1
|
Ding X, Wang G, Lin Y, Hu W, Chen C, Gao J, Wu Y, Zhou C. A novel SIRT1 activator attenuates neuropathic pain by inhibiting spinal neuronal activation via the SIRT1-mGluR1/5 pathway. Cell Biol Toxicol 2025; 41:24. [PMID: 39779529 PMCID: PMC11711878 DOI: 10.1007/s10565-024-09970-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025]
Abstract
Neuropathic pain is a type of pain caused by an injury or disease of the somatosensory nervous system. Currently, there is still absence of effective therapeutic drugs for neuropathic pain, so developing new therapeutic drugs is urgently needed. In the present study, we observed the effect of Comp 6d, a novel silent information regulator 1 (SIRT1) activator synthesized in our laboratory, on neuropathic pain and investigated the mechanisms involved. We found that both intrathecal and intraperitoneal injections of Comp 6d effectively alleviated neuropathic pain induced by chronic constriction injury (CCI) or spared nerve injury (SNI). However, the effect of Comp 6d on neuropathic pain was abolished in SIRT1 knockout mice. These results demonstrated that Comp 6d alleviated neuropathic pain by specifically activating SIRT1 in the spinal cord. Moreover, long-term intraperitoneal injection of Comp 6d had no significant side effects on heart, liver and kidney in SNI mice. Further study showed that the improvement of neuropathic pain by Comp 6d was mediated by the downregulation of mGluR1/5 levels and the subsequent inhibition of spinal neuronal activation. Taken together, the present findings suggest that the novel SIRT1 activator Comp 6d inhibits the activation of spinal cord neurons via the SIRT1-mGluR1/5 pathway, thereby attenuating neuropathic pain. Comp 6d is expected to be an effective therapeutic agent for neuropathic pain.
Collapse
Affiliation(s)
- Xiaobao Ding
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Guizhi Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yuwen Lin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Wenli Hu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Chen Chen
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Jian Gao
- School of Medicine, Anhui University of Science and Technology, Huainan, China.
| | - Yuqing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China.
| | - Chenghua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
2
|
Jie J, Jihao R, Zheng L, Jie L, Xiaoling P, Wei Z, Feng G. Unraveling morphine tolerance: CCL2 induces spinal cord apoptosis via inhibition of Nrf2 signaling pathway and PGC-1α-mediated mitochondrial biogenesis. Brain Behav Immun 2024; 124:347-362. [PMID: 39667633 DOI: 10.1016/j.bbi.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND Morphine effectively relieves severe pain but leads to analgesic tolerance with long-term use.The molecular mechanisms underlying morphine tolerance remain incompletely understood. Existing literature suggests that chemokine CCL2, present in the spinal cord, plays a role in central nervous system inflammation, including neuropathic pain. Nevertheless, the precise mechanism through which CCL2 mediates morphine tolerance has yet to be elucidated. Consequently, this study aims to investigate the molecular pathways by which CCL2 contributes to the development of morphine analgesic tolerance. METHODS Rats were administered intrathecal morphine (10 μg/5 μl) twice a day for seven consecutive days to induce a model of morphine nociceptive tolerance. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect the expression levels of CCL2 and its related mechanism molecules. Immunofluorescence was used to detect the localization of CCL2 in the spinal cord. Intrathecal injections of inhibitors or agonists to artificially regulate the expression of relevant molecules. The thermal tail-flick experiment was performed to evaluate morphine tolerance in rats. RESULTS Morphine-induced CCL2 expression was significantly increased in spinal cord, while conversely, the expressions of Nrf2 and PGC-1a were downregulated. Immunofluorescence showed that the enhanced immune response of CCL2 mainly co-localized with neurons. In vivo, we confirmed that intrathecally injection of CCL2 inhibitor Bindarit could effectively alleviate the occurrence of apoptosis and alleviate morphine tolerance. Similarly, pretreatment with Nrf2 signaling pathway agonist Oltipraz and PGC-1α agonist ZLN005 also achieved similar results, respectively. ROS Fluorescence Assay Kit indicated that increasing the expression of PGC-1α could alleviate the occurrence of apoptosis by reducing the level of ROS. CONCLUSION Our data emphasize that chemokine CCL2 inhibited the Nrf2 signaling pathway and PGC-1α-mediated mitochondrial biogenesis, alleviating the occurrence of apoptosis in spinal cord, thereby participating in morphine tolerance. This may provide new targets for the treatment of morphine tolerance.
Collapse
Affiliation(s)
- Ju Jie
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ren Jihao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zheng
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Jie
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Xiaoling
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Wei
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gao Feng
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Huang Z, Zhou L, Duan J, Qin S, Jiang J, Chen H, Wang K, Liu R, Yuan M, Tang X, Nice EC, Wei Y, Zhang W, Huang C. Oxidative Stress Promotes Liver Cancer Metastasis via RNF25-Mediated E-Cadherin Protein Degradation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306929. [PMID: 38286671 PMCID: PMC10987140 DOI: 10.1002/advs.202306929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/25/2023] [Indexed: 01/31/2024]
Abstract
Loss of E-cadherin (ECAD) is required in tumor metastasis. Protein degradation of ECAD in response to oxidative stress is found in metastasis of hepatocellular carcinoma (HCC) and is independent of transcriptional repression as usually known. Mechanistically, protein kinase A (PKA) senses oxidative stress by redox modification in its β catalytic subunit (PRKACB) at Cys200 and Cys344. The activation of PKA kinase activity subsequently induces RNF25 phosphorylation at Ser450 to initiate RNF25-catalyzed degradation of ECAD. Functionally, RNF25 repression induces ECAD protein expression and inhibits HCC metastasis in vitro and in vivo. Altogether, these results indicate that RNF25 is a critical regulator of ECAD protein turnover, and PKA is a necessary redox sensor to enable this process. This study provides some mechanistic insight into how oxidative stress-induced ECAD degradation promotes tumor metastasis of HCC.
Collapse
Affiliation(s)
- Zhao Huang
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
| | - Jiufei Duan
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Siyuan Qin
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Jingwen Jiang
- West China School of Public Health and West China Fourth HospitalSichuan UniversityChengdu610041China
| | - Haining Chen
- Colorectal Cancer CenterDepartment of General SurgeryWest China HospitalSichuan UniversityChengdu610041China
| | - Kui Wang
- West China School of Basic Medical Sciences & Forensic MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Rui Liu
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesResearch Unit of Oral Carcinogenesis and ManagementChinese Academy of Medical SciencesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Minlan Yuan
- Mental Health Center and Psychiatric LaboratoryThe State Key Laboratory of BiotherapyWest China Biomedical Big Data CenterWest China Hospital of Sichuan UniversityChengdu610041China
| | - Xiangdong Tang
- Sleep Medicine CenterDepartment of Respiratory and Critical Care MedicineMental Health CenterTranslational Neuroscience CenterState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVIC3167Australia
| | - Yuquan Wei
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Wei Zhang
- Frontiers Medical CenterTianfu Jincheng LaboratoryChengdu610212China
- Medical Big Data CenterSichuan UniversityChengdu610041China
| | - Canhua Huang
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
- Frontiers Medical CenterTianfu Jincheng LaboratoryChengdu610212China
| |
Collapse
|
4
|
Kim HS, Lee D, Shen S. Endoplasmic reticular stress as an emerging therapeutic target for chronic pain: a narrative review. Br J Anaesth 2024; 132:707-724. [PMID: 38378384 PMCID: PMC10925894 DOI: 10.1016/j.bja.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/11/2023] [Accepted: 01/05/2024] [Indexed: 02/22/2024] Open
Abstract
Chronic pain is a severely debilitating condition with enormous socioeconomic costs. Current treatment regimens with nonsteroidal anti-inflammatory drugs (NSAIDs), steroids, or opioids have been largely unsatisfactory with uncertain benefits or severe long-term side effects. This is mainly because chronic pain has a multifactorial aetiology. Although conventional pain medications can alleviate pain by keeping several dysfunctional pathways under control, they can mask other underlying pathological causes, ultimately worsening nerve pathologies and pain outcome. Recent preclinical studies have shown that endoplasmic reticulum (ER) stress could be a central hub for triggering multiple molecular cascades involved in the development of chronic pain. Several ER stress inhibitors and unfolded protein response modulators, which have been tested in randomised clinical trials or apprpoved by the US Food and Drug Administration for other chronic diseases, significantly alleviated hyperalgesia in multiple preclinical pain models. Although the role of ER stress in neurodegenerative disorders, metabolic disorders, and cancer has been well established, research on ER stress and chronic pain is still in its infancy. Here, we critically analyse preclinical studies and explore how ER stress can mechanistically act as a central node to drive development and progression of chronic pain. We also discuss therapeutic prospects, benefits, and pitfalls of using ER stress inhibitors and unfolded protein response modulators for managing intractable chronic pain. In the future, targeting ER stress to impact multiple molecular networks might be an attractive therapeutic strategy against chronic pain refractory to steroids, NSAIDs, or opioids. This novel therapeutic strategy could provide solutions for the opioid crisis and public health challenge.
Collapse
Affiliation(s)
- Harper S Kim
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Donghwan Lee
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shiqian Shen
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Hadeiy SK, Habtemariam S, Shankayi Z, Shahyad S, Sahraei H, Asghardoust Rezaei M, Bahrami F. Amelioration of pain and anxiety in sleep-deprived rats by intra-amygdala injection of cinnamaldehyde. Sleep Med X 2023; 5:100069. [PMID: 37424741 PMCID: PMC10323214 DOI: 10.1016/j.sleepx.2023.100069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/24/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Background Sleep disorders are accompanied by increased anxiety and somatic pain. In addition, it has been observed that anxiety and pain have a boosting effect on each other, resulting in continued sleep disturbances. Amygdala's (CeA) central nucleus plays a crucial role in these processes. Cinnamaldehyde (Cinn) is an aromatic compound with anti-anxiety, antioxidant, and sleep-promoting properties. The present study uses sleep-deprived rats to examine the effects of an intra-CeA injection of Cinn on pain and anxiety. Methods Sleep deprivation (SD) was induced using the platform technique. 35 male Wistar rats were divided into five groups. Anxiety state and nociception were evaluated among groups using formalin test (F.T.), open field test (OFT), and elevated plus maze (EPM). Anxiety tests (OFT and EPM) were conducted in all groups. The first group was undergone FT without induction of SD (SD-FT+). The second group received SD without FT(SD+FT-). The third group received both SD and FT(SD+FT+). The treatment and vehicle groups have undergone both SD and FT in addition to the respectively intra-CeA injection of Cinn (SD+FT+ Cinn) and Cinn vehicle (SD+FT+ VC). The recorded behaviors were analyzed between groups using IBM SPSS 24th version. Results SD did not lead to any significant difference in nociceptive behaviors in FT between groups SD-FT+ and SD+FT+ (P ≥ 0.05). At the same time, there was a considerable discrepancy in rearing behaviors (P < 0.006) and the number of fecal boli (P < 0.004) recorded in OFM between these groups. Treatment with Cinn led to decreased nociception (P < 0.038), decreased rearing behaviors (P < 0.01), and reduced defecation (P < 0.004) in group SD + FT+ Cinn in comparison to the group SD+FT+. There were no differences in anxiety test results between the first and second groups (P ≥ 0.05). Conclusion SD can lead to elevated anxiety, while intra-CeA injection of Cinn ameliorated both perceptions of acute pain and anxiety. Besides, the conduction of FT before the anxiety test led to no disturbance in the results of anxiety tests.
