1
|
Chen O, Jiang C, Berta T, Gray B, Furutani K, Sullenger BA, Ji RR. MicroRNA let-7b enhances spinal cord nociceptive synaptic transmission and induces acute and persistent pain through neuronal and microglial signaling. Pain 2024; 165:1824-1839. [PMID: 38452223 PMCID: PMC11257826 DOI: 10.1097/j.pain.0000000000003206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/02/2024] [Indexed: 03/09/2024]
Abstract
ABSTRACT Secreted microRNAs (miRNAs) have been detected in various body fluids including the cerebrospinal fluid, yet their direct role in regulating synaptic transmission remains uncertain. We found that intrathecal injection of low dose of let-7b (1 μg) induced short-term (<24 hours) mechanical allodynia and heat hyperalgesia, a response that is compromised in Tlr7-/- or Trpa1-/- mice. Ex vivo and in vivo calcium imaging in GCaMP6-report mice revealed increased calcium signal in spinal cord afferent terminals and doral root ganglion/dorsal root ganglia neurons following spinal perfusion and intraplantar injection of let-7b. Patch-clamp recordings also demonstrated enhanced excitatory synaptic transmission (miniature excitatory postsynaptic currents [EPSCs]) in spinal nociceptive neurons following let-7b perfusion or optogenetic activation of axonal terminals. The elevation in spinal calcium signaling and EPSCs was dependent on the presence of toll-like receptor-7 (TLR7) and transient receptor potential ion channel subtype A1 (TRPA1). In addition, endogenous let-7b is enriched in spinal cord synaptosome, and peripheral inflammation increased let-7b in doral root ganglion/dorsal root ganglia neurons, spinal cord tissue, and the cerebrospinal fluid. Notably, let-7b antagomir inhibited inflammatory pain and inflammation-induced synaptic plasticity (EPSC increase), suggesting an endogenous role of let-7b in regulating pain and synaptic transmission. Furthermore, intrathecal injection of let-7b, at a higher dose (10 μg), induced persistent mechanical allodynia for >2 weeks, which was abolished in Tlr7-/- mice. The high dose of let-7b also induced microgliosis in the spinal cord. Of interest, intrathecal minocycline only inhibited let-7b-induced mechanical allodynia in male but not female mice. Our findings indicate that the secreted microRNA let-7b has the capacity to provoke pain through both neuronal and glial signaling, thereby establishing miRNA as an emerging neuromodulator.
Collapse
Affiliation(s)
- Ouyang Chen
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, NC 27710, USA
| | - Changyu Jiang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, NC 27710, USA
| | - Temugin Berta
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, NC 27710, USA
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, Ohio, OH 45267, USA
| | - Bethany Gray
- Department of Surgery, Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, NC 27710, USA
| | - Kenta Furutani
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, NC 27710, USA
| | - Bruce A. Sullenger
- Department of Surgery, Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, NC 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, NC 27710, USA
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, NC 27710, USA
| |
Collapse
|
2
|
Fischer C, Schreiber Y, Nitsch R, Vogt J, Thomas D, Geisslinger G, Tegeder I. Lysophosphatidic Acid Receptors LPAR5 and LPAR2 Inversely Control Hydroxychloroquine-Evoked Itch and Scratching in Mice. Int J Mol Sci 2024; 25:8177. [PMID: 39125747 PMCID: PMC11312285 DOI: 10.3390/ijms25158177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Lysophosphatidic acids (LPAs) evoke nociception and itch in mice and humans. In this study, we assessed the signaling paths. Hydroxychloroquine was injected intradermally to evoke itch in mice, which evoked an increase of LPAs in the skin and in the thalamus, suggesting that peripheral and central LPA receptors (LPARs) were involved in HCQ-evoked pruriception. To unravel the signaling paths, we assessed the localization of candidate genes and itching behavior in knockout models addressing LPAR5, LPAR2, autotaxin/ENPP2 and the lysophospholipid phosphatases, as well as the plasticity-related genes Prg1/LPPR4 and Prg2/LPPR3. LacZ reporter studies and RNAscope revealed LPAR5 in neurons of the dorsal root ganglia (DRGs) and in skin keratinocytes, LPAR2 in cortical and thalamic neurons, and Prg1 in neuronal structures of the dorsal horn, thalamus and SSC. HCQ-evoked scratching behavior was reduced in sensory neuron-specific Advillin-LPAR5-/- mice (peripheral) but increased in LPAR2-/- and Prg1-/- mice (central), and it was not affected by deficiency of glial autotaxin (GFAP-ENPP2-/-) or Prg2 (PRG2-/-). Heat and mechanical nociception were not affected by any of the genotypes. The behavior suggested that HCQ-mediated itch involves the activation of peripheral LPAR5, which was supported by reduced itch upon treatment with an LPAR5 antagonist and autotaxin inhibitor. Further, HCQ-evoked calcium fluxes were reduced in primary sensory neurons of Advillin-LPAR5-/- mice. The results suggest that LPA-mediated itch is primarily mediated via peripheral LPAR5, suggesting that a topical LPAR5 blocker might suppress "non-histaminergic" itch.
Collapse
Affiliation(s)
- Caroline Fischer
- Institute for Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.F.); (D.T.); (G.G.)
| | - Yannick Schreiber
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt am Main, Germany;
| | - Robert Nitsch
- Institute for Translational Neuroscience, Medical Faculty, WWU Münster, 48149 Münster, Germany;
| | - Johannes Vogt
- Department of Molecular and Translational Neurosciences, Institute for Anatomy and Center of Molecular Medicine Cologne (CMMC), and Cologne Excellence Cluster for Aging associated Diseases (CECAD), University of Cologne, 50923 Köln, Germany;
| | - Dominique Thomas
- Institute for Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.F.); (D.T.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt am Main, Germany;
| | - Gerd Geisslinger
- Institute for Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.F.); (D.T.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt am Main, Germany;
- Fraunhofer Cluster of Excellence of Immune Mediated Diseases (CIMD), 60596 Frankfurt am Main, Germany
| | - Irmgard Tegeder
- Institute for Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.F.); (D.T.); (G.G.)
| |
Collapse
|
3
|
Yoshioka N, Kurose M, Sano H, Tran DM, Chiken S, Tainaka K, Yamamura K, Kobayashi K, Nambu A, Takebayashi H. Sensory-motor circuit is a therapeutic target for dystonia musculorum mice, a model of hereditary sensory and autonomic neuropathy 6. SCIENCE ADVANCES 2024; 10:eadj9335. [PMID: 39058787 PMCID: PMC11277474 DOI: 10.1126/sciadv.adj9335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
Mutations in Dystonin (DST), which encodes cytoskeletal linker proteins, cause hereditary sensory and autonomic neuropathy 6 (HSAN-VI) in humans and the dystonia musculorum (dt) phenotype in mice; however, the neuronal circuit underlying the HSAN-VI and dt phenotype is unresolved. dt mice exhibit dystonic movements accompanied by the simultaneous contraction of agonist and antagonist muscles and postnatal lethality. Here, we identified the sensory-motor circuit as a major causative neural circuit using a gene trap system that enables neural circuit-selective inactivation and restoration of Dst by Cre-mediated recombination. Sensory neuron-selective Dst deletion led to motor impairment, degeneration of proprioceptive sensory neurons, and disruption of the sensory-motor circuit. Restoration of Dst expression in sensory neurons using Cre driver mice or a single postnatal injection of Cre-expressing adeno-associated virus ameliorated sensory degeneration and improved abnormal movements. These findings demonstrate that the sensory-motor circuit is involved in the movement disorders in dt mice and that the sensory circuit is a therapeutic target for HSAN-VI.
Collapse
Affiliation(s)
- Nozomu Yoshioka
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Transdisciplinary Research Programs, Niigata University, Niigata, Japan
| | - Masayuki Kurose
- Department of Physiology, School of Dentistry, Iwate Medical University, Yahaba, Japan
- Division of Oral Physiology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiromi Sano
- Division of System Neurophysiology, National Institute for Physiological Sciences, Okazaki, Japan
- Physiological Sciences, SOKENDAI, Okazaki, Japan
- Division of Behavioral Neuropharmacology, International Center for Brain Science, Fujita Health University, Toyoake, Japan
| | - Dang Minh Tran
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Satomi Chiken
- Division of System Neurophysiology, National Institute for Physiological Sciences, Okazaki, Japan
- Physiological Sciences, SOKENDAI, Okazaki, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kensuke Yamamura
- Division of Oral Physiology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, Japan
| | - Atsushi Nambu
- Division of System Neurophysiology, National Institute for Physiological Sciences, Okazaki, Japan
- Physiological Sciences, SOKENDAI, Okazaki, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Center for Coordination of Research Facilities, Niigata University, Niigata, Japan
| |
Collapse
|
4
|
Pavlidis P, Tseriotis VS, Papadopoulou K, Karachrysafi S, Sardeli C, Gouveris H, Malliou F, Kavvadas D, Papamitsou T, Sioga A, Anastasiadou P, Kouvelas D. Role of Memantine in Limiting Cochleotoxicity in Rats. Indian J Otolaryngol Head Neck Surg 2024; 76:2464-2473. [PMID: 38883494 PMCID: PMC11169147 DOI: 10.1007/s12070-024-04521-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/08/2024] [Indexed: 06/18/2024] Open
Abstract
Οur aim was to test whether amikacin's well-known cochleotoxic effects could be suppressed, depending on whether an NMDA-antagonist (memantine) was administered simultaneously with or after amikacin treatment. Forty Wistar rats were used in this experiment. Ten rats acted as controls and received no medication (group A). Amikacin (200 mg/kg) was administered intraperitoneally (i.p.) once daily for 14 days to 10 animals in group B; amikacin (200 mg/kg) was administered concurrently with memantine (10 mg/kg, i.p., once daily) to the same 10 animals in group C. Group D was given intraperitoneal memantine (10 mg/kg, once daily) for 14 days following a 2-week amikacin treatment. The cochlear activity of the right ear was tested using DPOAE in conscious animals. All animals were sacrificed at the conclusion of the experiment and both cochleae were collected for histological and immunohistochemical analysis. All groups treated with amikacin showed decreased cochlear activity, as testified by decreased DPOAE-amplitudes compared to the pre-treatment state. In the rats of group B, the DPOAE reduction was more pronounced. On histologic exam, the cochlear structures of group C rats and, although to a lesser extent, group D rats showed less severe cochlea damage. Memantine plays a protective role, resulting in restoring partially cochlear structures when administered either simultaneously with or after completion of amikacin i.p. treatment in rats.
Collapse
Affiliation(s)
- Pavlos Pavlidis
- Department of Otorhinolarhingology / Head & Neck Surgery, University Medical Center Mainz, Mainz, Germany
- Laboratory for Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University Thessaloniki, Thessaloniki, Greece
| | - Vasilis Spyridon Tseriotis
- Laboratory for Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University Thessaloniki, Thessaloniki, Greece
| | - Kyriaki Papadopoulou
- Laboratory of Histology-Embryology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sophia Karachrysafi
- Laboratory of Histology-Embryology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Chrysanthi Sardeli
- Laboratory for Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University Thessaloniki, Thessaloniki, Greece
| | - Haralampos Gouveris
- Department of Otorhinolarhingology / Head & Neck Surgery, University Medical Center Mainz, Mainz, Germany
| | - Faye Malliou
- Laboratory for Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Kavvadas
- Laboratory of Histology-Embryology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theodora Papamitsou
- Laboratory of Histology-Embryology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonia Sioga
- Laboratory of Histology-Embryology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Penelope Anastasiadou
- Department of Oral Medicine/Pathology, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Kouvelas
- Laboratory for Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
5
|
Hwang J, Okada J, Pessin JE, Chua SC, Schwartz GJ, Jo YH. Liver-innervating vagal sensory neurons play an indispensable role in the development of hepatic steatosis and anxiety-like behavior in mice fed a high-fat diet. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.20.581228. [PMID: 38659949 PMCID: PMC11042226 DOI: 10.1101/2024.02.20.581228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Background and Aims The visceral organ-brain axis, mediated by vagal sensory neurons in the vagal nerve ganglion, is essential for maintaining various physiological functions. In this study, we investigated the impact of liver-projecting vagal sensory neurons on energy balance, hepatic steatosis, and anxiety-like behavior in mice under obesogenic conditions. Methods We performed single-nucleus RNA sequencing of vagal sensory neurons innervating the liver. Based on our snRNA-Seq results, we used the Avil CreERT2 strain to identify vagal sensory neurons that innervate the liver. Results A small subset of polymodal sensory neurons innervating the liver was located in the left and right ganglia, projecting centrally to the nucleus of the tractus solitarius, area postrema, and dorsal motor nucleus of the vagus, and peripherally to the periportal areas in the liver. Male and female control mice developed diet-induced obesity (DIO) during high-fat diet feeding. Deleting liver-projecting advillin-positive vagal sensory neurons prevented DIO in male and female mice, and these outcomes are associated with increased energy expenditure. Although males and females exhibited improved glucose homeostasis following disruption of liver-projecting vagal sensory neurons, only male mice displayed increased insulin sensitivity. The loss of liver-projecting vagal sensory neurons limited the progression of hepatic steatosis in male and female mice fed a steatogenic diet. Finally, mice lacking liver-innervating vagal sensory neurons exhibited less anxiety-like behavior compared to the control mice. Conclusions The liver-brain axis contributes to the regulation of energy balance, glucose tolerance, hepatic steatosis, and anxiety-like behavior depending on the nutrient status in healthy and obesogenic conditions.
