1
|
List EO, Basu R, Berryman DE, Duran-Ortiz S, Martos-Moreno GÁ, Kopchick JJ. Common and uncommon mouse models of growth hormone deficiency. Endocr Rev 2024:bnae017. [PMID: 38853618 DOI: 10.1210/endrev/bnae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/22/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Mouse models of growth hormone deficiency (GHD) have provided important tools for uncovering the various actions of GH. Nearly 100 years of research using these mouse lines has greatly enhanced our knowledge of the GH/IGF-1 axis. Some of the shared phenotypes of the five "common" mouse models of GHD include reduced body size, delayed sexual maturation, decreased fertility, reduced muscle mass, increased adiposity, and enhanced insulin sensitivity. Since these common mouse lines outlive their normal-sized littermates - and have protection from age-associated disease - they have become important fixtures in the aging field. On the other hand, the twelve "uncommon" mouse models of GHD described herein have tremendously divergent health outcomes ranging from beneficial aging phenotypes (similar to those described for the common models) to extremely detrimental features (such as improper development of the CNS, numerous sensory organ defects, and embryonic lethality). Moreover, advancements in next generation sequencing technologies have led to the identification of an expanding array of genes that are recognized as causative agents to numerous rare syndromes with concomitant GHD. Accordingly, this review provides researchers with a comprehensive up-to-date collection of the common and uncommon mouse models of GHD that have been used to study various aspects of physiology and metabolism associated with multiple forms of GHD. For each mouse line presented, the closest comparable human syndromes are discussed providing important parallels to the clinic.
Collapse
Affiliation(s)
- Edward O List
- Edison Biotechnology Institute, Ohio University, Athens Ohio, 45701, United States
- Department of Specialty Medicine, Heritage College of Osteopathic Medicine, Athens Ohio
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens Ohio, 45701, United States
| | - Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, Athens Ohio, 45701, United States
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Athens Ohio
| | - Silvana Duran-Ortiz
- Edison Biotechnology Institute, Ohio University, Athens Ohio, 45701, United States
| | - Gabriel Á Martos-Moreno
- Department of Endocrinology & Pediatrics, Hospital Infantil Universitario Niño Jesús, IIS La Princesa & Universidad Autónoma de Madrid. CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens Ohio, 45701, United States
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Athens Ohio
| |
Collapse
|
2
|
Ye C, Zhang TZ, Zang YY, Shi YS, Wan G. TMEM63B regulates postnatal development of cochlear sensory epithelia via thyroid hormone signaling. J Genet Genomics 2024; 51:673-676. [PMID: 38157934 DOI: 10.1016/j.jgg.2023.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Affiliation(s)
- Chang Ye
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School, Nanjing University, Nanjing, Jiangsu 210032, China
| | - Tian-Zi Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School, Nanjing University, Nanjing, Jiangsu 210032, China
| | - Yan-Yu Zang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School, Nanjing University, Nanjing, Jiangsu 210032, China
| | - Yun Stone Shi
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School, Nanjing University, Nanjing, Jiangsu 210032, China; Guangdong Institute of Intelligence Science and Technology, Zhuhai, Guangdong 519031, China.
| | - Guoqiang Wan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School, Nanjing University, Nanjing, Jiangsu 210032, China.
| |
Collapse
|
3
|
Bai X, Xu K, Xie L, Qiu Y, Chen S, Sun Y. The Dual Roles of Triiodothyronine in Regulating the Morphology of Hair Cells and Supporting Cells during Critical Periods of Mouse Cochlear Development. Int J Mol Sci 2023; 24:ijms24054559. [PMID: 36901990 PMCID: PMC10003541 DOI: 10.3390/ijms24054559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Clinically, thyroid-related diseases such as endemic iodine deficiency and congenital hypothyroidism are associated with hearing loss, suggesting that thyroid hormones are essential for the development of normal hearing. Triiodothyronine (T3) is the main active form of thyroid hormone and its effect on the remodeling of the organ of Corti remain unclear. This study aims to explore the effect and mechanism of T3 on the remodeling of the organ of Corti and supporting cells development during early development. In this study, mice treated with T3 at postnatal (P) day 0 or P1 showed severe hearing loss with disordered stereocilia of the outer hair cells (OHCs) and impaired function of mechanoelectrical transduction of OHCs. In addition, we found that treatment with T3 at P0 or P1 resulted in the overproduction of Deiter-like cells. Compared with the control group, the transcription levels of Sox2 and notch pathway-related genes in the cochlea of the T3 group were significantly downregulated. Furthermore, Sox2-haploinsufficient mice treated with T3 not only showed excess numbers of Deiter-like cells but also a large number of ectopic outer pillar cells (OPCs). Our study provides new evidence for the dual roles of T3 in regulating both hair cells and supporting cell development, suggesting that it is possible to increase the reserve of supporting cells.
Collapse
Affiliation(s)
- Xue Bai
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kai Xu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Le Xie
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yue Qiu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sen Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence: (S.C.); (Y.S.); Tel.: +86-27-8535-1632 (Y.S.)
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
- Correspondence: (S.C.); (Y.S.); Tel.: +86-27-8535-1632 (Y.S.)
| |
Collapse
|
4
|
Chen J, Gao D, Sun L, Yang J. Kölliker’s organ-supporting cells and cochlear auditory development. Front Mol Neurosci 2022; 15:1031989. [PMID: 36304996 PMCID: PMC9592740 DOI: 10.3389/fnmol.2022.1031989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
The Kölliker’s organ is a transient cellular cluster structure in the development of the mammalian cochlea. It gradually degenerates from embryonic columnar cells to cuboidal cells in the internal sulcus at postnatal day 12 (P12)–P14, with the cochlea maturing when the degeneration of supporting cells in the Kölliker’s organ is complete, which is distinct from humans because it disappears at birth already. The supporting cells in the Kölliker’s organ play a key role during this critical period of auditory development. Spontaneous release of ATP induces an increase in intracellular Ca2+ levels in inner hair cells in a paracrine form via intercellular gap junction protein hemichannels. The Ca2+ further induces the release of the neurotransmitter glutamate from the synaptic vesicles of the inner hair cells, which subsequently excite afferent nerve fibers. In this way, the supporting cells in the Kölliker’s organ transmit temporal and spatial information relevant to cochlear development to the hair cells, promoting fine-tuned connections at the synapses in the auditory pathway, thus facilitating cochlear maturation and auditory acquisition. The Kölliker’s organ plays a crucial role in such a scenario. In this article, we review the morphological changes, biological functions, degeneration, possible trans-differentiation of cochlear hair cells, and potential molecular mechanisms of supporting cells in the Kölliker’s organ during the auditory development in mammals, as well as future research perspectives.
Collapse
Affiliation(s)
- Jianyong Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Dekun Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
| | - Lianhua Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
- *Correspondence: Lianhua Sun Jun Yang
| | - Jun Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Ear Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Otolaryngology and Translational Medicine, Shanghai, China
- *Correspondence: Lianhua Sun Jun Yang
| |
Collapse
|
5
|
Affortit C, Blanc F, Nasr J, Ceccato JC, Markossian S, Guyot R, Puel JL, Flamant F, Wang J. A disease-associated mutation in thyroid hormone receptor α1 causes hearing loss and sensory hair cell patterning defects in mice. Sci Signal 2022; 15:eabj4583. [PMID: 35700264 DOI: 10.1126/scisignal.abj4583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Resistance to thyroid hormone due to mutations in THRA, which encodes the thyroid hormone receptor α (TRα1), shows variable clinical presentation. Mutations affecting TRβ1 and TRβ2 cause deafness in mice and have been associated with deafness in humans. To test whether TRα1 also affects hearing function, we used mice heterozygous for a frameshift mutation in Thra that is similar to human THRA mutations (ThraS1/+ mice) and reduces tissue sensitivity to thyroid hormone. Compared to wild-type littermates, ThraS1/+ mice showed moderate high-frequency sensorineural hearing loss as juveniles and increased age-related hearing loss. Ultrastructural examination revealed aberrant orientation of ~20% of sensory outer hair cells (OHCs), as well as increased numbers of mitochondria with fragmented morphology and autophagic vacuoles in both OHCs and auditory nerve fibers. Molecular dissection of the OHC lateral wall components revealed that the potassium ion channel Kcnq4 was aberrantly targeted to the cytoplasm of mutant OHCs. In addition, mutant cochleae showed increased oxidative stress, autophagy, and mitophagy associated with greater age-related cochlear cell damage, demonstrating that TRα1 is required for proper development of OHCs and for maintenance of OHC function. These findings suggest that patients with THRA mutations may present underdiagnosed, mild hearing loss and may be more susceptible to age-related hearing loss.
Collapse
Affiliation(s)
- Corentin Affortit
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, Montpellier, France
| | - Fabian Blanc
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, Montpellier, France.,Department of ENT and Head and Neck Surgery, University Hospital of Montpellier, Montpellier, France
| | - Jamal Nasr
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, Montpellier, France
| | - Jean-Charles Ceccato
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, Montpellier, France
| | - Suzy Markossian
- Institut de Génomique Fonctionnelle de Lyon (IGFL), INRAE USC1370, CNRS (UMR5242), ENS, Lyon, France
| | - Romain Guyot
- Institut de Génomique Fonctionnelle de Lyon (IGFL), INRAE USC1370, CNRS (UMR5242), ENS, Lyon, France
| | - Jean-Luc Puel
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, Montpellier, France
| | - Frédéric Flamant
- Institut de Génomique Fonctionnelle de Lyon (IGFL), INRAE USC1370, CNRS (UMR5242), ENS, Lyon, France
| | - Jing Wang
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, Montpellier, France.,Department of ENT and Head and Neck Surgery, University Hospital of Montpellier, Montpellier, France
| |
Collapse
|
6
|
Qian F, Jiang X, Chai R, Liu D. The Roles of Solute Carriers in Auditory Function. Front Genet 2022; 13:823049. [PMID: 35154281 PMCID: PMC8827148 DOI: 10.3389/fgene.2022.823049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Solute carriers (SLCs) are important transmembrane transporters with members organized into 65 families. They play crucial roles in transporting many important molecules, such as ions and some metabolites, across the membrane, maintaining cellular homeostasis. SLCs also play important roles in hearing. It has been found that mutations in some SLC members are associated with hearing loss. In this review, we summarize SLC family genes related with hearing dysfunction to reveal the vital roles of these transporters in auditory function. This summary could help us understand the auditory physiology and the mechanisms of hearing loss and further guide future studies of deafness gene identification.
Collapse
Affiliation(s)
- Fuping Qian
- School of Life Sciences, Nantong University, Nantong, China
| | - Xiaoge Jiang
- Department of Rehabilitation Medicine, The Second People's Hospital of Nantong, Affiliated Rehabilitation Hospital of Nantong University, Nantong, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China.,Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dong Liu
- School of Life Sciences, Nantong University, Nantong, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
7
|
Borse V, Kaur T, Hinton A, Ohlemiller K, Warchol ME. Programmed Cell Death Recruits Macrophages Into the Developing Mouse Cochlea. Front Cell Dev Biol 2021; 9:777836. [PMID: 34957108 PMCID: PMC8696258 DOI: 10.3389/fcell.2021.777836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/19/2021] [Indexed: 12/31/2022] Open
Abstract
Programmed cell death (PCD) plays a critical role in the development and maturation of the cochlea. Significant remodeling occurs among cells of the greater epithelial ridge (GER) of Kölliker’s organ, leading to tissue regression and formation of the inner sulcus. In mice, this event normally occurs between postnatal days 5–15 (P5-15) and is regulated by thyroid hormone (T3). During this developmental time period, the cochlea also contains a large population of macrophages. Macrophages are frequently involved in the phagocytic clearance of dead cells, both during development and after injury, but the role of macrophages in the developing cochlea is unknown. This study examined the link between developmental cell death in the GER and the recruitment of macrophages into this region. Cell death in the basal GER begins at P5 and enhanced numbers of macrophages were observed at P7. This pattern of macrophage recruitment was unchanged in mice that were genetically deficient for CX3CR1, the receptor for fractalkine (a known macrophage chemoattractant). We found that injection of T3 at P0 and P1 caused GER cell death to begin at P3, and this premature PCD was accompanied by earlier recruitment of macrophages. We further found that depletion of macrophages from the developing cochlea (using CX3CR1DTR/+ mice and treatment with the CSF1R antagonist BLZ945) had no effect on the pattern of GER regression. Together, these findings suggest that macrophages are recruited into the GER region after initiation of developmental PCD, but that they are not essential for GER regression during cochlear remodeling.
