1
|
Kuruppath P, Xue L, Pouille F, Jones ST, Schoppa NE. Hyperexcitability in the Olfactory Bulb and Impaired Fine Odor Discrimination in the Fmr1 KO Mouse Model of Fragile X Syndrome. J Neurosci 2023; 43:8243-8258. [PMID: 37788940 PMCID: PMC10697393 DOI: 10.1523/jneurosci.0584-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/28/2023] [Accepted: 09/23/2023] [Indexed: 10/05/2023] Open
Abstract
Fragile X syndrome (FXS) is the single most common monogenetic cause of autism spectrum disorders (ASDs) in humans. FXS is caused by loss of expression of the fragile X mental retardation protein (FMRP), an mRNA-binding protein encoded on the X chromosome involved in suppressing protein translation. Sensory processing deficits have been a major focus of studies of FXS in both humans and rodent models of FXS, but olfactory deficits remain poorly understood. Here, we conducted experiments in wild-type (WT) and Fmr1 knock-out (KO; Fmr1-/y ) mice (males) that lack expression of the gene encoding FMRP to assess olfactory circuit and behavioral abnormalities. In patch-clamp recordings conducted in slices of the olfactory bulb, output mitral cells (MCs) in Fmr1 KO mice displayed greatly enhanced excitation under baseline conditions, as evidenced by a much higher rate of occurrence of spontaneous network-level events known as long-lasting depolarizations (LLDs). The higher probability of spontaneous LLDs (sLLDs), which appeared to be because of a decrease in GABAergic synaptic inhibition in glomeruli leading to more feedforward excitation, caused a reduction in the reliability of stimulation-evoked responses in MCs. In addition, in a go/no-go operant discrimination paradigm, we found that Fmr1 KO mice displayed impaired discrimination of odors in difficult tasks that involved odor mixtures but not altered discrimination of monomolecular odors. We suggest that the Fmr1 KO-induced reduction in MC response reliability is one plausible mechanism for the impaired fine odor discrimination.SIGNIFICANCE STATEMENT Fragile X syndrome (FXS) in humans is associated with a range of debilitating deficits including aberrant sensory processing. One sensory system that has received comparatively little attention in studies in animal models of FXS is olfaction. Here, we report the first comprehensive physiological analysis of circuit defects in the olfactory bulb in the commonly-used Fmr1 knock-out (KO) mouse model of FXS. Our studies indicate that Fmr1 KO alters the local excitation/inhibition balance in the bulb, similar to what Fmr1 KO does in other brain circuits, but through a novel mechanism that involves enhanced feedforward excitation. Furthermore, Fmr1 KO mice display behavioral impairments in fine odor discrimination, an effect that may be explained by changes in neural response reliability.
Collapse
Affiliation(s)
- Praveen Kuruppath
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Lin Xue
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Frederic Pouille
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Shelly T Jones
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Nathan E Schoppa
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
2
|
Dapino A, Davoine F, Curti S. D-type K+ current rules the function of electrically coupled neurons in a species-specific fashion. J Gen Physiol 2023; 155:e202313353. [PMID: 37378665 PMCID: PMC10308032 DOI: 10.1085/jgp.202313353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/17/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Electrical synapses supported by gap junctions are known to form networks of electrically coupled neurons in many regions of the mammalian brain, where they play relevant functional roles. Yet, how electrical coupling supports sophisticated network operations and the contribution of the intrinsic electrophysiological properties of neurons to these operations remain incompletely understood. Here, a comparative analysis of electrically coupled mesencephalic trigeminal (MesV) neurons uncovered remarkable difference in the operation of these networks in highly related species. While spiking of MesV neurons might support the recruitment of coupled cells in rats, this rarely occurs in mice. Using whole-cell recordings, we determined that the higher efficacy in postsynaptic recruitment in rat's MesV neurons does not result from coupling strength of larger magnitude, but instead from the higher excitability of coupled neurons. Consistently, MesV neurons from rats present a lower rheobase, more hyperpolarized threshold, as well as a higher ability to generate repetitive discharges, in comparison to their counterparts from mice. This difference in neuronal excitability results from a significantly higher magnitude of the D-type K+ current (ID) in MesV neurons from mice, indicating that the magnitude of this current gates the recruitment of postsynaptic-coupled neurons. Since MesV neurons are primary afferents critically involved in the organization of orofacial behaviors, activation of a coupled partner could support lateral excitation, which by amplifying sensory inputs may significantly contribute to information processing and the organization of motor outputs.
Collapse
Affiliation(s)
- Antonella Dapino
- Laboratorio de Neurofisiología Celular, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Federico Davoine
- Instituto de Ingeniería Eléctrica, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Sebastian Curti
- Laboratorio de Neurofisiología Celular, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
3
|
Lee YH, Kothmann WW, Lin YP, Chuang AZ, Diamond JS, O'Brien J. Sources of Calcium at Connexin 36 Gap Junctions in the Retina. eNeuro 2023; 10:ENEURO.0493-22.2023. [PMID: 37527925 PMCID: PMC10450809 DOI: 10.1523/eneuro.0493-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023] Open
Abstract
Synaptic plasticity is a fundamental feature of the CNS that controls the magnitude of signal transmission between communicating cells. Many electrical synapses exhibit substantial plasticity that modulates the degree of coupling within groups of neurons, alters the fidelity of signal transmission, or even reconfigures functional circuits. In several known examples, such plasticity depends on calcium and is associated with neuronal activity. Calcium-driven signaling is known to promote potentiation of electrical synapses in fish Mauthner cells, mammalian retinal AII amacrine cells, and inferior olive neurons, and to promote depression in thalamic reticular neurons. To measure local calcium dynamics in situ, we developed a transgenic mouse expressing a GCaMP calcium biosensor fused to Connexin 36 (Cx36) at electrical synapses. We examined the sources of calcium for activity-dependent plasticity in retina slices using confocal or Super-Resolution Radial Fluctuations imaging. More than half of Cx36-GCaMP gap junctions responded to puffs of glutamate with transient increases in fluorescence. The responses were strongly dependent on NMDA receptors, in keeping with known activity-dependent signaling in some amacrine cells. We also found that some responses depended on the activity of voltage-gated calcium channels, representing a previously unrecognized source of calcium to control retinal electrical synaptic plasticity. The high prevalence of calcium signals at electrical synapses in response to glutamate application indicates that a large fraction of electrical synapses has the potential to be regulated by neuronal activity. This provides a means to tune circuit connectivity dynamically based on local activity.
Collapse
Affiliation(s)
- Yuan-Hao Lee
- Richard S. Ruiz, Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - W Wade Kothmann
- Synaptic Physiology Section, National Institute of Neurological Diseases and Stroke, Bethesda, Maryland 20892
| | - Ya-Ping Lin
- Richard S. Ruiz, Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Alice Z Chuang
- Richard S. Ruiz, Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Jeffrey S Diamond
- Synaptic Physiology Section, National Institute of Neurological Diseases and Stroke, Bethesda, Maryland 20892
| | - John O'Brien
- Richard S. Ruiz, Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030
| |
Collapse
|
4
|
Hernandez AK, Hummel T. Intranasal trigeminal function in chronic rhinosinusitis: a review. Expert Rev Clin Immunol 2023; 19:921-938. [PMID: 37379521 DOI: 10.1080/1744666x.2023.2231149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 06/30/2023]
Abstract
INTRODUCTION Chronic rhinosinusitis (CRS) affects 5-12% of the general population with significant effects on quality of life. Chronic inflammation also seems to affect intranasal trigeminal sensitivity. AREAS COVERED A systematic literature search was done in Scopus, Web of Science, and PubMed in February 2023. The review addressed intranasal trigeminal function in patients with CRS and summarized current knowledge on trigeminal function as it relates to the symptoms, assessment, and treatment of CRS. EXPERT OPINION Olfaction and trigeminal function are synergistic and this interaction may contribute to trigeminal dysfunction in CRS. Aside from anatomic blockage through polypoid mucosal changes, trigeminal dysfunction may affect the perception of nasal obstruction in CRS. Upregulated immune defense mechanisms leading to damage of nerve endings, changes in nerve growth factor release or other mechanisms may be responsible for trigeminal dysfunction in CRS. Since the pathophysiology of trigeminal dysfunction in CRS is poorly understood, current treatment recommendations are directed toward the therapy of CRS as an underlying cause, although the effect of surgery and corticosteroids on trigeminal function remains unclear. A standardized and validated trigeminal test that is accessible and easy to use in clinical settings would be beneficial for future studies.
Collapse
Affiliation(s)
- Anna Kristina Hernandez
- Smell and Taste Clinic, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Otolaryngology - Head and Neck Surgery, Philippine General Hospital, University of the Philippines, Manila, Philippines
- Department of Otolaryngology - Head and Neck Surgery, Asian Hospital and Medical Center, Muntinlupa, Philippines
| | - Thomas Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
5
|
|
6
|
Vaughn MJ, Haas JS. On the Diverse Functions of Electrical Synapses. Front Cell Neurosci 2022; 16:910015. [PMID: 35755782 PMCID: PMC9219736 DOI: 10.3389/fncel.2022.910015] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Electrical synapses are the neurophysiological product of gap junctional pores between neurons that allow bidirectional flow of current between neurons. They are expressed throughout the mammalian nervous system, including cortex, hippocampus, thalamus, retina, cerebellum, and inferior olive. Classically, the function of electrical synapses has been associated with synchrony, logically following that continuous conductance provided by gap junctions facilitates the reduction of voltage differences between coupled neurons. Indeed, electrical synapses promote synchrony at many anatomical and frequency ranges across the brain. However, a growing body of literature shows there is greater complexity to the computational function of electrical synapses. The paired membranes that embed electrical synapses act as low-pass filters, and as such, electrical synapses can preferentially transfer spike after hyperpolarizations, effectively providing spike-dependent inhibition. Other functions include driving asynchronous firing, improving signal to noise ratio, aiding in discrimination of dissimilar inputs, or dampening signals by shunting current. The diverse ways by which electrical synapses contribute to neuronal integration merits furthers study. Here we review how functions of electrical synapses vary across circuits and brain regions and depend critically on the context of the neurons and brain circuits involved. Computational modeling of electrical synapses embedded in multi-cellular models and experiments utilizing optical control and measurement of cellular activity will be essential in determining the specific roles performed by electrical synapses in varying contexts.
