neurons. Brain Res Bull 2020; 162:191-198. [PMID: 32599127 DOI: 10.1016/j.brainresbull.2020.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 11/19/2022]
Abstract
We investigated the effects of nitrous oxide (N2O) on glycinergic inhibitory whole-cell and synaptic responses using a "synapse bouton preparation," dissociated mechanically from rat spinal sacral dorsal commissural nucleus (SDCN) neurons. This technique can evaluate pure single- or multi-synaptic responses from native functional nerve endings and enable us to accurately quantify how N2O influences pre- and postsynaptic transmission. We found that 70 % N2O enhanced exogenous glycine-induced whole-cell currents (IGly) at glycine concentrations lower than 3 × 10-5 M, but did not affect IGly at glycine concentrations higher than 10-4 M. N2O did not affect the amplitude and 1/e decay-time of both spontaneous and miniature glycinergic inhibitory postsynaptic currents recorded in the absence and presence of tetrodotoxin (sIPSCs and mIPSCs, respectively). The decrease in frequency induced by N2O was observed in sIPSCs but not in mIPSCs, which was recorded in the presence of both tetrodotoxin and Cd2+, which block voltage-gated Na+ and Ca2+ channels, respectively. N2O also decreased the amplitude and increased the failure rate and paired-pulse ratio of action potential-evoked glycinergic inhibitory postsynaptic currents. N2O slightly decreased the Ba2+ currents mediated by voltage-gated Ca2+ channels in SDCN neurons. We found that N2O suppresses glycinergic responses at synaptic levels with presynaptic effect having much more predominant role. The difference between glycinergic whole-cell and synaptic responses suggests that extrasynaptic responses seriously modulate whole-cell currents. Our results strongly suggest that these responses may thus in part explain analgesic effects of N2O via marked glutamatergic inhibition by glycinergic responses in the spinal cord.
Collapse
Affiliation(s)
- Michiko Nakamura
- Department of Pharmacology, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 700-412, Republic of Korea
| | - Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 700-412, Republic of Korea
| | - Toshitaka Yamaga
- Research Division for Life Science, Kumamoto Health Science University, 325 Izumi-machi, Kita-ku, Kumamoto 861-5598, Japan
| | - Naoki Kotani
- Research Division of Neurophysiology, Kitamoto Hospital, 3-7-6 Kawarasone, Koshigaya, Saitama 343-0821, Japan
| | - Norio Akaike
- Research Division of Neurophysiology, Kitamoto Hospital, 3-7-6 Kawarasone, Koshigaya, Saitama 343-0821, Japan; Research Division for Clinical Pharmacology, Medical Corporation, Juryo Group, Kumamoto Kinoh Hospital, 6-8-1 Yamamuro, Kita-ku, Kumamoto 860-8518, Japan.
| |
Collapse
|
9
|
Harding EK, Fung SW, Bonin RP. Insights Into Spinal Dorsal Horn Circuit Function and Dysfunction Using Optical Approaches. Front Neural Circuits 2020; 14:31. [PMID: 32595458 PMCID: PMC7303281 DOI: 10.3389/fncir.2020.00031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
Somatosensation encompasses a variety of essential modalities including touch, pressure, proprioception, temperature, pain, and itch. These peripheral sensations are crucial for all types of behaviors, ranging from social interaction to danger avoidance. Somatosensory information is transmitted from primary afferent fibers in the periphery into the central nervous system via the dorsal horn of the spinal cord. The dorsal horn functions as an intermediary processing center for this information, comprising a complex network of excitatory and inhibitory interneurons as well as projection neurons that transmit the processed somatosensory information from the spinal cord to the brain. It is now known that there can be dysfunction within this spinal cord circuitry in pathological pain conditions and that these perturbations contribute to the development and maintenance of pathological pain. However, the complex and heterogeneous network of the spinal dorsal horn has hampered efforts to further elucidate its role in somatosensory processing. Emerging optical techniques promise to illuminate the underlying organization and function of the dorsal horn and provide insights into the role of spinal cord sensory processing in shaping the behavioral response to somatosensory input that we ultimately observe. This review article will focus on recent advances in optogenetics and fluorescence imaging techniques in the spinal cord, encompassing findings from both in vivo and in vitro preparations. We will also discuss the current limitations and difficulties of employing these techniques to interrogate the spinal cord and current practices and approaches to overcome these challenges.
Collapse
Affiliation(s)
- Erika K Harding
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Samuel Wanchi Fung
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Robert P Bonin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.,University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Zhao Y, Zhu R, Xiao T, Liu X. Genetic variants in migraine: a field synopsis and systematic re-analysis of meta-analyses. J Headache Pain 2020; 21:13. [PMID: 32046629 PMCID: PMC7011260 DOI: 10.1186/s10194-020-01087-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/07/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Numerous genetic variants from meta-analyses of observational studies and GWAS were reported to be associated with migraine susceptibility. However, due to the random errors in meta-analyses, the noteworthiness of the results showing statistically significant remains doubtful. Thus, we performed this field synopsis and re-analysis study to evaluate the noteworthiness using a Bayesian approach in hope of finding true associations. METHODS Relevant meta-analyses from observational studies and GWAS examining correlation between all genetic variants and migraine risk were included in our study by a PubMed search. Identification of noteworthy associations were analyzed by false-positive rate probability (FPRP) and Bayesian false discovery probability (BFDP). Using noteworthy variants, GO enrichment analysis were conducted through DAVID online tool. Then, the PPI network and hub genes were performed using STRING database and CytoHubba software. RESULTS As for 8 significant genetic variants from observational studies, none of which showed noteworthy at prior probability of 0.001. Out of 47 significant genetic variants in GWAS, 36 were noteworthy at prior probability of 0.000001 via FPRP or BFDP. We further found the pathways "positive regulation of cytosolic calcium ion concentration" and "inositol phosphate-mediated signaling" and hub genes including MEF2D, TSPAN2, PHACTR1, TRPM8 and PRDM16 related to migraine susceptibility. CONCLUSION Herein, we have identified several noteworthy variants for migraine susceptibility in this field synopsis. We hope these data would help identify novel genetic biomarkers and potential therapeutic target for migraine.
Collapse
Affiliation(s)
- Yating Zhao
- Department of Neurology, First Affiliated Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Ruixia Zhu
- Department of Neurology, First Affiliated Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Tongling Xiao
- Department of Neurology, First Affiliated Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Xu Liu
- Department of Neurology, First Affiliated Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
11
|
De Caro C, Cristiano C, Avagliano C, Bertamino A, Ostacolo C, Campiglia P, Gomez-Monterrey I, La Rana G, Gualillo O, Calignano A, Russo R. Characterization of New TRPM8 Modulators in Pain Perception. Int J Mol Sci 2019; 20:ijms20225544. [PMID: 31703254 PMCID: PMC6888553 DOI: 10.3390/ijms20225544] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/25/2019] [Accepted: 11/06/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Transient Receptor Potential Melastatin-8 (TRPM8) is a non-selective cation channel activated by cold temperature and by cooling agents. Several studies have proved that this channel is involved in pain perception. Although some studies indicate that TRPM8 inhibition is necessary to reduce acute and chronic pain, it is also reported that TRPM8 activation produces analgesia. These conflicting results could be explained by extracellular Ca2+-dependent desensitization that is induced by an excessive activation. Likely, this effect is due to phosphatidylinositol 4,5-bisphosphate (PIP2) depletion that leads to modification of TRPM8 channel activity, shifting voltage dependence towards more positive potentials. This phenomenon needs further evaluation and confirmation that would allow us to understand better the role of this channel and to develop new therapeutic strategies for controlling pain. EXPERIMENTAL APPROACH To understand the role of TRPM8 in pain perception, we tested two specific TRPM8-modulating compounds, an antagonist (IGM-18) and an agonist (IGM-5), in either acute or chronic animal pain models using male Sprague-Dawley rats or CD1 mice, after systemic or topical routes of administration. RESULTS IGM-18 and IGM-5 were fully characterized in vivo. The wet-dog shake test and the body temperature measurements highlighted the antagonist activity of IGM-18 on TRPM8 channels. Moreover, IGM-18 exerted an analgesic effect on formalin-induced orofacial pain and chronic constriction injury-induced neuropathic pain, demonstrating the involvement of TRPM8 channels in these two pain models. Finally, the results were consistent with TRPM8 downregulation by agonist IGM-5, due to its excessive activation. CONCLUSIONS TRPM8 channels are strongly involved in pain modulation, and their selective antagonist is able to reduce both acute and chronic pain.
Collapse
Affiliation(s)
- Carmen De Caro
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.D.C.); (C.C.); (C.A.); (C.O.); (I.G.-M.); (G.L.R.); (A.C.)
- Department of Science of Health, School of Medicine and Surgery, University of Catanzaro, 88100 Catanzaro, Italy
| | - Claudia Cristiano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.D.C.); (C.C.); (C.A.); (C.O.); (I.G.-M.); (G.L.R.); (A.C.)
| | - Carmen Avagliano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.D.C.); (C.C.); (C.A.); (C.O.); (I.G.-M.); (G.L.R.); (A.C.)
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (A.B.); (P.C.)
| | - Carmine Ostacolo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.D.C.); (C.C.); (C.A.); (C.O.); (I.G.-M.); (G.L.R.); (A.C.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (A.B.); (P.C.)
| | - Isabel Gomez-Monterrey
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.D.C.); (C.C.); (C.A.); (C.O.); (I.G.-M.); (G.L.R.); (A.C.)
| | - Giovanna La Rana
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.D.C.); (C.C.); (C.A.); (C.O.); (I.G.-M.); (G.L.R.); (A.C.)
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and inflammatory Diseases), Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain;
| | - Antonio Calignano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.D.C.); (C.C.); (C.A.); (C.O.); (I.G.-M.); (G.L.R.); (A.C.)
| | - Roberto Russo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.D.C.); (C.C.); (C.A.); (C.O.); (I.G.-M.); (G.L.R.); (A.C.)
