1
|
Zühlsdorff K, Sala‐Bayo J, Piller S, Zhukovsky P, Lamla T, Nissen W, von Heimendahl M, Deiana S, Nicholson JR, Robbins TW, Alsiö J, Dalley JW. Optogenetic activation of mesencephalic projections to the nucleus accumbens shell impairs probabilistic reversal learning by disrupting learning from negative reinforcement. Eur J Neurosci 2024; 60:6765-6778. [PMID: 39479888 PMCID: PMC11612850 DOI: 10.1111/ejn.16584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/25/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024]
Abstract
Cognitive flexibility, the capacity to adapt behaviour to changes in the environment, is impaired in a range of brain disorders, including schizophrenia and Parkinson's disease. Putative neural substrates of cognitive flexibility include mesencephalic pathways to the ventral striatum (VS) and dorsomedial striatum (DMS), hypothesized to encode learning signals needed to maximize rewarded outcomes during decision-making. However, it is unclear whether mesencephalic projections to the ventral and dorsal striatum are distinct in their contribution to flexible reward-related learning. Here, rats acquired a two-choice spatial probabilistic reversal learning (PRL) task, reinforced on an 80%|20% basis (correct|incorrect responses) that assessed the flexibility of behaviour to repeated reversals of response-outcome contingencies. We report that optogenetic stimulation of projections from the ventral tegmental area (VTA) to the nucleus accumbens shell (NAcS) in the VS significantly impaired reversal learning when optical stimulation was temporally aligned with negative feedback (i.e., reward omission). VTA → NAcS stimulation during other phases of the behavioural task was without significant effect. Optogenetic stimulation of projection neurons from the substantia nigra (SN) to the DMS, aligned either with reward receipt or omission or prior to making a choice, had no significant effect on reversal learning. These findings are consistent with the notion that increased activity in the VTA → NAcS pathway disrupts behavioural flexibility by impairing learning from negative reinforcement.
Collapse
Affiliation(s)
| | | | - Sammy Piller
- Boehringer Ingelheim Pharma GmbH & Co. KG, Div. Research GermanyBiberach an der RißGermany
| | | | - Thorsten Lamla
- Boehringer Ingelheim Pharma GmbH & Co. KG, Div. Research GermanyBiberach an der RißGermany
| | - Wiebke Nissen
- Boehringer Ingelheim Pharma GmbH & Co. KG, Div. Research GermanyBiberach an der RißGermany
| | - Moritz von Heimendahl
- Boehringer Ingelheim Pharma GmbH & Co. KG, Div. Research GermanyBiberach an der RißGermany
| | - Serena Deiana
- Boehringer Ingelheim Pharma GmbH & Co. KG, Div. Research GermanyBiberach an der RißGermany
| | - Janet R. Nicholson
- Boehringer Ingelheim Pharma GmbH & Co. KG, Div. Research GermanyBiberach an der RißGermany
| | | | - Johan Alsiö
- Department of PsychologyUniversity of CambridgeCambridgeUK
- Present address:
School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| | - Jeffrey W. Dalley
- Department of PsychologyUniversity of CambridgeCambridgeUK
- Department of Psychiatry, Herchel Smith Building for Brain & Mind SciencesUniversity of CambridgeCambridgeUK
| |
Collapse
|
2
|
Girotti M, Bulin SE, Carreno FR. Effects of chronic stress on cognitive function - From neurobiology to intervention. Neurobiol Stress 2024; 33:100670. [PMID: 39295772 PMCID: PMC11407068 DOI: 10.1016/j.ynstr.2024.100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
Exposure to chronic stress contributes considerably to the development of cognitive impairments in psychiatric disorders such as depression, generalized anxiety disorder (GAD), obsessive-compulsive disorder (OCD), post-traumatic stress disorder (PTSD), and addictive behavior. Unfortunately, unlike mood-related symptoms, cognitive impairments are not effectively treated by available therapies, a situation in part resulting from a still incomplete knowledge of the neurobiological substrates that underly cognitive domains and the difficulty in generating interventions that are both efficacious and safe. In this review, we will present an overview of the cognitive domains affected by stress with a specific focus on cognitive flexibility, behavioral inhibition, and working memory. We will then consider the effects of stress on neuronal correlates of cognitive function and the factors which may modulate the interaction of stress and cognition. Finally, we will discuss intervention strategies for treatment of stress-related disorders and gaps in knowledge with emerging new treatments under development. Understanding how cognitive impairment occurs during exposure to chronic stress is crucial to make progress towards the development of new and effective therapeutic approaches.
Collapse
Affiliation(s)
| | - Sarah E. Bulin
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, 78229, USA
| | - Flavia R. Carreno
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, 78229, USA
| |
Collapse
|
3
|
Amly W, Chen CY, Isa T. Modeling saccade reaction time in marmosets: the contribution of earlier visual response and variable inhibition. Front Syst Neurosci 2024; 18:1478019. [PMID: 39507631 PMCID: PMC11537947 DOI: 10.3389/fnsys.2024.1478019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Marmosets are expected to serve as a valuable model for studying the primate visuomotor system due to their similar oculomotor behaviors to humans and macaques. Despite these similarities, differences exist; challenges in training marmosets on tasks requiring suppression of unwanted saccades, having consistently shorter, yet more variable saccade reaction times (SRT) compared to humans and macaques. This study investigates whether the short and variable SRT in marmosets is related to differences in visual signal transduction and variability in inhibitory control. We refined a computational SRT model, adjusting parameters to better capture the marmoset SRT distribution in a gap saccade task. Our findings indicate that visual information processing is faster in marmosets, and that saccadic inhibition is more variable compared to other species.
Collapse
Affiliation(s)
- Wajd Amly
- Division of Neurobiology and Physiology, Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Chih-Yang Chen
- Division of Neurobiology and Physiology, Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Tadashi Isa
- Division of Neurobiology and Physiology, Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Delaney J, Nathani S, Tan V, Chavez C, Orr A, Paek J, Faraji M, Setlow B, Urs NM. Enhanced cognitive flexibility and phasic striatal dopamine dynamics in a mouse model of low striatal tonic dopamine. Neuropsychopharmacology 2024; 49:1600-1608. [PMID: 38698264 PMCID: PMC11319590 DOI: 10.1038/s41386-024-01868-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024]
Abstract
The catecholamine neuromodulators dopamine and norepinephrine are implicated in motor function, motivation, and cognition. Although roles for striatal dopamine in these aspects of behavior are well established, the specific roles for cortical catecholamines in regulating striatal dopamine dynamics and behavior are less clear. We recently showed that elevating cortical dopamine but not norepinephrine suppresses hyperactivity in dopamine transporter knockout (DAT-KO) mice, which have elevated striatal dopamine levels. In contrast, norepinephrine transporter knockout (NET-KO) mice have a phenotype distinct from DAT-KO mice, as they show elevated extracellular cortical catecholamines but reduced baseline striatal dopamine levels. Here we evaluated the consequences of altered catecholamine levels in NET-KO mice on cognitive flexibility and striatal dopamine dynamics. In a probabilistic reversal learning task, NET-KO mice showed enhanced reversal learning, which was consistent with larger phasic dopamine transients (dLight) in the dorsomedial striatum (DMS) during reward delivery and reward omission, compared to WT controls. Selective depletion of dorsal medial prefrontal cortex (mPFC) norepinephrine in WT mice did not alter performance on the reversal learning task but reduced nestlet shredding. Surprisingly, NET-KO mice did not show altered breakpoints in a progressive ratio task, suggesting intact food motivation. Collectively, these studies show novel roles of cortical catecholamines in the regulation of tonic and phasic striatal dopamine dynamics and cognitive flexibility, updating our current views on dopamine regulation and informing future therapeutic strategies to counter multiple psychiatric disorders.
Collapse
Affiliation(s)
- Jena Delaney
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Sanya Nathani
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Victor Tan
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Carson Chavez
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Alexander Orr
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Joon Paek
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Mojdeh Faraji
- Department of Psychiatry, University of Florida, Gainesville, FL, 32610, USA
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, FL, 32610, USA
| | - Nikhil M Urs
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
5
|
Zhai S, Otsuka S, Xu J, Clarke VRJ, Tkatch T, Wokosin D, Xie Z, Tanimura A, Agarwal HK, Ellis-Davies GCR, Contractor A, Surmeier DJ. Ca 2+-dependent phosphodiesterase 1 regulates the plasticity of striatal spiny projection neuron glutamatergic synapses. Cell Rep 2024; 43:114540. [PMID: 39058595 PMCID: PMC11426333 DOI: 10.1016/j.celrep.2024.114540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 05/14/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Long-term synaptic plasticity at glutamatergic synapses on striatal spiny projection neurons (SPNs) is central to learning goal-directed behaviors and habits. Our studies reveal that SPNs manifest a heterosynaptic, nitric oxide (NO)-dependent form of long-term postsynaptic depression of glutamatergic SPN synapses (NO-LTD) that is preferentially engaged at quiescent synapses. Plasticity is gated by Ca2+ entry through CaV1.3 Ca2+ channels and phosphodiesterase 1 (PDE1) activation, which blunts intracellular cyclic guanosine monophosphate (cGMP) and NO signaling. Both experimental and simulation studies suggest that this Ca2+-dependent regulation of PDE1 activity allows for local regulation of dendritic cGMP signaling. In a mouse model of Parkinson disease (PD), NO-LTD is absent because of impaired interneuronal NO release; re-balancing intrastriatal neuromodulatory signaling restores NO release and NO-LTD. Taken together, these studies provide important insights into the mechanisms governing NO-LTD in SPNs and its role in psychomotor disorders such as PD.
Collapse
Affiliation(s)
- Shenyu Zhai
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shintaro Otsuka
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jian Xu
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Vernon R J Clarke
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tatiana Tkatch
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - David Wokosin
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Zhong Xie
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Asami Tanimura
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hitesh K Agarwal
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | - Anis Contractor
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
6
|
Parr AC, Sydnor VJ, Calabro FJ, Luna B. Adolescent-to-adult gains in cognitive flexibility are adaptively supported by reward sensitivity, exploration, and neural variability. Curr Opin Behav Sci 2024; 58:101399. [PMID: 38826569 PMCID: PMC11138371 DOI: 10.1016/j.cobeha.2024.101399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Cognitive flexibility exhibits dynamic changes throughout development, with different forms of flexibility showing dissociable developmental trajectories. In this review, we propose that an adolescent-specific mode of flexibility in the face of changing environmental contingencies supports the emergence of adolescent-to-adult gains in cognitive shifting efficiency. We first describe how cognitive shifting abilities monotonically improve from childhood to adulthood, accompanied by increases in brain state flexibility, neural variability, and excitatory/inhibitory balance. We next summarize evidence supporting the existence of a dopamine-driven, adolescent peak in flexible behavior that results in reward seeking, undirected exploration, and environmental sampling. We propose a neurodevelopmental framework that relates these adolescent behaviors to the refinement of neural phenotypes relevant to mature cognitive flexibility, and thus highlight the importance of the adolescent period in fostering healthy neurocognitive trajectories.