Collapse
Affiliation(s)
- Mitchell J Vaughn
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - Julie S Haas
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| |
Collapse
|
7
|
Function and Plasticity of Electrical Synapses in the Mammalian Brain: Role of Non-Junctional Mechanisms. BIOLOGY 2022; 11:biology11010081. [PMID: 35053079 PMCID: PMC8773336 DOI: 10.3390/biology11010081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 01/27/2023]
Abstract
Simple Summary Relevant brain functions, such as perception, organization of behavior, and cognitive processes, are the outcome of information processing by neural circuits. Within these circuits, communication between neurons mainly relies on two modalities of synaptic transmission: chemical and electrical. Moreover, changes in the strength of these connections, aka synaptic plasticity, are believed to underlie processes of learning and memory, and its dysfunction has been suggested to underlie a variety of neurological disorders. While the relevance of chemical transmission and its plastic changes are known in great detail, analogous mechanisms and functional impact of their electrical counterparts were only recently acknowledged. In this article, we review the basic physical principles behind electrical transmission between neurons, the plethora of functional operations supported by this modality of neuron-to-neuron communication, as well as the basic principles of plasticity at these synapses. Abstract Electrical transmission between neurons is largely mediated by gap junctions. These junctions allow the direct flow of electric current between neurons, and in mammals, they are mostly composed of the protein connexin36. Circuits of electrically coupled neurons are widespread in these animals. Plus, experimental and theoretical evidence supports the notion that, beyond synchronicity, these circuits are able to perform sophisticated operations such as lateral excitation and inhibition, noise reduction, as well as the ability to selectively respond upon coincident excitatory inputs. Although once considered stereotyped and unmodifiable, we now know that electrical synapses are subject to modulation and, by reconfiguring neural circuits, these modulations can alter relevant operations. The strength of electrical synapses depends on the gap junction resistance, as well as on its functional interaction with the electrophysiological properties of coupled neurons. In particular, voltage and ligand gated channels of the non-synaptic membrane critically determine the efficacy of transmission at these contacts. Consistently, modulatory actions on these channels have been shown to represent relevant mechanisms of plasticity of electrical synaptic transmission. Here, we review recent evidence on the regulation of electrical synapses of mammals, the underlying molecular mechanisms, and the possible ways in which they affect circuit function.
Collapse
|
8
|
Choi U, Wang H, Hu M, Kim S, Sieburth D. Presynaptic coupling by electrical synapses coordinates a rhythmic behavior by synchronizing the activities of a neuron pair. Proc Natl Acad Sci U S A 2021; 118:e2022599118. [PMID: 33972428 PMCID: PMC8157971 DOI: 10.1073/pnas.2022599118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Electrical synapses are specialized structures that mediate the flow of electrical currents between neurons and have well known roles in synchronizing the activities of neuronal populations, both by mediating the current transfer from more active to less active neurons and by shunting currents from active neurons to their less active neighbors. However, how these positive and negative functions of electrical synapses are coordinated to shape rhythmic synaptic outputs and behavior is not well understood. Here, using a combination of genetics, behavioral analysis, and live calcium imaging in Caenorhabditis elegans, we show that electrical synapses formed by the gap junction protein INX-1/innexin couple the presynaptic terminals of a pair of motor neurons (AVL and DVB) to synchronize their activation in response to a pacemaker signal. Live calcium imaging reveals that inx-1/innexin mutations lead to asynchronous activation of AVL and DVB, due, in part, to loss of AVL-mediated activation of DVB by the pacemaker. In addition, loss of inx-1 leads to the ectopic activation of DVB at inappropriate times during the cycle through the activation of the L-type voltage-gated calcium channel EGL-19. We propose that electrical synapses between AVL and DVB presynaptic terminals function to ensure the precise and robust execution of a specific step in a rhythmic behavior by both synchronizing the activities of presynaptic terminals in response to pacemaker signaling and by inhibiting their activation in between cycles when pacemaker signaling is low.
Collapse
Affiliation(s)
- Ukjin Choi
- Development, Stem Cell, and Regenerative Medicine Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033
| | - Han Wang
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033
| | - Mingxi Hu
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033
| | - Sungjin Kim
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033
| | - Derek Sieburth
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033;
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| |
Collapse
|
9
|
Lothmann K, Amunts K, Herold C. The Neurotransmitter Receptor Architecture of the Mouse Olfactory System. Front Neuroanat 2021; 15:632549. [PMID: 33967704 PMCID: PMC8102831 DOI: 10.3389/fnana.2021.632549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
The uptake, transmission and processing of sensory olfactory information is modulated by inhibitory and excitatory receptors in the olfactory system. Previous studies have focused on the function of individual receptors in distinct brain areas, but the receptor architecture of the whole system remains unclear. Here, we analyzed the receptor profiles of the whole olfactory system of adult male mice. We examined the distribution patterns of glutamatergic (AMPA, kainate, mGlu2/3, and NMDA), GABAergic (GABAA, GABAA(BZ), and GABAB), dopaminergic (D1/5) and noradrenergic (α1 and α2) neurotransmitter receptors by quantitative in vitro receptor autoradiography combined with an analysis of the cyto- and myelo-architecture. We observed that each subarea of the olfactory system is characterized by individual densities of distinct neurotransmitter receptor types, leading to a region- and layer-specific receptor profile. Thereby, the investigated receptors in the respective areas and strata showed a heterogeneous expression. Generally, we detected high densities of mGlu2/3Rs, GABAA(BZ)Rs and GABABRs. Noradrenergic receptors revealed a highly heterogenic distribution, while the dopaminergic receptor D1/5 displayed low concentrations, except in the olfactory tubercle and the dorsal endopiriform nucleus. The similarities and dissimilarities of the area-specific multireceptor profiles were analyzed by a hierarchical cluster analysis. A three-cluster solution was found that divided the areas into the (1) olfactory relay stations (main and accessory olfactory bulb), (2) the olfactory cortex (anterior olfactory cortex, dorsal peduncular cortex, taenia tecta, piriform cortex, endopiriform nucleus, entorhinal cortex, orbitofrontal cortex) and the (3) olfactory tubercle, constituting its own cluster. The multimodal receptor-architectonic analysis of each component of the olfactory system provides new insights into its neurochemical organization and future possibilities for pharmaceutic targeting.
Collapse
Affiliation(s)
- Kimberley Lothmann
- C. & O. Vogt-Institute of Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Katrin Amunts
- C. & O. Vogt-Institute of Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.,Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, Jülich, Germany
| | - Christina Herold
- C. & O. Vogt-Institute of Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
10
|
Dynamics of Glutamatergic Drive Underlie Diverse Responses of Olfactory Bulb Outputs In Vivo. eNeuro 2021; 8:ENEURO.0110-21.2021. [PMID: 33795414 PMCID: PMC8059884 DOI: 10.1523/eneuro.0110-21.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 11/24/2022] Open
Abstract
Mitral/tufted (MT) cells of the olfactory bulb (OB) show diverse temporal responses to odorant stimulation that are thought to encode odor information. Much of this diversity is thought to arise from inhibitory OB circuits, but the dynamics of excitatory input to MT cells, which is driven in a feedforward manner by sensory afferents, may also be important. To examine the contribution of excitatory input dynamics to generating temporal diversity in MT cells, we imaged glutamate signaling onto MT cell dendrites in anesthetized and awake mice. We found surprising diversity in the temporal dynamics of these signals. Inhalation-linked glutamate transients were variable in onset latency and duration, and in awake mice the degree of coupling to inhalation varied substantially with odorant identity and concentration. Successive inhalations of odorant produced nonlinear changes in glutamate signaling that included facilitating, adapting and suppressive responses and which varied with odorant identity and concentration. Dual-color imaging of glutamate and calcium signals from MT cells in the same glomerulus revealed highly correlated presynaptic and postsynaptic signals across these different response types. Suppressive calcium responses in MT cells were nearly always accompanied by suppression in the glutamate signal, providing little evidence for MT cell suppression by lateral or feedforward inhibition. These results indicate a high degree of diversity in the dynamics of excitatory input to MT cells, and suggest that these dynamics may account for much of the diversity in MT cell responses that underlies OB odor representations.
Collapse
|
11
|
Tremblay C, Frasnelli J. Olfactory-Trigeminal Interactions in Patients with Parkinson's Disease. Chem Senses 2021; 46:6218692. [PMID: 33835144 DOI: 10.1093/chemse/bjab018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Olfactory dysfunction (OD) is a highly frequent early non-motor symptom of Parkinson's disease (PD). An important step to potentially use OD for the development of early diagnostic tools of PD is to differentiate PD-related OD from other forms of non-parkinsonian OD (NPOD: postviral, sinunasal, post-traumatic, and idiopathic OD). Measuring non-olfactory chemosensory modalities, especially the trigeminal system, may allow to characterize a PD-specific olfactory profile. We here review the literature on PD-specific chemosensory alteration patterns compared with NPOD. Specifically, we focused on the impact of PD on the trigeminal system and particularly on the interaction between olfactory and trigeminal systems. As this interaction is seemingly affected in a disease-specific manner, we propose a model of interaction between both chemosensory systems that is distinct for PD-related OD and NPOD. These patterns of chemosensory impairment still need to be confirmed in prodromal PD; nevertheless, appropriate chemosensory tests may eventually help to develop diagnostic tools to identify individuals at risks for PD.
Collapse
Affiliation(s)
- Cécilia Tremblay
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada
| | - Johannes Frasnelli
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada.,Research Center, Sacré-Coeur Hospital of Montreal, 5400 Boulevard Gouin Ouest, Montréal, QC, H4J 1C5, Canada
| |
Collapse
|
12
|
Średniawa W, Wróbel J, Kublik E, Wójcik DK, Whittington MA, Hunt MJ. Network and synaptic mechanisms underlying high frequency oscillations in the rat and cat olfactory bulb under ketamine-xylazine anesthesia. Sci Rep 2021; 11:6390. [PMID: 33737621 PMCID: PMC7973548 DOI: 10.1038/s41598-021-85705-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/25/2021] [Indexed: 11/09/2022] Open
Abstract
Wake-related ketamine-dependent high frequency oscillations (HFO) can be recorded in local field potentials (LFP) from cortical and subcortical regions in rodents. The mechanisms underlying their generation and occurrence in higher mammals are unclear. Unfortunately, anesthetic doses of pure ketamine attenuate HFO, which has precluded their investigation under anesthesia. Here, we show ketamine-xylazine (KX) anesthesia is associated with a prominent 80–130 Hz rhythm in the olfactory bulb (OB) of rats, whereas 30–65 Hz gamma power is diminished. Simultaneous LFP and thermocouple recordings revealed the 80–130 Hz rhythm was dependent on nasal respiration. This rhythm persisted despite surgical excision of the piriform cortex. Silicon probes spanning the dorsoventral aspect of the OB revealed this rhythm was strongest in ventral areas and associated with microcurrent sources about the mitral layer. Pharmacological microinfusion studies revealed dependency on excitatory-inhibitory synaptic activity, but not gap junctions. Finally, a similar rhythm occurred in the OB of KX-anesthetized cats, which shared key features with our rodent studies. We conclude that the activity we report here is driven by nasal airflow, local excitatory-inhibitory interactions, and conserved in higher mammals. Additionally, KX anesthesia is a convenient model to investigate further the mechanisms underlying wake-related ketamine-dependent HFO.
Collapse
Affiliation(s)
- Władysław Średniawa
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.,University of Warsaw, Faculty of Biology, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Jacek Wróbel
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Ewa Kublik
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Daniel Krzysztof Wójcik
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.,Faculty of Management and Social Communication, Jagiellonian University, 30-348, Cracow, Poland
| | | | - Mark Jeremy Hunt
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland. .,University of York, Heslington, NY, YO10 5DD, United Kingdom.
| |
Collapse
|
13
|
Ma M, Futia GL, de Souza FMS, Ozbay BN, Llano I, Gibson EA, Restrepo D. Molecular layer interneurons in the cerebellum encode for valence in associative learning. Nat Commun 2020; 11:4217. [PMID: 32868778 PMCID: PMC7459332 DOI: 10.1038/s41467-020-18034-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/31/2020] [Indexed: 11/09/2022] Open
Abstract
The cerebellum plays a crucial role in sensorimotor and associative learning. However, the contribution of molecular layer interneurons (MLIs) to these processes is not well understood. We used two-photon microscopy to study the role of ensembles of cerebellar MLIs in a go-no go task where mice obtain a sugar water reward if they lick a spout in the presence of the rewarded odorant and avoid a timeout when they refrain from licking for the unrewarded odorant. In naive animals the MLI responses did not differ between the odorants. With learning, the rewarded odorant elicited a large increase in MLI calcium responses, and the identity of the odorant could be decoded from the differential response. Importantly, MLIs switched odorant responses when the valence of the stimuli was reversed. Finally, mice took a longer time to refrain from licking in the presence of the unrewarded odorant and had difficulty becoming proficient when MLIs were inhibited by chemogenetic intervention. Our findings support a role for MLIs in learning valence in the cerebellum.
