1
|
Basso M, Mahuzier A, Ali SK, Marty A, Faucourt M, Lennon-Duménil AM, Srivastava A, Khoury Damaa M, Bankolé A, Meunier A, Yamada A, Plastino J, Spassky N, Delgehyr N. Actin-based deformations of the nucleus control mouse multiciliated ependymal cell differentiation. Dev Cell 2024:S1534-5807(24)00673-7. [PMID: 39662468 DOI: 10.1016/j.devcel.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 07/16/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024]
Abstract
Ependymal cells (ECs) are multiciliated cells in the brain that contribute to cerebrospinal fluid flow. ECs are specified during embryonic stages but differentiate later in development. Their differentiation depends on genes such as GEMC1 and MCIDAS in conjunction with E2F4/5 as well as on cell-cycle-related factors. In the mouse brain, we observe that nuclear deformation accompanies EC differentiation. Tampering with these deformations either by decreasing F-actin levels or by severing the link between the nucleus and the actin cytoskeleton blocks differentiation. Conversely, increasing F-actin by knocking out the Arp2/3 complex inhibitor Arpin or artificially deforming the nucleus activates differentiation. These data are consistent with actin polymerization triggering nuclear deformation and jump starting the signaling that produces ECs. A player in this process is the retinoblastoma 1 (RB1) protein, whose phosphorylation prompts MCIDAS activation. Overall, this study identifies a role for actin-based mechanical inputs to the nucleus as controlling factors in cell differentiation.
Collapse
Affiliation(s)
- Marianne Basso
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Alexia Mahuzier
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Syed Kaabir Ali
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France; Laboratoire de physique de l'Ecole Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005 Paris, France; PASTEUR, Département de Chimie, Ecole Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005 Paris, France
| | - Anaïs Marty
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005 Paris, France
| | - Marion Faucourt
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | | | - Ayush Srivastava
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Michella Khoury Damaa
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Alexia Bankolé
- Institut Necker Enfants Malades (INEM), Université Paris Cité, CNRS, INSERM, 75015 Paris, France
| | - Alice Meunier
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Ayako Yamada
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005 Paris, France
| | - Julie Plastino
- Laboratoire de physique de l'Ecole Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Nathalie Spassky
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Nathalie Delgehyr
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
| |
Collapse
|
2
|
Zhang L, Geng C, Li S, Tang Q, Liu P, Liu W, Qiu G, Li A, Hu A, Chen F. Anterior piriform cortex dysfunction underlies autism spectrum disorders-related olfactory deficits in Fmr1 conditional deletion mice. Neuropsychopharmacology 2024:10.1038/s41386-024-02027-6. [PMID: 39550469 DOI: 10.1038/s41386-024-02027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
Previous studies indicated that ASD-related olfactory dysfunctions are rooted in the piriform cortex. However, the direct evidence supporting a causal link between the dysfunction of the piriform cortex and olfactory disorders in ASD is limited. In the present study, we explored the role of anterior piriform cortex (aPC) in ASD-related olfactory disorders by specifically ablating Fmr1, a leading known monogenic cause for ASD, in the pyramidal neurons. Our data demonstrated that the targeted deletion of Fmr1 in aPC pyramidal neurons was sufficient to induce deficits in olfactory detection. In vivo and in vitro electrophysiological recordings showed that the deletion of Fmr1 increased the activity of pyramidal neurons, exhibiting an enhanced excitatory response and a reduced inhibitory response upon odor stimulation. Furthermore, specific deletion of Fmr1 enhanced the power of beta oscillations during odor stimuli, meanwhile, disturbed excitatory and inhibitory synaptic transmission. The abnormal morphology of pyramidal neurons induced by the deletion of Fmr1 may be responsible for the impaired aPC neuronal function. These findings suggest that dysfunction of the aPC may play a role in olfactory impairments observed in ASD models related to Fmr1 deficiency.
Collapse
Affiliation(s)
- Lingzhi Zhang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
- The Animal Facility of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Chi Geng
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Shan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Qingnan Tang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Penglai Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Wei Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Gaoxue Qiu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Ankang Hu
- The Animal Facility of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.
| | - Fengjiao Chen
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
3
|
Rasool D, Jahani-Asl A. Master regulators of neurogenesis: the dynamic roles of Ephrin receptors across diverse cellular niches. Transl Psychiatry 2024; 14:462. [PMID: 39505843 PMCID: PMC11541728 DOI: 10.1038/s41398-024-03168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/20/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
The ephrin receptors (EphRs) are the largest family of receptor tyrosine kinases (RTKs) that are abundantly expressed in the developing brain and play important roles at different stages of neurogenesis ranging from neural stem cell (NSC) fate specification to neural migration, morphogenesis, and circuit assembly. Defects in EphR signalling have been associated with several pathologies including neurodevelopmental disorders (NDDs), intellectual disability (ID), and neurodegenerative diseases (NDs). Here, we review our current understanding of the complex and dynamic role of EphRs in the brain and discuss how deregulation of these receptors contributes to disease, highlighting their potential as valuable druggable targets.
Collapse
Affiliation(s)
- Dilan Rasool
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
| | - Arezu Jahani-Asl
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada.
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada.
- Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Blvd. West, Montréal, QC, H4A 3T2, Canada.
- Regenerative Medicine Program, and Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.
- Ottawa Institutes of System Biology, University of Ottawa, Health Sciences Campus, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
4
|
Messaoudi S, Allam A, Stoufflet J, Paillard T, Le Ven A, Fouquet C, Doulazmi M, Trembleau A, Caille I. FMRP regulates postnatal neuronal migration via MAP1B. eLife 2024; 12:RP88782. [PMID: 38757694 PMCID: PMC11101172 DOI: 10.7554/elife.88782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
The fragile X syndrome (FXS) represents the most prevalent form of inherited intellectual disability and is the first monogenic cause of autism spectrum disorder. FXS results from the absence of the RNA-binding protein FMRP (fragile X messenger ribonucleoprotein). Neuronal migration is an essential step of brain development allowing displacement of neurons from their germinal niches to their final integration site. The precise role of FMRP in neuronal migration remains largely unexplored. Using live imaging of postnatal rostral migratory stream (RMS) neurons in Fmr1-null mice, we observed that the absence of FMRP leads to delayed neuronal migration and altered trajectory, associated with defects of centrosomal movement. RNA-interference-induced knockdown of Fmr1 shows that these migratory defects are cell-autonomous. Notably, the primary Fmrp mRNA target implicated in these migratory defects is microtubule-associated protein 1B (MAP1B). Knocking down MAP1B expression effectively rescued most of the observed migratory defects. Finally, we elucidate the molecular mechanisms at play by demonstrating that the absence of FMRP induces defects in the cage of microtubules surrounding the nucleus of migrating neurons, which is rescued by MAP1B knockdown. Our findings reveal a novel neurodevelopmental role for FMRP in collaboration with MAP1B, jointly orchestrating neuronal migration by influencing the microtubular cytoskeleton.
Collapse
Affiliation(s)
- Salima Messaoudi
- Sorbonne Université, CNRS UMR8246, Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS)ParisFrance
| | - Ada Allam
- Sorbonne Université, CNRS UMR8246, Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS)ParisFrance
| | - Julie Stoufflet
- Sorbonne Université, CNRS UMR8246, Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS)ParisFrance
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, University of Liège, CHU Sart TilmanLiègeBelgium
| | - Theo Paillard
- Sorbonne Université, CNRS UMR8246, Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS)ParisFrance
| | - Anaïs Le Ven
- Sorbonne Université, CNRS UMR8246, Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS)ParisFrance
- Institut CurieParisFrance
| | - Coralie Fouquet
- Sorbonne Université, CNRS UMR8246, Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS)ParisFrance
| | - Mohamed Doulazmi
- Sorbonne Université, CNRS UMR8246, Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS)ParisFrance
| | - Alain Trembleau
- Sorbonne Université, CNRS UMR8246, Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS)ParisFrance
| | - Isabelle Caille
- Sorbonne Université, CNRS UMR8246, Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS)ParisFrance
- Université de ParisParisFrance
| |
Collapse
|
5
|
Sweat SC, Cheetham CEJ. Deficits in olfactory system neurogenesis in neurodevelopmental disorders. Genesis 2024; 62:e23590. [PMID: 38490949 PMCID: PMC10990073 DOI: 10.1002/dvg.23590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024]
Abstract
The role of neurogenesis in neurodevelopmental disorders (NDDs) merits much attention. The complex process by which stem cells produce daughter cells that in turn differentiate into neurons, migrate various distances, and form synaptic connections that are then refined by neuronal activity or experience is integral to the development of the nervous system. Given the continued postnatal neurogenesis that occurs in the mammalian olfactory system, it provides an ideal model for understanding how disruptions in distinct stages of neurogenesis contribute to the pathophysiology of various NDDs. This review summarizes and discusses what is currently known about the disruption of neurogenesis within the olfactory system as it pertains to attention-deficit/hyperactivity disorder, autism spectrum disorder, Down syndrome, Fragile X syndrome, and Rett syndrome. Studies included in this review used either human subjects, mouse models, or Drosophila models, and lay a compelling foundation for continued investigation of NDDs by utilizing the olfactory system.
Collapse
Affiliation(s)
- Sean C Sweat
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Claire E J Cheetham
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Bao S, Romero JM, Belfort BD, Arenkiel BR. Signaling mechanisms underlying activity-dependent integration of adult-born neurons in the mouse olfactory bulb. Genesis 2024; 62:e23595. [PMID: 38553878 PMCID: PMC10987073 DOI: 10.1002/dvg.23595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Adult neurogenesis has fascinated the field of neuroscience for decades given the prospects of harnessing mechanisms that facilitate the rewiring and/or replacement of adult brain tissue. The subgranular zone of the hippocampus and the subventricular zone of the lateral ventricle are the two main areas in the brain that exhibit ongoing neurogenesis. Of these, adult-born neurons within the olfactory bulb have proven to be a powerful model for studying circuit plasticity, providing a broad and accessible avenue into neuron development, migration, and continued circuit integration within adult brain tissue. This review focuses on some of the recognized molecular and signaling mechanisms underlying activity-dependent adult-born neuron development. Notably, olfactory activity and behavioral states contribute to adult-born neuron plasticity through sensory and centrifugal inputs, in which calcium-dependent transcriptional programs, local translation, and neuropeptide signaling play important roles. This review also highlights areas of needed continued investigation to better understand the remarkable phenomenon of adult-born neuron integration.