Collapse
Affiliation(s)
- Ashley C. Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh PA, 14213, USA
| | - Valerie J. Sydnor
- Department of Psychiatry, University of Pittsburgh, Pittsburgh PA, 14213, USA
| | - Finnegan J. Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh PA, 14213, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh PA, 14213, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh PA, 14213, USA
| |
Collapse
|
7
|
Zhai S, Otsuka S, Xu J, Clarke VRJ, Tkatch T, Wokosin D, Xie Z, Tanimura A, Agarwal HK, Ellis-Davies GCR, Contractor A, Surmeier DJ. Ca 2+ -dependent phosphodiesterase 1 regulates the plasticity of striatal spiny projection neuron glutamatergic synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590962. [PMID: 38712260 PMCID: PMC11071484 DOI: 10.1101/2024.04.24.590962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Long-term synaptic plasticity at glutamatergic synapses on striatal spiny projection neurons (SPNs) is central to learning goal-directed behaviors and habits. Although considerable attention has been paid to the mechanisms underlying synaptic strengthening and new learning, little scrutiny has been given to those involved in the attenuation of synaptic strength that attends suppression of a previously learned association. Our studies revealed a novel, non-Hebbian, long-term, postsynaptic depression of glutamatergic SPN synapses induced by interneuronal nitric oxide (NO) signaling (NO-LTD) that was preferentially engaged at quiescent synapses. This form of plasticity was gated by local Ca 2+ influx through CaV1.3 Ca 2+ channels and stimulation of phosphodiesterase 1 (PDE1), which degraded cyclic guanosine monophosphate (cGMP) and blunted NO signaling. Consistent with this model, mice harboring a gain-of-function mutation in the gene coding for the pore-forming subunit of CaV1.3 channels had elevated depolarization-induced dendritic Ca 2+ entry and impaired NO-LTD. Extracellular uncaging of glutamate and intracellular uncaging of cGMP suggested that this Ca 2+ -dependent regulation of PDE1 activity allowed for local regulation of dendritic NO signaling. This inference was supported by simulation of SPN dendritic integration, which revealed that dendritic spikes engaged PDE1 in a branch-specific manner. In a mouse model of Parkinson's disease (PD), NO-LTD was absent not because of a postsynaptic deficit in NO signaling machinery, but rather due to impaired interneuronal NO release. Re-balancing intrastriatal neuromodulatory signaling in the PD model restored NO release and NO-LTD. Taken together, these studies provide novel insights into the mechanisms governing NO-LTD in SPN and its role in psychomotor disorders, like PD.
Collapse
|
8
|
LaRocco K, Villiamma P, Hill J, Russell MA, DiLeone RJ, Groman SM. Sex differences in oxycodone-taking behaviors are linked to disruptions in reward-guided, decision-making functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.587443. [PMID: 38645212 PMCID: PMC11030399 DOI: 10.1101/2024.04.09.587443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Problematic opioid use that emerges in a subset of individuals may be due to pre-existing disruptions in the biobehavioral mechanisms that regulate drug use. The identity of these mechanisms is not known, but emerging evidence suggests that suboptimal decision-making that is observable prior to drug use may contribute to the pathology of addiction and, notably, serve as a powerful phenotype for interrogating biologically based differences in opiate-taking behaviors. The current study investigated the relationship between decision-making phenotypes and opioid-taking behaviors in male and female Long Evans rats. Adaptive decision-making processes were assessed using a probabilistic reversal-learning task and oxycodone- (or vehicle, as a control) taking behaviors assessed for 32 days using a saccharin fading procedure that promoted dynamic intake of oxycodone. Tests of motivation, extinction, and reinstatement were also performed. Computational analyses of decision-making and opioid-taking behaviors revealed that attenuated reward-guided decision-making was associated with greater self-administration of oxycodone and addiction-relevant behaviors. Moreover, pre-existing impairments in reward-guided decision-making observed in female rats was associated with greater oxycodone use and addiction-relevant behaviors when compared to males. These results provide new insights into the biobehavioral mechanisms that regulate opiate-taking behaviors and offer a novel phenotypic approach for interrogating sex differences in addiction susceptibility and opioid use disorders.
Collapse
|
9
|
Pickenhan L, Milton AL. Opening new vistas on obsessive-compulsive disorder with the observing response task. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:249-265. [PMID: 38316708 PMCID: PMC11039534 DOI: 10.3758/s13415-023-01153-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/30/2023] [Indexed: 02/07/2024]
Abstract
Obsessive-compulsive disorder (OCD), a highly prevalent and debilitating disorder, is incompletely understood in terms of underpinning behavioural, psychological, and neural mechanisms. This is attributable to high symptomatic heterogeneity; cardinal features comprise obsessions and compulsions, including clinical subcategories. While obsessive and intrusive thoughts are arguably unique to humans, dysfunctional behaviours analogous to those seen in clinical OCD have been examined in nonhuman animals. Genetic, ethological, pharmacological, and neurobehavioural approaches all contribute to understanding the emergence and persistence of compulsive behaviour. One behaviour of particular interest is maladaptive checking, whereby human patients excessively perform checking rituals despite these serving no purpose. Dysfunctional and excessive checking is the most common symptom associated with OCD and can be readily operationalised in rodents. This review considers animal models of OCD, the neural circuitries associated with impairments in habit-based and goal-directed behaviour, and how these may link to the compulsions observed in OCD. We further review the Observing Response Task (ORT), an appetitive instrumental learning procedure that distinguishes between functional and dysfunctional checking, with translational application in humans and rodents. By shedding light on the psychological and neural bases of compulsive-like checking, the ORT has potential to offer translational insights into the underlying mechanisms of OCD, in addition to being a platform for testing psychological and neurochemical treatment approaches.
Collapse
Affiliation(s)
- Luise Pickenhan
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
| | - Amy L Milton
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK.
| |
Collapse
|
10
|
Grill F, Guitart-Masip M, Johansson J, Stiernman L, Axelsson J, Nyberg L, Rieckmann A. Dopamine release in human associative striatum during reversal learning. Nat Commun 2024; 15:59. [PMID: 38167691 PMCID: PMC10762220 DOI: 10.1038/s41467-023-44358-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
The dopaminergic system is firmly implicated in reversal learning but human measurements of dopamine release as a correlate of reversal learning success are lacking. Dopamine release and hemodynamic brain activity in response to unexpected changes in action-outcome probabilities are here explored using simultaneous dynamic [11C]Raclopride PET-fMRI and computational modelling of behavior. When participants encounter reversed reward probabilities during a card guessing game, dopamine release is observed in associative striatum. Individual differences in absolute reward prediction error and sensitivity to errors are associated with peak dopamine receptor occupancy. The fMRI response to perseverance errors at the onset of a reversal spatially overlap with the site of dopamine release. Trial-by-trial fMRI correlates of absolute prediction errors show a response in striatum and association cortices, closely overlapping with the location of dopamine release, and separable from a valence signal in ventral striatum. The results converge to implicate striatal dopamine release in associative striatum as a central component of reversal learning, possibly signifying the need for increased cognitive control when new stimuli-responses should be learned.
Collapse
Affiliation(s)
- Filip Grill
- Department of Diagnostics and Intervention, Diagnostic Radiology, Umeå University, Umeå, Sweden.
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden.
| | - Marc Guitart-Masip
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Center for Psychiatry Research, Region Stockholm, Stockholm, Sweden
- Center for Cognitive and Computational Neuropsychiatry (CCNP), Karolinska Institutet, Stockholm, Sweden
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
| | - Jarkko Johansson
- Department of Diagnostics and Intervention, Diagnostic Radiology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Lars Stiernman
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Jan Axelsson
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Radiation Physics, Umeå University, Umeå, Sweden
| | - Lars Nyberg
- Department of Diagnostics and Intervention, Diagnostic Radiology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Anna Rieckmann
- Department of Diagnostics and Intervention, Diagnostic Radiology, Umeå University, Umeå, Sweden.
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden.
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden.
- Institute for Psychology, University of the Bundeswehr Munich, Neubiberg, Germany.
| |
Collapse
|
11
|
van der Merwe R, Nadel J, Copes-Finke D, Pawelko S, Scott J, Ghanem M, Fox M, Morehouse C, McLaughlin R, Maddox C, Albert-Lyons R, Malaki G, Groce V, Turocy A, Aggadi N, Jin X, Howard C. Characterization of striatal dopamine projections across striatal subregions in behavioral flexibility. Eur J Neurosci 2023; 58:4466-4486. [PMID: 36617434 PMCID: PMC10329096 DOI: 10.1111/ejn.15910] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/13/2022] [Accepted: 12/30/2022] [Indexed: 01/10/2023]
Abstract
Behavioural flexibility is key to survival in a dynamic environmentWhile flexible, goal-directed behaviours are initially dependent on dorsomedial striatum, they become dependent on lateral striatum as behaviours become inflexible. Similarly, lesions of dopamine terminals in lateral striatum disrupt the development of inflexible habits. This work suggests that dopamine release in lateral striatum may drive inflexible behaviours, though few studies have investigated a causative role of subpopulations of striatal dopamine terminals in reversal learning, a measure of flexibility. Here, we performed two optogenetic experiments to activate dopamine terminals in dorsomedial (DMS), dorsolateral (DLS) or ventral (nucleus accumbens [NAc]) striatum in DAT-Cre mice that expressed channelrhodopsin-2 via viral injection (Experiment I) or through transgenic breeding with an Ai32 reporter line (Experiment II) to determine how specific dopamine subpopulations impact reversal learning. Mice performed a reversal task in which they self-stimulated DMS, DLS, or NAc dopamine terminals by pressing one of two levers before action-outcome lever contingencies were reversed. Largely consistent with presumed ventromedial/lateral striatal function, we found that mice self-stimulating medial dopamine terminals reversed lever preference following contingency reversal, while mice self-stimulating NAc showed parial flexibility, and DLS self-stimulation resulted in impaired reversal. Impairments in DLS mice were characterized by more regressive errors and reliance on lose-stay strategies following reversal, as well as reduced within-session learning, suggesting reward insensitivity and overreliance on previously learned actions. This study supports a model of striatal function in which DMS and ventral dopamine facilitate goal-directed responding, and DLS dopamine supports more inflexible responding.
