1
|
Dowell CK, Hawkins T, Bianco IH. Subsets of extraocular motoneurons produce kinematically distinct saccades during hunting and exploration. Curr Biol 2025; 35:554-573.e6. [PMID: 39818217 DOI: 10.1016/j.cub.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 01/18/2025]
Abstract
Animals construct diverse behavioral repertoires by moving a limited number of body parts with varied kinematics and patterns of coordination. There is evidence that distinct movements can be generated by changes in activity dynamics within a common pool of motoneurons or by selectively engaging specific subsets of motoneurons in a task-dependent manner. However, in most cases, we have an incomplete understanding of the patterns of motoneuron activity that generate distinct actions and of how upstream premotor circuits select and assemble such motor programs. In this study, we used two closely related but kinematically distinct types of saccadic eye movement in larval zebrafish as a model to examine circuit control of movement diversity. In contrast to the prevailing view of a final common pathway, we found that in the oculomotor nucleus, distinct subsets of motoneurons were engaged for each saccade type. This type-specific recruitment was topographically organized and aligned with ultrastructural differences in motoneuron morphology and afferent synaptic innervation. Medially located motoneurons were active for both saccade types, and circuit tracing revealed a type-agnostic premotor pathway that appears to control their recruitment. By contrast, a laterally located subset of motoneurons was specifically active for hunting-associated saccades and received premotor input from pretectal hunting command neurons. Our data support a model in which generalist and action-specific premotor pathways engage distinct subsets of motoneurons to elicit varied movements of the same body part that subserve distinct behavioral functions.
Collapse
Affiliation(s)
- Charles K Dowell
- Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London WC1E 6BT, UK
| | - Thomas Hawkins
- Department of Cell & Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Isaac H Bianco
- Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
2
|
Bellegarda C, Schoppik D. Saccade subtypes: Eyes on the prize. Curr Biol 2025; 35:R89-R91. [PMID: 39904313 DOI: 10.1016/j.cub.2024.11.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Current models of eye movement control propose that motor neurons responsible for moving the eyes contribute to all eye movements, regardless of context. A recent study in larval zebrafish has instead identified specialized neural circuits, including subtypes of motor neurons, for two different types of fast eye movement, one for exploration and the other for hunting.
Collapse
Affiliation(s)
- Celine Bellegarda
- Departments of Otolaryngology, Neuroscience and Physiology and the Neuroscience Institute, NYU Grossman School of Medicine, 550 1st Avenue, New York, NY 10016, USA.
| | - David Schoppik
- Departments of Otolaryngology, Neuroscience and Physiology and the Neuroscience Institute, NYU Grossman School of Medicine, 550 1st Avenue, New York, NY 10016, USA.
| |
Collapse
|
3
|
McGraw CM, Baker CM, Poduri A. Enhanced proconvulsant sensitivity, not spontaneous rapid swimming activity, is a robust correlate of scn1lab loss-of-function in stable mutant and F0 crispant hypopigmented zebrafish expressing GCaMP6s. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633275. [PMID: 39868154 PMCID: PMC11760263 DOI: 10.1101/2025.01.15.633275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Zebrafish models of genetic epilepsy benefit from the ability to assess disease-relevant knock-out alleles with numerous tools, including genetically encoded calcium indicators (GECIs) and hypopigmentation alleles to improve visualization. However, there may be unintended effects of these manipulations on the phenotypes under investigation. There is also debate regarding the use of stable loss-of-function (LoF) alleles in zebrafish, due to genetic compensation (GC). In the present study, we applied a method for combined movement and calcium fluorescence profiling to the study of a zebrafish model of SCN1A, the main gene associated with Dravet syndrome, which encodes the voltage-gated sodium channel alpha1 subunit (Nav1.1). We evaluated for spontaneous and proconvulsant-induced seizure-like activity associated with scn1lab LoF mutations in larval zebrafish expressing a neuronally-driven GECI (elavl3:GCaMP6s) and a nacre mutation causing a common pigmentation defect. In parallel studies of stable scn1lab s552 mutants and F0 crispant larvae generated using a CRISPR/Cas9 multi-sgRNA approach, we find that neither stable nor acute F0 larvae recapitulate the previously reported seizure-like rapid swimming phenotype nor does either group show spontaneous calcium events meeting criteria for seizure-like activity based on a logistic classifier trained on movement and fluorescence features of proconvulsant-induced seizures. This constitutes two independent lines of evidence for a suppressive effect against the scn1lab phenotype, possibly due to the GCaMP6s-derived genetic background (AB) or nacre hypopigmentation. In response to the proconvulsant pentylenetetrazole (PTZ), we see evidence of a separate suppressive effect affecting all conspecific larvae derived from the stable scn1lab s552 line, independent of genotype, possibly related to a maternal effect of scn1lab LoF in mutant parents or the residual TL background. Nonetheless, both stable and F0 crispant fish show enhanced sensitivity to PTZ relative to conspecific larvae, suggesting that proconvulsant sensitivity provides a more robust readout of scn1lab LoF under our experimental conditions. Our study underscores the unexpected challenges associated with the combination of common zebrafish tools with disease alleles in the phenotyping of zebrafish models of genetic epilepsy. Our work further highlights the advantages of using F0 crispants and the evaluation of proconvulsant sensitivity as complementary approaches that faithfully reflect the shared gene-specific pathophysiology underlying spontaneous seizures in stable mutant lines. Future work to understand the molecular mechanisms by which scn1lab-related seizures and PTZ-related hyperexcitability are suppressed under these conditions may shed light on factors contributing to variability in preclinical models of epilepsy more generally and may identify genetic modifiers relevant to Dravet syndrome.
Collapse
Affiliation(s)
- Christopher Michael McGraw
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA (current affiliation)
| | - Cristina M. Baker
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Norwegian University of Science and Technology, Trondheim, Norway (current affiliation)
| | - Annapurna Poduri
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- National Institutes of Neurological Disorders and Stroke, NIH, Bethesda, MD (current affiliation)
| |
Collapse
|
4
|
Vishwanathan A, Sood A, Wu J, Ramirez AD, Yang R, Kemnitz N, Ih D, Turner N, Lee K, Tartavull I, Silversmith WM, Jordan CS, David C, Bland D, Sterling A, Seung HS, Goldman MS, Aksay ERF. Predicting modular functions and neural coding of behavior from a synaptic wiring diagram. Nat Neurosci 2024; 27:2443-2454. [PMID: 39578573 PMCID: PMC11614741 DOI: 10.1038/s41593-024-01784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/11/2024] [Indexed: 11/24/2024]
Abstract
A long-standing goal in neuroscience is to understand how a circuit's form influences its function. Here, we reconstruct and analyze a synaptic wiring diagram of the larval zebrafish brainstem to predict key functional properties and validate them through comparison with physiological data. We identify modules of strongly connected neurons that turn out to be specialized for different behavioral functions, the control of eye and body movements. The eye movement module is further organized into two three-block cycles that support the positive feedback long hypothesized to underlie low-dimensional attractor dynamics in oculomotor control. We construct a neural network model based directly on the reconstructed wiring diagram that makes predictions for the cellular-resolution coding of eye position and neural dynamics. These predictions are verified statistically with calcium imaging-based neural activity recordings. This work demonstrates how connectome-based brain modeling can reveal previously unknown anatomical structure in a neural circuit and provide insights linking network form to function.
Collapse
Affiliation(s)
| | - Alex Sood
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
| | - Jingpeng Wu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Center for Computational Neuroscience, Flatiron Institute, New York, NY, USA
| | - Alexandro D Ramirez
- Institute for Computational Biomedicine and the Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, New York, NY, USA
| | - Runzhe Yang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Nico Kemnitz
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Dodam Ih
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Nicholas Turner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Kisuk Lee
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Brain & Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ignacio Tartavull
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Chris S Jordan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Celia David
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Doug Bland
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Amy Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - H Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Mark S Goldman
- Center for Neuroscience, University of California, Davis, Davis, CA, USA.
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, USA.
- Department of Ophthalmology and Vision Science, University of California, Davis, Davis, CA, USA.
| | - Emre R F Aksay
- Institute for Computational Biomedicine and the Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
5
|
Tasnim M, Wahlquist P, Hill JT. Zebrafish: unraveling genetic complexity through duplicated genes. Dev Genes Evol 2024; 234:99-116. [PMID: 39079985 PMCID: PMC11612004 DOI: 10.1007/s00427-024-00720-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/19/2024] [Indexed: 12/06/2024]
Abstract
The zebrafish is an invaluable model organism for genetic, developmental, and disease research. Although its high conservation with humans is often cited as justification for its use, the zebrafish harbors oft-ignored genetic characteristics that may provide unique insights into gene structure and function. Zebrafish, along with other teleost fish, underwent an additional round of whole genome duplication after their split from tetrapods-resulting in an abundance of duplicated genes when compared to other vertebrates. These duplicated genes have evolved in distinct ways over the ensuing 350 million years. Thus, each gene within a duplicated gene pair has nuanced differences that create a unique identity. By investigating both members of the gene pair together, we can elucidate the mechanisms that underly protein structure and function and drive the complex interplay within biological systems, such as signal transduction cascades, genetic regulatory networks, and evolution of tissue and organ function. It is crucial to leverage such studies to explore these molecular dynamics, which could have far-reaching implications for both basic science and therapeutic development. Here, we will review the role of gene duplications and the existing models for gene divergence and retention following these events. We will also highlight examples within each of these models where studies comparing duplicated genes in the zebrafish have yielded key insights into protein structure, function, and regulation.
Collapse
Affiliation(s)
- Maliha Tasnim
- Department of Cell Biology and Physiology, Brigham Young University, 701 E. University Pkwy, Provo, UT, 84602, USA
| | - Preston Wahlquist
- Department of Cell Biology and Physiology, Brigham Young University, 701 E. University Pkwy, Provo, UT, 84602, USA
| | - Jonathon T Hill
- Department of Cell Biology and Physiology, Brigham Young University, 701 E. University Pkwy, Provo, UT, 84602, USA.
| |
Collapse
|
6
|
Liu KE, Kucenas S. Rohon-beard neurons do not succumb to programmed cell death during zebrafish development. Dev Biol 2024; 515:186-198. [PMID: 38944329 DOI: 10.1016/j.ydbio.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
During neural development, sculpting of early formed circuits by cell death and synaptic pruning is necessary to generate a functional and efficient nervous system. This allows for the establishment of rudimentary circuits which necessitate early organism survival to later undergo subsequent refinement. These changes facilitate additional specificity to stimuli which can lead to increased behavioral complexity. In multiple species, Rohon-Beard neurons (RBs) are the earliest mechanosensory neurons specified and are critical in establishing a rudimentary motor response circuit. Sensory input from RBs gradually becomes redundant as dorsal root ganglion (DRG) neurons develop and integrate into motor circuits. Previous studies demonstrate that RBs undergo a dramatic wave of cell death concurrent with development of the DRG. However, contrary to these studies, we show that neurogenin1+ (ngn1) RBs do not undergo a widespread wave of programmed cell death during early zebrafish development and instead persist until at least 15 days post fertilization (dpf). Starting at 2 dpf, we also observed a dramatic medialization and shrinkage of ngn1+ RB somas along with a gradual downregulation of ngn1 in RBs. This alters a fundamental premise of early zebrafish neural development and opens new avenues to explore mechanisms of RB function, persistence, and circuit refinement.