Collapse
Affiliation(s)
- Vikrant Borse
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| | - Tejbeer Kaur
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Ashley Hinton
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| | - Kevin Ohlemiller
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| | - Mark E Warchol
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
8
|
Ng L, Liu Y, Liu H, Forrest D. Cochlear Fibrocyte and Osteoblast Lineages Expressing Type 2 Deiodinase Identified with a Dio2CreERt2 Allele. Endocrinology 2021; 162:bqab179. [PMID: 34436572 PMCID: PMC8475715 DOI: 10.1210/endocr/bqab179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Indexed: 12/16/2022]
Abstract
Type 2 deiodinase (Dio2) amplifies levels of 3,5,3'-L-triiodothyronine (T3), the active form of thyroid hormone, and is essential for cochlear maturation and auditory development. However, cellular routes for endocrine signaling in the compartmentalized, anatomically complex cochlea are little understood. Dio2 generates T3 from thyroxine (T4), a more abundant thyroid hormone precursor in the circulation, and is dramatically induced in the cochlea before the onset of hearing. The evidence implies that specific Dio2-expressing cell types critically mediate T3 signaling but these cell types are poorly defined because Dio2 is expressed transiently at low levels. Here, using a Dio2CreERt2 knockin that activates a fluorescent reporter, we define Dio2-expressing cochlear cell types at high resolution in male or female mice. Dio2-positive cells were detected in vascularized supporting tissues but not in avascular internal epithelia, indicating segregation of T3-generating and T3-responding tissues. In the spiral ligament and spiral limbus, Dio2-positive fibrocytes clustered around vascular networks that convey T4 into cochlear tissues. In the otic capsule, Dio2-positive osteoblasts localized at cartilage surfaces as the bony labyrinth matures. We corroborated the identities of Dio2-positive lineages by RNA-sequencing of individual cells. The results suggest a previously unrecognized role for fibrocytes in mediating hormonal signaling. We discuss a model whereby fibrocytes mediate paracrine-like control of T3 signaling to the organ of Corti and epithelial target tissues.
Collapse
Affiliation(s)
- Lily Ng
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ye Liu
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hong Liu
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Chaulin AM, Grigorieva JV, Suvorova GN, Duplyakov DV. Experimental Modeling Of Hypothyroidism: Principles, Methods, Several Advanced Research Directions In Cardiology. RUSSIAN OPEN MEDICAL JOURNAL 2021. [DOI: 10.15275/rusomj.2021.0311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Hypothyroidism is one of the most common pathological conditions in modern clinical practice. Due to the fact that the targets of thyroid hormones are virtually all organs and tissues, the morphological and clinical manifestations arising with a deficiency of thyroid hormones are quite diverse. Experimental models of hypothyroidism in laboratory animals are widely used for preclinical study of the fundamental pathophysiological mechanisms underlying hypothyroidism, as well as for assessing the effectiveness of treatment-and-prophylactic effects. Currently, several groups of effective models of hypothyroidism have been developed: dietary, surgical, medicamentous, genetic, radioactive and immunological. Each of the specified models is based on different principles, has advantages and disadvantages, and can be used depending on the goals and objectives of the experiment. In this review, we will consistently consider hypothyroidism modeling methods and indicate some promising areas of their use in cardiology.
Collapse
Affiliation(s)
- Aleksey M. Chaulin
- Samara State Medical University, Samara, Russia; Samara Regional Clinical Cardiological Dispensary, Samara, Russia
| | | | | | - Dmitry V. Duplyakov
- Samara State Medical University, Samara, Russia; Samara Regional Clinical Cardiological Dispensary, Samara, Russia
| |
Collapse
|
10
|
García-Mato Á, Cervantes B, Murillo-Cuesta S, Rodríguez-de la Rosa L, Varela-Nieto I. Insulin-like Growth Factor 1 Signaling in Mammalian Hearing. Genes (Basel) 2021; 12:genes12101553. [PMID: 34680948 PMCID: PMC8535591 DOI: 10.3390/genes12101553] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023] Open
Abstract
Insulin-like growth factor 1 (IGF-1) is a peptide hormone belonging to the insulin family of proteins. Almost all of the biological effects of IGF-1 are mediated through binding to its high-affinity tyrosine kinase receptor (IGF1R), a transmembrane receptor belonging to the insulin receptor family. Factors, receptors and IGF-binding proteins form the IGF system, which has multiple roles in mammalian development, adult tissue homeostasis, and aging. Consequently, mutations in genes of the IGF system, including downstream intracellular targets, underlie multiple common pathologies and are associated with multiple rare human diseases. Here we review the contribution of the IGF system to our understanding of the molecular and genetic basis of human hearing loss by describing, (i) the expression patterns of the IGF system in the mammalian inner ear; (ii) downstream signaling of IGF-1 in the hearing organ; (iii) mouse mutations in the IGF system, including upstream regulators and downstream targets of IGF-1 that inform cochlear pathophysiology; and (iv) human mutations in these genes causing hearing loss.
Collapse
Affiliation(s)
- Ángela García-Mato
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Blanca Cervantes
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Silvia Murillo-Cuesta
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
| | - Lourdes Rodríguez-de la Rosa
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
- Correspondence: (L.R.-d.l.R.); (I.V.-N.)
| | - Isabel Varela-Nieto
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
- Correspondence: (L.R.-d.l.R.); (I.V.-N.)
| |
Collapse
|
11
|
Hernandez A, Martinez ME, Ng L, Forrest D. Thyroid Hormone Deiodinases: Dynamic Switches in Developmental Transitions. Endocrinology 2021; 162:bqab091. [PMID: 33963379 PMCID: PMC8248586 DOI: 10.1210/endocr/bqab091] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 12/15/2022]
Abstract
Thyroid hormones exert pleiotropic, essential actions in mammalian, including human, development. These actions depend on provision of thyroid hormones in the circulation but also to a remarkable extent on deiodinase enzymes in target tissues that amplify or deplete the local concentration of the primary active form of the hormone T3 (3,5,3'-triiodothyronine), the high affinity ligand for thyroid hormone receptors. Genetic analyses in mice have revealed key roles for activating (DIO2) and inactivating (DIO3) deiodinases in cell differentiation fates and tissue maturation, ultimately promoting neonatal viability, growth, fertility, brain development, and behavior, as well as metabolic, endocrine, and sensory functions. An emerging paradigm is how the opposing activities of DIO2 and DIO3 are coordinated, providing a dynamic switch that controls the developmental timing of a tissue response, often during neonatal and maturational transitions. A second paradigm is how cell to cell communication within a tissue determines the response to T3. Deiodinases in specific cell types, often strategically located near to blood vessels that convey thyroid hormones into the tissue, can regulate neighboring cell types, suggesting a paracrine-like layer of control of T3 action. We discuss deiodinases as switches for developmental transitions and their potential to influence tissue dysfunction in human thyroid disorders.
Collapse
Affiliation(s)
- Arturo Hernandez
- Department of Molecular Medicine, Maine Medical Center Research Institute, Maine Health, Scarborough, Maine 04074, USA
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine 04469, USA
| | - M Elena Martinez
- Department of Molecular Medicine, Maine Medical Center Research Institute, Maine Health, Scarborough, Maine 04074, USA
| | - Lily Ng
- National Institute of Diabetes and Digestive and Kidney Diseases, Laboratory of Endocrinology and Receptor Biology, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Douglas Forrest
- National Institute of Diabetes and Digestive and Kidney Diseases, Laboratory of Endocrinology and Receptor Biology, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
12
|
List EO, Basu R, Duran-Ortiz S, Krejsa J, Jensen EA. Mouse models of growth hormone deficiency. Rev Endocr Metab Disord 2021; 22:3-16. [PMID: 33033978 DOI: 10.1007/s11154-020-09601-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 01/01/2023]
Abstract
Nearly one century of research using growth hormone deficient (GHD) mouse lines has contributed greatly toward our knowledge of growth hormone (GH), a pituitary-derived hormone that binds and signals through the GH receptor and affects many metabolic processes throughout life. Although delayed sexual maturation, decreased fertility, reduced muscle mass, increased adiposity, small body size, and glucose intolerance appear to be among the negative characteristics of these GHD mouse lines, these mice still consistently outlive their normal sized littermates. Furthermore, the absence of GH action in these mouse lines leads to enhanced insulin sensitivity (likely due to the lack of GH's diabetogenic actions), delayed onset for a number of age-associated physiological declines (including cognition, cancer, and neuromusculoskeletal frailty), reduced cellular senescence, and ultimately, extended lifespan. In this review, we provide details about history, availability, growth, physiology, and aging of five commonly used GHD mouse lines.
Collapse
Affiliation(s)
- Edward O List
- The Edison Biotechnology Institute, Ohio University, 172 Water Tower Drive, Athens, OH, 45701, USA.
- The Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.
| | - Reetobrata Basu
- The Edison Biotechnology Institute, Ohio University, 172 Water Tower Drive, Athens, OH, 45701, USA
| | - Silvana Duran-Ortiz
- The Edison Biotechnology Institute, Ohio University, 172 Water Tower Drive, Athens, OH, 45701, USA
| | - Jackson Krejsa
- The Edison Biotechnology Institute, Ohio University, 172 Water Tower Drive, Athens, OH, 45701, USA
| | - Elizabeth A Jensen
- The Edison Biotechnology Institute, Ohio University, 172 Water Tower Drive, Athens, OH, 45701, USA
- The Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
13
|
Affortit C, Casas F, Ladrech S, Ceccato JC, Bourien J, Coyat C, Puel JL, Lenoir M, Wang J. Exacerbated age-related hearing loss in mice lacking the p43 mitochondrial T3 receptor. BMC Biol 2021; 19:18. [PMID: 33526032 PMCID: PMC7852282 DOI: 10.1186/s12915-021-00953-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/08/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Age-related hearing loss (ARHL), also known as presbycusis, is the most common sensory impairment seen in elderly people. However, the cochlear aging process does not affect people uniformly, suggesting that both genetic and environmental (e.g., noise, ototoxic drugs) factors and their interaction may influence the onset and severity of ARHL. Considering the potential links between thyroid hormone, mitochondrial activity, and hearing, here, we probed the role of p43, a N-terminally truncated and ligand-binding form of the nuclear receptor TRα1, in hearing function and in the maintenance of hearing during aging in p43-/- mice through complementary approaches, including in vivo electrophysiological recording, ultrastructural assessments, biochemistry, and molecular biology. RESULTS We found that the p43-/- mice exhibit no obvious hearing loss in juvenile stages, but that these mice developed a premature, and more severe, ARHL resulting from the loss of cochlear sensory outer and inner hair cells and degeneration of spiral ganglion neurons. Exacerbated ARHL in p43-/- mice was associated with the early occurrence of a drastic fall of SIRT1 expression, together with an imbalance between pro-apoptotic Bax, p53 expression, and anti-apoptotic Bcl2 expression, as well as an increase in mitochondrial dysfunction, oxidative stress, and inflammatory process. Finally, p43-/- mice were also more vulnerable to noise-induced hearing loss. CONCLUSIONS These results demonstrate for the first time a requirement for p43 in the maintenance of hearing during aging and highlight the need to probe the potential link between human THRA gene polymorphisms and/or mutations and accelerated age-related deafness or some adult-onset syndromic deafness.
Collapse
Affiliation(s)
- Corentin Affortit
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
- Université de Montpellier, 34000, Montpellier, France
| | - François Casas
- INRA, UMR 866 Dynamique Musculaire et Métabolisme,, 34060, Montpellier, France
| | - Sabine Ladrech
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
- Université de Montpellier, 34000, Montpellier, France
| | - Jean-Charles Ceccato
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
- Université de Montpellier, 34000, Montpellier, France
| | - Jérôme Bourien
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
- Université de Montpellier, 34000, Montpellier, France
| | - Carolanne Coyat
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
- Université de Montpellier, 34000, Montpellier, France
| | - Jean-Luc Puel
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
- Université de Montpellier, 34000, Montpellier, France
| | - Marc Lenoir
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
- Université de Montpellier, 34000, Montpellier, France
| | - Jing Wang
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France.
- Université de Montpellier, 34000, Montpellier, France.