Collapse
Affiliation(s)
- Seyed Kaveh Hadeiy
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services U.K., University of Greenwich, Chatham-Maritime, Kent, ME4 4 T, UK.B., UK
| | - Zeinab Shankayi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Department of physiology and medical physics, school of medicine, Baqiyatallah University of medical sciences, Tehran, Iran
| | - Shima Shahyad
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hedayat Sahraei
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Department of physiology and medical physics, school of medicine, Baqiyatallah University of medical sciences, Tehran, Iran
| | | | - Farideh Bahrami
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Department of physiology and medical physics, school of medicine, Baqiyatallah University of medical sciences, Tehran, Iran
| |
Collapse
|
6
|
Santos JM, Wang R, Bhakta V, Driver Z, Vadim Y, Kiritoshi T, Ji G, Neugebauer V, Shen CL. Turmeric Bioactive Compounds Alleviate Spinal Nerve Ligation-Induced Neuropathic Pain by Suppressing Glial Activation and Improving Mitochondrial Function in Spinal Cord and Amygdala. Nutrients 2023; 15:4403. [PMID: 37892476 PMCID: PMC10610406 DOI: 10.3390/nu15204403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
This study examined the effects of turmeric bioactive compounds, curcumin C3 complex® (CUR) and bisdemethoxycurcumin (BDMC), on mechanical hypersensitivity and the gene expression of markers for glial activation, mitochondrial function, and oxidative stress in the spinal cord and amygdala of rats with neuropathic pain (NP). Twenty-four animals were randomly assigned to four groups: sham, spinal nerve ligation (SNL, an NP model), SNL+100 mg CUR/kg BW p.o., and SNL+50 mg BDMC/kg BW p.o. for 4 weeks. Mechanical hypersensitivity was assessed by the von Frey test (VFT) weekly. The lumbosacral section of the spinal cord and the right amygdala (central nucleus) were collected to determine the mRNA expression of genes (IBA-1, CD11b, GFAP, MFN1, DRP1, FIS1, PGC1α, PINK, Complex I, TLR4, and SOD1) utilizing qRT-PCR. Increased mechanical hypersensitivity and increased gene expression of markers for microglial activation (IBA-1 in the amygdala and CD11b in the spinal cord), astrocyte activation (GFAP in the spinal cord), mitochondrial dysfunction (PGC1α in the amygdala), and oxidative stress (TLR4 in the spinal cord and amygdala) were found in untreated SNL rats. Oral administration of CUR and BDMC significantly decreased mechanical hypersensitivity. CUR decreased CD11b and GFAP gene expression in the spinal cord. BDMC decreased IBA-1 in the spinal cord and amygdala as well as CD11b and GFAP in the spinal cord. Both CUR and BDMC reduced PGC1α gene expression in the amygdala, PINK1 gene expression in the spinal cord, and TLR4 in the spinal cord and amygdala, while they increased Complex I and SOD1 gene expression in the spinal cord. CUR and BDMC administration decreased mechanical hypersensitivity in NP by mitigating glial activation, oxidative stress, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Julianna M. Santos
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.M.S.); (R.W.)
| | - Rui Wang
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.M.S.); (R.W.)
| | - Viren Bhakta
- Department of Biochemistry, Texas Tech University, Lubbock, TX 79409, USA (Z.D.)
| | - Zarek Driver
- Department of Biochemistry, Texas Tech University, Lubbock, TX 79409, USA (Z.D.)
| | - Yakhnitsa Vadim
- Department of Pharmacology and Neurosciences, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (Y.V.); (T.K.); (G.J.); (V.N.)
| | - Takaki Kiritoshi
- Department of Pharmacology and Neurosciences, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (Y.V.); (T.K.); (G.J.); (V.N.)
| | - Guangchen Ji
- Department of Pharmacology and Neurosciences, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (Y.V.); (T.K.); (G.J.); (V.N.)
| | - Volker Neugebauer
- Department of Pharmacology and Neurosciences, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (Y.V.); (T.K.); (G.J.); (V.N.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.M.S.); (R.W.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
7
|
Sobrido-Cameán D, Oswald MCW, Bailey DMD, Mukherjee A, Landgraf M. Activity-regulated growth of motoneurons at the neuromuscular junction is mediated by NADPH oxidases. Front Cell Neurosci 2023; 16:1106593. [PMID: 36713781 PMCID: PMC9880070 DOI: 10.3389/fncel.2022.1106593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
Neurons respond to changes in the levels of activity they experience in a variety of ways, including structural changes at pre- and postsynaptic terminals. An essential plasticity signal required for such activity-regulated structural adjustments are reactive oxygen species (ROS). To identify sources of activity-regulated ROS required for structural plasticity in vivo we used the Drosophila larval neuromuscular junction as a highly tractable experimental model system. For adjustments of presynaptic motor terminals, we found a requirement for both NADPH oxidases, Nox and dual oxidase (Duox), that are encoded in the Drosophila genome. This contrasts with the postsynaptic dendrites from which Nox is excluded. NADPH oxidases generate ROS to the extracellular space. Here, we show that two aquaporins, Bib and Drip, are necessary ROS conduits in the presynaptic motoneuron for activity regulated, NADPH oxidase dependent changes in presynaptic motoneuron terminal growth. Our data further suggest that different aspects of neuronal activity-regulated structural changes might be regulated by different ROS sources: changes in bouton number require both NADPH oxidases, while activity-regulated changes in the number of active zones might be modulated by other sources of ROS. Overall, our results show NADPH oxidases as important enzymes for mediating activity-regulated plasticity adjustments in neurons.
Collapse
|
8
|
Wu Y, Luo XD, Xiang T, Li SJ, Ma MG, Chen ML. Activation of metabotropic glutamate receptor 1 regulates hippocampal CA1 region excitability in rats with status epilepticus by suppressing the HCN1 channel. Neural Regen Res 2023; 18:594-602. [DOI: 10.4103/1673-5374.350206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Mazzitelli M, Presto P, Antenucci N, Meltan S, Neugebauer V. Recent Advances in the Modulation of Pain by the Metabotropic Glutamate Receptors. Cells 2022; 11:2608. [PMID: 36010684 PMCID: PMC9406805 DOI: 10.3390/cells11162608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 01/22/2023] Open
Abstract
Metabotropic glutamate receptors (mGluR or mGlu) are G-protein coupled receptors activated by the binding of glutamate, the main classical neurotransmitter of the nervous system. Eight different mGluR subtypes (mGluR1-8) have been cloned and are classified in three groups based on their molecular, pharmacological and signaling properties. mGluRs mediate several physiological functions such as neuronal excitability and synaptic plasticity, but they have also been implicated in numerous pathological conditions including pain. The availability of new and more selective allosteric modulators together with the canonical orthosteric ligands and transgenic technologies has led to significant advances in our knowledge about the role of the specific mGluR subtypes in the pathophysiological mechanisms of various diseases. Although development of successful compounds acting on mGluRs for clinical use has been scarce, the subtype-specific-pharmacological manipulation might be a compelling approach for the treatment of several disorders in humans, including pain; this review aims to summarize and update on preclinical evidence for the roles of different mGluRs in the pain system and discusses knowledge gaps regarding mGluR-related sex differences and neuroimmune signaling in pain.
Collapse
Affiliation(s)
- Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Shakira Meltan
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
10
|
Li J, Remington JM, Liao C, Parsons RL, Schneebeli S, Braas KM, May V, Brewer M. GPCR Intracellular Loop Regulation of Beta-Arrestin-Mediated Endosomal Signaling Dynamics. J Mol Neurosci 2022; 72:1358-1373. [PMID: 35538393 PMCID: PMC9311399 DOI: 10.1007/s12031-022-02016-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/22/2022] [Indexed: 12/22/2022]
Abstract
G protein-coupled receptors (GPCRs) are currently appreciated to be routed to diverse cellular platforms to generate both G protein-dependent and -independent signals. The latter has been best studied with respect to β-arrestin-associated receptor internalization and trafficking to signaling endosomes for extracellular signal-regulated kinase (ERK) activation. However, how GPCR structural and conformational variants regulate endosomal ERK signaling dynamics, which can be central in neural development, plasticity, and disease processes, is not well understood. Among class B GPCRs, the PACAP-selective PAC1 receptor is unique in the expression of variants that can contain intracellular loop 3 (ICL3) cassette inserts. The nervous system expresses preferentially the PAC1Null (no insert) and PAC1Hop (28-amino acid Hop insert) receptor variants. Our molecular modeling and signaling studies revealed that the PAC1Null and PAC1Hop receptor variants can associate with β-arrestin differentially, resulting in enhanced receptor internalization and ERK activation for the PAC1Hop variant. The study amplifies our understandings of GPCR intracellular loop structure/function relationships with the first example of how the duration of endosomal ERK activation can be guided by ICL3. The results provide a framework for how changes in GPCR variant expression can impact developmental and homeostatic processes and may be contributory to maladaptive neuroplasticity underlying chronic pain and stress-related disorders.
Collapse
Affiliation(s)
- Jianing Li
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, VT, 05405, USA.
| | - Jacob M Remington
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, VT, 05405, USA
| | - Chenyi Liao
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, VT, 05405, USA
| | - Rodney L Parsons
- Department of Neurological Sciences, University of Vermont College of Medicine, 149 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Severin Schneebeli
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, VT, 05405, USA
| | - Karen M Braas
- Department of Neurological Sciences, University of Vermont College of Medicine, 149 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Victor May
- Department of Neurological Sciences, University of Vermont College of Medicine, 149 Beaumont Avenue, Burlington, VT, 05405, USA.
| | - Matthias Brewer
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, VT, 05405, USA
| |
Collapse
|
11
|
Xia J, Dou Y, Mei Y, Munoz FM, Gao R, Gao X, Li D, Osei-Owusu P, Schiffenhaus J, Bekker A, Tao YX, Hu H. Orai1 is a crucial downstream partner of group I metabotropic glutamate receptor signaling in dorsal horn neurons. Pain 2022; 163:652-664. [PMID: 34252911 PMCID: PMC8741882 DOI: 10.1097/j.pain.0000000000002396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Group I metabotropic glutamate receptors (group I mGluRs) have been implicated in several central nervous system diseases including chronic pain. It is known that activation of group I mGluRs results in the production of inositol triphosphate (IP3) and diacylglycerol that leads to activation of extracellular signal-regulated kinases (ERKs) and an increase in neuronal excitability, but how group I mGluRs mediate this process remains unclear. We previously reported that Orai1 is responsible for store-operated calcium entry and plays a key role in central sensitization. However, how Orai1 is activated under physiological conditions is unknown. Here, we tested the hypothesis that group I mGluRs recruit Orai1 as part of its downstream signaling pathway in dorsal horn neurons. We demonstrate that neurotransmitter glutamate induces STIM1 puncta formation, which is not mediated by N-Methyl-D-aspartate (NMDA) or α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Glutamate-induced Ca2+ entry in the presence of NMDA or AMPA receptor antagonists is eliminated in Orai1-deficient neurons. Dihydroxyphenylglycine (DHPG) (an agonist of group I mGluRs)-induced Ca2+ entry is abolished by Orai1 deficiency, but not affected by knocking down of transient receptor potential cation channel 1 (TRPC1) or TRPC3. Dihydroxyphenylglycine-induced activation of ERKs and modulation of neuronal excitability are abolished in cultured Orai1-deficient neurons. Moreover, DHPG-induced nociceptive behavior is markedly reduced in Orai1-deficient mice. Our findings reveal previously unknown functional coupling between Orai1 and group I mGluRs and shed light on the mechanism underlying group I mGluRs-mediated neuronal plasticity.
Collapse
Affiliation(s)
- Jingsheng Xia
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Yannong Dou
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Yixiao Mei
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Frances M. Munoz
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Ruby Gao
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Xinghua Gao
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Daling Li
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Patrick Osei-Owusu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - James Schiffenhaus
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Alex Bekker
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Yuan-Xiang Tao
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Huijuan Hu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| |
Collapse
|
12
|
Bioactive Compounds for Fibromyalgia-like Symptoms: A Narrative Review and Future Perspectives. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074148. [PMID: 35409832 PMCID: PMC8998198 DOI: 10.3390/ijerph19074148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 12/19/2022]
Abstract
Fibromyalgia (FM) is a prevalent, chronic condition without a cure or reliable therapy. The etiopathogenesis of this syndrome is ambiguous, which has heightened the challenge of discovering treatments to minimize patients’ painful symptoms. FM is characterized by diffuse musculoskeletal pain usually accompanied by functional pain syndromes, such as fatigue, sleep disturbances, cognitive difficulties, and mood issues. Currently available treatment options for FM are limited. Recent studies have suggested a potential role for dietary bioactive compounds in FM management. We performed a narrative review to evaluate the existing evidence regarding the dietary bioactive compounds for FM, and we proposed molecular mechanisms on this topic. The inclusion criteria were (i) human, in vivo, or in vitro studies, (ii) studies related to the effect of bioactive compounds on FM-like symptoms, (iii) peer-reviewed literature, and (iv) publications until February 2022 in PubMed and Google Scholar. Exclusion criteria were (i) study designs using CCI, SNI, or SNL models because they are more NP models rather than FM models, and (ii) studies published in a language other than English. Keywords were dietary bioactive compounds, fibromyalgia, cell, animals, humans. Here, we report the effects of commonly consumed bioactive compounds (capsaicin, ginger, curcumin, n-3 PUFA, grape seed extract, naringin, and genistein) on FM-like symptoms in cellular, animal, and human studies. Cellular studies demonstrated that these bioactive compounds reduce pro-inflammatory production and increase antioxidant capacity of neurons or myoblasts that regulate apoptosis/cell survival. Animal studies showed that these regularly consumed bioactive compounds have an effect on FM-like symptoms, as evidenced by decreased pain hypersensitivity and fatigue as well as improved social behaviors. Further studies are warranted to allow meaningful comparison and quantification of the efficacy of these bioactive compounds on FM-like symptoms across studies, in terms of actual changes in antioxidant capacity, pain hypersensitivity, fatigue, and social behaviors. To date, human studies regarding the efficacy of these bioactive compounds on FM-like symptoms are limited and inconclusive. Our review identifies this important knowledge gap and proposes that the development and use of improved preclinical FM models are needed, particularly concerning the usage of female animals to better mimic FM pathophysiology and symptomatology.