Collapse
Affiliation(s)
- Kendra E Liu
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, 22904, USA; Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, 22904, USA
| | - Sarah Kucenas
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, 22904, USA; Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA; Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, 22904, USA.
| |
Collapse
|
7
|
Dowell CK, Lau JYN, Antinucci P, Bianco IH. Kinematically distinct saccades are used in a context-dependent manner by larval zebrafish. Curr Biol 2024; 34:4382-4396.e5. [PMID: 39236716 DOI: 10.1016/j.cub.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/27/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024]
Abstract
Saccades are rapid eye movements that are used by all species with good vision. In this study, we set out to characterize the complete repertoire of larval zebrafish horizontal saccades to gain insight into their contributions to visually guided behavior and underlying neural control. We identified five saccade types, defined by systematic differences in kinematics and binocular coordination, which were differentially expressed across a variety of behavioral contexts. Conjugate saccades formed a large group that serves at least four functions. These include fast phases of the optokinetic nystagmus, visual scanning in stationary animals, and shifting gaze in coordination with body turns. In addition, we discovered a previously undescribed pattern of eye-body coordination in which small conjugate saccades partially oppose head rotation to maintain gaze during forward locomotion. Convergent saccades were coordinated with body movements to foveate prey targets during hunting. Detailed kinematic analysis showed that conjugate and convergent saccades differed in the millisecond coordination of the eyes and body and followed distinct velocity main sequence relationships. This challenges the prevailing view that all horizontal saccades are controlled by a common brainstem circuit and instead indicates saccade-type-specific neural control.
Collapse
Affiliation(s)
- Charles K Dowell
- Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London WC1E 6BT, UK
| | - Joanna Y N Lau
- Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London WC1E 6BT, UK
| | - Paride Antinucci
- Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London WC1E 6BT, UK
| | - Isaac H Bianco
- Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
8
|
Paquette SE, Oduor CI, Gaulke A, Stefan S, Bronk P, Dafonseca V, Barulin N, Lee C, Carley R, Morrison AR, Choi BR, Bailey JA, Plavicki JS. Loss of developmentally derived Irf8+ macrophages promotes hyperinnervation and arrhythmia in the adult zebrafish heart. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589909. [PMID: 38659956 PMCID: PMC11042273 DOI: 10.1101/2024.04.17.589909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Recent developments in cardiac macrophage biology have broadened our understanding of the critical functions of macrophages in the heart. As a result, there is further interest in understanding the independent contributions of distinct subsets of macrophage to cardiac development and function. Here, we demonstrate that genetic loss of interferon regulatory factor 8 (Irf8)-positive embryonic-derived macrophages significantly disrupts cardiac conduction, chamber function, and innervation in adult zebrafish. At 4 months post-fertilization (mpf), homozygous irf8st96/st96 mutants have significantly shortened atrial action potential duration and significant differential expression of genes involved in cardiac contraction. Functional in vivo assessments via electro- and echocardiograms at 12 mpf reveal that irf8 mutants are arrhythmogenic and exhibit diastolic dysfunction and ventricular stiffening. To identify the molecular drivers of the functional disturbances in irf8 null zebrafish, we perform single cell RNA sequencing and immunohistochemistry, which reveal increased leukocyte infiltration, epicardial activation, mesenchymal gene expression, and fibrosis. Irf8 null hearts are also hyperinnervated and have aberrant axonal patterning, a phenotype not previously assessed in the context of cardiac macrophage loss. Gene ontology analysis supports a novel role for activated epicardial-derived cells (EPDCs) in promoting neurogenesis and neuronal remodeling in vivo. Together, these data uncover significant cardiac abnormalities following embryonic macrophage loss and expand our knowledge of critical macrophage functions in heart physiology and governing homeostatic heart health.
Collapse
Affiliation(s)
- Shannon E. Paquette
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Cliff I. Oduor
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Amy Gaulke
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Sabina Stefan
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Peter Bronk
- Cardiovascular Research Center, Brown University Warren Alpert Medical School, Providence, RI, 02912, USA
| | - Vanny Dafonseca
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Nikolai Barulin
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Cadence Lee
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI, 02908, USA
- Ocean State Research Institute, Inc., Providence, RI, 02908, USA
| | - Rachel Carley
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI, 02908, USA
- Ocean State Research Institute, Inc., Providence, RI, 02908, USA
| | - Alan R. Morrison
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI, 02908, USA
- Ocean State Research Institute, Inc., Providence, RI, 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Bum-Rak Choi
- Cardiovascular Research Center, Brown University Warren Alpert Medical School, Providence, RI, 02912, USA
| | - Jeffrey A. Bailey
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Jessica S. Plavicki
- Department of Pathology & Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| |
Collapse
|
9
|
Whyte-Fagundes PA, Vance A, Carroll A, Figueroa F, Manukyan C, Baraban SC. Testing of putative antiseizure medications in a preclinical Dravet syndrome zebrafish model. Brain Commun 2024; 6:fcae135. [PMID: 38707709 PMCID: PMC11069116 DOI: 10.1093/braincomms/fcae135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/27/2024] [Accepted: 04/12/2024] [Indexed: 05/07/2024] Open
Abstract
Dravet syndrome is a severe genetic epilepsy primarily caused by de novo mutations in a voltage-activated sodium channel gene (SCN1A). Patients face life-threatening seizures that are largely resistant to available anti-seizure medications. Preclinical Dravet syndrome animal models are a valuable tool to identify candidate anti-seizure medications for these patients. Among these, scn1lab mutant zebrafish, exhibiting spontaneous seizure-like activity, are particularly amenable to large-scale drug screening. Thus far, we have screened more than 3000 drug candidates in scn1lab zebrafish mutants, identifying valproate, stiripentol, and fenfluramine e.g. Food and Drug Administration-approved drugs, with clinical application in the Dravet syndrome population. Successful phenotypic screening in scn1lab mutant zebrafish is rigorous and consists of two stages: (i) a locomotion-based assay measuring high-velocity convulsive swim behaviour and (ii) an electrophysiology-based assay, using in vivo local field potential recordings, to quantify electrographic seizure-like events. Historically, nearly 90% of drug candidates fail during translation from preclinical models to the clinic. With such a high failure rate, it becomes necessary to address issues of replication and false positive identification. Leveraging our scn1lab zebrafish assays is one approach to address these problems. Here, we curated a list of nine anti-seizure drug candidates recently identified by other groups using preclinical Dravet syndrome models: 1-Ethyl-2-benzimidazolinone, AA43279, chlorzoxazone, donepezil, lisuride, mifepristone, pargyline, soticlestat and vorinostat. First-stage locomotion-based assays in scn1lab mutant zebrafish identified only 1-Ethyl-2-benzimidazolinone, chlorzoxazone and lisuride. However, second-stage local field potential recording assays did not show significant suppression of spontaneous electrographic seizure activity for any of the nine anti-seizure drug candidates. Surprisingly, soticlestat induced frank electrographic seizure-like discharges in wild-type control zebrafish. Taken together, our results failed to replicate clear anti-seizure efficacy for these drug candidates highlighting a necessity for strict scientific standards in preclinical identification of anti-seizure medications.
Collapse
Affiliation(s)
- Paige A Whyte-Fagundes
- Epilepsy Research Laboratory and Weill Institute for Neuroscience, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Anjelica Vance
- Epilepsy Research Laboratory and Weill Institute for Neuroscience, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Aloe Carroll
- Behavioral Neurosciences, Northeastern University, Boston, MA 02115, USA
| | - Francisco Figueroa
- Epilepsy Research Laboratory and Weill Institute for Neuroscience, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Catherine Manukyan
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Scott C Baraban
- Epilepsy Research Laboratory and Weill Institute for Neuroscience, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Brenet A, Somkhit J, Csaba Z, Ciura S, Kabashi E, Yanicostas C, Soussi-Yanicostas N. Microglia Mitigate Neuronal Activation in a Zebrafish Model of Dravet Syndrome. Cells 2024; 13:684. [PMID: 38667299 PMCID: PMC11049242 DOI: 10.3390/cells13080684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
It has been known for a long time that epileptic seizures provoke brain neuroinflammation involving the activation of microglial cells. However, the role of these cells in this disease context and the consequences of their inflammatory activation on subsequent neuron network activity remain poorly understood so far. To fill this gap of knowledge and gain a better understanding of the role of microglia in the pathophysiology of epilepsy, we used an established zebrafish Dravet syndrome epilepsy model based on Scn1Lab sodium channel loss-of-function, combined with live microglia and neuronal Ca2+ imaging, local field potential (LFP) recording, and genetic microglia ablation. Data showed that microglial cells in scn1Lab-deficient larvae experiencing epileptiform seizures displayed morphological and biochemical changes characteristic of M1-like pro-inflammatory activation; i.e., reduced branching, amoeboid-like morphology, and marked increase in the number of microglia expressing pro-inflammatory cytokine Il1β. More importantly, LFP recording, Ca2+ imaging, and swimming behavior analysis showed that microglia-depleted scn1Lab-KD larvae displayed an increase in epileptiform seizure-like neuron activation when compared to that seen in scn1Lab-KD individuals with microglia. These findings strongly suggest that despite microglia activation and the synthesis of pro-inflammatory cytokines, these cells provide neuroprotective activities to epileptic neuronal networks, making these cells a promising therapeutic target in epilepsy.
Collapse
Affiliation(s)
- Alexandre Brenet
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France (C.Y.)
| | - Julie Somkhit
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France (C.Y.)
| | - Zsolt Csaba
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France (C.Y.)
| | - Sorana Ciura
- Institut Imagine, University Paris Descartes, Necker-Enfants Malades Hospital, 75015 Paris, France
| | - Edor Kabashi
- Institut Imagine, University Paris Descartes, Necker-Enfants Malades Hospital, 75015 Paris, France
| | - Constantin Yanicostas
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France (C.Y.)
- INSERM, T3S, Department of Biochemistry, Université Paris Cité, 75006 Paris, France
| | - Nadia Soussi-Yanicostas
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France (C.Y.)
- INSERM, T3S, Department of Biochemistry, Université Paris Cité, 75006 Paris, France
| |
Collapse
|
11
|
Rodwell V, Patil M, Kuht HJ, Neuhauss SCF, Norton WHJ, Thomas MG. Zebrafish Optokinetic Reflex: Minimal Reporting Guidelines and Recommendations. BIOLOGY 2023; 13:4. [PMID: 38275725 PMCID: PMC10813647 DOI: 10.3390/biology13010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
Optokinetic reflex (OKR) assays in zebrafish models are a valuable tool for studying a diverse range of ophthalmological and neurological conditions. Despite its increasing popularity in recent years, there are no clear reporting guidelines for the assay. Following reporting guidelines in research enhances reproducibility, reduces bias, and mitigates underreporting and poor methodologies in published works. To better understand optimal reporting standards for an OKR assay in zebrafish, we performed a systematic literature review exploring the animal, environmental, and technical factors that should be considered. Using search criteria from three online databases, a total of 109 research papers were selected for review. Multiple crucial factors were identified, including larval characteristics, sample size, fixing method, OKR set-up, distance of stimulus, detailed stimulus parameters, eye recording, and eye movement analysis. The outcome of the literature analysis highlighted the insufficient information provided in past research papers and the lack of a systematic way to present the parameters related to each of the experimental factors. To circumvent any future errors and champion robust transparent research, we have created the zebrafish optokinetic (ZOK) reflex minimal reporting guideline.
Collapse
Affiliation(s)
- Vanessa Rodwell
- Ulverscroft Eye Unit, School of Psychology and Vision Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Manjiri Patil
- Ulverscroft Eye Unit, School of Psychology and Vision Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Helen J. Kuht
- Ulverscroft Eye Unit, School of Psychology and Vision Sciences, University of Leicester, Leicester LE1 7RH, UK
| | | | - William H. J. Norton
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Mervyn G. Thomas
- Ulverscroft Eye Unit, School of Psychology and Vision Sciences, University of Leicester, Leicester LE1 7RH, UK
- Department of Ophthalmology, University Hospitals of Leicester NHS Trust, Leicester Royal Infirmary, Leicester LE1 5WW, UK
- Department of Clinical Genetics, University Hospitals of Leicester NHS Trust, Leicester Royal Infirmary, Leicester LE1 5WW, UK
| |
Collapse
|
12
|
Jin DS, Neelakantan U, Lacadie CM, Chen T, Rooney B, Liu Y, Wu W, Wang Z, Papademetris X, Hoffman EJ. Brain Registration and Evaluation for Zebrafish (BREEZE)-mapping: A pipeline for whole-brain structural and activity analyses. STAR Protoc 2023; 4:102647. [PMID: 37897734 PMCID: PMC10641303 DOI: 10.1016/j.xpro.2023.102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/05/2023] [Accepted: 09/26/2023] [Indexed: 10/30/2023] Open
Abstract
Here, we present Brain Registration and Evaluation for Zebrafish (BREEZE)-mapping, a user-friendly pipeline for the registration and analysis of whole-brain images in larval zebrafish. We describe steps for pre-processing, registration, quantification, and visualization of whole-brain phenotypes in zebrafish mutants of genes associated with neurodevelopmental and neuropsychiatric disorders. By utilizing BioImage Suite Web, an open-source software package originally developed for processing human brain imaging data, we provide a highly accessible whole-brain mapping protocol developed for users with general computational proficiency. For complete details on the use and execution of this protocol, please refer to Weinschutz Mendes et al. (2023).1.