- Correspondence:
| |
Collapse
|
12
|
Nonaka K, Kotani N, Akaike H, Shin MC, Yamaga T, Nagami H, Akaike N. Xenon modulates synaptic transmission to rat hippocampal CA3 neurons at both pre- and postsynaptic sites. J Physiol 2019; 597:5915-5933. [PMID: 31598974 DOI: 10.1113/jp278762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/07/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Xenon (Xe) non-competitively inhibited whole-cell excitatory glutamatergic current (IGlu ) and whole-cell currents gated by ionotropic glutamate receptors (IAMPA , IKA , INMDA ), but had no effect on inhibitory GABAergic whole-cell current (IGABA ). Xe decreased only the frequency of glutamatergic spontaneous and miniature excitatory postsynaptic currents and GABAergic spontaneous inhibitory postsynaptic currents without changing the amplitude or decay times of these synaptic responses. Xe decreased the amplitude of both the action potential-evoked excitatory and the action potential-evoked inhibitory postsynaptic currents (eEPSCs and eIPSCs, respectively) via a presynaptic inhibition in transmitter release. We conclude that the main site of action of Xe is presynaptic in both excitatory and inhibitory synapses, and that the Xe inhibition is much greater for eEPSCs than for eIPSCs. ABSTRACT To clarify how xenon (Xe) modulates excitatory and inhibitory whole-cell and synaptic responses, we conducted an electrophysiological experiment using the 'synapse bouton preparation' dissociated mechanically from the rat hippocampal CA3 region. This technique can evaluate pure single- or multi-synapse responses and enabled us to accurately quantify how Xe influences pre- and postsynaptic aspects of synaptic transmission. Xe inhibited whole-cell glutamatergic current (IGlu ) and whole-cell currents gated by the three subtypes of glutamate receptor (IAMPA , IKA and INMDA ). Inhibition of these ionotropic currents occurred in a concentration-dependent, non-competitive and voltage-independent manner. Xe markedly depressed the slow steady current component of IAMPA almost without altering the fast phasic IAMPA component non-desensitized by cyclothiazide. It decreased current frequency without affecting the amplitude and current kinetics of glutamatergic spontaneous excitatory postsynaptic currents and miniature excitatory postsynaptic currents. It decreased the amplitude, increasing the failure rate (Rf) and paired-pulse rate (PPR) without altering the current kinetics of glutamatergic action potential-evoked excitatory postsynaptic currents. Thus, Xe has a clear presynaptic effect on excitatory synaptic transmission. Xe did not alter the GABA-induced whole-cell current (IGABA ). It decreased the frequency of GABAergic spontaneous inhibitory postsynaptic currents without changing the amplitude and current kinetics. It decreased the amplitude and increased the PPR and Rf of the GABAergic action potential-evoked inhibitory postsynaptic currents without altering the current kinetics. Thus, Xe acts exclusively at presynaptic sites at the GABAergic synapse. In conclusion, our data indicate that a presynaptic decrease of excitatory transmission is likely to be the major mechanism by which Xe induces anaesthesia, with little contribution of effects on GABAergic synapses.
Collapse
Affiliation(s)
- Kiku Nonaka
- Research Division for Life Science, Kumamoto Health Science University, 325 Izumi-machi, Kita-ku, Kumamoto, 861-5598, Japan
| | - Naoki Kotani
- Research Division of Neurophysiology, Kitamoto Hospital, 3-7-6 Kawarasone, Koshigaya, Saitama, 343-0821, Japan
| | - Hironari Akaike
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Min-Chul Shin
- Research Division for Life Science, Kumamoto Health Science University, 325 Izumi-machi, Kita-ku, Kumamoto, 861-5598, Japan
| | - Toshitaka Yamaga
- Research Division for Life Science, Kumamoto Health Science University, 325 Izumi-machi, Kita-ku, Kumamoto, 861-5598, Japan
| | - Hideaki Nagami
- Research Division for Clinical Pharmacology, Medical Corporation, Juryo Group, Kumamoto Kinoh Hospital, 6-8-1 Yamamuro, Kita-ku, Kumamoto, 860-8518, Japan
| | - Norio Akaike
- Research Division of Neurophysiology, Kitamoto Hospital, 3-7-6 Kawarasone, Koshigaya, Saitama, 343-0821, Japan.,Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.,Research Division for Clinical Pharmacology, Medical Corporation, Juryo Group, Kumamoto Kinoh Hospital, 6-8-1 Yamamuro, Kita-ku, Kumamoto, 860-8518, Japan
| |
Collapse
|
13
|
Kaur S, Ali A, Ahmad U, Siahbalaei Y, Pandey AK, Singh B. Role of single nucleotide polymorphisms (SNPs) in common migraine. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2019. [DOI: 10.1186/s41983-019-0093-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
14
|
Peixoto-Neves D, Soni H, Adebiyi A. Oxidant-induced increase in norepinephrine secretion from PC12 cells is dependent on TRPM8 channel-mediated intracellular calcium elevation. Biochem Biophys Res Commun 2018; 506:709-715. [PMID: 30376995 DOI: 10.1016/j.bbrc.2018.10.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/19/2018] [Indexed: 10/28/2022]
Abstract
Reactive oxygen species (ROS) modulate neuronal function, including plasticity and neurotransmitter biosynthesis and release. The cellular mechanisms that underlie redox modulation of neurotransmission are not fully resolved, but potential pathways include ROS-induced alterations in Ca2+ signaling in nerve terminals. In this study, we show that cold-sensitive receptor TRPM8 is activated by pro-oxidant tert-butyl hydroperoxide (tBHP). Polymerase chain reaction, Western immunoblotting, and immunofluorescence indicated that TRPM8 channels are expressed in rat pheochromocytoma 12 (PC12) cells, a phenotypic model of sympathetic neurosecretion when differentiated with nerve growth factor. WS-12, a selective TRPM8 channel agonist, and tBHP increased intracellular Ca2+ concentration in differentiated PC12 cells; an effect attenuated by AMTB, a selective TRPM8 channel blocker, and siRNA-mediated TRPM8 knockdown. Blockade of TRPM8 channels also reduced WS-12- and tBHP-evoked norepinephrine secretion from the cells. These data suggest that TRPM8 channels contribute to oxidant-induced neurotransmission in PC12 cells.
Collapse
Affiliation(s)
| | - Hitesh Soni
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Adebowale Adebiyi
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
15
|
Salakhutdinov NF, Volcho KP, Yarovaya OI. Monoterpenes as a renewable source of biologically active compounds. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2017-0109] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractMonoterpenes and their derivatives play an important role in the creation of new biologically active compounds including drugs. The review focuses on the data on various types of biological activity exhibited by monoterpenes and their derivatives, including analgesic, anti-inflammatory, anticonvulsant, antidepressant, anti-Alzheimer, anti-Parkinsonian, antiviral, and antibacterial (anti-tuberculosis) effects. Searching for novel potential drugs among monoterpene derivatives shows great promise for treating various pathologies. Special attention is paid to the effect of absolute configuration of monoterpenes and monoterpenoids on their activity.
Collapse
Affiliation(s)
- Nariman F. Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia
| | - Konstantin P. Volcho
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia
| | - Olga I. Yarovaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia
| |
Collapse
|
16
|
Oz M, El Nebrisi EG, Yang KHS, Howarth FC, Al Kury LT. Cellular and Molecular Targets of Menthol Actions. Front Pharmacol 2017; 8:472. [PMID: 28769802 PMCID: PMC5513973 DOI: 10.3389/fphar.2017.00472] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/03/2017] [Indexed: 02/04/2023] Open
Abstract
Menthol belongs to monoterpene class of a structurally diverse group of phytochemicals found in plant-derived essential oils. Menthol is widely used in pharmaceuticals, confectionary, oral hygiene products, pesticides, cosmetics, and as a flavoring agent. In addition, menthol is known to have antioxidant, anti-inflammatory, and analgesic effects. Recently, there has been renewed awareness in comprehending the biological and pharmacological effects of menthol. TRP channels have been demonstrated to mediate the cooling actions of menthol. There has been new evidence demonstrating that menthol can significantly influence the functional characteristics of a number of different kinds of ligand and voltage-gated ion channels, indicating that at least some of the biological and pharmacological effects of menthol can be mediated by alterations in cellular excitability. In this article, we examine the results of earlier studies on the actions of menthol with voltage and ligand-gated ion channels.
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates.,Department of Basic Medical Sciences, College of Medicine, Qatar UniversityDoha, Qatar
| | - Eslam G El Nebrisi
- Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Keun-Hang S Yang
- Department of Biological Sciences, Schmid College of Science and Technology, Chapman UniversityOrange, CA, United States
| | - Frank C Howarth
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Lina T Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed UniversityAbu Dhabi, United Arab Emirates
| |
Collapse
|
17
|
Li CL, Liu XF, Li GX, Ban MQ, Chen JZ, Cui Y, Zhang JH, Wu CF. Antinociceptive Effects of AGAP, a Recombinant Neurotoxic Polypeptide: Possible Involvement of the Tetrodotoxin-Resistant Sodium Channels in Small Dorsal Root Ganglia Neurons. Front Pharmacol 2016; 7:496. [PMID: 28066245 PMCID: PMC5168466 DOI: 10.3389/fphar.2016.00496] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 12/02/2016] [Indexed: 11/22/2022] Open
Abstract
Antitumor-analgesic peptide (AGAP) is a novel recombinant polypeptide. The primary study showed that AGAP 1.0 mg/kg exhibited strong analgesic and antitumor effects. The tail vein administration of AGAP potently reduced pain behaviors in mice induced by intraplantar injection of formalin or intraperitoneal injection of acetic acid, without affecting basal pain perception. To further assess the mechanisms of AGAP, the effects of AGAP on sodium channels were assessed using the whole-cell patch clamp recordings in dorsal root ganglia (DRG) neurons. The results showed that AGAP (3–1000 nM) inhibited the sodium currents in small-diameter DRG neurons in a dose-dependent manner. 1000 nM AGAP could inhibit the current density-voltage relationship curve of sodium channels in a voltage-dependent manner and negatively shift the activation curves. 1000 nM AGAP could reduce the tetrodotoxin-resistant (TTX-R) sodium currents by 42.8% in small-diameter DRG neurons. Further analysis revealed that AGAP potently inhibited NaV1.8 currents by 59.4%, and negatively shifted the activation and inactivation kinetics. 1000 nM AGAP also reduced the NaV1.9 currents by 33.7%, but had no significant effect on activation and inactivation kinetics. Thus, our results demonstrated that submicromolar concentrations of AGAP inhibited TTX-R sodium channel in rat small-diameter DRG neurons. It is concluded that these new results may better explain, at least in part, the analgesic properties of this polypeptide.