Collapse
|
6
|
Malapert P, Robert G, Brunet E, Chemin J, Bourinet E, Moqrich A. A novel Na v1.8-FLPo driver mouse for intersectional genetics to uncover the functional significance of primary sensory neuron diversity. iScience 2024; 27:109396. [PMID: 38510134 PMCID: PMC10952036 DOI: 10.1016/j.isci.2024.109396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/08/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
The recent development of single-cell and single-nucleus RNA sequencing has highlighted the extraordinary diversity of dorsal root ganglia neurons. However, the few available genetic tools limit our understanding of the functional significance of this heterogeneity. We generated a new mouse line expressing the flippase recombinase from the scn10a locus. By crossing Nav1.8Ires-FLPo mice with the AdvillinCre and RC::FL-hM3Dq mouse lines in an intersectional genetics approach, we were able to obtain somatodendritic expression of hM3Dq-mCherry selectively in the Nav1.8 lineage. The bath application of clozapine N-oxide triggered strong calcium responses selectively in mCherry+ neurons. The intraplantar injection of CNO caused robust flinching, shaking, and biting responses accompanied by strong cFos activation in the ipsilateral lumbar spinal cord. The Nav1.8Ires-FLPo mouse model will be a valuable tool for extending our understanding of the in vivo functional specialization of neuronal subsets of the Nav1.8 lineage for which inducible Cre lines are available.
Collapse
Affiliation(s)
- Pascale Malapert
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, case 907, 13288 Marseille Cedex 09, Marseille, France
| | - Guillaume Robert
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, case 907, 13288 Marseille Cedex 09, Marseille, France
| | - Elena Brunet
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, case 907, 13288 Marseille Cedex 09, Marseille, France
| | - Jean Chemin
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Emmanuel Bourinet
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Aziz Moqrich
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, case 907, 13288 Marseille Cedex 09, Marseille, France
| |
Collapse
|
7
|
Huey EL, Turecek J, Delisle MM, Mazor O, Romero GE, Dua M, Sarafis ZK, Hobble A, Booth KT, Goodrich LV, Corey DP, Ginty DD. The auditory midbrain mediates tactile vibration sensing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584077. [PMID: 38496510 PMCID: PMC10942453 DOI: 10.1101/2024.03.08.584077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Vibrations are ubiquitous in nature, shaping behavior across the animal kingdom. For mammals, mechanical vibrations acting on the body are detected by mechanoreceptors of the skin and deep tissues and processed by the somatosensory system, while sound waves traveling through air are captured by the cochlea and encoded in the auditory system. Here, we report that mechanical vibrations detected by the body's Pacinian corpuscle neurons, which are unique in their ability to entrain to high frequency (40-1000 Hz) environmental vibrations, are prominently encoded by neurons in the lateral cortex of the inferior colliculus (LCIC) of the midbrain. Remarkably, most LCIC neurons receive convergent Pacinian and auditory input and respond more strongly to coincident tactile-auditory stimulation than to either modality alone. Moreover, the LCIC is required for behavioral responses to high frequency mechanical vibrations. Thus, environmental vibrations captured by Pacinian corpuscles are encoded in the auditory midbrain to mediate behavior.
Collapse
|
8
|
Qi L, Iskols M, Shi D, Reddy P, Walker C, Lezgiyeva K, Voisin T, Pawlak M, Kuchroo VK, Chiu IM, Ginty DD, Sharma N. A mouse DRG genetic toolkit reveals morphological and physiological diversity of somatosensory neuron subtypes. Cell 2024; 187:1508-1526.e16. [PMID: 38442711 PMCID: PMC10947841 DOI: 10.1016/j.cell.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/12/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
Dorsal root ganglia (DRG) somatosensory neurons detect mechanical, thermal, and chemical stimuli acting on the body. Achieving a holistic view of how different DRG neuron subtypes relay neural signals from the periphery to the CNS has been challenging with existing tools. Here, we develop and curate a mouse genetic toolkit that allows for interrogating the properties and functions of distinct cutaneous targeting DRG neuron subtypes. These tools have enabled a broad morphological analysis, which revealed distinct cutaneous axon arborization areas and branching patterns of the transcriptionally distinct DRG neuron subtypes. Moreover, in vivo physiological analysis revealed that each subtype has a distinct threshold and range of responses to mechanical and/or thermal stimuli. These findings support a model in which morphologically and physiologically distinct cutaneous DRG sensory neuron subtypes tile mechanical and thermal stimulus space to collectively encode a wide range of natural stimuli.
Collapse
Affiliation(s)
- Lijun Qi
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Michael Iskols
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - David Shi
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Pranav Reddy
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Christopher Walker
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Karina Lezgiyeva
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Tiphaine Voisin
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Mathias Pawlak
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Vijay K Kuchroo
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| | - Nikhil Sharma
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
9
|
Tasnim A, Alkislar I, Hakim R, Turecek J, Abdelaziz A, Orefice LL, Ginty DD. The developmental timing of spinal touch processing alterations predicts behavioral changes in genetic mouse models of autism spectrum disorders. Nat Neurosci 2024; 27:484-496. [PMID: 38233682 PMCID: PMC10917678 DOI: 10.1038/s41593-023-01552-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024]
Abstract
Altered somatosensory reactivity is frequently observed among individuals with autism spectrum disorders (ASDs). Here, we report that although multiple mouse models of ASD exhibit aberrant somatosensory behaviors in adulthood, some models exhibit altered tactile reactivity as early as embryonic development, whereas in others, altered reactivity emerges later in life. Additionally, tactile overreactivity during neonatal development is associated with anxiety-like behaviors and social behavior deficits in adulthood, whereas tactile overreactivity that emerges later in life is not. The locus of circuit disruption dictates the timing of aberrant tactile behaviors, as altered feedback or presynaptic inhibition of peripheral mechanosensory neurons leads to abnormal tactile reactivity during neonatal development, whereas disruptions in feedforward inhibition in the spinal cord lead to touch reactivity alterations that manifest later in life. Thus, the developmental timing of aberrant touch processing can predict the manifestation of ASD-associated behaviors in mouse models, and differential timing of sensory disturbance onset may contribute to phenotypic diversity across individuals with ASD.
Collapse
Affiliation(s)
- Aniqa Tasnim
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Ilayda Alkislar
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Richard Hakim
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Josef Turecek
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Amira Abdelaziz
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Lauren L Orefice
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Rankin G, Chirila AM, Emanuel AJ, Zhang Z, Woolf CJ, Drugowitsch J, Ginty DD. Nerve injury disrupts temporal processing in the spinal cord dorsal horn through alterations in PV + interneurons. Cell Rep 2024; 43:113718. [PMID: 38294904 PMCID: PMC11101906 DOI: 10.1016/j.celrep.2024.113718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/13/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
How mechanical allodynia following nerve injury is encoded in patterns of neural activity in the spinal cord dorsal horn (DH) remains incompletely understood. We address this in mice using the spared nerve injury model of neuropathic pain and in vivo electrophysiological recordings. Surprisingly, despite dramatic behavioral over-reactivity to mechanical stimuli following nerve injury, an overall increase in sensitivity or reactivity of DH neurons is not observed. We do, however, observe a marked decrease in correlated neural firing patterns, including the synchrony of mechanical stimulus-evoked firing, across the DH. Alterations in DH temporal firing patterns are recapitulated by silencing DH parvalbumin+ (PV+) interneurons, previously implicated in mechanical allodynia, as are allodynic pain-like behaviors. These findings reveal decorrelated DH network activity, driven by alterations in PV+ interneurons, as a prominent feature of neuropathic pain and suggest restoration of proper temporal activity as a potential therapeutic strategy to treat chronic neuropathic pain.
Collapse
Affiliation(s)
- Genelle Rankin
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Anda M Chirila
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Alan J Emanuel
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Zihe Zhang
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Clifford J Woolf
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jan Drugowitsch
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - David D Ginty
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Silverman JB, Vega PN, Tyska MJ, Lau KS. Intestinal Tuft Cells: Morphology, Function, and Implications for Human Health. Annu Rev Physiol 2024; 86:479-504. [PMID: 37863104 PMCID: PMC11193883 DOI: 10.1146/annurev-physiol-042022-030310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Tuft cells are a rare and morphologically distinct chemosensory cell type found throughout many organs, including the gastrointestinal tract. These cells were identified by their unique morphologies distinguished by large apical protrusions. Ultrastructural data have begun to describe the molecular underpinnings of their cytoskeletal features, and tuft cell-enriched cytoskeletal proteins have been identified, although the connection of tuft cell morphology to tuft cell functionality has not yet been established. Furthermore, tuft cells display variations in function and identity between and within tissues, leading to the delineation of distinct tuft cell populations. As a chemosensory cell type, they display receptors that are responsive to ligands specific for their environment. While many studies have demonstrated the tuft cell response to protists and helminths in the intestine, recent research has highlighted other roles of tuft cells as well as implicated tuft cells in other disease processes including inflammation, cancer, and viral infections. Here, we review the literature on the cytoskeletal structure of tuft cells. Additionally, we focus on new research discussing tuft cell lineage, ligand-receptor interactions, tuft cell tropism, and the role of tuft cells in intestinal disease. Finally, we discuss the implication of tuft cell-targeted therapies in human health and how the morphology of tuft cells may contribute to their functionality.
Collapse
Affiliation(s)
- Jennifer B Silverman
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; ,
| | - Paige N Vega
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; ,
| | - Matthew J Tyska
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; ,
| | - Ken S Lau
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; ,
| |
Collapse
|
12
|
Kaplan HS, Logeman BL, Zhang K, Santiago C, Sohail N, Naumenko S, Ho Sui SJ, Ginty DD, Ren B, Dulac C. Sensory Input, Sex, and Function Shape Hypothalamic Cell Type Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576835. [PMID: 38328205 PMCID: PMC10849564 DOI: 10.1101/2024.01.23.576835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Mammalian behavior and physiology undergo dramatic changes in early life. Young animals rely on conspecifics to meet their homeostatic needs, until weaning and puberty initiate nutritional independence and sex-specific social interactions, respectively. How neuronal populations regulating homeostatic functions and social behaviors develop and mature during these transitions remains unclear. We used paired transcriptomic and chromatin accessibility profiling to examine the developmental trajectories of neuronal populations in the hypothalamic preoptic region, where cell types with key roles in physiological and behavioral control have been identified1-6. These data reveal a remarkable diversity of developmental trajectories shaped by the sex of the animal, and the location and behavioral or physiological function of the corresponding cell types. We identify key stages of preoptic development, including the perinatal emergence of sex differences, postnatal maturation and subsequent refinement of signaling networks, and nonlinear transcriptional changes accelerating at the time of weaning and puberty. We assessed preoptic development in various sensory mutants and find a major role for vomeronasal sensing in the timing of preoptic cell type maturation. These results provide novel insights into the development of neurons controlling homeostatic functions and social behaviors and lay ground for examining the dynamics of these functions in early life.
Collapse
Affiliation(s)
- Harris S. Kaplan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Brandon L. Logeman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Kai Zhang
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
- Current address: Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
| | - Celine Santiago
- Department of Neurobiology, Harvard Medical School, Howard Hughes Medical Institute, 220 Longwood Ave, Boston, MA, 02115, USA
| | - Noor Sohail
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, MA, USA
| | - Serhiy Naumenko
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, MA, USA
- Newborn Screening Ontario, Ottawa, ON, Canada
| | - Shannan J. Ho Sui
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, MA, USA
| | - David D. Ginty
- Department of Neurobiology, Harvard Medical School, Howard Hughes Medical Institute, 220 Longwood Ave, Boston, MA, 02115, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
13
|
Kim HR, Lee HJ, Jeon Y, Jang SY, Shin YK, Yun JH, Park HJ, Koh H, Lee KE, Shin JE, Park HT. Targeting SARM1 improves autophagic stress-induced axonal neuropathy. Autophagy 2024; 20:29-44. [PMID: 37561040 PMCID: PMC10761069 DOI: 10.1080/15548627.2023.2244861] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
ABBREVIATIONS AAV: adeno-associated virus; ATF3: activating transcription factor 3; ATG7: autophagy related 7; AVIL: advillin; cADPR: cyclic ADP ribose; CALC: calcitonin/calcitonin-related polypeptide; CMT: Charcot-Marie-Tooth disease; cKO: conditional knockout; DEG: differentially expressed gene; DRG: dorsal root ganglion; FE-SEM: field emission scanning electron microscopy; IF: immunofluorescence; NCV: nerve conduction velocity; PVALB: parvalbumin; RAG: regeneration-associated gene; ROS: reactive oxygen species; SARM1: sterile alpha and HEAT/Armadillo motif containing 1; SYN1: synapsin I.