Collapse
Affiliation(s)
- David S Jin
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale University, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Uma Neelakantan
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Cheryl M Lacadie
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA
| | - Tianying Chen
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Brendan Rooney
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yunqing Liu
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Weimiao Wu
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Zuoheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Xenophon Papademetris
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA; Section of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT 06510, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| | - Ellen J Hoffman
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
13
|
Whyte-Fagundes P, Vance A, Carroll A, Figueroa F, Manukyan C, Baraban SC. Testing of putative antiseizure drugs in a preclinical Dravet syndrome zebrafish model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.11.566723. [PMID: 38014342 PMCID: PMC10680609 DOI: 10.1101/2023.11.11.566723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Dravet syndrome (DS) is a severe genetic epilepsy primarily caused by de novo mutations in a voltage-activated sodium channel gene (SCN1A). Patients face life-threatening seizures that are largely resistant to available anti-seizure medications (ASM). Preclinical DS animal models are a valuable tool to identify candidate ASMs for these patients. Among these, scn1lab mutant zebrafish exhibiting spontaneous seizure-like activity are particularly amenable to large-scale drug screening. Prior screening in a scn1lab mutant zebrafish line generated using N-ethyl-Nnitrosourea (ENU) identified valproate, stiripentol, and fenfluramine e.g., Federal Drug Administration (FDA) approved drugs with clinical application in the DS population. Successful phenotypic screening in scn1lab mutant zebrafish consists of two stages: (i) a locomotion-based assay measuring high-velocity convulsive swim behavior and (ii) an electrophysiology-based assay, using in vivo local field potential (LFP) recordings, to quantify electrographic seizure-like events. Using this strategy more than 3000 drug candidates have been screened in scn1lab zebrafish mutants. Here, we curated a list of nine additional anti-seizure drug candidates recently identified in preclinical models: 1-EBIO, AA43279, chlorzoxazone, donepezil, lisuride, mifepristone, pargyline, soticlestat and vorinostat. First-stage locomotion-based assays in scn1lab mutant zebrafish identified only 1-EBIO, chlorzoxazone and lisuride. However, second-stage LFP recording assays did not show significant suppression of spontaneous electrographic seizure activity for any of the nine anti-seizure drug candidates. Surprisingly, soticlestat induced frank electrographic seizure-like discharges in wild-type control zebrafish. Taken together, our results failed to replicate clear anti-seizure efficacy for these drug candidates highlighting a necessity for strict scientific standards in preclinical identification of ASMs.
Collapse
Affiliation(s)
- P Whyte-Fagundes
- Epilepsy Research Laboratory and Weill Institute for Neuroscience, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - A Vance
- Epilepsy Research Laboratory and Weill Institute for Neuroscience, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - A Carroll
- Behavioral Neurosciences, Northeastern University, Boston, MA, USA
| | - F Figueroa
- Epilepsy Research Laboratory and Weill Institute for Neuroscience, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - C Manukyan
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - S C Baraban
- Epilepsy Research Laboratory and Weill Institute for Neuroscience, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
14
|
Sri Hari A, Banerji R, Liang LP, Fulton RE, Huynh CQ, Fabisiak T, McElroy PB, Roede JR, Patel M. Increasing glutathione levels by a novel posttranslational mechanism inhibits neuronal hyperexcitability. Redox Biol 2023; 67:102895. [PMID: 37769522 PMCID: PMC10539966 DOI: 10.1016/j.redox.2023.102895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
Glutathione (GSH) depletion, and impaired redox homeostasis have been observed in experimental animal models and patients with epilepsy. Pleiotropic strategies that elevate GSH levels via transcriptional regulation have been shown to significantly decrease oxidative stress and seizure frequency, increase seizure threshold, and rescue certain cognitive deficits. Whether elevation of GSH per se alters neuronal hyperexcitability remains unanswered. We previously showed that thiols such as dimercaprol (DMP) elevate GSH via post-translational activation of glutamate cysteine ligase (GCL), the rate limiting GSH biosynthetic enzyme. Here, we asked if elevation of cellular GSH by DMP altered neuronal hyperexcitability in-vitro and in-vivo. Treatment of primary neuronal-glial cerebrocortical cultures with DMP elevated GSH and inhibited a voltage-gated potassium channel blocker (4-aminopyridine, 4AP) induced neuronal hyperexcitability. DMP increased GSH in wildtype (WT) zebrafish larvae and significantly attenuated convulsant pentylenetetrazol (PTZ)-induced acute 'seizure-like' swim behavior. DMP treatment increased GSH and inhibited convulsive, spontaneous 'seizure-like' swim behavior in the Dravet Syndrome (DS) zebrafish larvae (scn1Lab). Furthermore, DMP treatment significantly decreased spontaneous electrographic seizures and associated seizure parameters in scn1Lab zebrafish larvae. We investigated the role of the redox-sensitive mammalian target of rapamycin (mTOR) pathway due to the presence of several cysteine-rich proteins and their involvement in regulating neuronal excitability. Treatment of primary neuronal-glial cerebrocortical cultures with 4AP or l-buthionine-(S,R)-sulfoximine (BSO), an irreversible inhibitor of GSH biosynthesis, significantly increased mTOR complex I (mTORC1) activity which was rescued by pre-treatment with DMP. Furthermore, BSO-mediated GSH depletion oxidatively modified the tuberous sclerosis protein complex (TSC) consisting of hamartin (TSC1), tuberin (TSC2), and TBC1 domain family member 7 (TBC1D7) which are critical negative regulators of mTORC1. In summary, our results suggest that DMP-mediated GSH elevation by a novel post-translational mechanism can inhibit neuronal hyperexcitability both in-vitro and in-vivo and a plausible link is the redox sensitive mTORC1 pathway.
Collapse
Affiliation(s)
- Ashwini Sri Hari
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Rajeswari Banerji
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ruth E Fulton
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Christopher Quoc Huynh
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Timothy Fabisiak
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Pallavi Bhuyan McElroy
- The Janssen Pharmaceutical Companies of Johnson & Johnson, Greater Philadelphia Area, Horsham, PA, 19044, USA
| | - James R Roede
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
15
|
Piatkevich KD, Boyden ES. Optogenetic control of neural activity: The biophysics of microbial rhodopsins in neuroscience. Q Rev Biophys 2023; 57:e1. [PMID: 37831008 DOI: 10.1017/s0033583523000033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Optogenetics, the use of microbial rhodopsins to make the electrical activity of targeted neurons controllable by light, has swept through neuroscience, enabling thousands of scientists to study how specific neuron types contribute to behaviors and pathologies, and how they might serve as novel therapeutic targets. By activating a set of neurons, one can probe what functions they can initiate or sustain, and by silencing a set of neurons, one can probe the functions they are necessary for. We here review the biophysics of these molecules, asking why they became so useful in neuroscience for the study of brain circuitry. We review the history of the field, including early thinking, early experiments, applications of optogenetics, pre-optogenetics targeted neural control tools, and the history of discovering and characterizing microbial rhodopsins. We then review the biophysical attributes of rhodopsins that make them so useful to neuroscience - their classes and structure, their photocycles, their photocurrent magnitudes and kinetics, their action spectra, and their ion selectivity. Our hope is to convey to the reader how specific biophysical properties of these molecules made them especially useful to neuroscientists for a difficult problem - the control of high-speed electrical activity, with great precision and ease, in the brain.
Collapse
Affiliation(s)
- Kiryl D Piatkevich
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Edward S Boyden
- McGovern Institute and Koch Institute, Departments of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, K. Lisa Yang Center for Bionics and Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| |
Collapse
|
16
|
Martins TG, Soliman R, Cordero-Maldonado ML, Donato C, Ameli C, Mombaerts L, Skupin A, Peri F, Crawford AD. Seizure-induced increase in microglial cell population in the developing zebrafish brain. Epilepsy Res 2023; 195:107203. [PMID: 37572541 DOI: 10.1016/j.eplepsyres.2023.107203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/21/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
Epilepsy is a chronic brain disorder characterized by unprovoked and recurrent seizures, of which 60% are of unknown etiology. Recent studies implicate microglia in the pathophysiology of epilepsy. However, their role in this process, in particular following early-life seizures, remains poorly understood due in part to the lack of suitable experimental models allowing the in vivo imaging of microglial activity. Given the advantage of zebrafish larvae for minimally-invasive imaging approaches, we sought for the first time to describe the microglial responses after acute seizures in two different zebrafish larval models: a chemically-induced epileptic model by the systemic injection of kainate at 3 days post-fertilization, and the didys552 genetic epilepsy model, which carries a mutation in scn1lab that leads to spontaneous epileptiform discharges. Kainate-treated larvae exhibited transient brain damage as shown by increased numbers of apoptotic nuclei as early as one day post-injection, which was followed by an increase in the number of microglia in the brain. A similar microglial phenotype was also observed in didys552-/- mutants, suggesting that microglia numbers change in response to seizure-like activity in the brain. Interestingly, kainate-treated larvae also displayed a decreased seizure threshold towards subsequent pentylenetetrazole-induced seizures, as shown by higher locomotor and encephalographic activity in comparison with vehicle-injected larvae. These results are comparable to kainate-induced rodent seizure models and suggest the suitability of these zebrafish seizure models for future studies, in particular to elucidate the links between epileptogenesis and microglial dynamic changes after seizure induction in the developing brain, and to understand how these modulate seizure susceptibility.
Collapse
Affiliation(s)
- Teresa G Martins
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Remon Soliman
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - Cristina Donato
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Corrado Ameli
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Laurent Mombaerts
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg; University of California, San Diego (UCSD), La Jolla, CA, United States
| | - Francesca Peri
- Developmental Biology Group, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Alexander D Crawford
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg; Institute for Orphan Drug Discovery, Bremerhaven, Germany.
| |
Collapse
|
17
|
D'Amora M, Galgani A, Marchese M, Tantussi F, Faraguna U, De Angelis F, Giorgi FS. Zebrafish as an Innovative Tool for Epilepsy Modeling: State of the Art and Potential Future Directions. Int J Mol Sci 2023; 24:ijms24097702. [PMID: 37175408 PMCID: PMC10177843 DOI: 10.3390/ijms24097702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
This article discusses the potential of Zebrafish (ZF) (Danio Rerio), as a model for epilepsy research. Epilepsy is a neurological disorder affecting both children and adults, and many aspects of this disease are still poorly understood. In vivo and in vitro models derived from rodents are the most widely used for studying both epilepsy pathophysiology and novel drug treatments. However, researchers have recently obtained several valuable insights into these two fields of investigation by studying ZF. Despite the relatively simple brain structure of these animals, researchers can collect large amounts of data in a much shorter period and at lower costs compared to classical rodent models. This is particularly useful when a large number of candidate antiseizure drugs need to be screened, and ethical issues are minimized. In ZF, seizures have been induced through a variety of chemoconvulsants, primarily pentylenetetrazol (PTZ), kainic acid (KA), and pilocarpine. Furthermore, ZF can be easily genetically modified to test specific aspects of monogenic forms of human epilepsy, as well as to discover potential convulsive phenotypes in monogenic mutants. The article reports on the state-of-the-art and potential new fields of application of ZF research, including its potential role in revealing epileptogenic mechanisms, rather than merely assessing iatrogenic acute seizure modulation.