Collapse
|
13
|
Sharma M, Gupta P, Garabadu D. Bacopa monnieri attenuates glutamate-induced nociception and brain mitochondrial toxicity in Zebrafish. Metab Brain Dis 2022; 37:383-396. [PMID: 34817757 DOI: 10.1007/s11011-021-00874-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022]
Abstract
Bacopa monnieri L. (BM; Family: Scrophulariaceae), commonly known as Brahmi, is traditionally used as a nootropic agent. BM also exhibits significant analgesic activity in experimental models of pain. However, the effect of Bacopa monnieri against glutamate-induced nociception in zebrafish is yet to be explored in experimental condition. Therefore, the present study was designed to evaluate the effect of BM against glutamate-induced nociception and brain mitochondrial toxicity in adult zebrafish (Danio rerio). BM at 0.625, 1.25 and 2.5 mg/ml was administered to adult zebrafish and after half an hour glutamate was injected through i.m. route of administration. Indomethacin was used as standard drug. After behavioral analysis, the fish were euthanized and the brain was isolated and stored for further biochemical analysis. BM (1.25 and 2.5 mg/ml) and indomethacin significantly attenuated the glutamate-induced increase in number of line crossing compared to control group animals. Additionally, BM (1.25 and 2.5 mg/ml) and indomethacin significantly reduced the glutamate induced increase in cytosolic calcium level. Further, there was a substantial improvement in mitochondrial function, integrity and bioenergetics in term of respiratory control rate and ADP/O in zebrafish brain. Moreover, BM (1.25 and 2.5 mg/ml) and indomethacin significantly reduced the glutamate-induced mitochondria-dependent apoptosis in zebrafish brain. Therefore, BM could be a potential alternative drug candidate in the management of pain.
Collapse
Affiliation(s)
- Mahima Sharma
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, India
- Drug Standardization Unit, DDPR Central Research Institute for Homoeopathy, Uttar Pradesh, Noida, India
| | - Pankaj Gupta
- Drug Standardization Unit, DDPR Central Research Institute for Homoeopathy, Uttar Pradesh, Noida, India
| | - Debapriya Garabadu
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, India.
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151001, India.
| |
Collapse
|
14
|
Zhang L, Zhao Y, Gao T, Zhang H, Li J, Wang G, Wang C, Li Y. Artesunate Reduces Remifentanil-induced Hyperalgesia and Peroxiredoxin-3 Hyperacetylation via Modulating Spinal Metabotropic Glutamate Receptor 5 in Rats. Neuroscience 2022; 487:88-98. [PMID: 35026318 DOI: 10.1016/j.neuroscience.2022.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 12/11/2022]
Abstract
The experimental investigations on the pathogenesis of remifentanil-induced hyperalgesia (RIH) have been primarily conducted, but the effective treatment of RIH remains unclear. Recent reports highlight the necessity of ionotropic glutamate receptors in oxidative damage in spinal nociceptive transduction. Artesunate, the 1st-line anti-malaria drug, has been identified to be valid in removing superoxide in several pathological conditions. This study evaluated whether artesunate inhibits RIH via regulating metabotropic glutamate receptor 5 (mGluR5) and mitochondrial antioxidant enzyme peroxiredoxin-3 in rats. Artesunate was injected intrathecally 10 min before intravenous infusion of remifentanil (1 μg·kg-1·min-1 for 60 min) in rats. The antinociception of artesunate was verified by assessment of paw withdrawal mechanical threshold and paw withdrawal thermal latency. Spinal mGluR5 expression and peroxiredoxin-3 hyperacetylation were examined. Also, both the mGluR5 agonist DHPG and antagonist MPEP were utilized to explore the involvement of mGluR5 in the anti-hyperalgesic property of artesunate. Here, we found that artesunate (10 μg and 100 μg but not 1 μg) prevented RIH in a dose-dependent manner. Artesunate reduced remifentanil-related spinal over-expression of mGluR5 gene and protein, and hyperacetylation of peroxiredoxin-3. Intrathecal application of MPEP (10 nmol and 100 nmol but not 1 nmol) inhibited behavioral RIH and peroxiredoxin-3 acetylation. Moreover, hyperalgesia and peroxiredoxin-3 hyperacetylation were attenuated after the combination of artesunate (1 μg) and MPEP (1 nmol). Additionally, artesunate treatment reversed acute pain and peroxiredoxin-3 hyperacetylation following spinal exposure to DHPG. In conclusion, intrathecal injection of artesunate impairs RIH by down-regulating spinal mGluR5 expression and peroxiredoxin-3 hyperacetylation-mediated oxidative stress in rats.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Yuying Zhao
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Tianyu Gao
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Haoyue Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Jing Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Guolin Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Chunyan Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Yize Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China.
| |
Collapse
|
15
|
Estévez-López F, Guerrero-González JM, Salazar-Tortosa D, Camiletti-Moirón D, Gavilán-Carrera B, Aparicio VA, Acosta-Manzano P, Álvarez-Gallardo IC, Segura-Jiménez V, Soriano-Maldonado A, Geenen R, Delgado-Fernández M, Martínez-González LJ, Ruiz JR, Álvarez-Cubero MJ. Interplay between genetics and lifestyle on pain susceptibility in women with fibromyalgia: The al-Ándalus project. Rheumatology (Oxford) 2021; 61:3180-3191. [PMID: 34875034 PMCID: PMC9348776 DOI: 10.1093/rheumatology/keab911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/29/2021] [Indexed: 11/26/2022] Open
Abstract
Objectives It is widely acknowledged that the experience of pain is promoted by both genetic susceptibility and environmental factors such as engaging in physical activity (PA), and that pain-related cognitions are also important. Thus, the purpose of the present study was to test the association of 64 polymorphisms (34 candidate genes) and the gene–gene, gene–PA and gene–sedentary behaviour interactions with pain and pain-related cognitions in women with FM. Methods Saliva samples from 274 women with FM [mean (s.d.) age 51.7 (7.7) years] were collected for extracting DNA. We measured PA and sedentary behaviour by accelerometers for a week, pain with algometry and questionnaires, and pain-related cognitions with questionnaires. To assess the robustness of the results, a meta-analysis was also performed. Results The rs6311 and rs6313 polymorphisms (5-hydroxytryptamine receptor 2A, HTR2A) were individually related to algometer scores. The interaction of rs4818 (catechol-O-methyltransferase, COMT) and rs1799971 (opioid receptor μ gene, OPRM1) was related to pain catastrophizing. Five gene–behaviour interactions were significant: the interactions of sedentary behaviour with rs1383914 (adrenoceptor alpha 1A, ADRA1A), rs6860 (charged multivesicular body protein 1A, CHMP1A), rs4680 (COMT), rs165599 (COMT) and rs12994338 (SCN9A) on bodily pain subscale of the Short Form 36. Furthermore, the meta-analysis showed an association between rs4680 (COMT) and severity of FM symptoms (codominant model, P-value 0.032). Conclusion The HTR2A gene (individually), COMT and OPRM1 gene–gene interaction, and the interactions of sedentary behaviour with ADRA1A, CHMP1A, COMT and SCN9A genes were associated with pain-related outcomes. Collectively, findings from the present study indicate a modest contribution of genetics and gene–sedentary behaviour interaction to pain and pain catastrophizing in women with FM. Future research should examine whether reducing sedentary behaviour is particularly beneficial for reducing pain in women with genetic susceptibility to pain.
Collapse
Affiliation(s)
- Fernando Estévez-López
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center, The Netherlands, 3015 GD Rotterdam
| | - Juan M Guerrero-González
- GENYO (Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research), Granada, Spain
| | - Diego Salazar-Tortosa
- Department of Ecology and Evolutionary Biology, University of Arizona, USA, Tucson, AZ 85719
| | - Daniel Camiletti-Moirón
- Department of Physical Education, Faculty of Education Sciences, University of Cádiz, 11519 Cádiz, Spain
| | - Blanca Gavilán-Carrera
- Department of Physical Education, Faculty of Education Sciences, University of Cádiz, 11519 Cádiz, Spain
| | - Virginia A Aparicio
- Department of Physiology, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain
| | - Pedro Acosta-Manzano
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Spain, 18010 Granada
| | | | - Víctor Segura-Jiménez
- Instituto de Investigación Biosanitaria ibs. GRANADA, Spain, Granada.,Hospital Universitario Virgen de las Nieves of Granada, Spain, Granada.,GALENO research group, Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Spain, Cádiz
| | | | - Rinie Geenen
- Department of Psychology, Faculty of Social and Behavioural Sciences, Utrecht University, The Netherlands, 3508 TC Utrecht
| | - Manuel Delgado-Fernández
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Spain, 18010 Granada
| | - Luis J Martínez-González
- GENYO (Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research), Granada, Spain
| | - Jonatan R Ruiz
- PROFITH-"PROmoting FITness and Health Through Physical Activity"- Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Spain, 18071 Granada
| | - María J Álvarez-Cubero
- GENYO (Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research), Granada, Spain.,University of Granada, Department of Biochemistry and Molecular Biology III, Faculty of Medicine, Spain, PTS, Granada
| |
Collapse
|
16
|
Yang YS, Choi JH, Rah JC. Hypoxia with inflammation and reperfusion alters membrane resistance by dynamically regulating voltage-gated potassium channels in hippocampal CA1 neurons. Mol Brain 2021; 14:147. [PMID: 34556177 PMCID: PMC8461870 DOI: 10.1186/s13041-021-00857-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 02/01/2023] Open
Abstract
Hypoxia typically accompanies acute inflammatory responses in patients and animal models. However, a limited number of studies have examined the effect of hypoxia in combination with inflammation (Hypo-Inf) on neural function. We previously reported that neuronal excitability in hippocampal CA1 neurons decreased during hypoxia and greatly rebounded upon reoxygenation. We attributed this altered excitability mainly to the dynamic regulation of hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels and input resistance. However, the molecular mechanisms underlying input resistance changes by Hypo-Inf and reperfusion remained unclear. In the present study, we found that a change in the density of the delayed rectifier potassium current (IDR) can explain the input resistance variability. Furthermore, voltage-dependent inactivation of A-type potassium (IA) channels shifted in the depolarizing direction during Hypo-Inf and reverted to normal upon reperfusion without a significant alteration in the maximum current density. Our results indicate that changes in the input resistance, and consequently excitability, caused by Hypo-Inf and reperfusion are at least partially regulated by the availability and voltage dependence of KV channels. Moreover, these results suggest that selective KV channel modulators can be used as potential neuroprotective drugs to minimize hypoxia- and reperfusion-induced neuronal damage.