Collapse
Affiliation(s)
- Hye Ran Kim
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience and Translational Biomedical Sciences, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Hye Jin Lee
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience and Translational Biomedical Sciences, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Yewon Jeon
- Department of Life Sciences, Division of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - So Young Jang
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience and Translational Biomedical Sciences, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Yoon Kyoung Shin
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience and Translational Biomedical Sciences, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Jean Ho Yun
- Department of Biochemistry, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Hye Ji Park
- Neuroscience Translational Research Solution Center, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Hyongjong Koh
- Neuroscience Translational Research Solution Center, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Kyung Eun Lee
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Jung Eun Shin
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience and Translational Biomedical Sciences, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Hwan Tae Park
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience and Translational Biomedical Sciences, Dong-A University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
14
|
Koutsioumpa C, Santiago C, Jacobs K, Lehnert BP, Barrera V, Hutchinson JN, Schmelyun D, Lehoczky JA, Paul DL, Ginty DD. Skin-type-dependent development of murine mechanosensory neurons. Dev Cell 2023; 58:2032-2047.e6. [PMID: 37607547 PMCID: PMC10615785 DOI: 10.1016/j.devcel.2023.07.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/26/2023] [Accepted: 07/27/2023] [Indexed: 08/24/2023]
Abstract
Mechanosensory neurons innervating the skin underlie our sense of touch. Fast-conducting, rapidly adapting mechanoreceptors innervating glabrous (non-hairy) skin form Meissner corpuscles, while in hairy skin, they associate with hair follicles, forming longitudinal lanceolate endings. How mechanoreceptors develop axonal endings appropriate for their skin targets is unknown. We report that mechanoreceptor morphologies across different skin regions are indistinguishable during early development but diverge post-natally, in parallel with skin maturation. Neurons terminating along the glabrous and hairy skin border exhibit hybrid morphologies, forming both Meissner corpuscles and lanceolate endings. Additionally, molecular profiles of neonatal glabrous and hairy skin-innervating neurons largely overlap. In mouse mutants with ectopic glabrous skin, mechanosensory neurons form end-organs appropriate for the altered skin type. Finally, BMP5 and BMP7 are enriched in glabrous skin, and signaling through type I bone morphogenetic protein (BMP) receptors in neurons is critical for Meissner corpuscle morphology. Thus, mechanoreceptor morphogenesis is flexibly instructed by target tissues.
Collapse
Affiliation(s)
- Charalampia Koutsioumpa
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Celine Santiago
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Kiani Jacobs
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Brendan P Lehnert
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Victor Barrera
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - John N Hutchinson
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Dhane Schmelyun
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Jessica A Lehoczky
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - David L Paul
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Ryu S, Liu X, Guo T, Guo Z, Zhang J, Cao YQ. Peripheral CCL2-CCR2 signalling contributes to chronic headache-related sensitization. Brain 2023; 146:4274-4291. [PMID: 37284790 PMCID: PMC10545624 DOI: 10.1093/brain/awad191] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/19/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Migraine, especially chronic migraine, is highly debilitating and still lacks effective treatment. The persistent headache arises from activation and sensitization of primary afferent neurons in the trigeminovascular pathway, but the underlying mechanisms remain incompletely understood. Animal studies indicate that signalling through chemokine C-C motif ligand 2 (CCL2) and C-C motif chemokine receptor 2 (CCR2) mediates the development of chronic pain after tissue or nerve injury. Some migraine patients had elevated CCL2 levels in CSF or cranial periosteum. However, whether the CCL2-CCR2 signalling pathway contributes to chronic migraine is not clear. Here, we modelled chronic headache with repeated administration of nitroglycerin (NTG, a reliable migraine trigger in migraineurs) and found that both Ccl2 and Ccr2 mRNA were upregulated in dura and trigeminal ganglion (TG) tissues that are implicated in migraine pathophysiology. In Ccl2 and Ccr2 global knockout mice, repeated NTG administration did not evoke acute or persistent facial skin hypersensitivity as in wild-type mice. Intraperitoneal injection of CCL2 neutralizing antibodies inhibited chronic headache-related behaviours induced by repeated NTG administration and repetitive restraint stress, suggesting that the peripheral CCL2-CCR2 signalling mediates headache chronification. We found that CCL2 was mainly expressed in TG neurons and cells associated with dura blood vessels, whereas CCR2 was expressed in subsets of macrophages and T cells in TG and dura but not in TG neurons under both control and disease states. Deletion of Ccr2 gene in primary afferent neurons did not alter NTG-induced sensitization, but eliminating CCR2 expression in either T cells or myeloid cells abolished NTG-induced behaviours, indicating that both CCL2-CCR2 signalling in T cells and macrophages are required to establish chronic headache-related sensitization. At cellular level, repeated NTG administration increased the number of TG neurons that responded to calcitonin-gene-related peptide (CGRP) and pituitary adenylate cyclase activating polypeptide (PACAP) as well as the production of CGRP in wild-type but not Ccr2 global knockout mice. Lastly, co-administration of CCL2 and CGRP neutralizing antibodies was more effective in reversing NTG-induced behaviours than individual antibodies. Taken together, these results suggest that migraine triggers activate CCL2-CCR2 signalling in macrophages and T cells. This consequently enhances both CGRP and PACAP signalling in TG neurons, ultimately leading to persistent neuronal sensitization underlying chronic headache. Our work not only identifies the peripheral CCL2 and CCR2 as potential targets for chronic migraine therapy, but also provides proof-of-concept that inhibition of both peripheral CGRP and CCL2-CCR2 signalling is more effective than targeting either pathway alone.
Collapse
Affiliation(s)
- Sun Ryu
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Campus Box MSC 8054-86-05, St. Louis, MO 63110, USA
| | - Xuemei Liu
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Campus Box MSC 8054-86-05, St. Louis, MO 63110, USA
| | - Tingting Guo
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Campus Box MSC 8054-86-05, St. Louis, MO 63110, USA
| | - Zhaohua Guo
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Campus Box MSC 8054-86-05, St. Louis, MO 63110, USA
| | - Jintao Zhang
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Campus Box MSC 8054-86-05, St. Louis, MO 63110, USA
| | - Yu-Qing Cao
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Campus Box MSC 8054-86-05, St. Louis, MO 63110, USA
| |
Collapse
|
16
|
Santiago C, Sharma N, Africawala N, Siegrist J, Handler A, Tasnim A, Anjum R, Turecek J, Lehnert BP, Renauld S, Nolan-Tamariz M, Iskols M, Magee AR, Paradis S, Ginty DD. Activity-dependent development of the body's touch receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559109. [PMID: 37790437 PMCID: PMC10542488 DOI: 10.1101/2023.09.23.559109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
We report a role for activity in the development of the primary sensory neurons that detect touch. Genetic deletion of Piezo2, the principal mechanosensitive ion channel in somatosensory neurons, caused profound changes in the formation of mechanosensory end organ structures and altered somatosensory neuron central targeting. Single cell RNA sequencing of Piezo2 conditional mutants revealed changes in gene expression in the sensory neurons activated by light mechanical forces, whereas other neuronal classes were less affected. To further test the role of activity in mechanosensory end organ development, we genetically deleted the voltage-gated sodium channel Nav1.6 (Scn8a) in somatosensory neurons throughout development and found that Scn8a mutants also have disrupted somatosensory neuron morphologies and altered electrophysiological responses to mechanical stimuli. Together, these findings indicate that mechanically evoked neuronal activity acts early in life to shape the maturation of the mechanosensory end organs that underlie our sense of gentle touch.
Collapse
Affiliation(s)
- Celine Santiago
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Nikhil Sharma
- Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Nusrat Africawala
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Julianna Siegrist
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Annie Handler
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Aniqa Tasnim
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Rabia Anjum
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA, 02453, USA
| | - Josef Turecek
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Brendan P. Lehnert
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Sophia Renauld
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael Nolan-Tamariz
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael Iskols
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Alexandra R. Magee
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Suzanne Paradis
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA, 02453, USA
| | - David D. Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
- Lead Contact
| |
Collapse
|
17
|
Vogel A, Ueberbach T, Wilken-Schmitz A, Hahnefeld L, Franck L, Weyer MP, Jungenitz T, Schmid T, Buchmann G, Freudenberg F, Brandes RP, Gurke R, Schwarzacher SW, Geisslinger G, Mittmann T, Tegeder I. Repetitive and compulsive behavior after Early-Life-Pain associated with reduced long-chain sphingolipid species. Cell Biosci 2023; 13:155. [PMID: 37635256 PMCID: PMC10463951 DOI: 10.1186/s13578-023-01106-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/13/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Pain in early life may impact on development and risk of chronic pain. We developed an optogenetic Cre/loxP mouse model of "early-life-pain" (ELP) using mice with transgenic expression of channelrhodopsin-2 (ChR2) under control of the Advillin (Avil) promoter, which drives expression of transgenes predominantly in isolectin B4 positive non-peptidergic nociceptors in postnatal mice. Avil-ChR2 (Cre +) and ChR2-flfl control mice were exposed to blue light in a chamber once daily from P1-P5 together with their Cre-negative mother. RESULTS ELP caused cortical hyperexcitability at P8-9 as assessed via multi-electrode array recordings that coincided with reduced expression of synaptic genes (RNAseq) including Grin2b, neurexins, piccolo and voltage gated calcium and sodium channels. Young adult (8-16 wks) Avil-ChR2 mice presented with nociceptive hypersensitivity upon heat or mechanical stimulation, which did not resolve up until one year of age. The persistent hypersensitivy to nociceptive stimuli was reflected by increased calcium fluxes in primary sensory neurons of aged mice (1 year) upon capsaicin stimulation. Avil-ChR2 mice behaved like controls in maze tests of anxiety, social interaction, and spatial memory but IntelliCage behavioral studies revealed repetitive nosepokes and corner visits and compulsive lickings. Compulsiveness at the behavioral level was associated with a reduction of sphingomyelin species in brain and plasma lipidomic studies. Behavioral studies were done with female mice. CONCLUSION The results suggest that ELP may predispose to chronic "pain" and compulsive psychopathology in part mediated by alterations of sphingolipid metabolism, which have been previously described in the context of addiction and psychiatric diseases.
Collapse
Affiliation(s)
- Alexandra Vogel
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Timo Ueberbach
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Annett Wilken-Schmitz
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596, Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596, Frankfurt, Germany
| | - Luisa Franck
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Marc-Philipp Weyer
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Tassilo Jungenitz
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt, Germany
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University, Frankfurt, Germany
- Partner Site Frankfurt, German Cancer Consortium (DKTK), Frankfurt, Germany
| | - Giulia Buchmann
- Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Florian Freudenberg
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University Hospital, Frankfurt, Germany
| | - Ralf P Brandes
- Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Robert Gurke
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596, Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596, Frankfurt, Germany
| | - Stephan W Schwarzacher
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596, Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596, Frankfurt, Germany
| | - Thomas Mittmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University, Frankfurt, Germany.
| |
Collapse
|
18
|
Pandey M, Zhang JH, Adikaram PR, Kittock C, Lue N, Awe A, Degner K, Jacob N, Staples J, Thomas R, Kohnen AB, Ganesan S, Kabat J, Chen CK, Simonds WF. Specific regulation of mechanical nociception by Gβ5 involves GABA-B receptors. JCI Insight 2023; 8:e134685. [PMID: 37219953 PMCID: PMC10371342 DOI: 10.1172/jci.insight.134685] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/19/2023] [Indexed: 05/24/2023] Open
Abstract
Mechanical, thermal, and chemical pain sensation is conveyed by primary nociceptors, a subset of sensory afferent neurons. The intracellular regulation of the primary nociceptive signal is an area of active study. We report here the discovery of a Gβ5-dependent regulatory pathway within mechanical nociceptors that restrains antinociceptive input from metabotropic GABA-B receptors. In mice with conditional knockout (cKO) of the gene that encodes Gβ5 (Gnb5) targeted to peripheral sensory neurons, we demonstrate the impairment of mechanical, thermal, and chemical nociception. We further report the specific loss of mechanical nociception in Rgs7-Cre+/- Gnb5fl/fl mice but not in Rgs9-Cre+/- Gnb5fl/fl mice, suggesting that Gβ5 might specifically regulate mechanical pain in regulator of G protein signaling 7-positive (Rgs7+) cells. Additionally, Gβ5-dependent and Rgs7-associated mechanical nociception is dependent upon GABA-B receptor signaling since both were abolished by treatment with a GABA-B receptor antagonist and since cKO of Gβ5 from sensory cells or from Rgs7+ cells potentiated the analgesic effects of GABA-B agonists. Following activation by the G protein-coupled receptor Mrgprd agonist β-alanine, enhanced sensitivity to inhibition by baclofen was observed in primary cultures of Rgs7+ sensory neurons harvested from Rgs7-Cre+/- Gnb5fl/fl mice. Taken together, these results suggest that the targeted inhibition of Gβ5 function in Rgs7+ sensory neurons might provide specific relief for mechanical allodynia, including that contributing to chronic neuropathic pain, without reliance on exogenous opioids.
Collapse
Affiliation(s)
- Mritunjay Pandey
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jian-Hua Zhang
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Poorni R. Adikaram
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Claire Kittock
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Nicole Lue
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Adam Awe
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Katherine Degner
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Nirmal Jacob
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jenna Staples
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Rachel Thomas
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Allison B. Kohnen
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Sundar Ganesan
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Juraj Kabat
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Ching-Kang Chen
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - William F. Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
19
|
Meltzer S, Boulanger KC, Chirila AM, Osei-Asante E, DeLisle M, Zhang Q, Kalish BT, Tasnim A, Huey EL, Fuller LC, Flaherty EK, Maniatis T, Garrett AM, Weiner JA, Ginty DD. γ-Protocadherins control synapse formation and peripheral branching of touch sensory neurons. Neuron 2023; 111:1776-1794.e10. [PMID: 37028432 PMCID: PMC10365546 DOI: 10.1016/j.neuron.2023.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 01/20/2023] [Accepted: 03/07/2023] [Indexed: 04/09/2023]
Abstract
Light touch sensation begins with activation of low-threshold mechanoreceptor (LTMR) endings in the skin and propagation of their signals to the spinal cord and brainstem. We found that the clustered protocadherin gamma (Pcdhg) gene locus, which encodes 22 cell-surface homophilic binding proteins, is required in somatosensory neurons for normal behavioral reactivity to a range of tactile stimuli. Developmentally, distinct Pcdhg isoforms mediate LTMR synapse formation through neuron-neuron interactions and peripheral axonal branching through neuron-glia interactions. The Pcdhgc3 isoform mediates homophilic interactions between sensory axons and spinal cord neurons to promote synapse formation in vivo and is sufficient to induce postsynaptic specializations in vitro. Moreover, loss of Pcdhgs and somatosensory synaptic inputs to the dorsal horn leads to fewer corticospinal synapses on dorsal horn neurons. These findings reveal essential roles for Pcdhg isoform diversity in somatosensory neuron synapse formation, peripheral axonal branching, and stepwise assembly of central mechanosensory circuitry.