Collapse
Affiliation(s)
- R.K. van der Merwe
- Neuroscience Department, Oberlin College, 173 Lorain St., Oberlin, OH, USA
| | - J.A. Nadel
- Neuroscience Department, Oberlin College, 173 Lorain St., Oberlin, OH, USA
- Northwestern University Interdepartmental Neuroscience Program (NUIN), Evanston, IL, USA
| | - D. Copes-Finke
- Neuroscience Department, Oberlin College, 173 Lorain St., Oberlin, OH, USA
| | - S. Pawelko
- Neuroscience Department, Oberlin College, 173 Lorain St., Oberlin, OH, USA
| | - J.S. Scott
- Neuroscience Department, Oberlin College, 173 Lorain St., Oberlin, OH, USA
| | - M. Ghanem
- Neuroscience Department, Oberlin College, 173 Lorain St., Oberlin, OH, USA
| | - M. Fox
- Neuroscience Department, Oberlin College, 173 Lorain St., Oberlin, OH, USA
| | - C. Morehouse
- Neuroscience Department, Oberlin College, 173 Lorain St., Oberlin, OH, USA
| | - R. McLaughlin
- Neuroscience Department, Oberlin College, 173 Lorain St., Oberlin, OH, USA
| | - C. Maddox
- Neuroscience Department, Oberlin College, 173 Lorain St., Oberlin, OH, USA
| | - R. Albert-Lyons
- Neuroscience Department, Oberlin College, 173 Lorain St., Oberlin, OH, USA
| | - G. Malaki
- Neuroscience Department, Oberlin College, 173 Lorain St., Oberlin, OH, USA
| | - V. Groce
- Neuroscience Department, Oberlin College, 173 Lorain St., Oberlin, OH, USA
| | - A. Turocy
- Neuroscience Department, Oberlin College, 173 Lorain St., Oberlin, OH, USA
| | - N. Aggadi
- Neuroscience Department, Oberlin College, 173 Lorain St., Oberlin, OH, USA
| | - X. Jin
- Center for Motor Control and Disease, Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
- NYU–ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai 200062, China
| | - C.D. Howard
- Neuroscience Department, Oberlin College, 173 Lorain St., Oberlin, OH, USA
| |
Collapse
|
12
|
Kanen JW, Luo Q, Rostami Kandroodi M, Cardinal RN, Robbins TW, Nutt DJ, Carhart-Harris RL, den Ouden HEM. Effect of lysergic acid diethylamide (LSD) on reinforcement learning in humans. Psychol Med 2023; 53:6434-6445. [PMID: 36411719 PMCID: PMC10600934 DOI: 10.1017/s0033291722002963] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND The non-selective serotonin 2A (5-HT2A) receptor agonist lysergic acid diethylamide (LSD) holds promise as a treatment for some psychiatric disorders. Psychedelic drugs such as LSD have been suggested to have therapeutic actions through their effects on learning. The behavioural effects of LSD in humans, however, remain incompletely understood. Here we examined how LSD affects probabilistic reversal learning (PRL) in healthy humans. METHODS Healthy volunteers received intravenous LSD (75 μg in 10 mL saline) or placebo (10 mL saline) in a within-subjects design and completed a PRL task. Participants had to learn through trial and error which of three stimuli was rewarded most of the time, and these contingencies switched in a reversal phase. Computational models of reinforcement learning (RL) were fitted to the behavioural data to assess how LSD affected the updating ('learning rates') and deployment of value representations ('reinforcement sensitivity') during choice, as well as 'stimulus stickiness' (choice repetition irrespective of reinforcement history). RESULTS Raw data measures assessing sensitivity to immediate feedback ('win-stay' and 'lose-shift' probabilities) were unaffected, whereas LSD increased the impact of the strength of initial learning on perseveration. Computational modelling revealed that the most pronounced effect of LSD was the enhancement of the reward learning rate. The punishment learning rate was also elevated. Stimulus stickiness was decreased by LSD, reflecting heightened exploration. Reinforcement sensitivity differed by phase. CONCLUSIONS Increased RL rates suggest LSD induced a state of heightened plasticity. These results indicate a potential mechanism through which revision of maladaptive associations could occur in the clinical application of LSD.
Collapse
Affiliation(s)
- Jonathan W. Kanen
- Department of Psychology, University of Cambridge, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Qiang Luo
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
- Center for Computational Psychiatry, Ministry of Education-Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Human Phenome Institute, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200241, China
| | - Mojtaba Rostami Kandroodi
- Department of Cognitive Science and Artificial Intelligence, Tilburg University, Tilburg, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Rudolf N. Cardinal
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Trevor W. Robbins
- Department of Psychology, University of Cambridge, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - David J. Nutt
- Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, London, UK
| | - Robin L. Carhart-Harris
- Neuroscape Psychedelics Division, University of California San Francisco, San Francisco, California, USA
| | - Hanneke E. M. den Ouden
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Young MK, Conn KA, Das J, Zou S, Alexander S, Burne TH, Kesby JP. Activity in the Dorsomedial Striatum Underlies Serial Reversal Learning Performance Under Probabilistic Uncertainty. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:1030-1041. [PMID: 37881585 PMCID: PMC10593872 DOI: 10.1016/j.bpsgos.2022.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background Corticostriatal circuits, particularly the dorsomedial striatum (DMS) and lateral orbitofrontal cortex, are critical for navigating reversal learning under probabilistic uncertainty. These same areas are implicated in the reversal learning impairments observed in individuals with psychosis as well as their psychotic symptoms, suggesting that they may share a common neurobiological substrate. To address this question, we used psychostimulant exposure and specific activation of the DMS during reversal learning in mice to assess corticostriatal activity. Methods We used amphetamine treatment to induce psychosis-relevant neurobiology in male mice during reversal learning and to examine pathway-specific corticostriatal activation. To determine the causal role of DMS activity, we used chemogenetics to drive midbrain inputs during a range of probabilistic contingencies. Results Mice treated with amphetamine showed altered punishment learning, which was associated with decreased shifting after losses and increased perseverative errors after reversals. Reversal learning performance and strategies were dependent on increased activity in lateral orbitofrontal cortex to DMS circuits as well as in the DMS itself. Specific activation of midbrain to DMS circuits also decreased shifting after losses and reversal learning performance. However, these alterations were dependent on the probabilistic contingency. Conclusions Our work suggests that the DMS plays a multifaceted role in reversal learning. Increasing DMS activity impairs multiple reversal learning processes dependent on the level of uncertainty, confirming its role in the maintenance and selection of incoming cortical inputs. Together, these outcomes suggest that elevated dopamine levels in the DMS could contribute to decision-making impairments in individuals with psychosis.
Collapse
Affiliation(s)
- Madison K. Young
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Kyna-Anne Conn
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Joyosmita Das
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Simin Zou
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Suzy Alexander
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Queensland Centre for Mental Health Research, Brisbane, Queensland, Australia
| | - Thomas H.J. Burne
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Queensland Centre for Mental Health Research, Brisbane, Queensland, Australia
| | - James P. Kesby
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Queensland Centre for Mental Health Research, Brisbane, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Maith O, Baladron J, Einhäuser W, Hamker FH. Exploration behavior after reversals is predicted by STN-GPe synaptic plasticity in a basal ganglia model. iScience 2023; 26:106599. [PMID: 37250300 PMCID: PMC10214406 DOI: 10.1016/j.isci.2023.106599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/02/2023] [Accepted: 03/29/2023] [Indexed: 05/31/2023] Open
Abstract
Humans can quickly adapt their behavior to changes in the environment. Classical reversal learning tasks mainly measure how well participants can disengage from a previously successful behavior but not how alternative responses are explored. Here, we propose a novel 5-choice reversal learning task with alternating position-reward contingencies to study exploration behavior after a reversal. We compare human exploratory saccade behavior with a prediction obtained from a neuro-computational model of the basal ganglia. A new synaptic plasticity rule for learning the connectivity between the subthalamic nucleus (STN) and external globus pallidus (GPe) results in exploration biases to previously rewarded positions. The model simulations and human data both show that during experimental experience exploration becomes limited to only those positions that have been rewarded in the past. Our study demonstrates how quite complex behavior may result from a simple sub-circuit within the basal ganglia pathways.
Collapse
Affiliation(s)
- Oliver Maith
- Department of Computer Science, Chemnitz University of Technology, Chemnitz, Germany
| | - Javier Baladron
- Department of Computer Science, Chemnitz University of Technology, Chemnitz, Germany
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Santiago, Chile
| | - Wolfgang Einhäuser
- Institute of Physics, Chemnitz University of Technology, Chemnitz, Germany
| | - Fred H. Hamker
- Department of Computer Science, Chemnitz University of Technology, Chemnitz, Germany
| |
Collapse
|
15
|
Mastrogiacomo R, Trigilio G, Devroye C, Dautan D, Ferretti V, Losi G, Caffino L, Orso G, Marotta R, Maltese F, Vitali E, Piras G, Forgiarini A, Pacinelli G, Lia A, Rothmond DA, Waddington JL, Drago F, Fumagalli F, Luca MAD, Leggio GM, Carmignoto G, Weickert CS, Managò F, Papaleo F. Dysbindin-1A modulation of astrocytic dopamine and basal ganglia dependent behaviors relevant to schizophrenia. Mol Psychiatry 2022; 27:4201-4217. [PMID: 35821415 DOI: 10.1038/s41380-022-01683-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
The mechanisms underlying the dichotomic cortical/basal ganglia dopaminergic abnormalities in schizophrenia are unclear. Astrocytes are important non-neuronal modulators of brain circuits, but their role in dopaminergic system remains poorly explored. Microarray analyses, immunohistochemistry, and two-photon laser scanning microscopy revealed that Dys1 hypofunction increases the reactivity of astrocytes, which express only the Dys1A isoform. Notably, behavioral and electrochemical assessments in mice selectively lacking the Dys1A isoform unraveled a more prominent impact of Dys1A in behavioral and dopaminergic/D2 alterations related to basal ganglia, but not cortical functioning. Ex vivo electron microscopy and protein expression analyses indicated that selective Dys1A disruption might alter intracellular trafficking in astrocytes, but not in neurons. In agreement, Dys1A disruption only in astrocytes resulted in decreased motivation and sensorimotor gating deficits, increased astrocytic dopamine D2 receptors and decreased dopaminergic tone within basal ganglia. These processes might have clinical relevance because the caudate, but not the cortex, of patients with schizophrenia shows a reduction of the Dys1A isoform. Therefore, we started to show a hitherto unknown role for the Dys1A isoform in astrocytic-related modulation of basal ganglia behavioral and dopaminergic phenotypes, with relevance to schizophrenia.
Collapse
Affiliation(s)
- Rosa Mastrogiacomo
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Gabriella Trigilio
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy.,Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Céline Devroye
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Daniel Dautan
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Valentina Ferretti
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Gabriele Losi
- Neuroscience Institute, CNR, Padova, Italy.,Department of Biomedical Science, University of Padova, Padova, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Roberto Marotta
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Federica Maltese
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Enrica Vitali
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Gessica Piras
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Alessia Forgiarini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Giada Pacinelli
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Annamaria Lia
- Neuroscience Institute, CNR, Padova, Italy.,Department of Biomedical Science, University of Padova, Padova, Italy
| | - Debora A Rothmond
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
| | - John L Waddington
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giorgio Carmignoto
- Neuroscience Institute, CNR, Padova, Italy.,Department of Biomedical Science, University of Padova, Padova, Italy
| | - Cynthia S Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
| | - Francesca Managò
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy.
| | - Francesco Papaleo
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy. .,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.
| |
Collapse
|
16
|
van den Bosch R, Lambregts B, Määttä J, Hofmans L, Papadopetraki D, Westbrook A, Verkes RJ, Booij J, Cools R. Striatal dopamine dissociates methylphenidate effects on value-based versus surprise-based reversal learning. Nat Commun 2022; 13:4962. [PMID: 36002446 PMCID: PMC9402573 DOI: 10.1038/s41467-022-32679-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Psychostimulants such as methylphenidate are widely used for their cognitive enhancing effects, but there is large variability in the direction and extent of these effects. We tested the hypothesis that methylphenidate enhances or impairs reward/punishment-based reversal learning depending on baseline striatal dopamine levels and corticostriatal gating of reward/punishment-related representations in stimulus-specific sensory cortex. Young healthy adults (N = 100) were scanned with functional magnetic resonance imaging during a reward/punishment reversal learning task, after intake of methylphenidate or the selective D2/3-receptor antagonist sulpiride. Striatal dopamine synthesis capacity was indexed with [18F]DOPA positron emission tomography. Methylphenidate improved and sulpiride decreased overall accuracy and response speed. Both drugs boosted reward versus punishment learning signals to a greater degree in participants with higher dopamine synthesis capacity. By contrast, striatal and stimulus-specific sensory surprise signals were boosted in participants with lower dopamine synthesis. These results unravel the mechanisms by which methylphenidate gates both attention and reward learning. The mechanisms underpinning the variability in methylphenidate’s effects on cognition remain unclear. Here, the authors show that such effects reflect changes in striatal dopamine-related output gating of task-relevant cortical signals, and that these changes depend on baseline dopamine synthesis capacity.