Collapse
Affiliation(s)
- Marta D'Amora
- Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Department of Biology, University of Pisa, 56125 Pisa, Italy
| | - Alessandro Galgani
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Maria Marchese
- Molecular Medicine and Neurobiology-ZebraLab, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | | | - Ugo Faraguna
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | | | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
18
|
Weinschutz Mendes H, Neelakantan U, Liu Y, Fitzpatrick SE, Chen T, Wu W, Pruitt A, Jin DS, Jamadagni P, Carlson M, Lacadie CM, Enriquez KD, Li N, Zhao D, Ijaz S, Sakai C, Szi C, Rooney B, Ghosh M, Nwabudike I, Gorodezky A, Chowdhury S, Zaheer M, McLaughlin S, Fernandez JM, Wu J, Eilbott JA, Vander Wyk B, Rihel J, Papademetris X, Wang Z, Hoffman EJ. High-throughput functional analysis of autism genes in zebrafish identifies convergence in dopaminergic and neuroimmune pathways. Cell Rep 2023; 42:112243. [PMID: 36933215 PMCID: PMC10277173 DOI: 10.1016/j.celrep.2023.112243] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/15/2022] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
Advancing from gene discovery in autism spectrum disorders (ASDs) to the identification of biologically relevant mechanisms remains a central challenge. Here, we perform parallel in vivo functional analysis of 10 ASD genes at the behavioral, structural, and circuit levels in zebrafish mutants, revealing both unique and overlapping effects of gene loss of function. Whole-brain mapping identifies the forebrain and cerebellum as the most significant contributors to brain size differences, while regions involved in sensory-motor control, particularly dopaminergic regions, are associated with altered baseline brain activity. Finally, we show a global increase in microglia resulting from ASD gene loss of function in select mutants, implicating neuroimmune dysfunction as a key pathway relevant to ASD biology.
Collapse
Affiliation(s)
| | - Uma Neelakantan
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yunqing Liu
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Sarah E Fitzpatrick
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA; MD-PhD Program, Yale School of Medicine, New Haven, CT 06510, USA
| | - Tianying Chen
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Weimiao Wu
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - April Pruitt
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA
| | - David S Jin
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA; Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Marina Carlson
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA
| | - Cheryl M Lacadie
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Ningshan Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA; SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dejian Zhao
- Department of Genetics, Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sundas Ijaz
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Catalina Sakai
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Christina Szi
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Brendan Rooney
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Marcus Ghosh
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Ijeoma Nwabudike
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA; MD-PhD Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA
| | - Andrea Gorodezky
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sumedha Chowdhury
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Meeraal Zaheer
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sarah McLaughlin
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Jia Wu
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jeffrey A Eilbott
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Brent Vander Wyk
- Department of Internal Medicine, Section of Geriatrics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Xenophon Papademetris
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| | - Zuoheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Ellen J Hoffman
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
19
|
An Overview towards Zebrafish Larvae as a Model for Ocular Diseases. Int J Mol Sci 2023; 24:ijms24065387. [PMID: 36982479 PMCID: PMC10048880 DOI: 10.3390/ijms24065387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
Despite the obvious morphological differences in the visual system, zebrafish share a similar architecture and components of the same embryonic origin as humans. The zebrafish retina has the same layered structure and cell types with similar metabolic and phototransduction support as humans, and is functional 72 h after fertilization, allowing tests of visual function to be performed. The zebrafish genomic database supports genetic mapping studies as well as gene editing, both of which are useful in the ophthalmological field. It is possible to model ocular disorders in zebrafish, as well as inherited retinal diseases or congenital or acquired malformations. Several approaches allow the evaluation of local pathological processes derived from systemic disorders, such as chemical exposure to produce retinal hypoxia or glucose exposure to produce hyperglycemia, mimicking retinopathy of prematurity or diabetic retinopathy, respectively. The pathogenesis of ocular infections, autoimmune diseases, or aging can also be assessed in zebrafish larvae, and the preserved cellular and molecular immune mechanisms can be assessed. Finally, the zebrafish model for the study of the pathologies of the visual system complements certain deficiencies in experimental models of mammals since the regeneration of the zebrafish retina is a valuable tool for the study of degenerative processes and the discovery of new drugs and therapies.
Collapse
|
20
|
Concise Review: Stem Cell Models of SCN1A-Related Encephalopathies—Current Perspective and Future Therapies. Cells 2022; 11:cells11193119. [PMID: 36231081 PMCID: PMC9561991 DOI: 10.3390/cells11193119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations in the SCN1A gene can cause a variety of phenotypes, ranging from mild forms, such as febrile seizures and generalized epilepsy with febrile seizures plus, to severe, such as Dravet and non-Dravet developmental epileptic encephalopathies. Until now, more than two thousand pathogenic variants of the SCN1A gene have been identified and different pathogenic mechanisms (loss vs. gain of function) described, but the precise molecular mechanisms responsible for the deficits exhibited by patients are not fully elucidated. Additionally, the phenotypic variability proves the involvement of other genetic factors in its final expression. This is the reason why animal models and cell line models used to explore the molecular pathology of SCN1A-related disorders are only of limited use. The results of studies based on such models cannot be directly translated to affected individuals because they do not address each patient’s unique genetic background. The generation of functional neurons and glia for patient-derived iPSCs, together with the generation of isogenic controls using CRISPR/Cas technology, and finally, the 3D brain organoid models, seem to be a good way to solve this problem. Here, we review SCN1A-related encephalopathies, as well as the stem cell models used to explore their molecular basis.
Collapse
|
21
|
Crouzier L, Richard EM, Sourbron J, Lagae L, Maurice T, Delprat B. Use of Zebrafish Models to Boost Research in Rare Genetic Diseases. Int J Mol Sci 2021; 22:13356. [PMID: 34948153 PMCID: PMC8706563 DOI: 10.3390/ijms222413356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Rare genetic diseases are a group of pathologies with often unmet clinical needs. Even if rare by a single genetic disease (from 1/2000 to 1/more than 1,000,000), the total number of patients concerned account for approximatively 400 million peoples worldwide. Finding treatments remains challenging due to the complexity of these diseases, the small number of patients and the challenge in conducting clinical trials. Therefore, innovative preclinical research strategies are required. The zebrafish has emerged as a powerful animal model for investigating rare diseases. Zebrafish combines conserved vertebrate characteristics with high rate of breeding, limited housing requirements and low costs. More than 84% of human genes responsible for diseases present an orthologue, suggesting that the majority of genetic diseases could be modelized in zebrafish. In this review, we emphasize the unique advantages of zebrafish models over other in vivo models, particularly underlining the high throughput phenotypic capacity for therapeutic screening. We briefly introduce how the generation of zebrafish transgenic lines by gene-modulating technologies can be used to model rare genetic diseases. Then, we describe how zebrafish could be phenotyped using state-of-the-art technologies. Two prototypic examples of rare diseases illustrate how zebrafish models could play a critical role in deciphering the underlying mechanisms of rare genetic diseases and their use to identify innovative therapeutic solutions.
Collapse
Affiliation(s)
- Lucie Crouzier
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| | - Elodie M. Richard
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| | - Jo Sourbron
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, 3000 Leuven, Belgium; (J.S.); (L.L.)
| | - Lieven Lagae
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, 3000 Leuven, Belgium; (J.S.); (L.L.)
| | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| | - Benjamin Delprat
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| |
Collapse
|
22
|
Abstract
Danio rerio (zebrafish) are a powerful experimental model for genetic and developmental studies. Adaptation of zebrafish to study seizures was initially established using the common convulsant agent pentylenetetrazole (PTZ). Larval PTZ-exposed zebrafish exhibit clear behavioral convulsions and abnormal electrographic activity, reminiscent of interictal and ictal epileptiform discharge. By using this model, our laboratory developed simple locomotion-based and electrophysiological assays to monitor and quantify seizures in larval zebrafish. Zebrafish also offer multiple advantages for rapid genetic manipulation and high-throughput phenotype-based drug screening. Combining these seizure assays with genetically modified zebrafish that represent Dravet syndrome, a rare genetic epilepsy, ultimately contributed to a phenotype-based screen of over 3500 drugs. Several drugs identified in these zebrafish screens are currently in clinical or compassionate-use trials. The emergence of this 'aquarium-to-bedside' approach suggests that broader efforts to adapt and improve upon this zebrafish-centric strategy can drive a variety of exciting new discoveries.
Collapse
Affiliation(s)
- Scott C Baraban
- Department of Neurological Surgery and Weill Institute for Neuroscience, University of California, San Francisco,CA 94143-0350, USA
| |
Collapse
|
23
|
Shcheglovitov A, Peterson RT. Screening Platforms for Genetic Epilepsies-Zebrafish, iPSC-Derived Neurons, and Organoids. Neurotherapeutics 2021; 18:1478-1489. [PMID: 34595731 PMCID: PMC8608971 DOI: 10.1007/s13311-021-01115-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 02/04/2023] Open
Abstract
Recent advances in molecular and cellular engineering, such as human cell reprogramming, genome editing, and patient-specific organoids, have provided unprecedented opportunities for investigating human disorders in both animals and human-based models at an improved pace and precision. This progress will inevitably lead to the development of innovative drug-screening platforms and new patient-specific therapeutics. In this review, we discuss recent advances that have been made using zebrafish and human-induced pluripotent stem cell (iPSC)-derived neurons and organoids for modeling genetic epilepsies. We also provide our prospective on how these models can potentially be combined to build new screening platforms for antiseizure and antiepileptogenic drug discovery that harness the robustness and tractability of zebrafish models as well as the patient-specific genetics and biology of iPSC-derived neurons and organoids.
Collapse
|
24
|
Wu MY, Carbo-Tano M, Mirat O, Lejeune FX, Roussel J, Quan FB, Fidelin K, Wyart C. Spinal sensory neurons project onto the hindbrain to stabilize posture and enhance locomotor speed. Curr Biol 2021; 31:3315-3329.e5. [PMID: 34146485 DOI: 10.1016/j.cub.2021.05.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 03/12/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022]
Abstract
In the spinal cord, cerebrospinal fluid-contacting neurons (CSF-cNs) are GABAergic interoceptive sensory neurons that detect spinal curvature via a functional coupling with the Reissner fiber. This mechanosensory system has recently been found to be involved in spine morphogenesis and postural control but the underlying mechanisms are not fully understood. In zebrafish, CSF-cNs project an ascending and ipsilateral axon reaching two to six segments away. Rostralmost CSF-cNs send their axons ipsilaterally into the hindbrain, a brain region containing motor nuclei and reticulospinal neurons (RSNs), which send descending motor commands to spinal circuits. Until now, the synaptic connectivity of CSF-cNs has only been investigated in the spinal cord, where they synapse onto motor neurons and premotor excitatory interneurons. The identity of CSF-cN targets in the hindbrain and the behavioral relevance of these sensory projections from the spinal cord to the hindbrain are unknown. Here, we provide anatomical and molecular evidence that rostralmost CSF-cNs synapse onto the axons of large RSNs including Mauthner cells and V2a neurons. Functional anatomy and optogenetically assisted mapping reveal that rostral CSF-cNs also synapse onto the soma and dendrites of cranial motor neurons innervating hypobranchial muscles. During acousto-vestibular evoked escape responses, ablation of rostralmost CSF-cNs results in a weaker escape response with a decreased C-bend amplitude, lower speed, and deficient postural control. Our study demonstrates that spinal sensory feedback enhances speed and stabilizes posture, and reveals a novel spinal gating mechanism acting on the output of descending commands sent from the hindbrain to the spinal cord.