Collapse
Affiliation(s)
- Shan Meltzer
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Katelyn C Boulanger
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Anda M Chirila
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Emmanuella Osei-Asante
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Michelle DeLisle
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Qiyu Zhang
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Brian T Kalish
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Aniqa Tasnim
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Erica L Huey
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Leah C Fuller
- Department of Biology and Iowa Neuroscience Institute, University of Iowa, 143 Biology Building, Iowa City, IA 52242, USA
| | - Erin K Flaherty
- Department of Biochemistry and Molecular Biophysics, Zuckerman Institute of Mind Brain and Behavior, Columbia University, New York, NY 10032, USA
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Zuckerman Institute of Mind Brain and Behavior, Columbia University, New York, NY 10032, USA
| | - Andrew M Garrett
- Department of Pharmacology and Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield St. 7322 Scott Hall, Detroit, MI 48201, USA
| | - Joshua A Weiner
- Department of Biology and Iowa Neuroscience Institute, University of Iowa, 143 Biology Building, Iowa City, IA 52242, USA
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Tasnim A, Alkislar I, Hakim R, Turecek J, Abdelaziz A, Orefice LL, Ginty DD. The developmental timing of spinal touch processing alterations and its relation to ASD-associated behaviors in mouse models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.539589. [PMID: 37214862 PMCID: PMC10197556 DOI: 10.1101/2023.05.09.539589] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Altered somatosensory reactivity is frequently observed among individuals with autism spectrum disorders (ASDs). Here, we report that while multiple mouse models of ASD exhibit aberrant somatosensory behaviors in adulthood, some models exhibit altered tactile reactivity as early as embryonic development, while in others, altered reactivity emerges later in life. Additionally, tactile over-reactivity during neonatal development is associated with anxiety-like behaviors and social interaction deficits in adulthood, whereas tactile over-reactivity that emerges later in life is not. The locus of circuit disruption dictates the timing of aberrant tactile behaviors: altered feedback or presynaptic inhibition of peripheral mechanosensory neurons leads to abnormal tactile reactivity during neonatal development, while disruptions in feedforward inhibition in the spinal cord lead to touch reactivity alterations that manifest later in life. Thus, the developmental timing of aberrant touch processing can predict the manifestation of ASD-associated behaviors in mouse models, and differential timing of sensory disturbance onset may contribute to phenotypic diversity across individuals with ASD.
Collapse
|
21
|
Qi L, Iskols M, Shi D, Reddy P, Walker C, Lezgiyeva K, Voisin T, Pawlak M, Kuchroo VK, Chiu I, Ginty DD, Sharma N. A DRG genetic toolkit reveals molecular, morphological, and functional diversity of somatosensory neuron subtypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.22.537932. [PMID: 37131664 PMCID: PMC10153270 DOI: 10.1101/2023.04.22.537932] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mechanical and thermal stimuli acting on the skin are detected by morphologically and physiologically distinct sensory neurons of the dorsal root ganglia (DRG). Achieving a holistic view of how this diverse neuronal population relays sensory information from the skin to the central nervous system (CNS) has been challenging with existing tools. Here, we used transcriptomic datasets of the mouse DRG to guide development and curation of a genetic toolkit to interrogate transcriptionally defined DRG neuron subtypes. Morphological analysis revealed unique cutaneous axon arborization areas and branching patterns of each subtype. Physiological analysis showed that subtypes exhibit distinct thresholds and ranges of responses to mechanical and/or thermal stimuli. The somatosensory neuron toolbox thus enables comprehensive phenotyping of most principal sensory neuron subtypes. Moreover, our findings support a population coding scheme in which the activation thresholds of morphologically and physiologically distinct cutaneous DRG neuron subtypes tile multiple dimensions of stimulus space.
Collapse
Affiliation(s)
- Lijun Qi
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - Michael Iskols
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - David Shi
- Department of Molecular Pharmacology and Therapeutics, Department of Systems Biology, Columbia University, New York, NY
| | - Pranav Reddy
- Department of Molecular Pharmacology and Therapeutics, Department of Systems Biology, Columbia University, New York, NY
| | - Christopher Walker
- Department of Molecular Pharmacology and Therapeutics, Department of Systems Biology, Columbia University, New York, NY
| | - Karina Lezgiyeva
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - Tiphaine Voisin
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - Mathias Pawlak
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Vijay K. Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Isaac Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - David D. Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - Nikhil Sharma
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
- Department of Molecular Pharmacology and Therapeutics, Department of Systems Biology, Columbia University, New York, NY
| |
Collapse
|
22
|
Wang P, Zhang Q, Dias FC, Suttle A, Dong X, Chen Y. TMEM100, a regulator of TRPV1-TRPA1 interaction, contributes to temporomandibular disorder pain. Front Mol Neurosci 2023; 16:1160206. [PMID: 37033371 PMCID: PMC10077888 DOI: 10.3389/fnmol.2023.1160206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
There is an unmet need to identify new therapeutic targets for temporomandibular disorder (TMD) pain because current treatments are limited and unsatisfactory. TMEM100, a two-transmembrane protein, was recently identified as a regulator to weaken the TRPA1-TRPV1 physical association, resulting in disinhibition of TRPA1 activity in sensory neurons. Recent studies have also shown that Tmem100, Trpa1, and Trpv1 mRNAs were upregulated in trigeminal ganglion (TG) after inflammation of the temporomandibular joint (TMJ) associated tissues. These findings raise a critical question regarding whether TMEM100 in TG neurons is involved in TMD pain via regulating the TRPA1-TRPV1 functional interaction. Here, using two mouse models of TMD pain induced by TMJ inflammation or masseter muscle injury, we found that global knockout or systemic inhibition of TRPA1 and TRPV1 attenuated pain. In line with their increased genes, mice exhibited significant upregulation of TMEM100, TRPA1, and TRPV1 at the protein levels in TG neurons after TMD pain. Importantly, TMEM100 co-expressed with TRPA1 and TRPV1 in TG neurons-innervating the TMJ and masseter muscle and their co-expression was increased after TMD pain. Moreover, the enhanced activity of TRPA1 in TG neurons evoked by TMJ inflammation or masseter muscle injury was suppressed by inhibition of TMEM100. Selective deletion of Tmem100 in TG neurons or local administration of TMEM100 inhibitor into the TMJ or masseter muscle attenuated TMD pain. Together, these results suggest that TMEM100 in TG neurons contributes to TMD pain by regulating TRPA1 activity within the TRPA1-TRPV1 complex. TMEM100 therefore represents a potential novel target-of-interest for TMD pain.
Collapse
Affiliation(s)
- Peng Wang
- Department of Neurology, Duke University, Durham, NC, United States
| | - Qiaojuan Zhang
- Department of Neurology, Duke University, Durham, NC, United States
| | - Fabiana C. Dias
- Department of Neurology, Duke University, Durham, NC, United States
| | - Abbie Suttle
- Department of Neurology, Duke University, Durham, NC, United States
| | - Xinzhong Dong
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yong Chen
- Department of Neurology, Duke University, Durham, NC, United States
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University, Durham, NC, United States
- Department of Pathology, Duke University, Durham, NC, United States
- *Correspondence: Yong Chen,
| |
Collapse
|
23
|
Paclitaxel Inhibits KCNQ Channels in Primary Sensory Neurons to Initiate the Development of Painful Peripheral Neuropathy. Cells 2022; 11:cells11244067. [PMID: 36552832 PMCID: PMC9776748 DOI: 10.3390/cells11244067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer patients undergoing paclitaxel infusion usually experience peripheral nerve degeneration and serious neuropathic pain termed paclitaxel-induced peripheral neuropathy (PIPN). However, alterations in the dose or treatment schedule for paclitaxel do not eliminate PIPN, and no therapies are available for PIPN, despite numerous studies to uncover the mechanisms underlying the development/maintenance of this condition. Therefore, we aimed to uncover a novel mechanism underlying the pathogenesis of PIPN. Clinical studies suggest that acute over excitation of primary sensory neurons is linked to the pathogenesis of PIPN. We found that paclitaxel-induced acute hyperexcitability of primary sensory neurons results from the paclitaxel-induced inhibition of KCNQ potassium channels (mainly KCNQ2), found abundantly in sensory neurons and axons. We found that repeated application of XE-991, a specific KCNQ channel blocker, induced PIPN-like alterations in rats, including mechanical hypersensitivity and degeneration of peripheral nerves, as detected by both morphological and behavioral assays. In contrast, genetic deletion of KCNQ2 from peripheral sensory neurons in mice significantly attenuated the development of paclitaxel-induced peripheral sensory fiber degeneration and chronic pain. These findings may lead to a better understanding of the causes of PIPN and provide an impetus for developing new classes of KCNQ activators for its therapeutic treatment.
Collapse
|
24
|
Chirila AM, Rankin G, Tseng SY, Emanuel AJ, Chavez-Martinez CL, Zhang D, Harvey CD, Ginty DD. Mechanoreceptor signal convergence and transformation in the dorsal horn flexibly shape a diversity of outputs to the brain. Cell 2022; 185:4541-4559.e23. [PMID: 36334588 PMCID: PMC9691598 DOI: 10.1016/j.cell.2022.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/22/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
The encoding of touch in the spinal cord dorsal horn (DH) and its influence on tactile representations in the brain are poorly understood. Using a range of mechanical stimuli applied to the skin, large-scale in vivo electrophysiological recordings, and genetic manipulations, here we show that neurons in the mouse spinal cord DH receive convergent inputs from both low- and high-threshold mechanoreceptor subtypes and exhibit one of six functionally distinct mechanical response profiles. Genetic disruption of DH feedforward or feedback inhibitory motifs, comprised of interneurons with distinct mechanical response profiles, revealed an extensively interconnected DH network that enables dynamic, flexible tuning of postsynaptic dorsal column (PSDC) output neurons and dictates how neurons in the primary somatosensory cortex respond to touch. Thus, mechanoreceptor subtype convergence and non-linear transformations at the earliest stage of the somatosensory hierarchy shape how touch of the skin is represented in the brain.
Collapse
Affiliation(s)
- Anda M Chirila
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Genelle Rankin
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Shih-Yi Tseng
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Alan J Emanuel
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Carmine L Chavez-Martinez
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Dawei Zhang
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Christopher D Harvey
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - David D Ginty
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
25
|
A role for axon-glial interactions and Netrin-G1 signaling in the formation of low-threshold mechanoreceptor end organs. Proc Natl Acad Sci U S A 2022; 119:e2210421119. [PMID: 36252008 PMCID: PMC9618144 DOI: 10.1073/pnas.2210421119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Low-threshold mechanoreceptors (LTMRs) and their cutaneous end organs convert light mechanical forces acting on the skin into electrical signals that propagate to the central nervous system. In mouse hairy skin, hair follicle-associated longitudinal lanceolate complexes, which are end organs comprising LTMR axonal endings that intimately associate with terminal Schwann cell (TSC) processes, mediate LTMR responses to hair deflection and skin indentation. Here, we characterized developmental steps leading to the formation of Aβ rapidly adapting (RA)-LTMR and Aδ-LTMR lanceolate complexes. During early postnatal development, Aβ RA-LTMRs and Aδ-LTMRs extend and prune cutaneous axonal branches in close association with nascent TSC processes. Netrin-G1 is expressed in these developing Aβ RA-LTMR and Aδ-LTMR lanceolate endings, and Ntng1 ablation experiments indicate that Netrin-G1 functions in sensory neurons to promote lanceolate ending elaboration around hair follicles. The Netrin-G ligand (NGL-1), encoded by Lrrc4c, is expressed in TSCs, and ablation of Lrrc4c partially phenocopied the lanceolate complex deficits observed in Ntng1 mutants. Moreover, NGL-1-Netrin-G1 signaling is a general mediator of LTMR end organ formation across diverse tissue types demonstrated by the fact that Aβ RA-LTMR endings associated with Meissner corpuscles and Pacinian corpuscles are also compromised in the Ntng1 and Lrrc4c mutant mice. Thus, axon-glia interactions, mediated in part by NGL-1-Netrin-G1 signaling, promote LTMR end organ formation.