Collapse
Affiliation(s)
- Ruben van den Bosch
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| | - Britt Lambregts
- Radboud University Medical Center, Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Jessica Määttä
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lieke Hofmans
- Department of Developmental Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Danae Papadopetraki
- Radboud University Medical Center, Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Andrew Westbrook
- Cognitive, Linguistic & Psychological Sciences Department, Brown University, Providence, RI, USA
| | - Robbert-Jan Verkes
- Radboud University Medical Center, Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands.,Radboud University Medical Center, Department of Medical Imaging, Nijmegen, The Netherlands
| | - Roshan Cools
- Radboud University Medical Center, Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
17
|
Disentangling Reversal-learning Impairments in Frontotemporal Dementia and Alzheimer Disease. Cogn Behav Neurol 2022; 35:110-122. [PMID: 35486540 DOI: 10.1097/wnn.0000000000000303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/09/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Individuals with frontotemporal dementia (FTD) often present with poor decision-making, which can affect both their financial and social situations. Delineation of the specific cognitive impairments giving rise to impaired decision-making in individuals with FTD may inform treatment strategies, as different neurotransmitter systems have been associated with distinct patterns of altered decision-making. OBJECTIVE To use a reversal-learning paradigm to identify the specific cognitive components of reversal learning that are most impaired in individuals with FTD and those with Alzheimer disease (AD) in order to inform future approaches to treatment for symptoms related to poor decision-making and behavioral inflexibility. METHOD We gave 30 individuals with either the behavioral variant of FTD or AD and 18 healthy controls a stimulus-discrimination reversal-learning task to complete. We then compared performance in each phase between the groups. RESULTS The FTD group demonstrated impairments in initial stimulus-association learning, though to a lesser degree than the AD group. The FTD group also performed poorly in classic reversal learning, with the greatest impairments being observed in individuals with frontal-predominant atrophy during trials requiring inhibition of a previously advantageous response. CONCLUSION Taken together, these results and the reversal-learning paradigm used in this study may inform the development and screening of behavioral, neurostimulatory, or pharmacologic interventions aiming to address behavioral symptoms related to stimulus-reinforcement learning and response inhibition impairments in individuals with FTD.
Collapse
|
18
|
Fedosova EA, Shatskova AB, Sarkisova KY. Ethosuximide Improves Cognitive Flexibility during Reversal Learning in WAG/Rij Rats with Absence Epilepsy and Comorbid Depression. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022010100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Cholinergic neurons in the pedunculopontine nucleus guide reversal learning by signaling the changing reward contingency. Cell Rep 2022; 38:110437. [PMID: 35235804 DOI: 10.1016/j.celrep.2022.110437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/07/2021] [Accepted: 02/03/2022] [Indexed: 12/30/2022] Open
Abstract
Cognitive flexibility enables effective switching between mental processes to generate appropriate responses. Cholinergic neurons (CNs) within the pedunculopontine nucleus (PPN) are associated with many functions, but their contribution to cognitive flexibility remains poorly understood. Here we measure PPN cholinergic activities using calcium indicators during the attentional set-shifting task. We find that PPN CNs exhibit increasing activities correlated with rewards during each stage and error trials in reversal stages, indicating sensitivity to rule switching. Inhibition of PPN cholinergic activity selectively impairs reversal learning, which improves with PPN CN activation. Activation of PPN CNs projecting to the substantia nigra pars compacta, mediodorsal thalamus, and parafascicular nucleus in a time-locked manner with reward improves reversal learning. Therefore, PPN CNs may encode not only reward signals but also the information of changing reward contingency that contributes to guiding reversal learning through output projections to multiple nuclei that participate in flexibility.
Collapse
|
20
|
Bari BA, Moerke MJ, Jedema HP, Effinger DP, Cohen JY, Bradberry CW. Reinforcement learning modeling reveals a reward-history-dependent strategy underlying reversal learning in squirrel monkeys. Behav Neurosci 2022; 136:46-60. [PMID: 34570556 PMCID: PMC8863624 DOI: 10.1037/bne0000492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Insight into psychiatric disease and development of therapeutics relies on behavioral tasks that study similar cognitive constructs in multiple species. The reversal learning task is one popular paradigm that probes flexible behavior, aberrations of which are thought to be important in a number of disease states. Despite widespread use, there is a need for a high-throughput primate model that can bridge the genetic, anatomic, and behavioral gap between rodents and humans. Here, we trained squirrel monkeys, a promising preclinical model, on an image-guided deterministic reversal learning task. We found that squirrel monkeys exhibited two key hallmarks of behavior found in other species: integration of reward history over many trials and a side-specific bias. We adapted a reinforcement learning model and demonstrated that it could simulate squirrel monkey-like behavior, capture training-related trajectories, and provide insight into the strategies animals employed. These results validate squirrel monkeys as a model in which to study behavioral flexibility. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
Affiliation(s)
- Bilal A. Bari
- The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD
| | - Megan J. Moerke
- NIDA Intramural Research Program, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA
| | - Hank P. Jedema
- NIDA Intramural Research Program, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA
| | - Devin P. Effinger
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jeremiah Y. Cohen
- The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD
| | - Charles W. Bradberry
- NIDA Intramural Research Program, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA
| |
Collapse
|
21
|
Lear A, Baker SN, Clarke HF, Roberts AC, Schmid MC, Jarrett W. Understanding them to understand ourselves: The importance of NHP research for translational neuroscience. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100049. [PMID: 36518342 PMCID: PMC9743051 DOI: 10.1016/j.crneur.2022.100049] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/20/2022] [Accepted: 07/22/2022] [Indexed: 10/15/2022] Open
Abstract
Studying higher brain function presents fundamental scientific challenges but has great potential for impactful translation to the clinic, supporting the needs of many patients suffering from conditions that relate to neuronal dysfunction. For many key questions relevant to human neurological conditions and clinical interventions, non-human primates (NHPs) remain the only suitable model organism and the only effective way to study the relationship between brain structure and function with the knowledge and tools currently available. Here we present three exemplary studies of current research yielding important findings that are directly translational to human clinical patients but which would be impossible without NHP studies. Our first example shows how studies of the NHP prefrontal cortex are leading to clinically relevant advances and potential new treatments for human neuropsychiatric disorders such as depression and anxiety. Our second example looks at the relevance of NHP research to our understanding of visual pathways and the visual cortex, leading to visual prostheses that offer treatments for otherwise blind patients. Finally, we consider recent advances in treatments leading to improved recovery of movement and motor control in stroke patients, resulting from our improved understanding of brain stem parallel pathways involved in movement in NHPs. The case for using NHPs in neuroscience research, and the direct benefits to human patients, is strong but has rarely been set out directly. This paper reviews three very different areas of neuroscience research, expressly highlighting the unique insights offered to each by NHP studies and their direct applicability to human clinical conditions.
Collapse
Affiliation(s)
- Annabella Lear
- Understanding Animal Research, Abbey House, 74-76 St John Street, London, EC1M 4DZ, United Kingdom
| | - Stuart N Baker
- Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Hannah F Clarke
- Department of Physiology, Development, and Neuroscience, University of Cambridge, CB2 3DY, Cambridge, United Kingdom.,Behavioural and Clinical Neuroscience Institute, University of Cambridge, CB2 3EB, Cambridge, United Kingdom
| | - Angela C Roberts
- Department of Physiology, Development, and Neuroscience, University of Cambridge, CB2 3DY, Cambridge, United Kingdom.,Behavioural and Clinical Neuroscience Institute, University of Cambridge, CB2 3EB, Cambridge, United Kingdom
| | - Michael C Schmid
- Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, 1700, Fribourg, Switzerland.,Biosciences Institute, Faculty of Medical Sciences, Newcastle University, NE2 4HH, United Kingdom
| | - Wendy Jarrett
- Understanding Animal Research, Abbey House, 74-76 St John Street, London, EC1M 4DZ, United Kingdom
| |
Collapse
|
22
|
Rothwell ES, Workman KP, Wang D, Lacreuse A. Sex differences in cognitive aging: a 4-year longitudinal study in marmosets. Neurobiol Aging 2022; 109:88-99. [PMID: 34700200 PMCID: PMC8841951 DOI: 10.1016/j.neurobiolaging.2021.09.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 01/03/2023]
Abstract
Longitudinal studies are essential to understand healthy and pathological neurocognitive aging such as Alzheimer's Disease, but longitudinal designs are rare in both humans and non-human primate models of aging because of the difficulty of tracking cognitive change in long-lived primates. Common marmosets (Callithrix jacchus) are uniquely suited for aging studies due to their naturally short lifespan (10-12 years), sophisticated cognitive and social abilities and Alzheimer Disease-like neuropathology. We report the first longitudinal study of cognitive aging in marmosets (N = 28) as they transitioned from middle- (∼5 years) to old age (∼9 years). We characterized aging trajectories using reversal learning with different stimuli each year. Marmosets initially improved on cognitive performance due to practice, but worsened in the final year, suggesting the onset of age-related decline. Cognitive impairment emerged earlier in females than males and was more prominent for discrimination than for reversal learning. Sex differences in cognitive aging could not be explained by differences in motivation or motor abilities, which improved or remained stable across aging. Likewise, males and females did not differ in aging trajectories of overall behavior or reactivity to a social stressor, with the exception of a progressive decline in the initiation of social behavior in females. Patterns of cognitive aging were highly variable across marmosets of both sexes, suggesting the potential for pathological aging for some individuals. Future work will link individual cognitive trajectories to neuropathology in order to better understand the relationships between neuropathologic burden and vulnerability to age-related cognitive decline in each sex.
Collapse
Affiliation(s)
- Emily S Rothwell
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA.
| | - Kathryn P Workman
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
| | - Dongwei Wang
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
| | - Agnès Lacreuse
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA; Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
23
|
Zmigrod L, Robbins TW. Dopamine, Cognitive Flexibility, and IQ: Epistatic Catechol-O-MethylTransferase:DRD2 Gene-Gene Interactions Modulate Mental Rigidity. J Cogn Neurosci 2021; 34:153-179. [PMID: 34818409 DOI: 10.1162/jocn_a_01784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Cognitive flexibility has been hypothesized to be neurochemically rooted in dopamine neurotransmission. Nonetheless, underpowered sample sizes and contradictory meta-analytic findings have obscured the role of dopamine genes in cognitive flexibility and neglected potential gene-gene interactions. In this largest neurocognitive-genetic study to date (n = 1400), single nucleotide polymorphisms associated with elevated prefrontal dopamine levels (catechol-O-methyltransferase; rs4680) and diminished striatal dopamine (C957T; rs6277) were both implicated in Wisconsin Card Sorting Test performance. Crucially, however, these genetic effects were only evident in low-IQ participants, suggesting high intelligence compensates for, and eliminates, the effect of dispositional dopamine functioning on flexibility. This interaction between cognitive systems may explain and resolve previous empirical inconsistencies in highly educated participant samples. Moreover, compensatory gene-gene interactions were discovered between catechol-O-methyltransferase and DRD2, such that genotypes conferring either elevated prefrontal dopamine or diminished striatal dopamine-via heightened striatally concentrated D2 dopamine receptor availability-are sufficient for cognitive flexibility, but neither is necessary. The study has therefore revealed a form of epistatic redundancy or substitutability among dopamine systems in shaping adaptable thought and action, thus defining boundary conditions for dopaminergic effects on flexible behavior. These results inform theories of clinical disorders and psychopharmacological interventions and uncover complex fronto-striatal synergies in human flexible cognition.