- ENT Department, CHU Montpellier, 34295, Montpellier, France.
| |
Collapse
|
14
|
An Age-Related Hearing Protection Locus on Chromosome 16 of BXD Strain Mice. Neural Plast 2020; 2020:8889264. [PMID: 32587610 PMCID: PMC7298343 DOI: 10.1155/2020/8889264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022] Open
Abstract
Inbred mouse models are widely used to study age-related hearing loss (AHL). Many genes associated with AHL have been mapped in a variety of strains. However, little is known about gene variants that have the converse function—protective genes that confer strong resistance to hearing loss. Previously, we reported that C57BL/6J (B6) and DBA/2J (D2) strains share a common hearing loss allele in Cdh23. The cadherin 23 (Cdh23) gene is a key contributor to early-onset hearing loss in humans. In this study, we tested hearing across a large family of 54 BXD strains generated from B6 to D2 crosses. Five of 54 strains maintain the normal threshold (20 dB SPL) even at 2 years old—an age at which both parental strains are essentially deaf. Further analyses revealed an age-related hearing protection (ahp) locus on chromosome 16 (Chr 16) at 57~76 Mb with a maximum LOD of 5.7. A small number of BXD strains at 2 years with good hearing correspond roughly to the percentage of humans who have good hearing at 90 years old. Further studies to define candidate genes in the ahp locus and related molecular mechanisms involved in age-related resilience or resistance to AHL are warranted.
Collapse
|
15
|
Machado GC, Oliveira de Andrade CL, da Cruz Fernandes L, Morais de Albuquerque J, Franco Magalhães LP, de Aragão Dantas Alves C. Study of cochlear function in neonates and infants with congenital hypothyroidism. Int J Pediatr Otorhinolaryngol 2019; 124:203-207. [PMID: 31212168 DOI: 10.1016/j.ijporl.2019.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate the signal amplitudes of transient evoked otoacoustic emissions (TEOAE) in neonates and infants diagnosed with congenital hypothyroidism (HC) and verify their association with clinical and laboratory aspects. METHODS A cross-sectional study with a convenience sample of 22 individuals with congenital hypothyroidism and a group of 22 individuals without the disease, neonates and infants, aged 0-12 months. The TEOAE amplitudes were evaluated in both groups and compared using the Mann-Whitney test. The existence of association between TEOAE amplitudes and clinical-laboratory variables was verified through the Spearman correlation coefficient. RESULTS There were no statistically significant differences between TEOAE amplitudes between the two groups. There was an association between the amplitudes of TEOAE and serum levels of thyroid stimulating hormone (TSH) and free thyroxine (T4) in the diagnostic test. CONCLUSIONS The existence of an association between serum levels of TSH and free T4 in the diagnostic test and the amplitudes of TEOAE suggests the influence of these hormones on the auditory function.
Collapse
Affiliation(s)
- Gabriela Carvalho Machado
- Postgraduate Program in Interactive Processes of Organs and Systems, Institute of Health Science, Federal University of Bahia, Avenue Rector Miguel Calmon, 40110100, Valley of Canela, Salvador, Bahia, Brazil.
| | - Caio Leônidas Oliveira de Andrade
- Postgraduate Program in Interactive Processes of Organs and Systems, Institute of Health Science, Federal University of Bahia, Avenue Rector Miguel Calmon, 40110100, Valley of Canela, Salvador, Bahia, Brazil.
| | - Luciene da Cruz Fernandes
- Department of Speech Therapy, Institute of Health Science, Federal University of Bahia, Avenue Rector Miguel Calmon, 40110100, Valley of Canela, Salvador, Bahia, Brazil.
| | - Jamile Morais de Albuquerque
- Department of Speech Therapy, Institute of Health Science, Federal University of Bahia, Avenue Rector Miguel Calmon, 40110100, Valley of Canela, Salvador, Bahia, Brazil.
| | - Luan Paulo Franco Magalhães
- Department of Life Sciences, University of the State of Bahia, Street Silveira Martins, 41150000, Cabula, Salvador, Bahia, Brazil.
| | - Crésio de Aragão Dantas Alves
- Medical School, Institute of Health Science, Federal University of Bahia, Avenue Rector Miguel Calmon, 40110100, Valley of Canela, Salvador, Bahia, Brazil.
| |
Collapse
|
16
|
de Andrade CLO, Machado GC, Magalhães LPF, Cerqueira TLDO, Fernandes LDC, Ramos HE, Alves CDAD. Cochlear dysfunction evidenced by reduction of amplitude of otoacoustic responses in patients with congenital hypothyroidism. Int J Pediatr Otorhinolaryngol 2019; 122:12-17. [PMID: 30928865 DOI: 10.1016/j.ijporl.2019.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The investigation of amplitudes of otoacoustic emissions in congenital hypothyroidism can provide information on cochlear function with more sensibility, when compared to other methods of auditory evaluation. AIM To investigate cochlear function through the amplitude of distortion product otoacoustic emissions in individuals with congenital hypothyroidism and to correlate with clinical aspects. METHODS An exploratory, analytical, cross-sectional study with a convenience sample, composed of 50 individuals with congenital hypothyroidism and a group of 42 individuals without the disease, mean age of 8.4 (±3.1) years. The subjects of the research were evaluated by means of tonal and speech audiometry, immittance and distortion product otoacoustic emissions (DPOAEs). Continuous variables were described as mean or median and standard deviation. The Spearman test evaluated the correlations between the variables. RESULTS Otoacoustic emission amplitudes were significantly reduced in the exposed group, with congenital hypothyroidism, when compared to the group of individuals without the disease, especially in the medium frequencies. The Spearman test showed a slight correlation between the amplitude values of the otoacoustic emissions of some frequencies and the variables: disease time, diagnostic age, irregular serum free thyroxine hormone levels and thyroid stimulating hormone, especially in the condition of less treatment, whose correlation was negative. CONCLUSION There was a correlation between the levels of signal amplitudes of otoacoustic emissions with clinical conditions and hormonal follow-up, suggesting probable subclinical auditory impairment in this population, as well as influence of some clinical aspects of congenital hypothyroidism on auditory function.
Collapse
Affiliation(s)
- Caio Leônidas Oliveira de Andrade
- Postgraduate Program in Interactive Processes of Organs and Systems, Institute of Health Science- Federal University of Bahia, Avenue Rector Miguel Calmon, Zipe Code: 40110100, Valley of Canela, Salvador, Bahia, Brazil; Department of Life Sciences, University of the State of Bahia, Street Silveira Martins, Zipe Code: 41150000, Cabula, Salvador, Bahia, Brazil.
| | - Gabriela Carvalho Machado
- Postgraduate Program in Interactive Processes of Organs and Systems, Institute of Health Science- Federal University of Bahia, Avenue Rector Miguel Calmon, Zipe Code: 40110100, Valley of Canela, Salvador, Bahia, Brazil.
| | - Luan Paulo Franco Magalhães
- Postgraduate Program in Interactive Processes of Organs and Systems, Institute of Health Science- Federal University of Bahia, Avenue Rector Miguel Calmon, Zipe Code: 40110100, Valley of Canela, Salvador, Bahia, Brazil.
| | - Taíse Lima de Oliveira Cerqueira
- Institute of Health Science- Federal University of Bahia, Avenue Rector Miguel Calmon, Zipe Code: 40110100, Valley of Canela, Salvador, Bahia, Brazil.
| | - Luciene da Cruz Fernandes
- Department of Speech Therapy, Institute of Health Science- Federal University of Bahia, Avenue Rector Miguel Calmon, Zipe Code: 40110100, Valley of Canela, Salvador, Bahia, Brazil.
| | - Helton Estrela Ramos
- Department of Bioregulation, Health & Sciences Institute, Federal University Bahia, Avenue Rector Miguel Calmon, Zipe Code: 40110100, Valley of Canela, Salvador, Bahia, Brazil.
| | - Crésio de Aragão Dantas Alves
- Medical School, Institute of Health Science- Federal University of Bahia, Avenue Rector Miguel Calmon, Zipe Code: 40110100, Valley of Canela, Salvador, Bahia, Brazil.
| |
Collapse
|
17
|
Carignano C, Barila EP, Rías EI, Dionisio L, Aztiria E, Spitzmaul G. Inner Hair Cell and Neuron Degeneration Contribute to Hearing Loss in a DFNA2-Like Mouse Model. Neuroscience 2019; 410:202-216. [PMID: 31102762 DOI: 10.1016/j.neuroscience.2019.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/03/2019] [Accepted: 05/07/2019] [Indexed: 01/19/2023]
Abstract
DFNA2 is a progressive deafness caused by mutations in the voltage-activated potassium channel KCNQ4. Hearing loss develops with age from a mild increase in the hearing threshold to profound deafness. Studies using transgenic mice for Kcnq4 expressed in a mixed background demonstrated the implication of outer hair cells at the initial phase. However, it could not explain the last phase mechanisms of the disease. Genetic backgrounds are known to influence disease expressivity. To unmask the cause of profound deafness phenotype, we backcrossed the Kcnq4 knock-out allele to the inbred strain C3H/HeJ and investigated inner and outer hair cell and spiral ganglion neuron degeneration across the lifespan. In addition to the already reported outer hair cell death, the C3H/HeJ strain also exhibited inner hair cell and spiral ganglion neuron death. We tracked the spatiotemporal survival of cochlear cells by plotting cytocochleograms and neuronal counts at different ages. Cell loss progressed from basal to apical turns with age. Interestingly, the time-course of cell degeneration was different for each cell-type. While for outer hair cells it was already present by week 3, inner hair cell and neuronal loss started 30 weeks later. We also established that outer hair cell loss kinetics slowed down from basal to apical regions correlating with KCNQ4 expression pattern determined in wild-type mice. Our findings indicate that KCNQ4 plays differential roles in each cochlear cell-type impacting in their survival ability. Inner hair cell and spiral ganglion neuron death generates severe hearing loss that could be associated with the last phase of DFNA2.
Collapse
Affiliation(s)
- Camila Carignano
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional del Sur (UNS), Camino La Carrindanga Km 7, B8000FWB, Bahía Blanca, Argentina
| | - Esteban Pablo Barila
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional del Sur (UNS), Camino La Carrindanga Km 7, B8000FWB, Bahía Blanca, Argentina
| | - Ezequiel Ignacio Rías
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional del Sur (UNS), Camino La Carrindanga Km 7, B8000FWB, Bahía Blanca, Argentina.; Departamento de Biología, Bioquímica y Farmacia (BByF)-UNS, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Leonardo Dionisio
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional del Sur (UNS), Camino La Carrindanga Km 7, B8000FWB, Bahía Blanca, Argentina.; Departamento de Biología, Bioquímica y Farmacia (BByF)-UNS, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Eugenio Aztiria
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional del Sur (UNS), Camino La Carrindanga Km 7, B8000FWB, Bahía Blanca, Argentina.; Departamento de Biología, Bioquímica y Farmacia (BByF)-UNS, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Guillermo Spitzmaul
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional del Sur (UNS), Camino La Carrindanga Km 7, B8000FWB, Bahía Blanca, Argentina.; Departamento de Biología, Bioquímica y Farmacia (BByF)-UNS, San Juan 670, 8000 Bahía Blanca, Argentina..
| |
Collapse
|
18
|
Smeriglio P, Wangsawihardja FV, Leu R, Mustapha M. TSP1 and TSP2 Have Unique and Overlapping Roles in Protecting against Noise-Induced Auditory Synaptopathy. Neuroscience 2019; 408:68-80. [PMID: 30928339 DOI: 10.1016/j.neuroscience.2019.03.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/22/2019] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
Abstract
Thrombospondins (TSPs) are cell adhesion molecules that play an important role in the maintenance of hearing and afferent synaptic connections. Based on their reported function in restoring synaptic connections after stroke, we tested a potential role for TSP1 and TSP2 genes in repairing cochlear synapses following noise injury. We observed a tonotopic gradient in the expression of TSP1 and TSP2 mRNA in control mouse cochleae and an upregulation of these genes following noise exposure. Examining the functional sequelae of these changes revealed that afferent synaptic counts and auditory brainstem responses (ABRs) in noise-exposed TSP1 and TSP2 knockout (-/-) mice exhibited a worst recovery when compared to controls. Consistent with their tonotopic expression, TSP1-/- mice showed greater susceptibility to noise-induced hearing loss (NIHL) at 8 kHz and 16 kHz frequencies, whereas NIHL in TSP2-/- mice occurred only at mid and high frequencies. Further analysis of the ABR waveforms indicated peripheral neuronal damage in TSP2-/- but not in TSP1-/- mice. Noise trauma affecting mid to high frequencies triggered severe seizures in the TSP2-/- mice. We found that decreased susceptibility to audiogenic seizures in TSP1-/- mice was correlated with increased TSP2 protein levels in their inner ears, suggesting that TSP2 might functionally compensate for the loss of TSP1 in these mice. Our data indicate that TSP1 and TSP2 are both involved in susceptibility to NIHL, with TSP2 playing a more prominent role.