Collapse
Affiliation(s)
- Yoon-Sil Yang
- Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu, 41062 South Korea
| | - Joon Ho Choi
- Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu, 41062 South Korea
| | - Jong-Cheol Rah
- Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu, 41062 South Korea
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, 333 Techno Jungang-daero, Dalseong-gun, Daegu, 42988 South Korea
| |
Collapse
|
17
|
Milanese M, Bonifacino T, Torazza C, Provenzano F, Kumar M, Ravera S, Zerbo AR, Frumento G, Balbi M, Nguyen TPN, Bertola N, Ferrando S, Viale M, Profumo A, Bonanno G. Blocking glutamate mGlu 5 receptors with the negative allosteric modulator CTEP improves disease course in SOD1 G93A mouse model of amyotrophic lateral sclerosis. Br J Pharmacol 2021; 178:3747-3764. [PMID: 33931856 PMCID: PMC8457068 DOI: 10.1111/bph.15515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/22/2021] [Accepted: 04/20/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE The pathogenesis of amyotrophic lateral sclerosis (ALS) is not fully clarified, although excessive glutamate (Glu) transmission and the downstream cytotoxic cascades are major mechanisms for motor neuron death. Two metabotropic glutamate receptors (mGlu1 and mGlu5 ) are overexpressed in ALS and regulate cellular disease processes. Expression and function of mGlu5 receptors are altered at early symptomatic stages in the SOD1G93A mouse model of ALS and knockdown of mGlu5 receptors in SOD1G93A mice improved disease progression. EXPERIMENTAL APPROACH We treated male and female SOD1G93A mice with 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine (CTEP), an orally available mGlu5 receptor negative allosteric modulator (NAM), using doses of 2 mg·kg-1 per 48 h or 4 mg·kg-1 per 24 h from Day 90, an early symptomatic disease stage. Disease progression was studied by behavioural and histological approaches. KEY RESULTS CTEP dose-dependently ameliorated clinical features in SOD1G93A mice. The lower dose increased survival and improved motor skills in female mice, with barely positive effects in male mice. Higher doses significantly ameliorated disease symptoms and survival in both males and females, females being more responsive. CTEP also reduced motor neuron death, astrocyte and microglia activation, and abnormal glutamate release in the spinal cord, with equal effects in male and female mice. No differences were also observed in CTEP access to the brain. CONCLUSION AND IMPLICATIONS Our results suggest that mGlu5 receptors are promising targets for the treatment of ALS and highlight mGlu5 receptor NAMs as effective pharmacological tools with translational potential.
Collapse
Affiliation(s)
- Marco Milanese
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy.,Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy.,Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Carola Torazza
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy
| | - Francesca Provenzano
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy.,Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen and German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Mandeep Kumar
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Arianna Roberta Zerbo
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy
| | - Giulia Frumento
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy
| | - Matilde Balbi
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy
| | - T P Nhung Nguyen
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy
| | - Nadia Bertola
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Sara Ferrando
- Department of Earth, Environmental and Life Science, University of Genoa, Genoa, Italy
| | | | - Aldo Profumo
- IRCCS Ospedale policlinico San Martino, Genoa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy.,IRCCS Ospedale policlinico San Martino, Genoa, Italy
| |
Collapse
|
18
|
Feng X, Yang F, Rabenstein M, Wang Z, Frech MJ, Wree A, Bräuer AU, Witt M, Gläser A, Hermann A, Rolfs A, Luo J. Stimulation of mGluR1/5 Improves Defective Internalization of AMPA Receptors in NPC1 Mutant Mouse. Cereb Cortex 2021; 30:1465-1480. [PMID: 31599924 DOI: 10.1093/cercor/bhz179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Niemann-Pick type C1 (NPC1) disease is characterized by neurodegeneration caused by cholesterol accumulation in the late endosome/lysosome. In this study, a defective basal and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-stimulated internalization of GluR2-containing AMPA receptors in NPC1-/- cortical neurons was detected. Our results show that the amount of cholesterol and group I metabotropic glutamate receptors (mGluR1/5) in lipid rafts of NPC1-/- cortical tissue and neurons are decreased and their downstream signals of p-ERK are defective, which are restored by a rebalance of cholesterol homeostasis through β-cyclodextrin (β-CD) treatment. Application of 3,5-dihydroxyphenylglycine (DHPG)-a mGluR1/5 agonist-and β-CD markedly increases the internalization of AMPA receptors and decreases over-influx of calcium in NPC1-/- neurons, respectively. Furthermore, the defective phosphorylated GluR2 and protein kinase C signals are ameliorated by the treatment with DHPG and β-CD, respectively, suggesting an involvement of them in internalization dysfunction. Taken together, our data imply that abnormal internalization of AMPA receptors is a critical mechanism for neuronal dysfunction and the correction of dysfunctional mGluR1/5 is a potential therapeutic strategy for NPC1 disease.
Collapse
Affiliation(s)
- Xiao Feng
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, Rostock 18147, Germany
| | - Fan Yang
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, Rostock 18147, Germany
| | - Michael Rabenstein
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, Rostock 18147, Germany
| | - Zhen Wang
- Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - Moritz J Frech
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, Rostock 18147, Germany.,Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock 18147, Germany
| | - Andreas Wree
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock 18147, Germany.,Institute of Anatomy, University Medical Center Rostock, Rostock 18055, Germany
| | - Anja U Bräuer
- Institute of Anatomy, University Medical Center Rostock, Rostock 18055, Germany.,Research Group Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University, Oldenburg 26129, Germany.,Research Center for Neurosensory Science, Carl von Ossietzky University, Oldenburg 26129, Germany
| | - Martin Witt
- Institute of Anatomy, University Medical Center Rostock, Rostock 18055, Germany
| | - Anne Gläser
- Institute of Anatomy, University Medical Center Rostock, Rostock 18055, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, Rostock 18147, Germany.,Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock 18147, Germany.,German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Rostock 18147, Germany
| | | | - Jiankai Luo
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, Rostock 18147, Germany.,Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock 18147, Germany
| |
Collapse
|
19
|
Gonzalez-Lozano MA, Wortel J, van der Loo RJ, van Weering JRT, Smit AB, Li KW. Reduced mGluR5 Activity Modulates Mitochondrial Function. Cells 2021; 10:cells10061375. [PMID: 34199502 PMCID: PMC8228325 DOI: 10.3390/cells10061375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/23/2021] [Accepted: 05/31/2021] [Indexed: 11/30/2022] Open
Abstract
The metabotropic glutamate receptor 5 (mGluR5) is an essential modulator of synaptic plasticity, learning and memory; whereas in pathological conditions, it is an acknowledged therapeutic target that has been implicated in multiple brain disorders. Despite robust pre-clinical data, mGluR5 antagonists failed in several clinical trials, highlighting the need for a better understanding of the mechanisms underlying mGluR5 function. In this study, we dissected the molecular synaptic modulation mediated by mGluR5 using genetic and pharmacological mouse models to chronically and acutely reduce mGluR5 activity. We found that next to dysregulation of synaptic proteins, the major regulation in protein expression in both models concerned specific processes in mitochondria, such as oxidative phosphorylation. Second, we observed morphological alterations in shape and area of specifically postsynaptic mitochondria in mGluR5 KO synapses using electron microscopy. Third, computational and biochemical assays suggested an increase of mitochondrial function in neurons, with increased level of NADP/H and oxidative damage in mGluR5 KO. Altogether, our observations provide diverse lines of evidence of the modulation of synaptic mitochondrial function by mGluR5. This connection suggests a role for mGluR5 as a mediator between synaptic activity and mitochondrial function, a finding which might be relevant for the improvement of the clinical potential of mGluR5.
Collapse
Affiliation(s)
- Miguel A. Gonzalez-Lozano
- Center for Neurogenomics and Cognitive Research, Department of Molecular and Cellular Neurobiology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands; (R.J.v.d.L.); (A.B.S.)
- Correspondence: (M.A.G.-L.); (K.W.L.)
| | - Joke Wortel
- Center for Neurogenomics and Cognitive Research, Department of Functional Genomics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands; (J.W.); (J.R.T.v.W.)
| | - Rolinka J. van der Loo
- Center for Neurogenomics and Cognitive Research, Department of Molecular and Cellular Neurobiology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands; (R.J.v.d.L.); (A.B.S.)
| | - Jan R. T. van Weering
- Center for Neurogenomics and Cognitive Research, Department of Functional Genomics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands; (J.W.); (J.R.T.v.W.)
- Center for Neurogenomics and Cognitive Research, Department of Clinical Genetics, Amsterdam Neuroscience, Amsterdam UMC location VUmc, 1081 Amsterdam, The Netherlands
| | - August B. Smit
- Center for Neurogenomics and Cognitive Research, Department of Molecular and Cellular Neurobiology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands; (R.J.v.d.L.); (A.B.S.)
| | - Ka Wan Li
- Center for Neurogenomics and Cognitive Research, Department of Molecular and Cellular Neurobiology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands; (R.J.v.d.L.); (A.B.S.)
- Correspondence: (M.A.G.-L.); (K.W.L.)
| |
Collapse
|
20
|
Kashiwagi Y, Yi H, Liu S, Takahashi K, Hayashi K, Ikegami D, Zhu X, Gu J, Hao S. Mitochondrial biogenesis factor PGC-1α suppresses spinal morphine tolerance by reducing mitochondrial superoxide. Exp Neurol 2021; 339:113622. [PMID: 33516729 DOI: 10.1016/j.expneurol.2021.113622] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 11/15/2022]
Abstract
Opioid use disorders (OUDs) have reached an epidemic level in the United States. The opioid epidemic involves illicit opioid use, prescription opioids for analgesia, counterfeit opioids, new psychoactive substances, and diverted opioids. Opioids remain the last option for the treatment of intractable clinical pain, but chronic use of opioids are limited in part due to antinociceptive/analgesic tolerance. Peroxisome proliferator-activated receptor (PPAR)-gamma coactivator-1alpha (PGC-1α), a mitochondrial biogenesis factor can reduce toxic reactive oxygen species (ROS) that play a role in morphine tolerance (MT). Decreased PGC-1α expression has been shown to contribute to various metabolic disorders or neurodegeneration diseases through increasing ROS. We examined the relationship of PGC-1α and ROS in MT. To induce MT, adult Sprague-Dawley rats received intrathecal morphine for 7 days. Mechanical threshold was measured using the von Frey test and thermal latency was examined using the heat plate test. Expression of PGC-1α in the spinal cord dorsal horn (SCDH) was examined using RT-PCR and western blots. Mitochondrial superoxide was detected using MitoSox Red, a mitochondrial superoxide indicator. The antinociceptive effect of recombinant PGC-1α (rPGC-1α) or Mito-Tempol (a mitochondria-targeted superoxide scavenger) was determined using the von Frey test and hot plate test. Furthermore, we examined the effect of rPGC-1α on mitochondrial superoxide using cultured neurons. Our findings include that: (i) spinal MT decreased the expression of spinal PGC-1α in the SCDH neurons; (ii) rPGC-1α increased mechanical threshold and thermal latency in MT animals; (iii) Mito-Tempol reduced MT behavioral response; (iv) rPGC-1α reduced MT-induced mitochondria-targeted superoxide; and (v) cultured neuronal cells treated with TNFα increased mitochondria-targeted superoxide that can be inhibited by rPGC-1α. The present findings suggest that spinal PGC-1α reduce MT through decreasing mitochondria-targeted superoxide in the SCDH.