Collapse
Affiliation(s)
- Ming Ma
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Gregory L Futia
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Fabio M Simoes de Souza
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Center for Mathematics, Computation and Cognition, Federal University of ABC, Sao Bernardo do Campo, SP, Brazil
| | - Baris N Ozbay
- Intelligent Imaging Innovations, Denver, CO, 80216, USA
| | - Isabel Llano
- Saints Pères Paris Institute for Neurosciences, Université Paris Descartes, 75006, Paris, France
| | - Emily A Gibson
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Diego Restrepo
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
14
|
Korshunov KS, Blakemore LJ, Trombley PQ. Illuminating and Sniffing Out the Neuromodulatory Roles of Dopamine in the Retina and Olfactory Bulb. Front Cell Neurosci 2020; 14:275. [PMID: 33110404 PMCID: PMC7488387 DOI: 10.3389/fncel.2020.00275] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/04/2020] [Indexed: 01/28/2023] Open
Abstract
In the central nervous system, dopamine is well-known as the neuromodulator that is involved with regulating reward, addiction, motivation, and fine motor control. Yet, decades of findings are revealing another crucial function of dopamine: modulating sensory systems. Dopamine is endogenous to subsets of neurons in the retina and olfactory bulb (OB), where it sharpens sensory processing of visual and olfactory information. For example, dopamine modulation allows the neural circuity in the retina to transition from processing dim light to daylight and the neural circuity in the OB to regulate odor discrimination and detection. Dopamine accomplishes these tasks through numerous, complex mechanisms in both neural structures. In this review, we provide an overview of the established and emerging research on these mechanisms and describe similarities and differences in dopamine expression and modulation of synaptic transmission in the retinas and OBs of various vertebrate organisms. This includes discussion of dopamine neurons’ morphologies, potential identities, and biophysical properties along with their contributions to circadian rhythms and stimulus-driven synthesis, activation, and release of dopamine. As dysregulation of some of these mechanisms may occur in patients with Parkinson’s disease, these symptoms are also discussed. The exploration and comparison of these two separate dopamine populations shows just how remarkably similar the retina and OB are, even though they are functionally distinct. It also shows that the modulatory properties of dopamine neurons are just as important to vision and olfaction as they are to motor coordination and neuropsychiatric/neurodegenerative conditions, thus, we hope this review encourages further research to elucidate these mechanisms.
Collapse
Affiliation(s)
- Kirill S Korshunov
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Laura J Blakemore
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Paul Q Trombley
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
15
|
Dere D, Zlomuzica A, Dere E. Channels to consciousness: a possible role of gap junctions in consciousness. Rev Neurosci 2020; 32:/j/revneuro.ahead-of-print/revneuro-2020-0012/revneuro-2020-0012.xml. [PMID: 32853172 DOI: 10.1515/revneuro-2020-0012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Abstract
The neurophysiological basis of consciousness is still unknown and one of the most challenging questions in the field of neuroscience and related disciplines. We propose that consciousness is characterized by the maintenance of mental representations of internal and external stimuli for the execution of cognitive operations. Consciousness cannot exist without working memory, and it is likely that consciousness and working memory share the same neural substrates. Here, we present a novel psychological and neurophysiological framework that explains the role of consciousness for cognition, adaptive behavior, and everyday life. A hypothetical architecture of consciousness is presented that is organized as a system of operation and storage units named platforms that are controlled by a consciousness center (central executive/online platform). Platforms maintain mental representations or contents, are entrusted with different executive functions, and operate at different levels of consciousness. The model includes conscious-mode central executive/online and mental time travel platforms and semiconscious steady-state and preconscious standby platforms. Mental representations or contents are represented by neural circuits and their support cells (astrocytes, oligodendrocytes, etc.) and become conscious when neural circuits reverberate, that is, fire sequentially and continuously with relative synchronicity. Reverberatory activity in neural circuits may be initiated and maintained by pacemaker cells/neural circuit pulsars, enhanced electronic coupling via gap junctions, and unapposed hemichannel opening. The central executive/online platform controls which mental representations or contents should become conscious by recruiting pacemaker cells/neural network pulsars, the opening of hemichannels, and promoting enhanced neural circuit coupling via gap junctions.
Collapse
Affiliation(s)
- Dorothea Dere
- Département UMR 8256 Adaptation Biologique et Vieillissement, Sorbonne Université, Institut de Biologie Paris-Seine, (IBPS), UFR des Sciences de la Vie, Campus Pierre et Marie Curie, Bâtiment B, 9 quai Saint Bernard, F-75005 Paris Cedex, France
| | - Armin Zlomuzica
- Faculty of Psychology, Behavioral and Clinical Neuroscience, University of Bochum, Massenbergstraße 9-13, D-44787 Bochum, Germany
| | - Ekrem Dere
- Département UMR 8256 Adaptation Biologique et Vieillissement, Sorbonne Université, Institut de Biologie Paris-Seine, (IBPS), UFR des Sciences de la Vie, Campus Pierre et Marie Curie, Bâtiment B, 9 quai Saint Bernard, F-75005 Paris Cedex, France
| |
Collapse
|
16
|
Wang CY, Liu Z, Ng YH, Südhof TC. A Synaptic Circuit Required for Acquisition but Not Recall of Social Transmission of Food Preference. Neuron 2020; 107:144-157.e4. [PMID: 32369733 PMCID: PMC7351611 DOI: 10.1016/j.neuron.2020.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 01/24/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022]
Abstract
During social transmission of food preference (STFP), the combination of an olfactory sensory input with a social cue induces long-term memory of a food odor. How a social cue produces long-term learning of an olfactory input, however, remains unknown. Here we show that the neurons of the anterior olfactory nucleus (AON), which form abundant synaptic projections onto granule cells in the olfactory bulb (OB), express the synaptogenic molecule C1ql3. Deletion of C1ql3 in the dorsolateral AON impaired synaptic AON→OB connections and abolished acquisition, but not recall, of STFP memory without significantly affecting basal olfaction. Moreover, deletion in granule cells of the OB of Bai3, a postsynaptic GPCR that binds C1ql3, similarly suppressed synaptic transmission at AON→OB projections and abolished acquisition, but not recall, of STFP memory. Thus, synaptic AON→OB connections are selectively required for STFP memory acquisition and are formed by an essential interaction of presynaptic C1ql3 with postsynaptic Bai3.
Collapse
Affiliation(s)
- Cosmos Yuqi Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Zhihui Liu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yi Han Ng
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
17
|
Differential Impacts of Repeated Sampling on Odor Representations by Genetically-Defined Mitral and Tufted Cell Subpopulations in the Mouse Olfactory Bulb. J Neurosci 2020; 40:6177-6188. [PMID: 32601245 DOI: 10.1523/jneurosci.0258-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/20/2022] Open
Abstract
Sniffing, the active control of breathing beyond passive respiration, is used by mammals to modulate olfactory sampling. Sniffing allows animals to make odor-guided decisions within ∼200 ms, but animals routinely engage in bouts of high-frequency sniffing spanning several seconds; the impact of such repeated odorant sampling on odor representations remains unclear. We investigated this question in the mouse olfactory bulb (OB), where mitral and tufted cells (MTCs) form parallel output streams of odor information processing. To test the impact of repeated odorant sampling on MTC responses, we used two-photon imaging in anesthetized male and female mice to record activation of MTCs while precisely varying inhalation frequency. A combination of genetic targeting and viral expression of GCaMP6 reporters allowed us to access mitral cell (MC) and superficial tufted cell (sTC) subpopulations separately. We found that repeated odorant sampling differentially affected responses in MCs and sTCs, with MCs showing more diversity than sTCs over the same time period. Impacts of repeated sampling among MCs included both increases and decreases in excitation, as well as changes in response polarity. Response patterns across simultaneously-imaged MCs reformatted over time, with representations of different odorants becoming more distinct. Individual MCs responded differentially to changes in inhalation frequency, whereas sTC responses were more uniform over time and across frequency. Our results support the idea that MCs and TCs comprise functionally distinct pathways for odor information processing, and suggest that the reformatting of MC odor representations by high-frequency sniffing may serve to enhance the discrimination of similar odors.SIGNIFICANCE STATEMENT Repeated sampling of odorants during high-frequency respiration (sniffing) is a hallmark of active odorant sampling by mammals; however, the adaptive function of this behavior remains unclear. We found distinct effects of repeated sampling on odor representations carried by the two main output channels from the mouse olfactory bulb (OB), mitral and tufted cells (MTCs). Mitral cells (MCs) showed more diverse changes in response patterns over time as compared with tufted cells (TCs), leading to odorant representations that were more distinct after repeated sampling. These results support the idea that MTCs contribute different aspects to encoding odor information, and they indicate that MCs (but not TCs) may play a primary role in the modulation of olfactory processing by sampling behavior.
Collapse
|
18
|
Jean P, Anttonen T, Michanski S, de Diego AMG, Steyer AM, Neef A, Oestreicher D, Kroll J, Nardis C, Pangršič T, Möbius W, Ashmore J, Wichmann C, Moser T. Macromolecular and electrical coupling between inner hair cells in the rodent cochlea. Nat Commun 2020; 11:3208. [PMID: 32587250 PMCID: PMC7316811 DOI: 10.1038/s41467-020-17003-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/30/2020] [Indexed: 11/10/2022] Open
Abstract
Inner hair cells (IHCs) are the primary receptors for hearing. They are housed in the cochlea and convey sound information to the brain via synapses with the auditory nerve. IHCs have been thought to be electrically and metabolically independent from each other. We report that, upon developmental maturation, in mice 30% of the IHCs are electrochemically coupled in 'mini-syncytia'. This coupling permits transfer of fluorescently-labeled metabolites and macromolecular tracers. The membrane capacitance, Ca2+-current, and resting current increase with the number of dye-coupled IHCs. Dual voltage-clamp experiments substantiate low resistance electrical coupling. Pharmacology and tracer permeability rule out coupling by gap junctions and purinoceptors. 3D electron microscopy indicates instead that IHCs are coupled by membrane fusion sites. Consequently, depolarization of one IHC triggers presynaptic Ca2+-influx at active zones in the entire mini-syncytium. Based on our findings and modeling, we propose that IHC-mini-syncytia enhance sensitivity and reliability of cochlear sound encoding.
Collapse
Affiliation(s)
- Philippe Jean
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Tommi Anttonen
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Synaptic Nanophysiology Group, Max Planck Institute of Biophysical Chemistry, Göttingen, Germany
| | - Susann Michanski
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Antonio M G de Diego
- UCL Ear Institute and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Anna M Steyer
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany
| | - Andreas Neef
- Neurophysics laboratory, Campus Institute for Dynamics of Biological Networks, University of Göttingen, Göttingen, Germany
| | - David Oestreicher
- Experimental Otology Group, Institute for Auditory Neuroscience, InnerEarLab, and Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
| | - Jana Kroll
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Christos Nardis
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany
| | - Tina Pangršič
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Experimental Otology Group, Institute for Auditory Neuroscience, InnerEarLab, and Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
| | - Wiebke Möbius
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany
| | - Jonathan Ashmore
- UCL Ear Institute and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Carolin Wichmann
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany.