Collapse
Affiliation(s)
- Suyang Bao
- Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
| | - Juan M. Romero
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Benjamin D.W. Belfort
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Benjamin R. Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
7
|
Messaoudi S, Allam A, Stoufflet J, Paillard T, Fouquet C, Doulazmi M, Le Ven A, Trembleau A, Caillé I. FMRP regulates tangential neuronal migration via MAP1B. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.530447. [PMID: 36945472 PMCID: PMC10028813 DOI: 10.1101/2023.03.06.530447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The Fragile X Syndrome (FXS) represents the most prevalent form of inherited intellectual disability and is the first monogenic cause of Autism Spectrum Disorder. FXS results from the absence of the RNA-binding protein FMRP (Fragile X Messenger Ribonucleoprotein). Neuronal migration is an essential step of brain development allowing displacement of neurons from their germinal niches to their final integration site. The precise role of FMRP in neuronal migration remains largely unexplored. Using live imaging of postnatal Rostral Migratory Stream (RMS) neurons in Fmr1-null mice, we observed that the absence of FMRP leads to delayed neuronal migration and altered trajectory, associated with defects of centrosomal movement. RNA-interference-induced knockdown of Fmr1 shows that these migratory defects are cell-autonomous. Notably, the primary FMRP mRNA target implicated in these migratory defects is MAP1B (Microtubule-Associated Protein 1B). Knocking-down MAP1B expression effectively rescued most of the observed migratory defects. Finally, we elucidate the molecular mechanisms at play by demonstrating that the absence of FMRP induces defects in the cage of microtubules surrounding the nucleus of migrating neurons, which is rescued by MAP1B knockdown. Our findings reveal a novel neurodevelopmental role for FMRP in collaboration with MAP1B, jointly orchestrating neuronal migration by influencing the microtubular cytoskeleton.
Collapse
|
8
|
Kuruppath P, Xue L, Pouille F, Jones ST, Schoppa NE. Hyperexcitability in the Olfactory Bulb and Impaired Fine Odor Discrimination in the Fmr1 KO Mouse Model of Fragile X Syndrome. J Neurosci 2023; 43:8243-8258. [PMID: 37788940 PMCID: PMC10697393 DOI: 10.1523/jneurosci.0584-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/28/2023] [Accepted: 09/23/2023] [Indexed: 10/05/2023] Open
Abstract
Fragile X syndrome (FXS) is the single most common monogenetic cause of autism spectrum disorders (ASDs) in humans. FXS is caused by loss of expression of the fragile X mental retardation protein (FMRP), an mRNA-binding protein encoded on the X chromosome involved in suppressing protein translation. Sensory processing deficits have been a major focus of studies of FXS in both humans and rodent models of FXS, but olfactory deficits remain poorly understood. Here, we conducted experiments in wild-type (WT) and Fmr1 knock-out (KO; Fmr1-/y ) mice (males) that lack expression of the gene encoding FMRP to assess olfactory circuit and behavioral abnormalities. In patch-clamp recordings conducted in slices of the olfactory bulb, output mitral cells (MCs) in Fmr1 KO mice displayed greatly enhanced excitation under baseline conditions, as evidenced by a much higher rate of occurrence of spontaneous network-level events known as long-lasting depolarizations (LLDs). The higher probability of spontaneous LLDs (sLLDs), which appeared to be because of a decrease in GABAergic synaptic inhibition in glomeruli leading to more feedforward excitation, caused a reduction in the reliability of stimulation-evoked responses in MCs. In addition, in a go/no-go operant discrimination paradigm, we found that Fmr1 KO mice displayed impaired discrimination of odors in difficult tasks that involved odor mixtures but not altered discrimination of monomolecular odors. We suggest that the Fmr1 KO-induced reduction in MC response reliability is one plausible mechanism for the impaired fine odor discrimination.SIGNIFICANCE STATEMENT Fragile X syndrome (FXS) in humans is associated with a range of debilitating deficits including aberrant sensory processing. One sensory system that has received comparatively little attention in studies in animal models of FXS is olfaction. Here, we report the first comprehensive physiological analysis of circuit defects in the olfactory bulb in the commonly-used Fmr1 knock-out (KO) mouse model of FXS. Our studies indicate that Fmr1 KO alters the local excitation/inhibition balance in the bulb, similar to what Fmr1 KO does in other brain circuits, but through a novel mechanism that involves enhanced feedforward excitation. Furthermore, Fmr1 KO mice display behavioral impairments in fine odor discrimination, an effect that may be explained by changes in neural response reliability.
Collapse
Affiliation(s)
- Praveen Kuruppath
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Lin Xue
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Frederic Pouille
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Shelly T Jones
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Nathan E Schoppa
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
9
|
Kuruppath P, Xue L, Pouille F, Jones ST, Schoppa NE. Hyperexcitability in the olfactory bulb and impaired fine odor discrimination in the Fmr1 KO mouse model of fragile X syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536251. [PMID: 37090519 PMCID: PMC10120685 DOI: 10.1101/2023.04.10.536251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Fragile X syndrome (FXS) is the single most common monogenetic cause of autism spectrum disorders in humans. FXS is caused by loss of expression of the Fragile X mental retardation protein (FMRP), an mRNA-binding protein encoded on the X chromosome involved in suppressing protein translation. Sensory processing deficits have been a major focus of studies of FXS in both humans and rodent models of FXS, but olfactory deficits remain poorly understood. Here we conducted experiments in wild-type and Fmr1 KO ( Fmr1 -/y ) mice (males) that lack expression of the gene encoding FMRP to assess olfactory circuit and behavioral abnormalities. In patch-clamp recordings conducted in slices of the olfactory bulb, output mitral cells (MCs) in Fmr1 KO mice displayed greatly enhanced excitation, as evidenced by a much higher rate of occurrence of spontaneous network-level events known as long-lasting depolarizations (LLDs). The higher probability of LLDs did not appear to reflect changes in inhibitory connections onto MCs but rather enhanced spontaneous excitation of external tufted cells (eTCs) that provide feedforward excitation onto MCs within glomeruli. In addition, in a go/no-go operant discrimination paradigm, we found that Fmr1 KO mice displayed impaired discrimination of odors in difficult tasks that involved odor mixtures but not altered discrimination of monomolecular odors. We suggest that the higher excitability of MCs in Fmr1 KO mice may impair fine odor discrimination by broadening odor tuning curves of MCs and/or altering synchronized oscillations through changes in transient inhibition. Significance Statement Fragile X syndrome (FXS) in humans is associated with a range of debilitating deficits including aberrant sensory processing. One sensory system that has received comparatively little attention in studies in animal models of FXS is olfaction. Here, we report the first comprehensive physiological analysis of circuit defects in the olfactory bulb in the commonly-used Fmr1 knockout (KO) mouse model of FXS. Our studies indicate that Fmr1 KO alters the local excitation/inhibition balance in the bulb - similar to what Fmr1 KO does in other brain circuits - but through a novel mechanism that involves enhanced feedforward excitatory drive. Furthermore, Fmr1 KO mice display behavioral impairments in fine odor discrimination, an effect that may be explained by enhanced neural excitability.
Collapse
|
10
|
Corrêa-Velloso JC, Linardi AM, Glaser T, Velloso FJ, Rivas MP, Leite REP, Grinberg LT, Ulrich H, Akins MR, Chiavegatto S, Haddad LA. Fmr1 exon 14 skipping in late embryonic development of the rat forebrain. BMC Neurosci 2022; 23:32. [PMID: 35641906 PMCID: PMC9158170 DOI: 10.1186/s12868-022-00711-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fragile X syndrome, the major cause of inherited intellectual disability among men, is due to deficiency of the synaptic functional regulator FMR1 protein (FMRP), encoded by the FMRP translational regulator 1 (FMR1) gene. FMR1 alternative splicing produces distinct transcripts that may consequently impact FMRP functional roles. In transcripts without exon 14 the translational reading frame is shifted. For deepening current knowledge of the differential expression of Fmr1 exon 14 along the rat nervous system development, we conducted a descriptive study employing quantitative RT-PCR and BLAST of RNA-Seq datasets. RESULTS We observed in the rat forebrain progressive decline of total Fmr1 mRNA from E11 to P112 albeit an elevation on P3; and exon-14 skipping in E17-E20 with downregulation of the resulting mRNA. We tested if the reduced detection of messages without exon 14 could be explained by nonsense-mediated mRNA decay (NMD) vulnerability, but knocking down UPF1, a major component of this pathway, did not increase their quantities. Conversely, it significantly decreased FMR1 mRNA having exon 13 joined with either exon 14 or exon 15 site A. CONCLUSIONS The forebrain in the third embryonic week of the rat development is a period with significant skipping of Fmr1 exon 14. This alternative splicing event chronologically precedes a reduction of total Fmr1 mRNA, suggesting that it may be part of combinatorial mechanisms downregulating the gene's expression in the late embryonic period. The decay of FMR1 mRNA without exon 14 should be mediated by a pathway different from NMD. Finally, we provide evidence of FMR1 mRNA stabilization by UPF1, likely depending on FMRP.
Collapse
Affiliation(s)
- Juliana C Corrêa-Velloso
- Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277 # 327, São Paulo, SP, 05508-090, Brazil
| | - Alessandra M Linardi
- Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277 # 327, São Paulo, SP, 05508-090, Brazil
| | - Talita Glaser
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fernando J Velloso
- Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277 # 327, São Paulo, SP, 05508-090, Brazil
| | - Maria P Rivas
- Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277 # 327, São Paulo, SP, 05508-090, Brazil
| | - Renata E P Leite
- Department of Pathology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Lea T Grinberg
- Department of Pathology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Michael R Akins
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Silvana Chiavegatto
- Department of Pharmacology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil.,Department of Psychiatry, Instituto de Psiquiatria, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Luciana A Haddad
- Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277 # 327, São Paulo, SP, 05508-090, Brazil.
| |
Collapse
|
11
|
Bicker F, Nardi L, Maier J, Vasic V, Schmeisser MJ. Criss-crossing autism spectrum disorder and adult neurogenesis. J Neurochem 2021; 159:452-478. [PMID: 34478569 DOI: 10.1111/jnc.15501] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/05/2021] [Accepted: 08/28/2021] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) comprises a group of multifactorial neurodevelopmental disorders primarily characterized by deficits in social interaction and repetitive behavior. Although the onset is typically in early childhood, ASD poses a lifelong challenge for both patients and caretakers. Adult neurogenesis (AN) is the process by which new functional neurons are created from neural stem cells existing in the post-natal brain. The entire event is based on a sequence of cellular processes, such as proliferation, specification of cell fate, maturation, and ultimately, synaptic integration into the existing neural circuits. Hence, AN is implicated in structural and functional brain plasticity throughout life. Accumulating evidence shows that impaired AN may underlie some of the abnormal behavioral phenotypes seen in ASD. In this review, we approach the interconnections between the molecular pathways related to AN and ASD. We also discuss existing therapeutic approaches targeting such pathways both in preclinical and clinical studies. A deeper understanding of how ASD and AN reciprocally affect one another could reveal important converging pathways leading to the emergence of psychiatric disorders.
Collapse
Affiliation(s)
- Frank Bicker
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Leonardo Nardi
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Jannik Maier
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Verica Vasic
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Michael J Schmeisser
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.,Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
12
|
Lyons-Warren AM, Herman I, Hunt PJ, Arenkiel BR. A systematic-review of olfactory deficits in neurodevelopmental disorders: From mouse to human. Neurosci Biobehav Rev 2021; 125:110-121. [PMID: 33610612 PMCID: PMC8142839 DOI: 10.1016/j.neubiorev.2021.02.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/15/2021] [Accepted: 02/15/2021] [Indexed: 01/07/2023]
Abstract
Olfactory impairment is a common clinical motif across neurodevelopmental disorders, suggesting olfactory circuits are particularly vulnerable to disease processes and can provide insight into underlying disease mechanisms. The mouse olfactory bulb is an ideal model system to study mechanisms of neurodevelopmental disease due to its anatomical accessibility, behavioral relevance, ease of measuring circuit input and output, and the feature of adult neurogenesis. Despite the clinical relevance and experimental benefits, olfactory testing across animal models of neurodevelopmental disease has been inconsistent and non-standardized. Here we performed a systematic literature review of olfactory function testing in mouse models of neurodevelopmental disorders, and identified intriguing inconsistencies that include evidence for both increased and decreased acuity in odor detection in various mouse models of Autism Spectrum Disorder (ASD). Based on our identified gaps in the literature, we recommend direct comparison of different mouse models of ASD using standardized tests for odor detection and discrimination. This review provides a framework to guide future olfactory function testing in mouse models of neurodevelopmental diseases.