Collapse
Affiliation(s)
- Yuta Kashiwagi
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Hyun Yi
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Shue Liu
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Keiya Takahashi
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Kentaro Hayashi
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Daigo Ikegami
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Xun Zhu
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Jun Gu
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Shuanglin Hao
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136, United States.
| |
Collapse
|
21
|
Hein M, Ji G, Tidwell D, D'Souza P, Kiritoshi T, Yakhnitsa V, Navratilova E, Porreca F, Neugebauer V. Kappa opioid receptor activation in the amygdala disinhibits CRF neurons to generate pain-like behaviors. Neuropharmacology 2021; 185:108456. [PMID: 33444637 PMCID: PMC7887082 DOI: 10.1016/j.neuropharm.2021.108456] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
Recent evidence suggests that kappa opioid receptors (KOR) in limbic brain regions such as the amygdala contribute to pain conditions, but underlying mechanisms remain to be determined. The amygdala is an important player in averse-affective aspects of pain and pain modulation. The central nucleus (CeA) serves output functions through projection neurons that include corticotropin releasing factor (CRF) expressing neurons. The CeA is also rich in KOR. Here we tested the novel hypothesis that KOR activation in the CeA generates pain-like behaviors through a mechanism that involves inhibition of synaptic inhibition (disinhibition) of CRF neurons. Intra-CeA administration of a KOR agonist (U-69,593) increased vocalizations of naïve rats to noxious stimuli, and induced anxiety-like behaviors in the open field test (OFT) and avoidance in the conditioned place preference test, without affecting mechanosensory thresholds. Optogenetic silencing of CeA-CRF neurons blocked the facilitatory effects of systemically applied U-69,593 in naïve rats. Patch-clamp recordings of CRF neurons in rat brain slices found that U-69,593 decreased feedforward inhibitory transmission evoked by optogenetic stimulation of parabrachial afferents, but had no effect on monosynaptic excitatory transmission. U-69,593 decreased frequency, but not amplitude, of inhibitory synaptic currents, suggesting a presynaptic action. Multiphoton imaging of CeA-CRF neurons in rat brain slices showed that U-69,593 increased calcium signals evoked by electrical stimulation of presumed parabrachial input. This study shows for the first time that KOR activation increases activity of amygdala CRF neurons through synaptic disinhibition, resulting in averse-affective pain-like behaviors. Blocking KOR receptors may therefore represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- Matthew Hein
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Dalton Tidwell
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Preston D'Souza
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Edita Navratilova
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
22
|
Wu R, Yun Q, Zhang J, Bao J. RETRACTED: Long non-coding RNA GAS5 retards neural functional recovery in cerebral ischemic stroke through modulation of the microRNA-455-5p/PTEN axis. Brain Res Bull 2021; 167:80-88. [PMID: 33309710 DOI: 10.1016/j.brainresbull.2020.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Western blot results in Figs. 1C and 4B+J, which appear to have the same eyebrow shaped phenotype as many other publications tabulated here (https://docs.google.com/spreadsheets/d/149EjFXVxpwkBXYJOnOHb6RhAqT4a2llhj9LM60MBffM/edit#gid=0). The journal requested the corresponding author comment on these concerns and provide the raw data. However, the authors were not responsive to the request for comment. Since original data could not be provided, the overall validity of the results could not be confirmed. Therefore, the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Rile Wu
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, 010017, Inner Mongolia Autonomous Region, China.
| | - Qiang Yun
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, 010017, Inner Mongolia Autonomous Region, China
| | - Jianping Zhang
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, 010017, Inner Mongolia Autonomous Region, China
| | - Jingang Bao
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, 010017, Inner Mongolia Autonomous Region, China
| |
Collapse
|
23
|
Wilson TD, Valdivia S, Khan A, Ahn HS, Adke AP, Martinez Gonzalez S, Sugimura YK, Carrasquillo Y. Dual and Opposing Functions of the Central Amygdala in the Modulation of Pain. Cell Rep 2020; 29:332-346.e5. [PMID: 31597095 PMCID: PMC6816228 DOI: 10.1016/j.celrep.2019.09.011] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 07/27/2019] [Accepted: 09/05/2019] [Indexed: 12/22/2022] Open
Abstract
Pain perception is essential for survival and can be amplified or suppressed by expectations, experiences, and context. The neural mechanisms underlying bidirectional modulation of pain remain largely unknown. Here, we demonstrate that the central nucleus of the amygdala (CeA) functions as a pain rheostat, decreasing or increasing pain-related behaviors in mice. This dual and opposing function of the CeA is encoded by opposing changes in the excitability of two distinct subpopulations of GABAergic neurons that receive excitatory inputs from the parabrachial nucleus (PB). Thus, cells expressing protein kinase C-delta (CeA-PKCδ) are sensitized by nerve injury and increase pain-related responses. In contrast, cells expressing somatostatin (CeA-Som) are inhibited by nerve injury and their activity drives antinociception. Together, these results demonstrate that the CeA can amplify or suppress pain in a cell-type-specific manner, uncovering a previously unknown mechanism underlying bidirectional control of pain in the brain. The brain can bidirectionally influence behavioral responses to painful stimuli. Wilson et al identify a cellular mechanism underlying a pain rheostat system within the forebrain, with activation of CeA-Som neurons attenuating pain-related responses and increases in the activity of CeA-PKCδ neurons promoting amplification of pain-related behaviors following injury.
Collapse
Affiliation(s)
- Torri D Wilson
- National Center of Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States
| | - Spring Valdivia
- National Center of Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States
| | - Aleisha Khan
- National Center of Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States
| | - Hye-Sook Ahn
- National Center of Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States
| | - Anisha P Adke
- National Center of Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States
| | - Santiago Martinez Gonzalez
- National Center of Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States
| | - Yae K Sugimura
- National Center of Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States
| | - Yarimar Carrasquillo
- National Center of Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
24
|
S-methyl-L-cysteine Protects against Antimycin A-induced Mitochondrial Dysfunction in Neural Cells via Mimicking Endogenous Methionine-centered Redox Cycle. Curr Med Sci 2020; 40:422-433. [PMID: 32681247 DOI: 10.1007/s11596-020-2196-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/30/2020] [Indexed: 12/26/2022]
Abstract
Mitochondrial superoxide overproduction is believed to be responsible for the neurotoxicity associated with neurodegeneration. Mitochondria-targeted antioxidants, such as MitoQ, have emerged as potentially effective antioxidant therapies. Methionine sulfoxide reductase A (MsrA) is a key mitochondrial-localized endogenous antioxidative enzyme and it can scavenge oxidizing species by catalyzing the methionine (Met)-centered redox cycle (MCRC). In this study, we observed that the natural L-Met acted as a good scavenger for antimycin A-induced mitochondrial superoxide overproduction in PC12 cells. This antioxidation was largely dependent on the Met oxidase activity of MsrA. S-methyl-L-cysteine (SMLC), a natural analogue of Met that is abundantly found in garlic and cabbage, could activate the Met oxidase activity of MsrA to scavenge free radicals. Furthermore, SMLC protected against antimycin A-induced mitochondrial membrane depolarization and alleviated 1-methyl-4-phenylpyridinium (MPP+)-induced neurotoxicity. Thus, our data highlighted the possibility for SMLC supplement in the detoxication of mitochondrial damage by activating the Met oxidase activity of MsrA.
Collapse
|
25
|
Nitric Oxide Signaling Strengthens Inhibitory Synapses of Cerebellar Molecular Layer Interneurons through a GABARAP-Dependent Mechanism. J Neurosci 2020; 40:3348-3359. [PMID: 32169968 DOI: 10.1523/jneurosci.2211-19.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/13/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022] Open
Abstract
Nitric oxide (NO) is an important signaling molecule that fulfills diverse functional roles as a neurotransmitter or diffusible second messenger in the developing and adult CNS. Although the impact of NO on different behaviors such as movement, sleep, learning, and memory has been well documented, the identity of its molecular and cellular targets is still an area of ongoing investigation. Here, we identify a novel role for NO in strengthening inhibitory GABAA receptor-mediated transmission in molecular layer interneurons of the mouse cerebellum. NO levels are elevated by the activity of neuronal NO synthase (nNOS) following Ca2+ entry through extrasynaptic NMDA-type ionotropic glutamate receptors (NMDARs). NO activates protein kinase G with the subsequent production of cGMP, which prompts the stimulation of NADPH oxidase and protein kinase C (PKC). The activation of PKC promotes the selective strengthening of α3-containing GABAARs synapses through a GΑΒΑ receptor-associated protein-dependent mechanism. Given the widespread but cell type-specific expression of the NMDAR/nNOS complex in the mammalian brain, our data suggest that NMDARs may uniquely strengthen inhibitory GABAergic transmission in these cells through a novel NO-mediated pathway.SIGNIFICANCE STATEMENT Long-term changes in the efficacy of GABAergic transmission is mediated by multiple presynaptic and postsynaptic mechanisms. A prominent pathway involves crosstalk between excitatory and inhibitory synapses whereby Ca2+-entering through postsynaptic NMDARs promotes the recruitment and strengthening of GABAA receptor synapses via Ca2+/calmodulin-dependent protein kinase II. Although Ca2+ transport by NMDARs is also tightly coupled to nNOS activity and NO production, it has yet to be determined whether this pathway affects inhibitory synapses. Here, we show that activation of NMDARs trigger a NO-dependent pathway that strengthens inhibitory GABAergic synapses of cerebellar molecular layer interneurons. Given the widespread expression of NMDARs and nNOS in the mammalian brain, we speculate that NO control of GABAergic synapse efficacy may be more widespread than has been appreciated.
Collapse
|
26
|
Abstract
The amygdala has emerged as an important brain area for the emotional-affective dimension of pain and pain modulation. The amygdala receives nociceptive information through direct and indirect routes. These excitatory inputs converge on the amygdala output region (central nucleus) and can be modulated by inhibitory elements that are the target of (prefrontal) cortical modulation. For example, inhibitory neurons in the intercalated cell mass in the amygdala project to the central nucleus to serve gating functions, and so do inhibitory (PKCdelta) interneurons within the central nucleus. In pain conditions, synaptic plasticity develops in output neurons because of an excitation-inhibition imbalance and drives pain-like behaviors and pain persistence. Mechanisms of pain related neuroplasticity in the amygdala include classical transmitters, neuropeptides, biogenic amines, and various signaling pathways. An emerging concept is that differences in amygdala activity are associated with phenotypic differences in pain vulnerability and resilience and may be predetermining factors of the complexity and persistence of pain.
Collapse
Affiliation(s)
- Volker Neugebauer
- Professor and Chair, Department of Pharmacology and Neuroscience, Giles McCrary Endowed Chair in Addiction Medicine, Director, Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center
- School of Medicine, 3601 4th Street
- Mail Stop 6592, Lubbock, Texas 79430-6592
| |
Collapse
|
27
|
Crosstalk between Calcium and ROS in Pathophysiological Conditions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9324018. [PMID: 31178978 PMCID: PMC6507098 DOI: 10.1155/2019/9324018] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/01/2019] [Indexed: 12/12/2022]
Abstract
Calcium ions are highly versatile intracellular signals that regulate many cellular processes. The key to achieving this pleiotropic role is the spatiotemporal control of calcium concentration evoked by an extensive molecular repertoire of signalling components. Among these, reactive oxygen species (ROS) signalling, together with calcium signalling, plays a crucial role in controlling several physiopathological events. Although initially considered detrimental by-products of aerobic metabolism, it is now widely accepted that ROS, in subtoxic levels, act as signalling molecules. However, dysfunctions in the mechanisms controlling the physiological ROS concentration affect cellular homeostasis, leading to the pathogenesis of various disorders.
Collapse
|
28
|
Dysfunctional Mitochondrial Bioenergetics and Synaptic Degeneration in Alzheimer Disease. Int Neurourol J 2019; 23:S5-10. [PMID: 30832462 PMCID: PMC6433209 DOI: 10.5213/inj.1938036.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 02/15/2019] [Indexed: 12/21/2022] Open
Abstract
Synapses are sites of high energy demand which are dependent on high levels of mitochondrial derived adenosine triphosphate. Mitochondria within synaptic structures are key for maintenance of functional neurotransmission and this critical biological process is modulated by energy metabolism, mitochondrial distribution, mitochondrial trafficking, and cellular synaptic calcium flux. Synapse loss is presumed to be an early yet progressive pathological event in Alzheimer disease (AD), resulting in impaired cognitive function and memory loss which is particularly prevalent at later stages of disease. Supporting evidence from AD patients and animal models suggests that pathological mitochondrial dynamics indeed occurs early and is highly associated with synaptic lesions and degeneration in AD neurons. This review comprehensively highlights recent findings that describe how synaptic mitochondria pathology involves dysfunctional trafficking of this organelle, to maladaptive epigenetic contributions affecting mitochondrial function in AD. We further discuss how these negative, dynamic alterations impact synaptic function associated with AD. Finally, this review explores how antioxidant therapeutic approaches targeting mitochondria in AD can further clinical research and basic science investigations to advance our in-depth understanding of the pathogenesis of AD.