Collapse
Affiliation(s)
- Piera Smeriglio
- Department of Otolaryngology - Head and Neck Surgery, Stanford University, Stanford, CA, USA
| | - Felix V Wangsawihardja
- Department of Otolaryngology - Head and Neck Surgery, Stanford University, Stanford, CA, USA
| | - Rose Leu
- Department of Otolaryngology - Head and Neck Surgery, Stanford University, Stanford, CA, USA
| | - Mirna Mustapha
- Department of Otolaryngology - Head and Neck Surgery, Stanford University, Stanford, CA, USA.
| |
Collapse
|
19
|
Heeringa AN, Köppl C. The aging cochlea: Towards unraveling the functional contributions of strial dysfunction and synaptopathy. Hear Res 2019; 376:111-124. [PMID: 30862414 DOI: 10.1016/j.heares.2019.02.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/01/2019] [Accepted: 02/26/2019] [Indexed: 10/27/2022]
Abstract
Strial dysfunction is commonly observed as a key consequence of aging in the cochlea. A large body of animal research, especially in the quiet-aged Mongolian gerbil, shows specific histopathological changes in the cochlear stria vascularis and the putatively corresponding effects on endocochlear potential and auditory nerve responses. However, recent work suggests that synaptopathy, or the loss of inner hair cell-auditory nerve fiber synapses, also presents as a consequence of aging. It is now believed that the loss of synapses is the earliest age-related degenerative event. The present review aims to integrate classic and novel research on age-related pathologies of the inner ear. First, we summarize current knowledge on age-related strial dysfunction and synaptopathy. We describe how these cochlear pathologies fit into the categories for presbyacusis, as first defined by Schuknecht in the '70s. Further, we discuss how strial dysfunction and synaptopathy affect sound coding by the auditory nerve and how they can be experimentally induced to study their specific contributions to age-related hearing deficits. As such, we aim to give an overview of the current literature on age-related cochlear pathologies and hope to inspire further research on the role of cochlear aging in age-related hearing deficits.
Collapse
Affiliation(s)
- Amarins N Heeringa
- Cluster of Excellence 'Hearing4all' and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Christine Köppl
- Cluster of Excellence 'Hearing4all' and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany.
| |
Collapse
|
20
|
Genetic variation in thyroid folliculogenesis influences susceptibility to hypothyroidism-induced hearing impairment. Mamm Genome 2019; 30:5-22. [PMID: 30778664 DOI: 10.1007/s00335-019-09792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/09/2019] [Indexed: 10/27/2022]
Abstract
Maternal and fetal sources of thyroid hormone are important for the development of many organ systems. Thyroid hormone deficiency causes variable intellectual disability and hearing impairment in mouse and man, but the basis for this variation is not clear. To explore this variation, we studied two thyroid hormone-deficient mouse mutants with mutations in pituitary-specific transcription factors, POU1F1 and PROP1, that render them unable to produce thyroid stimulating hormone. DW/J-Pou1f1dw/dw mice have profound deafness and both neurosensory and conductive hearing impairment, while DF/B-Prop1df/df mice have modest elevations in hearing thresholds consistent with developmental delay, eventually achieving normal hearing ability. The thyroid glands of Pou1f1 mutants are more severely affected than those of Prop1df/df mice, and they produce less thyroglobulin during the neonatal period critical for establishing hearing. We previously crossed DW/J-Pou1f1dw/+ and Cast/Ei mice and mapped a major locus on Chromosome 2 that protects against hypothyroidism-induced hearing impairment in Pou1f1dw/dw mice: modifier of dw hearing (Mdwh). Here we refine the location of Mdwh by genotyping 196 animals with 876 informative SNPs, and we conduct novel mapping with a DW/J-Pou1f1dw/+ and 129/P2 cross that reveals 129/P2 mice also have a protective Mdwh locus. Using DNA sequencing of DW/J and DF/B strains, we determined that the genes important for thyroid gland function within Mdwh vary in amino acid sequence between strains that are susceptible or resistant to hypothyroidism-induced hearing impairment. These results suggest that the variable effects of congenital hypothyroidism on the development of hearing ability are attributable to genetic variation in postnatal thyroid gland folliculogenesis and function.
Collapse
|
21
|
Avenarius MR, Jung JY, Askew C, Jones SM, Hunker KL, Azaiez H, Rehman AU, Schraders M, Najmabadi H, Kremer H, Smith RJH, Géléoc GSG, Dolan DF, Raphael Y, Kohrman DC. Grxcr2 is required for stereocilia morphogenesis in the cochlea. PLoS One 2018; 13:e0201713. [PMID: 30157177 PMCID: PMC6114524 DOI: 10.1371/journal.pone.0201713] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/22/2018] [Indexed: 11/18/2022] Open
Abstract
Hearing and balance depend upon the precise morphogenesis and mechanosensory function of stereocilia, the specialized structures on the apical surface of sensory hair cells in the inner ear. Previous studies of Grxcr1 mutant mice indicated a critical role for this gene in control of stereocilia dimensions during development. In this study, we analyzed expression of the paralog Grxcr2 in the mouse and evaluated auditory and vestibular function of strains carrying targeted mutations of the gene. Peak expression of Grxcr2 occurs during early postnatal development of the inner ear and GRXCR2 is localized to stereocilia in both the cochlea and in vestibular organs. Homozygous Grxcr2 deletion mutants exhibit significant hearing loss by 3 weeks of age that is associated with developmental defects in stereocilia bundle orientation and organization. Despite these bundle defects, the mechanotransduction apparatus assembles in relatively normal fashion as determined by whole cell electrophysiological evaluation and FM1-43 uptake. Although Grxcr2 mutants do not exhibit overt vestibular dysfunction, evaluation of vestibular evoked potentials revealed subtle defects of the mutants in response to linear accelerations. In addition, reduced Grxcr2 expression in a hypomorphic mutant strain is associated with progressive hearing loss and bundle defects. The stereocilia localization of GRXCR2, together with the bundle pathologies observed in the mutants, indicate that GRXCR2 plays an intrinsic role in bundle orientation, organization, and sensory function in the inner ear during development and at maturity.
Collapse
Affiliation(s)
- Matthew R. Avenarius
- Department of Otolaryngology/Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jae-Yun Jung
- Department of Otolaryngology/Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Charles Askew
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, United States of America
- Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sherri M. Jones
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, North Carolina, United States of America
| | - Kristina L. Hunker
- Department of Otolaryngology/Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Hela Azaiez
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Atteeq U. Rehman
- Section on Human Genetics, Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland, United States of America
| | - Margit Schraders
- Hearing & Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hannie Kremer
- Hearing & Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Richard J. H. Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Gwenaëlle S. G. Géléoc
- Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David F. Dolan
- Department of Otolaryngology/Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Yehoash Raphael
- Department of Otolaryngology/Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - David C. Kohrman
- Department of Otolaryngology/Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
22
|
Wolter S, Möhrle D, Schmidt H, Pfeiffer S, Zelle D, Eckert P, Krämer M, Feil R, Pilz PKD, Knipper M, Rüttiger L. GC-B Deficient Mice With Axon Bifurcation Loss Exhibit Compromised Auditory Processing. Front Neural Circuits 2018; 12:65. [PMID: 30275816 PMCID: PMC6152484 DOI: 10.3389/fncir.2018.00065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
Sensory axon T-like branching (bifurcation) in neurons from dorsal root ganglia and cranial sensory ganglia depends on the molecular signaling cascade involving the secreted factor C-type natriuretic peptide, the natriuretic peptide receptor guanylyl cyclase B (GC-B; also known as Npr2) and cGMP-dependent protein kinase I (cGKI, also known as PKGI). The bifurcation of cranial nerves is suggested to be important for information processing by second-order neurons in the hindbrain or spinal cord. Indeed, mice with a spontaneous GC-B loss of function mutation (Npr2cn/cn ) display an impaired bifurcation of auditory nerve (AN) fibers. However, these mice did not show any obvious sign of impaired basal hearing. Here, we demonstrate that mice with a targeted inactivation of the GC-B gene (Npr2 lacZ/lacZ , GC-B KO mice) show an elevation of audiometric thresholds. In the inner ear, the cochlear hair cells in GC-B KO mice were nevertheless similar to those from wild type mice, justified by the typical expression of functionally relevant marker proteins. However, efferent cholinergic feedback to inner and outer hair cells was reduced in GC-B KO mice, linked to very likely reduced rapid efferent feedback. Sound-evoked AN responses of GC-B KO mice were elevated, a feature that is known to occur when the efferent axo-dendritic feedback on AN is compromised. Furthermore, late sound-evoked brainstem responses were significantly delayed in GC-B KO mice. This delay in sound response was accompanied by a weaker sensitivity of the auditory steady state response to amplitude-modulated sound stimuli. Finally, the acoustic startle response (ASR) - one of the fastest auditory responses - and the prepulse inhibition of the ASR indicated significant changes in temporal precision of auditory processing. These findings suggest that GC-B-controlled axon bifurcation of spiral ganglion neurons is important for proper activation of second-order neurons in the hindbrain and is a prerequisite for proper temporal auditory processing likely by establishing accurate efferent top-down control circuits. These data hypothesize that the bifurcation pattern of cranial nerves is important to shape spatial and temporal information processing for sensory feedback control.
Collapse
Affiliation(s)
- Steffen Wolter
- Department of Otolaryngology, Head and Neck Surgery, Molecular Physiology of Hearing, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Dorit Möhrle
- Department of Otolaryngology, Head and Neck Surgery, Molecular Physiology of Hearing, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Hannes Schmidt
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Sylvia Pfeiffer
- Department of Animal Physiology, University of Tübingen, Tübingen, Germany
| | - Dennis Zelle
- Department of Otolaryngology, Head and Neck Surgery, Physiological Acoustics and Communication, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Philipp Eckert
- Department of Otolaryngology, Head and Neck Surgery, Molecular Physiology of Hearing, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Michael Krämer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Robert Feil
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Peter K D Pilz
- Department of Animal Physiology, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Molecular Physiology of Hearing, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Molecular Physiology of Hearing, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| |
Collapse
|
23
|
Löf C, Patyra K, Kero A, Kero J. Genetically modified mouse models to investigate thyroid development, function and growth. Best Pract Res Clin Endocrinol Metab 2018; 32:241-256. [PMID: 29779579 DOI: 10.1016/j.beem.2018.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The thyroid gland produces thyroid hormones (TH), which are essential regulators for growth, development and metabolism. The thyroid is mainly controlled by the thyroid-stimulating hormone (TSH) that binds to its receptor (TSHR) on thyrocytes and mediates its action via different G protein-mediated signaling pathways. TSH primarily activates the Gs-pathway, and at higher concentrations also the Gq/11-pathway, leading to an increase of intracellular cAMP and Ca2+, respectively. To date, the physiological importance of other G protein-mediated signaling pathways in thyrocytes is unclear. Congenital hypothyroidism (CH) is defined as the lack of TH at birth. In familial cases, high-throughput sequencing methods have facilitated the identification of novel mutations. Nevertheless, the precise etiology of CH yet remains unraveled in a proportion of cases. Genetically modified mouse models can reveal new pathophysiological mechanisms of thyroid diseases. Here, we will present an overview of genetic mouse models for thyroid diseases, which have provided crucial insights into thyroid gland development, function, and growth with a special focus on TSHR and microRNA signaling.
Collapse
Affiliation(s)
- C Löf
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - K Patyra
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - A Kero
- Department of Pediatrics, Turku University Hospital, Kiinamyllynkatu 4-8, 20521, Turku, Finland
| | - J Kero
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland; Department of Pediatrics, Turku University Hospital, Kiinamyllynkatu 4-8, 20521, Turku, Finland.
| |
Collapse
|
24
|
Deafness and loss of cochlear hair cells in the absence of thyroid hormone transporters Slc16a2 (Mct8) and Slc16a10 (Mct10). Sci Rep 2018. [PMID: 29535325 PMCID: PMC5849681 DOI: 10.1038/s41598-018-22553-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transmembrane proteins that mediate the cellular uptake or efflux of thyroid hormone potentially provide a key level of control over neurodevelopment. In humans, defects in one such protein, solute carrier SLC16A2 (MCT8) are associated with psychomotor retardation. Other proteins that transport the active form of thyroid hormone triiodothyronine (T3) or its precursor thyroxine (T4) have been identified in vitro but the wider significance of such transporters in vivo is unclear. The development of the auditory system requires thyroid hormone and the cochlea is a primary target tissue. We have proposed that the compartmental anatomy of the cochlea would necessitate transport mechanisms to convey blood-borne hormone to target tissues. We report hearing loss in mice with mutations in Slc16a2 and a related gene Slc16a10 (Mct10, Tat1). Deficiency of both transporters results in retarded development of the sensory epithelium similar to impairment caused by hypothyroidism, compounded with a progressive degeneration of cochlear hair cells and loss of endocochlear potential. Administration of T3 largely restores the development of the sensory epithelium and limited auditory function, indicating the T3-sensitivity of defects in the sensory epithelium. The results indicate a necessity for thyroid hormone transporters in cochlear development and function.