Collapse
Affiliation(s)
- Ariel M Lyons-Warren
- Baylor College of Medicine, Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience; Clinical Care Center, Suite 1250, 6621 Fannin St, Houston, TX 77030, United States of America;,Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030 USA
| | - Isabella Herman
- Baylor College of Medicine, Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience; Clinical Care Center, Suite 1250, 6621 Fannin St, Houston, TX 77030, United States of America;,Baylor College of Medicine, Department of Molecular & Human Genetics; 1250 Moursund Street, Suite 1170.12, Houston TX 77030, United States of America
| | - Patrick J Hunt
- Baylor College of Medicine, Department of Molecular & Human Genetics; 1250 Moursund Street, Suite 1170.12, Houston TX 77030, United States of America
| | - Benjamin R Arenkiel
- Baylor College of Medicine, Department of Molecular & Human Genetics; 1250 Moursund Street, Suite 1170.12, Houston TX 77030, United States of America;,Baylor College of Medicine, Department of Neuroscience; 1250 Moursund Street, Suite 1170.12, Houston TX 77030, United States of America;,Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030 USA.,McNair Medical Institute, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
13
|
Rosso P, Iannitelli A, Pacitti F, Quartini A, Fico E, Fiore M, Greco A, Ralli M, Tirassa P. Vagus nerve stimulation and Neurotrophins: a biological psychiatric perspective. Neurosci Biobehav Rev 2020; 113:338-353. [PMID: 32278791 DOI: 10.1016/j.neubiorev.2020.03.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
Abstract
Since 2004, vagus nerve stimulation (VNS) has been used in treatment-resistant or treatment-intolerant depressive episodes. Today, VNS is suggested as possible therapy for a larger spectrum of psychiatric disorders, including schizophrenia, obsessive compulsive disorders, and panic disorders. Despite a large body of literature supports the application of VNS in patients' treatment, the exact mechanism of action of VNS remains not fully understood. In the present study, the major knowledges on the brain areas and neuronal pathways regulating neuroimmune and autonomic response subserving VNS effects are reviewed. Furthermore, the involvement of the neurotrophins (NTs) Nerve Growth Factor (NGF) and Brain Derived Neurotrophic Factor (BDNF) in vagus nerve (VN) physiology and stimulation is revised. The data on brain NGF/BDNF synthesis and in turn on the activity-dependent plasticity, connectivity rearrangement and neurogenesis, are presented and discussed as potential biomarkers for optimizing stimulatory parameters for VNS. A vagus nerve-neurotrophin interaction model in the brain is finally proposed as a working hypothesis for future studies addressed to understand pathophysiology of psychiatric disturbance.
Collapse
Affiliation(s)
- Pamela Rosso
- National Research Council (CNR), Institute of Biochemistry & Cell Biology (IBBC), Rome, Italy
| | - Angela Iannitelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesca Pacitti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy; Psychiatry Unit San Salvatore Hospital, L'Aquila, Italy
| | - Adele Quartini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Elena Fico
- National Research Council (CNR), Institute of Biochemistry & Cell Biology (IBBC), Rome, Italy
| | - Marco Fiore
- National Research Council (CNR), Institute of Biochemistry & Cell Biology (IBBC), Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, Italy
| | - Paola Tirassa
- National Research Council (CNR), Institute of Biochemistry & Cell Biology (IBBC), Rome, Italy.
| |
Collapse
|
14
|
Suardi GAM, Haddad LA. FMRP ribonucleoprotein complexes and RNA homeostasis. ADVANCES IN GENETICS 2020; 105:95-136. [PMID: 32560791 DOI: 10.1016/bs.adgen.2020.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Fragile Mental Retardation 1 gene (FMR1), at Xq27.3, encodes the fragile mental retardation protein (FMRP), and displays in its 5'-untranslated region a series of polymorphic CGG triplet repeats that may undergo dynamic mutation. Fragile X syndrome (FXS) is the leading cause of inherited intellectual disability among men, and is most frequently due to FMR1 full mutation and consequent transcription repression. FMR1 premutations may associate with at least two other clinical conditions, named fragile X-associated primary ovarian insufficiency (FXPOI) and tremor and ataxia syndrome (FXTAS). While FXPOI and FXTAS appear to be mediated by FMR1 mRNA accumulation, relative reduction of FMRP, and triplet repeat translation, FXS is due to the lack of the RNA-binding protein FMRP. Besides its function as mRNA translation repressor in neuronal and stem/progenitor cells, RNA editing roles have been assigned to FMRP. In this review, we provide a brief description of FMR1 transcribed microsatellite and associated clinical disorders, and discuss FMRP molecular roles in ribonucleoprotein complex assembly and trafficking, as well as aspects of RNA homeostasis affected in FXS cells.
Collapse
Affiliation(s)
- Gabriela Aparecida Marcondes Suardi
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Luciana Amaral Haddad
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
15
|
Schilit Nitenson A, Manzano Nieves G, Poeta DL, Bahar R, Rachofsky C, Mandairon N, Bath KG. Acetylcholine Regulates Olfactory Perceptual Learning through Effects on Adult Neurogenesis. iScience 2019; 22:544-556. [PMID: 31855767 PMCID: PMC6926271 DOI: 10.1016/j.isci.2019.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/23/2019] [Accepted: 11/06/2019] [Indexed: 01/27/2023] Open
Abstract
Learning to perceptually discriminate between chemical signals in the environment (olfactory perceptual learning [OPL]) is critical for survival. Multiple mechanisms have been implicated in OPL, including modulation of neurogenesis and manipulation of cholinergic activity. However, whether these represent distinct processes regulating OPL or if cholinergic effects on OPL depend upon neurogenesis has remained an unresolved question. Using a combination of pharmacological and optogenetic approaches, cholinergic activity was shown to be both necessary and sufficient to drive OPL, and this process was dependent on the presence of newly born cells in the olfactory bulb (OB). This study is the first to directly demonstrate that cholinergic effects on OPL require adult OB neurogenesis. Acetylcholine modulates olfactory perceptual learning Cholinergic modulation alters olfactory bulb neurogenesis Cholinergic effects on olfactory perceptual learning require adult neurogenesis Cholinergic excitation does not alter the phenotype of newborn olfactory bulb cells
Collapse
Affiliation(s)
| | | | - Devon Lynn Poeta
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, 190 Thayer St., Box 1821, Providence, RI 02912, USA
| | - Ryan Bahar
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Carolyn Rachofsky
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Nathalie Mandairon
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, Lyon 69000, France
| | - Kevin G Bath
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, 190 Thayer St., Box 1821, Providence, RI 02912, USA.
| |
Collapse
|
16
|
Bodaleo F, Tapia-Monsalves C, Cea-Del Rio C, Gonzalez-Billault C, Nunez-Parra A. Structural and Functional Abnormalities in the Olfactory System of Fragile X Syndrome Models. Front Mol Neurosci 2019; 12:135. [PMID: 31191246 PMCID: PMC6548058 DOI: 10.3389/fnmol.2019.00135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/09/2019] [Indexed: 12/18/2022] Open
Abstract
Fragile X Syndrome (FXS) is the most common inherited form of intellectual disability. It is produced by mutation of the Fmr1 gene that encodes for the Fragile Mental Retardation Protein (FMRP), an important RNA-binding protein that regulates the expression of multiple proteins located in neuronal synapses. Individuals with FXS exhibit abnormal sensory information processing frequently leading to hypersensitivity across sensory modalities and consequently a wide array of behavioral symptoms. Insects and mammals engage primarily their sense of smell to create proper representations of the external world and guide adequate decision-making processes. This feature in combination with the exquisitely organized neuronal circuits found throughout the olfactory system (OS) and the wide expression of FMRP in brain regions that process olfactory information makes it an ideal model to study sensory alterations in FXS models. In the last decade several groups have taken advantage of these features and have used the OS of fruit fly and rodents to understand neuronal alteration giving rise to sensory perception issues. In this review article, we will discuss molecular, morphological and physiological aspects of the olfactory information processing in FXS models. We will highlight the decreased inhibitory/excitatory synaptic balance and the diminished synaptic plasticity found in this system resulting in behavioral alteration of individuals in the presence of odorant stimuli.
Collapse
Affiliation(s)
- Felipe Bodaleo
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | | | - Christian Cea-Del Rio
- Laboratory of Neurophysiopathology, Centro de Investigacion Biomedica y Aplicada (CIBAP), School of Medicine, Universidad de Santiago de Chile, Santiago, Chile
| | - Christian Gonzalez-Billault
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile.,The Buck Institute for Research on Aging, Novato, CA, United States
| | - Alexia Nunez-Parra
- Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile.,Cell Physiology Center, Universidad de Chile, Santiago, Chile
| |
Collapse
|
17
|
Bragado Alonso S, Reinert JK, Marichal N, Massalini S, Berninger B, Kuner T, Calegari F. An increase in neural stem cells and olfactory bulb adult neurogenesis improves discrimination of highly similar odorants. EMBO J 2019; 38:e98791. [PMID: 30643018 PMCID: PMC6418468 DOI: 10.15252/embj.201798791] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 01/17/2023] Open
Abstract
Adult neurogenesis is involved in cognitive performance but studies that manipulated this process to improve brain function are scarce. Here, we characterized a genetic mouse model in which neural stem cells (NSC) of the subventricular zone (SVZ) were temporarily expanded by conditional expression of the cell cycle regulators Cdk4/cyclinD1, thus increasing neurogenesis. We found that supernumerary neurons matured and integrated in the olfactory bulb similarly to physiologically generated newborn neurons displaying a correct expression of molecular markers, morphology and electrophysiological activity. Olfactory performance upon increased neurogenesis was unchanged when mice were tested on relatively easy tasks using distinct odor stimuli. In contrast, intriguingly, increasing neurogenesis improved the discrimination ability of mice when challenged with a difficult task using mixtures of highly similar odorants. Together, our study provides a mammalian model to control the expansion of somatic stem cells that can in principle be applied to any tissue for basic research and models of therapy. By applying this to NSC of the SVZ, we highlighted the importance of adult neurogenesis to specifically improve performance in a challenging olfactory task.