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany.
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.
- Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
- Synaptic Nanophysiology Group, Max Planck Institute of Biophysical Chemistry, Göttingen, Germany.
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany.
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
19
|
Blakemore LJ, Trombley PQ. Zinc Modulates Olfactory Bulb Kainate Receptors. Neuroscience 2020; 428:252-268. [PMID: 31874243 PMCID: PMC7193548 DOI: 10.1016/j.neuroscience.2019.11.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 10/25/2022]
Abstract
Kainate receptors (KARs) are glutamate receptors with ionotropic and metabotropic activity composed of the GluK1-GluK5 subunits. We previously reported that KARs modulate excitatory and inhibitory transmission in the olfactory bulb (OB). Zinc, which is highly concentrated in the OB, also appears to modulate OB synaptic transmission via actions at other ionotropic glutamate receptors (i.e., AMPA, NMDA). However, few reports of effects of zinc on recombinant and/or native KARs exist and none have involved the OB. In the present study, we investigated the effects of exogenously applied zinc on OB KARs expressed by mitral/tufted (M/T) cells. We found that 100 µM zinc inhibits currents evoked by various combinations of KAR agonists (kainate or SYM 2081) and the AMPA receptor antagonist SYM 2206. The greatest degree of zinc-mediated inhibition was observed with coapplication of zinc with the GluK1- and GluK2-preferring agonist SYM 2081 plus SYM 2206. This finding is consistent with prior reports of zinc's inhibitory effects on some recombinant (homomeric GluK1 and GluK2 and heteromeric GluK2/GluK4 and GluK2/GluK5) KARs, although potentiation of other (GluK3, GluK2/3) KARs has also been described. It is also of potential importance given our previously reported molecular data suggesting that OB neurons express relatively high levels of GluK1 and GluK2. Our present findings suggest that a physiologically relevant concentration of zinc modulates KARs expressed by M/T cells. As M/T cells are targets of zinc-containing olfactory sensory neurons, synaptically released zinc may influence odor information-encoding synaptic circuits in the OB via actions at KARs.
Collapse
Affiliation(s)
- Laura J Blakemore
- Program in Neuroscience, Florida State University, Tallahassee, FL, USA; Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Paul Q Trombley
- Program in Neuroscience, Florida State University, Tallahassee, FL, USA; Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
20
|
Mechanisms of zinc modulation of olfactory bulb AMPA receptors. Neuroscience 2019; 410:160-175. [PMID: 31082537 DOI: 10.1016/j.neuroscience.2019.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 12/31/2022]
Abstract
The alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subtype of ionotropic glutamate receptors mediates most fast excitatory transmission. Glutamate binding to AMPA receptors (AMPARs) causes most AMPARs to rapidly and completely desensitize, and their desensitization kinetics influence synaptic timing. Thus, factors that alter AMPAR desensitization influence synaptic transmission. Synaptically released zinc is such a factor. Zinc is a neuromodulator with effects on amino acid receptors and synaptic transmission in many brain regions, including the olfactory bulb (OB). We have previously shown in the OB that zinc potentiates AMPAR-mediated currents at low concentrations (30 μM, 100 μM) and inhibits them at a higher concentration (1 mM). It has been hypothesized that zinc potentiates AMPARs by decreasing receptor desensitization. Here, we used cyclothiazide (CTZ), a drug that blocks AMPAR desensitization, to determine whether zinc-mediated potentiation and/or inhibition of AMPA-evoked currents reflect(s) changes in AMPAR desensitization. Zinc largely had biphasic concentration-dependent effects at OB AMPARs. CTZ completely blocked potentiation by zinc but had no significant effect on inhibition. There was a significant negative correlation between the degree of potentiation of AMPAR-mediated currents by 100 μM zinc and a quantitative measure of the degree of AMPAR desensitization (the steady-state to peak [S:P] ratio of AMPA-evoked currents), but no correlation between the degree of current inhibition by 1 mM zinc and the S:P ratio. Together, these findings suggest that low zinc concentrations potentiate rat OB AMPARs by decreasing receptor desensitization, but that the inhibitory effects of higher zinc concentrations are mediated by a separate mechanism.
Collapse
|
21
|
Susi G, Antón Toro L, Canuet L, López ME, Maestú F, Mirasso CR, Pereda E. A Neuro-Inspired System for Online Learning and Recognition of Parallel Spike Trains, Based on Spike Latency, and Heterosynaptic STDP. Front Neurosci 2018; 12:780. [PMID: 30429767 PMCID: PMC6220070 DOI: 10.3389/fnins.2018.00780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 10/09/2018] [Indexed: 11/17/2022] Open
Abstract
Humans perform remarkably well in many cognitive tasks including pattern recognition. However, the neuronal mechanisms underlying this process are not well understood. Nevertheless, artificial neural networks, inspired in brain circuits, have been designed and used to tackle spatio-temporal pattern recognition tasks. In this paper we present a multi-neuronal spike pattern detection structure able to autonomously implement online learning and recognition of parallel spike sequences (i.e., sequences of pulses belonging to different neurons/neural ensembles). The operating principle of this structure is based on two spiking/synaptic neurocomputational characteristics: spike latency, which enables neurons to fire spikes with a certain delay and heterosynaptic plasticity, which allows the own regulation of synaptic weights. From the perspective of the information representation, the structure allows mapping a spatio-temporal stimulus into a multi-dimensional, temporal, feature space. In this space, the parameter coordinate and the time at which a neuron fires represent one specific feature. In this sense, each feature can be considered to span a single temporal axis. We applied our proposed scheme to experimental data obtained from a motor-inhibitory cognitive task. The results show that out method exhibits similar performance compared with other classification methods, indicating the effectiveness of our approach. In addition, its simplicity and low computational cost suggest a large scale implementation for real time recognition applications in several areas, such as brain computer interface, personal biometrics authentication, or early detection of diseases.
Collapse
Affiliation(s)
- Gianluca Susi
- UCM-UPM Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Technical University of Madrid, Madrid, Spain.,Dipartimento di Ingegneria Civile e Ingegneria Informatica, Università di Roma 'Tor Vergata', Rome, Italy
| | - Luis Antón Toro
- UCM-UPM Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Technical University of Madrid, Madrid, Spain.,Departamento de Psicología Experimental, Procesos Cognitivos y Logopedia, Facultad de Psicología, Universidad Complutense de Madrid, Madrid, Spain
| | - Leonides Canuet
- UCM-UPM Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Technical University of Madrid, Madrid, Spain.,Departamento de Psicología Clinica, Psicobiología y Metodología, Universidad de La Laguna, La Laguna, Spain
| | - Maria Eugenia López
- UCM-UPM Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Technical University of Madrid, Madrid, Spain.,Departamento de Psicología Experimental, Procesos Cognitivos y Logopedia, Facultad de Psicología, Universidad Complutense de Madrid, Madrid, Spain
| | - Fernando Maestú
- UCM-UPM Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Technical University of Madrid, Madrid, Spain.,Departamento de Psicología Experimental, Procesos Cognitivos y Logopedia, Facultad de Psicología, Universidad Complutense de Madrid, Madrid, Spain
| | - Claudio R Mirasso
- Instituto de Fisica Interdisciplinar y Sistemas Complejos, CSIC-UIB, Campus Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Ernesto Pereda
- UCM-UPM Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Technical University of Madrid, Madrid, Spain.,Departamento de Ingeniería Industrial, Escuela Superior de Ingeniería y Tecnología & IUNE, Universidad de La Laguna, La Laguna, Spain
| |
Collapse
|
22
|
Sparsened neuronal activity in an optogenetically activated olfactory glomerulus. Sci Rep 2018; 8:14955. [PMID: 30297851 PMCID: PMC6175855 DOI: 10.1038/s41598-018-33021-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/07/2018] [Indexed: 12/04/2022] Open
Abstract
Glomeruli are the functional units of olfactory information processing but little remains known about their individual unit function. This is due to their widespread activation by odor stimuli. We expressed channelrhodopsin-2 in a single olfactory sensory neuron type, and used laser stimulation and simultaneous in vivo calcium imaging to study the responses of a single glomerulus to optogenetic stimulation. Calcium signals in the neuropil of this glomerulus were representative of the sensory input and nearly identical if evoked by intensity-matched odor and laser stimuli. However, significantly fewer glomerular layer interneurons and olfactory bulb output neurons (mitral cells) responded to optogenetic versus odor stimuli, resulting in a small and spatially compact optogenetic glomerular unit response. Temporal features of laser stimuli were represented with high fidelity in the neuropil of the glomerulus and the mitral cells, but not in interneurons. Increases in laser stimulus intensity were encoded by larger signal amplitudes in all compartments of the glomerulus, and by the recruitment of additional interneurons and mitral cells. No spatial expansion of the glomerular unit response was observed in response to stronger input stimuli. Our data are among the first descriptions of input-output transformations in a selectively activated olfactory glomerulus.
Collapse
|
23
|
Blakemore LJ, Corthell JT, Trombley PQ. Kainate Receptors Play a Role in Modulating Synaptic Transmission in the Olfactory Bulb. Neuroscience 2018; 391:25-49. [PMID: 30213766 DOI: 10.1016/j.neuroscience.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 02/06/2023]
Abstract
Glutamate is the neurotransmitter used at most excitatory synapses in the mammalian brain, including those in the olfactory bulb (OB). There, ionotropic glutamate receptors including N-methyl-d-aspartate receptors (NMDARs) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) play a role in processes such as reciprocal inhibition and glomerular synchronization. Kainate receptors (KARs) represent another type of ionotropic glutamate receptor, which are composed of five (GluK1-GluK5) subunits. Whereas KARs appear to be heterogeneously expressed in the OB, evidence as to whether these KARs are functional, found at synapses, or modify synaptic transmission is limited. In the present study, coapplication of KAR agonists (kainate, SYM 2081) and AMPAR antagonists (GYKI 52466, SYM 2206) demonstrated that functional KARs are expressed by OB neurons, with a subset of receptors located at synapses. Application of kainate and the GluK1-selective agonist ATPA had modulatory effects on excitatory postsynaptic currents (EPSCs) evoked by stimulation of the olfactory nerve layer. Application of kainate and ATPA also had modulatory effects on reciprocal inhibitory postsynaptic currents (IPSCs) evoked using a protocol that evokes dendrodendritic inhibition. The latter finding suggests that KARs, with relatively slow kinetics, may play a role in circuits in which the relatively brief duration of AMPAR-mediated currents limits the role of AMPARs in synaptic transmission (e.g., reciprocal inhibition at dendrodendritic synapses). Collectively, our findings suggest that KARs, including those containing the GluK1 subunit, modulate excitatory and inhibitory transmission in the OB. These data further suggest that KARs participate in the regulation of synaptic circuits that encode odor information.