Collapse
|
25
|
Crumling MA, King KA, Duncan RK. Cyclodextrins and Iatrogenic Hearing Loss: New Drugs with Significant Risk. Front Cell Neurosci 2017; 11:355. [PMID: 29163061 PMCID: PMC5676048 DOI: 10.3389/fncel.2017.00355] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/26/2017] [Indexed: 12/18/2022] Open
Abstract
Cyclodextrins are a family of cyclic oligosaccharides with widespread usage in medicine, industry and basic sciences owing to their ability to solubilize and stabilize guest compounds. In medicine, cyclodextrins primarily act as a complexing vehicle and consequently serve as powerful drug delivery agents. Recently, uncomplexed cyclodextrins have emerged as potent therapeutic compounds in their own right, based on their ability to sequester and mobilize cellular lipids. In particular, 2-hydroxypropyl-β-cyclodextrin (HPβCD) has garnered attention because of its cholesterol chelating properties, which appear to treat a rare neurodegenerative disorder and to promote atherosclerosis regression related to stroke and heart disease. Despite the potential health benefits, use of HPβCD has been linked to significant hearing loss in several species, including humans. Evidence in mice supports a rapid onset of hearing loss that is dose-dependent. Ototoxicity can occur following central or peripheral drug delivery, with either route resulting in the preferential loss of cochlear outer hair cells (OHCs) within hours of dosing. Inner hair cells and spiral ganglion cells are spared at doses that cause ~85% OHC loss; additionally, no other major organ systems appear adversely affected. Evidence from a first-to-human phase 1 clinical trial mirrors animal studies to a large extent, indicating rapid onset and involvement of OHCs. All patients in the trial experienced some permanent hearing loss, although a temporary loss of function can be observed acutely following drug delivery. The long-term impact of HPβCD use as a maintenance drug, and the mechanism(s) of ototoxicity, are unknown. β-cyclodextrins preferentially target membrane cholesterol, but other lipid species and proteins may be directly or indirectly involved. Moreover, as cholesterol is ubiquitous in cell membranes, it remains unclear why OHCs are preferentially susceptible to HPβCD. It is possible that HPβCD acts upon several targets—for example, ion channels, tight junctions (TJ), membrane integrity, and bioenergetics—that collectively increase the sensitivity of OHCs over other cell types.
Collapse
Affiliation(s)
- Mark A Crumling
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, United States
| | - Kelly A King
- Audiology Unit, Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - R Keith Duncan
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
26
|
Ng L, Liu H, St. Germain DL, Hernandez A, Forrest D. Deletion of the Thyroid Hormone-Activating Type 2 Deiodinase Rescues Cone Photoreceptor Degeneration but Not Deafness in Mice Lacking Type 3 Deiodinase. Endocrinology 2017; 158:1999-2010. [PMID: 28324012 PMCID: PMC5460942 DOI: 10.1210/en.2017-00055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/01/2017] [Indexed: 11/25/2022]
Abstract
Type 2 deiodinase amplifies and type 3 deiodinase depletes levels of the active form of thyroid hormone, triiodothyronine. Given the opposing activities of these enzymes, we tested the hypothesis that they counteract each other's developmental functions by investigating whether deletion of type 2 deiodinase (encoded by Dio2) modifies sensory phenotypes in type 3 deiodinase-deficient (Dio3-/-) mice. Dio3-/- mice display degeneration of retinal cones, the photoreceptors that mediate daylight and color vision. In Dio2-/- mice, cone function was largely normal but deletion of Dio2 in Dio3-/- mice markedly recovered cone numbers and electroretinogram responses, suggesting counterbalancing roles for both enzymes in cone survival. Both Dio3-/- and Dio2-/- strains exhibit deafness with cochlear abnormalities. In Dio3-/-;Dio2-/- mice, deafness was exacerbated rather than alleviated, suggesting unevenly balanced actions by these enzymes during auditory development. Dio3-/- mice also exhibit an atrophic thyroid gland, low thyroxine, and high triiodothyronine levels, but this phenotype was ameliorated in Dio3-/-;Dio2-/- mice, indicating counterbalancing roles for the enzymes in determining the thyroid hormone status. The results suggest that the composite action of these two enzymes is a critical determinant in visual and auditory development and in setting the systemic thyroid hormone status.
Collapse
Affiliation(s)
- Lily Ng
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Disorders, National Institutes of Health, Bethesda, Maryland 20892
| | - Hong Liu
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Disorders, National Institutes of Health, Bethesda, Maryland 20892
| | | | - Arturo Hernandez
- Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Disorders, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
27
|
Sundaresan S, Balasubbu S, Mustapha M. Thyroid hormone is required for the pruning of afferent type II spiral ganglion neurons in the mouse cochlea. Neuroscience 2015; 312:165-78. [PMID: 26592716 DOI: 10.1016/j.neuroscience.2015.11.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 12/13/2022]
Abstract
Afferent connections to the sensory inner (IHCs) and outer hair cells (OHCs) in the cochlea refine and functionally mature during the thyroid hormone (TH)-critical period of inner ear development that occurs perinatally in rodents. In this study, we investigated the effects of hypothyroidism on afferent type II innervation to outer hair cells using the Snell dwarf mouse (Pit1(dw)). Using a transgenic approach to specifically label type II spiral ganglion neurons (SGNs), we found that lack of TH causes persistence of excess type II SGN connections to the OHCs, as well as continued expression of the hair cell functional marker, otoferlin (OTOF), in the OHCs beyond the maturation period. We also observed a concurrent delay in efferent attachment to the OHCs. Supplementing with TH during the early postnatal period from postnatal day (P) 3 to P4 reversed the defect in type II SGN pruning but did not alter OTOF expression. Our results show that hypothyroidism causes a defect in the large-scale pruning of afferent type II SGNs in the cochlea, and a delay in efferent attachment and the maturation of OTOF expression. Our data suggest that the state of maturation of hair cells, as determined by OTOF expression, may not regulate the pruning of their afferent innervation.
Collapse
Affiliation(s)
- S Sundaresan
- Department of Otolaryngology-Head & Neck Surgery, 300 Pasteur Drive, Stanford University, Stanford, CA 94035, United States
| | - S Balasubbu
- Department of Otolaryngology-Head & Neck Surgery, 300 Pasteur Drive, Stanford University, Stanford, CA 94035, United States
| | - M Mustapha
- Department of Otolaryngology-Head & Neck Surgery, 300 Pasteur Drive, Stanford University, Stanford, CA 94035, United States.
| |
Collapse
|
28
|
Sundaresan S, Kong JH, Fang Q, Salles FT, Wangsawihardja F, Ricci AJ, Mustapha M. Thyroid hormone is required for pruning, functioning and long-term maintenance of afferent inner hair cell synapses. Eur J Neurosci 2015; 43:148-61. [PMID: 26386265 DOI: 10.1111/ejn.13081] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/09/2015] [Accepted: 09/14/2015] [Indexed: 12/16/2022]
Abstract
Functional maturation of afferent synaptic connections to inner hair cells (IHCs) involves pruning of excess synapses formed during development, as well as the strengthening and survival of the retained synapses. These events take place during the thyroid hormone (TH)-critical period of cochlear development, which is in the perinatal period for mice and in the third trimester for humans. Here, we used the hypothyroid Snell dwarf mouse (Pit1(dw)) as a model to study the role of TH in afferent type I synaptic refinement and functional maturation. We observed defects in afferent synaptic pruning and delays in calcium channel clustering in the IHCs of Pit1(dw) mice. Nevertheless, calcium currents and capacitance reached near normal levels in Pit1(dw) IHCs by the age of onset of hearing, despite the excess number of retained synapses. We restored normal synaptic pruning in Pit1(dw) IHCs by supplementing with TH from postnatal day (P)3 to P8, establishing this window as being critical for TH action on this process. Afferent terminals of older Pit1(dw) IHCs showed evidence of excitotoxic damage accompanied by a concomitant reduction in the levels of the glial glutamate transporter, GLAST. Our results indicate that a lack of TH during a critical period of inner ear development causes defects in pruning and long-term homeostatic maintenance of afferent synapses.
Collapse
Affiliation(s)
- Srividya Sundaresan
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, 300 Pasteur Drive, Room R111A, Stanford, CA, 94035, USA
| | - Jee-Hyun Kong
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, 300 Pasteur Drive, Room R111A, Stanford, CA, 94035, USA
| | - Qing Fang
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Felipe T Salles
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, 300 Pasteur Drive, Room R111A, Stanford, CA, 94035, USA
| | - Felix Wangsawihardja
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, 300 Pasteur Drive, Room R111A, Stanford, CA, 94035, USA
| | - Anthony J Ricci
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, 300 Pasteur Drive, Room R111A, Stanford, CA, 94035, USA
| | - Mirna Mustapha
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, 300 Pasteur Drive, Room R111A, Stanford, CA, 94035, USA
| |
Collapse
|
29
|
Ng L, Cordas E, Wu X, Vella KR, Hollenberg AN, Forrest D. Age-Related Hearing Loss and Degeneration of Cochlear Hair Cells in Mice Lacking Thyroid Hormone Receptor β1. Endocrinology 2015; 156:3853-65. [PMID: 26241124 PMCID: PMC4588828 DOI: 10.1210/en.2015-1468] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A key function of the thyroid hormone receptor β (Thrb) gene is in the development of auditory function. However, the roles of the 2 receptor isoforms, TRβ1 and TRβ2, expressed by the Thrb gene are unclear, and it is unknown whether these isoforms promote the maintenance as well as development of hearing. We investigated the function of TRβ1 in mice with a Thrb(b1) reporter allele that expresses β-galactosidase instead of TRβ1. In the immature cochlea, β-galactosidase was detected in the greater epithelial ridge, sensory hair cells, spiral ligament, and spiral ganglion and in adulthood, at low levels in the hair cells, support cells and root cells of the outer sulcus. Although deletion of all TRβ isoforms causes severe, early-onset deafness, deletion of TRβ1 or TRβ2 individually caused no obvious hearing loss in juvenile mice. However, over subsequent months, TRβ1 deficiency resulted in progressive loss of hearing and loss of hair cells. TRβ1-deficient mice had minimal changes in serum thyroid hormone and thyrotropin levels, indicating that hormonal imbalances were unlikely to cause hearing loss. The results suggest mutually shared roles for TRβ1 and TRβ2 in cochlear development and an unexpected requirement for TRβ1 in the maintenance of hearing in adulthood.
Collapse
Affiliation(s)
- Lily Ng
- Laboratory of Endocrinology and Receptor Biology (L.N., E.C., X.W., D.F.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Division of Endocrinology, Diabetes and Metabolism (K.R.V., A.N.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Emily Cordas
- Laboratory of Endocrinology and Receptor Biology (L.N., E.C., X.W., D.F.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Division of Endocrinology, Diabetes and Metabolism (K.R.V., A.N.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Xuefeng Wu
- Laboratory of Endocrinology and Receptor Biology (L.N., E.C., X.W., D.F.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Division of Endocrinology, Diabetes and Metabolism (K.R.V., A.N.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Kristen R Vella
- Laboratory of Endocrinology and Receptor Biology (L.N., E.C., X.W., D.F.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Division of Endocrinology, Diabetes and Metabolism (K.R.V., A.N.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Anthony N Hollenberg
- Laboratory of Endocrinology and Receptor Biology (L.N., E.C., X.W., D.F.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Division of Endocrinology, Diabetes and Metabolism (K.R.V., A.N.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology (L.N., E.C., X.W., D.F.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Division of Endocrinology, Diabetes and Metabolism (K.R.V., A.N.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| |
Collapse
|
30
|
Hearing Loss and Otopathology Following Systemic and Intracerebroventricular Delivery of 2-Hydroxypropyl-Beta-Cyclodextrin. J Assoc Res Otolaryngol 2015; 16:599-611. [PMID: 26055150 DOI: 10.1007/s10162-015-0528-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/20/2015] [Indexed: 10/23/2022] Open
Abstract
Cyclodextrins are simple yet powerful molecules widely used in medicinal formulations and industry for their ability to stabilize and solubilize guest compounds. However, recent evidence shows that 2-hydroxypropyl-β-cyclodextrin (HPβCD) causes severe hearing loss in mice, selectively killing outer hair cells (OHC) within 1 week of subcutaneous drug treatment. In the current study, the impact of HPβCD on auditory physiology and pathology was explored further as a function of time and route of administration. When administered subcutaneously or directly into cerebrospinal fluid, single injections of HPβCD caused up to 60 dB threshold shifts and widespread OHC loss in a dose-dependent manner. Combined dosing caused no greater deficit, suggesting a common mode of action. After drug treatment, OHC loss progressed over time, beginning in the base and extending toward the apex, creating a sharp transition between normal and damaged regions of the cochlea. Administration into cerebrospinal fluid caused rapid ototoxicity when compared to subcutaneous delivery. Despite the devastating effect on the cochlea, HPβCD was relatively safe to other peripheral and central organ systems; specifically, it had no notable nephrotoxicity in contrast to other ototoxic compounds like aminoglycosides and platinum-based drugs. As cyclodextrins find expanding medicinal applications, caution should be exercised as these drugs possess a unique, poorly understood, ototoxic mechanism.