Collapse
|
26
|
Orem BC, Morehouse JR, Ames S, Burke DA, Magnuson DS, Stirling DP. Direct Ryanodine Receptor-2 Knockout in Primary Afferent Fibers Modestly Affects Neurological Recovery after Contusive Spinal Cord Injury. Neurotrauma Rep 2022; 3:433-446. [PMID: 36337076 PMCID: PMC9622210 DOI: 10.1089/neur.2022.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Neuronal ryanodine receptors (RyR) release calcium from internal stores and play a key role in synaptic plasticity, learning, and memory. Dysregulation of RyR function contributes to neurodegeneration and negatively impacts neurological recovery after spinal cord injury (SCI). However, the individual role of RyR isoforms and the underlying mechanisms remain poorly understood. To determine whether RyR2 plays a direct role in axonal fate and functional recovery after SCI, we bred Advillin-Cre: tdTomato (Ai9) reporter mice with "floxed" RyR2 mice to directly knock out (KO) RyR2 function in dorsal root ganglion neurons and their spinal projections. Adult 6- to 8-week-old RyR2KO and littermate controls were subjected to a contusive SCI and their dorsal column axons were imaged in vivo using two-photon excitation microscopy. We found that direct RyR2KO in dorsal column primary afferents did not significantly alter secondary axonal degeneration after SCI. We next assessed behavioral recovery after SCI and found that direct RyR2KO in primary afferents worsened open-field locomotor scores (Basso Mouse Scale subscore) compared to littermate controls. However, both TreadScan™ gait analysis and overground kinematic gait analysis tests revealed subtle, but no fundamental, differences in gait patterns between the two groups after SCI. Subsequent removal of spared afferent fibers using a dorsal column crush revealed similar outcomes in both groups. Analysis of primary afferents at the lumbar (L3-L5) level similarly revealed no noticeable differences between groups. Together, our results support a modest contribution of dorsal column primary afferent RyR2 in neurological recovery after SCI.
Collapse
Affiliation(s)
- Ben C. Orem
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA.,Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, Kentucky, USA
| | - Johnny R. Morehouse
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA
| | - Spencer Ames
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA
| | - Darlene A. Burke
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA
| | - David S.K. Magnuson
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA.,Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, Kentucky, USA.,Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, Kentucky, USA
| | - David P. Stirling
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA.,Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, Kentucky, USA.,Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, Kentucky, USA.,Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, Kentucky, USA.,*Address correspondence to: David P. Stirling, PhD, Departments of Neurological Surgery, Microbiology and Immunology, and Anatomical Sciences and Neurobiology, KY Spinal Cord Injury Research Center, University of Louisville, 511 South Floyd Street, MDR Building, Room 608, Louisville, KY 40202, USA.
| |
Collapse
|
27
|
Wang H, Chen W, Dong Z, Xing G, Cui W, Yao L, Zou WJ, Robinson HL, Bian Y, Liu Z, Zhao K, Luo B, Gao N, Zhang H, Ren X, Yu Z, Meixiong J, Xiong WC, Mei L. A novel spinal neuron connection for heat sensation. Neuron 2022; 110:2315-2333.e6. [PMID: 35561677 DOI: 10.1016/j.neuron.2022.04.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 03/14/2022] [Accepted: 04/19/2022] [Indexed: 12/30/2022]
Abstract
Heat perception enables acute avoidance responses to prevent tissue damage and maintain body thermal homeostasis. Unlike other modalities, how heat signals are processed in the spinal cord remains unclear. By single-cell gene profiling, we identified ErbB4, a transmembrane tyrosine kinase, as a novel marker of heat-sensitive spinal neurons in mice. Ablating spinal ErbB4+ neurons attenuates heat sensation. These neurons receive monosynaptic inputs from TRPV1+ nociceptors and form excitatory synapses onto target neurons. Activation of ErbB4+ neurons enhances the heat response, while inhibition reduces the heat response. We showed that heat sensation is regulated by NRG1, an activator of ErbB4, and it involves dynamic activity of the tyrosine kinase that promotes glutamatergic transmission. Evidence indicates that the NRG1-ErbB4 signaling is also engaged in hypersensitivity of pathological pain. Together, these results identify a spinal neuron connection consisting of ErbB4+ neurons for heat sensation and reveal a regulatory mechanism by the NRG1-ErbB4 signaling.
Collapse
Affiliation(s)
- Hongsheng Wang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Wenbing Chen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Zhaoqi Dong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Guanglin Xing
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Wanpeng Cui
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Lingling Yao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Wen-Jun Zou
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Heath L Robinson
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Yaoyao Bian
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Zhipeng Liu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Kai Zhao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Bin Luo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Nannan Gao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Hongsheng Zhang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Xiao Ren
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Zheng Yu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - James Meixiong
- Solomon H. Snyder Department of Neuroscience and Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA.
| |
Collapse
|
28
|
Toyoda H, Won J, Kim W, Kim H, Davy O, Saito M, Kim D, Tanaka T, Kang Y, Oh SB. The Nature of Noradrenergic Volume Transmission From Locus Coeruleus to Brainstem Mesencephalic Trigeminal Sensory Neurons. Front Cell Neurosci 2022; 16:841239. [PMID: 35558874 PMCID: PMC9087804 DOI: 10.3389/fncel.2022.841239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Noradrenergic neurons in the locus coeruleus (LC) release noradrenaline (NA) that acts via volume transmission to activate extrasynaptic G-protein coupled receptors (GPCRs) in target cells throughout the brain. As the closest projection, the dorsal LC laterally adjoins the mesencephalic trigeminal nucleus (MTN), in which proprioceptive primary sensory neurons innervating muscle spindles of jaw-closing muscles are exceptionally located. MTN neurons express α2-adrenergic receptors (α2-ARs) and display hyperpolarization-activated cyclic nucleotide-gated (HCN) currents (Ihs), which is downregulated by α2-AR activation. To quantify the activity-dependent outcome of volume transmission of NA from LC to MTN, we investigated how direct LC activation inhibits Ih in MTN neurons by performing dual whole-cell recordings from LC and MTN neurons. Repetition of 20 Hz spike-train evoked with 1-s current-pulse in LC neurons every 30 s resulted in a gradual decrease in Ih evoked every 30 s, revealing a Hill-type relationship between the number of spike-trains in LC neurons and the degree of Ih inhibition in MTN neurons. On the other hand, when microstimulation was applied in LC every 30 s, an LC neuron repeatedly displayed a transient higher-frequency firing followed by a tonic firing at 5–10 Hz for 30 s. This subsequently caused a similar Hill-type inhibition of Ih in the simultaneously recorded MTN neuron, but with a smaller Hill coefficient, suggesting a lower signal transduction efficacy. In contrast, 20 Hz activity induced by a 1-s pulse applied every 5–10 s caused only a transient facilitation of Ih inhibition followed by a forced termination of Ih inhibition. Thus, the three modes of LC activities modulated the volume transmission to activate α2-adrenergic GPCR to differentially inhibit Ih in MTN neurons.
Collapse
Affiliation(s)
- Hiroki Toyoda
- Department of Neuroscience and Oral Physiology, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Jonghwa Won
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Department of Neurobiology and Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Wheedong Kim
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Hayun Kim
- Interdisciplinary Program for Brain Science, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Oscar Davy
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Mitsuru Saito
- Department of Oral Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Doyun Kim
- Department of Neurobiology and Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Takuma Tanaka
- Graduate School of Data Science, Shiga University, Hikone, Japan
| | - Youngnam Kang
- Department of Neuroscience and Oral Physiology, Graduate School of Dentistry, Osaka University, Suita, Japan
- Department of Neurobiology and Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
- Department of Behavioral Sciences, Graduate School of Human Sciences, Osaka University, Suita, Japan
| | - Seog Bae Oh
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Department of Neurobiology and Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
- Interdisciplinary Program for Brain Science, College of Natural Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
29
|
Wang S, Jaggi U, Tormanen K, Hirose S, Ghiasi H. Absence of signal peptide peptidase in peripheral sensory neurons affects latency-reactivation in HSV-1 ocularly infected mice. PLoS Pathog 2022; 18:e1010281. [PMID: 35100323 PMCID: PMC8830783 DOI: 10.1371/journal.ppat.1010281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/10/2022] [Accepted: 01/17/2022] [Indexed: 12/05/2022] Open
Abstract
We previously reported that HSV-1 infectivity in vitro and in vivo requires HSV glycoprotein K (gK) binding to the ER signal peptide peptidase (SPP). Anterograde-retrograde transport via peripheral nerves between the site of infection (i.e., eye) and the site of latency (neurons) is a critical process to establish latency and subsequent viral reactivation. Given the essential role of neurons in HSV-1 latency-reactivation, we generated mice lacking SPP specifically in peripheral sensory neurons by crossing Advillin-Cre mice with SPPfl/fl mice. Expression of SPP mRNA and protein were significantly lower in neurons of Avil-SPP-/- mice than in control mice despite similar levels of HSV-1 replication in the eyes of Avil-SPP-/- mice and control mice. Viral transcript levels in isolated neurons of infected mice on days 2 and 5 post infection were lower than in control mice. Significantly less LAT, gB, and PD-1 expression was seen during latency in isolated neurons and total trigeminal ganglia (TG) of Avil-SPP-/- mice than in control mice. Finally, reduced latency and reduced T cell exhaustion in infected Avil-SPP-/- mice correlated with slower and no reactivation. Overall, our results suggest that blocking SPP expression in peripheral sensory neurons does not affect primary virus replication or eye disease but does reduce latency-reactivation. Thus, blocking of gK binding to SPP may be a useful tool to reduce latency-reactivation. HSV-1 gK and the ER protein SPP are both essential and highly conserved proteins. Their interaction is important for virus infectivity in vitro and in vivo. To evaluate the importance of gK binding to SPP in the peripheral nervous system, we generated SPP conditional knockout mice in peripheral nervous system using Advillin-Cre mice. The absence of SPP in peripheral nervous system significantly reduced latency-reactivation as well as T cell exhaustion.
Collapse
Affiliation(s)
- Shaohui Wang
- Center for Neurobiology & Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Ujjaldeep Jaggi
- Center for Neurobiology & Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Kati Tormanen
- Center for Neurobiology & Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Satoshi Hirose
- Center for Neurobiology & Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Homayon Ghiasi
- Center for Neurobiology & Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Hilton BJ, Husch A, Schaffran B, Lin TC, Burnside ER, Dupraz S, Schelski M, Kim J, Müller JA, Schoch S, Imig C, Brose N, Bradke F. An active vesicle priming machinery suppresses axon regeneration upon adult CNS injury. Neuron 2022; 110:51-69.e7. [PMID: 34706221 PMCID: PMC8730507 DOI: 10.1016/j.neuron.2021.10.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/03/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022]
Abstract
Axons in the adult mammalian central nervous system fail to regenerate after spinal cord injury. Neurons lose their capacity to regenerate during development, but the intracellular processes underlying this loss are unclear. We found that critical components of the presynaptic active zone prevent axon regeneration in adult mice. Transcriptomic analysis combined with live-cell imaging revealed that adult primary sensory neurons downregulate molecular constituents of the synapse as they acquire the ability to rapidly grow their axons. Pharmacogenetic reduction of neuronal excitability stimulated axon regeneration after adult spinal cord injury. Genetic gain- and loss-of-function experiments uncovered that essential synaptic vesicle priming proteins of the presynaptic active zone, but not clostridial-toxin-sensitive VAMP-family SNARE proteins, inhibit axon regeneration. Systemic administration of Baclofen reduced voltage-dependent Ca2+ influx in primary sensory neurons and promoted their regeneration after spinal cord injury. These findings indicate that functional presynaptic active zones constitute a major barrier to axon regeneration.
Collapse
Affiliation(s)
- Brett J Hilton
- Laboratory of Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany
| | - Andreas Husch
- Laboratory of Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany
| | - Barbara Schaffran
- Laboratory of Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany
| | - Tien-Chen Lin
- Laboratory of Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany
| | - Emily R Burnside
- Laboratory of Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany
| | - Sebastian Dupraz
- Laboratory of Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany
| | - Max Schelski
- Laboratory of Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany
| | - Jisoo Kim
- Laboratory of Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany; Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | | | - Susanne Schoch
- Institute of Neuropathology, Medical Faculty, University of Bonn, 53105 Bonn, Germany
| | - Cordelia Imig
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Frank Bradke
- Laboratory of Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany.
| |
Collapse
|
31
|
McMullan S, Burke PG, Hildreth CM. Do catecholaminergic TrkC DRG neurons represent a class of cardiovascular enteroceptor? Cell Rep 2022; 38:110082. [DOI: 10.1016/j.celrep.2021.110082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/22/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023] Open
|
32
|
Tabbaa M, Moses A, Hammock EAD. Oxytocin receptor disruption in Avil-expressing cells results in blunted sociability and increased inter-male aggression. PLoS One 2021; 16:e0260199. [PMID: 34847180 PMCID: PMC8631681 DOI: 10.1371/journal.pone.0260199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/05/2021] [Indexed: 11/19/2022] Open
Abstract
Social behaviors are foundational to society and quality of life while social behavior extremes are core symptoms in a variety of psychopathologies and developmental disabilities. Oxytocin (OXT) is a neuroactive hormone that regulates social behaviors through its receptor (OXTR), with all previously identified social behavior effects attributed to the central nervous system, which has developmental origins in the neural tube. However, OXTR are also present in neural crest-derived tissue including sensory ganglia of the peripheral nervous system. Avil encodes for the actin-binding protein ADVILLIN, is expressed in neural crest-derived cells, and was therefore used as a target in this study to knock out OXTR expression in neural-crest derived cells. Here, we tested if OXTRs specifically expressed in Avil positive neural crest-derived cells are necessary for species-typical adult social behaviors using a Cre-LoxP strategy. Genetically modified male and female mice lacking OXTR in Avil expressing cells (OXTRAvil KO) were tested for sociability and preference for social novelty. Males were also tested for resident intruder aggression. OXTRAvil KO males and females had reduced sociability compared to OXTRAvil WT controls. Additionally, OXTRAvil KO males had increased aggressive behaviors compared to controls. These data indicate that OXTRs in cells of neural crest origin are important regulators of typical social behaviors in C57BL/6J adult male and female mice and point to needed directions of future research.