Collapse
Affiliation(s)
- Sara Bragado Alonso
- CRTD Center for Regenerative Therapies Dresden, School of Medicine, TU Dresden, Dresden, Germany
| | - Janine K Reinert
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Nicolas Marichal
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Simone Massalini
- CRTD Center for Regenerative Therapies Dresden, School of Medicine, TU Dresden, Dresden, Germany
| | - Benedikt Berninger
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Federico Calegari
- CRTD Center for Regenerative Therapies Dresden, School of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
18
|
Arroyo ED, Fiole D, Mantri SS, Huang C, Portera-Cailliau C. Dendritic Spines in Early Postnatal Fragile X Mice Are Insensitive to Novel Sensory Experience. J Neurosci 2019; 39:412-419. [PMID: 30523064 PMCID: PMC6335755 DOI: 10.1523/jneurosci.1734-18.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 10/02/2018] [Accepted: 10/20/2018] [Indexed: 11/21/2022] Open
Abstract
Autism spectrum disorders are often associated with atypical sensory processing and sensory hypersensitivity, which can lead to maladaptive behaviors, such as tactile defensiveness. Such altered sensory perception in autism spectrum disorders could arise from disruptions in experience-dependent maturation of circuits during early brain development. Here, we tested the hypothesis that synaptic structures of primary somatosensory cortex (S1) neurons in Fragile X syndrome (FXS), which is a common inherited cause of autism, are not modulated by novel sensory information during development. We used chronic in vivo two-photon microscopy to image dendritic spines and axon "en passant" boutons of layer 2/3 pyramidal neurons in S1 of male and female WT and Fmr1 KO mice, a model of FXS. We found that a brief (overnight) exposure to dramatically enhance sensory inputs in the second postnatal week led to a significant increase in spine density in WT mice, but not in Fmr1 KO mice. In contrast, axon "en passant" boutons dynamics were impervious to this novel sensory experience in mice of both genotypes. We surmise that the inability of Fmr1 KO mice to modulate postsynaptic dynamics in response to increased sensory input, at a time when sensory information processing first comes online in S1 cortex, could play a role in altered sensory processing in FXS.SIGNIFICANCE STATEMENT Very few longitudinal in vivo imaging studies have investigated synaptic structure and dynamics in early postnatal mice. Moreover, those studies tend to focus on the effects of sensory input deprivation, a process that rarely occurs during normal brain development. Early postnatal imaging experiments are critical because a variety of neurodevelopmental disorders, including those characterized by autism, could result from alterations in how circuits are shaped by incoming sensory inputs during critical periods of development. In this study, we focused on a mouse model of Fragile X syndrome and demonstrate how dendritic spines are insensitive to a brief period of novel sensory experience.
Collapse
Affiliation(s)
- Erica D Arroyo
- Department of Neurology
- Neuroscience Interdepartmental Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095
| | | | | | | | | |
Collapse
|
19
|
Pinar C, Yau SY, Sharp Z, Shamei A, Fontaine CJ, Meconi AL, Lottenberg CP, Christie BR. Effects of Voluntary Exercise on Cell Proliferation and Neurogenesis in the Dentate Gyrus of Adult FMR1 Knockout Mice. Brain Plast 2018; 4:185-195. [PMID: 30598869 PMCID: PMC6311353 DOI: 10.3233/bpl-170052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common cause of inherited intellectual disability that can be traced to a single gene mutation. This disorder is caused by the hypermethylation of the Fmr1 gene, which impairs translation of Fragile X Mental Retardation Protein (FMRP). In Fmr1 knockout (KO) mice, the loss of FMRP has been shown to negatively impact adult hippocampal neurogenesis, and to contribute to learning, memory, and emotional deficits. Conversely, physical exercise has been shown to enhance cognitive performance, emotional state, and increase adult hippocampal neurogenesis. In the current experiments, we used two different voluntary running paradigms to examine how exercise impacts adult neurogenesis in the dorsal and ventral hippocampal dentate gyrus (DG) of Fmr1 KO mice. Immunohistochemical analyses showed that short-term (7 day) voluntary running enhanced cell proliferation in both wild-type (WT) and Fmr1 KO mice. In contrast, long-term (28 day) running only enhanced cell proliferation in the whole DG of WT mice, but not in Fmr1 KO mice. Interestingly, cell survival was enhanced in both WT and Fmr1 KO mice following exercise. Interestingly we found that running promoted cell proliferation and survival in the ventral DG of WTs, but promoted cell survival in the dorsal DG of Fmr1 KOs. Our data indicate that long-term exercise has differential effects on adult neurogenesis in ventral and dorsal hippocampi in Fmr1 KO mice. These results suggest that physical training can enhance hippocampal neurogenesis in the absence of FMRP, may be a potential intervention to enhance learning and memory and emotional regulation in FXS.
Collapse
Affiliation(s)
- Cristina Pinar
- Division of Medical Sciences, University of Victoria, British Columbia, VIC, Canada
| | - Suk-Yu Yau
- Division of Medical Sciences, University of Victoria, British Columbia, VIC, Canada
| | - Zoe Sharp
- Division of Medical Sciences, University of Victoria, British Columbia, VIC, Canada
| | - Arian Shamei
- Division of Medical Sciences, University of Victoria, British Columbia, VIC, Canada
| | - Christine J Fontaine
- Division of Medical Sciences, University of Victoria, British Columbia, VIC, Canada
| | - Alicia L Meconi
- Division of Medical Sciences, University of Victoria, British Columbia, VIC, Canada
| | - Carina P Lottenberg
- Division of Medical Sciences, University of Victoria, British Columbia, VIC, Canada
| | - Brian R Christie
- Division of Medical Sciences, University of Victoria, British Columbia, VIC, Canada
| |
Collapse
|
20
|
Oliver RJ, Mandyam CD. Regulation of Adult Neurogenesis by Non-coding RNAs: Implications for Substance Use Disorders. Front Neurosci 2018; 12:849. [PMID: 30524229 PMCID: PMC6261985 DOI: 10.3389/fnins.2018.00849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/30/2018] [Indexed: 12/25/2022] Open
Abstract
The discovery of non-coding RNAs (ncRNAs)has been one of the central findings from early genomic sequencing studies. Not only was the presence of these genes unknown previously, it was the staggering disproportionate share of the genome that was predicted to be encoded by ncRNAs that was truly significant in genomic research. Over the years the function of various classes of these ncRNAs has been revealed. One of the first and enduring regulatory programs associated with these factors was development. In the neurosciences, the discovery of adult derived populations of dividing cells within the brain was equally substantial. The brain was hypothesized to be plastic only in its neuronal connectivity, but the discovery of the generation of new neurons was a novel mechanism of neuronal and behavioral plasticity. The process of adult neurogenesis resembles early neuronal development and has been found to share many parallels in the proper stages of specified genetic programs. Adult neurogenesis has also been found to play a role in learning and memory involved in particular hippocampal-dependent behaviors. Substance use disorders (SUDs) are an example of a behavioral condition that is associated with and possibly driven by hippocampal alterations. Our laboratory has determined that hippocampal adult neurogenesis is necessary for a rodent model of methamphetamine relapse. Due to the previous research on ncRNAs in development and in other brain regions involved in SUDs, we posit that ncRNAs may play a role in adult neurogenesis associated with this disorder. This review will cover the regulatory mechanisms of various classes of ncRNAs on the coordinated genetic program associated with adult neurogenesis with a special focus on how these programs could be dysregulated in SUDs.
Collapse
Affiliation(s)
- Robert J Oliver
- VA San Diego Healthcare System, San Diego, CA, United States
| | - Chitra D Mandyam
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
21
|
Li Y, Shen M, Stockton ME, Zhao X. Hippocampal deficits in neurodevelopmental disorders. Neurobiol Learn Mem 2018; 165:106945. [PMID: 30321651 DOI: 10.1016/j.nlm.2018.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022]
Abstract
Neurodevelopmental disorders result from impaired development or maturation of the central nervous system. Both genetic and environmental factors can contribute to the pathogenesis of these disorders; however, the exact causes are frequently complex and unclear. Individuals with neurodevelopmental disorders may have deficits with diverse manifestations, including challenges with sensory function, motor function, learning, memory, executive function, emotion, anxiety, and social ability. Although these functions are mediated by multiple brain regions, many of them are dependent on the hippocampus. Extensive research supports important roles of the mammalian hippocampus in learning and cognition. In addition, with its high levels of activity-dependent synaptic plasticity and lifelong neurogenesis, the hippocampus is sensitive to experience and exposure and susceptible to disease and injury. In this review, we first summarize hippocampal deficits seen in several human neurodevelopmental disorders, and then discuss hippocampal impairment including hippocampus-dependent behavioral deficits found in animal models of these neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yue Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Minjie Shen
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Michael E Stockton
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
22
|
Impaired GABA Neural Circuits Are Critical for Fragile X Syndrome. Neural Plast 2018; 2018:8423420. [PMID: 30402088 PMCID: PMC6192167 DOI: 10.1155/2018/8423420] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/17/2018] [Indexed: 12/24/2022] Open
Abstract
Fragile X syndrome (FXS) is an inheritable neuropsychological disease caused by silence of the fmr1 gene and the deficiency of Fragile X mental retardation protein (FMRP). Patients present neuronal alterations that lead to severe intellectual disability and altered sleep rhythms. However, the neural circuit mechanisms underlying FXS remain unclear. Previous studies have suggested that metabolic glutamate and gamma-aminobutyric acid (GABA) receptors/circuits are two counter-balanced factors involved in FXS pathophysiology. More and more studies demonstrated that attenuated GABAergic circuits in the absence of FMRP are critical for abnormal progression of FXS. Here, we reviewed the changes of GABA neural circuits that were attributed to intellectual-deficient FXS, from several aspects including deregulated GABA metabolism, decreased expressions of GABA receptor subunits, and impaired GABAergic neural circuits. Furthermore, the activities of GABA neural circuits are modulated by circadian rhythm of FMRP metabolism and reviewed the abnormal condition of FXS mice or patients.
Collapse
|
23
|
Navarro Quiroz E, Navarro Quiroz R, Ahmad M, Gomez Escorcia L, Villarreal JL, Fernandez Ponce C, Aroca Martinez G. Cell Signaling in Neuronal Stem Cells. Cells 2018; 7:E75. [PMID: 30011912 PMCID: PMC6070865 DOI: 10.3390/cells7070075] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/30/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023] Open
Abstract
The defining characteristic of neural stem cells (NSCs) is their ability to multiply through symmetric divisions and proliferation, and differentiation by asymmetric divisions, thus giving rise to different types of cells of the central nervous system (CNS). A strict temporal space control of the NSC differentiation is necessary, because its alterations are associated with neurological dysfunctions and, in some cases, death. This work reviews the current state of the molecular mechanisms that regulate the transcription in NSCs, organized according to whether the origin of the stimulus that triggers the molecular cascade in the CNS is internal (intrinsic factors) or whether it is the result of the microenvironment that surrounds the CNS (extrinsic factors).
Collapse
Affiliation(s)
- Elkin Navarro Quiroz
- Faculty of basic sciences and biomedical; Universidad Simón Bolívar, Barranquilla 080002, Colombia.
- School of Medicine, Universidad Rafael Nuñez, Cartagena 130001, Colombia.
| | - Roberto Navarro Quiroz
- Centro de Investigación en Salud para el Trópico, Universidad Cooperativa de Colombia, Santa Marta 470002, Colombia.
| | - Mostapha Ahmad
- Faculty of basic sciences and biomedical; Universidad Simón Bolívar, Barranquilla 080002, Colombia.
| | - Lorena Gomez Escorcia
- Faculty of basic sciences and biomedical; Universidad Simón Bolívar, Barranquilla 080002, Colombia.
| | | | | | - Gustavo Aroca Martinez
- Faculty of basic sciences and biomedical; Universidad Simón Bolívar, Barranquilla 080002, Colombia.