Collapse
Affiliation(s)
- Chun-Li Li
- Department of Pharmacology, Shenyang Pharmaceutical University Shenyang, China
| | - Xi-Fang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University Shenyang, China
| | - Gui-Xia Li
- Department of Pharmacology, Shenyang Pharmaceutical University Shenyang, China
| | - Meng-Qi Ban
- Department of Pharmacology, Shenyang Pharmaceutical University Shenyang, China
| | - Jian-Zhao Chen
- Department of Pharmacology, Shenyang Pharmaceutical University Shenyang, China
| | - Yong Cui
- Department of Biochemistry, Shenyang Pharmaceutical University Shenyang, China
| | - Jing-Hai Zhang
- Department of Biochemistry, Shenyang Pharmaceutical University Shenyang, China
| | - Chun-Fu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University Shenyang, China
| |
Collapse
|
18
|
Nita II, Caspi Y, Gudes S, Fishman D, Lev S, Hersfinkel M, Sekler I, Binshtok AM. Privileged crosstalk between TRPV1 channels and mitochondrial calcium shuttling machinery controls nociception. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2868-2880. [DOI: 10.1016/j.bbamcr.2016.09.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 10/21/2022]
|
19
|
Melanaphy D, Johnson CD, Kustov MV, Watson CA, Borysova L, Burdyga TV, Zholos AV. Ion channel mechanisms of rat tail artery contraction-relaxation by menthol involving, respectively, TRPM8 activation and L-type Ca2+ channel inhibition. Am J Physiol Heart Circ Physiol 2016; 311:H1416-H1430. [PMID: 27765744 DOI: 10.1152/ajpheart.00222.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 09/13/2016] [Indexed: 11/22/2022]
Abstract
Transient receptor potential melastatin 8 (TRPM8) is the principal cold and menthol receptor channel. Characterized primarily for its cold-sensing role in sensory neurons, it is expressed and functional in several nonneuronal tissues, including vasculature. We previously demonstrated that menthol causes variable mechanical responses (vasoconstriction, vasodilatation, or biphasic reactions) in isolated arteries, depending on vascular tone. Here we aimed to dissect the specific ion channel mechanisms and corresponding Ca2+ signaling pathways underlying such complex responses to menthol and other TRPM8 ligands in rat tail artery myocytes using patch-clamp electrophysiology, confocal Ca2+ imaging, and ratiometric Ca2+ recording. Menthol (300 μM, a concentration typically used to induce TRPM8 currents) strongly inhibited L-type Ca2+ channel current (L-ICa) in isolated myocytes, especially its sustained component, most relevant for depolarization-induced vasoconstriction. In contraction studies, with nifedipine present (10 μM) to abolish L-ICa contribution to phenylephrine (PE)-induced vasoconstrictions of vascular rings, a marked increase in tone was observed with menthol, similar to resting (i.e., without α-adrenoceptor stimulation by PE) conditions, when L-type channels were mostly deactivated. Menthol-induced increases in PE-induced vasoconstrictions could be inhibited both by the TRPM8 antagonist AMTB (thus confirming the specific role of TRPM8) and by cyclopiazonic acid treatment to deplete Ca2+ stores, pointing to a major contribution of Ca2+ release from the sarcoplasmic reticulum in these contractile responses. Immunocytochemical analysis has indeed revealed colocalization of TRPM8 and InsP3 receptors. Moreover, menthol Ca2+ responses, which were somewhat reduced under Ca2+-free conditions, were strongly reduced by cyclopiazonic acid treatment to deplete Ca2+ store, whereas caffeine-induced Ca2+ responses were blunted in the presence of menthol. Finally, two other common TRPM8 agonists, WS-12 and icilin, also inhibited L-ICa With respect to L-ICa inhibition, WS-12 is the most selective agonist. It augmented PE-induced contractions, whereas any secondary phase of vasorelaxation (as with menthol) was completely lacking. Thus TRPM8 channels are functionally active in rat tail artery myocytes and play a distinct direct stimulatory role in control of vascular tone. However, indirect effects of TRPM8 agonists, which are unrelated to TRPM8, are mediated by inhibition of L-type Ca2+ channels and largely obscure TRPM8-mediated vasoconstriction. These findings will promote our understanding of the vascular TRPM8 role, especially the well-known hypotensive effect of menthol, and may also have certain translational implications (e.g., in cardiovascular surgery, organ storage, transplantation, and Raynaud's phenomenon).
Collapse
Affiliation(s)
- Donal Melanaphy
- Center for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Belfast, United Kingdom
| | - Christopher D Johnson
- Centre for Biomedical Sciences Education, School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Belfast, United Kingdom;
| | - Maxim V Kustov
- A. A. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Conall A Watson
- Centre for Biomedical Sciences Education, School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Belfast, United Kingdom
| | - Lyudmyla Borysova
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; and
| | - Theodor V Burdyga
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; and
| | - Alexander V Zholos
- Center for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Belfast, United Kingdom.,A. A. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kiev, Ukraine.,Department of Biophysics, Institute of Biology, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
20
|
Jia Z, Ikeda R, Ling J, Viatchenko-Karpinski V, Gu JG. Regulation of Piezo2 Mechanotransduction by Static Plasma Membrane Tension in Primary Afferent Neurons. J Biol Chem 2016; 291:9087-104. [PMID: 26929410 DOI: 10.1074/jbc.m115.692384] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Indexed: 11/06/2022] Open
Abstract
The Piezo2 channel is a newly identified mammalian mechanical transducer that confers rapidly adapting mechanically activated (RA-MA) currents in primary afferent neurons. The Piezo2 channels sense rapid membrane displacement, but it is not clear whether they are sensitive to osmotic swelling, which slowly increases static plasma membrane tension (SPMT). Here, we show that SPMT exerts a profound impact on the mechanical sensitivity of RA-MA channels in primary afferent neurons. RA-MA currents are greatly enhanced, and the mechanical threshold was reduced in both primary afferent neurons of rat dorsal root ganglia (DRG) and HEK293 cells heterologously expressing Piezo2 when these cells undergo osmotic swelling to increase SPMT. Osmotic swelling switches the kinetics of RA-MA currents to the slowly adapting type in both cultured DRG neurons and HEK293 cells heterologously expressing Piezo2. The potentiation of RA-MA currents is abolished when cultured DRG neurons are treated with cytochalasin D, an actin filament disruptor that prevents SPMT of cultured DRG neurons from an increase by osmotic swelling. Osmotic swelling significantly increases DRG neuron mechano-excitability such that a subthreshold mechanical stimulus can result in action potential firing. Behaviorally, the mechanical hind paw withdrawal threshold in rats is reduced following the injection of a hypotonic solution, but this osmotic effect is abolished when cytochalasin D or Gd(3+) is co-administered with the hypo-osmotic solution. Taken together, our findings suggest that Piezo2-mediated mechanotransduction is regulated by SPMT in primary afferent neurons. Because SPMT can be changed by multiple biological factors, our findings may have broad implications in mechanical sensitivity under physiological and pathological conditions.
Collapse
Affiliation(s)
- Zhanfeng Jia
- the Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0531, the Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei Province 050017, China, and
| | - Ryo Ikeda
- the Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0531, the Department of Orthopedic Surgery, Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Jennifer Ling
- the Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0531, From the Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Viacheslav Viatchenko-Karpinski
- From the Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Jianguo G Gu
- the Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0531, From the Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294,
| |
Collapse
|
21
|
Brock JA, McAllen RM. Spinal cord thermosensitivity: An afferent phenomenon? Temperature (Austin) 2016; 3:232-239. [PMID: 27857953 PMCID: PMC4964996 DOI: 10.1080/23328940.2016.1157665] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/19/2016] [Accepted: 02/19/2016] [Indexed: 11/21/2022] Open
Abstract
We review the evidence for thermoregulatory temperature sensors in the mammalian spinal cord and reach the following conclusions. 1) Spinal cord temperature contributes physiologically to temperature regulation. 2) Parallel anterolateral ascending pathways transmit signals from spinal cooling and spinal warming: they overlap with the respective axon pathways of the dorsal horn neurons that are driven by peripheral cold- and warm-sensitive afferents. 3) We hypothesize that these ‘cold’ and ‘warm’ ascending pathways transmit all extracranial thermosensory information to the brain. 4) Cutaneous cold afferents can be activated not only by cooling the skin but also by cooling sites along their axons: we consider that this is functionally insignificant in vivo. 5) By a presynaptic action on their central terminals, local spinal cooling enhances neurotransmission from incoming ‘cold’ afferent action potentials to second order neurons in the dorsal horn; this effect disappears when the spinal cord is warm. 6) Spinal warm sensitivity is due to warm-sensitive miniature vesicular transmitter release from afferent terminals in the dorsal horn: this effect is powerful enough to excite second order neurons in the ‘warm’ pathway independently of any incoming sensory traffic. 7) Distinct but related presynaptic mechanisms at cold- and warm-sensitive afferent terminals can thus account for the thermoregulatory actions of spinal cord temperature.
Collapse
Affiliation(s)
- James A Brock
- Department of Anatomy and Neuroscience, University of Melbourne , Parkville, Victoria, Australia
| | - Robin M McAllen
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
22
|
Ferreira LGB, Faria RX. TRPing on the pore phenomenon: what do we know about transient receptor potential ion channel-related pore dilation up to now? J Bioenerg Biomembr 2016; 48:1-12. [PMID: 26728159 DOI: 10.1007/s10863-015-9634-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 12/02/2015] [Indexed: 01/06/2023]
Abstract
Ion channels allow for rapid ion diffusion through the plasma membrane. In some conditions, ion channels induce changes in the critical plasma membrane permeability that permit 900-Da solutes to enter cells. This process is known as the pore phenomenon. Some transient receptor potential (TRP) channel subtypes have been highlighted such as the P2X7 receptor, plasma membrane VDAC-1 channel, and pannexin hemichannels. The TRP ion channels are considered multimodal transducers that respond to several kinds of stimuli. In addition, many TRP channel subtypes are involved in physiological and pathophysiological processes such as inflammation, pain, and cancer. The TRPA1, TRPM8, and TRPV1-4 subtypes have been shown to promote large-molecular-weight solute uptake, including impermeable fluorescent dyes, QX-314 hydrophilic lidocaine derivative, gabapentin, and antineoplastic drugs. This review discusses the current knowledge of TRP-associated pores and encourages scientists to study their features and explore them as novel therapeutic tools.