Collapse
|
24
|
Mimura K, Nagai Y, Inoue KI, Matsumoto J, Hori Y, Sato C, Kimura K, Okauchi T, Hirabayashi T, Nishijo H, Yahata N, Takada M, Suhara T, Higuchi M, Minamimoto T. Chemogenetic activation of nigrostriatal dopamine neurons in freely moving common marmosets. iScience 2021; 24:103066. [PMID: 34568790 PMCID: PMC8449082 DOI: 10.1016/j.isci.2021.103066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/19/2021] [Accepted: 08/26/2021] [Indexed: 11/10/2022] Open
Abstract
To interrogate particular neuronal pathways in nonhuman primates under natural and stress-free conditions, we applied designer receptors exclusively activated by designer drugs (DREADDs) technology to common marmosets. We injected adeno-associated virus vectors expressing the excitatory DREADD hM3Dq into the unilateral substantia nigra (SN) in four marmosets. Using multi-tracer positron emission tomography imaging, we detected DREADD expression in vivo, which was confirmed in nigrostriatal dopamine neurons by immunohistochemistry, as well as by assessed activation of the SN following agonist administration. The marmosets rotated in a contralateral direction relative to the activated side 30-90 min after consuming food containing the highly potent DREADD agonist deschloroclozapine (DCZ) but not on the following days without DCZ. These results indicate that non-invasive and reversible DREADD manipulation will extend the utility of marmosets as a primate model for linking neuronal activity and natural behavior in various contexts.
Collapse
Affiliation(s)
- Koki Mimura
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555 Japan
| | - Yuji Nagai
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555 Japan
| | - Ken-ichi Inoue
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Jumpei Matsumoto
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-8555, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama 930-8555, Japan
| | - Yukiko Hori
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555 Japan
| | - Chika Sato
- Quantum Life Informatics Group, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555 Japan
- Applied MRI Research, Department of Molecular Imaging and Theranostics, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555 Japan
| | - Kei Kimura
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Takashi Okauchi
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555 Japan
| | - Toshiyuki Hirabayashi
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555 Japan
| | - Hisao Nishijo
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-8555, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama 930-8555, Japan
| | - Noriaki Yahata
- Quantum Life Informatics Group, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555 Japan
- Applied MRI Research, Department of Molecular Imaging and Theranostics, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555 Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Tetsuya Suhara
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555 Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555 Japan
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555 Japan
| |
Collapse
|
25
|
Acute intranasal dopamine application counteracts the reversal learning deficit of spontaneously hypertensive rats in an attentional set-shifting task. Psychopharmacology (Berl) 2021; 238:2419-2428. [PMID: 33982142 DOI: 10.1007/s00213-021-05863-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
RATIONALE Studies on the attention-deficit/hyperactivity disorder (ADHD) have concluded that the disorder might be caused by a deficit in the inhibitory control of executive functions because of dopamine hypofunction. Recently, the intranasal route has emerged as an effective alternative means for sending dopamine directly to the brain. However, whether the treatment can ameliorate the deficits of inhibitory control in ADHD remains unknown. OBJECTIVES Investigating the effects of acute intranasal dopamine (IN-DA) on the inhibitory control of executive functions of an ADHD rodent model. METHODS We trained an animal model of ADHD, the spontaneously hypertensive rat (SHR), and Wistar rats as controls, in an attentional set-shifting task (ASST) in which dopamine (0.15 mg/kg, 0.3 mg/kg, or vehicle) was intranasally administered before the final test. RESULTS IN-DA application dose-dependently improved the performance and reduced errors of SHR in the initial reversal learning. The effect size was comparable to that of a peripheral injection of 0.6 mg/kg methylphenidate. In control Wistar rats, the highest dose of intranasal dopamine (0.3 mg/kg) induced deficits in the reversal learning of extradimensional discriminations. CONCLUSIONS The findings suggest that the IN-DA treatment has potential for use in the treatment of ADHD; however, caution must be exercised when determining the dosage to be administered, because too much dopamine may have negative effects.
Collapse
|
26
|
Yamamori T. Functional visualization and manipulation in the marmoset brain using viral vectors. Curr Opin Pharmacol 2021; 60:11-16. [PMID: 34280704 DOI: 10.1016/j.coph.2021.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/30/2021] [Accepted: 06/14/2021] [Indexed: 02/08/2023]
Abstract
The common marmoset, a New World monkey, has a primate-specific cortex with approximately 40 Brodmann areas. Genetically encoded calcium indicator (GECI) techniques have been applied to study the functional organization of the marmoset cortex. The success of GCaMP (a green fluorescent of GECI) imaging and other advances, including optogenetic approaches, provide an interesting and exciting opportunity to study the primate brain at the molecular and cellular levels, leading to an understanding of primate neural circuits. These approaches will help advance our knowledge on cognition in primates, including humans, and therapy for human neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Tetsuo Yamamori
- Center for Brain Science, Laboratory for Molecular Analysis of Higher Brain Function, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Japan.
| |
Collapse
|
27
|
McCurdy LY, Sareen P, Davoudian PA, Nitabach MN. Dopaminergic mechanism underlying reward-encoding of punishment omission during reversal learning in Drosophila. Nat Commun 2021; 12:1115. [PMID: 33602917 PMCID: PMC7893153 DOI: 10.1038/s41467-021-21388-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/18/2021] [Indexed: 01/31/2023] Open
Abstract
Animals form and update learned associations between otherwise neutral sensory cues and aversive outcomes (i.e., punishment) to predict and avoid danger in changing environments. When a cue later occurs without punishment, this unexpected omission of aversive outcome is encoded as reward via activation of reward-encoding dopaminergic neurons. How such activation occurs remains unknown. Using real-time in vivo functional imaging, optogenetics, behavioral analysis and synaptic reconstruction from electron microscopy data, we identify the neural circuit mechanism through which Drosophila reward-encoding dopaminergic neurons are activated when an olfactory cue is unexpectedly no longer paired with electric shock punishment. Reduced activation of punishment-encoding dopaminergic neurons relieves depression of olfactory synaptic inputs to cholinergic neurons. Synaptic excitation by these cholinergic neurons of reward-encoding dopaminergic neurons increases their odor response, thus decreasing aversiveness of the odor. These studies reveal how an excitatory cholinergic relay from punishment- to reward-encoding dopaminergic neurons encodes the absence of punishment as reward, revealing a general circuit motif for updating aversive memories that could be present in mammals.
Collapse
Affiliation(s)
- Li Yan McCurdy
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
| | - Preeti Sareen
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
| | - Pasha A Davoudian
- Department of Neuroscience, Yale University, New Haven, CT, USA
- MD/PhD Program, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Michael N Nitabach
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA.
- Department of Neuroscience, Yale University, New Haven, CT, USA.
- Department of Genetics, Yale University, New Haven, CT, USA.
| |
Collapse
|
28
|
Murai T, Sukoff Rizzo SJ. The Importance of Complementary Collaboration of Researchers, Veterinarians, and Husbandry Staff in the Successful Training of Marmoset Behavioral Assays. ILAR J 2021; 61:230-247. [PMID: 33501501 DOI: 10.1093/ilar/ilaa024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 12/30/2022] Open
Abstract
Interest in marmosets as research models has seen exponential growth over the last decade, especially given that the research community is eager to improve on gaps with historical animal models for behavioral and cognitive disorders. The spectrum of human disease traits that present naturally in marmosets, as well as the range of analogous human behaviors that can be assessed in marmosets, makes them ideally suited as translational models for behavioral and cognitive disorders. Regardless of the specific research aims of any project, without close collaboration between researchers, veterinarians, and animal care staff, it would be impossible to meet these goals. Behavior is inherently variable, as are marmosets that are genetically and phenotypically diverse. Thus, to ensure rigor, reliability, and reproducibility in results, it is important that in the research environment, the animal's daily husbandry and veterinary needs are being met and align with the research goals while keeping the welfare of the animal the most critical and highest priority. Much of the information described herein provides details on key components for successful behavioral testing, based on a compendium of methods from peer-reviewed publications and our own experiences. Specific areas highlighted include habituation procedures, selection of appropriate rewards, optimization of testing environments, and ways to integrate regular veterinary and husbandry procedures into the research program with minimal disruptions to the behavioral testing plan. This article aims to provide a broad foundation for researchers new to establishing behavioral and cognitive testing paradigms in marmosets and especially for the veterinary and husbandry colleagues who are indispensable collaborators of these research projects.
Collapse
Affiliation(s)
- Takeshi Murai
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
29
|
Effects of methylphenidate on reinforcement learning depend on working memory capacity. Psychopharmacology (Berl) 2021; 238:3569-3584. [PMID: 34676440 PMCID: PMC8629893 DOI: 10.1007/s00213-021-05974-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/25/2021] [Indexed: 11/25/2022]
Abstract
RATIONALE Brain catecholamines have long been implicated in reinforcement learning, exemplified by catecholamine drug and genetic effects on probabilistic reversal learning. However, the mechanisms underlying such effects are unclear. OBJECTIVES AND METHODS Here we investigated effects of an acute catecholamine challenge with methylphenidate (20 mg, oral) on a novel probabilistic reversal learning paradigm in a within-subject, double-blind randomised design. The paradigm was designed to disentangle effects on punishment avoidance from effects on reward perseveration. Given the known large individual variability in methylphenidate's effects, we stratified our effects by working memory capacity and trait impulsivity, putatively modulating the effects of methylphenidate, in a large sample (n = 102) of healthy volunteers. RESULTS Contrary to our prediction, methylphenidate did not alter performance in the reversal phase of the task. Our key finding is that methylphenidate altered learning of choice-outcome contingencies in a manner that depended on individual variability in working memory span. Specifically, methylphenidate improved performance by adaptively reducing the effective learning rate in participants with higher working memory capacity. CONCLUSIONS This finding emphasises the important role of working memory in reinforcement learning, as reported in influential recent computational modelling and behavioural work, and highlights the dependence of this interplay on catecholaminergic function.
Collapse
|
30
|
Serotonin depletion impairs both Pavlovian and instrumental reversal learning in healthy humans. Mol Psychiatry 2021; 26:7200-7210. [PMID: 34429517 PMCID: PMC8873011 DOI: 10.1038/s41380-021-01240-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
Serotonin is involved in updating responses to changing environmental circumstances. Optimising behaviour to maximise reward and minimise punishment may require shifting strategies upon encountering new situations. Likewise, autonomic responses to threats are critical for survival yet must be modified as danger shifts from one source to another. Whilst numerous psychiatric disorders are characterised by behavioural and autonomic inflexibility, few studies have examined the contribution of serotonin in humans. We modelled both processes, respectively, in two independent experiments (N = 97). Experiment 1 assessed instrumental (stimulus-response-outcome) reversal learning whereby individuals learned through trial and error which action was most optimal for obtaining reward or avoiding punishment initially, and the contingencies subsequently reversed serially. Experiment 2 examined Pavlovian (stimulus-outcome) reversal learning assessed by the skin conductance response: one innately threatening stimulus predicted receipt of an uncomfortable electric shock and another did not; these contingencies swapped in a reversal phase. Upon depleting the serotonin precursor tryptophan-in a double-blind randomised placebo-controlled design-healthy volunteers showed impairments in updating both actions and autonomic responses to reflect changing contingencies. Reversal deficits in each domain, furthermore, were correlated with the extent of tryptophan depletion. Initial Pavlovian conditioning, moreover, which involved innately threatening stimuli, was potentiated by depletion. These results translate findings in experimental animals to humans and have implications for the neurochemical basis of cognitive inflexibility.