Collapse
Affiliation(s)
- Ming-Yue Wu
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Martin Carbo-Tano
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France.
| | - Olivier Mirat
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Francois-Xavier Lejeune
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Julian Roussel
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Feng B Quan
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Kevin Fidelin
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Claire Wyart
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France.
| |
Collapse
|
25
|
Leyden C, Brysch C, Arrenberg AB. A distributed saccade-associated network encodes high velocity conjugate and monocular eye movements in the zebrafish hindbrain. Sci Rep 2021; 11:12644. [PMID: 34135354 PMCID: PMC8209155 DOI: 10.1038/s41598-021-90315-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/07/2021] [Indexed: 02/05/2023] Open
Abstract
Saccades are rapid eye movements that redirect gaze. Their magnitudes and directions are tightly controlled by the oculomotor system, which is capable of generating conjugate, monocular, convergent and divergent saccades. Recent studies suggest a mainly monocular control of saccades in mammals, although the development of binocular control and the interaction of different functional populations is less well understood. For zebrafish, a well-established model in sensorimotor research, the nature of binocular control in this key oculomotor behavior is unknown. Here, we use the optokinetic response and calcium imaging to characterize how the developing zebrafish oculomotor system encodes the diverse repertoire of saccades. We find that neurons with phasic saccade-associated activity (putative burst neurons) are most frequent in dorsal regions of the hindbrain and show elements of both monocular and binocular encoding, revealing a mix of the response types originally hypothesized by Helmholtz and Hering. Additionally, we observed a certain degree of behavior-specific recruitment in individual neurons. Surprisingly, calcium activity is only weakly tuned to saccade size. Instead, saccade size is apparently controlled by a push-pull mechanism of opposing burst neuron populations. Our study reveals the basic layout of a developing vertebrate saccade system and provides a perspective into the evolution of the oculomotor system.
Collapse
Affiliation(s)
- Claire Leyden
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tuebingen, 72076, Tuebingen, Germany
- Graduate Training Centre of Neuroscience, University of Tuebingen, 72074, Tuebingen, Germany
| | - Christian Brysch
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tuebingen, 72076, Tuebingen, Germany
- Graduate Training Centre of Neuroscience, University of Tuebingen, 72074, Tuebingen, Germany
| | - Aristides B Arrenberg
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tuebingen, 72076, Tuebingen, Germany.
| |
Collapse
|
26
|
Kohl S, Llavona P, Sauer A, Reuter P, Weisschuh N, Kempf M, Dehmelt FA, Arrenberg AB, Sliesoraityte I, Zrenner E, van Schooneveld MJ, Rudolph G, Kühlewein L, Wissinger B. A duplication on chromosome 16q12 affecting the IRXB gene cluster is associated with autosomal dominant cone dystrophy with early tritanopic color vision defect. Hum Mol Genet 2021; 30:1218-1229. [PMID: 33891002 PMCID: PMC8212766 DOI: 10.1093/hmg/ddab117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Cone dystrophies are a rare subgroup of inherited retinal dystrophies and hallmarked by color vision defects, low or decreasing visual acuity and central vision loss, nystagmus and photophobia. Applying genome-wide linkage analysis and array comparative genome hybridization, we identified a locus for autosomal dominant cone dystrophy on chromosome 16q12 in four independent multigeneration families. The locus is defined by duplications of variable size with a smallest region of overlap of 608 kb affecting the IRXB gene cluster and encompasses the genes IRX5 and IRX6. IRX5 and IRX6 belong to the Iroquois (Iro) protein family of homeodomain-containing transcription factors involved in patterning and regionalization of embryonic tissue in vertebrates, including the eye and the retina. All patients presented with a unique progressive cone dystrophy phenotype hallmarked by early tritanopic color vision defects. We propose that the disease underlies a misregulation of the IRXB gene cluster on chromosome 16q12 and demonstrate that overexpression of Irx5a and Irx6a, the two orthologous genes in zebrafish, results in visual impairment in 5-day-old zebrafish larvae.
Collapse
Affiliation(s)
- Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen 72076, Germany
| | - Pablo Llavona
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen 72076, Germany
| | - Alexandra Sauer
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen 72076, Germany
| | - Peggy Reuter
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen 72076, Germany
| | - Nicole Weisschuh
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen 72076, Germany
| | - Melanie Kempf
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Universitätsklinikum Tübingen, Tübingen 72076, Germany.,Center for Rare Eye Diseases, University of Tübingen, Tübingen 72076, Germany
| | - Florian Alexander Dehmelt
- Werner Reichardt Centre for Integrative Neuroscience and Institute of Neurobiology, University of Tübingen, Tübingen 72076, Germany
| | - Aristides B Arrenberg
- Werner Reichardt Centre for Integrative Neuroscience and Institute of Neurobiology, University of Tübingen, Tübingen 72076, Germany
| | - Ieva Sliesoraityte
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen 72076, Germany
| | - Eberhart Zrenner
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen 72076, Germany.,Werner Reichardt Centre for Integrative Neuroscience and Institute of Neurobiology, University of Tübingen, Tübingen 72076, Germany
| | - Mary J van Schooneveld
- Department of Ophthalmology, Amsterdam University Medical Centre, Amsterdam 1100 DD, The Netherlands.,Bartiméus Diagnostic Department, Zeist, The Netherlands
| | - Günther Rudolph
- Department of Ophthalmology, University Hospital, LMU Munich, München 80336, Germany
| | - Laura Kühlewein
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen 72076, Germany.,University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Universitätsklinikum Tübingen, Tübingen 72076, Germany
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen 72076, Germany
| |
Collapse
|
27
|
Banerji R, Huynh C, Figueroa F, Dinday MT, Baraban SC, Patel M. Enhancing glucose metabolism via gluconeogenesis is therapeutic in a zebrafish model of Dravet syndrome. Brain Commun 2021; 3:fcab004. [PMID: 33842883 PMCID: PMC8023476 DOI: 10.1093/braincomms/fcab004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/18/2023] Open
Abstract
Energy-producing pathways are novel therapeutic targets for the treatment of neurodevelopmental disorders. Here, we focussed on correcting metabolic defects in a catastrophic paediatric epilepsy, Dravet syndrome which is caused by mutations in sodium channel NaV1.1 gene, SCN1A. We utilized a translatable zebrafish model of Dravet syndrome (scn1lab) which exhibits key characteristics of patients with Dravet syndrome and shows metabolic deficits accompanied by down-regulation of gluconeogenesis genes, pck1 and pck2. Using a metabolism-based small library screen, we identified compounds that increased gluconeogenesis via up-regulation of pck1 gene expression in scn1lab larvae. Treatment with PK11195, a pck1 activator and a translocator protein ligand, normalized dys-regulated glucose levels, metabolic deficits, translocator protein expression and significantly decreased electrographic seizures in mutant larvae. Inhibition of pck1 in wild-type larvae mimicked metabolic and behaviour defects observed in scn1lab mutants. Together, this suggests that correcting dys-regulated metabolic pathways can be therapeutic in neurodevelopmental disorders such as Dravet syndrome arising from ion channel dysfunction.
Collapse
Affiliation(s)
- Rajeswari Banerji
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, CA 80045, USA
| | - Christopher Huynh
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, CA 80045, USA
| | - Francisco Figueroa
- Department of Neurological Surgery, Epilepsy Research Laboratory, University of California, San Francisco, CA 94143, USA
| | - Matthew T Dinday
- Department of Neurological Surgery, Epilepsy Research Laboratory, University of California, San Francisco, CA 94143, USA
| | - Scott C Baraban
- Department of Neurological Surgery, Epilepsy Research Laboratory, University of California, San Francisco, CA 94143, USA
| | - Manisha Patel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, CA 80045, USA
| |
Collapse
|
28
|
Recording Channelrhodopsin-Evoked Field Potentials and Startle Responses from Larval Zebrafish. Methods Mol Biol 2021; 2191:201-220. [PMID: 32865747 DOI: 10.1007/978-1-0716-0830-2_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Zebrafish are an excellent model organism to study many aspects of vertebrate sensory encoding and behavior. Their escape responses begin with a C-shaped body bend followed by several swimming bouts away from the potentially threatening stimulus. This highly stereotyped motor behavior provides a model for studying startle reflexes and the neural circuitry underlying multisensory encoding and locomotion. Channelrhodopsin (ChR2) can be expressed in the lateral line and ear hair cells of zebrafish and can be excited in vivo to elicit these rapid forms of escape. Here we review our methods for studying transgenic ChR2-expressing zebrafish larvae, including screening for positive expression of ChR2 and recording field potentials and high-speed videos of optically evoked escape responses. We also highlight important features of the acquired data and provide a brief review of other zebrafish research that utilizes or has the potential to benefit from ChR2 and optogenetics.
Collapse
|
29
|
Rea V, Van Raay TJ. Using Zebrafish to Model Autism Spectrum Disorder: A Comparison of ASD Risk Genes Between Zebrafish and Their Mammalian Counterparts. Front Mol Neurosci 2020; 13:575575. [PMID: 33262688 PMCID: PMC7686559 DOI: 10.3389/fnmol.2020.575575] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/08/2020] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorders (ASDs) are a highly variable and complex set of neurological disorders that alter neurodevelopment and cognitive function, which usually presents with social and learning impairments accompanied with other comorbid symptoms like hypersensitivity or hyposensitivity, or repetitive behaviors. Autism can be caused by genetic and/or environmental factors and unraveling the etiology of ASD has proven challenging, especially given that different genetic mutations can cause both similar and different phenotypes that all fall within the autism spectrum. Furthermore, the list of ASD risk genes is ever increasing making it difficult to synthesize a common theme. The use of rodent models to enhance ASD research is invaluable and is beginning to unravel the underlying molecular mechanisms of this disease. Recently, zebrafish have been recognized as a useful model of neurodevelopmental disorders with regards to genetics, pharmacology and behavior and one of the main foundations supporting autism research (SFARI) recently identified 12 ASD risk genes with validated zebrafish mutant models. Here, we describe what is known about those 12 ASD risk genes in human, mice and zebrafish to better facilitate this research. We also describe several non-genetic models including pharmacological and gnotobiotic models that are used in zebrafish to study ASD.
Collapse
Affiliation(s)
| | - Terence J. Van Raay
- Dept of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
30
|
Cassar S, Dunn C, Ramos MF. Zebrafish as an Animal Model for Ocular Toxicity Testing: A Review of Ocular Anatomy and Functional Assays. Toxicol Pathol 2020; 49:438-454. [PMID: 33063651 DOI: 10.1177/0192623320964748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Xenobiotics make their way into organisms from diverse sources including diet, medication, and pollution. Our understanding of ocular toxicities from xenobiotics in humans, livestock, and wildlife is growing thanks to laboratory animal models. Anatomy and physiology are conserved among vertebrate eyes, and studies with common mammalian preclinical species (rodent, dog) can predict human ocular toxicity. However, since the eye is susceptible to toxicities that may not involve a histological correlate, and these species rely heavily on smell and hearing to navigate their world, discovering visual deficits can be challenging with traditional animal models. Alternative models capable of identifying functional impacts on vision and requiring minimal amounts of chemical are valuable assets to toxicology. Human and zebrafish eyes are anatomically and functionally similar, and it has been reported that several common human ocular toxicants cause comparable toxicity in zebrafish. Vision develops rapidly in zebrafish; the tiny larvae rely on visual cues as early as 4 days, and behavioral responses to those cues can be monitored in high-throughput fashion. This article describes the comparative anatomy of the zebrafish eye, the notable differences from the mammalian eye, and presents practical applications of this underutilized model for assessment of ocular toxicity.
Collapse
Affiliation(s)
- Steven Cassar
- Preclinical Safety, 419726AbbVie, Inc, North Chicago, IL, USA
| | - Christina Dunn
- Preclinical Safety, 419726AbbVie, Inc, North Chicago, IL, USA
| | | |
Collapse
|
31
|
Knüfer A, Diana G, Walsh GS, Clarke JD, Guthrie S. Cadherins regulate nuclear topography and function of developing ocular motor circuitry. eLife 2020; 9:56725. [PMID: 33001027 PMCID: PMC7599068 DOI: 10.7554/elife.56725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 09/30/2020] [Indexed: 12/30/2022] Open
Abstract
In the vertebrate central nervous system, groups of functionally related neurons, including cranial motor neurons of the brainstem, are frequently organised as nuclei. The molecular mechanisms governing the emergence of nuclear topography and circuit function are poorly understood. Here we investigate the role of cadherin-mediated adhesion in the development of zebrafish ocular motor (sub)nuclei. We find that developing ocular motor (sub)nuclei differentially express classical cadherins. Perturbing cadherin function in these neurons results in distinct defects in neuronal positioning, including scattering of dorsal cells and defective contralateral migration of ventral subnuclei. In addition, we show that cadherin-mediated interactions between adjacent subnuclei are critical for subnucleus position. We also find that disrupting cadherin adhesivity in dorsal oculomotor neurons impairs the larval optokinetic reflex, suggesting that neuronal clustering is important for co-ordinating circuit function. Our findings reveal that cadherins regulate distinct aspects of cranial motor neuron positioning and establish subnuclear topography and motor function.