Collapse
Affiliation(s)
- Manal Tabbaa
- Department of Psychology and Program in Neuroscience, The Florida State University, Tallahassee, FL, United States of America
| | - Ashley Moses
- Department of Psychology and Program in Neuroscience, The Florida State University, Tallahassee, FL, United States of America
| | - Elizabeth A. D. Hammock
- Department of Psychology and Program in Neuroscience, The Florida State University, Tallahassee, FL, United States of America
| |
Collapse
|
33
|
Willows JW, Blaszkiewicz M, Lamore A, Borer S, Dubois AL, Garner E, Breeding WP, Tilbury KB, Khalil A, Townsend KL. Visualization and analysis of whole depot adipose tissue neural innervation. iScience 2021; 24:103127. [PMID: 34622172 PMCID: PMC8479257 DOI: 10.1016/j.isci.2021.103127] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/11/2021] [Accepted: 09/09/2021] [Indexed: 11/25/2022] Open
Abstract
Little is known about the diversity and function of adipose tissue nerves, due in part to the inability to effectively visualize the tissue’s diverse nerve subtypes and the patterns of innervation across an intact depot. The tools to image and quantify adipose tissue innervation are currently limited. Here, we present a method of tissue processing that decreases tissue thickness in the z-axis while leaving cells intact for subsequent immunostaining. This was combined with autofluorescence quenching techniques to permit intact whole tissues to be mounted on slides and imaged by confocal microscopy, with a complementary means to perform whole tissue neurite density quantification after capture of tiled z-stack images. Additionally, we demonstrate how to visualize nerve terminals (the neuro-adipose nexus) in intact blocks of adipose tissue without z-depth reduction. We have included examples of data demonstrating nerve subtypes, neurovascular interactions, label-free imaging of collagen, and nerve bundle digital cross-sections. Whole depot adipose tissue innervation was imaged and quantified by a novel method Numerous aspects of adipose nerve heterogeneity were observed by microscopy We have identified a nerve terminal in adipose, the neuro-adipose nexus
Collapse
Affiliation(s)
- Jake W Willows
- School of Biology and Ecology, University of Maine, Orono, ME, USA.,Department of Neurological Surgery, The Ohio State University, 1014 Biomedical Research Tower, 460 W. 12 Avenue, Columbus, OH, USA
| | - Magdalena Blaszkiewicz
- School of Biology and Ecology, University of Maine, Orono, ME, USA.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA.,Department of Neurological Surgery, The Ohio State University, 1014 Biomedical Research Tower, 460 W. 12 Avenue, Columbus, OH, USA
| | - Amy Lamore
- School of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Samuel Borer
- School of Biology and Ecology, University of Maine, Orono, ME, USA
| | - Amanda L Dubois
- School of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Emma Garner
- School of Biology and Ecology, University of Maine, Orono, ME, USA
| | - William P Breeding
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA
| | - Karissa B Tilbury
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA.,Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA
| | - Andre Khalil
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA.,Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA.,CompuMAINE Laboratory, University of Maine, Orono, ME, USA
| | - Kristy L Townsend
- School of Biology and Ecology, University of Maine, Orono, ME, USA.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA.,School of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA.,Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA.,Department of Neurological Surgery, The Ohio State University, 1014 Biomedical Research Tower, 460 W. 12 Avenue, Columbus, OH, USA
| |
Collapse
|
34
|
Kokotović T, Langeslag M, Lenartowicz EM, Manion J, Fell CW, Alehabib E, Tafakhori A, Darvish H, Bellefroid EJ, Neely GG, Kress M, Penninger JM, Nagy V. PRDM12 Is Transcriptionally Active and Required for Nociceptor Function Throughout Life. Front Mol Neurosci 2021; 14:720973. [PMID: 34646120 PMCID: PMC8502974 DOI: 10.3389/fnmol.2021.720973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/20/2021] [Indexed: 12/21/2022] Open
Abstract
PR domain-containing member 12 (PRDM12) is a key developmental transcription factor in sensory neuronal specification and survival. Patients with rare deleterious variants in PRDM12 are born with congenital insensitivity to pain (CIP) due to the complete absence of a subtype of peripheral neurons that detect pain. In this paper, we report two additional CIP cases with a novel homozygous PRDM12 variant. To elucidate the function of PRDM12 during mammalian development and adulthood, we generated temporal and spatial conditional mouse models. We find that PRDM12 is expressed throughout the adult nervous system. We observed that loss of PRDM12 during mid-sensory neurogenesis but not in the adult leads to reduced survival. Comparing cellular biophysical nociceptive properties in developmental and adult-onset PRDM12 deletion mouse models, we find that PRDM12 is necessary for proper nociceptive responses throughout life. However, we find that PRDM12 regulates distinct age-dependent transcriptional programs. Together, our results implicate PRDM12 as a viable therapeutic target for specific pain therapies even in adults.
Collapse
Affiliation(s)
- Tomislav Kokotović
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Michiel Langeslag
- Department of Physiology and Medical Physics, Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria.,Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria.,Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ewelina M Lenartowicz
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - John Manion
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, Centenary Institute, and School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Christopher W Fell
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Elham Alehabib
- Student Research Committee, Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Tafakhori
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Darvish
- Neuroscience Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Eric J Bellefroid
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - G Gregory Neely
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, Centenary Institute, and School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Michaela Kress
- Department of Physiology and Medical Physics, Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC - Vienna BioCenter, Vienna, Austria.,Department of Medical Genetics, Life Science Institute, University of British Columbia, Vancouver, BC, Canada
| | - Vanja Nagy
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
35
|
Santana-Varela S, Bogdanov YD, Gossage SJ, Okorokov AL, Li S, de Clauser L, Alves-Simoes M, Sexton JE, Iseppon F, Luiz AP, Zhao J, Wood JN, Cox JJ. Tools for analysis and conditional deletion of subsets of sensory neurons. Wellcome Open Res 2021; 6:250. [PMID: 35233469 PMCID: PMC8817070 DOI: 10.12688/wellcomeopenres.17090.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2021] [Indexed: 12/03/2022] Open
Abstract
Background: Somatosensation depends on primary sensory neurons of the trigeminal and dorsal root ganglia (DRG). Transcriptional profiling of mouse DRG sensory neurons has defined at least 18 distinct neuronal cell types. Using an advillin promoter, we have generated a transgenic mouse line that only expresses diphtheria toxin A (DTA) in sensory neurons in the presence of Cre recombinase. This has allowed us to ablate specific neuronal subsets within the DRG using a range of established and novel Cre lines that encompass all sets of sensory neurons. Methods: A floxed-tdTomato-stop-DTA bacterial artificial chromosome (BAC) transgenic reporter line (AdvDTA) under the control of the mouse advillin DRG promoter was generated. The line was first validated using a Na v1.8 Cre and then crossed to CGRP CreER (Calca), Th CreERT2, Tmem45b Cre, Tmem233 Cre, Ntng1 Cre and TrkB CreER (Ntrk2) lines. Pain behavioural assays included Hargreaves', hot plate, Randall-Selitto, cold plantar, partial sciatic nerve ligation and formalin tests. Results: Motor activity, as assessed by the rotarod test, was normal for all lines tested. Noxious mechanosensation was significantly reduced when either Na v1.8 positive neurons or Tmem45b positive neurons were ablated whilst acute heat pain was unaffected. In contrast, noxious mechanosensation was normal following ablation of CGRP-positive neurons but acute heat pain thresholds were significantly elevated and a reduction in nocifensive responses was observed in the second phase of the formalin test. Ablation of TrkB-positive neurons led to significant deficits in mechanical hypersensitivity in the partial sciatic nerve ligation neuropathic pain model. Conclusions: Ablation of specific DRG neuronal subsets using the AdvDTA line will be a useful resource for further functional characterization of somatosensory processing, neuro-immune interactions and chronic pain disorders.
Collapse
Affiliation(s)
| | - Yury D. Bogdanov
- Molecular Nociception Group, University College London, London, WC1E 6BT, UK
- Antibody and Vaccine Group, Centre for Cancer Immunology, MP127, University of Southampton Faculty of Medicine, Southampton, SO166YD, UK
| | - Samuel J. Gossage
- Molecular Nociception Group, University College London, London, WC1E 6BT, UK
| | - Andrei L. Okorokov
- Molecular Nociception Group, University College London, London, WC1E 6BT, UK
| | - Shengnan Li
- Molecular Nociception Group, University College London, London, WC1E 6BT, UK
| | - Larissa de Clauser
- Molecular Nociception Group, University College London, London, WC1E 6BT, UK
- Institute for Biomedicine, Affiliated Institute of the University of Lubeck, Bolzano, Italy
| | - Marta Alves-Simoes
- Molecular Nociception Group, University College London, London, WC1E 6BT, UK
| | - Jane E. Sexton
- Molecular Nociception Group, University College London, London, WC1E 6BT, UK
| | - Federico Iseppon
- Molecular Nociception Group, University College London, London, WC1E 6BT, UK
| | - Ana P. Luiz
- Molecular Nociception Group, University College London, London, WC1E 6BT, UK
| | - Jing Zhao
- Molecular Nociception Group, University College London, London, WC1E 6BT, UK
| | - John N. Wood
- Molecular Nociception Group, University College London, London, WC1E 6BT, UK
| | - James J. Cox
- Molecular Nociception Group, University College London, London, WC1E 6BT, UK
| |
Collapse
|
36
|
The cellular and molecular basis of somatosensory neuron development. Neuron 2021; 109:3736-3757. [PMID: 34592169 DOI: 10.1016/j.neuron.2021.09.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 11/23/2022]
Abstract
Primary somatosensory neurons convey salient information about our external environment and internal state to the CNS, allowing us to detect, perceive, and react to a wide range of innocuous and noxious stimuli. Pseudo-unipolar in shape, and among the largest (longest) cells of most mammals, dorsal root ganglia (DRG) somatosensory neurons have peripheral axons that extend into skin, muscle, viscera, or bone and central axons that innervate the spinal cord and brainstem, where they synaptically engage the central somatosensory circuitry. Here, we review the diversity of mammalian DRG neuron subtypes and the intrinsic and extrinsic mechanisms that control their development. We describe classical and contemporary advances that frame our understanding of DRG neurogenesis, transcriptional specification of DRG neurons, and the establishment of morphological, physiological, and synaptic diversification across somatosensory neuron subtypes.
Collapse
|
37
|
Luo X, Chen O, Wang Z, Bang S, Ji J, Lee SH, Huh Y, Furutani K, He Q, Tao X, Ko MC, Bortsov A, Donnelly CR, Chen Y, Nackley A, Berta T, Ji RR. IL-23/IL-17A/TRPV1 axis produces mechanical pain via macrophage-sensory neuron crosstalk in female mice. Neuron 2021; 109:2691-2706.e5. [PMID: 34473953 DOI: 10.1016/j.neuron.2021.06.015] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/16/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022]
Abstract
Although sex dimorphism is increasingly recognized as an important factor in pain, female-specific pain signaling is not well studied. Here we report that administration of IL-23 produces mechanical pain (mechanical allodynia) in female but not male mice, and chemotherapy-induced mechanical pain is selectively impaired in female mice lacking Il23 or Il23r. IL-23-induced pain is promoted by estrogen but suppressed by androgen, suggesting an involvement of sex hormones. IL-23 requires C-fiber nociceptors and TRPV1 to produce pain but does not directly activate nociceptor neurons. Notably, IL-23 requires IL-17A release from macrophages to evoke mechanical pain in females. Low-dose IL-17A directly activates nociceptors and induces mechanical pain only in females. Finally, deletion of estrogen receptor subunit α (ERα) in TRPV1+ nociceptors abolishes IL-23- and IL-17-induced pain in females. These findings demonstrate that the IL-23/IL-17A/TRPV1 axis regulates female-specific mechanical pain via neuro-immune interactions. Our study also reveals sex dimorphism at both immune and neuronal levels.
Collapse
Affiliation(s)
- Xin Luo
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.
| | - Ouyang Chen
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Zilong Wang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Sangsu Bang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Jasmine Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Sang Hoon Lee
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yul Huh
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Kenta Furutani
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Qianru He
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Xueshu Tao
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Andrey Bortsov
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Christopher R Donnelly
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Yong Chen
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Andrea Nackley
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
38
|
Wack G, Metzner K, Kuth MS, Wang E, Bresnick A, Brandes RP, Schröder K, Wittig I, Schmidtko A, Kallenborn-Gerhardt W. Nox4-dependent upregulation of S100A4 after peripheral nerve injury modulates neuropathic pain processing. Free Radic Biol Med 2021; 168:155-167. [PMID: 33789124 DOI: 10.1016/j.freeradbiomed.2021.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/23/2021] [Accepted: 03/17/2021] [Indexed: 11/24/2022]
Abstract
Previous studies suggested that reactive oxygen species (ROS) produced by NADPH oxidase 4 (Nox4) affect the processing of neuropathic pain. However, mechanisms underlying Nox4-dependent pain signaling are incompletely understood. In this study, we aimed to identify novel Nox4 downstream interactors in the nociceptive system. Mice lacking Nox4 specifically in sensory neurons were generated by crossing Advillin-Cre mice with Nox4fl/fl mice. Tissue-specific deletion of Nox4 in sensory neurons considerably reduced mechanical hypersensitivity and neuronal action potential firing after peripheral nerve injury. Using a proteomic approach, we detected various proteins that are regulated in a Nox4-dependent manner after injury, including the small calcium-binding protein S100A4. Immunofluorescence staining and Western blot experiments confirmed that S100A4 expression is massively up-regulated in peripheral nerves and dorsal root ganglia after injury. Furthermore, mice lacking S100A4 showed increased mechanical hypersensitivity after peripheral nerve injury and after delivery of a ROS donor. Our findings suggest that S100A4 expression is up-regulated after peripheral nerve injury in a Nox4-dependent manner and that deletion of S100A4 leads to an increased neuropathic pain hypersensitivity.