Collapse
Affiliation(s)
- Laura J Blakemore
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States; Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - John T Corthell
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States; Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Paul Q Trombley
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States; Department of Biological Science, Florida State University, Tallahassee, FL, United States.
| |
Collapse
|
24
|
Electrical synapses convey orientation selectivity in the mouse retina. Nat Commun 2017; 8:2025. [PMID: 29229967 PMCID: PMC5725423 DOI: 10.1038/s41467-017-01980-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022] Open
Abstract
Sensory neurons downstream of primary receptors are selective for specific stimulus features, and they derive their selectivity both from excitatory and inhibitory synaptic inputs from other neurons and from their own intrinsic properties. Electrical synapses, formed by gap junctions, modulate sensory circuits. Retinal ganglion cells (RGCs) are diverse feature detectors carrying visual information to the brain, and receive excitatory input from bipolar cells and inhibitory input from amacrine cells (ACs). Here we describe a RGC that relies on gap junctions, rather than chemical synapses, to convey its selectivity for the orientation of a visual stimulus. This represents both a new functional role of electrical synapses as the primary drivers of feature selectivity and a new circuit mechanism for orientation selectivity in the retina. Visual input received by photoreceptors is relayed to retinal ganglion cells (RGCs), which have selectivity for inputs of certain orientations. Here, the authors show that gap junction-mediated input onto one type of RGC contributes to its orientation selectivity.
Collapse
|
25
|
Blakemore LJ, Trombley PQ. Zinc as a Neuromodulator in the Central Nervous System with a Focus on the Olfactory Bulb. Front Cell Neurosci 2017; 11:297. [PMID: 29033788 PMCID: PMC5627021 DOI: 10.3389/fncel.2017.00297] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/06/2017] [Indexed: 12/19/2022] Open
Abstract
The olfactory bulb (OB) is central to the sense of smell, as it is the site of the first synaptic relay involved in the processing of odor information. Odor sensations are first transduced by olfactory sensory neurons (OSNs) before being transmitted, by way of the OB, to higher olfactory centers that mediate olfactory discrimination and perception. Zinc is a common trace element, and it is highly concentrated in the synaptic vesicles of subsets of glutamatergic neurons in some brain regions including the hippocampus and OB. In addition, zinc is contained in the synaptic vesicles of some glycinergic and GABAergic neurons. Thus, zinc released from synaptic vesicles is available to modulate synaptic transmission mediated by excitatory (e.g., N-methyl-D aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)) and inhibitory (e.g., gamma-aminobutyric acid (GABA), glycine) amino acid receptors. Furthermore, extracellular zinc can alter the excitability of neurons through effects on a variety of voltage-gated ion channels. Consistent with the notion that zinc acts as a regulator of neuronal activity, we and others have shown zinc modulation (inhibition and/or potentiation) of amino acid receptors and voltage-gated ion channels expressed by OB neurons. This review summarizes the locations and release of vesicular zinc in the central nervous system (CNS), including in the OB. It also summarizes the effects of zinc on various amino acid receptors and ion channels involved in regulating synaptic transmission and neuronal excitability, with a special emphasis on the actions of zinc as a neuromodulator in the OB. An understanding of how neuroactive substances such as zinc modulate receptors and ion channels expressed by OB neurons will increase our understanding of the roles that synaptic circuits in the OB play in odor information processing and transmission.
Collapse
Affiliation(s)
- Laura J Blakemore
- Program in Neuroscience, Florida State UniversityTallahassee, FL, United States.,Department of Biological Science, Florida State UniversityTallahassee, FL, United States
| | - Paul Q Trombley
- Program in Neuroscience, Florida State UniversityTallahassee, FL, United States.,Department of Biological Science, Florida State UniversityTallahassee, FL, United States
| |
Collapse
|
26
|
Pouille F, McTavish TS, Hunter LE, Restrepo D, Schoppa NE. Intraglomerular gap junctions enhance interglomerular synchrony in a sparsely connected olfactory bulb network. J Physiol 2017; 595:5965-5986. [PMID: 28640508 PMCID: PMC5577541 DOI: 10.1113/jp274408] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/14/2017] [Indexed: 01/12/2023] Open
Abstract
KEY POINTS Despite sparse connectivity, population-level interactions between mitral cells (MCs) and granule cells (GCs) can generate synchronized oscillations in the rodent olfactory bulb. Intraglomerular gap junctions between MCs at the same glomerulus can greatly enhance synchronized activity of MCs at different glomeruli. The facilitating effect of intraglomerular gap junctions on interglomerular synchrony is through triggering of mutually synchronizing interactions between MCs and GCs. Divergent connections between MCs and GCs make minimal direct contribution to synchronous activity. ABSTRACT A dominant feature of the olfactory bulb response to odour is fast synchronized oscillations at beta (15-40 Hz) or gamma (40-90 Hz) frequencies, thought to be involved in integration of olfactory signals. Mechanistically, the bulb presents an interesting case study for understanding how beta/gamma oscillations arise. Fast oscillatory synchrony in the activity of output mitral cells (MCs) appears to result from interactions with GABAergic granule cells (GCs), yet the incidence of MC-GC connections is very low, around 4%. Here, we combined computational and experimental approaches to examine how oscillatory synchrony can nevertheless arise, focusing mainly on activity between 'non-sister' MCs affiliated with different glomeruli (interglomerular synchrony). In a sparsely connected model of MCs and GCs, we found first that interglomerular synchrony was generally quite low, but could be increased by a factor of 4 by physiological levels of gap junctional coupling between sister MCs at the same glomerulus. This effect was due to enhanced mutually synchronizing interactions between MC and GC populations. The potent role of gap junctions was confirmed in patch-clamp recordings in bulb slices from wild-type and connexin 36-knockout (KO) mice. KO reduced both beta and gamma local field potential oscillations as well as synchrony of inhibitory signals in pairs of non-sister MCs. These effects were independent of potential KO actions on network excitation. Divergent synaptic connections did not contribute directly to the vast majority of synchronized signals. Thus, in a sparsely connected network, gap junctions between a small subset of cells can, through population effects, greatly amplify oscillatory synchrony amongst unconnected cells.
Collapse
Affiliation(s)
- Frederic Pouille
- Department of Physiology and Biophysics, University of ColoradoAnschutz Medical CampusAuroraCO80045USA
| | - Thomas S. McTavish
- Computational Bioscience Program, University of ColoradoAnschutz Medical CampusAuroraCO80045USA
| | - Lawrence E. Hunter
- Computational Bioscience Program, University of ColoradoAnschutz Medical CampusAuroraCO80045USA
- Department of Pharmacology, University of ColoradoAnschutz Medical CampusAuroraCO80045USA
| | - Diego Restrepo
- Department of Cell and Developmental Biology, University of ColoradoAnschutz Medical CampusAuroraCO80045USA
| | - Nathan E. Schoppa
- Department of Physiology and Biophysics, University of ColoradoAnschutz Medical CampusAuroraCO80045USA
| |
Collapse
|
27
|
Sreenivasan V, Menon SN, Sinha S. Emergence of coupling-induced oscillations and broken symmetries in heterogeneously driven nonlinear reaction networks. Sci Rep 2017; 7:1594. [PMID: 28487568 PMCID: PMC5431650 DOI: 10.1038/s41598-017-01670-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 04/03/2017] [Indexed: 01/02/2023] Open
Abstract
Many natural systems including the brain comprise coupled elements that are stimulated non-uniformly. In this paper we show that heterogeneously driven networks of excitatory-inhibitory units exhibit a diverse range of collective phenomena, including the appearance of spontaneous oscillations upon coupling quiescent elements. On varying the coupling strength a previously unreported transition is seen wherein the symmetries of the synchronization patterns in the stimulated and unstimulated groups undergo mutual exchange. The system also exhibits coexisting chaotic and non-chaotic attractors - a result that may be of interest in connection to earlier reports of varying degrees of chaoticity in the brain.
Collapse
Affiliation(s)
- Varsha Sreenivasan
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai, 600113, India
| | - Shakti N Menon
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai, 600113, India
| | - Sitabhra Sinha
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai, 600113, India.
| |
Collapse
|
28
|
Korshunov KS, Blakemore LJ, Trombley PQ. Dopamine: A Modulator of Circadian Rhythms in the Central Nervous System. Front Cell Neurosci 2017; 11:91. [PMID: 28420965 PMCID: PMC5376559 DOI: 10.3389/fncel.2017.00091] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/15/2017] [Indexed: 01/11/2023] Open
Abstract
Circadian rhythms are daily rhythms that regulate many biological processes – from gene transcription to behavior – and a disruption of these rhythms can lead to a myriad of health risks. Circadian rhythms are entrained by light, and their 24-h oscillation is maintained by a core molecular feedback loop composed of canonical circadian (“clock”) genes and proteins. Different modulators help to maintain the proper rhythmicity of these genes and proteins, and one emerging modulator is dopamine. Dopamine has been shown to have circadian-like activities in the retina, olfactory bulb, striatum, midbrain, and hypothalamus, where it regulates, and is regulated by, clock genes in some of these areas. Thus, it is likely that dopamine is essential to mechanisms that maintain proper rhythmicity of these five brain areas. This review discusses studies that showcase different dopaminergic mechanisms that may be involved with the regulation of these brain areas’ circadian rhythms. Mechanisms include how dopamine and dopamine receptor activity directly and indirectly influence clock genes and proteins, how dopamine’s interactions with gap junctions influence daily neuronal excitability, and how dopamine’s release and effects are gated by low- and high-pass filters. Because the dopamine neurons described in this review also release the inhibitory neurotransmitter GABA which influences clock protein expression in the retina, we discuss articles that explore how GABA may contribute to the actions of dopamine neurons on circadian rhythms. Finally, to understand how the loss of function of dopamine neurons could influence circadian rhythms, we review studies linking the neurodegenerative disease Parkinson’s Disease to disruptions of circadian rhythms in these five brain areas. The purpose of this review is to summarize growing evidence that dopamine is involved in regulating circadian rhythms, either directly or indirectly, in the brain areas discussed here. An appreciation of the growing evidence of dopamine’s influence on circadian rhythms may lead to new treatments including pharmacological agents directed at alleviating the various symptoms of circadian rhythm disruption.
Collapse
Affiliation(s)
- Kirill S Korshunov
- Program in Neuroscience, Florida State University,Tallahassee, FL, USA.,Department of Biological Science, Florida State University,Tallahassee, FL, USA
| | - Laura J Blakemore
- Program in Neuroscience, Florida State University,Tallahassee, FL, USA.,Department of Biological Science, Florida State University,Tallahassee, FL, USA
| | - Paul Q Trombley
- Program in Neuroscience, Florida State University,Tallahassee, FL, USA.,Department of Biological Science, Florida State University,Tallahassee, FL, USA
| |
Collapse
|
29
|
Tonello L, Cocchi M, Gabrielli F, Tuszynski JA. Stream of consciousness: Quantum and biochemical assumptions regarding psychopathology. Med Hypotheses 2017; 101:78-84. [PMID: 28351500 DOI: 10.1016/j.mehy.2017.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/09/2017] [Accepted: 02/26/2017] [Indexed: 10/20/2022]
Abstract
The accepted paradigms of mainstream neuropsychiatry appear to be incompletely adequate and in various cases offer equivocal analyses. However, a growing number of new approaches are being proposed that suggest the emergence of paradigm shifts in this area. In particular, quantum theories of mind, brain and consciousness seem to offer a profound change to the current approaches. Unfortunately these quantum paradigms harbor at least two serious problems. First, they are simply models, theories, and assumptions, with no convincing experiments supporting their claims. Second, they deviate from contemporary mainstream views of psychiatric illness and do so in revolutionary ways. We suggest a possible way to integrate experimental neuroscience with quantum models in order to address outstanding issues in psychopathology. A key role is played by the phenomenon called the "stream of consciousness", which can be linked to the so-called "Gamma Synchrony" (GS), which is clearly demonstrated by EEG data. In our novel proposal, a unipolar depressed patient could be seen as a subject with an altered stream of consciousness. In particular, some clues suggest that depression is linked to an "increased power" stream of consciousness. It is additionally suggested that such an approach to depression might be extended to psychopathology in general with potential benefits to diagnostics and therapeutics in neuropsychiatry.