Collapse
|
31
|
Thomson DM, Openshaw RL, Mitchell EJ, Kouskou M, Millan MJ, Mannoury la Cour C, Morris BJ, Pratt JA. Impaired working memory, cognitive flexibility and reward processing in mice genetically lacking Gpr88: Evidence for a key role for Gpr88 in multiple cortico-striatal-thalamic circuits. GENES BRAIN AND BEHAVIOR 2020; 20:e12710. [PMID: 33078498 DOI: 10.1111/gbb.12710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 12/22/2022]
Abstract
The GPR88 orphan G protein-coupled receptor is expressed throughout the striatum, being preferentially localised in medium spiny neurons. It is also present in lower densities in frontal cortex and thalamus. Rare mutations in humans suggest a role in cognition and motor function, while common variants are associated with psychosis. Here we evaluate the influence of genetic deletion of GPR88 upon performance in translational tasks interrogating motivation, reward evaluation and cognitive function. In an automated radial arm maze 'N-back' working memory task, Gpr88 KO mice showed impaired correct responding, suggesting a role for GPR88 receptors in working memory circuitry. Associative learning performance was similar to wild-type controls in a touchscreen task but performance was impaired at the reversal learning stage, suggesting cognitive inflexibility. Gpr88 KO mice showed higher breakpoints, reduced latencies and lengthened session time in a progressive ratio task consistent with enhanced motivation. Simultaneously, locomotor hyperactivity was apparent in this task, supporting previous findings of actions of GPR88 in a cortico-striatal-thalamic motor loop. Evidence for a role of GPR88 in reward processing was demonstrated in a touchscreen-based equivalent of the Iowa gambling task. Although both Gpr88 KO and wild-type mice showed a preference for an optimum contingency choice, Gpr88 KO mice selected more risky choices at the expense of more advantageous lower risk options. Together these novel data suggest that striatal GPR88 receptors influence activity in a range of procedures integrated by prefrontal, orbitofrontal and anterior cingulate cortico-striatal-thalamic loops leading to altered cognitive, motivational and reward evaluation processes.
Collapse
Affiliation(s)
- David M Thomson
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, G4 0RE, United Kingdom
| | - Rebecca L Openshaw
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, G4 0RE, United Kingdom
| | - Emma J Mitchell
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, G4 0RE, United Kingdom
| | - Marianna Kouskou
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, G4 0RE, United Kingdom
| | - Mark J Millan
- Centre for Therapeutic Innovation-CNS, Institute de Recherche Servier, Croissy-sur-Seine, France
| | | | - Brian J Morris
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Judith A Pratt
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, G4 0RE, United Kingdom
| |
Collapse
|
32
|
Psychological mechanisms and functions of 5-HT and SSRIs in potential therapeutic change: Lessons from the serotonergic modulation of action selection, learning, affect, and social cognition. Neurosci Biobehav Rev 2020; 119:138-167. [PMID: 32931805 DOI: 10.1016/j.neubiorev.2020.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022]
Abstract
Uncertainty regarding which psychological mechanisms are fundamental in mediating SSRI treatment outcomes and wide-ranging variability in their efficacy has raised more questions than it has solved. Since subjective mood states are an abstract scientific construct, only available through self-report in humans, and likely involving input from multiple top-down and bottom-up signals, it has been difficult to model at what level SSRIs interact with this process. Converging translational evidence indicates a role for serotonin in modulating context-dependent parameters of action selection, affect, and social cognition; and concurrently supporting learning mechanisms, which promote adaptability and behavioural flexibility. We examine the theoretical basis, ecological validity, and interaction of these constructs and how they may or may not exert a clinical benefit. Specifically, we bridge crucial gaps between disparate lines of research, particularly findings from animal models and human clinical trials, which often seem to present irreconcilable differences. In determining how SSRIs exert their effects, our approach examines the endogenous functions of 5-HT neurons, how 5-HT manipulations affect behaviour in different contexts, and how their therapeutic effects may be exerted in humans - which may illuminate issues of translational models, hierarchical mechanisms, idiographic variables, and social cognition.
Collapse
|
33
|
Improved visual discrimination learning in mice with partial 5-HT2B gene deletion. Neurosci Lett 2020; 738:135378. [PMID: 32920046 DOI: 10.1016/j.neulet.2020.135378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
Abstract
The neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) has been linked to multiple aspects of cognition. For example, in rodents, discrimination and reversal learning are altered by experimentally induced changes in brain serotonin levels, and reduced expression of the 5-HT2B receptor subtype in mice and humans is associated with decreased serotonergic tone and increased behavioral impulsivity. Serotonin modulates cognitive flexibility as well as fear and anxiety, but the specific contributions of 5-HT2B receptors to these behaviors is unknown. The current study assessed mice with partial Htr2b deletion for performance on a touchscreen-based pairwise visual discrimination and reversal learning task followed by a test of cued fear learning. Male Htr2b heterozygous mice (+/-) and littermate controls (+/+) were trained to discriminate between two visual stimuli presented on a touch-sensitive screen, one which predicted delivery of a 14-mg food pellet and the other which was not rewarded. Once discrimination performance criterion was attained, the stimulus-reward contingencies were reversed. Htr2b +/- mice were faster to reach discrimination criterion than +/+ controls, and made fewer errors. Htr2b +/- mice were also slower to make responses and collect rewards. Conversely, measures of reversal learning were not different between genotypes. Pavlovian cued fear conditioning was also normal in Htr2b +/-mice. These data demonstrate a selective improvement in touchscreen-based discrimination learning in mice with partial deletion of the 5-HT2B receptor, and provide further insight into the role of the 5-HT2B receptor in cognition.
Collapse
|
34
|
Wang JX, Zhuang JY, Fu L, Lei Q, Fan M, Zhang W. How ovarian hormones influence the behavioral activation and inhibition system through the dopamine pathway. PLoS One 2020; 15:e0237032. [PMID: 32790683 PMCID: PMC7425921 DOI: 10.1371/journal.pone.0237032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/18/2020] [Indexed: 11/19/2022] Open
Abstract
The behavioral activation system (BAS) and the behavioral inhibition system (BIS) have been proposed to relate to stable traits that predict inter-individual differences in motivation. Prior reports point dopamine (DA) pathways, mainly including ventral tegmental area (VTA) and substantia nigra (SN), implicate in subserving reward-related functions associated with BAS and inhibitory functions related with BIS. However, as an important factor that affects DA releasing, it remains an open question whether the ovarian hormones may also be related to BIS/BAS. Here, to investigate effects of the estradiol (E2) and progesterone (PROG) on BIS/BAS and related DA pathways, we employed a BIS/BAS scale and the resting-state functional magnetic resonance imaging (fMRI) during the late follicular phase (FP) and the mid-luteal phase (LP). On the behavioral level, when women had high PROG levels, their E2 levels were found positively correlated with BIS scores, but those women whose PROG levels were low, their E2 levels were negative correlation with BIS scores. On the neural level, we demonstrated BAS was related with the VTA pathway, included brain reward regions of nucleus accumbens (NAc) and orbitofrontal cortex (OFC). Meanwhile, the BIS was correlated with the SN-dorsolateral prefrontal cortex (dlPFC) pathway. ROI-based resting-state functional connectivity (RSFC) analyses further revealed that, RSFC between the SN and dlPFC was modulated by ovarian hormones. With higher PROG levels, increased E2 levels among women were accompanied by stronger RSFC of the SN-dlPFC, but when PROG levels were low, E2 levels were negatively correlated with the SN-dlPFC RSFC. These findings revealed a combined enhancement effect of E2 and PROG on BIS, and the SN-dlPFC pathway was mainly involved in this process.
Collapse
Affiliation(s)
- Jia-Xi Wang
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Jin-Ying Zhuang
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Lulu Fu
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Qin Lei
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Mingxia Fan
- Department of Physics, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Weidong Zhang
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| |
Collapse
|
35
|
Affiliation(s)
- Quenten Highgate
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| | - Susan Schenk
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
36
|
Conn KA, Burne THJ, Kesby JP. Subcortical Dopamine and Cognition in Schizophrenia: Looking Beyond Psychosis in Preclinical Models. Front Neurosci 2020; 14:542. [PMID: 32655348 PMCID: PMC7325949 DOI: 10.3389/fnins.2020.00542] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/01/2020] [Indexed: 12/18/2022] Open
Abstract
Schizophrenia is characterized by positive, negative and cognitive symptoms. All current antipsychotic treatments feature dopamine-receptor antagonism that is relatively effective at addressing the psychotic (positive) symptoms of schizophrenia. However, there is no clear evidence that these medications improve the negative or cognitive symptoms, which are the greatest predictors of functional outcomes. One of the most robust pathophysiological observations in patients with schizophrenia is increased subcortical dopamine neurotransmission, primarily in the associative striatum. This brain area has an important role in a range of cognitive processes. Dopamine is also known to play a major part in regulating a number of cognitive functions impaired in schizophrenia but much of this research has been focused on cortical dopamine. Emerging research highlights the strong influence subcortical dopamine has on a range of cognitive domains, including attention, reward learning, goal-directed action and decision-making. Nonetheless, the precise role of the associative striatum in the cognitive impairments observed in schizophrenia remains poorly understood, presenting an opportunity to revisit its contribution to schizophrenia. Without a better understanding of the mechanisms underlying cognitive dysfunction, treatment development remains at a standstill. For this reason, improved preclinical animal models are needed if we are to understand the complex relationship between subcortical dopamine and cognition. A range of new techniques are facillitating the discrete manipulation of dopaminergic neurotransmission and measurements of cognitive performance, which can be investigated using a variety of sensitive translatable tasks. This has the potential to aid the successful incorporation of recent clinical research to address the lack of treatment strategies for cognitive symptoms in schizophrenia. This review will give an overview on the current state of research focused on subcortical dopamine and cognition in the context of schizophrenia research. We also discuss future strategies and approaches aimed at improving the translational outcomes for the treatment of cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Kyna-Anne Conn
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Thomas H J Burne
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.,Queensland Centre for Mental Health Research, Wacol, QLD, Australia
| | - James P Kesby
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.,QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| |
Collapse
|
37
|
Sala-Bayo J, Fiddian L, Nilsson SRO, Hervig ME, McKenzie C, Mareschi A, Boulos M, Zhukovsky P, Nicholson J, Dalley JW, Alsiö J, Robbins TW. Dorsal and ventral striatal dopamine D1 and D2 receptors differentially modulate distinct phases of serial visual reversal learning. Neuropsychopharmacology 2020; 45:736-744. [PMID: 31940660 PMCID: PMC7075980 DOI: 10.1038/s41386-020-0612-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/22/2019] [Accepted: 12/16/2019] [Indexed: 11/08/2022]
Abstract
Impaired cognitive flexibility in visual reversal-learning tasks has been observed in a wide range of neurological and neuropsychiatric disorders. Although both human and animal studies have implicated striatal D2-like and D1-like receptors (D2R; D1R) in this form of flexibility, less is known about the contribution they make within distinct sub-regions of the striatum and the different phases of visual reversal learning. The present study investigated the involvement of D2R and D1R during the early (perseverative) phase of reversal learning as well as in the intermediate and late stages (new learning) after microinfusions of D2R and D1R antagonists into the nucleus accumbens core and shell (NAcC; NAcS), the anterior and posterior dorsomedial striatum (DMS) and the dorsolateral striatum (DLS) on a touchscreen visual serial reversal-learning task. Reversal learning was improved after dopamine receptor blockade in the nucleus accumbens; the D1R antagonist, SCH23390, in the NAcS and the D2R antagonist, raclopride, in the NAcC selectively reduced early, perseverative errors. In contrast, reversal learning was impaired by D2R antagonism, but not D1R antagonism, in the dorsal striatum: raclopride increased errors in the intermediate phase after DMS infusions, and increased errors across phases after DLS infusions. These findings indicate that D1R and D2R modulate different stages of reversal learning through effects localised to different sub-regions of the striatum. Thus, deficits in behavioral flexibility observed in disorders linked to dopamine perturbations may be attributable to specific D1R and D2R dysfunction in distinct striatal sub-regions.