Collapse
Affiliation(s)
- Gesine Wack
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, 60438 Frankfurt am Main, Germany
| | - Katharina Metzner
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, 60438 Frankfurt am Main, Germany
| | - Miriam S Kuth
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, 60438 Frankfurt am Main, Germany
| | - Elena Wang
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, 60438 Frankfurt am Main, Germany
| | - Anne Bresnick
- Albert Einstein College of Medicine, Department of Biochemistry, Bronx, NY 10461, USA
| | - Ralf P Brandes
- Institute of Cardiovascular Physiology, Goethe University, 60590 Frankfurt am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, 60590 Frankfurt am Main, Germany
| | - Katrin Schröder
- Institute of Cardiovascular Physiology, Goethe University, 60590 Frankfurt am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, 60590 Frankfurt am Main, Germany
| | - Ilka Wittig
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, 60590 Frankfurt am Main, Germany; Functional Proteomics, ZBC, Medical School, Goethe University, 60590 Frankfurt am Main, Germany; Cluster of Excellence "Macromolecular Complexes", Goethe University, 60590 Frankfurt am Main, Germany
| | - Achim Schmidtko
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, 60438 Frankfurt am Main, Germany
| | | |
Collapse
|
39
|
Golden EJ, Larson ED, Shechtman LA, Trahan GD, Gaillard D, Fellin TJ, Scott JK, Jones KL, Barlow LA. Onset of taste bud cell renewal starts at birth and coincides with a shift in SHH function. eLife 2021; 10:64013. [PMID: 34009125 PMCID: PMC8172241 DOI: 10.7554/elife.64013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Embryonic taste bud primordia are specified as taste placodes on the tongue surface and differentiate into the first taste receptor cells (TRCs) at birth. Throughout adult life, TRCs are continually regenerated from epithelial progenitors. Sonic hedgehog (SHH) signaling regulates TRC development and renewal, repressing taste fate embryonically, but promoting TRC differentiation in adults. Here, using mouse models, we show TRC renewal initiates at birth and coincides with onset of SHHs pro-taste function. Using transcriptional profiling to explore molecular regulators of renewal, we identified Foxa1 and Foxa2 as potential SHH target genes in lingual progenitors at birth and show that SHH overexpression in vivo alters FoxA1 and FoxA2 expression relevant to taste buds. We further bioinformatically identify genes relevant to cell adhesion and cell locomotion likely regulated by FOXA1;FOXA2 and show that expression of these candidates is also altered by forced SHH expression. We present a new model where SHH promotes TRC differentiation by regulating changes in epithelial cell adhesion and migration.
Collapse
Affiliation(s)
- Erin J Golden
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States.,The Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Eric D Larson
- The Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, United States.,Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Lauren A Shechtman
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States.,The Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - G Devon Trahan
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Dany Gaillard
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States.,The Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Timothy J Fellin
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States.,The Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Jennifer K Scott
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States.,The Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Kenneth L Jones
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Linda A Barlow
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States.,The Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, United States
| |
Collapse
|
40
|
Matsuo T, Isosaka T, Hayashi Y, Tang L, Doi A, Yasuda A, Hayashi M, Lee CY, Cao L, Kutsuna N, Matsunaga S, Matsuda T, Yao I, Setou M, Kanagawa D, Higasa K, Ikawa M, Liu Q, Kobayakawa R, Kobayakawa K. Thiazoline-related innate fear stimuli orchestrate hypothermia and anti-hypoxia via sensory TRPA1 activation. Nat Commun 2021; 12:2074. [PMID: 33824316 PMCID: PMC8024280 DOI: 10.1038/s41467-021-22205-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/22/2021] [Indexed: 01/09/2023] Open
Abstract
Thiazoline-related innate fear-eliciting compounds (tFOs) orchestrate hypothermia, hypometabolism, and anti-hypoxia, which enable survival in lethal hypoxic conditions. Here, we show that most of these effects are severely attenuated in transient receptor potential ankyrin 1 (Trpa1) knockout mice. TFO-induced hypothermia involves the Trpa1-mediated trigeminal/vagal pathways and non-Trpa1 olfactory pathway. TFOs activate Trpa1-positive sensory pathways projecting from trigeminal and vagal ganglia to the spinal trigeminal nucleus (Sp5) and nucleus of the solitary tract (NTS), and their artificial activation induces hypothermia. TFO presentation activates the NTS-Parabrachial nucleus pathway to induce hypothermia and hypometabolism; this activation was suppressed in Trpa1 knockout mice. TRPA1 activation is insufficient to trigger tFO-mediated anti-hypoxic effects; Sp5/NTS activation is also necessary. Accordingly, we find a novel molecule that enables mice to survive in a lethal hypoxic condition ten times longer than known tFOs. Combinations of appropriate tFOs and TRPA1 command intrinsic physiological responses relevant to survival fate.
Collapse
Affiliation(s)
- Tomohiko Matsuo
- Department of Functional Neuroscience, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Tomoko Isosaka
- Department of Functional Neuroscience, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Yuichiro Hayashi
- Department of Functional Neuroscience, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Lijun Tang
- Department of Functional Neuroscience, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Akihiro Doi
- Department of Functional Neuroscience, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Aiko Yasuda
- Department of Functional Neuroscience, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Mikio Hayashi
- Department of Cellular and Functional Biology, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Chia-Ying Lee
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Liqin Cao
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Natsumaro Kutsuna
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
- LPixel Inc., Tokyo, Japan
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Takeshi Matsuda
- Department of Optical Imaging, Institute for Medical Photonics Research, PMPERC and IMIC, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Ikuko Yao
- Department of Optical Imaging, Institute for Medical Photonics Research, PMPERC and IMIC, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Mitsuyoshi Setou
- Department of Cellular and Molecular Anatomy and IMIC, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Dai Kanagawa
- Department of Functional Neuroscience, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Koichiro Higasa
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Qinghua Liu
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan.
- National Institute of Biological Sciences, Beijing, China.
| | - Reiko Kobayakawa
- Department of Functional Neuroscience, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan.
| | - Ko Kobayakawa
- Department of Functional Neuroscience, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan.
| |
Collapse
|
41
|
Landy MA, Goyal M, Casey KM, Liu C, Lai HC. Loss of Prdm12 during development, but not in mature nociceptors, causes defects in pain sensation. Cell Rep 2021; 34:108913. [PMID: 33789102 PMCID: PMC8048104 DOI: 10.1016/j.celrep.2021.108913] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/11/2021] [Accepted: 03/05/2021] [Indexed: 12/30/2022] Open
Abstract
Prdm12 is a key transcription factor in nociceptor neurogenesis. Mutations of Prdm12 cause congenital insensitivity to pain (CIP) from failure of nociceptor development. However, precisely how deletion of Prdm12 during development or adulthood affects nociception is unknown. Here, we employ tissue- and temporal-specific knockout mouse models to test the function of Prdm12 during development and in adulthood. We find that constitutive loss of Prdm12 causes deficiencies in proliferation during sensory neurogenesis. We also demonstrate that conditional knockout from dorsal root ganglia (DRGs) during embryogenesis causes defects in nociception. In contrast, we find that, in adult DRGs, Prdm12 is dispensable for most pain-sensation and injury-induced hypersensitivity. Using transcriptomic analysis, we find mostly unique changes in adult Prdm12 knockout DRGs compared with embryonic knockout and that PRDM12 is likely a transcriptional activator in the adult. Overall, we find that the function of PRDM12 changes over developmental time.
Collapse
Affiliation(s)
- Mark A Landy
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Megan Goyal
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Katherine M Casey
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chen Liu
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Hypothalamic Research Center, Dallas, TX 75390, USA
| | - Helen C Lai
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
42
|
Makwana K, Chodavarapu H, Morones N, Chi J, Barr W, Novinbakht E, Wang Y, Nguyen PT, Jovanovic P, Cohen P, Riera CE. Sensory neurons expressing calcitonin gene-related peptide α regulate adaptive thermogenesis and diet-induced obesity. Mol Metab 2021; 45:101161. [PMID: 33412345 PMCID: PMC7820934 DOI: 10.1016/j.molmet.2021.101161] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/21/2020] [Accepted: 01/03/2021] [Indexed: 12/04/2022] Open
Abstract
Objectives Heat-sensory neurons from the dorsal root ganglia (DRG) play a pivotal role in detecting the cutaneous temperature and transmission of external signals to the brain, ensuring the maintenance of thermoregulation. However, whether these thermoreceptor neurons contribute to adaptive thermogenesis remains elusive. It is also unknown whether these neurons play a role in obesity and energy metabolism. Methods We used genetic ablation of heat-sensing neurons expressing calcitonin gene-related peptide α (CGRPα) to assess whole-body energy expenditure, weight gain, glucose tolerance, and insulin sensitivity in normal chow and high-fat diet-fed mice. Exvivo lipolysis and transcriptional characterization were combined with adipose tissue-clearing methods to visualize and probe the role of sensory nerves in adipose tissue. Adaptive thermogenesis was explored using infrared imaging of intrascapular brown adipose tissue (iBAT), tail, and core temperature upon various stimuli including diet, external temperature, and the cooling agent icilin. Results In this report, we show that genetic ablation of heat-sensing CGRPα neurons promotes resistance to weight gain upon high-fat diet (HFD) feeding and increases energy expenditure in mice. Mechanistically, we found that loss of CGRPα-expressing sensory neurons was associated with reduced lipid deposition in adipose tissue, enhanced expression of fatty acid oxidation genes, higher exvivo lipolysis in primary white adipocytes, and increased mitochondrial respiration from iBAT. Remarkably, mice lacking CGRPα sensory neurons manifested increased tail cutaneous vasoconstriction at room temperature. This exacerbated cold perception was not associated with reduced core temperature, suggesting that heat production and heat conservation mechanisms were engaged. Specific denervation of CGRPα neurons in intrascapular BAT did not contribute to the increased metabolic rate observed upon global sensory denervation. Conclusions Taken together, these findings highlight an important role of cutaneous thermoreceptors in regulating energy metabolism by triggering counter-regulatory responses involving energy dissipation processes including lipid fuel utilization and cutaneous vasodilation. Removal of sensory spinal neurons expressing CGRPα mitigates diet-induced obesity. CGRPα afferents antagonize adaptive thermogenesis in brown adipose tissue. Loss of CGRPα afferents leads to enhanced cold perception and vasoconstriction. Specific adipose denervation of CGRPα afferents does not modulate energy metabolism.
Collapse
Affiliation(s)
- Kuldeep Makwana
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Board of Governors of the Regenerative Medicine Institute, Department of Neurology, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, USA
| | - Harshita Chodavarapu
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Board of Governors of the Regenerative Medicine Institute, Department of Neurology, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, USA
| | - Nancy Morones
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Board of Governors of the Regenerative Medicine Institute, Department of Neurology, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, USA
| | - Jingyi Chi
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - William Barr
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Edward Novinbakht
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Board of Governors of the Regenerative Medicine Institute, Department of Neurology, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, USA
| | - Yidan Wang
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Board of Governors of the Regenerative Medicine Institute, Department of Neurology, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, USA
| | - Peter Tuan Nguyen
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Board of Governors of the Regenerative Medicine Institute, Department of Neurology, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, USA
| | - Predrag Jovanovic
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Board of Governors of the Regenerative Medicine Institute, Department of Neurology, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, USA
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Celine E Riera
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Board of Governors of the Regenerative Medicine Institute, Department of Neurology, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, USA; David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
43
|
Roh J, Go EJ, Park JW, Kim YH, Park CK. Resolvins: Potent Pain Inhibiting Lipid Mediators via Transient Receptor Potential Regulation. Front Cell Dev Biol 2020; 8:584206. [PMID: 33363143 PMCID: PMC7758237 DOI: 10.3389/fcell.2020.584206] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic pain is a serious condition that occurs in the peripheral nervous system (PNS) and the central nervous system (CNS). It is caused by inflammation or nerve damage that induces the release of inflammatory mediators from immune cells and/or protein kinase activation in neuronal cells. Both nervous systems are closely linked; therefore, inflammation or nerve damage in the PNS can affect the CNS (central sensitization). In this process, nociceptive transient receptor potential (TRP) channel activation and expression are increased. As a result, nociceptive neurons are activated, and pain signals to the brain are amplified and prolonged. In other words, suppressing the onset of pain signals in the PNS can suppress pain signals to the CNS. Resolvins, endogenous lipid mediators generated during the resolution phase of acute inflammation, inhibit nociceptive TRP ion channels and alleviate chronic pain. This paper summarizes the effect of resolvins in chronic pain control and discusses future scientific perspectives. Further study on the effect of resolvins on neuropathic pain will expand the scope of pain research.
