1
|
Valladão SC, França AP, Pandolfo P, Dos Santos-Rodrigues A. Adenosinergic system and nucleoside transporters in attention deficit hyperactivity disorder: Current findings. Neurosci Biobehav Rev 2024; 164:105771. [PMID: 38880409 DOI: 10.1016/j.neubiorev.2024.105771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder with high heterogeneity that can affect individuals of any age. It is characterized by three main symptoms: inattention, hyperactivity, and impulsivity. These neurobehavioral alterations and neurochemical and pharmacological findings are mainly attributed to unbalanced catecholaminergic signaling, especially involving dopaminergic pathways within prefrontal and striatal areas. Dopamine receptors and transporters are not solely implicated in this imbalance, as evidence indicates that the dopaminergic signaling is modulated by adenosine activity. To this extent, alterations in adenosinergic signaling are probably involved in ADHD. Here, we review the current knowledge about adenosine's role in the modulation of chemical, behavioral and cognitive parameters of ADHD, especially regarding dopaminergic signaling. Current literature usually links adenosine receptors signaling to the dopaminergic imbalance found in ADHD, but there is evidence that equilibrative nucleoside transporters (ENTs) could also be implicated as players in dopaminergic signaling alterations seen in ADHD, since their involvement in other neurobehavioral impairments.
Collapse
Affiliation(s)
- Sofia Corrêa Valladão
- Graduate Program of Neurosciences and Department of Neurobiology, Institute of Biology, Universidade Federal Fluminense, Niterói, Brazil; Graduate Program of Physiology and Pharmacology, Biomedical Institute, Universidade Federal Fluminense, Niterói, Brazil.
| | - Angela Patricia França
- Graduate Program in Neuroscience, Centre of Biological Sciences, Federal University of Santa Catarina (UFSC), Brazil; Graduate Program in Medical Sciences, Centre of Health Sciences, Federal University of Santa Catarina, Brazil.
| | - Pablo Pandolfo
- Graduate Program of Neurosciences and Department of Neurobiology, Institute of Biology, Universidade Federal Fluminense, Niterói, Brazil; Graduate Program of Physiology and Pharmacology, Biomedical Institute, Universidade Federal Fluminense, Niterói, Brazil.
| | - Alexandre Dos Santos-Rodrigues
- Graduate Program of Neurosciences and Department of Neurobiology, Institute of Biology, Universidade Federal Fluminense, Niterói, Brazil.
| |
Collapse
|
2
|
Mayer FP, Stewart A, Varman DR, Moritz AE, Foster JD, Owens AW, Areal LB, Gowrishankar R, Velez M, Wickham K, Phelps H, Katamish R, Rabil M, Jayanthi LD, Vaughan RA, Daws LC, Blakely RD, Ramamoorthy S. Kappa Opioid Receptor Antagonism Restores Phosphorylation, Trafficking and Behavior induced by a Disease Associated Dopamine Transporter Variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.03.539310. [PMID: 37205452 PMCID: PMC10187322 DOI: 10.1101/2023.05.03.539310] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Aberrant dopamine (DA) signaling is implicated in schizophrenia, bipolar disorder (BPD), autism spectrum disorder (ASD), substance use disorder, and attention-deficit/hyperactivity disorder (ADHD). Treatment of these disorders remains inadequate, as exemplified by the therapeutic use of d-amphetamine and methylphenidate for the treatment of ADHD, agents with high abuse liability. In search for an improved and non-addictive therapeutic approach for the treatment of DA-linked disorders, we utilized a preclinical mouse model expressing the human DA transporter (DAT) coding variant DAT Val559, previously identified in individuals with ADHD, ASD, or BPD. DAT Val559, like several other disease-associated variants of DAT, exhibits anomalous DA efflux (ADE) that can be blocked by d-amphetamine and methylphenidate. Kappa opioid receptors (KORs) are expressed by DA neurons and modulate DA release and clearance, suggesting that targeting KORs might also provide an alternative approach to normalizing DA-signaling disrupted by perturbed DAT function. Here we demonstrate that KOR stimulation leads to enhanced surface trafficking and phosphorylation of Thr53 in wildtype DAT, effects achieved constitutively by the Val559 mutant. Moreover, these effects can be rescued by KOR antagonism of DAT Val559 in ex vivo preparations. Importantly, KOR antagonism also corrected in vivo DA release as well as sex-dependent behavioral abnormalities observed in DAT Val559 mice. Given their low abuse liability, our studies with a construct valid model of human DA associated disorders reinforce considerations of KOR antagonism as a pharmacological strategy to treat DA associated brain disorders.
Collapse
Affiliation(s)
- Felix P. Mayer
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Adele Stewart
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Durairaj Ragu Varman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Amy E. Moritz
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - James D. Foster
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Anthony W. Owens
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, TX, USA
| | - Lorena B. Areal
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Raajaram Gowrishankar
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Michelle Velez
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Kyria Wickham
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Hannah Phelps
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Rania Katamish
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Maximilian Rabil
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Lankupalle D. Jayanthi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Roxanne A. Vaughan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Lynette C. Daws
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Randy D. Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Sammanda Ramamoorthy
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
3
|
Zhang AQ, Ralph MR, Stinchcombe AR. A mathematical model for the role of dopamine-D2 self-regulation in the production of ultradian rhythms. PLoS Comput Biol 2024; 20:e1012082. [PMID: 38701077 PMCID: PMC11095719 DOI: 10.1371/journal.pcbi.1012082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/15/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
Many self-motivated and goal-directed behaviours display highly flexible, approximately 4 hour ultradian (shorter than a day) oscillations. Despite lacking direct correspondence to physical cycles in the environment, these ultradian rhythms may be involved in optimizing functional interactions with the environment and reflect intrinsic neural dynamics. Current evidence supports a role of mesostriatal dopamine (DA) in the expression and propagation of ultradian rhythmicity, however, the biochemical processes underpinning these oscillations remain to be identified. Here, we use a mathematical model to investigate D2 autoreceptor-dependent DA self-regulation as the source of ultradian behavioural rhythms. DA concentration at the midbrain-striatal synapses is governed through a dual-negative feedback-loop structure, which naturally gives rise to rhythmicity. This model shows the propensity of striatal DA to produce an ultradian oscillation characterized by a flexible period that is highly sensitive to parameter variations. Circadian (approximately 24 hour) regulation consolidates the ultradian oscillations and alters their response to the phase-dependent, rapid-resetting effect of a transient excitatory stimulus. Within a circadian framework, the ultradian rhythm orchestrates behavioural activity and enhances responsiveness to an external stimulus. This suggests a role for the circadian-ultradian timekeeping hierarchy in governing organized behaviour and shaping daily experience through coordinating the motivation to engage in recurring, albeit not highly predictable events, such as social interactions.
Collapse
Affiliation(s)
- An Qi Zhang
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Martin R. Ralph
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
4
|
Shetty M, Bolland DE, Morrell J, Grove BD, Foster JD, Vaughan RA. Dopamine transporter membrane mobility is bidirectionally regulated by phosphorylation and palmitoylation. Curr Res Physiol 2023; 6:100106. [PMID: 38107792 PMCID: PMC10724222 DOI: 10.1016/j.crphys.2023.100106] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/20/2023] [Indexed: 12/19/2023] Open
Abstract
The primary regulator of dopamine availability in the brain is the dopamine transporter (DAT), a plasma membrane protein that drives reuptake of released dopamine from the extracellular space into the presynaptic neuron. DAT activity is regulated by post-translational modifications that establish clearance capacity through impacts on transport kinetics, and dysregulation of these events may underlie dopaminergic imbalances in mood and psychiatric disorders. Here, using fluorescence recovery after photobleaching, we show that phosphorylation and palmitoylation induce opposing effects on DAT lateral membrane mobility, which may influence functional outcomes by regulating subcellular localization and binding partner interactions. Membrane mobility was also impacted by amphetamine and in polymorphic variant A559V in directions consistent with enhanced phosphorylation. These findings grow the list of DAT properties controlled by these post-translational modifications and highlight their role in establishment of dopaminergic tone in physiological and pathophysiological states.
Collapse
Affiliation(s)
- Madhur Shetty
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| | | | - Joshua Morrell
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| | - Bryon D. Grove
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| | - James D. Foster
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| | - Roxanne A. Vaughan
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| |
Collapse
|
5
|
Gungor Aydin A, Adiguzel E. The mesocortical dopaminergic system cannot explain hyperactivity in an animal model of attention deficit hyperactivity disorder (ADHD)- Spontaneously hypertensive rats (SHR). Lab Anim Res 2023; 39:20. [PMID: 37710339 PMCID: PMC10500870 DOI: 10.1186/s42826-023-00172-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Attention deficit hyperactivity disorder (ADHD) is one of the most prevalent neuropsychiatric disorders with morphological brain abnormalities. There is a growing body of evidence that abnormalities in the dopaminergic system may account for ADHD pathogenesis. However, it is not clear whether the dopaminergic system is hyper or hypoactive. To determine whether the DA neurons and/or axons deficiency might be the cause of the postulated dopaminergic hypofunction in spontaneously hypertensive rats (SHR, animal model of ADHD), this study examined the dopaminergic neurons and fibers in the brain tissues of SHRs and Wistar Kyoto rats (WKY, control animals). Here, we performed immunohistochemical tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH) staining on brain sections collected on juveniles from SHR and WKY. Moreover, behavioral testing to examine the hyperactivity in the open field area was also elucidated. RESULTS The mesocortical dopaminergic system appears to be normal in juvenile SHR, as suggested by (i) no alteration in the area density of TH-immunoreactive (TH-ir) dopaminergic neurons in the ventral tegmental area (VTA), (ii) no alterations in the volume density of TH-ir fibers in layer I of the prelimbic (PrL) subregion of medial PFC (mPFC), (iii) no alteration in the percentage of TH-ir dopaminergic fibers in layer I of the PrL subregion of mPFC as revealed by TH and/or DBH immunoreactivity. Furthermore, the SHR showed increased locomotor activity than WKY in the open field test. CONCLUSIONS The demonstration of no alteration in mesocortical dopaminergic neurons and fiber in SHR raises some concern about the position of SHR as an animal model of the inattentive subtype of ADHD. However, these results strengthen this strain as an animal model of hyperactive/impulsive subtype ADHD for future studies that may elucidate the underlying mechanism mediating hyperactivity and test various treatment strategies.
Collapse
Affiliation(s)
- Aysegul Gungor Aydin
- Department of Psychology, Rutgers University-New Brunswick, Piscataway, NJ, 08854, USA.
| | - Esat Adiguzel
- Department of Anatomy, Faculty of Medicine, Pamukkale University, 20070, Denizli, Turkey
- Department of Neuroscience, Institute of Health Sciences, Pamukkale University, 20070, Denizli, Turkey
| |
Collapse
|
6
|
Mercan Isik C, Uzun Cicek A, Altuntas EE, Bora A, Sari SA, Akkus S. The Effect of Methylphenidate Treatment on Olfactory Function in Children and Adolescents With ADHD. J Atten Disord 2023:10870547231171727. [PMID: 37148188 DOI: 10.1177/10870547231171727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
OBJECTIVE This study aimed to research whether there is an olfactory disorder in ADHD, and if so, what is the effect of methylphenidate on this condition. METHOD This is a cross-sectional study aiming to evaluate olfactory threshold, identification, discrimination and threshold, discrimination, and identification (TDI) scores in 109 children and adolescents, 33 of whom have ADHD without medication, 29 with ADHD with medication and 47 control groups. RESULT In the post hoc tests, the mean odor discrimination test, the mean odor identification test, and the mean TDI scores of the unmedicated ADHD group were significantly lower than those of the other two groups, and that the mean odor threshold test scores of the medicated ADHD group were significantly lower than those of the control and unmedicated groups. CONCLUSION Olfactory function could be a useful tool to monitor treatment effects and may be a promising candidate as a biomarker in ADHD.