Collapse
Affiliation(s)
- Júlia Sala-Bayo
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 2EB, UK
| | - Leanne Fiddian
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 2EB, UK
| | - Simon R O Nilsson
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 2EB, UK
| | - Mona E Hervig
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 2EB, UK
| | - Colin McKenzie
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 2EB, UK
| | - Alexis Mareschi
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 2EB, UK
| | - Maria Boulos
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 2EB, UK
| | - Peter Zhukovsky
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 2EB, UK
| | - Janet Nicholson
- Boehringer Ingelheim Pharma GmbH & Co. KG, Div. Research Germany, Biberach an der Riß, Germany
| | - Jeffrey W Dalley
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 2EB, UK
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 2QQ, UK
| | - Johan Alsiö
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 2EB, UK
| | - Trevor W Robbins
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 2EB, UK.
| |
Collapse
|
38
|
Groman SM. The Neurobiology of Impulsive Decision-Making and Reinforcement Learning in Nonhuman Animals. Curr Top Behav Neurosci 2020; 47:23-52. [PMID: 32157666 DOI: 10.1007/7854_2020_127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Impulsive decisions are those that favor immediate over delayed rewards, involve the acceptance of undue risk or uncertainty, or fail to adapt to environmental changes. Pathological levels of impulsive decision-making have been observed in individuals with mental illness, but there may be substantial heterogeneity in the processes that drive impulsive choices. Understanding this behavioral heterogeneity may be critical for understanding associated diverseness in the neural mechanisms that give rise to impulsivity. The application of reinforcement learning algorithms in the deconstruction of impulsive decision-making phenotypes can help bridge the gap between biology and behavior and provide insights into the biobehavioral heterogeneity of impulsive choice. This chapter will review the literature on the neurobiological mechanisms of impulsive decision-making in nonhuman animals; specifically, the role of the amine neuromodulatory systems (dopamine, serotonin, norepinephrine, and acetylcholine) in impulsive decision-making and reinforcement learning processes is discussed. Ultimately, the integration of reinforcement learning algorithms with sophisticated behavioral and neuroscience techniques may be critical for advancing the understanding of the neurochemical basis of impulsive decision-making.
Collapse
|
39
|
Verharen JPH, Adan RAH, Vanderschuren LJMJ. Differential contributions of striatal dopamine D1 and D2 receptors to component processes of value-based decision making. Neuropsychopharmacology 2019; 44:2195-2204. [PMID: 31254972 PMCID: PMC6897916 DOI: 10.1038/s41386-019-0454-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 01/26/2023]
Abstract
Dopamine has been implicated in value-based learning and decision making by signaling reward prediction errors and facilitating cognitive flexibility, incentive motivation, and voluntary movement. Dopamine receptors can roughly be divided into the D1 and D2 subtypes, and it has been hypothesized that these two types of receptors have an opposite function in facilitating reward-related and aversion-related behaviors, respectively. Here, we tested the contribution of striatal dopamine D1 and D2 receptors to processes underlying value-based learning and decision making in rats, employing a probabilistic reversal learning paradigm. Using computational trial-by-trial analysis of task behavior after systemic or intracranial treatment with dopamine D1 and D2 receptor agonists and antagonists, we show that negative feedback learning can be modulated through D2 receptor signaling and positive feedback learning through D1 receptor signaling in the ventral striatum. Furthermore, stimulation of D2 receptors in the ventral or dorsolateral (but not dorsomedial) striatum promoted explorative choice behavior, suggesting an additional function of dopamine in these areas in value-based decision making. Finally, treatment with most dopaminergic drugs affected response latencies and number of trials completed, which was also seen after infusion of D2, but not D1 receptor-acting drugs into the striatum. Together, our data support the idea that dopamine D1 and D2 receptors have complementary functions in learning on the basis of emotionally valenced feedback, and provide evidence that dopamine facilitates value-based and motivated behaviors through distinct striatal regions.
Collapse
Affiliation(s)
- Jeroen P. H. Verharen
- 0000000090126352grid.7692.aDepartment of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands ,0000000120346234grid.5477.1Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands
| | - Roger A. H. Adan
- 0000000090126352grid.7692.aDepartment of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Louk J. M. J. Vanderschuren
- 0000000120346234grid.5477.1Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands
| |
Collapse
|
40
|
Zhukovsky P, Puaud M, Jupp B, Sala-Bayo J, Alsiö J, Xia J, Searle L, Morris Z, Sabir A, Giuliano C, Everitt BJ, Belin D, Robbins TW, Dalley JW. Withdrawal from escalated cocaine self-administration impairs reversal learning by disrupting the effects of negative feedback on reward exploitation: a behavioral and computational analysis. Neuropsychopharmacology 2019; 44:2163-2173. [PMID: 30952156 PMCID: PMC6895115 DOI: 10.1038/s41386-019-0381-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/16/2019] [Accepted: 03/25/2019] [Indexed: 11/11/2022]
Abstract
Addiction is regarded as a disorder of inflexible choice with behavior dominated by immediate positive rewards over longer-term negative outcomes. However, the psychological mechanisms underlying the effects of self-administered drugs on behavioral flexibility are not well understood. To investigate whether drug exposure causes asymmetric effects on positive and negative outcomes we used a reversal learning procedure to assess how reward contingencies are utilized to guide behavior in rats previously exposed to intravenous cocaine self-administration (SA). Twenty-four rats were screened for anxiety in an open field prior to acquisition of cocaine SA over six daily sessions with subsequent long-access cocaine SA for 7 days. Control rats (n = 24) were trained to lever-press for food under a yoked schedule of reinforcement. Higher rates of cocaine SA were predicted by increased anxiety and preceded impaired reversal learning, expressed by a decrease in lose-shift as opposed to win-stay probability. A model-free reinforcement learning algorithm revealed that rats with high, but not low cocaine escalation failed to exploit previous reward learning and were more likely to repeat the same response as the previous trial. Eight-day withdrawal from high cocaine escalation was associated, respectively, with increased and decreased dopamine receptor D2 (DRD2) and serotonin receptor 2C (HTR2C) expression in the ventral striatum compared with controls. Dopamine receptor D1 (DRD1) expression was also significantly reduced in the orbitofrontal cortex of high cocaine-escalating rats. These findings indicate that withdrawal from escalated cocaine SA disrupts how negative feedback is used to guide goal-directed behavior for natural reinforcers and that trait anxiety may be a latent variable underlying this interaction.
Collapse
Affiliation(s)
- Peter Zhukovsky
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Mickael Puaud
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Bianca Jupp
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Júlia Sala-Bayo
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Johan Alsiö
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Jing Xia
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Lydia Searle
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Zoe Morris
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Aryan Sabir
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Chiara Giuliano
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Barry J Everitt
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - David Belin
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Jeffrey W Dalley
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 2QQ, UK.
| |
Collapse
|
41
|
Sex Differences in Cognitive Flexibility and Resting Brain Networks in Middle-Aged Marmosets. eNeuro 2019; 6:ENEURO.0154-19.2019. [PMID: 31262949 PMCID: PMC6658914 DOI: 10.1523/eneuro.0154-19.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/29/2019] [Accepted: 06/18/2019] [Indexed: 12/25/2022] Open
Abstract
Sex differences in human cognitive performance are well characterized. However, the neural correlates of these differences remain elusive. This issue may be clarified using nonhuman primates, for which sociocultural influences are minimized. We used the marmoset (Callithrix jacchus) to investigate sex differences in two aspects of executive function: reversal learning and intradimensional/extradimensional (ID/ED) set shifting. Stress reactivity and motor function were also assessed. In agreement with human literature, females needed more trials than males to acquire the reversals. No sex differences in ED set shifting or motivational measures were observed. The findings suggest enhanced habit formation in females, perhaps due to striatal estrogenic effects. Both sexes showed increased urinary cortisol during social separation stressor, but females showed an earlier increase in cortisol and a greater increase in agitated locomotion, possibly indicating enhanced stress reactivity. Independent of sex, basal cortisol predicted cognitive performance. No sex differences were found in motor performance. Associations between brain networks and reversal learning performance were investigated using resting state fMRI. Resting state functional connectivity (rsFC) analyses revealed sex differences in cognitive networks, with differences in overall neural network metrics and specific regions, including the prefrontal cortex, caudate, putamen, and nucleus accumbens. Correlations between cognitive flexibility and neural connectivity indicate that sex differences in cognitive flexibility are related to sex-dependent patterns of resting brain networks. Overall, our findings reveal sex differences in reversal learning, brain networks, and their relationship in the marmoset, positioning this species as an excellent model to investigate the biological basis of cognitive sex differences.
Collapse
|
42
|
Donegan JJ, Boley AM, Yamaguchi J, Toney GM, Lodge DJ. Modulation of extrasynaptic GABA A alpha 5 receptors in the ventral hippocampus normalizes physiological and behavioral deficits in a circuit specific manner. Nat Commun 2019; 10:2819. [PMID: 31249307 PMCID: PMC6597724 DOI: 10.1038/s41467-019-10800-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 05/29/2019] [Indexed: 12/27/2022] Open
Abstract
Hippocampal hyperactivity is correlated with psychosis in schizophrenia patients and likely attributable to deficits in GABAergic signaling. Here we attempt to reverse this deficit by overexpression of the α5-GABAA receptor within the ventral hippocampus (vHipp). Indeed, this is sufficient to normalize vHipp activity and downstream alterations in dopamine neuron function in the MAM rodent model. This approach also attenuated behavioral deficits in cognitive flexibility. To understand the specific pathways that mediate these effects, we used chemogenetics to manipulate discrete projections from the vHipp to the nucleus accumbens (NAc) or prefrontal cortex (mPFC). We found that inhibition of the vHipp-NAc, but not the vHipp-mPFC pathway, normalized aberrant dopamine neuron activity. Conversely, inhibition of the vHipp-mPFC improved cognitive function. Taken together, these results demonstrate that restoring GABAergic signaling in the vHipp improves schizophrenia-like deficits and that distinct behavioral alterations are mediated by discrete projections from the vHipp to the NAc and mPFC.