- Clinica de la Costa, Barranquilla 080002, Colombia.
| |
Collapse
|
24
|
Ependymal cilia beating induces an actin network to protect centrioles against shear stress. Nat Commun 2018; 9:2279. [PMID: 29891944 PMCID: PMC5996024 DOI: 10.1038/s41467-018-04676-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/04/2018] [Indexed: 02/02/2023] Open
Abstract
Multiciliated ependymal cells line all brain cavities. The beating of their motile cilia contributes to the flow of cerebrospinal fluid, which is required for brain homoeostasis and functions. Motile cilia, nucleated from centrioles, persist once formed and withstand the forces produced by the external fluid flow and by their own cilia beating. Here, we show that a dense actin network around the centrioles is induced by cilia beating, as shown by the disorganisation of the actin network upon impairment of cilia motility. Moreover, disruption of the actin network, or specifically of the apical actin network, causes motile cilia and their centrioles to detach from the apical surface of ependymal cell. In conclusion, cilia beating controls the apical actin network around centrioles; the mechanical resistance of this actin network contributes, in turn, to centriole stability. Ependymal ciliary beating contributes to the flow of cerebrospinal fluid in the brain ventricles and these cilia resist the flow forces. Here the authors show that the assembly of a dense actin network around the centrioles is induced by cilia beating to protect centrioles against the shear stress generated by ciliary motility.
Collapse
|
25
|
Joensuu M, Lanoue V, Hotulainen P. Dendritic spine actin cytoskeleton in autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:362-381. [PMID: 28870634 DOI: 10.1016/j.pnpbp.2017.08.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/21/2017] [Accepted: 08/30/2017] [Indexed: 01/01/2023]
Abstract
Dendritic spines are small actin-rich protrusions from neuronal dendrites that form the postsynaptic part of most excitatory synapses. Changes in the shape and size of dendritic spines correlate with the functional changes in excitatory synapses and are heavily dependent on the remodeling of the underlying actin cytoskeleton. Recent evidence implicates synapses at dendritic spines as important substrates of pathogenesis in neuropsychiatric disorders, including autism spectrum disorder (ASD). Although synaptic perturbations are not the only alterations relevant for these diseases, understanding the molecular underpinnings of the spine and synapse pathology may provide insight into their etiologies and could reveal new drug targets. In this review, we will discuss recent findings of defective actin regulation in dendritic spines associated with ASD.
Collapse
Affiliation(s)
- Merja Joensuu
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland; Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Vanessa Lanoue
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Pirta Hotulainen
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland.
| |
Collapse
|
26
|
Bland KM, Casey ZO, Handwerk CJ, Holley ZL, Vidal GS. Inducing Cre-lox Recombination in Mouse Cerebral Cortex Through In Utero Electroporation. J Vis Exp 2017:56675. [PMID: 29286375 PMCID: PMC5755431 DOI: 10.3791/56675] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cell-autonomous neuronal functions of genes can be revealed by causing loss or gain of function of a gene in a small and sparse population of neurons. To do so requires generating a mosaic in which neurons with loss or gain of function of a gene are surrounded by genetically unperturbed tissue. Here, we combine the Cre-lox recombination system with in utero electroporation in order to generate mosaic brain tissue that can be used to study the cell-autonomous function of genes in neurons. DNA constructs (available through repositories), coding for a fluorescent label and Cre recombinase, are introduced into developing cortical neurons containing genes flanked with loxP sites in the brains of mouse embryos using in utero electroporation. Additionally, we describe various adaptations to the in utero electroporation method that increase survivability and reproducibility. This method also involves establishing a titer for Cre-mediated recombination in a sparse or dense population of neurons. Histological preparations of labeled brain tissue do not require (but can be adapted to) immunohistochemistry. The constructs used guarantee that fluorescently labeled neurons carry the gene for Cre recombinase. Histological preparations allow morphological analysis of neurons through confocal imaging of dendritic and axonal arbors and dendritic spines. Because loss or gain of function is achieved in sparse mosaic tissue, this method permits the study of cell-autonomous necessity and sufficiency of gene products in vivo.
Collapse
|
27
|
Castagnola S, Bardoni B, Maurin T. The Search for an Effective Therapy to Treat Fragile X Syndrome: Dream or Reality? Front Synaptic Neurosci 2017; 9:15. [PMID: 29163124 PMCID: PMC5681520 DOI: 10.3389/fnsyn.2017.00015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/16/2017] [Indexed: 12/22/2022] Open
Abstract
Fragile X Syndrome (FXS) is the most common form of intellectual disability and a primary cause of autism. It originates from the lack of the Fragile X Mental Retardation Protein (FMRP), which is an RNA-binding protein encoded by the Fragile X Mental Retardation Gene 1 (FMR1) gene. Multiple roles have been attributed to this protein, ranging from RNA transport (from the nucleus to the cytoplasm, but also along neurites) to translational control of mRNAs. Over the last 20 years many studies have found a large number of FMRP mRNA targets, but it is still not clear which are those playing a critical role in the etiology of FXS. So far, no therapy for FXS has been found, making the quest for novel targets of considerable importance. Several pharmacological approaches have been attempted, but, despite some promising preclinical results, no strategy gave successful outcomes, due either to the induction of major side effects or to the lack of improvement of the phenotypes. However, these studies suggested that, in order to measure the effectiveness of a specific treatment, trials should be redesigned and new endpoints defined in FXS patients. Nevertheless, the search for new therapeutic targets for FXS is very active. In this context, the advances in animal modeling, coupled with better understanding of neurobiology and physiopathology of FXS, are of crucial importance in developing new selected treatments. Here, we discuss the pathways that were recently linked to the physiopathology of FXS (mGluR, GABAR, insulin, Insulin-like Growth Factor 1 (IGF-1), MPP-9, serotonin, oxytocin and endocannabinoid signaling) and that suggest new approaches to find an effective therapy for this disorder. Our goal with this review article is to summarize some recent relevant findings on FXS treatment strategies in order to have a clearer view of the different pathways analyzed to date emphasizing those shared with other synaptic disorders.
Collapse
Affiliation(s)
- Sara Castagnola
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Barbara Bardoni
- Université Côte d'Azur, INSERM, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Thomas Maurin
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| |
Collapse
|
28
|
Malvaut S, Gribaudo S, Hardy D, David LS, Daroles L, Labrecque S, Lebel-Cormier MA, Chaker Z, Coté D, De Koninck P, Holzenberger M, Trembleau A, Caille I, Saghatelyan A. CaMKIIα Expression Defines Two Functionally Distinct Populations of Granule Cells Involved in Different Types of Odor Behavior. Curr Biol 2017; 27:3315-3329.e6. [PMID: 29107547 DOI: 10.1016/j.cub.2017.09.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/23/2017] [Accepted: 09/27/2017] [Indexed: 12/25/2022]
Abstract
Granule cells (GCs) in the olfactory bulb (OB) play an important role in odor information processing. Although they have been classified into various neurochemical subtypes, the functional roles of these subtypes remain unknown. We used in vivo two-photon Ca2+ imaging combined with cell-type-specific identification of GCs in the mouse OB to examine whether functionally distinct GC subtypes exist in the bulbar network. We showed that half of GCs express Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα+) and that these neurons are preferentially activated by olfactory stimulation. The higher activity of CaMKIIα+ neurons is due to the weaker inhibitory input that they receive compared to their CaMKIIα-immunonegative (CaMKIIα-) counterparts. In line with these functional data, immunohistochemical analyses showed that 75%-90% of GCs expressing the immediate early gene cFos are CaMKIIα+ in naive animals and in mice that have been exposed to a novel odor and go/no-go operant conditioning, or that have been subjected to long-term associative memory and spontaneous habituation/dishabituation odor discrimination tasks. On the other hand, a perceptual learning task resulted in increased activation of CaMKIIα- cells. Pharmacogenetic inhibition of CaMKIIα+ GCs revealed that this subtype is involved in habituation/dishabituation and go/no-go odor discrimination, but not in perceptual learning. In contrast, pharmacogenetic inhibition of GCs in a subtype-independent manner affected perceptual learning. Our results indicate that functionally distinct populations of GCs exist in the OB and that they play distinct roles during different odor tasks.
Collapse
Affiliation(s)
- Sarah Malvaut
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada
| | - Simona Gribaudo
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, 75005 Paris, France
| | - Delphine Hardy
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada
| | | | - Laura Daroles
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, 75005 Paris, France
| | - Simon Labrecque
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada
| | | | - Zayna Chaker
- INSERM and Sorbonne Universités, UPMC, Centre de Recherche Saint-Antoine, Paris, France
| | - Daniel Coté
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada; Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Paul De Koninck
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada; Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Martin Holzenberger
- INSERM and Sorbonne Universités, UPMC, Centre de Recherche Saint-Antoine, Paris, France
| | - Alain Trembleau
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, 75005 Paris, France
| | - Isabelle Caille
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, 75005 Paris, France; Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| | - Armen Saghatelyan
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada; Department of Psychiatry and Neuroscience, Université Laval, Quebec City, QC G1V 0A6, Canada.
| |
Collapse
|
29
|
Gaudissard J, Ginger M, Premoli M, Memo M, Frick A, Pietropaolo S. Behavioral abnormalities in the Fmr1-KO2 mouse model of fragile X syndrome: The relevance of early life phases. Autism Res 2017; 10:1584-1596. [DOI: 10.1002/aur.1814] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/07/2017] [Accepted: 05/02/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Julie Gaudissard
- University of Bordeaux, INCIA; Pessac France
- CNRS, INCIA, UMR 5287; Pessac France
| | - Melanie Ginger
- INSERM, Neurocentre Magendie, U1215; Bordeaux France
- University of Bordeaux, Neurocentre Magendie, U1215; Bordeaux France
| | - Marika Premoli
- Department of Molecular and Translational Medicine; University of Brescia; Brescia Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine; University of Brescia; Brescia Italy
| | - Andreas Frick
- INSERM, Neurocentre Magendie, U1215; Bordeaux France
- University of Bordeaux, Neurocentre Magendie, U1215; Bordeaux France
| | - Susanna Pietropaolo
- University of Bordeaux, INCIA; Pessac France
- CNRS, INCIA, UMR 5287; Pessac France
| |
Collapse
|
30
|
Abekhoukh S, Sahin HB, Grossi M, Zongaro S, Maurin T, Madrigal I, Kazue-Sugioka D, Raas-Rothschild A, Doulazmi M, Carrera P, Stachon A, Scherer S, Drula Do Nascimento MR, Trembleau A, Arroyo I, Szatmari P, Smith IM, Milà M, Smith AC, Giangrande A, Caillé I, Bardoni B. New insights into the regulatory function of CYFIP1 in the context of WAVE- and FMRP-containing complexes. Dis Model Mech 2017; 10:463-474. [PMID: 28183735 PMCID: PMC5399562 DOI: 10.1242/dmm.025809] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 02/02/2017] [Indexed: 12/19/2022] Open
Abstract
Cytoplasmic FMRP interacting protein 1 (CYFIP1) is a candidate gene for intellectual disability (ID), autism, schizophrenia and epilepsy. It is a member of a family of proteins that is highly conserved during evolution, sharing high homology with its Drosophila homolog, dCYFIP. CYFIP1 interacts with the Fragile X mental retardation protein (FMRP, encoded by the FMR1 gene), whose absence causes Fragile X syndrome, and with the translation initiation factor eIF4E. It is a member of the WAVE regulatory complex (WRC), thus representing a link between translational regulation and the actin cytoskeleton. Here, we present data showing a correlation between mRNA levels of CYFIP1 and other members of the WRC. This suggests a tight regulation of the levels of the WRC members, not only by post-translational mechanisms, as previously hypothesized. Moreover, we studied the impact of loss of function of both CYFIP1 and FMRP on neuronal growth and differentiation in two animal models - fly and mouse. We show that these two proteins antagonize each other's function not only during neuromuscular junction growth in the fly but also during new neuronal differentiation in the olfactory bulb of adult mice. Mechanistically, FMRP and CYFIP1 modulate mTor signaling in an antagonistic manner, likely via independent pathways, supporting the results obtained in mouse as well as in fly at the morphological level. Collectively, our results illustrate a new model to explain the cellular roles of FMRP and CYFIP1 and the molecular significance of their interaction.