Collapse
Affiliation(s)
- Cansu Mercan Isik
- Diyarbakir Gazi Yasargil Training and Research Hospital, Diyarbakir, Turkey
| | | | | | - Adem Bora
- Cumhuriyet University, Sivas, Turkey
| | | | | |
Collapse
|
7
|
Teaima MH, El-Nadi MT, Hamed RR, El-Nabarawi MA, Abdelmonem R. Lyophilized Nasal Inserts of Atomoxetine HCl Solid Lipid Nanoparticles for Brain Targeting as a Treatment of Attention-Deficit/Hyperactivity Disorder (ADHD): A Pharmacokinetics Study on Rats. Pharmaceuticals (Basel) 2023; 16:326. [PMID: 37259468 PMCID: PMC9958713 DOI: 10.3390/ph16020326] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 07/30/2023] Open
Abstract
The study aims to investigate the ability of lyophilized nasal inserts of nanosized atomoxetine HCl solid lipid nanoparticles (ATM-SLNs) to transport atomoxetine (ATM) directly to the brain and overcome the first-pass metabolism. In this case, 16 formulae of (ATM-SLNs) were prepared using hot melt emulsification, stirring and ultrasonication method technique. A full factorial design was established with 24 trials by optimization of four variables; lipid type (Compritol 888 ATO or stearic acid) (X1), lipid to drug ratio [(1:2) or (2:1)] (X2), span 60: Pluronic f127 ratio [(1:3) or (3:1)] (X3) and probe sonication time (five or ten minutes) (X4). The prepared SLNs were characterized for entrapment efficiency (EE%), in-vitro drug release after 30 min (Q30min), particle size (PS), zeta potential (ZP) and polydispersity index (PDI). Design Expert® software was used to select the optimum two formulae. The morphological examination for the optimum two formulae was carried out using a transmission electron microscope (TEM). Furthermore, eight lyophilized nasal inserts were prepared by using a 23 full factorial design by optimization of three variables: type of (ATM-SLNs) formula (X1), type of polymer (NOVEON AA1 or HPMC K100m) (X2) and concentration of polymer (X3). They were evaluated for nasal inserts' physicochemical properties. The two optimum inserts were selected by Design Expert® software. The two optimum insets with the highest desirability values were (S4 and S8). They were subjected to DSC thermal stability study and in-vivo study on rats. They were compared with atomoxetine oral solution, atomoxetine (3 mg/kg, intraperitoneal injection) and the pure atomoxetine solution loaded in lyophilized insert. (ATM-SLNs) showed EE% range of (41.14 mg ± 1.8% to 90.6 mg ± 2.8%), (Q30min%) of (27.11 ± 5.9% to 91.08 ± 0.15%), ZP of (-8.52 ± 0.75 to -28.4 ± 0.212% mV), PS of (320.9 ± 110.81% nm to 936.7 ± 229.6% nm) and PDI of (0.222 ± 0.132% to 0.658 ± 0.03%). Additionally, the two optimum (ATM-SLNs) formulae chosen, i.e., F7 and F9 showed spherical morphology. Nasal inserts had assay of drug content of (82.5 ± 2.5% to 103.94 ± 3.94%), Q15min% of (89.9 ± 6.4% to 100%) and Muco-adhesion strength of (3510.5 ± 140.21 to 9319.5 ± 39.425). DSC results of S4 and S8 showed compatibility of (ATM) with the other excipients. S8 and S4 also showed higher trans-nasal permeation to the brain with brain targeting efficiency of (211.3% and 177.42%, respectively) and drug transport percentages of (52.7% and 43.64%, respectively). To conclude, lyophilized nasal inserts of (ATM-SLNs) enhanced (ATM) trans-nasal drug targeting permeation and brain targeting efficiency.
Collapse
Affiliation(s)
- Mahmoud H. Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo P.O. Box 11562, Egypt
| | - Merhan Taha El-Nadi
- Department of Pharmaceutics, Egyptian Drug Authority (EDA), Giza P.O. Box 12511, Egypt
| | - Raghda Rabe Hamed
- Industrial Pharmacy Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Cairo P.O. Box 12566, Egypt
| | - Mohamed A. El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo P.O. Box 11562, Egypt
| | - Rehab Abdelmonem
- Industrial Pharmacy Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Cairo P.O. Box 12566, Egypt
| |
Collapse
|
8
|
Shekar A, Mabry SJ, Cheng MH, Aguilar JI, Patel S, Zanella D, Saleeby DP, Zhu Y, Romanazzi T, Ulery-Reynolds P, Bahar I, Carter AM, Matthies HJG, Galli A. Syntaxin 1 Ser 14 phosphorylation is required for nonvesicular dopamine release. SCIENCE ADVANCES 2023; 9:eadd8417. [PMID: 36630507 PMCID: PMC9833662 DOI: 10.1126/sciadv.add8417] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/14/2022] [Indexed: 05/30/2023]
Abstract
Amphetamine (AMPH) is a psychostimulant that is commonly abused. The stimulant properties of AMPH are associated with its ability to increase dopamine (DA) neurotransmission. This increase is promoted by nonvesicular DA release mediated by reversal of DA transporter (DAT) function. Syntaxin 1 (Stx1) is a SNARE protein that is phosphorylated at Ser14 by casein kinase II. We show that Stx1 phosphorylation is critical for AMPH-induced nonvesicular DA release and, in Drosophila melanogaster, regulates the expression of AMPH-induced preference and sexual motivation. Our molecular dynamics simulations of the DAT/Stx1 complex demonstrate that phosphorylation of these proteins is pivotal for DAT to dwell in a DA releasing state. This state is characterized by the breakdown of two key salt bridges within the DAT intracellular gate, causing the opening and hydration of the DAT intracellular vestibule, allowing DA to bind from the cytosol, a mechanism that we hypothesize underlies nonvesicular DA release.
Collapse
Affiliation(s)
- Aparna Shekar
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Samuel J. Mabry
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mary H. Cheng
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jenny I. Aguilar
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shalin Patel
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniele Zanella
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David P. Saleeby
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yanqi Zhu
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tiziana Romanazzi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | | | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Angela M. Carter
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Aurelio Galli
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
9
|
Kearney PJ, Bolden NC, Kahuno E, Conklin TL, Martin GE, Lubec G, Melikian HE. Presynaptic Gq-coupled receptors drive biphasic dopamine transporter trafficking that modulates dopamine clearance and motor function. J Biol Chem 2023; 299:102900. [PMID: 36640864 PMCID: PMC9943899 DOI: 10.1016/j.jbc.2023.102900] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Extracellular dopamine (DA) levels are constrained by the presynaptic DA transporter (DAT), a major psychostimulant target. Despite its necessity for DA neurotransmission, DAT regulation in situ is poorly understood, and it is unknown whether regulated DAT trafficking impacts dopaminergic signaling and/or behaviors. Leveraging chemogenetics and conditional gene silencing, we found that activating presynaptic Gq-coupled receptors, either hM3Dq or mGlu5, drove rapid biphasic DAT membrane trafficking in ex vivo striatal slices, with region-specific differences between ventral and dorsal striata. DAT insertion required D2 DA autoreceptors and intact retromer, whereas DAT retrieval required PKC activation and Rit2. Ex vivo voltammetric studies revealed that DAT trafficking impacts DA clearance. Furthermore, dopaminergic mGlu5 silencing elevated DAT surface expression and abolished motor learning, which was rescued by inhibiting DAT with a subthreshold CE-158 dose. We discovered that presynaptic DAT trafficking is complex, multimodal, and region specific, and for the first time, we identified cell autonomous mechanisms that govern presynaptic DAT tone. Importantly, the findings are consistent with a role for regulated DAT trafficking in DA clearance and motor function.
Collapse
Affiliation(s)
- Patrick J. Kearney
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, Massachusetts, USA,Morningside Graduate School of Biomedical Sciences, UMASS Chan Medical School, Worcester, Massachusetts, USA
| | - Nicholas C. Bolden
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, Massachusetts, USA,Morningside Graduate School of Biomedical Sciences, UMASS Chan Medical School, Worcester, Massachusetts, USA
| | - Elizabeth Kahuno
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, Massachusetts, USA
| | - Tucker L. Conklin
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, Massachusetts, USA
| | - Gilles E. Martin
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, Massachusetts, USA
| | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Private Medical University, Salzburg, Austria
| | - Haley E. Melikian
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, Massachusetts, USA,For correspondence: Haley E. Melikian
| |
Collapse
|
10
|
Stewart A, Mayer FP, Gowrishankar R, Davis GL, Areal LB, Gresch PJ, Katamish RM, Peart R, Stilley SE, Spiess K, Rabil MJ, Diljohn FA, Wiggins AE, Vaughan RA, Hahn MK, Blakely RD. Behaviorally penetrant, anomalous dopamine efflux exposes sex and circuit dependent regulation of dopamine transporters. Mol Psychiatry 2022; 27:4869-4880. [PMID: 36117213 DOI: 10.1038/s41380-022-01773-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 01/19/2023]
Abstract
Virtually all neuropsychiatric disorders display sex differences in prevalence, age of onset, and/or clinical symptomology. Although altered dopamine (DA) signaling is a feature of many of these disorders, sex-dependent mechanisms uniquely responsive to DA that drive sex-dependent behaviors remain unelucidated. Previously, we established that anomalous DA efflux (ADE) is a prominent feature of the DA transporter (DAT) variant Val559, a coding substitution identified in two male-biased disorders: attention-deficit/hyperactivity disorder and autism spectrum disorder. In vivo, Val559 ADE induces activation of nigrostriatal D2-type DA autoreceptors (D2ARs) that magnifies inappropriate, nonvesicular DA release by elevating phosphorylation and surface trafficking of ADE-prone DAT proteins. Here we demonstrate that DAT Val559 mice exhibit sex-dependent alterations in psychostimulant responses, social behavior, and cognitive performance. In a search for underlying mechanisms, we discovered that the ability of ADE to elicit D2AR regulation of DAT is both sex and circuit-dependent, with dorsal striatum D2AR/DAT coupling evident only in males, whereas D2AR/DAT coupling in the ventral striatum is exclusive to females. Moreover, systemic administration of the D2R antagonist sulpiride, which precludes ADE-driven DAT trafficking, can normalize DAT Val559 behavioral changes unique to each sex and without effects on the opposite sex or wildtype mice. Our studies support the sex- and circuit dependent capacity of D2ARs to regulate DAT as a critical determinant of the sex-biased effects of perturbed DA signaling in neurobehavioral disorders. Moreover, our work provides a cogent example of how a shared biological insult drives alternative physiological and behavioral trajectories as opposed to resilience.
Collapse
Affiliation(s)
- Adele Stewart
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA.,Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Felix P Mayer
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | | | - Gwynne L Davis
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | - Lorena B Areal
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | - Paul J Gresch
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA.,Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Rania M Katamish
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | - Rodeania Peart
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL, USA
| | - Samantha E Stilley
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | - Keeley Spiess
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | - Maximilian J Rabil
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | | | - Angelica E Wiggins
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA
| | - Roxanne A Vaughan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Maureen K Hahn
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA.,Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Randy D Blakely
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, USA. .,Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA.
| |
Collapse
|
11
|
Park JH. Potential Inflammatory Biomarker in Patients with Attention Deficit Hyperactivity Disorder. Int J Mol Sci 2022; 23:13054. [PMID: 36361835 PMCID: PMC9658646 DOI: 10.3390/ijms232113054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/24/2022] [Indexed: 11/26/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder that can diminish the quality of life of both children and adults in academic, occupational, and social contexts. The kynurenine pathway (KP) contains a set of enzymatic reactions involved in tryptophan (TRP) degradation. It is known to be associated with the risk of developing ADHD. This review will address the KP and underlying mechanism of inflammation in ADHD. Potential inflammatory biomarkers reported in the most recent studies are summarized. Although a strong neuroimmunological basis has been established due to the advances of recent neurobiological research, the pathophysiology of ADHD remains unclear.
Collapse
Affiliation(s)
- Ji Hyun Park
- College of Pharmacy, Duksung Women's University, Seoul 01369, Korea
| |
Collapse
|
12
|
Xu Y, Peng T, Xiang Y, Liao G, Zou F, Meng X. Neurotoxicity and gene expression alterations in zebrafish larvae in response to manganese exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153778. [PMID: 35150691 DOI: 10.1016/j.scitotenv.2022.153778] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Manganese (Mn) is an essential trace element, but excessive exposure can damage mental, cognitive, and motor functions. Although many studies have reported the toxicity of Mn, the underlying mechanism remains unclear. Here, wild-type and/or Tg(NBT:DsRed) zebrafish embryos/larvae were exposed to different dosages of Mn to determine the effects on mortality, malformation, and hatching rates. A video tracking system was used to analyze the locomotor activities of zebrafish larvae. The terminal deoxynucleotidyl transferase dUTP nick end labeling assay and acridine orange staining were performed to monitor cell apoptosis, while dopamine transporter and tyrosine hydroxylase (TH) expression were detected by immunohistochemical staining. Meanwhile, transcriptome sequencing of the head tissues of zebrafish larvae was performed to search for molecular targets of Mn neurotoxicity. The results showed that Mn exposure increased the mortality and malformation rates of zebrafish larvae, and significantly reduced swim distance and velocity. In addition, the proportion of apoptotic dopaminergic neurons increased, while TH expression significantly decreased. The results of transcriptome sequencing showed that a large number of differentially expressed genes associated with apoptosis and DNA damage repair were upregulated, consistent with the above results. Meanwhile, Western blot analysis showed that higher exposure level of Mn could induce activation of MAPK pathway. These data demonstrate that Mn exposure can damage dopaminergic neurons and cause apoptosis, which has detrimental effects on the motor abilities of zebrafish larvae.