Collapse
Affiliation(s)
- L G B Ferreira
- Laboratory of Inflammation, Oswaldo Cruz Institute, FIOCRUZ, Av. Brasil, n° 4365, Manguinhos, CEP 21045-900, Rio de Janeiro, Brazil.
| | - R X Faria
- Laboratory of Cellular Communication, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, n° 4365, Manguinhos, CEP 21045-900, Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Abd-Elsayed AA, Ikeda R, Jia Z, Ling J, Zuo X, Li M, Gu JG. KCNQ channels in nociceptive cold-sensing trigeminal ganglion neurons as therapeutic targets for treating orofacial cold hyperalgesia. Mol Pain 2015; 11:45. [PMID: 26227020 PMCID: PMC4521366 DOI: 10.1186/s12990-015-0048-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/22/2015] [Indexed: 12/03/2022] Open
Abstract
Background Hyperexcitability of nociceptive afferent fibers is an underlying mechanism of neuropathic pain and ion channels involved in neuronal excitability are potentially therapeutic targets. KCNQ channels, a subfamily of voltage-gated K+ channels mediating M-currents, play a key role in neuronal excitability. It is unknown whether KCNQ channels are involved in the excitability of nociceptive cold-sensing trigeminal afferent fibers and if so, whether they are therapeutic targets for orofacial cold hyperalgesia, an intractable trigeminal neuropathic pain. Methods Patch-clamp recording technique was used to study M-currents and neuronal excitability of cold-sensing trigeminal ganglion neurons. Orofacial operant behavioral assessment was performed in animals with trigeminal neuropathic pain induced by oxaliplatin or by infraorbital nerve chronic constrictive injury. Results We showed that KCNQ channels were expressed on and mediated M-currents in rat nociceptive cold-sensing trigeminal ganglion (TG) neurons. The channels were involved in setting both resting membrane potentials and rheobase for firing action potentials in these cold-sensing TG neurons. Inhibition of KCNQ channels by linopirdine significantly decreased resting membrane potentials and the rheobase of these TG neurons. Linopirdine directly induced orofacial cold hyperalgesia when the KCNQ inhibitor was subcutaneously injected into rat orofacial regions. On the other hand, retigabine, a KCNQ channel potentiator, suppressed the excitability of nociceptive cold-sensing TG neurons. We further determined whether KCNQ channel could be a therapeutic target for orofacial cold hyperalgesia. Orofacial cold hyperalgesia was induced in rats either by the administration of oxaliplatin or by infraorbital nerve chronic constrictive injury. Using the orofacial operant test, we showed that retigabine dose-dependently alleviated orofacial cold hyperalgesia in both animal models. Conclusion Taken together, these findings indicate that KCNQ channel plays a significant role in controlling cold sensitivity and is a therapeutic target for alleviating trigeminal neuropathic pain that manifests orofacial cold hyperalgesia.
Collapse
Affiliation(s)
- Alaa A Abd-Elsayed
- Department of Anesthesiology and the Graduate Program in Neuroscience, The University of Cincinnati College of Medicine, PO Box 670531, 231 Albert Sabin Way, Cincinnati, OH, 45267-0531, USA. .,Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Ryo Ikeda
- Department of Anesthesiology and the Graduate Program in Neuroscience, The University of Cincinnati College of Medicine, PO Box 670531, 231 Albert Sabin Way, Cincinnati, OH, 45267-0531, USA. .,Department of Orthopedic Surgery, Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | - Zhanfeng Jia
- Department of Anesthesiology and the Graduate Program in Neuroscience, The University of Cincinnati College of Medicine, PO Box 670531, 231 Albert Sabin Way, Cincinnati, OH, 45267-0531, USA. .,Department of Pharmacology, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China.
| | - Jennifer Ling
- Department of Anesthesiology and Perioperative Medicine, College of Medicine, University of Alabama at Birmingham, 901 19th Street South, BMR II 210, Birmingham, AL, 35294, USA. .,Department of Anesthesiology and the Graduate Program in Neuroscience, The University of Cincinnati College of Medicine, PO Box 670531, 231 Albert Sabin Way, Cincinnati, OH, 45267-0531, USA.
| | - Xiaozhuo Zuo
- Department of Anesthesiology and the Graduate Program in Neuroscience, The University of Cincinnati College of Medicine, PO Box 670531, 231 Albert Sabin Way, Cincinnati, OH, 45267-0531, USA.
| | - Min Li
- Department of Neuroscience and High Throughput Biology Center, Johns Hopkins University School of Medicine, 733 N. Broadway 311 BRB, Baltimore, MD, 21205, USA. .,GlaxoSmithKline, New York, NY, USA.
| | - Jianguo G Gu
- Department of Anesthesiology and Perioperative Medicine, College of Medicine, University of Alabama at Birmingham, 901 19th Street South, BMR II 210, Birmingham, AL, 35294, USA. .,Department of Anesthesiology and the Graduate Program in Neuroscience, The University of Cincinnati College of Medicine, PO Box 670531, 231 Albert Sabin Way, Cincinnati, OH, 45267-0531, USA.
| |
Collapse
|
24
|
Kim YS, Kim TH, McKemy DD, Bae YC. Expression of vesicular glutamate transporters in transient receptor potential melastatin 8 (TRPM8)-positive dental afferents in the mouse. Neuroscience 2015; 303:378-88. [PMID: 26166724 DOI: 10.1016/j.neuroscience.2015.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/01/2015] [Accepted: 07/02/2015] [Indexed: 01/31/2023]
Abstract
Transient receptor potential melastatin 8 (TRPM8) is activated by innocuous cool and noxious cold and plays a crucial role in cold-induced acute pain and pain hypersensitivity. To help understand the mechanism of TRPM8-mediated cold perception under normal and pathologic conditions, we used light microscopic immunohistochemistry and Western blot analysis in mice expressing a genetically encoded axonal tracer in TRPM8-positive (+) neurons. We investigated the coexpression of TRPM8 and vesicular glutamate transporter 1 (VGLUT1) and VGLUT2 in the trigeminal ganglion (TG) and the dental pulp before and after inducing pulpal inflammation. Many TRPM8+ neurons in the TG and axons in the dental pulp expressed VGLUT2, while none expressed VGLUT1. TRPM8+ axons were dense in the pulp horn and peripheral pulp and also frequently observed in the dentinal tubules. Following pulpal inflammation, the proportion of VGLUT2+ and of VGLUT2+/TRPM8+ neurons increased significantly, whereas that of TRPM8+ neurons remained unchanged. Our findings suggest the existence of VGLUT2 (but not VGLUT1)-mediated glutamate signaling in TRPM8+ neurons possibly underlying the cold-induced acute pain and hypersensitivity to cold following pulpal inflammation.
Collapse
Affiliation(s)
- Y S Kim
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, South Korea
| | - T H Kim
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, South Korea
| | - D D McKemy
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Y C Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, South Korea.
| |
Collapse
|
25
|
Abstract
![]()
To
date, 28 mammalian transient receptor potential (TRP) channels
have been cloned and characterized. They are grouped into six subfamilies
on the basis of their amino acid sequence homology: TRP Ankyrin (TRPA),
TRP Canonical (TRPC), TRP Melastatin (TRPM), TRP Mucolipin (TRPML),
TRP Polycystin (TRPP), and TRP Vanilloid (TRPV). Most of the TRP channels
are nonselective cation channels expressed on the cell membrane and
exhibit variable permeability ratios for Ca2+ versus Na+. They mediate sensory functions (such as vision, nociception,
taste transduction, temperature sensation, and pheromone signaling)
and homeostatic functions (such as divalent cation flux, hormone release,
and osmoregulation). Significant progress has been made in our understanding
of the specific roles of these TRP channels and their activation mechanisms.
In this Review, the emphasis will be on the activation of TRP channels
by phytochemicals that are claimed to exert health benefits. Recent
findings complement the anecdotal evidence that some of these phytochemicals
have specific receptors and the activation of which is responsible
for the physiological effects. Now, the targets for these phytochemicals
are being unveiled; a specific hypothesis can be proposed and tested
experimentally to infer a scientific validity of the claims of the
health benefits. The broader and pressing issues that have to be addressed
are related to the quantities of the active ingredients in a given
preparation, their bioavailability, metabolism, adverse effects, excretion,
and systemic versus local effects.
Collapse
Affiliation(s)
- Louis S. Premkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois 62702, United States
| |
Collapse
|
26
|
VGluT3⁺ primary afferents play distinct roles in mechanical and cold hypersensitivity depending on pain etiology. J Neurosci 2014; 34:12015-28. [PMID: 25186747 DOI: 10.1523/jneurosci.2157-14.2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sensory nerve fibers differ not only with respect to their sensory modalities and conduction velocities, but also in their relative roles for pain hypersensitivity. It is presently largely unknown which types of sensory afferents contribute to various forms of neuropathic and inflammatory pain hypersensitivity. Vesicular glutamate transporter 3-positive (VGluT3(+)) primary afferents, for example, have been implicated in mechanical hypersensitivity after inflammation, but their role in neuropathic pain remains under debate. Here, we investigated a possible etiology-dependent contribution of VGluT3(+) fibers to mechanical and cold hypersensitivity in different models of inflammatory and neuropathic pain. In addition to VGluT3(-/-) mice, we used VGluT3-channelrhodopsin 2 mice to selectively stimulate VGluT3(+) sensory afferents by blue light, and to assess light-evoked behavior in freely moving mice. We show that VGluT3(-/-) mice develop reduced mechanical hypersensitivity upon carrageenan injection. Both mechanical and cold hypersensitivity were reduced in VGluT3(-/-) mice in neuropathic pain evoked by the chemotherapeutic oxaliplatin, but not in the chronic constriction injury (CCI) model of the sciatic nerve. Further, we provide direct evidence that, despite not mediating painful stimuli in naive mice, activation of VGluT3(+) sensory fibers by light elicits pain behavior in the oxaliplatin but not the CCI model. Immunohistochemical and electrophysiological data support a role of transient receptor potential melastatin 8-mediated facilitation of synaptic strength at the level of the dorsal horn as an underlying mechanism. Together, we demonstrate that VGluT3(+) fibers contribute in an etiology-dependent manner to the development of mechano-cold hypersensitivity.