Collapse
Affiliation(s)
- Sabiha Abekhoukh
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne, France.,CNRS Associated International Laboratory (LIA) 'Neogenex', 06560 Valbonne, France
| | - H Bahar Sahin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France.,CNRS, UMR7104, 67400 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, 67400 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Mauro Grossi
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne, France.,CNRS Associated International Laboratory (LIA) 'Neogenex', 06560 Valbonne, France
| | - Samantha Zongaro
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne, France.,CNRS Associated International Laboratory (LIA) 'Neogenex', 06560 Valbonne, France
| | - Thomas Maurin
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne, France.,CNRS Associated International Laboratory (LIA) 'Neogenex', 06560 Valbonne, France
| | - Irene Madrigal
- Biochemistry and Molecular Genetics Department, Hospital Clinic, 08036 Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), Barcelona, Spain.,IDIBAPS, Barcelona, Spain
| | - Daniele Kazue-Sugioka
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne, France.,CNRS Associated International Laboratory (LIA) 'Neogenex', 06560 Valbonne, France.,Instituto de Pesquisa Pelé Pequeno Principe, Curitiba 80250-060, Brazil
| | - Annick Raas-Rothschild
- Institute of Rare Diseases, Institute of Medical Genetics, The Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Mohamed Doulazmi
- Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06, CNRS UMR8256, IBPS, Neuroscience Paris Seine, France
| | - Pilar Carrera
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France.,CNRS, UMR7104, 67400 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, 67400 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Andrea Stachon
- Instituto de Pesquisa Pelé Pequeno Principe, Curitiba 80250-060, Brazil
| | - Steven Scherer
- Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8
| | | | - Alain Trembleau
- Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06, CNRS UMR8256, IBPS, Neuroscience Paris Seine, France
| | - Ignacio Arroyo
- Center for Biomedical Research on Rare Diseases (CIBERER), Barcelona, Spain
| | - Peter Szatmari
- Centre for Addiction and Mental Health, Hospital for Sick Children, Department of Psychiatry, University of Toronto, Canada, M5G 1X8
| | - Isabel M Smith
- Departments of Pediatrics and Psychology & Neuroscience, Dalhousie University and IWK Health Centre, Halifax, Canada, B3K 6R8
| | - Montserrat Milà
- Biochemistry and Molecular Genetics Department, Hospital Clinic, 08036 Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), Barcelona, Spain.,IDIBAPS, Barcelona, Spain
| | - Adam C Smith
- Instituto de Pesquisa Pelé Pequeno Principe, Curitiba 80250-060, Brazil.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto and Program in Laboratory Medicine, University Health Network, Toronto, Canada
| | - Angela Giangrande
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France.,CNRS, UMR7104, 67400 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, 67400 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Isabelle Caillé
- Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06, CNRS UMR8256, IBPS, Neuroscience Paris Seine, France.,Sorbonne Paris Cité, Université Paris Diderot-Paris 7, 75013 Paris, France
| | - Barbara Bardoni
- Université Côte d'Azur, Nice, France .,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne, France.,CNRS Associated International Laboratory (LIA) 'Neogenex', 06560 Valbonne, France
| |
Collapse
|
31
|
Mansilla A, Chaves-Sanjuan A, Campillo NE, Semelidou O, Martínez-González L, Infantes L, González-Rubio JM, Gil C, Conde S, Skoulakis EMC, Ferrús A, Martínez A, Sánchez-Barrena MJ. Interference of the complex between NCS-1 and Ric8a with phenothiazines regulates synaptic function and is an approach for fragile X syndrome. Proc Natl Acad Sci U S A 2017; 114:E999-E1008. [PMID: 28119500 PMCID: PMC5307446 DOI: 10.1073/pnas.1611089114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The protein complex formed by the Ca2+ sensor neuronal calcium sensor 1 (NCS-1) and the guanine exchange factor protein Ric8a coregulates synapse number and probability of neurotransmitter release, emerging as a potential therapeutic target for diseases affecting synapses, such as fragile X syndrome (FXS), the most common heritable autism disorder. Using crystallographic data and the virtual screening of a chemical library, we identified a set of heterocyclic small molecules as potential inhibitors of the NCS-1/Ric8a interaction. The aminophenothiazine FD44 interferes with NCS-1/Ric8a binding, and it restores normal synapse number and associative learning in a Drosophila FXS model. The synaptic effects elicited by FD44 feeding are consistent with the genetic manipulation of NCS-1. The crystal structure of NCS-1 bound to FD44 and the structure-function studies performed with structurally close analogs explain the FD44 specificity and the mechanism of inhibition, in which the small molecule stabilizes a mobile C-terminal helix inside a hydrophobic crevice of NCS-1 to impede Ric8a interaction. Our study shows the drugability of the NCS-1/Ric8a interface and uncovers a suitable region in NCS-1 for development of additional drugs of potential use on FXS and related synaptic disorders.
Collapse
Affiliation(s)
- Alicia Mansilla
- Departamento de Neurobiología del Desarrollo, Instituto Cajal, Spanish National Research Council, 28002 Madrid, Spain
| | - Antonio Chaves-Sanjuan
- Departamento de Cristalografía y Biología Estructural, Instituto de Química Física Rocasolano, Spanish National Research Council, 28006 Madrid, Spain
| | - Nuria E Campillo
- Centro de Investigaciones Biológicas, Spanish National Research Council, 28040 Madrid, Spain
| | - Ourania Semelidou
- Division of Neuroscience, Biomedical Sciences Research Centre Alexander Fleming, 16672 Vari, Greece
| | | | - Lourdes Infantes
- Departamento de Cristalografía y Biología Estructural, Instituto de Química Física Rocasolano, Spanish National Research Council, 28006 Madrid, Spain
| | - Juana María González-Rubio
- Departamento de Cristalografía y Biología Estructural, Instituto de Química Física Rocasolano, Spanish National Research Council, 28006 Madrid, Spain
| | - Carmen Gil
- Centro de Investigaciones Biológicas, Spanish National Research Council, 28040 Madrid, Spain
| | - Santiago Conde
- Instituto de Química Médica, Spanish National Research Council, 28006 Madrid, Spain
| | - Efthimios M C Skoulakis
- Division of Neuroscience, Biomedical Sciences Research Centre Alexander Fleming, 16672 Vari, Greece
| | - Alberto Ferrús
- Departamento de Neurobiología del Desarrollo, Instituto Cajal, Spanish National Research Council, 28002 Madrid, Spain
| | - Ana Martínez
- Centro de Investigaciones Biológicas, Spanish National Research Council, 28040 Madrid, Spain
| | - María José Sánchez-Barrena
- Departamento de Cristalografía y Biología Estructural, Instituto de Química Física Rocasolano, Spanish National Research Council, 28006 Madrid, Spain;
| |
Collapse
|
32
|
Khalfallah O, Jarjat M, Davidovic L, Nottet N, Cestèle S, Mantegazza M, Bardoni B. Depletion of the Fragile X Mental Retardation Protein in Embryonic Stem Cells Alters the Kinetics of Neurogenesis. Stem Cells 2016; 35:374-385. [PMID: 27664080 DOI: 10.1002/stem.2505] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 08/07/2016] [Accepted: 08/30/2016] [Indexed: 01/14/2023]
Abstract
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and a leading cause of autism. FXS is due to the silencing of the Fragile X Mental Retardation Protein (FMRP), an RNA binding protein mainly involved in translational control, dendritic spine morphology and synaptic plasticity. Despite extensive studies, there is currently no cure for FXS. With the purpose to decipher the initial molecular events leading to this pathology, we developed a stem-cell-based disease model by knocking-down the expression of Fmr1 in mouse embryonic stem cells (ESCs). Repressing FMRP in ESCs increased the expression of amyloid precursor protein (APP) and Ascl1. When inducing neuronal differentiation, βIII-tubulin, p27kip1 , NeuN, and NeuroD1 were upregulated, leading to an accelerated neuronal differentiation that was partially compensated at later stages. Interestingly, we observed that neurogenesis is also accelerated in the embryonic brain of Fmr1-knockout mice, indicating that our cellular model recapitulates the molecular alterations present in vivo. Importantly, we rescued the main phenotype of the Fmr1 knockdown cell line, not only by reintroducing FMRP but also by pharmacologically targeting APP processing, showing the role of this protein in the pathophysiology of FXS during the earliest steps of neurogenesis. Our work allows to define an early therapeutic window but also to identify more effective molecules for treating this disorder. Stem Cells 2017;35:374-385.
Collapse
Affiliation(s)
- Olfa Khalfallah
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France.,CNRS, LIA « NEOGENEX », Valbonne Sophia-Antipolis, France
| | - Marielle Jarjat
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France.,CNRS, LIA « NEOGENEX », Valbonne Sophia-Antipolis, France
| | - Laetitia Davidovic
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France
| | - Nicolas Nottet
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France
| | - Sandrine Cestèle
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France
| | - Massimo Mantegazza
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France
| | - Barbara Bardoni
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne Sophia-Antipolis, France.,CNRS, LIA « NEOGENEX », Valbonne Sophia-Antipolis, France
| |
Collapse
|
33
|
Cell-Autonomous Regulation of Dendritic Spine Density by PirB. eNeuro 2016; 3:eN-NWR-0089-16. [PMID: 27752542 PMCID: PMC5054304 DOI: 10.1523/eneuro.0089-16.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/17/2016] [Accepted: 09/23/2016] [Indexed: 01/27/2023] Open
Abstract
Synapse density on cortical pyramidal neurons is modulated by experience. This process is highest during developmental critical periods, when mechanisms of synaptic plasticity are fully engaged. In mouse visual cortex, the critical period for ocular dominance (OD) plasticity coincides with the developmental pruning of synapses. At this time, mice lacking paired Ig-like receptor B (PirB) have excess numbers of dendritic spines on L5 neurons; these spines persist and are thought to underlie the juvenile-like OD plasticity observed in adulthood. Here we examine whether PirB is required specifically in excitatory neurons to exert its effect on dendritic spine and synapse density during the critical period. In mice with a conditional allele of PirB (PirBfl/fl), PirB was deleted only from L2/3 cortical pyramidal neurons in vivo by timed in utero electroporation of Cre recombinase. Sparse mosaic expression of Cre produced neurons lacking PirB in a sea of wild-type neurons and glia. These neurons had significantly elevated dendritic spine density, as well as increased frequency of miniature EPSCs, suggesting that they receive a greater number of synaptic inputs relative to Cre– neighbors. The effect of cell-specific PirB deletion on dendritic spine density was not accompanied by changes in dendritic branching complexity or axonal bouton density. Together, results imply a neuron-specific, cell-autonomous action of PirB on synaptic density in L2/3 pyramidal cells of visual cortex. Moreover, they are consistent with the idea that PirB functions normally to corepress spine density and synaptic plasticity, thereby maintaining headroom for cells to encode ongoing experience-dependent structural change throughout life.