Collapse
Affiliation(s)
- J J Donegan
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
| | - A M Boley
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - J Yamaguchi
- Department of Cellular and Integrative Physiology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - G M Toney
- Department of Cellular and Integrative Physiology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - D J Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| |
Collapse
|
43
|
Boomhower SR, Newland MC. d-Amphetamine and methylmercury exposure during adolescence alters sensitivity to monoamine uptake inhibitors in adult mice. Neurotoxicology 2019; 72:61-73. [PMID: 30769003 PMCID: PMC6527454 DOI: 10.1016/j.neuro.2019.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/04/2019] [Accepted: 02/03/2019] [Indexed: 11/17/2022]
Abstract
Gestational exposure to methylmercury (MeHg), an environmental neurotoxicant, and adolescent administration of d-amphetamine (d-AMP) disrupt dopamine neurotransmission and alter voluntary behavior in adult rodents. We determined the impact of adolescent exposure to MeHg and d-AMP on monoamine neurotransmission in mice by assessing sensitivity to acute d-AMP, desipramine, and clomipramine, drugs that target dopamine, norepinephrine, and serotonin reuptake, respectively. Male C57Bl/6n mice were given 0 (control) or 3 ppm MeHg via drinking water from postnatal day 21 to 60 (murine adolescence). Within each group, mice were given once-daily injections of d-AMP or saline (i.p.) from postnatal day 28 to 42. This exposure regimen produced four treatment groups (n = 10-12/group): control, d-AMP, MeHg, and d-AMP + MeHg. As adults, the mice lever pressed under fixed-ratio schedules of reinforcement (FR 1, 5, 15, 30, 60, and 120). Acute i.p. injections of d-AMP (.3-1.7 mg/kg), desipramine (5.6-30 mg/kg), and clomipramine (5.6-30 mg/kg) were administered in adulthood after a stable behavioral baseline was established. Adolescent MeHg exposure increased saturation rate and minimum response time, an effect that was mitigated by chronic administration of d-AMP in adolescence. In unexposed mice, the three monoamine reuptake inhibitors had separable behavioral effects. Adolescent d-AMP increased sensitivity to acute d-AMP, desipramine, and clomipramine. Adolescent MeHg exposure alone did not alter drug sensitivity. Combined adolescent d-AMP + MeHg exposure enhanced sensitivity to acute d-AMP's and desipramine's effects on minimum response time. Adolescence is a vulnerable developmental period during which exposure to chemicals can have lasting effects on monoamine function and behavior.
Collapse
Affiliation(s)
- Steven R Boomhower
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Bldg 1, Boston, MA, United States.
| | | |
Collapse
|
44
|
Robbins TW, Vaghi MM, Banca P. Obsessive-Compulsive Disorder: Puzzles and Prospects. Neuron 2019; 102:27-47. [PMID: 30946823 DOI: 10.1016/j.neuron.2019.01.046] [Citation(s) in RCA: 268] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/11/2019] [Accepted: 01/18/2019] [Indexed: 02/02/2023]
Abstract
Obsessive-compulsive disorder is a severe and disabling psychiatric disorder that presents several challenges for neuroscience. Recent advances in its genetic and developmental causation, as well as its neuropsychological basis, are reviewed. Hypotheses concerning an imbalance between goal-directed and habitual behavior together with neural correlates in cortico-striatal circuitry are evaluated and contrasted with metacognitive theories. Treatments for obsessive-compulsive disorder (OCD) tend to be of mixed efficacy but include psychological, pharmacological, and surgical approaches, the underlying mechanisms of which are still under debate. Overall, the prospects for new animal models and an integrated understanding of the pathophysiology of OCD are considered in the context of dimensional psychiatry.
Collapse
Affiliation(s)
- Trevor W Robbins
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK.
| | - Matilde M Vaghi
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK.
| | - Paula Banca
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK.
| |
Collapse
|
45
|
Bonnavion P, Fernández EP, Varin C, de Kerchove d’Exaerde A. It takes two to tango: Dorsal direct and indirect pathways orchestration of motor learning and behavioral flexibility. Neurochem Int 2019; 124:200-214. [DOI: 10.1016/j.neuint.2019.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/12/2018] [Accepted: 01/08/2019] [Indexed: 12/27/2022]
|
46
|
Radke AK, Zweifel LS, Holmes A. NMDA receptor deletion on dopamine neurons disrupts visual discrimination and reversal learning. Neurosci Lett 2019; 699:109-114. [PMID: 30726715 DOI: 10.1016/j.neulet.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 10/27/2022]
Abstract
The dopamine (DA) system is critical for various forms of learning about salient environmental stimuli. Prior work has shown that deletion of the obligatory NR1 subunit of the N-methyl-D-aspartate (NMDA) receptor on neurons expressing the DA transporter (DAT) in mice results in reduced phasic release from DA-containing neurons. To further investigate the contribution of phasic DA release to reward-related learning and cognitive flexibility, the current study evaluated DAT-NR1 null mutant mice in a touchscreen-based pairwise visual discrimination and reversal learning paradigm. Results showed that these mutants were slower to attain a high level of choice accuracy on the discrimination task, but showed improved late reversal performance on sessions where correct choice was above chance. A number of possible interpretations are offered for this pattern of effects, including the opposing possibilities that discrimination memory was either stronger by the completion of training (overtraining effect) or weaker (learning deficit), both of which could potentially produce faster reversal. These data add to the extensive literature ascribing a critical role for DAergic neurotransmission in cognitive functions and the regulation of reward-related behaviors of relevance to addictions.
Collapse
Affiliation(s)
- Anna K Radke
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA.
| | - Larry S Zweifel
- Departments of Psychiatry and Behavioral Science & Pharmacology, University of Washington, Seattle, WA, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
47
|
Banks ML. Impaired cognitive behavioral flexibility following methamphetamine or high caloric diet consumption: a common 5-HT 2C mechanism? Neuropsychopharmacology 2019; 44:461-462. [PMID: 30644441 PMCID: PMC6333789 DOI: 10.1038/s41386-018-0243-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Matthew L. Banks
- 0000 0004 0458 8737grid.224260.0Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA USA
| |
Collapse
|
48
|
D2 receptors and cognitive flexibility in marmosets: tri-phasic dose-response effects of intra-striatal quinpirole on serial reversal performance. Neuropsychopharmacology 2019; 44:564-571. [PMID: 30487652 PMCID: PMC6333796 DOI: 10.1038/s41386-018-0272-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/30/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022]
Abstract
Behavioral flexibility, which allows organisms to adapt their actions in response to environmental changes, is impaired in a number of neuropsychiatric conditions, including obsessive-compulsive disorder and addiction. Studies in human subjects and monkeys have reported correlations between individual differences in dopamine D2-type receptor (D2R) levels in the caudate nucleus and performance in a discrimination reversal task, in which established contingent relationships between abstract stimuli and rewards (or punishments) are reversed. Global genetic deletion of the D2R in mice disrupts reversal performance, indicating a likely causal role for this receptor in supporting flexible behaviors. To directly examine the specific role of caudate D2-type receptors in reversal performance, the D2/3/4R agonist quinpirole was infused via chronic indwelling cannulae into the medial caudate of male and female marmoset monkeys performing a touchscreen-based serial discrimination reversal task. Given prior evidence for dose-dependent effects of quinpirole and other dopaminergic drugs, a full dose-response curve was established. Individually, marmosets displayed marked differences in behavioral sensitivity to specific doses of intra-caudate quinpirole. Collectively, they exhibited a behaviorally specific bi-phasic deficit in reversal learning, being consistently impaired at both relatively low and high doses of quinpirole. However, intermediate doses of intra-caudate quinpirole produced significant improvement in reversal performance. These data support previous human and monkey neuroimaging studies by providing causal evidence of a U-shaped function describing how dopamine modulates cognitive flexibility in the primate striatum.
Collapse
|
49
|
Jackson SAW, Horst NK, Axelsson SFA, Horiguchi N, Cockcroft GJ, Robbins TW, Roberts AC. Selective Role of the Putamen in Serial Reversal Learning in the Marmoset. Cereb Cortex 2019; 29:447-460. [PMID: 30395188 PMCID: PMC6294407 DOI: 10.1093/cercor/bhy276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/12/2018] [Indexed: 11/29/2022] Open
Abstract
Fronto-striatal circuitry involving the orbitofrontal cortex has been identified as mediating successful reversal of stimulus-outcome contingencies. The region of the striatum that most contributes to reversal learning remains unclear, with studies in primates implicating both caudate nucleus and putamen. We trained four marmosets on a touchscreen-based serial reversal task and implanted each with cannulae targeting both putamen and caudate bilaterally. This allowed reversible inactivation of the two areas within the same monkeys, but across separate sessions, to directly investigate their respective contributions to reversal performance. Behavioral sensitivity to the GABAA agonist muscimol varied across subjects and between brain regions, so each marmoset received a range of doses. Intermediate doses of intra-putamen muscimol selectively impaired reversal performance, leaving the baseline discrimination phase unchanged. There was no effect of low doses and high doses were generally disruptive. By contrast, low doses of intra-caudate muscimol improved reversal performance, while high doses impaired both reversal and baseline discrimination performance. These data provide evidence for a specific role of the putamen in serial reversal learning, which may reflect the more habitual nature of repeated reversals using the same stimulus pair.
Collapse
Affiliation(s)
- Stacey A W Jackson
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, UK
| | - Nicole K Horst
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, UK
| | - Sebastian F A Axelsson
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, UK
| | - Naotaka Horiguchi
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, UK
| | - Gemma J Cockcroft
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, UK
| | - Angela C Roberts
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK
| |
Collapse
|
50
|
Girotti M, Adler SM, Bulin SE, Fucich EA, Paredes D, Morilak DA. Prefrontal cortex executive processes affected by stress in health and disease. Prog Neuropsychopharmacol Biol Psychiatry 2018; 85:161-179. [PMID: 28690203 PMCID: PMC5756532 DOI: 10.1016/j.pnpbp.2017.07.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/01/2017] [Accepted: 07/05/2017] [Indexed: 11/23/2022]
Abstract
Prefrontal cortical executive functions comprise a number of cognitive capabilities necessary for goal directed behavior and adaptation to a changing environment. Executive dysfunction that leads to maladaptive behavior and is a symptom of psychiatric pathology can be instigated or exacerbated by stress. In this review we survey research addressing the impact of stress on executive function, with specific focus on working memory, attention, response inhibition, and cognitive flexibility. We then consider the neurochemical pathways underlying these cognitive capabilities and, where known, how stress alters them. Finally, we review work exploring potential pharmacological and non-pharmacological approaches that can ameliorate deficits in executive function. Both preclinical and clinical literature indicates that chronic stress negatively affects executive function. Although some of the circuitry and neurochemical processes underlying executive function have been characterized, a great deal is still unknown regarding how stress affects these processes. Additional work focusing on this question is needed in order to make progress on developing interventions that ameliorate executive dysfunction.
Collapse
Affiliation(s)
- Milena Girotti
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA.
| | - Samantha M Adler
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Sarah E Bulin
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Elizabeth A Fucich
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Denisse Paredes
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - David A Morilak
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| |
Collapse
|