Collapse
|
27
|
Amato A, Serio R, Mulè F. Involvement of cholinergic nicotinic receptors in the menthol-induced gastric relaxation. Eur J Pharmacol 2014; 745:129-34. [PMID: 25446932 DOI: 10.1016/j.ejphar.2014.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/16/2014] [Accepted: 10/05/2014] [Indexed: 02/06/2023]
Abstract
We have previously demonstrated that menthol reduces murine gastric tone in part through a neural mechanism, involving adrenergic pathways and reduction of ongoing release of acetylcholine from enteric nerves. In the present study we aimed to verify whether the gastric relaxation to menthol may be triggered by interaction with neural receptors or ionic channels proteins, such as transient receptor potential (TRP)-melastatin8 (TRPM8), TRP-ankyrin 1 (TRPA1), 5-hydroxytriptamine 3 (5-HT3) receptor or cholinergic nicotinic receptors. Spontaneous mechanical activity was detected in vitro as changes in intraluminal pressure from isolated mouse stomach. Menthol (0.3-30 mM) induced gastric relaxation which was not affected by 5-benzyloxytryptamine, a TRPM8 receptor antagonist, HC030031, a TRPA1 channel blocker. In addition, allylisothiocyanate, a TRPA1 agonist, but not (2S,5R)-2-Isopropyl-N-(4-methoxyphenyl)-5-methylcyclohexanecarboximide, a selective TRPM8 agonist, induced gastric relaxation. Genic expression of TRPA1, but not of TRPM8, was revealed in mouse stomach. Indeed, menthol-induced gastric relaxation was significantly reduced by hexamethonium, cholinergic nicotinic receptor antagonist. Menthol, at concentrations that failed to affect gastric tone, reduced the contraction induced by dimethylphenylpiperazinium, nicotinic receptor agonist. The joint application of hexamethonium and atropine, muscarinc receptor antagonist, or hexamethonium and phentholamine, α-adrenergic receptor antagonist, did not produce any additive reduction of the relaxant response to menthol. Lastly, ondansetron, a 5-HT3 receptor antagonist, was ineffective. In conclusion, our study suggests that nicotinic receptors, but not TRP and 5-HT3 receptors, are molecular targets for menthol inducing murine gastric relaxation, ultimately due to the reduction of acetylcholine release from enteric nerves.
Collapse
Affiliation(s)
- Antonella Amato
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy.
| | - Rosa Serio
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Flavia Mulè
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| |
Collapse
|
28
|
Wang XH, Wu Y, Yang XF, Miao Y, Zhang CQ, Dong LD, Yang XL, Wang Z. Cannabinoid CB1 receptor signaling dichotomously modulates inhibitory and excitatory synaptic transmission in rat inner retina. Brain Struct Funct 2014; 221:301-16. [DOI: 10.1007/s00429-014-0908-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/26/2014] [Indexed: 12/01/2022]
|
29
|
Effects of menthol on circular smooth muscle of human colon: analysis of the mechanism of action. Eur J Pharmacol 2014; 740:295-301. [PMID: 25046841 DOI: 10.1016/j.ejphar.2014.07.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 02/06/2023]
Abstract
Menthol is the major constituent of peppermint oil, an herbal preparation commonly used to treat nausea, spasms during colonoscopy and irritable bowel disease. The mechanism responsible for its spasmolytic action remains unclear. The aims of this study were to investigate the effects induced by menthol on the human distal colon mechanical activity in vitro and to analyze the mechanism of action. The spontaneous or evoked-contractions of the circular smooth muscle were recorded using vertical organ bath. Menthol (0.1 mM-30 mM) reduced, in a concentration-dependent manner, the amplitude of the spontaneous contractions without affecting the frequency and the resting basal tone. The inhibitory effect was not affected by 5-benzyloxytryptamine (1 μM), a transient receptor potential-melastatin8 channel antagonist, or tetrodotoxin (1 μM), a neural blocker, or 1H-[1,2,4] oxadiazolo [4,3-a]quinoxalin-1-one (10 µM), inhibitor of nitric oxide (NO)-sensitive soluble guanylyl cyclase, or tetraethylammonium (10 mM), a blocker of potassium (K+)-channels. On the contrary, nifedipine (3 nM), a voltage-activated L-type Ca2+ channel blocker, significantly reduced the inhibitory menthol actions. Menthol also reduced in a concentration-dependent manner the contractile responses caused by exogenous application of Ca2+ (75-375 μM) in a Ca2+-free solution, or induced by potassium chloride (KCl; 40 mM). Moreover menthol (1-3 mM) strongly reduced the electrical field stimulation (EFS)-evoked atropine-sensitive contractions and the carbachol-contractile responses. The present results suggest that menthol induces spasmolytic effects in human colon circular muscle inhibiting directly the gastrointestinal smooth muscle contractility, through the block of Ca2+ influx through sarcolemma L-type Ca2+ channels.
Collapse
|
30
|
Luo C, Kuner T, Kuner R. Synaptic plasticity in pathological pain. Trends Neurosci 2014; 37:343-55. [DOI: 10.1016/j.tins.2014.04.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/31/2014] [Accepted: 04/09/2014] [Indexed: 02/06/2023]
|
31
|
Dicpinigaitis PV, Morice AH, Birring SS, McGarvey L, Smith JA, Canning BJ, Page CP. Antitussive drugs--past, present, and future. Pharmacol Rev 2014; 66:468-512. [PMID: 24671376 PMCID: PMC11060423 DOI: 10.1124/pr.111.005116] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cough remains a serious unmet clinical problem, both as a symptom of a range of other conditions such as asthma, chronic obstructive pulmonary disease, gastroesophageal reflux, and as a problem in its own right in patients with chronic cough of unknown origin. This article reviews our current understanding of the pathogenesis of cough and the hypertussive state characterizing a number of diseases as well as reviewing the evidence for the different classes of antitussive drug currently in clinical use. For completeness, the review also discusses a number of major drug classes often clinically used to treat cough but that are not generally classified as antitussive drugs. We also reviewed a number of drug classes in various stages of development as antitussive drugs. Perhaps surprising for drugs used to treat such a common symptom, there is a paucity of well-controlled clinical studies documenting evidence for the use of many of the drug classes in use today, particularly those available over the counter. Nonetheless, there has been a considerable increase in our understanding of the cough reflex over the last decade that has led to a number of promising new targets for antitussive drugs being identified and thus giving some hope of new drugs being available in the not too distant future for the treatment of this often debilitating symptom.
Collapse
Affiliation(s)
- P V Dicpinigaitis
- King's College London, Franklin Wilkins Building, 100 Stamford St., London, SE1 9NH, UK.
| | | | | | | | | | | | | |
Collapse
|
32
|
Icilin reduces voltage-gated calcium channel currents in naïve and injured DRG neurons in the rat spinal nerve ligation model. Brain Res 2014; 1557:171-9. [PMID: 24560602 DOI: 10.1016/j.brainres.2014.02.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 02/07/2014] [Accepted: 02/11/2014] [Indexed: 11/21/2022]
Abstract
Recently, the transient receptor potential (TRP) channels TRPM8 and TRPA1 have been identified as molecular sensors for cold, and it has been suggested that they play a crucial role in allodynia by modulating voltage-gated calcium channel currents (ICa(V)). The aim of this study was to analyze the modulation of ICa(V) by the TRPM8-agonist icilin in vitro and to investigate the analgesic effect of icilin in a neuropathic pain model in vivo. Whole cell patch-clamp recordings were performed on isolated naïve and injured rat dorsal root ganglia (DRG) neurons, and the analgesic efficacy of icilin applied topically to the paws or intrathecally was tested in rats after spinal nerve ligation (SNL). ICa(V) (depolarization from -80 to 0mV) in naïve DRG neurons was reduced dose dependently (0.002-200µM) by icilin (18-80%). Subtype isolation of calcium channels show a marked reduction of L-type channel currents compared to N-type channel currents. The effects of icilin on ICa(V) were not significantly different in non-injured and SNL-injured DRG neurons. In vivo, neither topical (10-200µM) nor intrathecal application of icilin (0.1nM to 1µM) affected tactile allodynia or thermal hyperalgesia after SNL, but it increases cold allodynia 6h after application. We conclude that the icilin-induced modulation of ICa(V) in DRG neurons is unlikely to mediate analgesic effects or contribute directly to the pathogenesis of cold allodynia in the rat SNL model, but it is a potential mechanism for the analgesic effects of icilin in other pain models.
Collapse
|
33
|
Jia Z, Ikeda R, Ling J, Gu JG. GTP-dependent run-up of Piezo2-type mechanically activated currents in rat dorsal root ganglion neurons. Mol Brain 2013; 6:57. [PMID: 24344923 PMCID: PMC3899620 DOI: 10.1186/1756-6606-6-57] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/05/2013] [Indexed: 11/10/2022] Open
Abstract
Rapidly adapting mechanically activated channels (RA) are expressed in primary afferent neurons and identified as Piezo2 ion channels. We made whole-cell voltage-clamp recordings from cultured dorsal root ganglion (DRG) neurons to study RA channel regulation. RA currents showed gradual increases in current amplitude (current "run-up") after establishing whole-cell mode when 0.33 mM GTP or 0.33 mM GTPγS was included in the patch pipette internal solution. RA current run-up was also observed in HEK293 cells that heterologously expressed Piezo2 ion channels. No significant RA current run-up was observed in DRG neurons when GTP was omitted from the patch pipette internal solution, when GTP was replaced with 0.33 mM GDP, or when recordings were made under the perforated patch-clamp recording configuration. Our findings revealed a GTP-dependent up-regulation of the function of piezo2 ion channels in DRG neurons.
Collapse
Affiliation(s)
| | | | | | - Jianguo G Gu
- Pain Research Center, Department of Anesthesiology, The University of Cincinnati College of Medicine, PO Box 670531, 231 Albert Sabin Way, Cincinnati, OH 45267, USA.
| |
Collapse
|
34
|
Ashoor A, Nordman JC, Veltri D, Yang KHS, Shuba Y, Al Kury L, Sadek B, Howarth FC, Shehu A, Kabbani N, Oz M. Menthol inhibits 5-HT3 receptor-mediated currents. J Pharmacol Exp Ther 2013; 347:398-409. [PMID: 23965380 DOI: 10.1124/jpet.113.203976] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The effects of alcohol monoterpene menthol, a major active ingredient of the peppermint plant, were tested on the function of human 5-hydroxytryptamine type 3 (5-HT3) receptors expressed in Xenopus laevis oocytes. 5-HT (1 μM)-evoked currents recorded by two-electrode voltage-clamp technique were reversibly inhibited by menthol in a concentration-dependent (IC50 = 163 μM) manner. The effects of menthol developed gradually, reaching a steady-state level within 10-15 minutes and did not involve G-proteins, since GTPγS activity remained unaltered and the effect of menthol was not sensitive to pertussis toxin pretreatment. The actions of menthol were not stereoselective as (-), (+), and racemic menthol inhibited 5-HT3 receptor-mediated currents to the same extent. Menthol inhibition was not altered by intracellular 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid injections and transmembrane potential changes. The maximum inhibition observed for menthol was not reversed by increasing concentrations of 5-HT. Furthermore, specific binding of the 5-HT3 antagonist [(3)H]GR65630 was not altered in the presence of menthol (up to 1 mM), indicating that menthol acts as a noncompetitive antagonist of the 5-HT3 receptor. Finally, 5-HT3 receptor-mediated currents in acutely dissociated nodose ganglion neurons were also inhibited by menthol (100 μM). These data demonstrate that menthol, at pharmacologically relevant concentrations, is an allosteric inhibitor of 5-HT3 receptors.