Collapse
Affiliation(s)
- Yongjie Xu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Tao Peng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yang Xiang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Gengze Liao
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
13
|
Multimodal detection of dopamine by sniffer cells expressing genetically encoded fluorescent sensors. Commun Biol 2022; 5:578. [PMID: 35689020 PMCID: PMC9187629 DOI: 10.1038/s42003-022-03488-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/13/2022] [Indexed: 12/21/2022] Open
Abstract
Dopamine supports locomotor control and higher brain functions such as motivation and learning. Consistently, dopaminergic dysfunction is involved in a spectrum of neurological and neuropsychiatric diseases. Detailed data on dopamine dynamics is needed to understand how dopamine signals translate into cellular and behavioral responses, and to uncover pathological disturbances in dopamine-related diseases. Genetically encoded fluorescent dopamine sensors have recently enabled unprecedented monitoring of dopamine dynamics in vivo. However, these sensors' utility for in vitro and ex vivo assays remains unexplored. Here, we present a blueprint for making dopamine sniffer cells for multimodal dopamine detection. We generated sniffer cell lines with inducible expression of seven different dopamine sensors and perform a head-to-head comparison of sensor properties to guide users in sensor selection. In proof-of-principle experiments, we apply the sniffer cells to record endogenous dopamine release from cultured neurons and striatal slices, and for determining tissue dopamine content. Furthermore, we use the sniffer cells to measure dopamine uptake and release via the dopamine transporter as a radiotracer free, high-throughput alternative to electrochemical- and radiotracer-based assays. Importantly, the sniffer cell framework can readily be applied to the growing list of genetically encoded fluorescent neurotransmitter sensors.
Collapse
|
14
|
Nawaratne V, McLaughlin SP, Mayer FP, Gichi Z, Mastriano A, Carvelli L. Prolonged Amphetamine Exposures Increase the Endogenous Human Dopamine Receptors 2 at the Cellular Membrane in Cells Lacking the Dopamine Transporter. Front Cell Neurosci 2021; 15:681539. [PMID: 34512264 PMCID: PMC8427050 DOI: 10.3389/fncel.2021.681539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/03/2021] [Indexed: 11/30/2022] Open
Abstract
The dopamine 2 receptors (D2R) are G-protein coupled receptors expressed both in pre- and post-synaptic terminals that play an important role in mediating the physiological and behavioral effects of amphetamine (Amph). Previous studies have indicated that the effects of Amph at the D2R mainly rely on the ability of Amph to robustly increase extracellular dopamine through the dopamine transporter (DAT). This implies that the effects of Amph on D2R require the neurotransmitter dopamine. However, because of its lipophilic nature, Amph can cross the cellular membrane and thus potentially affect D2R expression independently of dopamine and DAT, e.g., in post-synaptic terminals. Here we used an in vitro system to study whether Amph affects total expression, cellular distribution, and function of the human D2R (hD2R), endogenously expressed in HEK293 cells. By performing Western blot experiments, we found that prolonged treatments with 1 or 50 μM Amph cause a significant decrease of the endogenous hD2R in cells transfected with human DAT (hDAT). On the other hand, in cells lacking expression of DAT, quantification of the hD2R-mediated changes in cAMP, biotinylation assays, Western blots and imaging experiments demonstrated an increase of hD2R at the cellular membrane after 15-h treatments with Amph. Moreover, imaging data suggested that barbadin, a specific inhibitor of the βarrestin-βadaptin interaction, blocked the Amph-induced increase of hD2R. Taken together our data suggest that prolonged exposures to Amph decrease or increase the endogenous hD2R at the cellular membrane in HEK293 cells expressing or lacking hDAT, respectively. Considering that this drug is often consumed for prolonged periods, during which tolerance develops, our data suggest that even in absence of DAT or dopamine, Amph can still alter D2R distribution and function.
Collapse
Affiliation(s)
- Vindhya Nawaratne
- Department of Biology, Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States
| | - Sean P. McLaughlin
- Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| | - Felix P. Mayer
- Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| | - Zayna Gichi
- Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| | - Alyssa Mastriano
- Department of Biology, Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States
| | - Lucia Carvelli
- Department of Biology, Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States
- Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| |
Collapse
|
15
|
Aguilar JI, Cheng MH, Font J, Schwartz AC, Ledwitch K, Duran A, Mabry SJ, Belovich AN, Zhu Y, Carter AM, Shi L, Kurian MA, Fenollar-Ferrer C, Meiler J, Ryan RM, Mchaourab HS, Bahar I, Matthies HJ, Galli A. Psychomotor impairments and therapeutic implications revealed by a mutation associated with infantile Parkinsonism-Dystonia. eLife 2021; 10:68039. [PMID: 34002696 PMCID: PMC8131106 DOI: 10.7554/elife.68039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/02/2021] [Indexed: 12/30/2022] Open
Abstract
Parkinson disease (PD) is a progressive, neurodegenerative disorder affecting over 6.1 million people worldwide. Although the cause of PD remains unclear, studies of highly penetrant mutations identified in early-onset familial parkinsonism have contributed to our understanding of the molecular mechanisms underlying disease pathology. Dopamine (DA) transporter (DAT) deficiency syndrome (DTDS) is a distinct type of infantile parkinsonism-dystonia that shares key clinical features with PD, including motor deficits (progressive bradykinesia, tremor, hypomimia) and altered DA neurotransmission. Here, we define structural, functional, and behavioral consequences of a Cys substitution at R445 in human DAT (hDAT R445C), identified in a patient with DTDS. We found that this R445 substitution disrupts a phylogenetically conserved intracellular (IC) network of interactions that compromise the hDAT IC gate. This is demonstrated by both Rosetta molecular modeling and fine-grained simulations using hDAT R445C, as well as EPR analysis and X-ray crystallography of the bacterial homolog leucine transporter. Notably, the disruption of this IC network of interactions supported a channel-like intermediate of hDAT and compromised hDAT function. We demonstrate that Drosophila melanogaster expressing hDAT R445C show impaired hDAT activity, which is associated with DA dysfunction in isolated brains and with abnormal behaviors monitored at high-speed time resolution. We show that hDAT R445C Drosophila exhibit motor deficits, lack of motor coordination (i.e. flight coordination) and phenotypic heterogeneity in these behaviors that is typically associated with DTDS and PD. These behaviors are linked with altered dopaminergic signaling stemming from loss of DA neurons and decreased DA availability. We rescued flight coordination with chloroquine, a lysosomal inhibitor that enhanced DAT expression in a heterologous expression system. Together, these studies shed some light on how a DTDS-linked DAT mutation underlies DA dysfunction and, possibly, clinical phenotypes shared by DTDS and PD.
Collapse
Affiliation(s)
- Jenny I Aguilar
- Department of Pharmacology, Vanderbilt University, Nashville, United States.,Department of Surgery, University of Alabama at Birmingham, Birmingham, United States
| | - Mary Hongying Cheng
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Josep Font
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Alexandra C Schwartz
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, United States
| | - Kaitlyn Ledwitch
- Center for Structural Biology, Vanderbilt University, Nashville, United States.,Department of Chemistry, Vanderbilt University, Nashville, United States
| | - Amanda Duran
- Center for Structural Biology, Vanderbilt University, Nashville, United States.,Department of Chemistry, Vanderbilt University, Nashville, United States
| | - Samuel J Mabry
- Department of Surgery, University of Alabama at Birmingham, Birmingham, United States
| | - Andrea N Belovich
- Department of Biomedical Sciences, Idaho College of Osteopathic Medicine, Meridian, United States
| | - Yanqi Zhu
- Department of Surgery, University of Alabama at Birmingham, Birmingham, United States
| | - Angela M Carter
- Department of Surgery, University of Alabama at Birmingham, Birmingham, United States
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, NIDA, NIH, Baltimore, United States
| | - Manju A Kurian
- Molecular Neurosciences, Developmental Neurosciences, University College London (UCL), London, United Kingdom
| | | | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, United States.,Department of Chemistry, Vanderbilt University, Nashville, United States.,Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - Renae Monique Ryan
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Hassane S Mchaourab
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, United States
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Heinrich Jg Matthies
- Department of Surgery, University of Alabama at Birmingham, Birmingham, United States
| | - Aurelio Galli
- Department of Surgery, University of Alabama at Birmingham, Birmingham, United States.,Center for Inter-systemic Networks and Enteric Medical Advances, University of Alabama at Birmingham, Birmingham, United States
| |
Collapse
|
16
|
Cao KX, Ma ML, Wang CZ, Iqbal J, Si JJ, Xue YX, Yang JL. TMS-EEG: An emerging tool to study the neurophysiologic biomarkers of psychiatric disorders. Neuropharmacology 2021; 197:108574. [PMID: 33894219 DOI: 10.1016/j.neuropharm.2021.108574] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/08/2021] [Accepted: 04/15/2021] [Indexed: 01/02/2023]
Abstract
The etiology of psychiatric disorders remains largely unknown. The exploration of the neurobiological mechanisms of mental illness helps improve diagnostic efficacy and develop new therapies. This review focuses on the application of concurrent transcranial magnetic stimulation and electroencephalography (TMS-EEG) in various mental diseases, including major depressive disorder, bipolar disorder, schizophrenia, autism spectrum disorder, attention-deficit/hyperactivity disorder, substance use disorder, and insomnia. First, we summarize the commonly used protocols and output measures of TMS-EEG; then, we review the literature exploring the alterations in neural patterns, particularly cortical excitability, plasticity, and connectivity alterations, and studies that predict treatment responses and clinical states in mental disorders using TMS-EEG. Finally, we discuss the potential mechanisms underlying TMS-EEG in establishing biomarkers for psychiatric disorders and future research directions.
Collapse
Affiliation(s)
- Ke-Xin Cao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Mao-Liang Ma
- Department of Clinical Psychology, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Cheng-Zhan Wang
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Javed Iqbal
- School of Psychology, Shaanxi Normal University and Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, China
| | - Ji-Jian Si
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China; Key Laboratory for Neuroscience of Ministry of Education and Neuroscience, National Health and Family Planning Commission, Peking University, Beijing, China.
| | - Jian-Li Yang
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
17
|
Rahi V, Kumar P. Animal models of attention-deficit hyperactivity disorder (ADHD). Int J Dev Neurosci 2021; 81:107-124. [PMID: 33428802 DOI: 10.1002/jdn.10089] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/14/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a heterogeneous neuropsychiatric disorder characterized by three primary symptoms hyperactivity, attention deficit, and impulsiveness, observed in both children and adults. In childhood, this disorder is more common in boys than in girls, and at least 75% will continue to suffer from the disorder until adulthood. Individuals with ADHD generally have poor academic, occupational, and social functioning resulting from developmentally inappropriate levels of hyperactivity and impulsivity, as well as impaired ability to maintain attention on motivationally relevant tasks. Very few drugs available in clinical practice altogether abolish the symptoms of ADHD, therefore, to find new drugs and target it is essential to understand the neuropathological, neurochemical, and genetic alterations that lead to the progression of ADHD. With this contrast, an animal study is the best approach because animal models provide relatively fast invasive manipulation, rigorous hypothesis testing, as well as it provides a better angle to understand the pathological mechanisms involved in disease progression. Moreover, animal models, especially for ADHD, serve with good predictive validity would allow the assessment and development of new therapeutic interventions, with this aim, the present review collect the various animal models on a single platform so that the research can select an appropriate model to pursue his study.
Collapse
Affiliation(s)
- Vikrant Rahi
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Puneet Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| |
Collapse
|
18
|
Schicker K, Bhat S, Farr C, Burtscher V, Horner A, Freissmuth M, Sandtner W. Descriptors of Secondary Active Transporter Function and How They Relate to Partial Reactions in the Transport Cycle. MEMBRANES 2021; 11:178. [PMID: 33802510 PMCID: PMC8001282 DOI: 10.3390/membranes11030178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/19/2022]
Abstract
Plasmalemmal solute carriers (SLCs) gauge and control solute abundance across cellular membranes. By virtue of this action, they play an important role in numerous physiological processes. Mutations in genes encoding the SLCs alter amino acid sequence that often leads to impaired protein function and onset of monogenic disorders. To understand how these altered proteins cause disease, it is necessary to undertake relevant functional assays. These experiments reveal descriptors of SLC function such as the maximal transport velocity (Vmax), the Michaelis constant for solute uptake (KM), potencies for inhibition of transporter function (IC50/EC50), and many more. In several instances, the mutated versions of different SLC transporters differ from their wild-type counterparts in the value of these descriptors. While determination of these experimental parameters can provide conjecture as to how the mutation gives rise to disease, they seldom provide any definitive insights on how a variant differ from the wild-type transporter in its operation. This is because the experimental determination of association between values of the descriptors and several partial reactions a transporter undergoes is casual, but not causal, at best. In the present study, we employ kinetic models that allow us to derive explicit mathematical terms and provide experimental descriptors as a function of the rate constants used to parameterize the kinetic model of the transport cycle. We show that it is possible to utilize these mathematical expressions to deduce, from experimental outcomes, how the mutation has impinged on partial reactions in the transport cycle.