Collapse
|
29
|
Pereira V, Goudet C. Emerging Trends in Pain Modulation by Metabotropic Glutamate Receptors. Front Mol Neurosci 2019; 11:464. [PMID: 30662395 PMCID: PMC6328474 DOI: 10.3389/fnmol.2018.00464] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
Pain is an essential protective mechanism meant to prevent tissue damages in organisms. On the other hand, chronic or persistent pain caused, for example, by inflammation or nerve injury is long lasting and responsible for long-term disability in patients. Therefore, chronic pain and its management represents a major public health problem. Hence, it is critical to better understand chronic pain molecular mechanisms to develop innovative and efficient drugs. Over the past decades, accumulating evidence has demonstrated a pivotal role of glutamate in pain sensation and transmission, supporting glutamate receptors as promising potential targets for pain relieving drug development. Glutamate is the most abundant excitatory neurotransmitter in the brain. Once released into the synapse, glutamate acts through ionotropic glutamate receptors (iGluRs), which are ligand-gated ion channels triggering fast excitatory neurotransmission, and metabotropic glutamate receptors (mGluRs), which are G protein-coupled receptors modulating synaptic transmission. Eight mGluRs subtypes have been identified and are divided into three classes based on their sequence similarities and their pharmacological and biochemical properties. Of note, all mGluR subtypes (except mGlu6 receptor) are expressed within the nociceptive pathways where they modulate pain transmission. This review will address the role of mGluRs in acute and persistent pain processing and emerging pharmacotherapies for pain management.
Collapse
Affiliation(s)
- Vanessa Pereira
- IGF, CNRS, INSERM, Univ. de Montpellier, Montpellier, France
| | - Cyril Goudet
- IGF, CNRS, INSERM, Univ. de Montpellier, Montpellier, France
| |
Collapse
|
30
|
Sagalajev B, Wei H, Chen Z, Albayrak I, Koivisto A, Pertovaara A. Oxidative Stress in the Amygdala Contributes to Neuropathic Pain. Neuroscience 2018; 387:92-103. [DOI: 10.1016/j.neuroscience.2017.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 12/27/2022]
|
31
|
Kim H, Thompson J, Ji G, Ganapathy V, Neugebauer V. Monomethyl fumarate inhibits pain behaviors and amygdala activity in a rat arthritis model. Pain 2018; 158:2376-2385. [PMID: 28832396 DOI: 10.1097/j.pain.0000000000001042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neuroplasticity in the amygdala, a brain center for emotions, leads to increased neuronal activity and output that can generate emotional-affective behaviors and modulate nocifensive responses. Mechanisms of increased activity in the amygdala output region (central nucleus, CeA) include increased reactive oxygen species, and so we explored beneficial effects of monomethyl fumarate (MMF), which can have neuroprotective effects through the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) antioxidant response pathway. Systemic (intraperitoneal) MMF dose-dependently inhibited vocalizations and mechanosensitivity (hindlimb withdrawal reflexes) of rats in an arthritis pain model (kaolin-carrageenan-induced monoarthritis in the knee). Stereotaxic administration of MMF into the CeA by microdialysis also inhibited vocalizations but had a limited effect on mechanosensitivity, suggesting a differential contribution to emotional-affective vs sensory pain aspects. Extracellular single-unit recordings of CeA neurons in anesthetized rats showed that stereotaxic administration of MMF into the CeA by microdialysis inhibited background activity and responses of CeA neurons to knee joint stimulation in the arthritis pain model. Monomethyl fumarate had no effect on behaviors and neuronal activity under normal conditions. The results suggest that MMF can inhibit emotional-affective responses in an arthritis pain model through an action that involves the amygdala (CeA).
Collapse
Affiliation(s)
- Hyunyoung Kim
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), School of Medicine, Lubbock, TX, USA
| | - Jeremy Thompson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), School of Medicine, Lubbock, TX, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), School of Medicine, Lubbock, TX, USA
| | - Vadivel Ganapathy
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX, USA.,Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), School of Medicine, Lubbock, TX, USA.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX, USA
| |
Collapse
|
32
|
Facilitation of hippocampal long-term potentiation and reactivation of latent HIV-1 via AMPK activation: Common mechanism of action linking learning, memory, and the potential eradication of HIV-1. Med Hypotheses 2018; 116:61-73. [DOI: 10.1016/j.mehy.2018.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 10/27/2017] [Accepted: 04/20/2018] [Indexed: 12/31/2022]
|
33
|
Thompson JM, Yakhnitsa V, Ji G, Neugebauer V. Small conductance calcium activated potassium (SK) channel dependent and independent effects of riluzole on neuropathic pain-related amygdala activity and behaviors in rats. Neuropharmacology 2018; 138:219-231. [PMID: 29908238 DOI: 10.1016/j.neuropharm.2018.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/04/2018] [Accepted: 06/11/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND PURPOSE Chronic neuropathic pain is an important healthcare issue with significant emotional components. The amygdala is a brain region involved in pain and emotional-affective states and disorders. The central amygdala output nucleus (CeA) contains small-conductance calcium-activated potassium (SK) channels that can control neuronal activity. A clinically available therapeutic, riluzole can activate SK channels and may have antinociceptive effects through a supraspinal action. We tested the hypothesis that riluzole inhibits neuropathic pain behaviors by inhibiting pain-related changes in CeA neurons, in part at least through SK channel activation. EXPERIMENTAL APPROACH Brain slice physiology and behavioral assays were done in adult Sprague Dawley rats. Audible and ultrasonic vocalizations and von Frey thresholds were measured in sham and neuropathic rats 4 weeks after left L5 spinal nerve ligation (SNL model). Whole cell patch-clamp recordings of regular firing CeA neurons in brain slices were used to measure synaptic transmission and neuronal excitability. KEY RESULTS In brain slices, riluzole increased the SK channel-mediated afterhyperpolarization and synaptic inhibition, but inhibited neuronal excitability through an SK channel independent action. SNL rats had increased vocalizations and decreased withdrawal thresholds compared to sham rats, and intra-CeA administration of riluzole inhibited vocalizations and depression-like behaviors but did not affect withdrawal thresholds. Systemic riluzole administration also inhibited these changes, demonstrating the clinical utility of this strategy. SK channel blockade in the CeA attenuated the inhibitory effects of systemic riluzole on vocalizations, confirming SK channel involvement in these effects. CONCLUSIONS AND IMPLICATIONS The results suggest that riluzole has beneficial effects on neuropathic pain behaviors through SK channel dependent and independent mechanisms in the amygdala.
Collapse
Affiliation(s)
- Jeremy M Thompson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX, USA
| | - Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
34
|
Wang RR, Wang Y, Guan SM, Li Z, Kokane S, Cao FL, Sun W, Li CL, He T, Yang Y, Lin Q, Chen J. Synaptic Homeostasis and Allostasis in the Dentate Gyrus Caused by Inflammatory and Neuropathic Pain Conditions. Front Synaptic Neurosci 2018; 10:1. [PMID: 29445338 PMCID: PMC5797731 DOI: 10.3389/fnsyn.2018.00001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022] Open
Abstract
It has been generally accepted that pain can cause imbalance between excitation and inhibition (homeostasis) at the synaptic level. However, it remains poorly understood how this imbalance (allostasis) develops in the CNS under different pain conditions. Here, we analyzed the changes in both excitatory and inhibitory synaptic transmission and modulation of the dentate gyrus (DG) under two pain conditions with different etiology and duration. First, it was revealed that the functions of the input-output (I/O) curves for evoked excitatory postsynaptic currents (eEPSCs) following the perforant path (PP) stimulation were gained under both acute inflammatory and chronic neuropathic pain conditions relative to the controls. However, the functions of I/O curves for the PP-evoked inhibitory postsynaptic currents (eIPSCs) differed between the two conditions, namely it was greatly gained under inflammatory condition, but was reduced under neuropathic condition in reverse. Second, both the frequency and amplitude of miniature IPSCs (mIPSCs) were increased under inflammatory condition, however a decrease in frequency of mIPSCs was observed under neuropathic condition. Finally, the spike discharge of the DG granule cells in response to current injection was significantly increased by neuropathic pain condition, however, no different change was found between inflammatory pain condition and the control. These results provide another line of evidence showing homeostatic and allostatic modulation of excitatory synaptic transmission by inhibitory controls under different pathological pain conditions, hence implicating use of different therapeutic approaches to maintain the homeostasis between excitation and inhibition while treating different conditions of pathological pain.
Collapse
Affiliation(s)
- Rui-Rui Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Yan Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Su-Min Guan
- School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Zhen Li
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Saurabh Kokane
- Department of Psychology, University of Texas at Arlington, Arlington, TX, United States
| | - Fa-Le Cao
- Department of Neurology, The 88th Hospital of People’s Liberation Army, Tai’an, China
| | - Wei Sun
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Chun-Li Li
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Ting He
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Yan Yang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Qing Lin
- Department of Psychology, University of Texas at Arlington, Arlington, TX, United States
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
- Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
35
|
Abstract
The amygdala is a limbic brain region that plays a key role in emotional processing, neuropsychiatric disorders, and the emotional-affective dimension of pain. Preclinical and clinical studies have identified amygdala hyperactivity as well as impairment of cortical control mechanisms in pain states. Hyperactivity of basolateral amygdala (BLA) neurons generates enhanced feedforward inhibition and deactivation of the medial prefrontal cortex (mPFC), resulting in pain-related cognitive deficits. The mPFC sends excitatory projections to GABAergic neurons in the intercalated cell mass (ITC) in the amygdala, which project to the laterocapsular division of the central nucleus of the amygdala (CeLC; output nucleus) and serve gating functions for amygdala output. Impairment of these cortical control mechanisms allows the development of amygdala pain plasticity. Mechanisms of abnormal amygdala activity in pain with particular focus on loss of cortical control mechanisms as well as new strategies to correct pain-related amygdala dysfunction will be discussed in the present review.
Collapse
|
36
|
Pitra S, Stern JE. A-type K + channels contribute to the prorenin increase of firing activity in hypothalamic vasopressin neurosecretory neurons. Am J Physiol Heart Circ Physiol 2017. [PMID: 28626074 DOI: 10.1152/ajpheart.00216.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent studies have supported an important contribution of prorenin (PR) and its receptor (PRR) to the regulation of hypothalamic, sympathetic, and neurosecretory outflows to the cardiovascular system, including systemic release of vasopressin (VP), both under physiological and cardiovascular disease conditions. Still, the identification of precise cellular mechanisms and neuronal/molecular targets remain unknown. We have recently shown that PRR is expressed in VP neurons and that their activation increases neuronal activity. However, the underlying ionic channel mechanisms are undefined. Here, we performed patch-clamp electrophysiology from identified VP neurons in acute hypothalamic slices obtained from enhanced green fluorescent protein-VP transgenic rats. Voltage-clamp recordings showed that PR inhibited the magnitude of A-type K+ current (IA; ~50% at -25 mV), a subthreshold voltage-dependent current that restrains VP firing activity. PR also increased the inactivation rate of IA and shifted the steady-state voltage-dependent inactivation function toward more hyperpolarized membrane potential (~7 mV shift), thus resulting in less channel availability to be activated at any given membrane potential. PR also inhibited a sustained component of IA ("window" current). PR-mediated changes in action potential waveform and increased firing activity were occluded when IA was blocked by 4-aminopyridine. Finally, PR failed to increase superoxide production within the supraoptic nucleus/paraventricular nucleus, and PR excitatory effects persisted in slices treated with the SOD mimetic tempol. Taken together, these experiments indicated that PR excitatory effects on vasopressin neurons involve inhibition of IA, due, in part, to increases in its voltage-dependent inactivation properties. Moreover, our results indicate that PR effects did not involve an increase in oxidative stress.NEW & NOTEWORTHY Here, we demonstrate that prorenin/the prorenin receptor is an important signaling unit for the regulation of vasopressin firing activity and, thus, systemic hormonal release. We identified A-type K+ channels as key molecular targets mediating prorenin stimulation of vasopressin neuronal activity, thus standing as a potential therapeutic target for neurohumoral activation in cardiovascular disease.