Collapse
Affiliation(s)
- Abrar Ashoor
- Laboratory of Functional Lipidomics, Departments of Pharmacology (A.A., L.A.K., B.S., M.O.) and Physiology (F.C.H.), College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; Department of Molecular Neuroscience (J.C.N., N.K.), School of Systems Biology (D.V.), and Department of Computer Science (A.S.), George Mason University, Fairfax, Virginia; International Center of Molecular Physiology of the National Academy of Sciences of Ukraine, Kiev, Ukraine (Y.S.); and Department of Biological Sciences, Schmid College of Science and Engineering, Chapman University, Orange, California (K.-H.S.Y.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Anttila V, Winsvold BS, Gormley P, Kurth T, Bettella F, McMahon G, Kallela M, Malik R, de Vries B, Terwindt G, Medland SE, Todt U, McArdle WL, Quaye L, Koiranen M, Ikram MA, Lehtimäki T, Stam AH, Ligthart L, Wedenoja J, Dunham I, Neale BM, Palta P, Hamalainen E, Schürks M, Rose LM, Buring JE, Ridker PM, Steinberg S, Stefansson H, Jakobsson F, Lawlor DA, Evans DM, Ring SM, Färkkilä M, Artto V, Kaunisto MA, Freilinger T, Schoenen J, Frants RR, Pelzer N, Weller CM, Zielman R, Heath AC, Madden PA, Montgomery GW, Martin NG, Borck G, Göbel H, Heinze A, Heinze-Kuhn K, Williams FM, Hartikainen AL, Pouta A, van den Ende J, Uitterlinden AG, Hofman A, Amin N, Hottenga JJ, Vink JM, Heikkilä K, Alexander M, Muller-Myhsok B, Schreiber S, Meitinger T, Wichmann HE, Aromaa A, Eriksson JG, Traynor B, Trabzuni D, Rossin E, Lage K, Jacobs SB, Gibbs JR, Birney E, Kaprio J, Penninx BW, Boomsma DI, van Duijn C, Raitakari O, Jarvelin MR, Zwart JA, Cherkas L, Strachan DP, Kubisch C, Ferrari MD, van den Maagdenberg AM, Dichgans M, Wessman M, Smith GD, Stefansson K, Daly MJ, Nyholt DR, Chasman D, Palotie A. Genome-wide meta-analysis identifies new susceptibility loci for migraine. Nat Genet 2013; 45:912-917. [PMID: 23793025 PMCID: PMC4041123 DOI: 10.1038/ng.2676] [Citation(s) in RCA: 280] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 05/30/2013] [Indexed: 12/15/2022]
Abstract
Migraine is the most common brain disorder, affecting approximately 14% of the adult population, but its molecular mechanisms are poorly understood. We report the results of a meta-analysis across 29 genome-wide association studies, including a total of 23,285 individuals with migraine (cases) and 95,425 population-matched controls. We identified 12 loci associated with migraine susceptibility (P<5×10(-8)). Five loci are new: near AJAP1 at 1p36, near TSPAN2 at 1p13, within FHL5 at 6q16, within C7orf10 at 7p14 and near MMP16 at 8q21. Three of these loci were identified in disease subgroup analyses. Brain tissue expression quantitative trait locus analysis suggests potential functional candidate genes at four loci: APOA1BP, TBC1D7, FUT9, STAT6 and ATP5B.
Collapse
Affiliation(s)
- Verneri Anttila
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Analytical and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bendik S. Winsvold
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
- Department of Neurology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Padhraig Gormley
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Tobias Kurth
- INSERM Unit 708 – Neuroepidemiology, F-33000 Bordeaux, France
- University of Bordeaux, F-33000 Bordeaux, France
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | | | - George McMahon
- MRC Centre for Causal Analyses in Translational Epidemiology, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Mikko Kallela
- Department of Neurology, Helsinki University Central Hospital, Helsinki, Finland
| | - Rainer Malik
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich, Germany
| | - Boukje de Vries
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Gisela Terwindt
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Sarah E. Medland
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Unda Todt
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Wendy L. McArdle
- MRC Centre for Causal Analyses in Translational Epidemiology, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Lydia Quaye
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Markku Koiranen
- Institute of Health Sciences, University of Oulu, Oulu, Finland
| | - M. Arfan Ikram
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Radiology Erasmus University Medical Centre, Rotterdam, The Netherlands
- Department of Neurology Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and University of Tampere School of Medicine, Tampere, Finland
| | - Anine H. Stam
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Lannie Ligthart
- Department of Biological Psychology, VU University, Amsterdam, The Netherlands
- EMGO+ Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Juho Wedenoja
- Department of Public Health, Hjelt Institute, University of Helsinki, Helsinki, Finland
| | - Ian Dunham
- European Bioinformatics Insitute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Benjamin M. Neale
- Analytical and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Priit Palta
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Eija Hamalainen
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Markus Schürks
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Lynda M Rose
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | - Julie E. Buring
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | - Paul M. Ridker
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
- Harvard Medical School, Boston, MA 02215, USA
| | | | | | - Finnbogi Jakobsson
- Department of Neurology, Landspitali University Hospital, Reykjavik, Iceland
| | - Debbie A. Lawlor
- MRC Centre for Causal Analyses in Translational Epidemiology, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - David M. Evans
- MRC Centre for Causal Analyses in Translational Epidemiology, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Susan M. Ring
- MRC Centre for Causal Analyses in Translational Epidemiology, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Markus Färkkilä
- Department of Neurology, Helsinki University Central Hospital, Helsinki, Finland
| | - Ville Artto
- Department of Neurology, Helsinki University Central Hospital, Helsinki, Finland
| | - Mari A Kaunisto
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Tobias Freilinger
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Neurology, Klinikum der Universität München, Munich, Germany
| | - Jean Schoenen
- Headache Research Unit, Department of Neurology and Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Neurosciences, Liège University, Liège, Belgium
| | - Rune R. Frants
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Nadine Pelzer
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Claudia M. Weller
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Ronald Zielman
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Andrew C. Heath
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Pamela A.F. Madden
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Nicholas G. Martin
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Guntram Borck
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | | | - Axel Heinze
- Kiel Pain and Headache Center, Kiel, Germany
| | | | - Frances M.K. Williams
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Anna-Liisa Hartikainen
- Department of Clinical Sciences/Obstetrics and Gynecology, University Hospital of Oulu, Oulu, Finland
| | - Anneli Pouta
- Institute of Health Sciences, University of Oulu, Oulu, Finland
- Department of Clinical Sciences/Obstetrics and Gynecology, University Hospital of Oulu, Oulu, Finland
- Department of Children, Young People and Families, National Institute for Health and Welfare, Helsinki, Finland
| | - Joyce van den Ende
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Albert Hofman
- Genetic Epidemiology Unit, Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Najaf Amin
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, VU University, Amsterdam, The Netherlands
| | - Jacqueline M. Vink
- Department of Biological Psychology, VU University, Amsterdam, The Netherlands
| | - Kauko Heikkilä
- Department of Public Health, Hjelt Institute, University of Helsinki, Helsinki, Finland
| | - Michael Alexander
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Bertram Muller-Myhsok
- Max Planck Institute of Psychiatry, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Stefan Schreiber
- Department of Clinical Molecular Biology, Christian Albrechts University, Kiel, Germany
- Department of Internal Medicine I, Christian Albrechts University, Kiel, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Center Munich, Neuherberg, Germany
- Institute of Human Genetics, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Heinz Erich Wichmann
- Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie, Ludwig-Maximilians-Universität München, Munich, Germany
- Institute of Epidemiology I, HelmholtzCenter Munich, Neuherberg, Germany
- Klinikum Großhadern, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Arpo Aromaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Johan G. Eriksson
- Folkhälsan Research Center, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
- Department of General Practice, Helsinki University Central Hospital, Helsinki, Finland
- Vaasa Central Hospital, Vaasa, Finland
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
| | - Bryan Traynor
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Daniah Trabzuni
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | | | | | - Elizabeth Rossin
- Analytical and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
| | - Kasper Lage
- Analytical and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital for Children, Massachusetts General Hospital, Boston, MA, USA
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
- Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Suzanne B.R. Jacobs
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - J. Raphael Gibbs
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Ewan Birney
- European Bioinformatics Insitute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Public Health, Hjelt Institute, University of Helsinki, Helsinki, Finland
- Department of Mental Health and Alcohol Research, National Institute for Health and Welfare, Helsinki, Finland
| | - Brenda W. Penninx
- EMGO+ Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Department of Psychiatry, University Medical Center Groningen, Groningen, The Netherlands
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands
| | - Dorret I. Boomsma
- Department of Biological Psychology, VU University, Amsterdam, The Netherlands
| | - Cornelia van Duijn
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku University Hospital, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Marjo-Riitta Jarvelin
- Institute of Health Sciences, University of Oulu, Oulu, Finland
- Department of Children, Young People and Families, National Institute for Health and Welfare, Helsinki, Finland
- Department of Epidemiology and Biostatistics, School of Public Health, MRC-HPA Centre for Environment and Health, Faculty of Medicine, Imperial College, London, UK
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - John-Anker Zwart
- Department of Neurology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Lynn Cherkas
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - David P. Strachan
- Division of Population Health Sciences and Education, St George’s, University of London, London, UK
| | | | - Michel D. Ferrari
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Arn M.J.M. van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Maija Wessman
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - George Davey Smith
- MRC Centre for Causal Analyses in Translational Epidemiology, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Kari Stefansson
- deCODE genetics, Reykjavik, Iceland
- School of Medicine, University of Iceland, Reykjavik, Iceland
| | - Mark J. Daly
- Analytical and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dale R. Nyholt
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Daniel Chasman
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Aarno Palotie
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
36
|
Shutov LP, Kim MS, Houlihan PR, Medvedeva YV, Usachev YM. Mitochondria and plasma membrane Ca2+-ATPase control presynaptic Ca2+ clearance in capsaicin-sensitive rat sensory neurons. J Physiol 2013; 591:2443-62. [PMID: 23381900 DOI: 10.1113/jphysiol.2012.249219] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The central processes of primary nociceptors form synaptic connections with the second-order nociceptive neurons located in the dorsal horn of the spinal cord. These synapses gate the flow of nociceptive information from the periphery to the CNS, and plasticity at these synapses contributes to centrally mediated hyperalgesia and allodynia. Although exocytosis and synaptic plasticity are controlled by Ca(2+) at the release sites, the mechanisms underlying presynaptic Ca(2+) signalling at the nociceptive synapses are not well characterized. We examined the presynaptic mechanisms regulating Ca(2+) clearance following electrical stimulation in capsaicin-sensitive nociceptors using a dorsal root ganglion (DRG)/spinal cord neuron co-culture system. Cytosolic Ca(2+) concentration ([Ca(2+)]i) recovery following electrical stimulation was well approximated by a monoexponential function with a ∼2 s. Inhibition of sarco-endoplasmic reticulum Ca(2+)-ATPase did not affect presynaptic [Ca(2+)]i recovery, and blocking plasmalemmal Na(+)/Ca(2+) exchange produced only a small reduction in the rate of [Ca(2+)]i recovery (∼12%) that was independent of intracellular K(+). However, [Ca(2+)]i recovery in presynaptic boutons strongly depended on the plasma membrane Ca(2+)-ATPase (PMCA) and mitochondria that accounted for ∼47 and 40%, respectively, of presynaptic Ca(2+) clearance. Measurements using a mitochondria-targeted Ca(2+) indicator, mtPericam, demonstrated that presynaptic mitochondria accumulated Ca(2+) in response to electrical stimulation. Quantitative analysis revealed that the mitochondrial Ca(2+) uptake is highly sensitive to presynaptic [Ca(2+)]i elevations, and occurs at [Ca(2+)]i levels as low as ∼200-300 nm. Using RT-PCR, we detected expression of several putative mitochondrial Ca(2+) transporters in DRG, such as MCU, Letm1 and NCLX. Collectively, this work identifies PMCA and mitochondria as the major regulators of presynaptic Ca(2+) signalling at the first sensory synapse, and underlines the high sensitivity of the mitochondrial Ca(2+) uniporter in neurons to cytosolic Ca(2+).