Collapse
Affiliation(s)
- Lucio Tonello
- "Paolo Sotgiu" Research Institute, LUdeS Foundation HEI, Kalkara, Malta.
| | - Massimo Cocchi
- "Paolo Sotgiu" Research Institute, LUdeS Foundation HEI, Kalkara, Malta; University of Bologna, Italy
| | - Fabio Gabrielli
- "Paolo Sotgiu" Research Institute, LUdeS Foundation HEI, Kalkara, Malta
| | - Jack A Tuszynski
- Department of Physics, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
30
|
Connors BW. Synchrony and so much more: Diverse roles for electrical synapses in neural circuits. Dev Neurobiol 2017; 77:610-624. [PMID: 28245529 DOI: 10.1002/dneu.22493] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/05/2017] [Accepted: 02/14/2017] [Indexed: 11/09/2022]
Abstract
Electrical synapses are neuronal gap junctions that are ubiquitous across brain regions and species. The biophysical properties of most electrical synapses are relatively simple-transcellular channels allow nearly ohmic, bidirectional flow of ionic current. Yet these connections can play remarkably diverse roles in different neural circuit contexts. Recent findings illustrate how electrical synapses may excite or inhibit, synchronize or desynchronize, augment or diminish rhythms, phase-shift, detect coincidences, enhance signals relative to noise, adapt, and interact with nonlinear membrane and transmitter-release mechanisms. Most of these functions are likely to be widespread in central nervous systems. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 610-624, 2017.
Collapse
Affiliation(s)
- Barry W Connors
- Department of Neuroscience, Brown University, Providence, Rhode Island
| |
Collapse
|
31
|
Synchronous Infra-Slow Bursting in the Mouse Accessory Olfactory Bulb Emerge from Interplay between Intrinsic Neuronal Dynamics and Network Connectivity. J Neurosci 2017; 37:2656-2672. [PMID: 28148726 DOI: 10.1523/jneurosci.3107-16.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 11/21/2022] Open
Abstract
Rhythmic neuronal activity of multiple frequency bands has been described in many brain areas and attributed to numerous brain functions. Among these, little is known about the mechanism and role of infra-slow oscillations, which have been demonstrated recently in the mouse accessory olfactory bulb (AOB). Along with prolonged responses to stimuli and distinct network connectivity, they inexplicably affect the AOB processing of social relevant stimuli. Here, we show that assemblies of AOB mitral cells are synchronized by lateral interactions through chemical and electrical synapses. Using a network model, we demonstrate that the synchronous oscillations in these assemblies emerge from interplay between intrinsic membrane properties and network connectivity. As a consequence, the AOB network topology, in which each mitral cell receives input from multiple glomeruli, enables integration of chemosensory stimuli over extended time scales by interglomerular synchrony of infra-slow bursting. These results provide a possible functional significance for the distinct AOB physiology and topology. Beyond the AOB, this study presents a general model for synchronous infra-slow bursting in neuronal networks.SIGNIFICANCE STATEMENT Infra-slow rhythmic neuronal activity with a very long (>10 s) duration has been described in many brain areas, but little is known about the role of this activity and the mechanisms that produce it. Here, we combine experimental and computational methods to show that synchronous infra-slow bursting activity in mitral cells of the mouse accessory olfactory bulb (AOB) emerges from interplay between intracellular dynamics and network connectivity. In this novel mechanism, slow intracellular Na+ dynamics endow AOB mitral cells with a weak tendency to burst, which is further enhanced and stabilized by chemical and electrical synapses between them. Combined with the unique topology of the AOB network, infra-slow bursting enables integration and binding of multiple chemosensory stimuli over a prolonged time scale.
Collapse
|
32
|
Szczupak L. Functional contributions of electrical synapses in sensory and motor networks. Curr Opin Neurobiol 2016; 41:99-105. [PMID: 27649466 DOI: 10.1016/j.conb.2016.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 11/28/2022]
Abstract
Intercellular interactions in the nervous system are mediated by two types of dedicated structural arrangements: electrical and chemical synapses. Several characteristics distinguish these two mechanisms of communication, such as speed, reliability and the fact that electrical synapses are, potentially, bidirectional. Given these properties, electrical synapses can subserve, in addition to synchrony, three main interrelated network functions: signal amplification, noise reduction and/or coincidence detection. Specific network motifs in sensory and motor systems of invertebrates and vertebrates illustrate how signal transmission through electrical junctions contributes to a complex processing of information.
Collapse
Affiliation(s)
- Lidia Szczupak
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBYNE UBA-CONICET, Pabellón II, piso 2. Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
33
|
Vaaga CE, Westbrook GL. Parallel processing of afferent olfactory sensory information. J Physiol 2016; 594:6715-6732. [PMID: 27377344 DOI: 10.1113/jp272755] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/22/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The functional synaptic connectivity between olfactory receptor neurons and principal cells within the olfactory bulb is not well understood. One view suggests that mitral cells, the primary output neuron of the olfactory bulb, are solely activated by feedforward excitation. Using focal, single glomerular stimulation, we demonstrate that mitral cells receive direct, monosynaptic input from olfactory receptor neurons. Compared to external tufted cells, mitral cells have a prolonged afferent-evoked EPSC, which serves to amplify the synaptic input. The properties of presynaptic glutamate release from olfactory receptor neurons are similar between mitral and external tufted cells. Our data suggest that afferent input enters the olfactory bulb in a parallel fashion. ABSTRACT Primary olfactory receptor neurons terminate in anatomically and functionally discrete cortical modules known as olfactory bulb glomeruli. The synaptic connectivity and postsynaptic responses of mitral and external tufted cells within the glomerulus may involve both direct and indirect components. For example, it has been suggested that sensory input to mitral cells is indirect through feedforward excitation from external tufted cells. We also observed feedforward excitation of mitral cells with weak stimulation of the olfactory nerve layer; however, focal stimulation of an axon bundle entering an individual glomerulus revealed that mitral cells receive monosynaptic afferent inputs. Although external tufted cells had a 4.1-fold larger peak EPSC amplitude, integration of the evoked currents showed that the synaptic charge was 5-fold larger in mitral cells, reflecting the prolonged response in mitral cells. Presynaptic afferents onto mitral and external tufted cells had similar quantal amplitude and release probability, suggesting that the larger peak EPSC in external tufted cells was the result of more synaptic contacts. The results of the present study indicate that the monosynaptic afferent input to mitral cells depends on the strength of odorant stimulation. The enhanced spiking that we observed in response to brief afferent input provides a mechanism for amplifying sensory information and contrasts with the transient response in external tufted cells. These parallel input paths may have discrete functions in processing olfactory sensory input.
Collapse
Affiliation(s)
- Christopher E Vaaga
- Vollum Institute.,Neuroscience Graduate Program, Oregon Health and Science University, Portland, OR, USA
| | | |
Collapse
|
34
|
Kuo SP, Schwartz GW, Rieke F. Nonlinear Spatiotemporal Integration by Electrical and Chemical Synapses in the Retina. Neuron 2016; 90:320-32. [PMID: 27068789 DOI: 10.1016/j.neuron.2016.03.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 02/02/2016] [Accepted: 03/06/2016] [Indexed: 10/22/2022]
Abstract
Electrical and chemical synapses coexist in circuits throughout the CNS. Yet, it is not well understood how electrical and chemical synaptic transmission interact to determine the functional output of networks endowed with both types of synapse. We found that release of glutamate from bipolar cells onto retinal ganglion cells (RGCs) was strongly shaped by gap-junction-mediated electrical coupling within the bipolar cell network of the mouse retina. Specifically, electrical synapses spread signals laterally between bipolar cells, and this lateral spread contributed to a nonlinear enhancement of bipolar cell output to visual stimuli presented closely in space and time. Our findings thus (1) highlight how electrical and chemical transmission can work in concert to influence network output and (2) reveal a previously unappreciated circuit mechanism that increases RGC sensitivity to spatiotemporally correlated input, such as that produced by motion.
Collapse
Affiliation(s)
- Sidney P Kuo
- Department of Physiology and Biophysics and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Gregory W Schwartz
- Department of Physiology and Biophysics and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Fred Rieke
- Department of Physiology and Biophysics and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
35
|
Abstract
UNLABELLED An emergent concept in neurosciences consists in considering brain functions as the product of dynamic interactions between neurons and glial cells, particularly astrocytes. Although the role played by astrocytes in synaptic transmission and plasticity is now largely documented, their contribution to neuronal network activity is only beginning to be appreciated. In mouse olfactory bulb slices, we observed that the membrane potential of mitral cells oscillates between UP and DOWN states at a low frequency (<1 Hz). Such slow oscillations are correlated with glomerular local field potentials, indicating spontaneous local network activity. Using a combination of genetic and pharmacological tools, we showed that the activity of astroglial connexin 43 hemichannels, opened in an activity-dependent manner, increases UP state amplitude and impacts mitral cell firing rate. This effect requires functional adenosine A1 receptors, in line with the observation that ATP is released via connexin 43 hemichannels. These results highlight a new mechanism of neuroglial interaction in the olfactory bulb, where astrocyte connexin hemichannels are both targets and modulators of neuronal circuit function. SIGNIFICANCE STATEMENT An emergent concept in neuroscience consists in considering brain function as the product of dynamic interactions between neurons and glial cells, particularly astrocytes. A typical feature of astrocytes is their high expression level of connexins, the molecular constituents of gap junction channels and hemichannels. Although hemichannels represent a powerful medium for intercellular communication between astrocytes and neurons, their function in physiological conditions remains largely unexplored. Our results show that in the olfactory bulb, connexin 43 hemichannel function is promoted by neuronal activity and, in turn, modulates neuronal network slow oscillations. This novel mechanism of neuroglial interaction could influence olfactory information processing by directly impacting the output of the olfactory bulb.
Collapse
|
36
|
Zak JD, Whitesell JD, Schoppa NE. Metabotropic glutamate receptors promote disinhibition of olfactory bulb glomeruli that scales with input strength. J Neurophysiol 2014; 113:1907-20. [PMID: 25552635 DOI: 10.1152/jn.00222.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Increasing evidence indicates that the neural circuitry within glomeruli of the olfactory bulb plays a major role in affecting information flow between olfactory sensory neurons (OSNs) and output mitral cells (MCs). Glutamatergic external tufted (ET) cells, located at glomeruli, can act as intermediary cells in excitation between OSNs and MCs, whereas activation of MCs by OSNs is, in turn, suppressed by inhibitory synapses onto ET cells. In this study, we used patch-clamp recordings in rat olfactory bulb slices to examine the function of metabotropic glutamate receptors (mGluRs) in altering these glomerular signaling mechanisms. We found that activation of group II mGluRs profoundly reduced inhibition onto ET cells evoked by OSN stimulation. The mGluRs that mediated disinhibition were located on presynaptic GABAergic periglomerular cells and appeared to be activated by glutamate transients derived from dendrites in glomeruli. In terms of glomerular output, the mGluR-mediated reduction in GABA release led to a robust increase in the number of action potentials evoked by OSN stimulation in both ET cells and MCs. Importantly, however, the enhanced excitation was specific to when a glomerulus was strongly activated by OSN inputs. By being selective for strong vs. weak glomerular activation, mGluR-mediated disinhibition provides a mechanism to enhance the contrast in odor signals that activate OSN inputs into a single glomerulus at varying intensities.