Collapse
|
31
|
Peeters RP, Ng L, Ma M, Forrest D. The timecourse of apoptotic cell death during postnatal remodeling of the mouse cochlea and its premature onset by triiodothyronine (T3). Mol Cell Endocrinol 2015; 407:1-8. [PMID: 25737207 PMCID: PMC4390549 DOI: 10.1016/j.mce.2015.02.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 01/03/2023]
Abstract
Apoptosis underlies various forms of tissue remodeling during development. Prior to the onset of hearing, thyroid hormone (T3) promotes cochlear remodeling, which involves regression of the greater epithelial ridge (GER), a transient structure of columnar cells adjacent to the mechanosensory hair cells. We investigated the timecourse of apoptosis in the GER and the influence of ectopic T3 on apoptosis. In saline-treated mice, activated caspase 3-positive cells were detected in the GER between postnatal days 7 and 13 and appeared progressively along the cochlear duct from base to apex over developmental time. T3 given on P0 and P1 advanced the overall program of apoptosis and remodeling by ~4 days. Thyroid hormone receptor β was required for these actions, suggesting a receptor-mediated process of initiation of apoptosis. Finally, T3 given only at P0 or P1 resulted in deafness in adult mice, thus revealing a transient period of susceptibility to long-term damage in the neonatal auditory system.
Collapse
Affiliation(s)
- R P Peeters
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands; Rotterdam Thyroid Center, Erasmus Medical Center, Rotterdam, The Netherlands; Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | - L Ng
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - M Ma
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - D Forrest
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
32
|
Chen J, Ingham N, Kelly J, Jadeja S, Goulding D, Pass J, Mahajan VB, Tsang SH, Nijnik A, Jackson IJ, White JK, Forge A, Jagger D, Steel KP. Spinster homolog 2 (spns2) deficiency causes early onset progressive hearing loss. PLoS Genet 2014; 10:e1004688. [PMID: 25356849 PMCID: PMC4214598 DOI: 10.1371/journal.pgen.1004688] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 08/19/2014] [Indexed: 12/13/2022] Open
Abstract
Spinster homolog 2 (Spns2) acts as a Sphingosine-1-phosphate (S1P) transporter in zebrafish and mice, regulating heart development and lymphocyte trafficking respectively. S1P is a biologically active lysophospholipid with multiple roles in signalling. The mechanism of action of Spns2 is still elusive in mammals. Here, we report that Spns2-deficient mice rapidly lost auditory sensitivity and endocochlear potential (EP) from 2 to 3 weeks old. We found progressive degeneration of sensory hair cells in the organ of Corti, but the earliest defect was a decline in the EP, suggesting that dysfunction of the lateral wall was the primary lesion. In the lateral wall of adult mutants, we observed structural changes of marginal cell boundaries and of strial capillaries, and reduced expression of several key proteins involved in the generation of the EP (Kcnj10, Kcnq1, Gjb2 and Gjb6), but these changes were likely to be secondary. Permeability of the boundaries of the stria vascularis and of the strial capillaries appeared normal. We also found focal retinal degeneration and anomalies of retinal capillaries together with anterior eye defects in Spns2 mutant mice. Targeted inactivation of Spns2 in red blood cells, platelets, or lymphatic or vascular endothelial cells did not affect hearing, but targeted ablation of Spns2 in the cochlea using a Sox10-Cre allele produced a similar auditory phenotype to the original mutation, suggesting that local Spns2 expression is critical for hearing in mammals. These findings indicate that Spns2 is required for normal maintenance of the EP and hence for normal auditory function, and support a role for S1P signalling in hearing. Progressive hearing loss is common in the human population but we know very little about the molecular mechanisms involved. Mutant mice are useful for investigating these mechanisms and have revealed a wide range of different abnormalities that can all lead to the same outcome: deafness. We report here our findings of a new mouse line with a mutation in the Spns2 gene, affecting the release of a lipid called sphingosine-1-phosphate, which has an important role in several processes in the body. For the first time, we report that this molecular pathway is required for normal hearing through a role in generating a voltage difference that acts like a battery, allowing the sensory hair cells of the cochlea to detect sounds at extremely low levels. Without the normal function of the Spns2 gene and release of sphingosine-1-phosphate locally in the inner ear, the voltage in the cochlea declines, leading to rapid loss of sensitivity to sound and ultimately to complete deafness. The human version of this gene, SPNS2, may be involved in human deafness, and understanding the underlying mechanism presents an opportunity to develop potential treatments for this form of hearing loss.
Collapse
Affiliation(s)
- Jing Chen
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Neil Ingham
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - John Kelly
- Centre for Auditory Research, UCL Ear Institute, London, United Kingdom
| | - Shalini Jadeja
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom, and Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
| | - David Goulding
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Johanna Pass
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Vinit B. Mahajan
- Omics Laboratory, University of Iowa, Iowa City, Iowa, United States of America
| | - Stephen H. Tsang
- Edward S. Harkness Eye Institute, Columbia University, New York, New York, United States of America
| | - Anastasia Nijnik
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- Department of Physiology, Complex Traits Group, McGill University, Montreal, Quebec, Canada
| | - Ian J. Jackson
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom, and Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
| | | | - Andrew Forge
- Centre for Auditory Research, UCL Ear Institute, London, United Kingdom
| | - Daniel Jagger
- Centre for Auditory Research, UCL Ear Institute, London, United Kingdom
| | - Karen P. Steel
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
33
|
Dettling J, Franz C, Zimmermann U, Lee SC, Bress A, Brandt N, Feil R, Pfister M, Engel J, Flamant F, Rüttiger L, Knipper M. Autonomous functions of murine thyroid hormone receptor TRα and TRβ in cochlear hair cells. Mol Cell Endocrinol 2014; 382:26-37. [PMID: 24012852 DOI: 10.1016/j.mce.2013.08.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/22/2013] [Accepted: 08/29/2013] [Indexed: 11/18/2022]
Abstract
Thyroid hormone acts on gene transcription by binding to its nuclear receptors TRα1 and TRβ. Whereas global deletion of TRβ causes deafness, global TRα-deficient mice have normal hearing thresholds. Since the individual roles of the two receptors in cochlear hair cells are still unclear, we generated mice with a hair cell-specific mutation of TRα1 or deletion of TRβ using the Cre-loxP system. Hair cell-specific TRβ mutant mice showed normal hearing thresholds but delayed BK channel expression in inner hair cells, slightly stronger outer hair cell function, and slightly reduced amplitudes of auditory brainstem responses. In contrast, hair cell-specific TRα mutant mice showed normal timing of BK channel expression, slightly reduced outer hair cell function, and slightly enhanced amplitudes of auditory brainstem responses. Our data demonstrate that TRβ-related deafness originates outside of hair cells and that TRα and TRβ play opposing, non-redundant roles in hair cells. A role for thyroid hormone receptors in controlling key regulators that shape signal transduction during development is discussed. Thyroid hormone may act through different thyroid hormone receptor activities to permanently alter the sensitivity of auditory neurotransmission.
Collapse
Affiliation(s)
- Juliane Dettling
- Molecular Physiology of Hearing, Hearing Research Centre Tübingen (THRC), Department of Otolaryngology, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany
| | - Christoph Franz
- Molecular Physiology of Hearing, Hearing Research Centre Tübingen (THRC), Department of Otolaryngology, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany
| | - Ulrike Zimmermann
- Molecular Physiology of Hearing, Hearing Research Centre Tübingen (THRC), Department of Otolaryngology, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany
| | - Sze Chim Lee
- Molecular Physiology of Hearing, Hearing Research Centre Tübingen (THRC), Department of Otolaryngology, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany
| | - Andreas Bress
- Molecular Genetics, THRC, Department of Otolaryngology, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany
| | - Niels Brandt
- Department of Biophysics, Saarland University, 66421 Homburg/Saar, Germany
| | - Robert Feil
- Department of Signal Transduction & Transgenic Models, Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| | - Markus Pfister
- Molecular Genetics, THRC, Department of Otolaryngology, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany
| | - Jutta Engel
- Department of Biophysics, Saarland University, 66421 Homburg/Saar, Germany
| | - Frédéric Flamant
- Institut de Génomique Fonctionnelle, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon cedex 07, Lyon, France
| | - Lukas Rüttiger
- Molecular Physiology of Hearing, Hearing Research Centre Tübingen (THRC), Department of Otolaryngology, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany
| | - Marlies Knipper
- Molecular Physiology of Hearing, Hearing Research Centre Tübingen (THRC), Department of Otolaryngology, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany.
| |
Collapse
|
34
|
Johnson KR, Gagnon LH, Longo-Guess CM, Harris BS, Chang B. Hearing impairment in hypothyroid dwarf mice caused by mutations of the thyroid peroxidase gene. J Assoc Res Otolaryngol 2013; 15:45-55. [PMID: 24297261 DOI: 10.1007/s10162-013-0427-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/05/2013] [Indexed: 12/26/2022] Open
Abstract
Thyroid hormone (TH) is essential for proper cochlear development and function, and TH deficiencies cause variable hearing impairment in humans and mice. Thyroid peroxidase (TPO) catalyzes key reactions in TH synthesis, and TPO mutations have been found to underlie many cases of congenital hypothyroidism in human patients. In contrast, only a single mutation of the mouse TPO gene has been reported previously (Tpo(R479C)) but was not evaluated for auditory function. Here, we describe and characterize two new mouse mutations of Tpo with an emphasis on their associated auditory deficits. Mice homozygous for these recessive mutations have dysplastic thyroid glands and lack detectable levels of TH. Because of the small size of mutant mice, the mutations were named teeny (symbol Tpo(tee)) and teeny-2 Jackson (Tpo(tee-2J)). Tpo(tee) is a single base-pair missense mutation that was induced by ENU, and Tpo(tee-2J) is a 64 bp intragenic deletion that arose spontaneously. The Tpo(tee) mutation changes the codon for a highly conserved tyrosine to asparagine (p.Y614N), and the Tpo(tee-2J) mutation deletes a splice donor site, which results in exon skipping and aberrant transcripts. Mutant mice are profoundly hearing impaired with auditory brainstem response (ABR) thresholds about 60 dB above those of non-mutant controls. The maturation of cochlear structures is delayed in mutant mice and tectorial membranes are abnormally thick. To evaluate the effect of genetic background on auditory phenotype, we produced a C3.B6-Tpo(tee-2J) congenic strain and found that ABR thresholds of mutant mice on the C3H/HeJ strain background are 10-12 dB lower than those of mutant mice on the C57BL/6 J background. The Tpo mutant strains described here provide new heritable mouse models of congenital hypothyroidism that will be valuable for future studies of thyroid hormones' role in auditory development and function.