Collapse
Affiliation(s)
- Klaus Schicker
- Center for Physiology and Pharmacology, Division of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Shreyas Bhat
- Center of Physiology and Pharmacology, Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Medical University of Vienna, 1090 Vienna, Austria; (S.B.); (C.F.); (V.B.); (M.F.)
| | - Clemens Farr
- Center of Physiology and Pharmacology, Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Medical University of Vienna, 1090 Vienna, Austria; (S.B.); (C.F.); (V.B.); (M.F.)
| | - Verena Burtscher
- Center of Physiology and Pharmacology, Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Medical University of Vienna, 1090 Vienna, Austria; (S.B.); (C.F.); (V.B.); (M.F.)
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, 4040 Linz, Austria;
| | - Michael Freissmuth
- Center of Physiology and Pharmacology, Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Medical University of Vienna, 1090 Vienna, Austria; (S.B.); (C.F.); (V.B.); (M.F.)
| | - Walter Sandtner
- Center of Physiology and Pharmacology, Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Medical University of Vienna, 1090 Vienna, Austria; (S.B.); (C.F.); (V.B.); (M.F.)
| |
Collapse
|
19
|
Chen R, Ferris MJ, Wang S. Dopamine D2 autoreceptor interactome: Targeting the receptor complex as a strategy for treatment of substance use disorder. Pharmacol Ther 2020; 213:107583. [PMID: 32473160 PMCID: PMC7434700 DOI: 10.1016/j.pharmthera.2020.107583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Dopamine D2 autoreceptors (D2ARs), located in somatodendritic and axon terminal compartments of dopamine (DA) neurons, function to provide a negative feedback regulatory control on DA neuron firing, DA synthesis, reuptake and release. Dysregulation of D2AR-mediated DA signaling is implicated in vulnerability to substance use disorder (SUD). Due to the extreme low abundance of D2ARs compared to postsynaptic D2 receptors (D2PRs) and the lack of experimental tools to differentiate the signaling of D2ARs from D2PRs, the regulation of D2ARs by drugs of abuse is poorly understood. The recent availability of conditional D2AR knockout mice and newly developed virus-mediated gene delivery approaches have provided means to specifically study the function of D2ARs at the molecular, cellular and behavioral levels. There is a growing revelation of novel mechanisms and new proteins that mediate D2AR activity, suggesting that D2ARs act cooperatively with an array of membrane and intracellular proteins to tightly control DA transmission. This review highlights D2AR-interacting partners including transporters, G-protein-coupled receptors, ion channels, intracellular signaling modulators, and protein kinases. The complexity of the D2AR interaction network illustrates the functional divergence of D2ARs. Pharmacological targeting of multiple D2AR-interacting partners may be more effective to restore disrupted DA homeostasis by drugs of abuse.
Collapse
Affiliation(s)
- Rong Chen
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America.
| | - Mark J Ferris
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| | - Shiyu Wang
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| |
Collapse
|
20
|
Kappaun K, Martinelli AHS, Broll V, Zambelli B, Lopes FC, Ligabue-Braun R, Fruttero LL, Moyetta NR, Bonan CD, Carlini CR, Ciurli S. Soyuretox, an Intrinsically Disordered Polypeptide Derived from Soybean (Glycine Max) Ubiquitous Urease with Potential Use as a Biopesticide. Int J Mol Sci 2019; 20:E5401. [PMID: 31671552 PMCID: PMC6862595 DOI: 10.3390/ijms20215401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023] Open
Abstract
Ureases from different biological sources display non-ureolytic properties that contribute to plant defense, in addition to their classical enzymatic urea hydrolysis. Antifungal and entomotoxic effects were demonstrated for Jaburetox, an intrinsically disordered polypeptide derived from jack bean (Canavalia ensiformis) urease. Here we describe the properties of Soyuretox, a polypeptide derived from soybean (Glycine max) ubiquitous urease. Soyuretox was fungitoxic to Candida albicans, leading to the production of reactive oxygen species. Soyuretox further induced aggregation of Rhodnius prolixus hemocytes, indicating an interference on the insect immune response. No relevant toxicity of Soyuretox to zebrafish larvae was observed. These data suggest the presence of antifungal and entomotoxic portions of the amino acid sequences encompassing both Soyuretox and Jaburetox, despite their small sequence identity. Nuclear Magnetic Resonance (NMR) and circular dichroism (CD) spectroscopic data revealed that Soyuretox, in analogy with Jaburetox, possesses an intrinsic and largely disordered nature. Some folding is observed upon interaction of Soyuretox with sodium dodecyl sulfate (SDS) micelles, taken here as models for membranes. This observation suggests the possibility for this protein to modify its secondary structure upon interaction with the cells of the affected organisms, leading to alterations of membrane integrity. Altogether, Soyuretox can be considered a promising biopesticide for use in plant protection.
Collapse
Affiliation(s)
- Karine Kappaun
- Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil.
| | - Anne H S Martinelli
- Department of Biophysics and Center of Biotechnology, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre 91501-970, RS, Brazil.
| | - Valquiria Broll
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre 91501-970, RS, Brazil.
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy.
| | - Barbara Zambelli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy.
| | - Fernanda C Lopes
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre 91501-970, RS, Brazil.
| | - Rodrigo Ligabue-Braun
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre 91501-970, RS, Brazil.
| | - Leonardo L Fruttero
- Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil.
- Department of Clinical Biochemistry, CIBICI-CONICET, Facultad de Ciencias Quimicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.
| | - Natalia R Moyetta
- Department of Clinical Biochemistry, CIBICI-CONICET, Facultad de Ciencias Quimicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.
| | - Carla D Bonan
- Department of Cellular and Molecular Biology, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 91501-970, RS, Brazil.
| | - Celia R Carlini
- Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil.
- Brain Institute-InsCer, Laboratory of Neurotoxins, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil.
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy.
| |
Collapse
|
21
|
Abstract
The human dopamine transporter gene SLC6A3 is involved in substance use disorders (SUDs) among many other common neuropsychiatric illnesses but allelic association results including those with its classic genetic markers 3'VNTR or Int8VNTR remain mixed and unexplainable. To better understand the genetics for reproducible association signals, we report the presence of recombination hotspots based on sequencing of the entire 5' promoter regions in two small SUDs cohorts, 30 African Americans (AAs) and 30 European Americans (EAs). Recombination rate was the highest near the transcription start site (TSS) in both cohorts. In addition, each cohort carried 57 different promoter haplotypes out of 60 and no haplotypes were shared between the two ethnicities. A quarter of the haplotypes evolved in an ethnicity-specific manner. Finally, analysis of five hundred subjects of European ancestry, from the 1000 Genome Project, confirmed the promoter recombination hotspots and also revealed several additional ones in non-coding regions only. These findings provide an explanation for the mixed results as well as guidance for selection of effective markers to be used in next generation association validation (NGAV), facilitating the delineation of pathogenic variation in this critical neuropsychiatric gene.
Collapse
|
22
|
Thal LB, Tomlinson ID, Quinlan MA, Kovtun O, Blakely RD, Rosenthal SJ. Single Quantum Dot Imaging Reveals PKCβ-Dependent Alterations in Membrane Diffusion and Clustering of an Attention-Deficit Hyperactivity Disorder/Autism/Bipolar Disorder-Associated Dopamine Transporter Variant. ACS Chem Neurosci 2019; 10:460-471. [PMID: 30153408 PMCID: PMC6411462 DOI: 10.1021/acschemneuro.8b00350] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The dopamine transporter (DAT) is a transmembrane protein that terminates dopamine signaling in the brain by driving rapid dopamine reuptake into presynaptic nerve terminals. Several lines of evidence indicate that DAT dysfunction is linked to neuropsychiatric disorders such as attention-deficit/hyperactivity disorder (ADHD), bipolar disorder (BPD), and autism spectrum disorder (ASD). Indeed, individuals with these disorders have been found to express the rare, functional DAT coding variant Val559, which confers anomalous dopamine efflux (ADE) in vitro and in vivo. To elucidate the impact of the DAT Val559 variant on membrane diffusion dynamics, we implemented our antagonist-conjugated quantum dot (QD) labeling approach to monitor the lateral mobility of single particle-labeled transporters in transfected HEK-293 and SK-N-MC cells. Our results demonstrate significantly higher diffusion coefficients of DAT Val559 compared to those of DAT Ala559, effects likely determined by elevated N-terminal transporter phosphorylation. We also provide pharmacological evidence that PKCβ-mediated signaling supports enhanced DAT Val559 membrane diffusion rates. Additionally, our results are complimented with diffusion rates of phosphomimicked and phosphorylation-occluded DAT variants. Furthermore, we show DAT Val559 has a lower propensity for membrane clustering, which may be caused by a mutation-derived shift out of membrane microdomains leading to faster lateral membrane diffusion rates. These findings further demonstrate a functional impact of DAT Val559 and suggest that changes in transporter localization and lateral mobility may sustain ADE and contribute to alterations in dopamine signaling underlying multiple neuropsychiatric disorders.
Collapse
|
23
|
Hasenhuetl PS, Bhat S, Freissmuth M, Sandtner W. Functional Selectivity and Partial Efficacy at the Monoamine Transporters: A Unified Model of Allosteric Modulation and Amphetamine-Induced Substrate Release. Mol Pharmacol 2018; 95:303-312. [PMID: 30567955 DOI: 10.1124/mol.118.114793] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/13/2018] [Indexed: 12/13/2022] Open
Abstract
All clinically approved drugs targeting the plasmalemmal transporters for dopamine, norepinephrine, and serotonin act either as competitive uptake inhibitors or as amphetamine-like releasers. Monoamine transporter (MAT) ligands that allosterically affect MAT-mediated substrate uptake, release, or both were recently discovered. Their modes of action have not yet been explained in a unified framework. Here, we go beyond competitive inhibitors and classic amphetamines and introduce concepts for partial efficacy at and allosteric modulation of MATs. After we elaborate on a kinetic account for amphetamine action, we provide an explanation for partial release (i.e., the observation that some amphetamines are less efficacious than others in inducing monoamine efflux). We then elucidate mechanisms of allosteric inhibition and stimulation of MATs, which can be functionally selective for either substrate uptake or amphetamine-induced release. These concepts are integrated into a parsimonious kinetic framework, which relies exclusively on physiologic transport modes (without any deviation from an alternating access mechanism). The model posits cooperative substrate and Na+ binding and functional selectivity by conformational selection (i.e., preference of the allosteric modulators for the substrate-loaded or substrate-free states of the transporter). Thus, current knowledge about the kinetics of monoamine transport is sufficiently detailed to provide a quantitative description of the releasing action of amphetamines, of substrate uptake, and of selective modulation thereof by allosteric modulators.
Collapse
Affiliation(s)
- Peter S Hasenhuetl
- Institute of Pharmacology, Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Shreyas Bhat
- Institute of Pharmacology, Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology, Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Walter Sandtner
- Institute of Pharmacology, Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
24
|
Mulvihill KG. Presynaptic regulation of dopamine release: Role of the DAT and VMAT2 transporters. Neurochem Int 2018; 122:94-105. [PMID: 30465801 DOI: 10.1016/j.neuint.2018.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/28/2018] [Accepted: 11/08/2018] [Indexed: 01/23/2023]
Abstract
The signaling dynamics of the neurotransmitter dopamine has been established to have an important role in a variety of behavioural processes including motor control, cognition, and emotional processing. Key regulators of transmitter release and the signaling dynamics of dopamine are the plasma membrane reuptake transporter (DAT) and the vesicular monoamine transporter (VMAT2). These proteins serve to remove dopamine molecules from the extracellular and cytosolic space, respectively and both determine the amount of transmitter released from synaptic vesicles. This review provides an overview of how these transporter proteins are involved in molecular regulation and function together to govern the dynamics of vesicular release with opposing effects on the quantal size and extracellular concentration of dopamine. These transporter proteins are both focal points of convergence for a variety of regulatory molecular cascades as well as targets for many pharmacological agents. The ratio between these transporters is argued to be useful as a molecular marker for delineating dopamine functional subsystems that may differ in transmitter release patterns.