Collapse
Affiliation(s)
- Athene Knüfer
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Giovanni Diana
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Gregory S Walsh
- Department of Biology, Virginia Commonwealth University, Richmond, United States
| | - Jonathan Dw Clarke
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Sarah Guthrie
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
32
|
Thornton C, Dickson KE, Carty DR, Ashpole NM, Willett KL. Cannabis constituents reduce seizure behavior in chemically-induced and scn1a-mutant zebrafish. Epilepsy Behav 2020; 110:107152. [PMID: 32585475 PMCID: PMC8276876 DOI: 10.1016/j.yebeh.2020.107152] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/22/2022]
Abstract
Current antiepileptic drugs (AEDs) are undesirable for many reasons including the inability to reduce seizures in certain types of epilepsy, such as Dravet syndrome (DS) where in one-third of patients does not respond to current AEDs, and severe adverse effects that are frequently experienced by patients. Epidiolex, a cannabidiol (CBD)-based drug, was recently approved for treatment of DS. While Epidiolex shows great promise in reducing seizures in patients with DS, it is used in conjunction with other AEDs and can cause liver toxicity. To investigate whether other cannabis-derived compounds could also reduce seizures, the antiepileptic effects of CBD, Δ9-tetrahydrocannabinol (THC), cannabidivarin (CBDV), cannabinol (CBN), and linalool (LN) were compared in both a chemically-induced (pentylenetetrazole, PTZ) and a DS (scn1Lab-/-) seizure models. Zebrafish (Danio rerio) that were either wild-type (Tupfel longfin) or scn1Lab-/- (DS) were exposed to CBD, THC, CBDV, CBN, or LN for 24 h from 5 to 6 days postfertilization. Following exposure, total distance traveled was measured in a ViewPoint Zebrabox to determine if these compounds reduced seizure-like activity. Cannabidiol (0.6 and 1 μM) and THC (1 and 4 μM) significantly reduced PTZ-induced total distance moved. At the highest THC concentration, the significant reduction in PTZ-induced behavior was likely the result of sedation as opposed to antiseizure activity. In the DS model, CBD (0.6 μM), THC (1 μM), CBN (0.6 and 1 μM), and LN (4 μM) significantly reduced total distance traveled. Cannabinol was the most effective at reducing total distance relative to controls. In addition to CBD, other cannabis-derived compounds showed promise in reducing seizure-like activity in zebrafish. Specifically, four of the five compounds were effective in the DS model, whereas in the PTZ model, only CBD and THC were, suggesting a divergence in the mode of action among the cannabis constituents.
Collapse
Affiliation(s)
- Cammi Thornton
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, United States of America
| | - Kennedy E Dickson
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, United States of America
| | - Dennis R Carty
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, United States of America
| | - Nicole M Ashpole
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, United States of America
| | - Kristine L Willett
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, United States of America.
| |
Collapse
|
33
|
Gawel K, Langlois M, Martins T, van der Ent W, Tiraboschi E, Jacmin M, Crawford AD, Esguerra CV. Seizing the moment: Zebrafish epilepsy models. Neurosci Biobehav Rev 2020; 116:1-20. [PMID: 32544542 DOI: 10.1016/j.neubiorev.2020.06.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/20/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
Zebrafish are now widely accepted as a valuable animal model for a number of different central nervous system (CNS) diseases. They are suitable both for elucidating the origin of these disorders and the sequence of events culminating in their onset, and for use as a high-throughput in vivo drug screening platform. The availability of powerful and effective techniques for genome manipulation allows the rapid modelling of different genetic epilepsies and of conditions with seizures as a core symptom. With this review, we seek to summarize the current knowledge about existing epilepsy/seizures models in zebrafish (both pharmacological and genetic) and compare them with equivalent rodent and human studies. New findings obtained from the zebrafish models are highlighted. We believe that this comprehensive review will highlight the value of zebrafish as a model for investigating different aspects of epilepsy and will help researchers to use these models to their full extent.
Collapse
Affiliation(s)
- Kinga Gawel
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway; Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego St. 8b, 20-090, Lublin, Poland
| | | | - Teresa Martins
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belval, Luxembourg
| | - Wietske van der Ent
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway
| | - Ettore Tiraboschi
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway; Neurophysics Group, Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, Building 14, 38068, Rovereto, TN, Italy
| | - Maxime Jacmin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belval, Luxembourg
| | - Alexander D Crawford
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belval, Luxembourg; Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Camila V Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway.
| |
Collapse
|
34
|
Griffin A, Anvar M, Hamling K, Baraban SC. Phenotype-Based Screening of Synthetic Cannabinoids in a Dravet Syndrome Zebrafish Model. Front Pharmacol 2020; 11:464. [PMID: 32390835 PMCID: PMC7193054 DOI: 10.3389/fphar.2020.00464] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/25/2020] [Indexed: 12/24/2022] Open
Abstract
Dravet syndrome is a catastrophic epilepsy of childhood, characterized by cognitive impairment, severe seizures, and increased risk for sudden unexplained death in epilepsy (SUDEP). Although refractory to conventional antiepileptic drugs, emerging preclinical and clinical evidence suggests that modulation of the endocannabinoid system could be therapeutic in these patients. Preclinical research on this topic is limited as cannabis, delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), are designated by United States Drug Enforcement Agency (DEA) as illegal substances. In this study, we used a validated zebrafish model of Dravet syndrome, scn1lab homozygous mutants, to screen for anti-seizure activity in a commercially available library containing 370 synthetic cannabinoid (SC) compounds. SCs are intended for experimental use and not restricted by DEA designations. Primary phenotype-based screening was performed using a locomotion-based assay in 96-well plates, and a secondary local field potential recording assay was then used to confirm suppression of electrographic epileptiform events. Identified SCs with anti-seizure activity, in both assays, included five SCs structurally classified as indole-based cannabinoids JWH 018 N-(5-chloropentyl) analog, JWH 018 N-(2-methylbutyl) isomer, 5-fluoro PB-22 5-hydroxyisoquinoline isomer, 5-fluoro ADBICA, and AB-FUBINACA 3-fluorobenzyl isomer. Our approach demonstrates that two-stage phenotype-based screening in a zebrafish model of Dravet syndrome successfully identifies SCs with anti-seizure activity.
Collapse
Affiliation(s)
- Aliesha Griffin
- Epilepsy Research Laboratory and Weill Institute for Neuroscience, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Mana Anvar
- Epilepsy Research Laboratory and Weill Institute for Neuroscience, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Kyla Hamling
- Epilepsy Research Laboratory and Weill Institute for Neuroscience, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Scott C Baraban
- Epilepsy Research Laboratory and Weill Institute for Neuroscience, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
35
|
Folgueira M, Riva-Mendoza S, Ferreño-Galmán N, Castro A, Bianco IH, Anadón R, Yáñez J. Anatomy and Connectivity of the Torus Longitudinalis of the Adult Zebrafish. Front Neural Circuits 2020; 14:8. [PMID: 32231522 PMCID: PMC7082427 DOI: 10.3389/fncir.2020.00008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/25/2020] [Indexed: 11/13/2022] Open
Abstract
This study describes the cytoarchitecture of the torus longitudinalis (TL) in adult zebrafish by using light and electron microscopy, as well as its main connections as revealed by DiI tract tracing. In addition, by using high resolution confocal imaging followed by digital tracing, we describe the morphology of tectal pyramidal cells (type I cells) that are GFP positive in the transgenic line Tg(1.4dlx5a-dlx6a:GFP)ot1. The TL consists of numerous small and medium-sized neurons located in a longitudinal eminence attached to the medial optic tectum. A small proportion of these neurons are GABAergic. The neuropil shows three types of synaptic terminals and numerous dendrites. Tracing experiments revealed that the main efference of the TL is formed of parallel-like fibers that course within the marginal layer of the optic tectum. A toral projection to the thalamic nucleus rostrolateralis is also observed. Afferents to the TL come from visual and cerebellum-related nuclei in the pretectum, namely the central, intercalated and the paracommissural pretectal nuclei, as well as from the subvalvular nucleus in the isthmus. Additional afferents to the TL may come from the cerebellum but their origins could not be confirmed. The tectal afferent projection to the TL originates from cells similar to the type X cells described in other cyprinids. Tectal pyramidal neurons show round or piriform cell bodies, with spiny apical dendritic trees in the marginal layer. This anatomical study provides a basis for future functional and developmental studies focused on this cerebellum-like circuit in zebrafish.
Collapse
Affiliation(s)
- Mónica Folgueira
- Department of Biology, Faculty of Sciences, University of A Coruña, Coruña, Spain.,Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña, Coruña, Spain
| | - Selva Riva-Mendoza
- Department of Biology, Faculty of Sciences, University of A Coruña, Coruña, Spain
| | | | - Antonio Castro
- Department of Biology, Faculty of Sciences, University of A Coruña, Coruña, Spain.,Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña, Coruña, Spain
| | - Isaac H Bianco
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Ramón Anadón
- Department of Functional Biology, Faculty of Biology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Julián Yáñez
- Department of Biology, Faculty of Sciences, University of A Coruña, Coruña, Spain.,Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña, Coruña, Spain
| |
Collapse
|
36
|
Tang W, Davidson JD, Zhang G, Conen KE, Fang J, Serluca F, Li J, Xiong X, Coble M, Tsai T, Molind G, Fawcett CH, Sanchez E, Zhu P, Couzin ID, Fishman MC. Genetic Control of Collective Behavior in Zebrafish. iScience 2020; 23:100942. [PMID: 32179471 PMCID: PMC7068127 DOI: 10.1016/j.isci.2020.100942] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/17/2020] [Accepted: 02/21/2020] [Indexed: 01/02/2023] Open
Abstract
Many animals, including humans, have evolved to live and move in groups. In humans, disrupted social interactions are a fundamental feature of many psychiatric disorders. However, we know little about how genes regulate social behavior. Zebrafish may serve as a powerful model to explore this question. By comparing the behavior of wild-type fish with 90 mutant lines, we show that mutations of genes associated with human psychiatric disorders can alter the collective behavior of adult zebrafish. We identify three categories of behavioral variation across mutants: "scattered," in which fish show reduced cohesion; "coordinated," in which fish swim more in aligned schools; and "huddled," in which fish form dense but disordered groups. Changes in individual interaction rules can explain these differences. This work demonstrates how emergent patterns in animal groups can be altered by genetic changes in individuals and establishes a framework for understanding the fundamentals of social information processing.