Collapse
|
34
|
Daroles L, Gribaudo S, Doulazmi M, Scotto-Lomassese S, Dubacq C, Mandairon N, Greer CA, Didier A, Trembleau A, Caillé I. Fragile X Mental Retardation Protein and Dendritic Local Translation of the Alpha Subunit of the Calcium/Calmodulin-Dependent Kinase II Messenger RNA Are Required for the Structural Plasticity Underlying Olfactory Learning. Biol Psychiatry 2016; 80:149-159. [PMID: 26372002 DOI: 10.1016/j.biopsych.2015.07.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 07/16/2015] [Accepted: 07/22/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND In the adult brain, structural plasticity allowing gain or loss of synapses remodels circuits to support learning. In fragile X syndrome, the absence of fragile X mental retardation protein (FMRP) leads to defects in plasticity and learning deficits. FMRP is a master regulator of local translation but its implication in learning-induced structural plasticity is unknown. METHODS Using an olfactory learning task requiring adult-born olfactory bulb neurons and cell-specific ablation of FMRP, we investigated whether learning shapes adult-born neuron morphology during their synaptic integration and its dependence on FMRP. We used alpha subunit of the calcium/calmodulin-dependent kinase II (αCaMKII) mutant mice with altered dendritic localization of αCaMKII messenger RNA, as well as a reporter of αCaMKII local translation to investigate the role of this FMRP messenger RNA target in learning-dependent structural plasticity. RESULTS Learning induces profound changes in dendritic architecture and spine morphology of adult-born neurons that are prevented by ablation of FMRP in adult-born neurons and rescued by an metabotropic glutamate receptor 5 antagonist. Moreover, dendritically translated αCaMKII is necessary for learning and associated structural modifications and learning triggers an FMRP-dependent increase of αCaMKII dendritic translation in adult-born neurons. CONCLUSIONS Our results strongly suggest that FMRP mediates structural plasticity of olfactory bulb adult-born neurons to support olfactory learning through αCaMKII local translation. This reveals a new role for FMRP-regulated dendritic local translation in learning-induced structural plasticity. This might be of clinical relevance for the understanding of critical periods disruption in autism spectrum disorder patients, among which fragile X syndrome is the primary monogenic cause.
Collapse
Affiliation(s)
- Laura Daroles
- Sorbonne Universités, Université Pierre et Marie Curie Univ Paris 06, Centre National de la Recherche Scientifique UMR8246, INSERM U1130, IBPS, Neuroscience Paris Seine, France
| | - Simona Gribaudo
- Sorbonne Universités, Université Pierre et Marie Curie Univ Paris 06, Centre National de la Recherche Scientifique UMR8246, INSERM U1130, IBPS, Neuroscience Paris Seine, France
| | - Mohamed Doulazmi
- Sorbonne Universités, Université Pierre et Marie Curie Univ Paris 06, Centre National de la Recherche Scientifique UMR8246, INSERM U1130, IBPS, Neuroscience Paris Seine, France
| | - Sophie Scotto-Lomassese
- Sorbonne Universités, Université Pierre et Marie Curie Univ Paris 06, Centre National de la Recherche Scientifique UMR8246, INSERM U1130, IBPS, Neuroscience Paris Seine, France
| | - Caroline Dubacq
- Sorbonne Universités, Université Pierre et Marie Curie Univ Paris 06, Centre National de la Recherche Scientifique UMR8246, INSERM U1130, IBPS, Neuroscience Paris Seine, France
| | - Nathalie Mandairon
- Université Lyon1, CNRS UMR 5292, INSERM U1028, Centre de Recherche en Neurosciences de Lyon
| | - Charles August Greer
- Yale University School of Medicine, Department of Neurosurgery, New Haven, Connecticut
| | - Anne Didier
- Université Lyon1, CNRS UMR 5292, INSERM U1028, Centre de Recherche en Neurosciences de Lyon
| | - Alain Trembleau
- Sorbonne Universités, Université Pierre et Marie Curie Univ Paris 06, Centre National de la Recherche Scientifique UMR8246, INSERM U1130, IBPS, Neuroscience Paris Seine, France
| | - Isabelle Caillé
- Sorbonne Universités, Université Pierre et Marie Curie Univ Paris 06, Centre National de la Recherche Scientifique UMR8246, INSERM U1130, IBPS, Neuroscience Paris Seine, France; Sorbonne Paris Cité, Université Paris Diderot-Paris 7.
| |
Collapse
|
35
|
Ernst C. Proliferation and Differentiation Deficits are a Major Convergence Point for Neurodevelopmental Disorders. Trends Neurosci 2016; 39:290-299. [DOI: 10.1016/j.tins.2016.03.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 12/13/2022]
|
36
|
Impairments in dendrite morphogenesis as etiology for neurodevelopmental disorders and implications for therapeutic treatments. Neurosci Biobehav Rev 2016; 68:946-978. [PMID: 27143622 DOI: 10.1016/j.neubiorev.2016.04.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 02/08/2023]
Abstract
Dendrite morphology is pivotal for neural circuitry functioning. While the causative relationship between small-scale dendrite morphological abnormalities (shape, density of dendritic spines) and neurodevelopmental disorders is well established, such relationship remains elusive for larger-scale dendrite morphological impairments (size, shape, branching pattern of dendritic trees). Here, we summarize published data on dendrite morphological irregularities in human patients and animal models for neurodevelopmental disorders, with focus on autism and schizophrenia. We next discuss high-risk genes for these disorders and their role in dendrite morphogenesis. We finally overview recent developments in therapeutic attempts and we discuss how they relate to dendrite morphology. We find that both autism and schizophrenia are accompanied by dendritic arbor morphological irregularities, and that majority of their high-risk genes regulate dendrite morphogenesis. Thus, we present a compelling argument that, along with smaller-scale morphological impairments in dendrites (spines and synapse), irregularities in larger-scale dendrite morphology (arbor shape, size) may be an important part of neurodevelopmental disorders' etiology. We suggest that this should not be ignored when developing future therapeutic treatments.
Collapse
|
37
|
Synaptic Plasticity, a Prominent Contributor to the Anxiety in Fragile X Syndrome. Neural Plast 2016; 2016:9353929. [PMID: 27239350 PMCID: PMC4864533 DOI: 10.1155/2016/9353929] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/04/2016] [Indexed: 01/03/2023] Open
Abstract
Fragile X syndrome (FXS) is an inheritable neuropsychological disease caused by expansion of the CGG trinucleotide repeat affecting the fmr1 gene on X chromosome, resulting in silence of the fmr1 gene and failed expression of FMRP. Patients with FXS suffer from cognitive impairment, sensory integration deficits, learning disability, anxiety, autistic traits, and so forth. Specifically, the morbidity of anxiety in FXS individuals remains high from childhood to adulthood. By and large, it is common that the change of brain plasticity plays a key role in the progression of disease. But for now, most studies excessively emphasized the one-sided factor on the change of synaptic plasticity participating in the generation of anxiety during the development of FXS. Here we proposed an integrated concept to acquire better recognition about the details of this process.
Collapse
|
38
|
Sizemore RJ, Seeger-Armbruster S, Hughes SM, Parr-Brownlie LC. Viral vector-based tools advance knowledge of basal ganglia anatomy and physiology. J Neurophysiol 2016; 115:2124-46. [PMID: 26888111 PMCID: PMC4869490 DOI: 10.1152/jn.01131.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/16/2016] [Indexed: 01/07/2023] Open
Abstract
Viral vectors were originally developed to deliver genes into host cells for therapeutic potential. However, viral vector use in neuroscience research has increased because they enhance interpretation of the anatomy and physiology of brain circuits compared with conventional tract tracing or electrical stimulation techniques. Viral vectors enable neuronal or glial subpopulations to be labeled or stimulated, which can be spatially restricted to a single target nucleus or pathway. Here we review the use of viral vectors to examine the structure and function of motor and limbic basal ganglia (BG) networks in normal and pathological states. We outline the use of viral vectors, particularly lentivirus and adeno-associated virus, in circuit tracing, optogenetic stimulation, and designer drug stimulation experiments. Key studies that have used viral vectors to trace and image pathways and connectivity at gross or ultrastructural levels are reviewed. We explain how optogenetic stimulation and designer drugs used to modulate a distinct pathway and neuronal subpopulation have enhanced our mechanistic understanding of BG function in health and pathophysiology in disease. Finally, we outline how viral vector technology may be applied to neurological and psychiatric conditions to offer new treatments with enhanced outcomes for patients.
Collapse
Affiliation(s)
- Rachel J Sizemore
- Department of Anatomy, Otago School of Medical Sciences, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Sonja Seeger-Armbruster
- Department of Physiology, Otago School of Medical Sciences, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand; and
| | - Stephanie M Hughes
- Department of Biochemistry, Otago School of Medical Sciences, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Louise C Parr-Brownlie
- Department of Anatomy, Otago School of Medical Sciences, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand;
| |
Collapse
|
39
|
Sun MK, Hongpaisan J, Alkon DL. Rescue of Synaptic Phenotypes and Spatial Memory in Young Fragile X Mice. ACTA ACUST UNITED AC 2016; 357:300-10. [PMID: 26941170 DOI: 10.1124/jpet.115.231100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/02/2016] [Indexed: 01/01/2023]
Abstract
Fragile X syndrome (FXS) is characterized by synaptic immaturity, cognitive impairment, and behavioral changes. The disorder is caused by transcriptional shutdown in neurons of thefragile X mental retardation 1gene product, fragile X mental retardation protein. Fragile X mental retardation protein is a repressor of dendritic mRNA translation and its silencing leads to dysregulation of synaptically driven protein synthesis and impairments of intellect, cognition, and behavior, and FXS is a disorder that currently has no effective therapeutics. Here, young fragile X mice were treated with chronic bryostatin-1, a relatively selective protein kinase Cεactivator, which induces synaptogenesis and synaptic maturation/repair. Chronic treatment with bryostatin-1 rescues young fragile X mice from the disorder phenotypes, including normalization of most FXS abnormalities in 1) hippocampal brain-derived neurotrophic factor expression, 2) postsynaptic density-95 levels, 3) transformation of immature dendritic spines to mature synapses, 4) densities of the presynaptic and postsynaptic membranes, and 5) spatial learning and memory. The therapeutic effects were achieved without downregulation of metabotropic glutamate receptor (mGluR) 5 in the hippocampus and are more dramatic than those of a late-onset treatment in adult fragile X mice. mGluR5 expression was in fact lower in fragile X mice and its expression was restored with the bryostatin-1 treatment. Our results show that synaptic and cognitive function of young FXS mice can be normalized through pharmacological treatment without downregulation of mGluR5 and that bryostatin-1-like agents may represent a novel class of drugs to treat fragile X mental retardation at a young age and in adults.