Collapse
Affiliation(s)
- Kevin G Mulvihill
- Department of Psychology, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
25
|
Mohammadi H, Joghataei MT, Rahimi Z, Faghihi F, Farhangdoost H. Relationship between serum homovanillic acid, DRD2 C957T (rs6277), and hDAT A559V (rs28364997) polymorphisms and developmental stuttering. JOURNAL OF COMMUNICATION DISORDERS 2018; 76:37-46. [PMID: 30199750 DOI: 10.1016/j.jcomdis.2018.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 08/12/2018] [Accepted: 08/25/2018] [Indexed: 06/08/2023]
Abstract
The involvement of the brain dopamine system in the pathophysiology of developmental stuttering has been previously suggested. In the present study, we aimed to investigate the relationship between developmental stuttering in children and the levels of serum homovanillic acid (HVA), dopamine D2 receptor (DRD2) C957T (rs6277), and solute carrier family 6 member 3 (SLC6A3) human dopamine transporter (hDAT) A559V (rs28364997) single-nucleotide polymorphisms. In a case-control study, serum level of HVA, DRD2 C957T, and DAT A559V were compared between 85 children who stuttered (CWS) and 85 age- and sex-matched children who did not stutter (CWNS). Although serum level of HVA was higher among the CWS (median = 25.50 ng/mL) than that in the CWNS (median = 17.40 ng/mL), the difference between the two groups was not significant (p = 0.43). No significant correlation was observed between age and the level of HVA among all the participants (r = -0.15, p = 0.06), nor was there any correlation among the CWS (r = -0.19, p = 0.14) or among the CWNS (r = -0.13, p = 0.27) according to the Spearman correlation coefficient. On the other hand, there was a significant negative correlation between age from stuttering onset and the serum level of HVA among the CWS group (r = -0.32, p = 0.01). The Spearman correlation coefficient did not indicate any significant correlation between stuttering severity and HVA in CWS (r = -0.06, p = 0.59). The mutant allele of hDAT A559V was observed neither in the CWS nor in the controls. The allele frequencies of DRD2 C957T were not significantly different between the CWS and the CWNS; however, the frequency of the TT genotype was significantly higher among the CWS (p = 0.02), which was associated with 2.25-fold susceptibility to stuttering (OR = 2.25, 95% CI = 1.03 to 4.90, p = 0.04). Our findings suggest that the serum level of HVA might be a biomarker for dopaminergic involvement in the pathogenesis of stuttering. Moreover, the present study indicates that the DRD2 C957T polymorphism might be a risk factor for the development of stuttering among Iranian Kurdish population.
Collapse
Affiliation(s)
- Hiwa Mohammadi
- Department of Neurology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Taghi Joghataei
- Department of Neuroscience, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Zohreh Rahimi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Faezeh Faghihi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hashem Farhangdoost
- Department of Speech Therapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
26
|
Kovtun O, Tomlinson ID, Bailey DM, Thal LB, Ross EJ, Harris L, Frankland MP, Ferguson RS, Glaser Z, Greer J, Rosenthal SJ. Single Quantum Dot Tracking Illuminates Neuroscience at the Nanoscale. Chem Phys Lett 2018; 706:741-752. [PMID: 30270931 PMCID: PMC6157616 DOI: 10.1016/j.cplett.2018.06.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The use of nanometer-sized semiconductor crystals, known as quantum dots, allows us to directly observe individual biomolecular transactions through a fluorescence microscope. Here, we review the evolution of single quantum dot tracking over the past two decades, highlight key biophysical discoveries facilitated by quantum dots, briefly discuss biochemical and optical implementation strategies for a single quantum dot tracking experiment, and report recent accomplishments of our group at the interface of molecular neuroscience and nanoscience.
Collapse
Affiliation(s)
- Oleg Kovtun
- Departments of Chemistry, Chemical Biology, Vanderbilt University
- Departments of Vanderbilt Institute of Nanoscale Science and Engineering
| | - Ian D. Tomlinson
- Departments of Chemistry, Chemical Biology, Vanderbilt University
- Departments of Vanderbilt Institute of Nanoscale Science and Engineering
| | - Danielle M. Bailey
- Departments of Chemistry, Chemical Biology, Vanderbilt University
- Departments of Pharmacology, Chemical Biology, Vanderbilt University
- Departments of Vanderbilt Institute of Nanoscale Science and Engineering
| | - Lucas B. Thal
- Departments of Chemistry, Chemical Biology, Vanderbilt University
- Departments of Vanderbilt Institute of Nanoscale Science and Engineering
- Departments of Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN
| | - Emily J. Ross
- Departments of Hudson Alpha Institute for Biotechnology, Huntsville, AL
| | - Lauren Harris
- Departments of Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN
| | | | | | - Zachary Glaser
- Departments of Chemistry, Chemical Biology, Vanderbilt University
| | - Jonathan Greer
- Departments of Chemistry, Chemical Biology, Vanderbilt University
| | - Sandra J. Rosenthal
- Departments of Chemistry, Chemical Biology, Vanderbilt University
- Departments of Pharmacology, Chemical Biology, Vanderbilt University
- Departments of Chemical and Biomolecular Engineering, Chemical Biology, Vanderbilt University
- Departments of Physics and Astronomy, Chemical Biology, Vanderbilt University
- Departments of Vanderbilt Institute of Nanoscale Science and Engineering
- Departments of Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN
| |
Collapse
|
27
|
Availability of dopamine transporters and auditory P300 abnormalities in adults with attention-deficit hyperactivity disorder: preliminary results. CNS Spectr 2018; 23:264-270. [PMID: 28847342 DOI: 10.1017/s1092852917000049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Previous studies have indicated that there is dopamine transporter (DAT) dysregulation and P300 abnormality in adults with attention-deficit hyperactivity disorder (ADHD); however, the correlations among the three have not been fully explored. METHODS A total of 11 adults (9 males and 2 females) with ADHD and 11 age-, sex-, and education-level-matched controls were recruited. We explored differences in DAT availability using single-photon emission computed tomography and P300 wave of event-related potentials between the two groups. The correlation between DAT availability and P300 performance was also examined. RESULTS DAT availability in the basal ganglia, caudate nucleus, and putamen was significantly lower in the ADHD group. Adults with ADHD had lower auditory P300 amplitudes at the Pz and Cz sites, as well as longer Fz latency than controls. DAT availability was negatively correlated to P300 latency at Pz and Fz. CONCLUSIONS Adults with ADHD had both abnormal DAT availability and P300 amplitude, suggesting that ADHD is linked to dysfunction of the central dopaminergic system and poor cognitive processes related to response selection and execution.
Collapse
|
28
|
Jayaraman K, Morley AN, Szöllősi D, Wassenaar TA, Sitte HH, Stockner T. Dopamine transporter oligomerization involves the scaffold domain, but spares the bundle domain. PLoS Comput Biol 2018; 14:e1006229. [PMID: 29874235 PMCID: PMC6005636 DOI: 10.1371/journal.pcbi.1006229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/18/2018] [Accepted: 05/24/2018] [Indexed: 12/11/2022] Open
Abstract
The human dopamine transporter (hDAT) is located on presynaptic neurons, where it plays an essential role in limiting dopaminergic signaling by temporarily curtailing high neurotransmitter concentration through rapid re-uptake. Transport by hDAT is energized by transmembrane ionic gradients. Dysfunction of this transporter leads to disease states, such as Parkinson’s disease, bipolar disorder or depression. It has been shown that hDAT and other members of the monoamine transporter family exist in oligomeric forms at the plasma membrane. Several residues are known to be involved in oligomerization, but interaction interfaces, oligomer orientation and the quarternary arrangement in the plasma membrane remain poorly understood. Here we examine oligomeric forms of hDAT using a direct approach, by following dimerization of two randomly-oriented hDAT transporters in 512 independent simulations, each being 2 μs in length. We employed the DAFT (docking assay for transmembrane components) approach, which is an unbiased molecular dynamics simulation method to identify oligomers, their conformations and populations. The overall ensemble of a total of >1 ms simulation time revealed a limited number of symmetric and asymmetric dimers. The identified dimer interfaces include all residues known to be involved in dimerization. Importantly, we find that the surface of the bundle domain is largely excluded from engaging in dimeric interfaces. Such an interaction would typically lead to inhibition by stabilization of one conformation, while substrate transport relies on a large scale rotation between the inward-facing and the outward-facing state. The human dopamine transporter efficiently removes the neurotransmitter dopamine from the synaptic cleft. Alteration of dopamine transporter function is associated with several neurological diseases, including mood disorders or attention-deficit hyperactivity disorder, but is also a major player in addiction and drug abuse. Functional studies have revealed that not only is transporter oligomerization involved in surface expression and endocytosis, but, more importantly, in reverse transport (efflux) of dopamine that is triggered by amphetamine-like drugs of abuse. Structural knowledge of transporter oligomerization is largely missing. We performed a large scale comprehensive computational study on transporter oligomerization to reveal dimer geometries and the residues involved in the interfaces. The dimer conformations we find in our dataset are fully consistent with all available experimental data in the literature, but also show novel interfaces. We further verified all dimer geometries by free energy calculations. Our results identified an unpredicted—but for the mechanism of substrate transport essential—property: the bundle domain, which moves during the transport cycle, is excluded from contributing to dimer interfaces, thereby allowing for unrestrained movements necessary to translocate substrates through the membrane.
Collapse
Affiliation(s)
- Kumaresan Jayaraman
- Medical University of Vienna Center for Physiology and Pharmacology, Institute of Pharmacology, Vienna, Austria
| | - Alex N. Morley
- Medical University of Vienna Center for Physiology and Pharmacology, Institute of Pharmacology, Vienna, Austria
| | - Daniel Szöllősi
- Medical University of Vienna Center for Physiology and Pharmacology, Institute of Pharmacology, Vienna, Austria
| | - Tsjerk A. Wassenaar
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Harald H. Sitte
- Medical University of Vienna Center for Physiology and Pharmacology, Institute of Pharmacology, Vienna, Austria
| | - Thomas Stockner
- Medical University of Vienna Center for Physiology and Pharmacology, Institute of Pharmacology, Vienna, Austria
- * E-mail:
| |
Collapse
|
29
|
Region-Specific Regulation of Presynaptic Dopamine Homeostasis by D 2 Autoreceptors Shapes the In Vivo Impact of the Neuropsychiatric Disease-Associated DAT Variant Val559. J Neurosci 2018; 38:5302-5312. [PMID: 29739866 DOI: 10.1523/jneurosci.0055-18.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/19/2018] [Accepted: 04/14/2018] [Indexed: 12/21/2022] Open
Abstract
Disruptions of dopamine (DA) signaling contribute to a broad spectrum of neuropsychiatric disorders, including attention-deficit hyperactivity disorder (ADHD), addiction, bipolar disorder, and schizophrenia. Despite evidence that risk for these disorders derives from heritable variation in DA-linked genes, a better understanding is needed of the molecular and circuit context through which gene variation drives distinct disease traits. Previously, we identified the DA transporter (DAT) variant Val559 in subjects with ADHD and established that the mutation supports anomalous DAT-mediated DA efflux (ADE). Here, we demonstrate that region-specific contributions of D2 autoreceptors (D2AR) to presynaptic DA homeostasis dictate the consequences of Val559 expression in adolescent male mice. We show that activation of D2ARs in the WT dorsal striatum (DS), but not ventral striatum (VS), increases DAT phosphorylation and surface trafficking. In contrast, the activity of tyrosine hydroxylase (TH) is D2AR-dependent in both regions. In the DS but not VS of Val559 mice, tonic activation of D2ARs drives a positive feedback loop that promotes surface expression of efflux-prone DATs, raising extracellular DA levels and overwhelming DAT-mediated DA clearance capacity. Whereas D2ARs that regulate DAT are tonically activated in the Val559 DS, D2ARs that regulate TH become desensitized, allowing maintenance of cytosolic DA needed to sustain ADE. Together with prior findings, our results argue for distinct D2AR pools that regulate DA synthesis versus DA release and inactivation and offer a clear example of how the penetrance of gene variation can be limited to a subset of expression sites based on differences in intersecting regulatory networks.SIGNIFICANCE STATEMENT Altered dopamine (DA) signaling has been linked to multiple neuropsychiatric disorders. In an effort to understand and model disease-associated DAergic disturbances, we previously screened the DA transporter (DAT) in subjects with attention-deficit hyperactivity disorder (ADHD) and identified multiple, functionally impactful, coding variants. One of these variants, Val559, supports anomalous DA efflux (ADE) and in transgenic mice leads to changes in locomotor patterns, psychostimulant sensitivity, and impulsivity. Here, we show that the penetrance of Val559 ADE is dictated by region-specific differences in how presynaptic D2-type autoreceptors (D2ARs) constrain DA signaling, biasing phenotypic effects to dorsal striatal projections. The Val559 model illustrates how the impact of genetic variation underlying neuropsychiatric disorders can be shaped by the differential engagement of synaptic regulatory mechanisms.