Collapse
Affiliation(s)
- Wenlong Tang
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jacob D Davidson
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Universitätstraße 10, 78764 Konstanz, Germany; Centre for the Advanced Study of Collective Behavior, University of Konstanz, Universitätstraße 10, 78764 Konstanz, Germany; Department of Biology, University of Konstanz, Universitätstraße 10, 78764 Konstanz, Germany
| | - Guoqiang Zhang
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Katherine E Conen
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Universitätstraße 10, 78764 Konstanz, Germany; Centre for the Advanced Study of Collective Behavior, University of Konstanz, Universitätstraße 10, 78764 Konstanz, Germany; Department of Biology, University of Konstanz, Universitätstraße 10, 78764 Konstanz, Germany
| | - Jian Fang
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Fabrizio Serluca
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jingyao Li
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Xiaorui Xiong
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Matthew Coble
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Tingwei Tsai
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Gregory Molind
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Caroline H Fawcett
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Ellen Sanchez
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Peixin Zhu
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Iain D Couzin
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Universitätstraße 10, 78764 Konstanz, Germany; Centre for the Advanced Study of Collective Behavior, University of Konstanz, Universitätstraße 10, 78764 Konstanz, Germany; Department of Biology, University of Konstanz, Universitätstraße 10, 78764 Konstanz, Germany.
| | - Mark C Fishman
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA.
| |
Collapse
|
37
|
Tiraboschi E, Martina S, van der Ent W, Grzyb K, Gawel K, Cordero-Maldonado ML, Poovathingal SK, Heintz S, Satheesh SV, Brattespe J, Xu J, Suster M, Skupin A, Esguerra CV. New insights into the early mechanisms of epileptogenesis in a zebrafish model of Dravet syndrome. Epilepsia 2020; 61:549-560. [PMID: 32096222 DOI: 10.1111/epi.16456] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To pinpoint the earliest cellular defects underlying seizure onset (epileptogenic period) during perinatal brain development in a new zebrafish model of Dravet syndrome (DS) and to investigate potential disease-modifying activity of the 5HT2 receptor agonist fenfluramine. METHODS We used CRISPR/Cas9 mutagenesis to introduce a missense mutation, designed to perturb ion transport function in all channel isoforms, into scn1lab, the zebrafish orthologue of SCN1A (encoding voltage-gated sodium channel alpha subunit 1). We performed behavioral analysis and electroencephalographic recordings to measure convulsions and epileptiform discharges, followed by single-cell RNA-Seq, morphometric analysis of transgenic reporter-labeled γ-aminobutyric acidergic (GABAergic) neurons, and pharmacological profiling of mutant larvae. RESULTS Homozygous mutant (scn1labmut/mut ) larvae displayed spontaneous seizures with interictal, preictal, and ictal discharges (mean = 7.5 per 20-minute recording; P < .0001; one-way analysis of variance). Drop-Seq analysis revealed a 2:1 shift in the ratio of glutamatergic to GABAergic neurons in scn1labmut/mut larval brains versus wild type (WT), with dynamic changes in neuronal, glial, and progenitor cell populations. To explore disease pathophysiology further, we quantified dendritic arborization in GABAergic neurons and observed a 40% reduction in arbor number compared to WT (P < .001; n = 15 mutant, n = 16 WT). We postulate that the significant reduction in inhibitory arbors causes an inhibitory to excitatory neurotransmitter imbalance that contributes to seizures and enhanced electrical brain activity in scn1labmut/mut larvae (high-frequency range), with subsequent GABAergic neuronal loss and astrogliosis. Chronic fenfluramine administration completely restored dendritic arbor numbers to normal in scn1labmut/mut larvae, whereas similar treatment with the benzodiazepine diazepam attenuated seizures, but was ineffective in restoring neuronal cytoarchitecture. BrdU labeling revealed cell overproliferation in scn1labmut/mut larval brains that were rescued by fenfluramine but not diazepam. SIGNIFICANCE Our findings provide novel insights into early mechanisms of DS pathogenesis, describe dynamic cell population changes in the scn1labmut/mut brain, and present first-time evidence for potential disease modification by fenfluramine.
Collapse
Affiliation(s)
- Ettore Tiraboschi
- Chemical Neuroscience Group, Center for Molecular Medicine Norway, University of Oslo, Oslo, Norway
| | - Silvia Martina
- Integrative Cell Signaling Group, Luxembourg Center for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Wietske van der Ent
- Chemical Neuroscience Group, Center for Molecular Medicine Norway, University of Oslo, Oslo, Norway
| | - Kamil Grzyb
- Integrative Cell Signaling Group, Luxembourg Center for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Kinga Gawel
- Chemical Neuroscience Group, Center for Molecular Medicine Norway, University of Oslo, Oslo, Norway.,Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Maria Lorena Cordero-Maldonado
- Integrative Cell Signaling Group, Luxembourg Center for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Suresh Kumar Poovathingal
- Integrative Cell Signaling Group, Luxembourg Center for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sarah Heintz
- Chemical Neuroscience Group, Center for Molecular Medicine Norway, University of Oslo, Oslo, Norway
| | | | - Jarle Brattespe
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ju Xu
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Alexander Skupin
- Integrative Cell Signaling Group, Luxembourg Center for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Camila V Esguerra
- Chemical Neuroscience Group, Center for Molecular Medicine Norway, University of Oslo, Oslo, Norway.,Department of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
38
|
Delaney SL, Gendreau JL, D'Souza M, Feng AY, Ho AL. Optogenetic Modulation for the Treatment of Traumatic Brain Injury. Stem Cells Dev 2020; 29:187-197. [DOI: 10.1089/scd.2019.0187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
| | | | | | - Austin Y. Feng
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, Georgia
| | - Allen L. Ho
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, Georgia
| |
Collapse
|
39
|
Burrows DRW, Samarut É, Liu J, Baraban SC, Richardson MP, Meyer MP, Rosch RE. Imaging epilepsy in larval zebrafish. Eur J Paediatr Neurol 2020; 24:70-80. [PMID: 31982307 PMCID: PMC7035958 DOI: 10.1016/j.ejpn.2020.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 12/19/2022]
Abstract
Our understanding of the genetic aetiology of paediatric epilepsies has grown substantially over the last decade. However, in order to translate improved diagnostics to personalised treatments, there is an urgent need to link molecular pathophysiology in epilepsy to whole-brain dynamics in seizures. Zebrafish have emerged as a promising new animal model for epileptic seizure disorders, with particular relevance for genetic and developmental epilepsies. As a novel model organism for epilepsy research they combine key advantages: the small size of larval zebrafish allows high throughput in vivo experiments; the availability of advanced genetic tools allows targeted modification to model specific human genetic disorders (including genetic epilepsies) in a vertebrate system; and optical access to the entire central nervous system has provided the basis for advanced microscopy technologies to image structure and function in the intact larval zebrafish brain. There is a growing body of literature describing and characterising features of epileptic seizures and epilepsy in larval zebrafish. Recently genetically encoded calcium indicators have been used to investigate the neurobiological basis of these seizures with light microscopy. This approach offers a unique window into the multiscale dynamics of epileptic seizures, capturing both whole-brain dynamics and single-cell behaviour concurrently. At the same time, linking observations made using calcium imaging in the larval zebrafish brain back to an understanding of epileptic seizures largely derived from cortical electrophysiological recordings in human patients and mammalian animal models is non-trivial. In this review we briefly illustrate the state of the art of epilepsy research in zebrafish with particular focus on calcium imaging of epileptic seizures in the larval zebrafish. We illustrate the utility of a dynamic systems perspective on the epileptic brain for providing a principled approach to linking observations across species and identifying those features of brain dynamics that are most relevant to epilepsy. In the following section we survey the literature for imaging features associated with epilepsy and epileptic seizures and link these to observations made from humans and other more traditional animal models. We conclude by identifying the key challenges still facing epilepsy research in the larval zebrafish and indicate strategies for future research to address these and integrate more directly with the themes and questions that emerge from investigating epilepsy in other model systems and human patients.
Collapse
Affiliation(s)
- D R W Burrows
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - É Samarut
- Department of Neurosciences, Research Center of the University of Montreal Hospital Center, Montreal, Quebec, Canada
| | - J Liu
- Department of Neurological Surgery and Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - S C Baraban
- Department of Neurological Surgery and Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - M P Richardson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - M P Meyer
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - R E Rosch
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Paediatric Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| |
Collapse
|
40
|
Brysch C, Leyden C, Arrenberg AB. Functional architecture underlying binocular coordination of eye position and velocity in the larval zebrafish hindbrain. BMC Biol 2019; 17:110. [PMID: 31884959 PMCID: PMC6936144 DOI: 10.1186/s12915-019-0720-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/06/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The oculomotor integrator (OI) in the vertebrate hindbrain transforms eye velocity input into persistent position coding output, which plays a crucial role in retinal image stability. For a mechanistic understanding of the integrator function and eye position control, knowledge about the tuning of the OI and other oculomotor nuclei is needed. Zebrafish are increasingly used to study integrator function and sensorimotor circuits, yet the precise neuronal tuning to motor variables remains uncharacterized. RESULTS Here, we recorded cellular calcium signals while evoking monocular and binocular optokinetic eye movements at different slow-phase eye velocities. Our analysis reveals the anatomical distributions of motoneurons and internuclear neurons in the nucleus abducens as well as those of oculomotor neurons in caudally adjacent hindbrain volumes. Each neuron is tuned to eye position and/or velocity to variable extents and is only activated after surpassing particular eye position and velocity thresholds. While the abducens (rhombomeres 5/6) mainly codes for eye position, in rhombomeres 7/8, a velocity-to-position coding gradient exists along the rostro-caudal axis, which likely corresponds to the oculomotor structures storing velocity and position, and is in agreement with a feedforward mechanism of persistent activity generation. Position encoding neurons are recruited at eye position thresholds distributed across the behaviourally relevant dynamic range, while velocity-encoding neurons have more centred firing thresholds for velocity. In the abducens, neurons coding exclusively for one eye intermingle with neurons coding for both eyes. Many of these binocular neurons are preferentially active during conjugate eye movements and less active during monocular eye movements. This differential recruitment during monocular versus conjugate tasks represents a functional diversification in the final common motor pathway. CONCLUSIONS We localized and functionally characterized the repertoire of oculomotor neurons in the zebrafish hindbrain. Our findings provide evidence for a mixed but task-specific binocular code and suggest that generation of persistent activity is organized along the rostro-caudal axis in the hindbrain.
Collapse
Affiliation(s)
- Christian Brysch
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tübingen, 72076, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, 72074, Tübingen, Germany
| | - Claire Leyden
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tübingen, 72076, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, 72074, Tübingen, Germany
| | - Aristides B Arrenberg
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
41
|
Zebrafish dscaml1 Deficiency Impairs Retinal Patterning and Oculomotor Function. J Neurosci 2019; 40:143-158. [PMID: 31685652 DOI: 10.1523/jneurosci.1783-19.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 11/21/2022] Open
Abstract
Down syndrome cell adhesion molecules (dscam and dscaml1) are essential regulators of neural circuit assembly, but their roles in vertebrate neural circuit function are still mostly unexplored. We investigated the functional consequences of dscaml1 deficiency in the larval zebrafish (sexually undifferentiated) oculomotor system, where behavior, circuit function, and neuronal activity can be precisely quantified. Genetic perturbation of dscaml1 resulted in deficits in retinal patterning and light adaptation, consistent with its known roles in mammals. Oculomotor analyses revealed specific deficits related to the dscaml1 mutation, including severe fatigue during gaze stabilization, reduced saccade amplitude and velocity in the light, greater disconjugacy, and impaired fixation. Two-photon calcium imaging of abducens neurons in control and dscaml1 mutant animals confirmed deficits in saccade-command signals (indicative of an impairment in the saccadic premotor pathway), whereas abducens activation by the pretectum-vestibular pathway was not affected. Together, we show that loss of dscaml1 resulted in impairments in specific oculomotor circuits, providing a new animal model to investigate the development of oculomotor premotor pathways and their associated human ocular disorders.SIGNIFICANCE STATEMENT Dscaml1 is a neural developmental gene with unknown behavioral significance. Using the zebrafish model, this study shows that dscaml1 mutants have a host of oculomotor (eye movement) deficits. Notably, the oculomotor phenotypes in dscaml1 mutants are reminiscent of human ocular motor apraxia, a neurodevelopmental disorder characterized by reduced saccade amplitude and gaze stabilization deficits. Population-level recording of neuronal activity further revealed potential subcircuit-specific requirements for dscaml1 during oculomotor behavior. These findings underscore the importance of dscaml1 in the development of visuomotor function and characterize a new model to investigate potential circuit deficits underlying human oculomotor disorders.