Collapse
Affiliation(s)
- Soledad Pitra
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Javier E Stern
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
37
|
A-Kinase Anchoring Protein 79/150 Scaffolds Transient Receptor Potential A 1 Phosphorylation and Sensitization by Metabotropic Glutamate Receptor Activation. Sci Rep 2017; 7:1842. [PMID: 28500286 PMCID: PMC5431798 DOI: 10.1038/s41598-017-01999-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/05/2017] [Indexed: 01/20/2023] Open
Abstract
Mechanical pain serves as a base clinical symptom for many of the world’s most debilitating syndromes. Ion channels expressed by peripheral sensory neurons largely contribute to mechanical hypersensitivity. Transient Receptor Potential A 1 (TRPA1) is a ligand-gated ion channel that contributes to inflammatory mechanical hypersensitivity, yet little is known as to the post-translational mechanism behind its somatosensitization. Here, we utilize biochemical, electrophysiological, and behavioral measures to demonstrate that metabotropic glutamate receptor-induced sensitization of TRPA1 nociceptors stimulates targeted modification of the receptor. Type 1 mGluR5 activation increases TRPA1 receptor agonist sensitivity in an AKA-dependent manner. As a scaffolding protein for Protein Kinases A and C (PKA and PKC, respectively), AKAP facilitates phosphorylation and sensitization of TRPA1 in ex vivo sensory neuronal preparations. Furthermore, hyperalgesic priming of mechanical hypersensitivity requires both TRPA1 and AKAP. Collectively, these results identify a novel AKAP-mediated biochemical mechanism that increases TRPA1 sensitivity in peripheral sensory neurons, and likely contributes to persistent mechanical hypersensitivity.
Collapse
|
38
|
Geisler JG, Marosi K, Halpern J, Mattson MP. DNP, mitochondrial uncoupling, and neuroprotection: A little dab'll do ya. Alzheimers Dement 2017; 13:582-591. [PMID: 27599210 PMCID: PMC5337177 DOI: 10.1016/j.jalz.2016.08.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/27/2016] [Accepted: 08/03/2016] [Indexed: 12/31/2022]
Abstract
Recent findings have elucidated roles for mitochondrial uncoupling proteins (UCPs) in neuronal plasticity and resistance to metabolic and oxidative stress. UCPs are induced by bioenergetic challenges such as caloric restriction and exercise and may protect neurons against dysfunction and degeneration. The pharmacological uncoupler 2,4-dinitrophenol (DNP), which was once prescribed to >100,000 people as a treatment for obesity, stimulates several adaptive cellular stress-response signaling pathways in neurons including those involving the brain-derived neurotrophic factor (BDNF), the transcription factor cyclic AMP response element-binding protein (CREB), and autophagy. Preclinical data show that low doses of DNP can protect neurons and improve functional outcome in animal models of Alzheimer's and Parkinson's diseases, epilepsy, and cerebral ischemic stroke. Repurposing of DNP and the development of novel uncoupling agents with hormetic mechanisms of action provide opportunities for new breakthrough therapeutic interventions in a range of acute and chronic insidious neurodegenerative/neuromuscular conditions, all paradoxically at body weight-preserving doses.
Collapse
Affiliation(s)
| | - Krisztina Marosi
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | - Joshua Halpern
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
39
|
Gomez-Varela D, Schmidt M. Exploring novel paths towards protein signatures of chronic pain. Mol Pain 2016; 12:12/0/1744806916679658. [PMID: 27920228 PMCID: PMC5153021 DOI: 10.1177/1744806916679658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/01/2016] [Accepted: 10/13/2016] [Indexed: 12/15/2022] Open
Abstract
Pain is a major symptom of many medical conditions and the worldwide number one reason for people to seek medical assistance. It affects the quality of life of patients and poses a heavy financial burden on society with high costs of treatment and lost productivity. Furthermore, the treatment of chronic pain presents a big challenge as pain therapeutics often lack efficacy and exhibit minimal safety profiles. The latter can be largely attributed to the fact that current therapies target molecules with key physiological functions throughout the body. In light of these difficulties, the identification of proteins specifically involved in chronic pain states is of paramount importance for designing selective interventions. Several profiling efforts have been employed with the aim to dissect the molecular underpinnings of chronic pain, both on the level of the transcriptome and proteome. However, generated results are often inconsistent and non-overlapping, which is largely due to inherent technical constraints. A potential solution may be offered by emerging strategies capable of performing standardized and reproducible proteome analysis, such as data-independent acquisition-mass spectrometry (DIA-MS). We have recently demonstrated the applicability of DIA-MS to interrogate chronic pain-related proteome alterations in mice. Based on our results, we aim to provide an overview on DIA-MS and its potential to contribute to the comprehensive characterization of molecular signatures underlying pain pathologies.
Collapse
Affiliation(s)
| | - Manuela Schmidt
- Max-Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
40
|
Cragg B, Ji G, Neugebauer V. Differential contributions of vasopressin V1A and oxytocin receptors in the amygdala to pain-related behaviors in rats. Mol Pain 2016; 12:12/0/1744806916676491. [PMID: 27837170 PMCID: PMC5117246 DOI: 10.1177/1744806916676491] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/03/2016] [Indexed: 12/26/2022] Open
Abstract
Neuroplastic changes in the amygdala account for emotional-affective aspects of pain and involve neuropeptides such as calcitonin gene-related peptide and corticotropin-releasing factor. Another neuropeptide system, central arginine vasopressin, has been implicated in neuropsychiatric disorders, but its role in pain-related emotional expression and neuroplasticity remains to be determined. Here, we tested the hypothesis that arginine vasopressin in the amygdala contributes to pain-related emotional-affective responses, using stereotaxic applications of arginine vasopressin and antagonists for G-protein coupled vasopressin V1A and oxytocin receptors in adult male Sprague-Dawley rats. In normal animals, arginine vasopressin increased audible and ultrasonic vocalizations and anxiety-like behavior (decreased open-arm preference in the elevated plus maze). The facilitatory effects were blocked by a selective V1A antagonist (SR 49059, Relcovaptan) but not by an oxytocin receptor antagonist (L-371,257). L-371,257 had some facilitatory effects on vocalizations. Arginine vasopressin had no effect in arthritic rats (kaolin/carrageenan knee joint pain model). SR 49059 inhibited vocalizations and anxiety-like behavior (elevated plus maze) in arthritic, but not normal, rats and conveyed anxiolytic properties to arginine vasopressin. Arginine vasopressin, SR 49059, and L-371,257 had no significant effects on spinal reflexes. We interpret the data to suggest that arginine vasopressin through V1A in the amygdala contributes to emotional-affective aspects of pain (arthritis model), whereas oxytocin receptors may mediate some inhibitory effects of the vasopressin system.
Collapse
Affiliation(s)
- Bryce Cragg
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Psychiatry, University of Miami Miller School of Medicine, FL, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA .,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
41
|
Beckhauser TF, Francis-Oliveira J, De Pasquale R. Reactive Oxygen Species: Physiological and Physiopathological Effects on Synaptic Plasticity. J Exp Neurosci 2016; 10:23-48. [PMID: 27625575 PMCID: PMC5012454 DOI: 10.4137/jen.s39887] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/09/2016] [Accepted: 08/13/2016] [Indexed: 12/18/2022] Open
Abstract
In the mammalian central nervous system, reactive oxygen species (ROS) generation is counterbalanced by antioxidant defenses. When large amounts of ROS accumulate, antioxidant mechanisms become overwhelmed and oxidative cellular stress may occur. Therefore, ROS are typically characterized as toxic molecules, oxidizing membrane lipids, changing the conformation of proteins, damaging nucleic acids, and causing deficits in synaptic plasticity. High ROS concentrations are associated with a decline in cognitive functions, as observed in some neurodegenerative disorders and age-dependent decay of neuroplasticity. Nevertheless, controlled ROS production provides the optimal redox state for the activation of transductional pathways involved in synaptic changes. Since ROS may regulate neuronal activity and elicit negative effects at the same time, the distinction between beneficial and deleterious consequences is unclear. In this regard, this review assesses current research and describes the main sources of ROS in neurons, specifying their involvement in synaptic plasticity and distinguishing between physiological and pathological processes implicated.
Collapse
Affiliation(s)
- Thiago Fernando Beckhauser
- Physiology and Biophysics Department, Biomedical Sciences Institute, Sao Paulo University (USP), Butanta, Sao Paulo, Brazil
| | - José Francis-Oliveira
- Physiology and Biophysics Department, Biomedical Sciences Institute, Sao Paulo University (USP), Butanta, Sao Paulo, Brazil
| | - Roberto De Pasquale
- Physiology and Biophysics Department, Biomedical Sciences Institute, Sao Paulo University (USP), Butanta, Sao Paulo, Brazil
| |
Collapse
|
42
|
Li Z, Li C, Yin P, Wang ZJ, Luo F. Inhibition of CaMKIIα in the Central Nucleus of Amygdala Attenuates Fentanyl-Induced Hyperalgesia in Rats. J Pharmacol Exp Ther 2016; 359:82-9. [PMID: 27451410 DOI: 10.1124/jpet.116.233817] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/18/2016] [Indexed: 12/21/2022] Open
Abstract
Opioid-induced hyperalgesia (OIH) is a less-studied phenomenon that has been reported in both preclinical and clinical studies. Although the underlying cause is not entirely understood, OIH is a real-life problem that affects millions of patients on a daily basis. Research has implicated the important contribution of Ca(2+)/calmodulin-dependent protein kinase IIα (CaMKIIα) to OIH at the level of spinal nociceptors. To expand our understanding of the entire brain circuitry driving OIH, in this study we investigated the role of CaMKIIα in the laterocapcular division of the central amygdala (CeLC), the conjunctive point between the spinal cord and rostro-ventral medulla. OIH was produced by repeated fentanyl administration in the rat. Correlating with the development of mechanical allodynia and thermal hyperalgesia, CaMKIIα activity was significantly elevated in the CeLC in OIH. In addition, the frequency and amplitude of spontaneous miniature excitatory postsynaptic currents (mEPSCs) in CeLC neurons were significantly increased in OIH. 2-[N-(2-hidroxyethyl)-N-(4-methoxy-benzenesulfonyl)]-amino-N-(4-chlorocinnamyl)-N-methylbenzylamine, a CaMKIIα inhibitor, dose dependently reversed sensory hypersensitivity, activation of CeLC CaMKIIα, and mEPSCs in OIH. Taken together, our data for the first time implicate a critical role of CeLC CaMKIIα in OIH.
Collapse
Affiliation(s)
- Zhen Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Z.L., P.Y, F.L.); Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China (C. L.); and Department of Biopharmaceutical Sciences and Cancer Center, University of Illinois, Chicago, Illinois (Z.J.W)
| | - Chenhong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Z.L., P.Y, F.L.); Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China (C. L.); and Department of Biopharmaceutical Sciences and Cancer Center, University of Illinois, Chicago, Illinois (Z.J.W)
| | - Pingping Yin
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Z.L., P.Y, F.L.); Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China (C. L.); and Department of Biopharmaceutical Sciences and Cancer Center, University of Illinois, Chicago, Illinois (Z.J.W)
| | - Zaijie Jim Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Z.L., P.Y, F.L.); Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China (C. L.); and Department of Biopharmaceutical Sciences and Cancer Center, University of Illinois, Chicago, Illinois (Z.J.W)
| | - Fang Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Z.L., P.Y, F.L.); Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China (C. L.); and Department of Biopharmaceutical Sciences and Cancer Center, University of Illinois, Chicago, Illinois (Z.J.W)
| |
Collapse
|
43
|
The role of inositol 1,4,5-trisphosphate 3-kinase A in regulating emotional behavior and amygdala function. Sci Rep 2016; 6:23757. [PMID: 27053114 PMCID: PMC4823716 DOI: 10.1038/srep23757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/14/2016] [Indexed: 12/20/2022] Open
Abstract
Inositol 1,4,5-trisphosphate 3-kinase A (IP3K-A) is a molecule enriched in the brain and neurons that regulates intracellular calcium levels via signaling through the inositol trisphosphate receptor. In the present study, we found that IP3K-A expression is highly enriched in the central nucleus of the amygdala (CeA), which plays a pivotal role in the processing and expression of emotional phenotypes in mammals. Genetic abrogation of IP3K-A altered amygdala gene expression, particularly in genes involved in key intracellular signaling pathways and genes mediating fear- and anxiety-related behaviors. In agreement with the changes in amygdala gene expression profiles, IP3K-A knockout (KO) mice displayed more robust responses to aversive stimuli and spent less time in the open arms of the elevated plus maze, indicating high levels of innate fear and anxiety. In addition to behavioral phenotypes, decreased excitatory and inhibitory postsynaptic current and reduced c-Fos immunoreactivity in the CeA of IP3K-A KO mice suggest that IP3K-A has a profound influence on the basal activities of fear- and anxiety-mediating amygdala circuitry. In conclusion, our findings collectively demonstrate that IP3K-A plays an important role in regulating affective states by modulating metabotropic receptor signaling pathways and neural activity in the amygdala.