Collapse
|
30
|
Herborg F, Andreassen TF, Berlin F, Loland CJ, Gether U. Neuropsychiatric disease-associated genetic variants of the dopamine transporter display heterogeneous molecular phenotypes. J Biol Chem 2018; 293:7250-7262. [PMID: 29559554 DOI: 10.1074/jbc.ra118.001753] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/15/2018] [Indexed: 12/14/2022] Open
Abstract
Genetic factors are known to significantly contribute to the etiology of psychiatric diseases such as attention deficit hyperactivity disorder (ADHD) and autism spectrum and bipolar disorders, but the underlying molecular processes remain largely elusive. The dopamine transporter (DAT) has received continuous attention as a potential risk factor for psychiatric disease, as it is critical for dopamine homeostasis and serves as principal target for ADHD medications. Constrain metrics for the DAT-encoding gene, solute carrier family 6 member 3 (SLC6A3), indicate that missense mutations are under strong negative selection, pointing to pathophysiological outcomes when DAT function is compromised. Here, we systematically characterized six rare genetic variants of DAT (I312F, T356M, D421N, A559V, E602G, and R615C) identified in patients with neuropsychiatric disorders. We evaluated dopamine uptake and ligand interactions, along with ion coordination and electrophysiological properties, to elucidate functional phenotypes, and applied Zn2+ exposure and a substituted cysteine-accessibility approach to identify shared structural changes. Three variants (I312F, T356M, and D421N) exhibited impaired dopamine uptake associated with changes in ligand binding, ion coordination, and distinct conformational disturbances. Remarkably, we found that all three variants displayed gain-of-function electrophysiological phenotypes. I312F mediated an increased uncoupled anion conductance previously suggested to modulate neuronal excitability. T356M and D421N both mediated a cocaine-sensitive leakage of cations, which for T356M was potentiated by Zn2+, concurrent with partial functional rescue. Collectively, our findings support that gain of disruptive functions due to missense mutations in SLC6A3 may be key to understanding how dopaminergic dyshomeostasis arises in heterozygous carriers.
Collapse
Affiliation(s)
- Freja Herborg
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, Panum Institute-Maersk Tower 07.05, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Thorvald F Andreassen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, Panum Institute-Maersk Tower 07.05, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Frida Berlin
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, Panum Institute-Maersk Tower 07.05, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Claus J Loland
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, Panum Institute-Maersk Tower 07.05, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, Panum Institute-Maersk Tower 07.05, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
31
|
Abstract
Background Much of the structure-based mechanistic understandings of the function of SLC6A neurotransmitter transporters emerged from the study of their bacterial LeuT-fold homologs. It has become evident, however, that structural differences such as the long N- and C-termini of the eukaryotic neurotransmitter transporters are involved in an expanded set of functional properties to the eukaryotic transporters. These functional properties are not shared by the bacterial homologs, which lack the structural elements that appeared later in evolution. However, mechanistic insights into some of the measured functional properties of the eukaryotic transporters that have been suggested to involve these structural elements are sparse or merely descriptive. Results To learn how the structural elements added in evolution enable mechanisms of the eukaryotic transporters in ways not shared with their bacterial LeuT-like homologs, we focused on the human dopamine transporter (hDAT) as a prototype. We present the results of a study employing large-scale molecular dynamics simulations and comparative Markov state model analysis of experimentally determined properties of the wild-type and mutant hDAT constructs. These offer a quantitative outline of mechanisms in which a rich spectrum of interactions of the hDAT N-terminus and C-terminus contribute to the regulation of transporter function (e.g., by phosphorylation) and/or to entirely new phenotypes (e.g., reverse uptake (efflux)) that were added in evolution. Conclusions The findings are consistent with the proposal that the size of eukaryotic neurotransmitter transporter termini increased during evolution to enable more functions (e.g., efflux) not shared with the bacterial homologs. The mechanistic explanations for the experimental findings about the modulation of function in DAT, the serotonin transporter, and other eukaryotic transporters reveal separate roles for the distal and proximal segments of the much larger N-terminus in eukaryotic transporters compared to the bacterial ones. The involvement of the proximal and distal segments — such as the role of the proximal segment in sustaining transport in phosphatidylinositol 4,5-bisphosphate-depleted membranes and of the distal segment in modulating efflux — may represent an evolutionary adaptation required for the function of eukaryotic transporters expressed in various cell types of the same organism that differ in the lipid composition and protein complement of their membrane environment. Electronic supplementary material The online version of this article (10.1186/s12915-018-0495-6) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Dai H, Jackson CR, Davis GL, Blakely RD, McMahon DG. Is dopamine transporter-mediated dopaminergic signaling in the retina a noninvasive biomarker for attention-deficit/ hyperactivity disorder? A study in a novel dopamine transporter variant Val559 transgenic mouse model. J Neurodev Disord 2017; 9:38. [PMID: 29281965 PMCID: PMC5745861 DOI: 10.1186/s11689-017-9215-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/14/2017] [Indexed: 12/14/2022] Open
Abstract
Background Dopamine (DA) is a critical neuromodulator in the retina. Disruption of retinal DA synthesis and signaling significantly attenuates light-adapted, electroretinogram (ERG) responses, as well as contrast sensitivity and acuity. As these measures can be detected noninvasively, they may provide opportunities to detect disease processes linked to perturbed DA signaling. Recently, we identified a rare, functional DA transporter (DAT, SLC6A3) coding substitution, Ala559Val, in subjects with attention-deficit/hyperactivity disorder (ADHD), demonstrating that DAT Val559 imparts anomalous DA efflux (ADE) with attendant physiological, pharmacological, and behavioral phenotypes. To understand the broader impact of ADE on ADHD, noninvasive measures sensitive to DAT reversal are needed. Methods Here, we explored this question through ERG-based analysis of retinal light responses, as well as HPLC measurements of retinal DA in DAT Val559 mice. Results Male mice homozygous (HOM) for the DAT Val559 variant demonstrated increased, light-adapted ERG b-wave amplitudes compared to wild type (WT) and heterozygous (HET) mice, whereas dark-adapted responses were indistinguishable across genotypes. The elevated amplitude of the photopic light responses in HOM mice could be mimicked in WT mice by applying D1 and D4 DA receptor agonists and suppressed in HOM mice by introducing D4 antagonist, supporting elevated retinal DA signaling arising from ADE. Following the challenge with amphetamine, WT exhibited an increase in light-adapted response amplitudes, while HOM did not. Total retinal DA content was similar across genotypes. Interestingly, female DAT Val559 HOM animals revealed no significant difference in photopic ERG responses when compared with WT and HET littermates. Conclusions These data reveal that noninvasive, in vivo evaluation of retinal responses to light can reveal physiological signatures of ADE, suggesting a possible approach to the segregation of neurobehavioral disorders based on the DAT-dependent control of DA signaling.
Collapse
Affiliation(s)
- Heng Dai
- Department of Biological Sciences, Vanderbilt University, Box 35-1634 Station B, Nashville, TN, 37235-1634, USA
| | - Chad R Jackson
- Department of Biological Sciences, Vanderbilt University, Box 35-1634 Station B, Nashville, TN, 37235-1634, USA.,Present address: Defense Threat Reduction Agency, 8211 Terminal Road, Lorton, VA, 22079, USA
| | - Gwynne L Davis
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Randy D Blakely
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Douglas G McMahon
- Department of Biological Sciences, Vanderbilt University, Box 35-1634 Station B, Nashville, TN, 37235-1634, USA.
| |
Collapse
|
33
|
Amphetamine Reverses Escalated Cocaine Intake via Restoration of Dopamine Transporter Conformation. J Neurosci 2017; 38:484-497. [PMID: 29175958 DOI: 10.1523/jneurosci.2604-17.2017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 12/27/2022] Open
Abstract
Cocaine abuse disrupts dopamine system function, and reduces cocaine inhibition of the dopamine transporter (DAT), which results in tolerance. Although tolerance is a hallmark of cocaine addiction and a DSM-V criterion for substance abuse disorders, the molecular adaptations producing tolerance are unknown, and testing the impact of DAT changes on drug taking behaviors has proven difficult. In regard to treatment, amphetamine has shown efficacy in reducing cocaine intake; however, the mechanisms underlying these effects have not been explored. The goals of this study were twofold; we sought to (1) identify the molecular mechanisms by which cocaine exposure produces tolerance and (2) determine whether amphetamine-induced reductions in cocaine intake are connected to these mechanisms. Using cocaine self-administration and fast-scan cyclic voltammetry in male rats, we show that low-dose, continuous amphetamine treatment, during self-administration or abstinence, completely reversed cocaine tolerance. Amphetamine treatment also reversed escalated cocaine intake and decreased motivation to obtain cocaine as measured in a behavioral economics task, thereby linking tolerance to multiple facets of cocaine use. Finally, using fluorescence resonance energy transfer imaging, we found that cocaine tolerance is associated with the formation of DAT-DAT complexes, and that amphetamine disperses these complexes. In addition to extending our basic understanding of DATs and their role in cocaine reinforcement, we serendipitously identified a novel therapeutic target: DAT oligomer complexes. We show that dispersion of oligomers is concomitant with reduced cocaine intake, and propose that pharmacotherapeutics aimed at these complexes may have potential for cocaine addiction treatment.SIGNIFICANCE STATEMENT Tolerance to cocaine's subjective effects is a cardinal symptom of cocaine addiction and a DSM-V criterion for substance abuse disorders. However, elucidating the molecular adaptions that produce tolerance and determining its behavioral impact have proven difficult. Using cocaine self-administration in rats, we link tolerance to cocaine effects at the dopamine transporter (DAT) with aberrant cocaine-taking behaviors. Further, tolerance was associated with multi-DAT complexes, which formed after cocaine exposure. Treatment with amphetamine deconstructed DAT complexes, reversed tolerance, and decreased cocaine seeking. These data describe the behavioral consequence of cocaine tolerance, provide a putative mechanism for its development, and suggest that compounds that disperse DAT complexes may be efficacious treatments for cocaine addiction.
Collapse
|
34
|
Karam CS, Javitch JA. Phosphorylation of the Amino Terminus of the Dopamine Transporter: Regulatory Mechanisms and Implications for Amphetamine Action. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 82:205-234. [PMID: 29413521 DOI: 10.1016/bs.apha.2017.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Amphetamines (AMPHs) are potent psychostimulants that are widely used and abused, with profound medical and societal impact. Their actions at dopaminergic neurons are thought to mediate their therapeutic efficacy as well as their liability for abuse and dependence. AMPHs target the dopamine transporter (DAT), the plasmalemmal membrane protein that mediates the inactivation of released dopamine (DA) through its reuptake. AMPHs act as substrates for DAT and are known to cause mobilization of dopamine (DA) to the cell exterior via DAT-mediated reverse transport (efflux). It has become increasingly evident that the mechanisms that regulate AMPH-induced DA efflux are distinct from those that regulate DA uptake. Central to these mechanisms is the phosphorylation of the DAT amino (N)-terminus, which has been repeatedly demonstrated to facilitate DAT-mediated DA efflux, without impacting other aspects of DAT physiology. This review aims to summarize the current status of knowledge regarding DAT N-terminal phosphorylation and its regulation by protein modulators and the membrane microenvironment. A better understanding of these mechanisms may lead to the identification of novel therapeutic approaches that interfere selectively with the pharmacological effects of AMPHs without altering the physiological function of DAT.
Collapse
Affiliation(s)
- Caline S Karam
- College of Physicians & Surgeons, Columbia University, New York, NY, United States; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Jonathan A Javitch
- College of Physicians & Surgeons, Columbia University, New York, NY, United States; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States.
| |
Collapse
|
35
|
Nash AI. Crosstalk between insulin and dopamine signaling: A basis for the metabolic effects of antipsychotic drugs. J Chem Neuroanat 2017; 83-84:59-68. [DOI: 10.1016/j.jchemneu.2016.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/14/2016] [Accepted: 07/27/2016] [Indexed: 12/21/2022]
|
36
|
Davis GL, Stewart A, Stanwood GD, Gowrishankar R, Hahn MK, Blakely RD. Functional coding variation in the presynaptic dopamine transporter associated with neuropsychiatric disorders drives enhanced motivation and context-dependent impulsivity in mice. Behav Brain Res 2017; 337:61-69. [PMID: 28964912 DOI: 10.1016/j.bbr.2017.09.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/18/2017] [Accepted: 09/27/2017] [Indexed: 10/18/2022]
Abstract
Recent genetic analyses have provided evidence that clinical commonalities associated with different psychiatric diagnoses often have shared mechanistic underpinnings. The development of animal models expressing functional genetic variation attributed to multiple disorders offers a salient opportunity to capture molecular, circuit and behavioral alterations underlying this hypothesis. In keeping with studies suggesting dopaminergic contributions to attention-deficit hyperactivity disorder (ADHD), bipolar disorder (BPD) and autism spectrum disorder (ASD), subjects with these diagnoses have been found to express a rare, functional coding substitution in the dopamine (DA) transporter (DAT), Ala559Val. We developed DAT Val559 knock-in mice as a construct valid model of dopaminergic alterations that drive multiple clinical phenotypes, and here evaluate the impact of lifelong expression of the variant on impulsivity and motivation utilizing the 5- choice serial reaction time task (5-CSRTT) and Go/NoGo as well as tests of time estimation (peak interval analysis), reward salience (sucrose preference), and motivation (progressive ratio test). Our findings indicate that the DAT Val559 variant induces impulsivity behaviors that are dependent upon the reward context, with increased impulsive action observed when mice are required to delay responding for a reward, whereas mice are able to withhold responding if there is a probability of reward for a correct rejection. Utilizing peak interval and progressive ratio tests, we provide evidence that impulsivity is likely driven by an enhanced motivational phenotype that also may drive faster task acquisition in operant tasks. These data provide critical validation that DAT, and more generally, DA signaling perturbations can drive impulsivity that can manifest in specific contexts and not others, and may rely on motivational alterations, which may also drive increased maladaptive reward seeking.