Collapse
Affiliation(s)
- Kenneth R Johnson
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA,
| | | | | | | | | |
Collapse
|
35
|
Pine-Twaddell E, Romero CJ, Radovick S. Vertical transmission of hypopituitarism: critical importance of appropriate interpretation of thyroid function tests and levothyroxine therapy during pregnancy. Thyroid 2013; 23:892-7. [PMID: 23397938 PMCID: PMC3704046 DOI: 10.1089/thy.2012.0332] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Typically, newborns with congenital hypothyroidism are asymptomatic at birth, having been exposed to euthyroid mothers. However, hypopituitarism may be associated with central hypothyroidism, preserved fertility, and autosomal dominant inheritance, requiring increased attention to thyroid management during pregnancy. PATIENT FINDINGS A woman with a history of growth hormone deficiency and central hypothyroidism gave birth to a term male neonate appropriate for gestational age. Due to low thyrotropin (TSH) in the second trimester, the levothyroxine dose was decreased by the obstetrician, and free T4 was low throughout the latter half of pregnancy. The neonatal laboratory evaluation showed central hypothyroidism with a low T4 of 2.1 μg/dL (4.5-11.5) and an inappropriately normal TSH of 0.98 uIU/mL (0.5-4.5); undetectable growth hormone, IGF-I, and IGFBP3; a normal cortisol level; and a normal gonadotropin surge. After initiation of levothyroxine in the first week, both tone and feeding tolerance improved. However, the patient was found to have hearing loss, gross motor delay, and speech delay. SUMMARY In this report, we review a case of vertical transmission of a dominant negative POU1F1 mutation in which fetal abnormalities due to the hypothyroxinemic state during gestation may have been exacerbated by a decrease in the mother's levothyroxine dose based on a low TSH in early gestation. Both mother and fetus were unable to synthesize sufficient thyroid hormone, which may be responsible for the patient's clinical presentation. CONCLUSION This case underscores several important points in the management of women with hypopituitarism. First, it is important that patients and clinicians are both aware of the differences in etiology, as well as appropriate screening and treatment, of primary versus central hypothyroidism. Second, it is necessary to monitor the thyroid hormone status closely during pregnancy to prevent fetal sequelae of maternal hypothyroidism. Third, genetic screening of patients with combined pituitary hormone deficiency is necessary, so that prenatal genetic counseling may be an option for expecting parents.
Collapse
Affiliation(s)
- Elyse Pine-Twaddell
- Department of Pediatrics, University of Maryland, Baltimore, Maryland 21201, USA.
| | | | | |
Collapse
|
36
|
Abstract
The senses are our window to the world, our interface with the habitat in which we live in and the basis for our communication with each other. Although sensory systems are not generally viewed as major targets of endocrine regulation, sensory development is profoundly influenced by thyroid hormone (T(3)) signalling. In this article, we discuss this developmental role of T(3) and highlight the auditory system as the best-studied example of the interplay between systemic and local tissue mechanisms by which T(3) stimulates the onset of sensory function. Several genes that mediate the action of T(3) are known to promote sensory development in mice, including genes that encode T(3) receptors and deiodinase enzymes that amplify or deplete levels of T(3). We also discuss the current knowledge of sensory defects in human genetic disorders in which T(3) signalling is impaired. As sensory input provides the only means of acquiring information from the environment, the stimulation of sensory development is one of the most fundamental functions of T(3) signalling.
Collapse
Affiliation(s)
- Lily Ng
- National Institute of Diabetes and Digestive and Kidney Disease, Laboratory of Endocrinology and Receptor Biology, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
37
|
Psaltakos V, Balatsouras DG, Sengas I, Ferekidis E, Riga M, Korres SG. Cochlear dysfunction in patients with acute hypothyroidism. Eur Arch Otorhinolaryngol 2012; 270:2839-48. [PMID: 23266870 DOI: 10.1007/s00405-012-2332-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 12/13/2012] [Indexed: 12/26/2022]
Abstract
The effect of acute hypothyroidism on the cochlear function was studied prospectively, in a group of 52 patients with thyroid carcinoma who underwent total thyroidectomy. All patients were examined before surgery and 6-8 weeks postoperatively. During this period there was no replacement with levothyroxine and the magnitude of thyroxin depletion was monitored by serum thyroid-stimulating hormone levels. Pure-tone audiometry, tympanometry and transiently evoked otoacoustic emissions were performed. A group of healthy volunteers of similar age and sex were used as controls. Tympanograms were normal, either on initial or on repeat testing. Audiometry showed elevation of all postoperative hearing thresholds, whereas the thresholds varied significantly across frequency. Transiently evoked otoacoustic emission testing showed response signal-to-noise ratios lower in the postoperative session (hypothyroid state) than in the preoperative session on all measured frequencies. Emission levels varied significantly across frequency, with maximum response observed at 2 kHz. Comparison of significant pure-tone and otoacoustic emission shifts for individual ears showed more ears affected in otoacoustic emission testing, indicating subclinical involvement. Comparing hearing thresholds and otoacoustic emission levels between patients and controls showed significant differences on postoperative testing. It may be thus concluded that acute hypothyroidism causes elevation of hearing thresholds in humans and to a greater degree subclinical damage of the cochlear function.
Collapse
Affiliation(s)
- Vassilis Psaltakos
- Ear, Nose and Throat Department, Tzanion General Hospital, Piraeus, Greece
| | | | | | | | | | | |
Collapse
|
38
|
Iannotti FA, Barrese V, Formisano L, Miceli F, Taglialatela M. Specification of skeletal muscle differentiation by repressor element-1 silencing transcription factor (REST)-regulated Kv7.4 potassium channels. Mol Biol Cell 2012; 24:274-84. [PMID: 23242999 PMCID: PMC3564528 DOI: 10.1091/mbc.e11-12-1044] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Kv7.4-potassium channel expression plays a permissive role in skeletal muscle differentiation. The transcriptional repressor REST controls the changes in Kv7.4 levels during myogenesis by binding to regulatory regions in the Kv7.4 gene. This mechanism may be a target for intervention against abnormal repair and differentiation of skeletal muscle. Changes in the expression of potassium (K+) channels is a pivotal event during skeletal muscle differentiation. In mouse C2C12 cells, similarly to human skeletal muscle cells, myotube formation increased the expression of Kv7.1, Kv7.3, and Kv7.4, the last showing the highest degree of regulation. In C2C12 cells, Kv7.4 silencing by RNA interference reduced the expression levels of differentiation markers (myogenin, myosin heavy chain, troponinT-1, and Pax3) and impaired myotube formation and multinucleation. In Kv7.4-silenced cells, the differentiation-promoting effect of the Kv7 activator N-(2-amino-4-(4-fluorobenzylamino)-phenyl)-carbamic acid ethyl ester (retigabine) was abrogated. Expression levels for the repressor element-1 silencing transcription factor (REST) declined during myotube formation. Transcript levels for Kv7.4, as well as for myogenin, troponinT-1, and Pax3, were reduced by REST overexpression and enhanced upon REST suppression by RNA interference. Four regions containing potential REST-binding sites in the 5′ untranslated region and in the first intron of the Kv7.4 gene were identified by bioinformatic analysis. Chromatin immunoprecipitation assays showed that REST binds to these regions, exhibiting a higher efficiency in myoblasts than in myotubes. These data suggest that Kv7.4 plays a permissive role in skeletal muscle differentiation and highlight REST as a crucial transcriptional regulator for this K+ channel subunit.
Collapse
Affiliation(s)
- Fabio Arturo Iannotti
- Division of Pharmacology, Department of Neuroscience, University of Naples Federico II, 80131 Naples, Italy
| | | | | | | | | |
Collapse
|
39
|
Age-dependent in vivo conversion of mouse cochlear pillar and Deiters' cells to immature hair cells by Atoh1 ectopic expression. J Neurosci 2012; 32:6600-10. [PMID: 22573682 DOI: 10.1523/jneurosci.0818-12.2012] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Unlike nonmammalian vertebrates, mammals cannot convert inner ear cochlear supporting cells (SCs) into sensory hair cells (HCs) after damage, thus causing permanent deafness. Here, we achieved in vivo conversion of two SC subtypes, pillar cells (PCs) and Deiters' cells (DCs), into HCs by inducing targeted expression of Atoh1 at neonatal and juvenile ages using novel mouse models. The conversion only occurred in ∼10% of PCs and DCs with ectopic Atoh1 expression and started with reactivation of endogenous Atoh1 followed by expression of 11 HC and synaptic markers, a process that took approximately 3 weeks in vivo. These new HCs resided in the outer HC region, formed stereocilia, contained mechanoelectrical transduction channels, and survived for >2 months in vivo; however, they surprisingly lacked prestin and oncomodulin expression and mature HC morphology. In contrast, adult PCs and DCs no longer responded to ectopic Atoh1 expression, even after outer HC damage. Finally, permanent Atoh1 expression in endogenous HCs did not affect prestin expression but caused cell loss of mature HCs. Together, our results demonstrate that in vivo conversion of PCs and DCs into immature HCs by Atoh1 is age dependent and resembles normal HC development. Therefore, combined expression of Atoh1 with additional factors holds therapeutic promise to convert PCs and DCs into functional HCs in vivo for regenerative purposes.
Collapse
|
40
|
Liu Z, Owen T, Fang J, Zuo J. Overactivation of Notch1 signaling induces ectopic hair cells in the mouse inner ear in an age-dependent manner. PLoS One 2012; 7:e34123. [PMID: 22448289 PMCID: PMC3309011 DOI: 10.1371/journal.pone.0034123] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 02/22/2012] [Indexed: 12/25/2022] Open
Abstract
Background During mouse inner ear development, Notch1 signaling first specifies sensory progenitors, and subsequently controls progenitors to further differentiate into either hair cells (HCs) or supporting cells (SCs). Overactivation of NICD (Notch1 intracellular domain) at early embryonic stages leads to ectopic HC formation. However, it remains unclear whether such an effect can be elicited at later embryonic or postnatal stages, which has important implications in mouse HC regeneration by reactivation of Notch1 signaling. Methodology/Principal Findings We performed comprehensive in vivo inducible overactivation of NICD at various developmental stages. In CAGCreER+; Rosa26-NICDloxp/+ mice, tamoxifen treatment at embryonic day 10.5 (E10.5) generated ectopic HCs in the non-sensory regions in both utricle and cochlea, whereas ectopic HCs only appeared in the utricle when tamoxifen was given at E13. When tamoxifen was injected at postnatal day 0 (P0) and P1, no ectopic HCs were observed in either utricle or cochlea. Interestingly, Notch1 signaling induced new HCs in a non-cell-autonomous manner, because the new HCs did not express NICD. Adjacent to the new HCs were cells expressing the SC marker Sox10 (either NICD+ or NICD-negative). Conclusions/Significance Our data demonstrate that the developmental stage determines responsiveness of embryonic otic precursors and neonatal non-sensory epithelial cells to NICD overactivation, and that Notch 1 signaling in the wild type, postnatal inner ear is not sufficient for generating new HCs. Thus, our genetic mouse model is suitable to test additional pathways that could synergistically interact with Notch1 pathway to produce HCs at postnatal ages.
Collapse
MESH Headings
- Age Factors
- Animals
- Animals, Newborn
- Cell Communication
- Cochlea/metabolism
- Cochlea/pathology
- Ear, Inner/cytology
- Ear, Inner/embryology
- Ear, Inner/metabolism
- Female
- Fluorescent Antibody Technique
- Hair Cells, Auditory/cytology
- Hair Cells, Auditory/metabolism
- Male
- Mice
- Mice, Knockout
- Mice, Transgenic
- Proteins/physiology
- RNA, Untranslated
- Receptors, Notch/physiology
- Regeneration/physiology
- Signal Transduction
Collapse
Affiliation(s)
- Zhiyong Liu
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- Integrated Program in Biomedical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Thomas Owen
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- University of Bath, Bath, United Kingdom
| | - Jie Fang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Jian Zuo
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
41
|
Makino A, Wang H, Scott BT, Yuan JXJ, Dillmann WH. Thyroid hormone receptor-α and vascular function. Am J Physiol Cell Physiol 2012; 302:C1346-52. [PMID: 22322976 DOI: 10.1152/ajpcell.00292.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thyroid hormone (TH) treatment exerts beneficial effects on the cardiovascular system: it lowers cholesterol and LDL levels and enhances cardiac contractile function. However, little is known about the effect of TH on vascular function or the functional role of TH receptors (TRs) in the regulation of vascular tone. We have investigated the contribution of TRs to vascular contractility in the heart. Among different TR subtype-specific knockout (KO) mice, vascular contraction was significantly enhanced in coronary arteries isolated from TRα KO compared with wild-type mice, while chronic TH treatment significantly attenuated coronary vascular contraction. We found that TRα is the predominant TR in mouse coronary smooth muscle cells (SMCs). Coronary SMCs isolated from TRα KO mice exhibited a significant decrease in K(+) channel activity, whereas TH treatment increased K(+) channel activity in a dose-dependent manner. These data suggest that TRα in SMCs has prominent effects on regulation of vascular tone and TH treatment helps decrease coronary vascular tone by increasing K(+) channel activity through TRα in SMCs.