Collapse
Affiliation(s)
- Leonid P Shutov
- Y. M. Usachev: Department of Pharmacology, University of Iowa Carver College of Medicine, 2-340F BSB, 51 Newton Road, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
37
|
Kawasaki H, Mizuta K, Fujita T, Kumamoto E. Inhibition by menthol and its related chemicals of compound action potentials in frog sciatic nerves. Life Sci 2013; 92:359-67. [PMID: 23352972 DOI: 10.1016/j.lfs.2013.01.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/10/2012] [Accepted: 01/05/2013] [Indexed: 01/07/2023]
Abstract
AIMS Transient receptor potential (TRP) vanilloid-1 (TRPV1) and melastatin-8 (TRPM8) channels play a role in transmitting sensory information in primary-afferent neurons. TRPV1 agonists at high concentrations inhibit action potential conduction in the neurons and thus have a local anesthetic effect. The purpose of the present study was to know whether TRPM8 agonist menthol at high concentrations has a similar action and if so whether there is a structure-activity relationship among menthol-related chemicals. MAIN METHODS Compound action potentials (CAPs) were recorded from the frog sciatic nerve by using the air-gap method. KEY FINDINGS (-)-Menthol and (+)-menthol concentration-dependently reduced CAP peak amplitude with the IC(50) values of 1.1 and 0.93 mM, respectively. This (-)-menthol activity was resistant to non-selective TRP antagonist ruthenium red; TRPM8 agonist icilin did not affect CAPs, indicating no involvements of TRPM8 channels. p-Menthane, (+)-limonene and menthyl chloride at 7-10 mM minimally affected CAPs. On the other hand, (-)-menthone, (+)-menthone, (-)-carvone, (+)-carvone and (-)-carveol (in each of which chemicals OH or O group was added to p-menthane and limonene) and (+)-pulegone inhibited CAPs with extents similar to that of menthol. 1,8-Cineole and 1,4-cineole were less effective while thymol and carvacrol were more effective than menthol in inhibiting CAPs. SIGNIFICANCE Menthol-related chemicals inhibited CAPs and were thus suggested to exhibit local anesthetic effects comparable to those of lidocaine and cocaine as reported previously for frog CAPs. This result may provide information to develop local anesthetics on the basis of the chemical structure of menthol.
Collapse
|
38
|
Rare ‘head-to-tail’ arrangement of guest molecules in the inclusion complexes of (+)- and (−)-menthol with β-cyclodextrin. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Sarria I, Ling J, Xu GY, Gu JG. Sensory discrimination between innocuous and noxious cold by TRPM8-expressing DRG neurons of rats. Mol Pain 2012; 8:79. [PMID: 23092296 PMCID: PMC3495675 DOI: 10.1186/1744-8069-8-79] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/20/2012] [Indexed: 12/16/2022] Open
Abstract
The TRPM8 channel is a principal cold transducer that is expressed on some primary afferents of the somatic and cranial sensory systems. However, it is uncertain whether TRPM8-expressing afferent neurons have the ability to convey innocuous and noxious cold stimuli with sensory discrimination between the two sub-modalities. Using rat dorsal root ganglion (DRG) neurons and the patch-clamp recording technique, we characterized membrane and action potential properties of TRPM8-expressing DRG neurons at 24°C and 10°C. TRPM8-expressing neurons could be classified into TTX-sensitive (TTXs/TRPM8) and TTX-resistant (TTXr/TRPM8) subtypes based on the sensitivity to tetrodotoxin (TTX) block of their action potentials. These two subtypes of cold-sensing cells displayed different membrane and action potential properties. Voltage-activated inward Na+ currents were highly susceptible to cooling temperature and abolished by ~95% at 10°C in TTXs/TRPM8 DRG neurons, but remained substantially large at 10°C in TTXr/TRPM8 cells. In both TTXs/TRPM8 and TTXr/TRPM8 cells, voltage-activated outward K+ currents were substantially inhibited at 10°C, and the cooling-sensitive outward currents resembled A-type K+ currents. TTXs/TRPM8 neurons and TTXr/TRPM8 neurons were shown to fire action potentials at innocuous and noxious cold temperatures respectively, demonstrating sensory discrimination between innocuous and noxious cold by the two subpopulations of cold-sensing DRG neurons. The effects of cooling temperatures on voltage-gated Na+ channels and A-type K+ currents are likely to be contributing factors to sensory discrimination of cold by TTXs/TRPM8 and TTXr/TRPM8 afferent neurons.
Collapse
Affiliation(s)
- Ignacio Sarria
- Department of Anesthesiology and the Graduate Program in Neuroscience, The University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | |
Collapse
|
40
|
Pan R, Tian Y, Gao R, Li H, Zhao X, Barrett JE, Hu H. Central Mechanisms of Menthol-Induced Analgesia. J Pharmacol Exp Ther 2012; 343:661-72. [DOI: 10.1124/jpet.112.196717] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
41
|
Premkumar LS, Abooj M. TRP channels and analgesia. Life Sci 2012; 92:415-24. [PMID: 22910182 DOI: 10.1016/j.lfs.2012.08.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 07/25/2012] [Accepted: 08/02/2012] [Indexed: 01/07/2023]
Abstract
Since cloning and characterizing the first nociceptive ion channel Transient Receptor Potential (TRP) Vanilloid 1 (TRPV1), other TRP channels involved in nociception have been cloned and characterized, which include TRP Vanilloid 2 (TRPV2), TRP Vanilloid 3 (TRPV3), TRP Vanilloid 4 (TRPV4), TRP Ankyrin 1 (TRPA1) and TRP Melastatin 8 (TRPM8), more recently TRP Canonical 1, 5, 6 (TRPC1, 5, 6), TRP Melastatin 2 (TRPM2) and TRP Melastatin 3 (TRPM3). These channels are predominantly expressed in C and Aδ nociceptors and transmit noxious thermal, mechanical and chemical sensitivities. TRP channels are modulated by pro-inflammatory mediators, neuropeptides and cytokines. Significant advances have been made targeting these receptors either by antagonists or agonists to treat painful conditions. In this review, we will discuss TRP channels as targets for next generation analgesics and the side effects that may ensue as a result of blocking/activating these receptors, because they are also involved in physiological functions such as release of vasoactive neuropeptides and regulation of vascular tone, maintenance of the body temperature, gastrointestinal motility, urinary bladder control, etc.
Collapse
Affiliation(s)
- Louis S Premkumar
- Department of Pharmacology, Southern Illinois University School of Medicine Springfield, IL 62702, USA.
| | | |
Collapse
|
42
|
Sarria I, Ling J, Gu JG. Thermal sensitivity of voltage-gated Na+ channels and A-type K+ channels contributes to somatosensory neuron excitability at cooling temperatures. J Neurochem 2012; 122:1145-54. [PMID: 22712529 DOI: 10.1111/j.1471-4159.2012.07839.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cooling temperatures may modify action potential firing properties to alter sensory modalities. Herein, we investigated how cooling temperatures modify action potential firing properties in two groups of rat dorsal root ganglion (DRG) neurons, tetrodotoxin-sensitive (TTXs) Na(+) channel-expressing neurons and tetrodotoxin-resistant (TTXr) Na(+) channel-expressing neurons. We found that multiple action potential firing in response to membrane depolarization was suppressed in TTXs neurons but maintained or facilitated in TTXr neurons at cooling temperatures. We showed that cooling temperatures strongly inhibited A-type K(+) currents (IA) and TTXs Na(+) channels but had fewer inhibitory effects on TTXr Na(+) channels and non-inactivating K(+) currents (IK). We demonstrated that the sensitivity of A-type K(+) channels and voltage-gated Na(+) channels to cooling temperatures and their interplay determine somatosensory neuron excitability at cooling temperatures. Our results provide a putative mechanism by which cooling temperatures modify different sensory modalities including pain.
Collapse
Affiliation(s)
- Ignacio Sarria
- Department of Anesthesiology and the Graduate Program in Neuroscience, The University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | | |
Collapse
|
43
|
Jia Z, Ling J, Gu JG. Temperature dependence of rapidly adapting mechanically activated currents in rat dorsal root ganglion neurons. Neurosci Lett 2012; 522:79-84. [PMID: 22743298 DOI: 10.1016/j.neulet.2012.06.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 06/10/2012] [Indexed: 10/28/2022]
Abstract
Rapidly adapting mechanically activated channels (RA) are expressed on somatosensory neurons and thought to play a role in mechanical transduction. Because mechanical sensations can be significantly affected by temperatures, we examined thermal sensitivity of RA currents in cultured dorsal root ganglion (DRG) neurons to see if RA channel activity is highly temperature-dependent. RA currents were evoked from DRG neurons by membrane displacements and recorded by the whole-cell patch-clamp recording technique. We found that RA currents were significantly enhanced by warming temperatures from 22 to 32 °C and reduced by cooling temperatures from 24 to 14 °C. RA channel activation exhibited steep temperature-dependence with a large temperature coefficient (Q10>5) and a high activation energy (Ea>30 kcal/mol). We further showed that RA channel activation by mechanical stimulation led to membrane depolarization, which could result in action potential firing at 22 °C or 32 °C but not at 14 °C. Taken together, our results provide the measurements of thermal dynamics and activation energy of RA channels, and suggest that a high energy barrier is present for RA channels to open. These findings are in agreement with temperature sensitivity of mechanical sensations in mammals.