Collapse
Affiliation(s)
- Jueun Roh
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Eun Jin Go
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Jin-Woo Park
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| |
Collapse
|
44
|
de Souza Melo CG, Nicolai EN, Alcaino C, Cassmann TJ, Whiteman ST, Wright AM, Miller KE, Gibbons SJ, Beyder A, Linden DR. Identification of intrinsic primary afferent neurons in mouse jejunum. Neurogastroenterol Motil 2020; 32:e13989. [PMID: 32986284 PMCID: PMC8114175 DOI: 10.1111/nmo.13989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The gut is the only organ system with intrinsic neural reflexes. Intrinsic primary afferent neurons (IPANs) of the enteric nervous system initiate intrinsic reflexes, form gut-brain connections, and undergo considerable neuroplasticity to cause digestive diseases. They remain inaccessible to study in mice in the absence of a selective marker. Advillin is used as a marker for primary afferent neurons in dorsal root ganglia. The aim of this study was to test the hypothesis that advillin is expressed in IPANs of the mouse jejunum. METHODS Advillin expression was assessed with immunohistochemistry and using transgenic mice expressing an inducible Cre recombinase under the advillin promoter were used to drive tdTomato and the genetically encoded calcium indicator GCaMP5. These mice were used to characterize the morphology and physiology of advillin-expressing enteric neurons using confocal microscopy, calcium imaging, and whole-cell patch-clamp electrophysiology. KEY RESULTS Advillin is expressed in about 25% of myenteric neurons of the mouse jejunum, and these neurons demonstrate the requisite properties of IPANs. Functionally, they demonstrate calcium responses following mechanical stimuli of the mucosa and during antidromic action potentials. They have Dogiel type II morphology with neural processes that mostly remain within the myenteric plexus, but also project to the mucosa and express NeuN and calcitonin gene-related peptide (CGRP), but not nNOS. CONCLUSIONS AND INFERENCES Advillin marks jejunal IPANs providing accessibility to this important neuronal population to study and model digestive disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - David R. Linden
- Address of Correspondence: David R. Linden, Ph.D., Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN U.S.A. 55905, Phone: 507-538-4090
- Fax: 507-284-0266,
| |
Collapse
|
45
|
Mapping of Extrinsic Innervation of the Gastrointestinal Tract in the Mouse Embryo. J Neurosci 2020; 40:6691-6708. [PMID: 32690615 DOI: 10.1523/jneurosci.0309-20.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/05/2020] [Accepted: 07/12/2020] [Indexed: 12/12/2022] Open
Abstract
Precise extrinsic afferent (visceral sensory) and efferent (sympathetic and parasympathetic) innervation of the gut is fundamental for gut-brain cross talk. Owing to the limitation of intrinsic markers to distinctively visualize the three classes of extrinsic axons, which intimately associate within the gut mesentery, detailed information on the development of extrinsic gut-innervating axons remains relatively sparse. Here, we mapped extrinsic innervation of the gut and explored the relationships among various types of extrinsic axons during embryonic development in mice. Visualization with characterized intrinsic markers revealed that visceral sensory, sympathetic, and parasympathetic axons arise from different anatomic locations, project in close association via the gut mesentery, and form distinctive innervation patterns within the gut from embryonic day (E)10.5 to E16.5. Genetic ablation of visceral sensory trajectories results in the erratic extension of both sympathetic and parasympathetic axons, implicating that afferent axons provide an axonal scaffold to route efferent axons. Coculture assay further confirmed the attractive effect of sensory axons on sympathetic axons. Taken together, our study provides key information regarding the development of extrinsic gut-innervating axons occurring through heterotypic axonal interactions and provides an anatomic basis to uncover neural circuit assembly in the gut-brain axis (GBA).SIGNIFICANCE STATEMENT Understanding the development of extrinsic innervation of the gut is essential to unravel the bidirectional neural communication between the brain and the gut. Here, with characterized intrinsic markers targeting vagal sensory, spinal sensory, sympathetic, and parasympathetic axons, respectively, we comprehensively traced the spatiotemporal development of extrinsic axons to the gut during embryonic development in mice. Moreover, in line with the somatic nervous system, pretarget sorting via heterotypic axonal interactions is revealed to play critical roles in patterning extrinsic efferent trajectories to the gut. These findings provide basic anatomic information to explore the mechanisms underlying the process of assembling neural circuitry in the gut-brain axis (GBA).
Collapse
|
46
|
Ruppert AL, Keshavarz M, Winterberg S, Oberwinkler J, Kummer W, Schütz B. Advillin is a tuft cell marker in the mouse alimentary tract. J Mol Histol 2020; 51:421-435. [PMID: 32617896 PMCID: PMC7368872 DOI: 10.1007/s10735-020-09893-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022]
Abstract
Tuft cells are a rare population of chemosensory cells at the mucosal surface epithelia of hollow organs. Their name-giving morphological feature is an apical tuft of stiff microvilli. Accordingly, the actin-binding protein, villin, was identified as one of the first tuft cell markers in immunohistochemical analysis. Unfortunately, villin expression is not restricted to tuft cells, but is also prominent e.g. in enterocytes, which limits the use of this gene as a marker and as an experimental tool to genetically target tuft cells. Here, we report that the villin-related protein, advillin, is a specific tuft cell marker in the gastro-intestinal and biliary tract epithelia. In situ hybridization and immunohistochemistry revealed that advillin expression, unlike villin, was restricted to solitary cholinergic tuft cells in the mucosal linings of the small and large intestine, and in the gall bladder. In the glandular stomach, villin and advillin mRNA were present in all epithelial cells, while detectable protein levels were confined to solitary tuft cells. Advillin expression was no longer detectable in the mucosa of the intestinal and biliary tract from Pou2f3 deficient mice that lack tuft cells. Finally, crossing Avil-Cre transgenic mice with a double-fluorescent reporter mouse line resulted in specific targeting of gastro-intestinal and biliary tuft cells. Our analysis introduces advillin as a selective marker and tool in histological and functional analysis of the alimentary tract tuft cell system.
Collapse
Affiliation(s)
- Anna-Lena Ruppert
- Institute for Anatomy and Cell Biology, Philipps-University, Robert-Koch-Straße 8, 35037, Marburg, Germany
| | - Maryam Keshavarz
- Institute for Anatomy and Cell Biology, Justus-Liebig-University, Aulweg 123, 35385, Gießen, Germany
| | - Sarah Winterberg
- Institute for Anatomy and Cell Biology, Philipps-University, Robert-Koch-Straße 8, 35037, Marburg, Germany
| | - Johannes Oberwinkler
- Institute for Physiology and Pathophysiology, Philipps-University, Deutschhausstraße 1, 35037, Marburg, Germany
| | - Wolfgang Kummer
- Institute for Anatomy and Cell Biology, Justus-Liebig-University, Aulweg 123, 35385, Gießen, Germany
| | - Burkhard Schütz
- Institute for Anatomy and Cell Biology, Philipps-University, Robert-Koch-Straße 8, 35037, Marburg, Germany.
| |
Collapse
|
47
|
Mouse intestinal tuft cells express advillin but not villin. Sci Rep 2020; 10:8877. [PMID: 32483224 PMCID: PMC7264147 DOI: 10.1038/s41598-020-65469-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 03/06/2020] [Indexed: 12/26/2022] Open
Abstract
Tuft (or brush) cells are solitary chemosensory cells scattered throughout the epithelia of the respiratory and alimentary tract. The actin-binding protein villin (Vil1) is used as a marker of tuft cells and the villin promoter is frequently used to drive expression of the Cre recombinase in tuft cells. While there is widespread agreement about the expression of villin in tuft cells there are several disagreements related to tuft cell lineage commitment and function. We now show that many of these inconsistencies could be resolved by our surprising finding that intestinal tuft cells, in fact, do not express villin protein. Furthermore, we show that a related actin-binding protein, advillin which shares 75% homology with villin, has a tuft cell restricted expression in the gastrointestinal epithelium. Our study identifies advillin as a marker of tuft cells and provides a mechanism for driving gene expression in tuft cells but not in other epithelial cells of the gastrointestinal tract. Our findings fundamentally change the way we identify and study intestinal tuft cells.
Collapse
|
48
|
Lee AG, Scott JM, Fabbrizi MR, Jiang X, Sojka DK, Miller MJ, Baldridge MT, Yokoyama WM, Shin H. T cell response kinetics determines neuroinfection outcomes during murine HSV infection. JCI Insight 2020; 5:134258. [PMID: 32161194 PMCID: PMC7141405 DOI: 10.1172/jci.insight.134258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/12/2020] [Indexed: 12/11/2022] Open
Abstract
Herpes simplex virus-2 (HSV-2) and HSV-1 both can cause genital herpes, a chronic infection that establishes a latent reservoir in the nervous system. Clinically, the recurrence frequency of HSV-1 genital herpes is considerably less than HSV-2 genital herpes, which correlates with reduced neuronal infection. The factors dictating the disparate outcomes of HSV-1 and HSV-2 genital herpes are unclear. In this study, we show that vaginal infection of mice with HSV-1 leads to the rapid appearance of mature DCs in the draining lymph node, which is dependent on an early burst of NK cell-mediated IFN-γ production in the vagina that occurs after HSV-1 infection but not HSV-2 infection. Rapid DC maturation after HSV-1 infection, but not HSV-2 infection, correlates with the accelerated generation of a neuroprotective T cell response and early accumulation of IFN-γ-producing T cells at the site of infection. Depletion of T cells or loss of IFN-γ receptor (IFN-γR) expression in sensory neurons both lead to a marked loss of neuroprotection only during HSV-1, recapitulating a prominent feature of HSV-2 infection. Our experiments reveal key differences in host control of neuronal HSV-1 and HSV-2 infection after genital exposure of mice, and they define parameters of a successful immune response against genital herpes.
Collapse
Affiliation(s)
| | | | | | | | - Dorothy K. Sojka
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | - Wayne M. Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
49
|
Sharma N, Flaherty K, Lezgiyeva K, Wagner DE, Klein AM, Ginty DD. The emergence of transcriptional identity in somatosensory neurons. Nature 2020; 577:392-398. [PMID: 31915380 DOI: 10.1038/s41586-019-1900-1] [Citation(s) in RCA: 260] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/06/2019] [Indexed: 11/09/2022]
Abstract
More than twelve morphologically and physiologically distinct subtypes of primary somatosensory neuron report salient features of our internal and external environments1-4. It is unclear how specialized gene expression programs emerge during development to endow these subtypes with their unique properties. To assess the developmental progression of transcriptional maturation of each subtype of principal somatosensory neuron, we generated a transcriptomic atlas of cells traversing the primary somatosensory neuron lineage in mice. Here we show that somatosensory neurogenesis gives rise to neurons in a transcriptionally unspecialized state, characterized by co-expression of transcription factors that become restricted to select subtypes as development proceeds. Single-cell transcriptomic analyses of sensory neurons from mutant mice lacking transcription factors suggest that these broad-to-restricted transcription factors coordinate subtype-specific gene expression programs in subtypes in which their expression is maintained. We also show that neuronal targets are involved in this process; disruption of the prototypic target-derived neurotrophic factor NGF leads to aberrant subtype-restricted patterns of transcription factor expression. Our findings support a model in which cues that emanate from intermediate and final target fields promote neuronal diversification in part by transitioning cells from a transcriptionally unspecialized state to transcriptionally distinct subtypes by modulating the selection of subtype-restricted transcription factors.
Collapse
Affiliation(s)
- Nikhil Sharma
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Kali Flaherty
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Karina Lezgiyeva
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Daniel E Wagner
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - David D Ginty
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA. .,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
50
|
Zhang F, Gigout S, Liu Y, Wang Y, Hao H, Buckley NJ, Zhang H, Wood IC, Gamper N. Repressor element 1-silencing transcription factor drives the development of chronic pain states. Pain 2019; 160:2398-2408. [PMID: 31206463 PMCID: PMC6756259 DOI: 10.1097/j.pain.0000000000001633] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/17/2019] [Accepted: 05/24/2019] [Indexed: 11/25/2022]
Abstract
Chronic pain is an unmet clinical problem with vast individual, societal, and economic impact. Pathologic activity of the peripheral somatosensory afferents is one of the major drivers of chronic pain. This overexcitable state of somatosensory neurons is, in part, produced by the dysregulation of genes controlling neuronal excitability. Despite intense research, a unifying theory behind neuropathic remodelling is lacking. Here, we show that transcriptional suppressor, repressor element 1-silencing transcription factor (REST; neuron-restrictive silencing factor, NRSF), is necessary and sufficient for the development of hyperalgesic state after chronic nerve injury or inflammation. Viral overexpression of REST in mouse dorsal root ganglion (DRG) induced prominent mechanical and thermal hyperalgesia in vivo. Sensory neuron-specific, inducible Rest knockout prevented the development of such hyperalgesic state in 3 different chronic pain models. Genetic deletion of Rest reverted injury-induced hyperalgesia. Moreover, viral overexpression of REST in the same neurons in which its gene has been genetically deleted restored neuropathic hyperalgesia. Finally, sensory neuron specific Rest knockout prevented injury-induced downregulation of REST target genes in DRG neurons. This work identified REST as a major regulator of peripheral somatosensory neuron remodelling leading to chronic pain. The findings might help to develop a novel therapeutic approache to combat chronic pain.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei Province, China
| | - Sylvain Gigout
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Yu Liu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei Province, China
| | - Yiying Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei Province, China
| | - Han Hao
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei Province, China
| | - Noel J. Buckley
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei Province, China
| | - Ian C. Wood
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Nikita Gamper
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei Province, China
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|