Collapse
Affiliation(s)
- Joseph D Zak
- Neuroscience Program, University of Colorado, Anschutz Medical Campus, Aurora, Colorado; and
| | - Jennifer D Whitesell
- Neuroscience Program, University of Colorado, Anschutz Medical Campus, Aurora, Colorado; and
| | - Nathan E Schoppa
- Neuroscience Program, University of Colorado, Anschutz Medical Campus, Aurora, Colorado; and Department of Physiology and Biophysics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
37
|
Leng G, Hashimoto H, Tsuji C, Sabatier N, Ludwig M. Discharge patterning in rat olfactory bulb mitral cells in vivo. Physiol Rep 2014; 2:e12021. [PMID: 25281614 PMCID: PMC4254087 DOI: 10.14814/phy2.12021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/18/2014] [Accepted: 04/18/2014] [Indexed: 11/24/2022] Open
Abstract
Here we present a detailed statistical analysis of the discharge characteristics of mitral cells of the main olfactory bulb of urethane-anesthetized rats. Neurons were recorded from the mitral cell layer, and antidromically identified by stimuli applied to the lateral olfactory tract. All mitral cells displayed repeated, prolonged bursts of action potentials typically lasting >100 sec and separated by similarly long intervals; about half were completely silent between bursts. No such bursting was observed in nonmitral cells recorded in close proximity to mitral cells. Bursts were asynchronous among even adjacent mitral cells. The intraburst activity of most mitral cells showed strong entrainment to the spontaneous respiratory rhythm; similar entrainment was seen in some, but not all nonmitral cells. All mitral cells displayed a peak of excitability at ~25 msec after spikes, as reflected by a peak in the interspike interval distribution and in the corresponding hazard function. About half also showed a peak at about 6 msec, reflecting the common occurrence of doublet spikes. Nonmitral cells showed no such doublet spikes. Bursts typically increased in intensity over the first 20-30 sec of a burst, during which time doublets were rare or absent. After 20-30 sec (in cells that exhibited doublets), doublets occurred frequently for as long as the burst persisted, in trains of up to 10 doublets. The last doublet was followed by an extended relative refractory period the duration of which was independent of train length. In cells that were excited by application of a particular odor, responsiveness was apparently greater during silent periods between bursts than during bursts. Conversely in cells that were inhibited by a particular odor, responsiveness was only apparent when cells were active. Extensive raw (event timing) data from the cells, together with details of those analyses, are provided as supplementary material, freely available for secondary use by others.
Collapse
Affiliation(s)
- Gareth Leng
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - Hirofumi Hashimoto
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - Chiharu Tsuji
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - Nancy Sabatier
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - Mike Ludwig
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
38
|
Shlizerman E, Riffell JA, Kutz JN. Data-driven inference of network connectivity for modeling the dynamics of neural codes in the insect antennal lobe. Front Comput Neurosci 2014; 8:70. [PMID: 25165442 PMCID: PMC4131428 DOI: 10.3389/fncom.2014.00070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 06/20/2014] [Indexed: 11/13/2022] Open
Abstract
The antennal lobe (AL), olfactory processing center in insects, is able to process stimuli into distinct neural activity patterns, called olfactory neural codes. To model their dynamics we perform multichannel recordings from the projection neurons in the AL driven by different odorants. We then derive a dynamic neuronal network from the electrophysiological data. The network consists of lateral-inhibitory neurons and excitatory neurons (modeled as firing-rate units), and is capable of producing unique olfactory neural codes for the tested odorants. To construct the network, we (1) design a projection, an odor space, for the neural recording from the AL, which discriminates between distinct odorants trajectories (2) characterize scent recognition, i.e., decision-making based on olfactory signals and (3) infer the wiring of the neural circuit, the connectome of the AL. We show that the constructed model is consistent with biological observations, such as contrast enhancement and robustness to noise. The study suggests a data-driven approach to answer a key biological question in identifying how lateral inhibitory neurons can be wired to excitatory neurons to permit robust activity patterns.
Collapse
Affiliation(s)
- Eli Shlizerman
- Department of Applied Mathematics, University of Washington Seattle, WA, USA
| | | | - J Nathan Kutz
- Department of Applied Mathematics, University of Washington Seattle, WA, USA
| |
Collapse
|
39
|
Abstract
In the olfactory system of Drosophila melanogaster, it is relatively straightforward to target in vivo measurements of neural activity to specific processing channels. This, together with the numerical simplicity of the Drosophila olfactory system, has produced rapid gains in our understanding of Drosophila olfaction. This review summarizes the neurophysiology of the first two layers of this system: the peripheral olfactory receptor neurons and their postsynaptic targets in the antennal lobe. We now understand in some detail the cellular and synaptic mechanisms that shape odor representations in these neurons. Together, these mechanisms imply that interesting neural adaptations to environmental statistics have occurred. These mechanisms also place some fundamental constraints on early sensory processing that pose challenges for higher brain regions. These findings suggest some general principles with broad relevance to early sensory processing in other modalities.
Collapse
Affiliation(s)
- Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
40
|
Blakemore LJ, Tomat E, Lippard SJ, Trombley PQ. Zinc released from olfactory bulb glomeruli by patterned electrical stimulation of the olfactory nerve. Metallomics 2013; 5:208-13. [PMID: 23392381 DOI: 10.1039/c3mt20158a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zinc is a trace element with a multitude of roles in biological systems including structural and cofactor functions for proteins. Although most zinc in the central nervous system (CNS) is protein bound, the CNS contains a pool of mobile zinc housed in synaptic vesicles within a subset of neurons. Such mobile zinc occurs in many brain regions, such as the hippocampus, hypothalamus, and cortex, but the olfactory bulb (OB) contains one of the highest such concentrations in the CNS. Zinc is distributed throughout the OB, with the glomerular and granule cell layers containing the highest levels. Here, we visualize vesicular zinc in the OB using zinc-responsive fluorescent probes developed by one of us. Moreover, we provide the first demonstration that vesicular pools of zinc can be released from olfactory nerve terminals within individual glomeruli by patterned electrical stimulation of the olfactory nerve designed to mimic the breathing cycle in rats. We also provide electrophysiological evidence that elevated extracellular zinc potentiates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated synaptic events. AMPA receptors are required for the synchronous activation of neurons within individual OB glomeruli, and zinc-mediated potentiation leads to enhanced synaptic summation.
Collapse
Affiliation(s)
- Laura J Blakemore
- Department of Biological Science, The Florida State University, Tallahassee, FL 32306, USA
| | | | | | | |
Collapse
|
41
|
Olfactory bulb monoamine concentrations vary with time of day. Neuroscience 2013; 247:234-41. [PMID: 23727009 DOI: 10.1016/j.neuroscience.2013.05.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 05/19/2013] [Accepted: 05/21/2013] [Indexed: 11/21/2022]
Abstract
The olfactory bulb (OB) has been recently identified as a circadian oscillator capable of operating independently of the master circadian pacemaker, the suprachiasmatic nuclei of the hypothalamus. OB oscillations manifest as rhythms in clock genes, electrical activity, and odor sensitivity. Dopamine, norepinephrine, and serotonin have been shown to modulate olfactory information processing by the OB and may be part of the mechanism that underlies diurnal changes in olfactory sensitivity. Rhythmic release of these neurotransmitters could generate OB rhythms in electrical activity and olfactory sensitivity. We hypothesized that these monoamines were rhythmically released in the OB. To test our hypotheses, we examined monoamine levels in the OB, over the course of a day, by high-performance liquid chromatography coupled to electrochemical detection. We observed that dopamine and its metabolite, 3-4-dihydroxyphenylacetic acid, rhythmically fluctuate over the day. In contrast, norepinephrine is arrhythmic. Serotonin and its metabolite hydroxyindoleacetic acid appear to rhythmically fluctuate. Each of these monoamines has been shown to alter OB circuit behavior and influence odor processing. Rhythmic release of serotonin may be a mechanism by which the suprachiasmatic nuclei communicate, indirectly, with the OB.
Collapse
|
42
|
Optical dissection of odor information processing in vivo using GCaMPs expressed in specified cell types of the olfactory bulb. J Neurosci 2013; 33:5285-300. [PMID: 23516293 DOI: 10.1523/jneurosci.4824-12.2013] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Understanding central processing requires precise monitoring of neural activity across populations of identified neurons in the intact brain. In the present study, we used recently optimized variants of the genetically encoded calcium sensor GCaMP (GCaMP3 and GCaMPG5G) to image activity among genetically and anatomically defined neuronal populations in the olfactory bulb (OB), including two types of GABAergic interneurons (periglomerular [PG] and short axon [SA] cells) and OB output neurons (mitral/tufted [MT] cells) projecting to the piriform cortex. We first established that changes in neuronal spiking can be related accurately to GCaMP fluorescence changes via a simple quantitative relationship over a large dynamic range. We next used in vivo two-photon imaging from individual neurons and epifluorescence signals reflecting population-level activity to investigate the spatiotemporal representation of odorants across these neuron types in anesthetized and awake mice. Under anesthesia, individual PG and SA cells showed temporally simple responses and little spontaneous activity, whereas MT cells were spontaneously active and showed diverse temporal responses. At the population level, response patterns of PG, SA, and MT cells were surprisingly similar to those imaged from sensory inputs, with shared odorant-specific topography across the dorsal OB and inhalation-coupled temporal dynamics. During wakefulness, PG and SA cell responses increased in magnitude but remained temporally simple, whereas those of MT cells changed to complex spatiotemporal patterns reflecting restricted excitation and widespread inhibition. These results suggest multiple circuit elements with distinct roles in transforming odor representations in the OB and provide a framework for further study of early olfactory processing using optical and genetic tools.
Collapse
|
43
|
Optical dissection of odor information processing in vivo using GCaMPs expressed in specified cell types of the olfactory bulb. J Neurosci 2013. [PMID: 23516293 DOI: 10.1523/jneurosci.4824‐12.2013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Understanding central processing requires precise monitoring of neural activity across populations of identified neurons in the intact brain. In the present study, we used recently optimized variants of the genetically encoded calcium sensor GCaMP (GCaMP3 and GCaMPG5G) to image activity among genetically and anatomically defined neuronal populations in the olfactory bulb (OB), including two types of GABAergic interneurons (periglomerular [PG] and short axon [SA] cells) and OB output neurons (mitral/tufted [MT] cells) projecting to the piriform cortex. We first established that changes in neuronal spiking can be related accurately to GCaMP fluorescence changes via a simple quantitative relationship over a large dynamic range. We next used in vivo two-photon imaging from individual neurons and epifluorescence signals reflecting population-level activity to investigate the spatiotemporal representation of odorants across these neuron types in anesthetized and awake mice. Under anesthesia, individual PG and SA cells showed temporally simple responses and little spontaneous activity, whereas MT cells were spontaneously active and showed diverse temporal responses. At the population level, response patterns of PG, SA, and MT cells were surprisingly similar to those imaged from sensory inputs, with shared odorant-specific topography across the dorsal OB and inhalation-coupled temporal dynamics. During wakefulness, PG and SA cell responses increased in magnitude but remained temporally simple, whereas those of MT cells changed to complex spatiotemporal patterns reflecting restricted excitation and widespread inhibition. These results suggest multiple circuit elements with distinct roles in transforming odor representations in the OB and provide a framework for further study of early olfactory processing using optical and genetic tools.