Collapse
Affiliation(s)
- Zhanfeng Jia
- Department of Anesthesiology, The University of Cincinnati College of Medicine, PO Box 670531, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | | | | |
Collapse
|
44
|
Bharate SS, Bharate SB. Modulation of thermoreceptor TRPM8 by cooling compounds. ACS Chem Neurosci 2012; 3:248-67. [PMID: 22860192 PMCID: PMC3369806 DOI: 10.1021/cn300006u] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/13/2012] [Indexed: 02/06/2023] Open
Abstract
ThermoTRPs, a subset of the Transient Receptor Potential (TRP) family of cation channels, have been implicated in sensing temperature. TRPM8 and TRPA1 are both activated by cooling. TRPM8 is activated by innocuous cooling (<30 °C) and contributes to sensing unpleasant cold stimuli or mediating the effects of cold analgesia and is a receptor for menthol and icilin (mint-derived and synthetic cooling compounds, respectively). TRPA1 (Ankyrin family) is activated by noxious cold (<17 °C), icilin, and a variety of pungent compounds. Extensive amount of medicinal chemistry efforts have been published mainly in the form of patent literature on various classes of cooling compounds by various pharmaceutical companies; however, no prior comprehensive review has been published. When expressed in heterologous expression systems, such as Xenopus oocytes or mammalian cell lines, TRPM8 mediated currents are activated by a number of cooling compounds in addition to menthol and icilin. These include synthetic p-menthane carboxamides along with other class of compounds such as aliphatic/alicyclic alcohols/esters/amides, sulphones/sulphoxides/sulphonamides, heterocyclics, keto-enamines/lactams, and phosphine oxides. In the present review, the medicinal chemistry of various cooling compounds as activators of thermoTRPM8 channel will be discussed according to their chemical classes. The potential of these compounds to emerge as therapeutic agents is also discussed.
Collapse
Affiliation(s)
- Sonali S. Bharate
- Department of Pharmaceutics, P.E. Society’s Modern
College of Pharmacy for Ladies, Dehu-Alandi Road, Moshi,
Pune, India
| | - Sandip B. Bharate
- Medicinal
Chemistry Division, Indian Institute of Integrative Medicine
(CSIR), Canal
Road, Jammu-180001, India
| |
Collapse
|
45
|
Pertusa M, Madrid R, Morenilla-Palao C, Belmonte C, Viana F. N-glycosylation of TRPM8 ion channels modulates temperature sensitivity of cold thermoreceptor neurons. J Biol Chem 2012; 287:18218-29. [PMID: 22493431 DOI: 10.1074/jbc.m111.312645] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
TRPM8 is a member of the transient receptor potential ion channel superfamily, which is expressed in sensory neurons and is activated by cold and cooling compounds, such as menthol. Activation of TRPM8 by agonists takes place through shifts in its voltage activation curve, allowing channel opening at physiological membrane potentials. Here, we studied the role of the N-glycosylation occurring at the pore loop of TRPM8 on the function of the channel. Using heterologous expression of recombinant channels in HEK293 cells we found that the unglycosylated TRPM8 mutant (N934Q) displays marked functional differences compared with the wild type channel. These differences include a shift in the threshold of temperature activation and a reduced response to menthol and cold stimuli. Biophysical analysis indicated that these modifications are due to a shift in the voltage dependence of TRPM8 activation toward more positive potentials. By using tunicamycin, a drug that prevents N-glycosylation of proteins, we also evaluated the effect of the N-glycosylation on the responses of trigeminal sensory neurons expressing TRPM8. These experiments showed that the lack of N-glycosylation affects the function of native TRPM8 ion channels in a similar way to heterologously expressed ones, causing an important shift of the temperature threshold of cold-sensitive thermoreceptor neurons. Altogether, these results indicate that post-translational modification of TRPM8 is an important mechanism modulating cold thermoreceptor function, explaining the marked differences in temperature sensitivity observed between recombinant and native TRPM8 ion channels.
Collapse
Affiliation(s)
- María Pertusa
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Alicante, Spain
| | | | | | | | | |
Collapse
|
46
|
Bhadania M, Joshi H, Patel P, Kulkarni VH. Protective effect of menthol on β-amyloid peptide induced cognitive deficits in mice. Eur J Pharmacol 2012; 681:50-4. [DOI: 10.1016/j.ejphar.2012.01.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/27/2012] [Accepted: 01/28/2012] [Indexed: 01/08/2023]
|
47
|
Klasen K, Hollatz D, Zielke S, Gisselmann G, Hatt H, Wetzel CH. The TRPM8 ion channel comprises direct Gq protein-activating capacity. Pflugers Arch 2012; 463:779-97. [PMID: 22460725 DOI: 10.1007/s00424-012-1098-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 03/12/2012] [Accepted: 03/14/2012] [Indexed: 11/29/2022]
Abstract
The transient receptor potential (TRP) family of ion channels comprises receptors that are activated by a vast variety of physical as well as chemical stimuli. TRP channels interact in a complex manner with several intracellular signaling cascades, both up- and downstream of receptor activation. Investigating cascades stimulated downstream of the cold and menthol receptor TRPM8, we found evidence for both, functional and structural interaction of TRPM8 with Gαq. We demonstrated menthol-evoked increase in intracellular Ca(2+) under extracellular Ca(2+)-free conditions, which was blocked by the PLC inhibitors U73122 or edelfosine. This metabotropic Ca(2+) signal could be observed also in cells expressing a channel-dead (i.e. non-conducting) or a chloride-conducting TRPM8 pore mutant. However, this intracellular metabotropic Ca(2+) signal could not be detected in Gαq deficient cells or in the presence of dominant-negative GαqX. Evidence for a close spatial proximity necessary for physical interaction of TRPM8 and Gαq was provided by acceptor bleaching experiments demonstrating FRET between TRPM8-CFP and Gαq-YFP. A Gαq-YFP mobility assay (FRAP) revealed a restricted diffusion of Gαq-YFP under conditions when TRPM8 is immobilized in the plasma membrane. Moreover, a menthol-induced and TRPM8-mediated G protein activation could be demonstrated by FRET experiments monitoring the dissociation of Gαq-YFP from a Gβ/Gγ-CFP complex, and by the exchange of radioactive [(35)S]GTPγS for GDP. Our observations lead to a view that extends the operational range of the TRPM8 receptor from its function as a pure ion channel to a molecular switch with additional metabotropic capacity.
Collapse
Affiliation(s)
- Katharina Klasen
- Lehrstuhl für Zellphysiologie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Hans M, Wilhelm M, Swandulla D. Menthol suppresses nicotinic acetylcholine receptor functioning in sensory neurons via allosteric modulation. Chem Senses 2012; 37:463-9. [PMID: 22281529 PMCID: PMC3348174 DOI: 10.1093/chemse/bjr128] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, we have investigated how the function of native and recombinant nicotinic acetylcholine receptors (nAChRs) is modulated by the monoterpenoid alcohol from peppermint (−) menthol. In trigeminal neurons (TG), we found that nicotine (75 μM)-activated whole-cell currents through nAChRs were reversibly reduced by menthol in a concentration-dependent manner with an IC50 of 111 μM. To analyze the mechanism underlying menthol's action in more detail, we used single channel and whole-cell recordings from recombinant human α4β2 nAChR expressed in HEK tsA201 cells. Here, we found a shortening of channel open time and a prolongation of channel closed time, and an increase in single channel amplitude leading in summary to a reduction in single channel current. Furthermore, menthol did not affect nicotine's EC50 value for currents through recombinant human α4β2 nAChRs but caused a significant reduction in nicotine's efficacy. Taken together, these findings indicate that menthol is a negative allosteric modulator of nAChRs.
Collapse
Affiliation(s)
- M Hans
- Department of Physiology, University of Bonn, Nussallee 11, D-53115 Bonn, Germany.
| | | | | |
Collapse
|
49
|
Yudin Y, Lukacs V, Cao C, Rohacs T. Decrease in phosphatidylinositol 4,5-bisphosphate levels mediates desensitization of the cold sensor TRPM8 channels. J Physiol 2011; 589:6007-27. [PMID: 22005680 DOI: 10.1113/jphysiol.2011.220228] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The activity of the cold- and menthol-activated transient receptor potential melastatin 8 (TRPM8) channels diminishes over time in the presence of extracellular Ca(2+), a phenomenon referred to as desensitization or adaptation. Here we show that activation of TRPM8 by cold or menthol evokes a decrease in cellular phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] levels. The decrease in PtdIns(4,5)P(2) levels was accompanied by increased inositol 1,4,5 trisphosphate (InsP(3)) production, and was inhibited by loading the cells with the Ca(2+) chelator BAPTA-AM, showing that it was the consequence of the activation of phospholipase C (PLC) by increased intracellular Ca(2+) concentrations. PtdIns(4,5)P(2) hydrolysis showed excellent temporal correlation with current desensitization in simultaneous patch clamp and fluorescence-based PtdIns(4,5)P(2) level measurements. Intracellular dialysis of PtdIns(4,5)P(2) inhibited desensitization both in native neuronal and recombinant TRPM8 channels. PtdIns(4)P, the precursor of PtdIns(4,5)P(2), did not inhibit desensitization, consistent with its minimal effect in excised patches. Omission of MgATP from the intracellular solution accelerated desensitization, and MgATP reactivated TRPM8 channels in excised patches in a phosphatidylinositol 4-kinase (PI4K)-dependent manner. PLC-independent depletion of PtdIns(4,5)P(2) using a voltage-sensitive phosphatase (ci-VSP) inhibited TRPM8 currents, and omission of ATP from the intracellular solution inhibited recovery from this inhibition. Inhibitors of PKC had no effect on the kinetics of desensitization. We conclude that Ca(2+) influx through TRPM8 activates a Ca(2+)-sensitive PLC isoform, and the resulting depletion of PtdIns(4,5)P(2) plays a major role in desensitization of both cold and menthol responses.
Collapse
Affiliation(s)
- Yevgen Yudin
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
50
|
Comparative effects of menthol and icilin on the induced contraction of the smooth muscles of the vas deferens of normal and castrated rats. ACTA ACUST UNITED AC 2011. [DOI: 10.15407/fz57.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|