Collapse
Affiliation(s)
- Gwynne L Davis
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Ave, Nashville, TN 37232, United States; Department of Biomedical Science, Charles E. Schmidt College of Medicine, United States.
| | - Adele Stewart
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Ave, Nashville, TN 37232, United States; Department of Biomedical Science, Charles E. Schmidt College of Medicine, United States; Brain Institute, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, United States.
| | - Gregg D Stanwood
- Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, 32306, United States.
| | - Raajaram Gowrishankar
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Ave, Nashville, TN 37232, United States; Department of Biomedical Science, Charles E. Schmidt College of Medicine, United States.
| | - Maureen K Hahn
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Ave, Nashville, TN 37232, United States; Department of Biomedical Science, Charles E. Schmidt College of Medicine, United States; Brain Institute, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, United States.
| | - Randy D Blakely
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Ave, Nashville, TN 37232, United States; Department of Biomedical Science, Charles E. Schmidt College of Medicine, United States; Brain Institute, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, United States.
| |
Collapse
|
37
|
Challasivakanaka S, Zhen J, Smith ME, Reith MEA, Foster JD, Vaughan RA. Dopamine transporter phosphorylation site threonine 53 is stimulated by amphetamines and regulates dopamine transport, efflux, and cocaine analog binding. J Biol Chem 2017; 292:19066-19075. [PMID: 28939767 DOI: 10.1074/jbc.m117.787002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/29/2017] [Indexed: 11/06/2022] Open
Abstract
The dopamine transporter (DAT) controls the spatial and temporal dynamics of dopamine neurotransmission through reuptake of extracellular transmitter and is a target for addictive compounds such as cocaine, amphetamine (AMPH), and methamphetamine (METH). Reuptake is regulated by kinase pathways and drug exposure, allowing for fine-tuning of clearance in response to specific conditions, and here we examine the impact of transporter ligands on DAT residue Thr-53, a proline-directed phosphorylation site previously implicated in AMPH-stimulated efflux mechanisms. Our findings show that Thr-53 phosphorylation is stimulated in a transporter-dependent manner by AMPH and METH in model cells and rat striatal synaptosomes, and in striatum of rats given subcutaneous injection of METH. Rotating disc electrode voltammetry revealed that initial rates of uptake and AMPH-induced efflux were elevated in phosphorylation-null T53A DAT relative to WT and charge-substituted T53D DATs, consistent with functions related to charge or polarity. These effects occurred without alterations of surface transporter levels, and mutants also showed reduced cocaine analog binding affinity that was not rescued by Zn2+ Together these findings support a role for Thr-53 phosphorylation in regulation of transporter kinetic properties that could impact DAT responses to amphetamines and cocaine.
Collapse
Affiliation(s)
- Sathya Challasivakanaka
- From the Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58201 and
| | | | - Margaret E Smith
- From the Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58201 and
| | - Maarten E A Reith
- the Departments of Psychiatry and.,Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| | - James D Foster
- From the Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58201 and
| | - Roxanne A Vaughan
- From the Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58201 and
| |
Collapse
|
38
|
Gaskill PJ, Miller DR, Gamble-George J, Yano H, Khoshbouei H. HIV, Tat and dopamine transmission. Neurobiol Dis 2017; 105:51-73. [PMID: 28457951 PMCID: PMC5541386 DOI: 10.1016/j.nbd.2017.04.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/04/2017] [Accepted: 04/16/2017] [Indexed: 01/02/2023] Open
Abstract
Human Immunodeficiency Virus (HIV) is a progressive infection that targets the immune system, affecting more than 37 million people around the world. While combinatorial antiretroviral therapy (cART) has lowered mortality rates and improved quality of life in infected individuals, the prevalence of HIV associated neurocognitive disorders is increasing and HIV associated cognitive decline remains prevalent. Recent research has suggested that HIV accessory proteins may be involved in this decline, and several studies have indicated that the HIV protein transactivator of transcription (Tat) can disrupt normal neuronal and glial function. Specifically, data indicate that Tat may directly impact dopaminergic neurotransmission, by modulating the function of the dopamine transporter and specifically damaging dopamine-rich regions of the CNS. HIV infection of the CNS has long been associated with dopaminergic dysfunction, but the mechanisms remain undefined. The specific effect(s) of Tat on dopaminergic neurotransmission may be, at least partially, a mechanism by which HIV infection directly or indirectly induces dopaminergic dysfunction. Therefore, precisely defining the specific effects of Tat on the dopaminergic system will help to elucidate the mechanisms by which HIV infection of the CNS induces neuropsychiatric, neurocognitive and neurological disorders that involve dopaminergic neurotransmission. Further, this will provide a discussion of the experiments needed to further these investigations, and may help to identify or develop new therapeutic approaches for the prevention or treatment of these disorders in HIV-infected individuals.
Collapse
Affiliation(s)
- Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States.
| | - Douglas R Miller
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, United States
| | - Joyonna Gamble-George
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, United States
| | - Hideaki Yano
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, United States
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
39
|
Identifying novel members of the Wntless interactome through genetic and candidate gene approaches. Brain Res Bull 2017; 138:96-105. [PMID: 28734904 DOI: 10.1016/j.brainresbull.2017.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/26/2017] [Accepted: 07/06/2017] [Indexed: 02/07/2023]
Abstract
Wnt signaling is an important pathway that regulates several aspects of embryogenesis, stem cell maintenance, and neural connectivity. We have recently determined that opioids decrease Wnt secretion, presumably by inhibiting the recycling of the Wnt trafficking protein Wntless (Wls). This effect appears to be mediated by protein-protein interaction between Wls and the mu-opioid receptor (MOR), the primary cellular target of opioid drugs. The goal of this study was to identify novel protein interactors of Wls that are expressed in the brain and may also play a role in reward or addiction. Using genetic and candidate gene approaches, we show that among a variety of protein, Wls interacts with the dopamine transporter (target of cocaine), cannabinoid receptors (target of THC), Adenosine A2A receptor (target of caffeine), and SGIP1 (endocytic regulator of cannabinoid receptors). Our study shows that aside from opioid receptors, Wntless interacts with additional proteins involved in reward and/or addiction. Future studies will determine whether Wntless and WNT signaling play a more universal role in these processes.
Collapse
|
40
|
Karam CS, Sen N, Javitch JA. Phospho-specific antibodies targeting the amino terminus of the human dopamine transporter. J Chem Neuroanat 2017; 83-84:91-98. [PMID: 28571709 DOI: 10.1016/j.jchemneu.2017.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/11/2017] [Indexed: 11/29/2022]
Abstract
The dopamine transporter (DAT), which mediates the inactivation of released dopamine through its reuptake, is the primary molecular target for the actions of psychostimulants. An increasing number of studies support an essential role for phosphorylation of serines (Ser) in the distal amino (N) terminus of DAT in regulating its function. Still, the molecular details of the regulation of phosphorylation and its impact on function are not fully understood. To address this, we have developed and characterized two distinct phospho-antibodies that recognize human DAT when it is phosphorylated at Ser7 or Ser12. Our data show that treatment of cells with phorbol 12-myristate 13-acetate (PMA), amphetamine (AMPH) or okadaic acid (OA) leads to an increase in the phosphorylation of DAT at both residues and that these responses are dependent on the activity of protein kinase C. We also show that AMPH-induced and OA-induced phosphorylation of DAT are dependent on Ca2+/calmodulin-dependent protein kinase α. Our data further suggest that the lipid raft localization of DAT is necessary for efficient N-terminal phosphorylation and for the associated behavioral effects of AMPH, demonstrating the potential of these novel antibodies as powerful tools to study DAT regulation and function in vivo.
Collapse
Affiliation(s)
- Caline S Karam
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Namita Sen
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Jonathan A Javitch
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Pharmacology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
41
|
Altenhofen S, Wiprich MT, Nery LR, Leite CE, Vianna MRMR, Bonan CD. Manganese(II) chloride alters behavioral and neurochemical parameters in larvae and adult zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 182:172-183. [PMID: 27912164 DOI: 10.1016/j.aquatox.2016.11.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/24/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
Manganese (Mn) is an essential metal for organisms, but high levels can cause serious neurological damage. The aim of this study was to evaluate the effects of MnCl2 exposure on cognition and exploratory behavior in adult and larval zebrafish and correlate these findings with brain accumulation of Mn, overall brain tyrosine hydroxylase (TH) levels, dopamine (DA) levels, 3,4-dihydroxyphenylacetic acid (DOPAC) levels and cell death markers in the nervous system. Adults exposed to MnCl2 for 4days (0.5, 1.0 and 1.5mM) and larvae exposed for 5days (0.1, 0.25 and 0.5mM) displayed decreased exploratory behaviors, such as distance traveled and absolute body turn angle, in addition to reduced movement time and an increased number of immobile episodes in larvae. Adults exposed to MnCl2 for 4days showed impaired aversive long-term memory in the inhibitory avoidance task. The overall brain TH levels were elevated in adults and larvae evaluated at 5 and 7 days post-fertilization (dpf). Interestingly, the protein level of this enzyme was decreased in larval animals at 10dpf. Furthermore, DOPAC levels were increased in adult animals exposed to MnCl2. Protein analysis showed increased apoptotic markers in both the larvae and adult nervous system. The results demonstrated that prolonged exposure to MnCl2 leads to locomotor deficits that may be associated with damage caused by this metal in the CNS, particularly in the dopaminergic system.
Collapse
Affiliation(s)
- Stefani Altenhofen
- PUCRS, Faculdade de Biociências, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Neuroquímica e Psicofarmacologia, Porto Alegre, RS, Brazil
| | - Melissa Talita Wiprich
- PUCRS, Faculdade de Biociências, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Neuroquímica e Psicofarmacologia, Porto Alegre, RS, Brazil
| | - Laura Roesler Nery
- PUCRS, Faculdade de Biociências, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Neuroquímica e Psicofarmacologia, Porto Alegre, RS, Brazil
| | | | - Monica Ryff Moreira Roca Vianna
- PUCRS, Faculdade de Biociências, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Biologia e Desenvolvimento do Sistema Nervoso, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- PUCRS, Faculdade de Biociências, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Neuroquímica e Psicofarmacologia, Porto Alegre, RS, Brazil.
| |
Collapse
|
42
|
Bermingham DP, Blakely RD. Kinase-dependent Regulation of Monoamine Neurotransmitter Transporters. Pharmacol Rev 2016; 68:888-953. [PMID: 27591044 PMCID: PMC5050440 DOI: 10.1124/pr.115.012260] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Modulation of neurotransmission by the monoamines dopamine (DA), norepinephrine (NE), and serotonin (5-HT) is critical for normal nervous system function. Precise temporal and spatial control of this signaling in mediated in large part by the actions of monoamine transporters (DAT, NET, and SERT, respectively). These transporters act to recapture their respective neurotransmitters after release, and disruption of clearance and reuptake has significant effects on physiology and behavior and has been linked to a number of neuropsychiatric disorders. To ensure adequate and dynamic control of these transporters, multiple modes of control have evolved to regulate their activity and trafficking. Central to many of these modes of control are the actions of protein kinases, whose actions can be direct or indirectly mediated by kinase-modulated protein interactions. Here, we summarize the current state of our understanding of how protein kinases regulate monoamine transporters through changes in activity, trafficking, phosphorylation state, and interacting partners. We highlight genetic, biochemical, and pharmacological evidence for kinase-linked control of DAT, NET, and SERT and, where applicable, provide evidence for endogenous activators of these pathways. We hope our discussion can lead to a more nuanced and integrated understanding of how neurotransmitter transporters are controlled and may contribute to disorders that feature perturbed monoamine signaling, with an ultimate goal of developing better therapeutic strategies.