Collapse
|
44
|
Functional properties of cortical feedback projections to the olfactory bulb. Neuron 2013; 76:1175-88. [PMID: 23259952 DOI: 10.1016/j.neuron.2012.10.028] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2012] [Indexed: 11/22/2022]
Abstract
Sensory perception is not a simple feed-forward process, and higher brain areas can actively modulate information processing in "lower" areas. We used optogenetic methods to examine how cortical feedback projections affect circuits in the first olfactory processing stage, the olfactory bulb. Selective activation of back projections from the anterior olfactory nucleus/cortex (AON) revealed functional glutamatergic synaptic connections on several types of bulbar interneurons. Unexpectedly, AON axons also directly depolarized mitral cells (MCs), enough to elicit spikes reliably in a time window of a few milliseconds. MCs received strong disynaptic inhibition, a third of which arises in the glomerular layer. Activating feedback axons in vivo suppressed spontaneous as well as odor-evoked activity of MCs, sometimes preceded by a temporally precise increase in firing probability. Our study indicates that cortical feedback can shape the activity of bulbar output neurons by enabling precisely timed spikes and enforcing broad inhibition to suppress background activity.
Collapse
|
45
|
Patterns of heterogeneous expression of pannexin 1 and pannexin 2 transcripts in the olfactory epithelium and olfactory bulb. J Mol Histol 2012; 43:651-60. [PMID: 22945868 DOI: 10.1007/s10735-012-9443-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/14/2012] [Indexed: 10/27/2022]
Abstract
Pannexins form membrane channels that release biological signals to communicate with neighboring cells. Here, we report expression patterns of pannexin 1 (Panx1) and pannexin 2 (Panx2) in the olfactory epithelium and olfactory bulb of adult mice. In situ hybridization revealed that mRNAs for Panx1 and Panx2 were both expressed in the olfactory epithelium and olfactory bulb. Expression of Panx1 and Panx2 was mainly found in cell bodies below the sustentacular cell layer in the olfactory epithelium, indicating that Panx1 and Panx2 are expressed in mature and immature olfactory neurons, and basal cells. Expression of Panx2 was observed in sustentacular cells in a few locations of the olfactory epithelium. In the olfactory bulb, Panx1 and Panx2 were expressed in spatial patterns. Many mitral cells, tufted cells, periglomerular cells and granule cells were Panx1 and Panx2 positive. Mitral cells located at the dorsal and lateral portions of the olfactory bulb showed weak Panx1 expression compared with those in the medial side. However, the opposite was true for the distribution of Panx2 positive mitral cells. There were more Panx2 mRNA positive mitral cells and granule cells compared to those expressing Panx1. Our findings on pannexin expression in the olfactory system of adult mice raise the novel possibility that pannexins play a role in information processing in the olfactory system. Demonstration of expression patterns of pannexins in the olfactory system provides an anatomical basis for future functional studies.
Collapse
|
46
|
Corthell JT, Fadool DA, Trombley PQ. Connexin and AMPA receptor expression changes over time in the rat olfactory bulb. Neuroscience 2012; 222:38-48. [PMID: 22813997 DOI: 10.1016/j.neuroscience.2012.06.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/21/2012] [Accepted: 06/29/2012] [Indexed: 11/30/2022]
Abstract
Circadian rhythms affect olfaction by an unknown molecular mechanism. Independent of the suprachiasmatic nuclei, the mammalian olfactory bulb (OB) has recently been identified as a circadian oscillator. The electrical activity in the OB was reported to be synchronized to a daily rhythm and the clock gene, Period1, was oscillatory in its expression pattern. Because gap junctions composed of connexin36 and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) have been reported to work together to synchronize firing of action potentials in the OB, we hypothesized that circadian electrical oscillations could be synchronized by daily changes in the expression of connexins and AMPAR subunits (GluR1-4). We examined the OB for the presence of clock genes by polymerase chain reaction (PCR) and whether Period2, connexins, and AMPARs fluctuated across the light/dark cycle by quantitative PCR or SDS-PAGE/Western blot analysis. We observed significant changes in the messenger RNA and protein expression of our targets across 24 or 48 h. Whereas most targets were rhythmic by some measures, only GluR1 mRNA and protein were both rhythmic by the majority of our tests of rhythmicity across all time scales. Differential expression of these synaptic proteins over the light/dark cycle may underlie circadian synchronization of action potential firing in the OB or modify synaptic interactions that would be predicted to impact olfactory coding, such as alteration of granule cell inhibition, increased number of available AMPARs to bind glutamate, or an increased gap junction conductance between mitral/tufted cells.
Collapse
Affiliation(s)
- J T Corthell
- Department of Biological Science, The Florida State University, Tallahassee, FL 32306-4340, United States.
| | | | | |
Collapse
|
47
|
Calcium-activated sustained firing responses distinguish accessory from main olfactory bulb mitral cells. J Neurosci 2012; 32:6251-62. [PMID: 22553031 DOI: 10.1523/jneurosci.4397-11.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many mammals rely on pheromones for mediating social interactions. Recent studies indicate that both the main olfactory system (MOS) and accessory olfactory system (AOS) detect and process pheromonal stimuli, yet the functional difference between these two chemosensory systems remains unclear. We hypothesized that the main functional distinction between the MOS and AOS is the type of sensory information processing performed by each system. Here we compared the electrophysiological responses of mitral cells recorded from the accessory olfactory bulb (AOB) and main olfactory bulb (MOB) in acute mouse brain slices to various stimuli and found them markedly different. The response of MOB mitral cells to brief (0.1 ms, 1-100 V) stimulation of their sensory afferents remained transient regardless of stimulus strength, whereas sufficiently strong stimuli evoked sustained firing in AOB mitral cells lasting up to several minutes. Using EPSC-like current injections (10-100 pA, 10 ms rise time constant, 5 s decay time constant) in the presence of various synaptic blockers (picrotoxin, CGP55845, APV, DNQX, E4CPG, and MSPG), we demonstrated that this difference is attributable to distinct intrinsic properties of the two neuronal populations. The AOB sustained responses were found to be mediated by calcium-activated nonselective cationic current induced by transient intense firing. This current was found to be at least partially mediated by TRPM4 channels activated by calcium influx. We hypothesize that the sustained activity of the AOS induces a new sensory state in the animal, reflecting its social context.
Collapse
|
48
|
Martin C, Houitte D, Guillermier M, Petit F, Bonvento G, Gurden H. Alteration of sensory-evoked metabolic and oscillatory activities in the olfactory bulb of GLAST-deficient mice. Front Neural Circuits 2012; 6:1. [PMID: 22291618 PMCID: PMC3265768 DOI: 10.3389/fncir.2012.00001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 01/02/2012] [Indexed: 12/24/2022] Open
Abstract
Astrocytes are key cellular elements in both the tripartite synapse and the neurovascular unit. To fulfill this dual role in synaptic activity and metabolism, they express a panel of receptors and transporters that sense glutamate. Among them, the GLT-1 and GLAST transporters are known to regulate extracellular glutamate concentrations at excitatory synapses and consequently modulate glutamate receptor signaling. These major uptake systems are also involved in energy supply to neurons. However, the functional role of GLAST in concurrent regulation of metabolic and neuronal activity is currently unknown. We took advantage of the attractive structural and functional features of the main olfactory bulb to explore the impact of GLAST on sensory information processing while probing both glutamate uptake and neuronal activity in glomeruli and deeper cellular layers, respectively. Using odor-evoked 2-deoxyglucose imaging and local field potential recordings in GLAST knockout mice, we show in vivo that deletion of GLAST alters both glucose uptake and neuronal oscillations in olfactory bulb networks.
Collapse
Affiliation(s)
- Claire Martin
- Laboratoire Imagerie et Modélisation en Neurobiologie et Cancérologie UMR 8165, Université Paris-Sud, CNRS, Orsay, France
| | | | | | | | | | | |
Collapse
|
49
|
Masurkar AV, Chen WR. The influence of single bursts versus single spikes at excitatory dendrodendritic synapses. Eur J Neurosci 2012; 35:389-401. [PMID: 22277089 DOI: 10.1111/j.1460-9568.2011.07978.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synchronization of neuronal activity is thought to enhance information processing. There is much evidence supporting rhythmically bursting external tufted cells (ETCs) of the rodent olfactory bulb glomeruli coordinating the activation of glomerular interneurons and mitral cells via dendrodendritic excitation. However, as bursting has variable significance at axodendritic cortical synapses, it is not clear if ETC bursting imparts a specific functional advantage over the preliminary spike in dendrodendritic synaptic networks. To answer this question, we investigated the influence of single ETC bursts and spikes with the in vitro rat olfactory bulb preparation at different levels of processing, via calcium imaging of presynaptic ETC dendrites, dual electrical recording of ETC -interneuron synaptic pairs, and multicellular calcium imaging of ETC-induced population activity. Our findings supported single ETC bursts, versus single spikes, driving robust presynaptic calcium signaling, which in turn was associated with profound extension of the initial monosynaptic spike-driven dendrodendritic excitatory postsynaptic potential. This extension could be driven by either the spike-dependent or spike-independent components of the burst. At the population level, burst-induced excitation was more widespread and reliable compared with single spikes. This further supports the ETC network, in part due to a functional advantage of bursting at excitatory dendrodendritic synapses, coordinating synchronous activity at behaviorally relevant frequencies related to odor processing in vivo.
Collapse
Affiliation(s)
- Arjun V Masurkar
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA.
| | | |
Collapse
|
50
|
Igelström KM, Shirley CH, Heyward PM. Low-magnesium medium induces epileptiform activity in mouse olfactory bulb slices. J Neurophysiol 2011; 106:2593-605. [PMID: 21832029 DOI: 10.1152/jn.00601.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Magnesium-free medium can be used in brain slice studies to enhance glutamate receptor function, but this manipulation causes seizure-like activity in many cortical areas. The rodent olfactory bulb (OB) slice is a popular preparation, and potentially ictogenic ionic conditions have often been used to study odor processing. We studied low Mg(2+)-induced epileptiform discharges in mouse OB slices using extracellular and whole cell electrophysiological recordings. Low-Mg(2+) medium induced two distinct types of epileptiform activity: an intraglomerular delta-frequency oscillation resembling slow sniff-induced activity and minute-long seizure-like events (SLEs) consisting of large negative-going field potentials accompanied by sustained depolarization of output neurons. SLEs were dependent on N-methyl-D-aspartate receptors and sodium currents and were facilitated by α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors. The events were initiated in the glomerular layer and propagated laterally through the external plexiform layer at a slow time scale. Our findings confirm that low-Mg(2+) medium should be used with caution in OB slices. Furthermore, the SLEs resembled the so-called slow direct current (DC) shift of clinical and experimental seizures, which has recently been recognized as being of great clinical importance. The OB slice may therefore provide a robust and unique in vitro model of acute seizures in which mechanisms of epileptiform DC shifts can be studied in isolation from fast oscillations.
Collapse
Affiliation(s)
- Kajsa M Igelström
- Dept. of Physiology, Univ. of Otago, PO Box 913, Dunedin 9054, New Zealand.
| | | | | |
Collapse
|