Collapse
|
42
|
Glia-neuron interactions underlie state transitions to generalized seizures. Nat Commun 2019; 10:3830. [PMID: 31444362 PMCID: PMC6707163 DOI: 10.1038/s41467-019-11739-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/31/2019] [Indexed: 11/08/2022] Open
Abstract
Brain activity and connectivity alter drastically during epileptic seizures. The brain networks shift from a balanced resting state to a hyperactive and hypersynchronous state. It is, however, less clear which mechanisms underlie the state transitions. By studying neural and glial activity in zebrafish models of epileptic seizures, we observe striking differences between these networks. During the preictal period, neurons display a small increase in synchronous activity only locally, while the gap-junction-coupled glial network was highly active and strongly synchronized across large distances. The transition from a preictal state to a generalized seizure leads to an abrupt increase in neural activity and connectivity, which is accompanied by a strong alteration in glia-neuron interactions and a massive increase in extracellular glutamate. Optogenetic activation of glia excites nearby neurons through the action of glutamate and gap junctions, emphasizing a potential role for glia-glia and glia-neuron connections in the generation of epileptic seizures. During epileptic seizures, neural activity across the brain switches into a hyperactive and hypersynchronized state. Here, the authors report on the role of glia-glia and glia-neuron interactions in mediating the changes that result in the ictal state in a zebrafish model of epilepsy.
Collapse
|
43
|
Znotinas KR, Standen EM. Aerial and aquatic visual acuity of the grey bichir Polypterus senegalus, as estimated by optokinetic response. JOURNAL OF FISH BIOLOGY 2019; 95:263-273. [PMID: 29956322 DOI: 10.1111/jfb.13724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
The present study assessed the aerial and aquatic visual abilities of juvenile grey bichir Polypterus senegalus, fish capable of terrestrial locomotion, by measuring the optokinetic response to stimuli of varying speed and spatial frequency. In water, fish tracked slow-moving (2° s-1 ) stimuli moderately well and fast-moving stimuli very poorly. Spatial acuity was very low compared with many other species, with maximum response observed at 0.05-0.075 stimulus cycles per degree of visual arc; however, it should be noted that adult fish, with their larger eyes, are likely to have somewhat improved spatial acuity. Low spatial acuity and limited stimulus tracking ability might be expected in a nocturnal ambush predator such as P. senegalus, where gaze stabilization may be less crucial and other sensory inputs may have greater importance in perception of the environment. In air, spatial and temporal acuity were both poorer by every measure, but some visual ability persisted. As the eye shows no anatomical specialization for aerial vision, poor vision was expected; however, the large decrease in saccade velocity observed in air trials was unexpected. Stimulus parameters typically have little effect on the characteristics of the saccade, so this finding may suggest that the function of the reflex system itself could be compromised in the aerial vision of some fishes capable of terrestrial locomotion.
Collapse
|
44
|
Engineering brain activity patterns by neuromodulator polytherapy for treatment of disorders. Nat Commun 2019; 10:2620. [PMID: 31197165 PMCID: PMC6565674 DOI: 10.1038/s41467-019-10541-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 05/15/2019] [Indexed: 11/08/2022] Open
Abstract
Conventional drug screens and treatments often ignore the underlying complexity of brain network dysfunctions, resulting in suboptimal outcomes. Here we ask whether we can correct abnormal functional connectivity of the entire brain by identifying and combining multiple neuromodulators that perturb connectivity in complementary ways. Our approach avoids the combinatorial complexity of screening all drug combinations. We develop a high-speed platform capable of imaging more than 15000 neurons in 50ms to map the entire brain functional connectivity in large numbers of vertebrates under many conditions. Screening a panel of drugs in a zebrafish model of human Dravet syndrome, we show that even drugs with related mechanisms of action can modulate functional connectivity in significantly different ways. By clustering connectivity fingerprints, we algorithmically select small subsets of complementary drugs and rapidly identify combinations that are significantly more effective at correcting abnormal networks and reducing spontaneous seizures than monotherapies, while minimizing behavioral side effects. Even at low concentrations, our polytherapy performs superior to individual drugs even at highest tolerated concentrations. Brain disorders are associated with network dysfunctions that are not addressed by conventional drug screens. Here, the authors use high-throughput functional imaging of brain activity in zebrafish larvae to study the effects of individual drugs on network connectivity and demonstrate an algorithm that predicts the most effective drug combinations to normalize both the activity patterns and the animal behavior.
Collapse
|
45
|
de Witte P, Lagae L. Serotonergic modulation as a pharmacological modality in the treatment of Dravet syndrome. Brain 2019; 140:e35. [PMID: 28402511 PMCID: PMC5445252 DOI: 10.1093/brain/awx090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 02/24/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- Peter de Witte
- Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Belgium
| | - Lieven Lagae
- Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Belgium
| |
Collapse
|
46
|
Dehmelt FA, von Daranyi A, Leyden C, Arrenberg AB. Evoking and tracking zebrafish eye movement in multiple larvae with ZebEyeTrack. Nat Protoc 2019; 13:1539-1568. [PMID: 29988103 DOI: 10.1038/s41596-018-0002-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Reliable measurement of spontaneous and evoked eye movement is critical for behavioral vision research. Zebrafish are increasingly used as a model organism for visual neural circuits, but ready-to-use eye-tracking solutions are scarce. Here, we present a protocol for automated real-time measurement of angular horizontal eye position in up to six immobilized larval fish using a custom-built LabVIEW-based software, ZebEyeTrack. We provide its customizable source code, as well as a streamlined and compiled version, ZebEyeTrack Light. The full version of ZebEyeTrack controls all required hardware and synchronizes six essential aspects of the experiment: (i) stimulus design; (ii) visual stimulation with moving bars; (ii) eye detection and tracking, as well as general motion detection; (iv) real-time analysis; (v) eye-position-dependent closed-loop event control; and (vi) recording of external event times. This includes optional integration with external hardware such as lasers and scanning microscopes. Once installation is complete, experiments, including stimulus design, can be completed in <10 min, and recordings can last anywhere between seconds and many hours. Results include digitized angular eye positions and hardware status, which can be used to compute tuning curves, optokinetic gain, and other custom data analysis. After the experiment, or based on existing videos, optokinetic response (OKR) performance can be analyzed semi-automatically via the graphical user interface, and results can be exported. ZebEyeTrack has been used successfully for psychophysics experiments, for optogenetic stimulation, and in combination with calcium imaging.
Collapse
Affiliation(s)
- Florian A Dehmelt
- Werner Reichardt Centre for Integrative Neuroscience and Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| | - Adam von Daranyi
- Werner Reichardt Centre for Integrative Neuroscience, Central Office System Administration, University of Tübingen, Tübingen, Germany
| | - Claire Leyden
- Werner Reichardt Centre for Integrative Neuroscience and Institute of Neurobiology, University of Tübingen, Tübingen, Germany.,Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Aristides B Arrenberg
- Werner Reichardt Centre for Integrative Neuroscience and Institute of Neurobiology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
47
|
Helmbrecht TO, dal Maschio M, Donovan JC, Koutsouli S, Baier H. Topography of a Visuomotor Transformation. Neuron 2018; 100:1429-1445.e4. [DOI: 10.1016/j.neuron.2018.10.021] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/31/2018] [Accepted: 10/09/2018] [Indexed: 01/07/2023]
|
48
|
Abstract
PURPOSE OF REVIEW Dravet syndrome is a rare but severe genetic epilepsy that has unique treatment challenges. This is a review of current and future potential treatment options. RECENT FINDINGS Treatment for Dravet syndrome should encompass many aspects of the syndrome such as gait, behavior, and nutrition, as well as focus on seizure control. Many sodium channel blockers should be avoided as they are likely to exacerbate seizures. Current options for treatment include valproic acid, clobazam, stiripentol, and ketogenic diet. Testing is underway for several new treatment options with unique mechanisms of action and therapeutic targets, including the serotonin system and genetic modulation. Accurate and early diagnosis of Dravet syndrome will lead to avoidance of medications that may exacerbate seizures. Additionally, a multi-disciplinary approach and careful planning for management of episodes of status epilepticus may lead to improved outcomes. Ongoing research for novel approaches to treatment creates optimism for future improvement in outcomes.
Collapse
|
49
|
Sakai C, Ijaz S, Hoffman EJ. Zebrafish Models of Neurodevelopmental Disorders: Past, Present, and Future. Front Mol Neurosci 2018; 11:294. [PMID: 30210288 PMCID: PMC6123572 DOI: 10.3389/fnmol.2018.00294] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/03/2018] [Indexed: 12/21/2022] Open
Abstract
Zebrafish are increasingly being utilized as a model system to investigate the function of the growing list of risk genes associated with neurodevelopmental disorders. This is due in large part to the unique features of zebrafish that make them an optimal system for this purpose, including rapid, external development of transparent embryos, which enable the direct visualization of the developing nervous system during early stages, large progenies, which provide considerable tractability for performing high-throughput pharmacological screens to identify small molecule suppressors of simple behavioral phenotypes, and ease of genetic manipulation, which has been greatly facilitated by the advent of CRISPR/Cas9 gene editing technologies. This review article focuses on studies that have harnessed these advantages of the zebrafish system for the functional analysis of genes that are strongly associated with the following neurodevelopmental disorders: autism spectrum disorders (ASD), epilepsy, intellectual disability (ID) and schizophrenia. We focus primarily on studies describing early morphological and behavioral phenotypes during embryonic and larval stages resulting from loss of risk gene function. We highlight insights into basic mechanisms of risk gene function gained from these studies as well as limitations of studies to date. Finally, we discuss advances in in vivo neural circuit imaging in zebrafish, which promise to transform research using the zebrafish model by illuminating novel circuit-level mechanisms with relevance to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Catalina Sakai
- Child Study Center, Program on Neurogenetics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Sundas Ijaz
- Child Study Center, Program on Neurogenetics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Ellen J Hoffman
- Child Study Center, Program on Neurogenetics, Yale School of Medicine, Yale University, New Haven, CT, United States.,Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
50
|
Griffin A, Hamling KR, Hong S, Anvar M, Lee LP, Baraban SC. Preclinical Animal Models for Dravet Syndrome: Seizure Phenotypes, Comorbidities and Drug Screening. Front Pharmacol 2018; 9:573. [PMID: 29915537 PMCID: PMC5994396 DOI: 10.3389/fphar.2018.00573] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/14/2018] [Indexed: 12/18/2022] Open
Abstract
Epilepsy is a common chronic neurological disease affecting almost 3 million people in the United States and 50 million people worldwide. Despite availability of more than two dozen FDA-approved anti-epileptic drugs (AEDs), one-third of patients fail to receive adequate seizure control. Specifically, pediatric genetic epilepsies are often the most severe, debilitating and pharmaco-resistant forms of epilepsy. Epileptic syndromes share a common symptom of unprovoked seizures. While some epilepsies/forms of epilepsy are the result of acquired insults such as head trauma, febrile seizure, or viral infection, others have a genetic basis. The discovery of epilepsy associated genes suggests varied underlying pathologies and opens the door for development of new "personalized" treatment options for each genetic epilepsy. Among these, Dravet syndrome (DS) has received substantial attention for both the pre-clinical and early clinical development of novel therapeutics. Despite these advances, there is no FDA-approved treatment for DS. Over 80% of patients diagnosed with DS carry a de novo mutation within the voltage-gated sodium channel gene SCN1A and these patients suffer with drug resistant and life-threatening seizures. Here we will review the preclinical animal models for DS featuring inactivation of SCN1A (including zebrafish and mice) with an emphasis on seizure phenotypes and behavioral comorbidities. Because many drugs fail somewhere between initial preclinical discovery and clinical trials, it is equally important that we understand how these models respond to known AEDs. As such, we will also review the available literature and recent drug screening efforts using these models with a focus on assay protocols and predictive pharmacological profiles. Validation of these preclinical models is a critical step in our efforts to efficiently discover new therapies for these patients. The behavioral and electrophysiological drug screening assays in zebrafish will be discussed in detail including specific examples from our laboratory using a zebrafish scn1 mutant and a summary of the nearly 3000 drugs screened to date. As the discovery and development phase rapidly moves from the lab-to-the-clinic for DS, it is hoped that this preclinical strategy offers a platform for how to approach any genetic epilepsy.
Collapse
Affiliation(s)
- Aliesha Griffin
- Epilepsy Research Laboratory Department of Neurological Surgery and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Kyla R Hamling
- Epilepsy Research Laboratory Department of Neurological Surgery and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - SoonGweon Hong
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| | - Mana Anvar
- Epilepsy Research Laboratory Department of Neurological Surgery and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Luke P Lee
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| | - Scott C Baraban
- Epilepsy Research Laboratory Department of Neurological Surgery and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|