Collapse
Affiliation(s)
- Daniel P Bermingham
- Department of Pharmacology (D.P.B., R.D.B.) and Psychiatry (R.D.B.), Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Biomedical Sciences, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, Florida (R.D.B.)
| | - Randy D Blakely
- Department of Pharmacology (D.P.B., R.D.B.) and Psychiatry (R.D.B.), Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Biomedical Sciences, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, Florida (R.D.B.)
| |
Collapse
|
43
|
Naderi M, Jamwal A, Ferrari MCO, Niyogi S, Chivers DP. Dopamine receptors participate in acquisition and consolidation of latent learning of spatial information in zebrafish (Danio rerio). Prog Neuropsychopharmacol Biol Psychiatry 2016; 67:21-30. [PMID: 26772761 DOI: 10.1016/j.pnpbp.2016.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 12/23/2015] [Accepted: 01/05/2016] [Indexed: 12/21/2022]
Abstract
There is growing appreciation that various aspects of learning and memory are strongly influenced by dopamine neurotransmission, and that zebrafish hold particular promise in the study of neurotransmitter systems. In this study, we sought to investigate the effect of dopamine receptors on acquisition and consolidation of memory in zebrafish using a latent learning paradigm. To this end, fish were subjected to a 30 min training trial each day for 16 days during which fish were allowed to freely explore a complex maze with the left or right path blocked and without the presence of a reward. During 16 days fish were treated with dopaminergic agonists (apomorphine, SKF-38393, and quinpirole) and antagonists (SCH-23390 and eticlopride) before or after training trials. To assess cognitive performance of fish, a subsequent probe trial was performed on day 17 while all paths leading to a reward chamber were open and the maze now contained stimulus fish as a reward. Pre- and post-training exposure to apomorphine, SKF-38393, and quinpirole significantly impaired learning and memory in fish. In contrast, fish exposed to eticlopride before and after training exhibited improved performance in a latent learning task. Administration of SCH-23390 before training did not affect zebrafish learning ability, but produced significant memory enhancement when given after training trials. Taken together, these findings are the first indications that D1 and D2 receptors are critically involved in acquisition and consolidation of latent learning in zebrafish, with a more prominent role for D2 receptors. The current study opens the door to future studies to investigate the involvement of dopamine receptors in various aspects of cognitive processes.
Collapse
Affiliation(s)
- Mohammad Naderi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada.
| | - Ankur Jamwal
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Maud C O Ferrari
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|
44
|
Naderi M, Jamwal A, Chivers DP, Niyogi S. Modulatory effects of dopamine receptors on associative learning performance in zebrafish (Danio rerio). Behav Brain Res 2016; 303:109-19. [DOI: 10.1016/j.bbr.2016.01.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 12/14/2022]
|
45
|
van der Voet M, Harich B, Franke B, Schenck A. ADHD-associated dopamine transporter, latrophilin and neurofibromin share a dopamine-related locomotor signature in Drosophila. Mol Psychiatry 2016; 21:565-73. [PMID: 25962619 PMCID: PMC4804182 DOI: 10.1038/mp.2015.55] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 03/03/2015] [Accepted: 03/31/2015] [Indexed: 02/07/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common, highly heritable neuropsychiatric disorder with hyperactivity as one of the hallmarks. Aberrant dopamine signaling is thought to be a major theme in ADHD, but how this relates to the vast majority of ADHD candidate genes is illusive. Here we report a Drosophila dopamine-related locomotor endophenotype that is shared by pan-neuronal knockdown of orthologs of the ADHD-associated genes Dopamine transporter (DAT1) and Latrophilin (LPHN3), and of a gene causing a monogenic disorder with frequent ADHD comorbidity: Neurofibromin (NF1). The locomotor signature was not found in control models and could be ameliorated by methylphenidate, validating its relevance to symptoms of the disorder. The Drosophila ADHD endophenotype can be further exploited in high throughput to characterize the growing number of candidate genes. It represents an equally useful outcome measure for testing chemical compounds to define novel treatment options.
Collapse
Affiliation(s)
- M van der Voet
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - B Harich
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - B Franke
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud university medical center, Nijmegen, The Netherlands
| | - A Schenck
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
46
|
da Silva RB, Siebel AM, Bonan CD. The role of purinergic and dopaminergic systems on MK-801-induced antidepressant effects in zebrafish. Pharmacol Biochem Behav 2015; 139 Pt B:149-57. [DOI: 10.1016/j.pbb.2015.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/28/2015] [Accepted: 05/04/2015] [Indexed: 01/11/2023]
|
47
|
Khelashvili G, Stanley N, Sahai MA, Medina J, LeVine MV, Shi L, De Fabritiis G, Weinstein H. Spontaneous inward opening of the dopamine transporter is triggered by PIP2-regulated dynamics of the N-terminus. ACS Chem Neurosci 2015; 6:1825-37. [PMID: 26255829 PMCID: PMC4653762 DOI: 10.1021/acschemneuro.5b00179] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
![]()
We
present the dynamic mechanism of concerted motions in a full-length
molecular model of the human dopamine transporter (hDAT), a member
of the neurotransmitter/sodium symporter (NSS) family, involved in
state-to-state transitions underlying function. The findings result
from an analysis of unbiased atomistic molecular dynamics simulation
trajectories (totaling >14 μs) of the hDAT molecule immersed
in lipid membrane environments with or without phosphatidylinositol
4,5-biphosphate (PIP2) lipids. The N-terminal region of
hDAT (N-term) is shown to have an essential mechanistic role in correlated
rearrangements of specific structural motifs relevant to state-to-state
transitions in the hDAT. The mechanism involves PIP2-mediated
electrostatic interactions between the N-term and the intracellular
loops of the transporter molecule. Quantitative analyses of collective
motions in the trajectories reveal that these interactions correlate
with the inward-opening dynamics of hDAT and are allosterically coupled
to the known functional sites of the transporter. The observed large-scale
motions are enabled by specific reconfiguration of the network of
ionic interactions at the intracellular end of the protein. The isomerization
to the inward-facing state in hDAT is accompanied by concomitant movements
in the extracellular vestibule and results in the release of an Na+ ion from the Na2 site and destabilization of the substrate
dopamine in the primary substrate binding S1 site. The dynamic mechanism
emerging from the findings highlights the involvement of the PIP2-regulated interactions between the N-term and the intracellular
loop 4 in the functionally relevant conformational transitions that
are also similar to those found to underlie state-to-state transitions
in the leucine transporter (LeuT), a prototypical bacterial homologue
of the NSS.
Collapse
Affiliation(s)
- George Khelashvili
- Department
of Physiology and Biophysics, Weill Cornell Medical College of Cornell University (WCMC), New York, New York 10065, United States
| | - Nathaniel Stanley
- Computational
Biophysics Laboratory (GRIB-IMIM), Universitat Pompeu Fabra, Barcelona
Biomedical Research Park (PRBB), C/Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Michelle A. Sahai
- Department
of Physiology and Biophysics, Weill Cornell Medical College of Cornell University (WCMC), New York, New York 10065, United States
| | - Jaime Medina
- Department
of Physiology and Biophysics, Weill Cornell Medical College of Cornell University (WCMC), New York, New York 10065, United States
| | - Michael V. LeVine
- Department
of Physiology and Biophysics, Weill Cornell Medical College of Cornell University (WCMC), New York, New York 10065, United States
| | - Lei Shi
- Department
of Physiology and Biophysics, Weill Cornell Medical College of Cornell University (WCMC), New York, New York 10065, United States
- HRH
Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute of Computational
Biomedicine, Weill Cornell Medical College of Cornell University, New York, New York 10065, United States
| | - Gianni De Fabritiis
- Computational
Biophysics Laboratory (GRIB-IMIM), Universitat Pompeu Fabra, Barcelona
Biomedical Research Park (PRBB), C/Doctor Aiguader 88, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Passeig Lluis Companys 23, 08010 Barcelona, Spain
| | - Harel Weinstein
- Department
of Physiology and Biophysics, Weill Cornell Medical College of Cornell University (WCMC), New York, New York 10065, United States
- HRH
Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute of Computational
Biomedicine, Weill Cornell Medical College of Cornell University, New York, New York 10065, United States
| |
Collapse
|
48
|
Butler B, Saha K, Rana T, Becker JP, Sambo D, Davari P, Goodwin JS, Khoshbouei H. Dopamine Transporter Activity Is Modulated by α-Synuclein. J Biol Chem 2015; 290:29542-54. [PMID: 26442590 DOI: 10.1074/jbc.m115.691592] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Indexed: 12/24/2022] Open
Abstract
The duration and strength of the dopaminergic signal are regulated by the dopamine transporter (DAT). Drug addiction and neurodegenerative and neuropsychiatric diseases have all been associated with altered DAT activity. The membrane localization and the activity of DAT are regulated by a number of intracellular proteins. α-Synuclein, a protein partner of DAT, is implicated in neurodegenerative disease and drug addiction. Little is known about the regulatory mechanisms of the interaction between DAT and α-synuclein, the cellular location of this interaction, and the functional consequences of this interaction on the basal, amphetamine-induced DAT-mediated dopamine efflux, and membrane microdomain distribution of the transporter. Here, we found that the majority of DAT·α-synuclein protein complexes are found at the plasma membrane of dopaminergic neurons or mammalian cells and that the amphetamine-mediated increase in DAT activity enhances the association of these proteins at the plasma membrane. Further examination of the interaction of DAT and α-synuclein revealed a transient interaction between these two proteins at the plasma membrane. Additionally, we found DAT-induced membrane depolarization enhances plasma membrane localization of α-synuclein, which in turn increases dopamine efflux and enhances DAT localization in cholesterol-rich membrane microdomains.
Collapse
Affiliation(s)
- Brittany Butler
- From the Departments of Neuroscience and Psychiatry University of Florida, Gainesville, Florida 32611 and
| | - Kaustuv Saha
- From the Departments of Neuroscience and Psychiatry University of Florida, Gainesville, Florida 32611 and
| | - Tanu Rana
- the Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee 37208
| | - Jonas P Becker
- From the Departments of Neuroscience and Psychiatry University of Florida, Gainesville, Florida 32611 and
| | - Danielle Sambo
- From the Departments of Neuroscience and Psychiatry University of Florida, Gainesville, Florida 32611 and
| | - Paran Davari
- From the Departments of Neuroscience and Psychiatry University of Florida, Gainesville, Florida 32611 and
| | - J Shawn Goodwin
- the Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee 37208
| | - Habibeh Khoshbouei
- From the Departments of Neuroscience and Psychiatry University of Florida, Gainesville, Florida 32611 and
| |
Collapse
|
49
|
Moritz AE, Rastedt DE, Stanislowski DJ, Shetty M, Smith MA, Vaughan RA, Foster JD. Reciprocal Phosphorylation and Palmitoylation Control Dopamine Transporter Kinetics. J Biol Chem 2015; 290:29095-105. [PMID: 26424792 DOI: 10.1074/jbc.m115.667055] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Indexed: 11/06/2022] Open
Abstract
The dopamine transporter is a neuronal protein that drives the presynaptic reuptake of dopamine (DA) and is the major determinant of transmitter availability in the brain. Dopamine transporter function is regulated by protein kinase C (PKC) and other signaling pathways through mechanisms that are complex and poorly understood. Here we investigate the role of Ser-7 phosphorylation and Cys-580 palmitoylation in mediating steady-state transport kinetics and PKC-stimulated transport down-regulation. Using both mutational and pharmacological approaches, we demonstrate that these post-translational modifications are reciprocally regulated, leading to transporter populations that display high phosphorylation-low palmitoylation or low phosphorylation-high palmitoylation. The balance between the modifications dictates transport capacity, as conditions that promote high phosphorylation or low palmitoylation reduce transport Vmax and enhance PKC-stimulated down-regulation, whereas conditions that promote low phosphorylation or high palmitoylation increase transport Vmax and suppress PKC-stimulated down-regulation. Transitions between these functional states occur when endocytosis is blocked or undetectable, indicating that the modifications kinetically regulate the velocity of surface transporters. These findings reveal a novel mechanism for control of DA reuptake that may represent a point of dysregulation in DA imbalance disorders.
Collapse
Affiliation(s)
- Amy E Moritz
- From the Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9061
| | - Danielle E Rastedt
- From the Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9061
| | - Daniel J Stanislowski
- From the Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9061
| | - Madhur Shetty
- From the Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9061
| | - Margaret A Smith
- From the Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9061
| | - Roxanne A Vaughan
- From the Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9061
| | - James D Foster
- From the Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9061
| |
Collapse
|
50
|
Abstract
The variety of physiological functions controlled by dopamine in the brain and periphery is mediated by the D1, D2, D3, D4 and D5 dopamine GPCRs. Drugs acting on dopamine receptors are significant tools for the management of several neuropsychiatric disorders including schizophrenia, bipolar disorder, depression and Parkinson's disease. Recent investigations of dopamine receptor signalling have shown that dopamine receptors, apart from their canonical action on cAMP-mediated signalling, can regulate a myriad of cellular responses to fine-tune the expression of dopamine-associated behaviours and functions. Such signalling mechanisms may involve alternate G protein coupling or non-G protein mechanisms involving ion channels, receptor tyrosine kinases or proteins such as β-arrestins that are classically involved in GPCR desensitization. Another level of complexity is the growing appreciation of the physiological roles played by dopamine receptor heteromers. Applications of new in vivo techniques have significantly furthered the understanding of the physiological functions played by dopamine receptors. Here we provide an update of the current knowledge regarding the complex biology, signalling, physiology and pharmacology of dopamine receptors.
Collapse
|