Collapse
Affiliation(s)
- Ayako Makino
- Section of Endocrinology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
42
|
Fang Q, Giordimaina AM, Dolan DF, Camper SA, Mustapha M. Genetic background of Prop1(df) mutants provides remarkable protection against hypothyroidism-induced hearing impairment. J Assoc Res Otolaryngol 2011; 13:173-184. [PMID: 22143287 PMCID: PMC3298611 DOI: 10.1007/s10162-011-0302-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/03/2011] [Indexed: 12/30/2022] Open
Abstract
Hypothyroidism is a cause of genetic and environmentally induced deafness. The sensitivity of cochlear development and function to thyroid hormone (TH) mandates understanding TH action in this sensory organ. Prop1(df) and Pou1f1(dw) mutant mice carry mutations in different pituitary transcription factors, each resulting in pituitary thyrotropin deficiency. Despite the same lack of detectable serum TH, these mutants have very different hearing abilities: Prop1(df) mutants are mildly affected, while Pou1f1(dw) mutants are completely deaf. Genetic studies show that this difference is attributable to the genetic backgrounds. Using embryo transfer, we discovered that factors intrinsic to the fetus are the major contributor to this difference, not maternal effects. We analyzed Prop1(df) mutants to identify processes in cochlear development that are disrupted in other hypothyroid animal models but protected in Prop1(df) mutants by the genetic background. The development of outer hair cell (OHC) function is delayed, but Prestin and KCNQ4 immunostaining appear normal in mature Prop1(df) mutants. The endocochlear potential and KCNJ10 immunostaining in the stria vascularis are indistinguishable from wild type, and no differences in neurofilament or synaptophysin staining are evident in Prop1(df) mutants. The synaptic vesicle protein otoferlin normally shifts expression from OHC to IHC as temporary afferent fibers beneath the OHC regress postnatally. Prop1(df) mutants exhibit persistent, abnormal expression of otoferlin in apical OHC, suggesting delayed maturation of synaptic function. Thus, the genetic background of Prop1(df) mutants is remarkably protective for most functions affected in other hypothyroid mice. The Prop1(df) mutant is an attractive model for identifying the genes that protect against deafness.
Collapse
Affiliation(s)
- Qing Fang
- Department of Human Genetics, University of Michigan, 4945 Buhl, 1241 E Catherine St., Ann Arbor, MI, 48109-5618, USA
| | - Alicia M Giordimaina
- Health Behavior & Health Education Department, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David F Dolan
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sally A Camper
- Department of Human Genetics, University of Michigan, 4945 Buhl, 1241 E Catherine St., Ann Arbor, MI, 48109-5618, USA.
| | - Mirna Mustapha
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
43
|
Sharlin DS, Visser TJ, Forrest D. Developmental and cell-specific expression of thyroid hormone transporters in the mouse cochlea. Endocrinology 2011; 152:5053-64. [PMID: 21878515 PMCID: PMC3230046 DOI: 10.1210/en.2011-1372] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Thyroid hormone is essential for the development of the cochlea and auditory function. Cochlear response tissues, which express thyroid hormone receptor β (encoded by Thrb), include the greater epithelial ridge and sensory epithelium residing inside the bony labyrinth. However, these response tissues lack direct blood flow, implying that mechanisms exist to shuttle hormone from the circulation to target tissues. Therefore, we investigated expression of candidate thyroid hormone transporters L-type amino acid transporter 1 (Lat1), monocarboxylate transporter (Mct)8, Mct10, and organic anion transporting polypeptide 1c1 (Oatp1c1) in mouse cochlear development by in situ hybridization and immunofluorescence analysis. L-type amino acid transporter 1 localized to cochlear blood vessels and transiently to sensory hair cells. Mct8 localized to the greater epithelial ridge, tympanic border cells underlying the sensory epithelium, spiral ligament fibrocytes, and spiral ganglion neurons, partly overlapping with the Thrb expression pattern. Mct10 was detected in a highly restricted pattern in the outer sulcus epithelium and weakly in tympanic border cells and hair cells. Organic anion transporting polypeptide 1c1 localized primarily to fibrocytes in vascularized tissues of the spiral limbus and spiral ligament and to tympanic border cells. Investigation of hypothyroid Tshr(-/-) mice showed that transporter expression was delayed consistent with retardation of cochlear tissue maturation but not with compensatory responses to hypothyroidism. The results demonstrate specific expression of thyroid hormone transporters in the cochlea and suggest that a network of thyroid hormone transport underlies cochlear development.
Collapse
Affiliation(s)
- David S Sharlin
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Clinical Endocrinology Branch, Bethesda, Maryland 20892-1772, USA
| | | | | |
Collapse
|
44
|
A modifier gene alleviates hypothyroidism-induced hearing impairment in Pou1f1dw dwarf mice. Genetics 2011; 189:665-73. [PMID: 21840860 DOI: 10.1534/genetics.111.130633] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Thyroid hormone has pleiotropic effects on cochlear development, and genomic variation influences the severity of associated hearing deficits. DW/J-Pou1f1dw/dw mutant mice lack pituitary thyrotropin, which causes severe thyroid hormone deficiency and profound hearing impairment. To assess the genetic complexity of protective effects on hypothyroidism-induced hearing impairment, an F1 intercross was generated between DW/J-Pou1f1dw/+ carriers and an inbred strain with excellent hearing derived from Mus castaneus, CAST/EiJ. Approximately 24% of the (DW/J×CAST/EiJ) Pou1f1dw/dw F2 progeny had normal hearing. A genome scan revealed a locus on chromosome 2, named modifier of dw hearing, or Mdwh, that rescues hearing despite persistent hypothyroidism. This chromosomal region contains the modifier of tubby hearing 1 (Moth1) locus that encodes a protective allele of the microtubule-associated protein MTAP1A. DW/J-Pou1f1dw/+ carriers were crossed with the AKR strain, which also carries a protective allele of Mtap1a, and we found that AKR is not protective for hearing in the (DW/J×AKR) Pou1f1dw/dw F2 progeny. Thus, protective alleles of Mtap1a are not sufficient to rescue DW/J-Pou1f1dw/dw hearing. We expect that identification of protective modifiers will enhance our understanding of the mechanisms of hypothyroidism-induced hearing impairment.
Collapse
|
45
|
Lilienthal H, Heikkinen P, Andersson PL, van der Ven LTM, Viluksela M. Auditory Effects of Developmental Exposure to Purity-Controlled Polychlorinated Biphenyls (PCB52 and PCB180) in Rats. Toxicol Sci 2011; 122:100-11. [DOI: 10.1093/toxsci/kfr077] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
46
|
Jagger D, Collin G, Kelly J, Towers E, Nevill G, Longo-Guess C, Benson J, Halsey K, Dolan D, Marshall J, Naggert J, Forge A. Alström Syndrome protein ALMS1 localizes to basal bodies of cochlear hair cells and regulates cilium-dependent planar cell polarity. Hum Mol Genet 2010; 20:466-81. [PMID: 21071598 DOI: 10.1093/hmg/ddq493] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Alström Syndrome is a life-threatening disease characterized primarily by numerous metabolic abnormalities, retinal degeneration, cardiomyopathy, kidney and liver disease, and sensorineural hearing loss. The cellular localization of the affected protein, ALMS1, has suggested roles in ciliary function and/or ciliogenesis. We have investigated the role of ALMS1 in the cochlea and the pathogenesis of hearing loss in Alström Syndrome. In neonatal rat organ of Corti, ALMS1 was localized to the basal bodies of hair cells and supporting cells. ALMS1 was also evident at the basal bodies of differentiating fibrocytes and marginal cells in the lateral wall. Centriolar ALMS1 expression was retained into maturity. In Alms1-disrupted mice, which recapitulate the neurosensory deficits of human Alström Syndrome, cochleae displayed several cyto-architectural defects including abnormalities in the shape and orientation of hair cell stereociliary bundles. Developing hair cells were ciliated, suggesting that ciliogenesis was largely normal. In adult mice, in addition to bundle abnormalities, there was an accelerated loss of outer hair cells and the progressive appearance of large lesions in stria vascularis. Although the mice progressively lost distortion product otoacoustic emissions, suggesting defects in outer hair cell amplification, their endocochlear potentials were normal, indicating the strial atrophy did not affect its function. These results identify previously unrecognized cochlear histopathologies associated with this ciliopathy that (i) implicate ALMS1 in planar cell polarity signaling and (ii) suggest that the loss of outer hair cells causes the majority of the hearing loss in Alström Syndrome.
Collapse
Affiliation(s)
- Daniel Jagger
- UCL Ear Institute, University College London, 332 Gray’s Inn Road, London WC1X 8EE, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Dror AA, Avraham KB. Hearing Impairment: A Panoply of Genes and Functions. Neuron 2010; 68:293-308. [DOI: 10.1016/j.neuron.2010.10.011] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2010] [Indexed: 12/13/2022]
|
48
|
Abstract
PURPOSE OF REVIEW Normal cochlear function depends on maintaining the correct ionic environment for the sensory hair cells. Here we review recent literature on the cellular distribution of potassium transport-related molecules in the cochlea. RECENT FINDINGS Transgenic animal models have identified novel molecules essential for normal hearing and support the idea that potassium is recycled in the cochlea. The findings indicate that extracellular potassium released by outer hair cells into the space of Nuel is taken up by supporting cells, that the gap junction system in the organ of Corti is involved in potassium handling in the cochlea, that the gap junction system in stria vascularis is essential for the generation of the endocochlear potential, and that computational models can assist in the interpretation of the systems biology of hearing and integrate the molecular, electrical, and mechanical networks of the cochlear partition. Such models suggest that outer hair cell electromotility can amplify over a much broader frequency range than expected from isolated cell studies. SUMMARY These new findings clarify the role of endolymphatic potassium in normal cochlear function. They also help current understanding of the mechanisms of certain forms of hereditary hearing loss.
Collapse
|
49
|
Gross J, Stute K, Moller R, Fuchs J, Amarjargal N, Pohl EE, Angerstein M, Smorodchenko A, Mazurek B. Expression of prestin and Gata-3,-2,-1 mRNA in the rat organ of Corti during the postnatal period and in culture. Hear Res 2009; 261:9-21. [PMID: 20006695 DOI: 10.1016/j.heares.2009.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 11/16/2009] [Accepted: 12/05/2009] [Indexed: 01/15/2023]
Abstract
Based on observations that mutations of GATA-3 are responsible for the HDR-syndrome (hypoparathyroidism, deafness, renal defects) and that GATA-transcription factors have an important role to play in inner ear development, we hypothesized that these transcription factors may be involved in regulatory changes of prestin transcription. To prove this, we examined in parallel the expression of mRNA of prestin and Gata-3,-2 and Gata-1 in the organ of Corti during early postnatal development of rats and in organotypic cultures. Remarkable relations are observed between prestin and Gata-3,-2 expression in organ of Corti preparations in vivo and in vitro: (i) Gata-3,-2 expression display similar apical-basal gradients as prestin mRNA levels. (ii) The prestin expression increases between postnatal day two and postnatal day eight by a factor of about four in the apical and middle segments and by a factor of two in the basal part. Highly significant Pearson correlation coefficients were observed between Gata-3,-2 mRNA and prestin levels when the data were evaluated by regression analyses. (iii) Parallel changes of prestin mRNA and Gata-3,-2 mRNA levels were observed in response to thyroid hormone and to gemfibrozil application. These observations suggest a regulatory role played by the Gata-3,-2 transcription factors in prestin expression.
Collapse
Affiliation(s)
- Johann Gross
- Molecular Biology Research Laboratory, Department of Otorhinolaryngology, Institute of Cell- and Neurobiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Charitéplatz 1, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zdebik AA, Wangemann P, Jentsch TJ. Potassium ion movement in the inner ear: insights from genetic disease and mouse models. Physiology (Bethesda) 2009; 24:307-16. [PMID: 19815857 DOI: 10.1152/physiol.00018.2009] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Sensory transduction in the cochlea and vestibular labyrinth depends on fluid movements that deflect the hair bundles of mechanosensitive hair cells. Mechanosensitive transducer channels at the tip of the hair cell stereocilia allow K(+) to flow into cells. This unusual process relies on ionic gradients unique to the inner ear. Linking genes to deafness in humans and mice has been instrumental in identifying the ion transport machinery important for hearing and balance. Morphological analysis is difficult in patients, but mouse models have helped to investigate phenotypes at different developmental time points. This review focuses on cellular ion transport mechanisms in the stria vascularis that generate the major electrochemical gradients for sensory transduction.
Collapse
Affiliation(s)
- Anselm A Zdebik
- UCL, Department of Neuroscience, London Epithelial Group, Hampstead Campus, London, United Kingdom.
| | | | | |
Collapse
|