Collapse
|
44
|
Taylor-Clark TE. Role of reactive oxygen species and TRP channels in the cough reflex. Cell Calcium 2016; 60:155-62. [PMID: 27016063 DOI: 10.1016/j.ceca.2016.03.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 12/15/2022]
Abstract
The cough reflex is evoked by noxious stimuli in the airways. Although this reflex is essential for health, it can be triggered chronically in inflammatory and infectious airway disease. Neuronal transient receptor potential (TRP) channels such as ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) are polymodal receptors expressed on airway nociceptive afferent nerves. Reactive oxygen species (ROS) and other reactive compounds are associated with inflammation, from either NADPH oxidase or mitochondria. These reactive compounds cause activation and hyperexcitability of nociceptive afferents innervating the airways, and evidence suggests key contributions of TRPA1 and TRPV1.
Collapse
Affiliation(s)
- Thomas E Taylor-Clark
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
45
|
Kiselyov K, Muallem S. ROS and intracellular ion channels. Cell Calcium 2016; 60:108-14. [PMID: 26995054 DOI: 10.1016/j.ceca.2016.03.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 12/15/2022]
Abstract
Oxidative stress is a well-known driver of numerous pathological processes involving protein and lipid peroxidation and DNA damage. The resulting increase of pro-apoptotic pressure drives tissue damage in a host of conditions, including ischemic stroke and reperfusion injury, diabetes, death in acute pancreatitis and neurodegenerative diseases. Somewhat less frequently discussed, but arguably as important, is the signaling function of oxidative stress stemming from the ability of oxidative stress to modulate ion channel activity. The evidence for the modulation of the intracellular ion channels and transporters by oxidative stress is constantly emerging and such evidence suggests new regulatory and pathological circuits that can be explored towards new treatments for diseases in which oxidative stress is an issue. In this review we summarize the current knowledge on the effects of oxidative stress on the intracellular ion channels and transporters and their role in cell function.
Collapse
Affiliation(s)
- Kirill Kiselyov
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States; Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch NIH, NIDCR, Bethesda, MD 20892, United States.
| | - Shmuel Muallem
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States; Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch NIH, NIDCR, Bethesda, MD 20892, United States.
| |
Collapse
|
46
|
Lu YF, Neugebauer V, Chen J, Li Z. Distinct contributions of reactive oxygen species in amygdala to bee venom-induced spontaneous pain-related behaviors. Neurosci Lett 2016; 619:68-72. [PMID: 26971700 DOI: 10.1016/j.neulet.2016.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/25/2016] [Accepted: 03/07/2016] [Indexed: 10/22/2022]
Abstract
Reactive oxygen species (ROS), such as superoxide and hydrogen peroxide, play essential roles in physiological plasticity and are also involved in the pathogenesis of persistent pain. Roles of peripheral and spinal ROS in pain have been well established, but much less is known about ROS in the amygdala, a brain region that plays an important role in pain modulation. The present study explored the contribution of ROS in the amygdala to bee venom (BV)-induced pain behaviors. Our data show that the amygdala is activated following subcutaneous BV injection into the left hindpaw, which is reflected in the increased number of c-Fos positive cells in the central and basolateral amygdala nuclei in the right hemisphere. Stereotaxic administration of a ROS scavenger (tempol, 10mM), NADPH oxidase inhibitor (baicalein, 5mM) or lipoxygenase inhibitor (apocynin, 10mM) into the right amygdala attenuated the BV-induced spontaneous licking and lifting behaviors, but had no effect on BV-induced paw flinch reflexes. Our study provides further evidence for the involvement of the amygdala in nociceptive processing and pain behaviors, and that ROS in amygdala may be a potential target for treatment strategies to inhibit pain.
Collapse
Affiliation(s)
- Yun-Fei Lu
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China; Key Laboratory of Brain Stress and Behavior, PLA, Xi'an 710038, PR China
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX, USA.
| | - Jun Chen
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China; Key Laboratory of Brain Stress and Behavior, PLA, Xi'an 710038, PR China; Beijing Institute for Brain Disorders, Beijing 100069, PR China
| | - Zhen Li
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China; Key Laboratory of Brain Stress and Behavior, PLA, Xi'an 710038, PR China.
| |
Collapse
|
47
|
Lakhkar A, Dhagia V, Joshi SR, Gotlinger K, Patel D, Sun D, Wolin MS, Schwartzman ML, Gupte SA. 20-HETE-induced mitochondrial superoxide production and inflammatory phenotype in vascular smooth muscle is prevented by glucose-6-phosphate dehydrogenase inhibition. Am J Physiol Heart Circ Physiol 2016; 310:H1107-17. [PMID: 26921441 DOI: 10.1152/ajpheart.00961.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/23/2016] [Indexed: 02/07/2023]
Abstract
20-Hydroxyeicosatetraeonic acid (20-HETE) produced by cytochrome P-450 monooxygenases in NADPH-dependent manner is proinflammatory, and it contributes to the pathogenesis of systemic and pulmonary hypertension. In this study, we tested the hypothesis that inhibition of glucose-6-phosphate dehydrogenase (G6PD), a major source of NADPH in the cell, prevents 20-HETE synthesis and 20-HETE-induced proinflammatory signaling that promotes secretory phenotype of vascular smooth muscle cells. Lipidomic analysis indicated that G6PD inhibition and knockdown decreased 20-HETE levels in pulmonary arteries as well as 20-HETE-induced 1) mitochondrial superoxide production, 2) activation of mitogen-activated protein kinase 1 and 3, 3) phosphorylation of ETS domain-containing protein Elk-1 that activate transcription of tumor necrosis factor-α gene (Tnfa), and 4) expression of tumor necrosis factor-α (TNF-α). Moreover, inhibition of G6PD increased protein kinase G1α activity, which, at least partially, mitigated superoxide production and Elk-1 and TNF-α expression. Additionally, we report here for the first time that 20-HETE repressed miR-143, which suppresses Elk-1 expression, and miR-133a, which is known to suppress synthetic/secretory phenotype of vascular smooth muscle cells. In summary, our findings indicate that 20-HETE elicited mitochondrial superoxide production and promoted secretory phenotype of vascular smooth muscle cells by activating MAPK1-Elk-1, all of which are blocked by inhibition of G6PD.
Collapse
Affiliation(s)
- Anand Lakhkar
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York
| | - Vidhi Dhagia
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York
| | - Sachindra Raj Joshi
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York
| | - Katherine Gotlinger
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York
| | - Dhara Patel
- Department of Physiology, New York Medical College School of Medicine, Valhalla, New York; and
| | - Dong Sun
- Department of Physiology, New York Medical College School of Medicine, Valhalla, New York; and
| | - Michael S Wolin
- Department of Physiology, New York Medical College School of Medicine, Valhalla, New York; and Translational Centre for Pulmonary Hypertension, New York Medical College School of Medicine, Valhalla, New York
| | - Michal L Schwartzman
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York
| | - Sachin A Gupte
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York; Translational Centre for Pulmonary Hypertension, New York Medical College School of Medicine, Valhalla, New York
| |
Collapse
|
48
|
Abstract
Accumulating evidence suggests an important contribution of reactive oxygen species (ROS) to pain and neuropsychiatric disorders, but their role in pain-related plasticity in the brain is largely unknown. Neuroplasticity in the central nucleus of the amygdala (CeA) correlates positively with pain behaviors in different models. Little is known, however, about mechanisms of visceral pain-related amygdala changes. The electrophysiological and behavioral studies reported here addressed the role of ROS in the CeA in a visceral pain model induced by intracolonic zymosan. Vocalizations to colorectal distension and anxiety-like behavior increased after intracolonic zymosan and were inhibited by intra-CeA application of a ROS scavenger (tempol, a superoxide dismutase mimetic). Tempol also induced a place preference in zymosan-treated rats but not in controls. Single-unit recordings of CeA neurons in anesthetized rats showed increases of background activity and responses to visceral stimuli after intracolonic zymosan. Intra-CeA application of tempol inhibited the increased activity but had no effect under normal conditions. Whole-cell patch-clamp recordings of CeA neurons in brain slices from zymosan-treated rats showed that tempol decreased neuronal excitability and excitatory synaptic transmission of presumed nociceptive inputs from the brainstem (parabrachial area) through a combination of presynaptic and postsynaptic actions. Tempol had no effect in brain slices from sham controls. The results suggest that ROS contribute to visceral pain-related hyperactivity of amygdala neurons and amygdala-dependent behaviors through a mechanism that involves increased excitatory transmission and excitability of CeA neurons.
Collapse
|
49
|
Peripheral NMDA Receptors Mediate Antidromic Nerve Stimulation-Induced Tactile Hypersensitivity in the Rat. Mediators Inflamm 2015; 2015:793624. [PMID: 26770021 PMCID: PMC4681795 DOI: 10.1155/2015/793624] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/19/2015] [Indexed: 12/16/2022] Open
Abstract
We investigated the role of peripheral NMDA receptors (NMDARs) in antidromic nerve stimulation-induced tactile hypersensitivity outside the skin area innervated by stimulated nerve. Tetanic electrical stimulation (ES) of the decentralized L5 spinal nerve, which induced enlargement of plasma extravasation, resulted in tactile hypersensitivity in the L4 plantar dermatome of the hind-paw. When intraplantar (i.pl.) injection was administered into the L4 dermatome before ES, NMDAR and group-I metabotropic Glu receptor (mGluR) antagonists and group-II mGluR agonist but not AMPA/kainate receptor antagonist prevented ES-induced hypersensitivity. I.pl. injection of PKA or PKC inhibitors also prevented ES-induced hypersensitivity. When the same injections were administered after establishment of ES-induced hypersensitivity, hypersensitivity was partially reduced by NMDAR antagonist only. In naïve animals, i.pl. Glu injection into the L4 dermatome induced tactile hypersensitivity, which was blocked by NMDAR antagonist and PKA and PKC inhibitors. These results suggest that the peripheral release of Glu, induced by antidromic nerve stimulation, leads to the expansion of tactile hypersensitive skin probably via nociceptor sensitization spread due to the diffusion of Glu into the skin near the release site. In addition, intracellular PKA- and PKC-dependent mechanisms mediated mainly by NMDAR activation are involved in Glu-induced nociceptor sensitization and subsequent hypersensitivity.
Collapse
|
50
|
A Novel Nitronyl Nitroxide with Salicylic Acid Framework Attenuates Pain Hypersensitivity and Ectopic Neuronal Discharges in Radicular Low Back Pain. Neural Plast 2015; 2015:752782. [PMID: 26609438 PMCID: PMC4644553 DOI: 10.1155/2015/752782] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/31/2015] [Accepted: 04/07/2015] [Indexed: 01/04/2023] Open
Abstract
Evidence has accumulated that reactive oxygen species and inflammation play crucial roles in the development of chronic pain, including radicular low back pain. Nonsteroid anti-inflammatory drugs (NSAIDs), for example, salicylic acid, aspirin, provided analgesic effects in various types of pain. However, long-term use of these drugs causes unwanted side effects, which limits their implication. Stable nitronyl (NIT) nitroxide radicals have been extensively studied as a unique and interesting class of new antioxidants for protection against oxidative damage. The present study synthesized a novel NIT nitroxide radical with salicylic acid framework (SANR) to provide synergistic effect of both antioxidation and antiinflammation. We demonstrated for the first time that both acute and repeated SANR treatment exerted dramatic analgesic effect in radicular low back pain mimicked by chronic compression of dorsal root ganglion in rats. This analgesic potency was more potent than that produced by classical NSAIDs aspirin and traditional nitroxide radical Tempol alone. Furthermore, SANR-induced behavioral analgesia is found to be mediated, at least in partial, by a reduction of ectopic spontaneous discharges in injured DRG neurons. Therefore, the synthesized NIT nitroxide radical coupling with salicylic acid framework may represent a novel potential therapeutic candidate for treatment of chronic pain, including radicular low back pain.
Collapse
|