Collapse
Affiliation(s)
- Miao-Kun Sun
- Blanchette Rockefeller Neurosciences Institute, Morgantown, West Virginia
| | - Jarin Hongpaisan
- Blanchette Rockefeller Neurosciences Institute, Morgantown, West Virginia
| | - Daniel L Alkon
- Blanchette Rockefeller Neurosciences Institute, Morgantown, West Virginia
| |
Collapse
|
40
|
Yoshihara SI, Takahashi H, Tsuboi A. Molecular Mechanisms Regulating the Dendritic Development of Newborn Olfactory Bulb Interneurons in a Sensory Experience-Dependent Manner. Front Neurosci 2016; 9:514. [PMID: 26793053 PMCID: PMC4709855 DOI: 10.3389/fnins.2015.00514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/22/2015] [Indexed: 12/02/2022] Open
Abstract
Inhibitory interneurons in the olfactory bulb are generated continuously throughout life in the subventricular zone and differentiate into periglomerular and granule cells. Neural circuits that undergo reorganization by newborn olfactory bulb interneurons are necessary for odor detection, odor discrimination, olfactory memory, and innate olfactory responses. Although sensory experience has been shown to regulate development in a variety of species and in various structures, including the retina, cortex, and hippocampus, little is known about how sensory experience regulates the dendritic development of newborn olfactory bulb interneurons. Recent studies revealed that the 5T4 oncofetal trophoblast glycoprotein and the neuronal Per/Arnt/Sim domain protein 4 (Npas4) transcription factor regulate dendritic branching and dendritic spine formation, respectively, in olfactory bulb interneurons. Here, we summarize the molecular mechanisms that underlie the sensory input-dependent development of newborn interneurons and the formation of functional neural circuitry in the olfactory bulb.
Collapse
Affiliation(s)
- Sei-Ichi Yoshihara
- Laboratory for the Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University Kashihara, Japan
| | - Hiroo Takahashi
- Laboratory for the Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University Kashihara, Japan
| | - Akio Tsuboi
- Laboratory for the Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University Kashihara, Japan
| |
Collapse
|
41
|
Parr-Brownlie LC, Bosch-Bouju C, Schoderboeck L, Sizemore RJ, Abraham WC, Hughes SM. Lentiviral vectors as tools to understand central nervous system biology in mammalian model organisms. Front Mol Neurosci 2015; 8:14. [PMID: 26041987 PMCID: PMC4434958 DOI: 10.3389/fnmol.2015.00014] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/30/2015] [Indexed: 01/18/2023] Open
Abstract
Lentiviruses have been extensively used as gene delivery vectors since the mid-1990s. Usually derived from the human immunodeficiency virus genome, they mediate efficient gene transfer to non-dividing cells, including neurons and glia in the adult mammalian brain. In addition, integration of the recombinant lentiviral construct into the host genome provides permanent expression, including the progeny of dividing neural precursors. In this review, we describe targeted vectors with modified envelope glycoproteins and expression of transgenes under the regulation of cell-selective and inducible promoters. This technology has broad utility to address fundamental questions in neuroscience and we outline how this has been used in rodents and primates. Combining viral tract tracing with immunohistochemistry and confocal or electron microscopy, lentiviral vectors provide a tool to selectively label and trace specific neuronal populations at gross or ultrastructural levels. Additionally, new generation optogenetic technologies can be readily utilized to analyze neuronal circuit and gene functions in the mature mammalian brain. Examples of these applications, limitations of current systems and prospects for future developments to enhance neuroscience knowledge will be reviewed. Finally, we will discuss how these vectors may be translated from gene therapy trials into the clinical setting.
Collapse
Affiliation(s)
- Louise C. Parr-Brownlie
- Department of Anatomy, Brain Health Research Centre, University of OtagoDunedin, New Zealand
- Brain Research New Zealand Centre of Research ExcellenceDunedin, New Zealand
| | | | - Lucia Schoderboeck
- Brain Research New Zealand Centre of Research ExcellenceDunedin, New Zealand
- Department of Biochemistry, Brain Health Research Centre, University of OtagoDunedin, New Zealand
- Department of Psychology, Brain Health Research Centre, University of OtagoDunedin, New Zealand
| | - Rachel J. Sizemore
- Department of Anatomy, Brain Health Research Centre, University of OtagoDunedin, New Zealand
- Brain Research New Zealand Centre of Research ExcellenceDunedin, New Zealand
| | - Wickliffe C. Abraham
- Brain Research New Zealand Centre of Research ExcellenceDunedin, New Zealand
- Department of Psychology, Brain Health Research Centre, University of OtagoDunedin, New Zealand
| | - Stephanie M. Hughes
- Brain Research New Zealand Centre of Research ExcellenceDunedin, New Zealand
- Department of Biochemistry, Brain Health Research Centre, University of OtagoDunedin, New Zealand
| |
Collapse
|
42
|
Gigek CO, Chen ES, Ota VK, Maussion G, Peng H, Vaillancourt K, Diallo AB, Lopez JP, Crapper L, Vasuta C, Chen GG, Ernst C. A molecular model for neurodevelopmental disorders. Transl Psychiatry 2015; 5:e565. [PMID: 25966365 PMCID: PMC4471287 DOI: 10.1038/tp.2015.56] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 03/24/2015] [Indexed: 01/24/2023] Open
Abstract
Genes implicated in neurodevelopmental disorders (NDDs) important in cognition and behavior may have convergent function and several cellular pathways have been implicated, including protein translational control, chromatin modification, and synapse assembly and maintenance. Here, we test the convergent effects of methyl-CpG binding domain 5 (MBD5) and special AT-rich binding protein 2 (SATB2) reduced dosage in human neural stem cells (NSCs), two genes implicated in 2q23.1 and 2q33.1 deletion syndromes, respectively, to develop a generalized model for NDDs. We used short hairpin RNA stably incorporated into healthy neural stem cells to supress MBD5 and SATB2 expression, and massively parallel RNA sequencing, DNA methylation sequencing and microRNA arrays to test the hypothesis that a primary etiology of NDDs is the disruption of the balance of NSC proliferation and differentiation. We show that reduced dosage of either gene leads to significant overlap of gene-expression patterns, microRNA patterns and DNA methylation states with control NSCs in a differentiating state, suggesting that a unifying feature of 2q23.1 and 2q33.1 deletion syndrome may be a lack of regulation between proliferation and differentiation in NSCs, as we observed previously for TCF4 and EHMT1 suppression following a similar experimental paradigm. We propose a model of NDDs whereby the balance of NSC proliferation and differentiation is affected, but where the molecules that drive this effect are largely specific to disease-causing genetic variation. NDDs are diverse, complex and unique, but the optimal balance of factors that determine when and where neural stem cells differentiate may be a major feature underlying the diverse phenotypic spectrum of NDDs.
Collapse
Affiliation(s)
- C O Gigek
- Department of Psychiatry, McGill Group for Suicide Studies, McGill University, Montreal, QC, Canada
| | - E S Chen
- Department of Psychiatry, McGill Group for Suicide Studies, McGill University, Montreal, QC, Canada
| | - V K Ota
- Department of Psychiatry, McGill Group for Suicide Studies, McGill University, Montreal, QC, Canada
| | - G Maussion
- Department of Psychiatry, McGill Group for Suicide Studies, McGill University, Montreal, QC, Canada
| | - H Peng
- Department of Psychiatry, McGill Group for Suicide Studies, McGill University, Montreal, QC, Canada
| | - K Vaillancourt
- Department of Psychiatry, McGill Group for Suicide Studies, McGill University, Montreal, QC, Canada
| | - A B Diallo
- Department of Psychiatry, McGill Group for Suicide Studies, McGill University, Montreal, QC, Canada
| | - J P Lopez
- Department of Psychiatry, McGill Group for Suicide Studies, McGill University, Montreal, QC, Canada
| | - L Crapper
- Department of Psychiatry, McGill Group for Suicide Studies, McGill University, Montreal, QC, Canada
| | - C Vasuta
- Department of Psychiatry, McGill Group for Suicide Studies, McGill University, Montreal, QC, Canada
| | - G G Chen
- Department of Psychiatry, McGill Group for Suicide Studies, McGill University, Montreal, QC, Canada
| | - C Ernst
- Department of Psychiatry, McGill Group for Suicide Studies, McGill University, Montreal, QC, Canada,Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building Room 2101.2 Verdun, QC, Canada H4H 1R3. E-mail:
| |
Collapse
|
43
|
Schilit Nitenson A, Stackpole EE, Truszkowski TLS, Midroit M, Fallon JR, Bath KG. Fragile X mental retardation protein regulates olfactory sensitivity but not odorant discrimination. Chem Senses 2015; 40:345-50. [PMID: 25917509 DOI: 10.1093/chemse/bjv019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common cause of inherited intellectual disability and is characterized by cognitive impairments and altered sensory function. It is caused by absence of fragile X mental retardation protein (FMRP), an RNA-binding protein essential for normal synaptic plasticity and function. Animal models have provided important insights into mechanisms through which loss of FMRP impacts cognitive and sensory development and function. While FMRP is highly enriched in the developing and adult olfactory bulb (OB), its role in olfactory sensory function remains poorly understood. Here, we used a mouse model of FXS, the fmr1 (-/y) mouse, to test whether loss of FMRP impacts olfactory discrimination, habituation, or sensitivity using a spontaneous olfactory cross-habituation task at a range of odorant concentrations. We demonstrated that fmr1 (-/y) mice have a significant decrease in olfactory sensitivity compared with wild type controls. When we controlled for differences in sensitivity, we found no effect of loss of FMRP on the ability to habituate to or spontaneously discriminate between odorants. These data indicate that loss of FMRP significantly alters olfactory sensitivity, but not other facets of basal olfactory function. These findings have important implications for future studies aimed at understanding the role of FMRP on sensory functioning.
Collapse
Affiliation(s)
| | - Emily E Stackpole
- Department of Neuroscience, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Torrey L S Truszkowski
- Department of Neuroscience, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Maellie Midroit
- Universitie Claude Bernard Lyon, Universite de Lyon, Lyon, France
| | - Justin R Fallon
- Department of Neuroscience, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Kevin G Bath
- Department of Neuroscience, Brown University, 185 Meeting Street, Providence, RI 02912, USA, Department of Cognitive, Linguistic and Psychological Sciences, Brown University, 190 Thayer Street, Providence, RI 02912, USA
| |
Collapse
|
44
|
Wang Y, Sakano H, Beebe K, Brown MR, de Laat R, Bothwell M, Kulesza RJ, Rubel EW. Intense and specialized dendritic localization of the fragile X mental retardation protein in binaural brainstem neurons: a comparative study in the alligator, chicken, gerbil, and human. J Comp Neurol 2015; 522:2107-28. [PMID: 24318628 DOI: 10.1002/cne.23520] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 11/09/2022]
Abstract
Neuronal dendrites are structurally and functionally dynamic in response to changes in afferent activity. The fragile X mental retardation protein (FMRP) is an mRNA binding protein that regulates activity-dependent protein synthesis and morphological dynamics of dendrites. Loss and abnormal expression of FMRP occur in fragile X syndrome (FXS) and some forms of autism spectrum disorders. To provide further understanding of how FMRP signaling regulates dendritic dynamics, we examined dendritic expression and localization of FMRP in the reptilian and avian nucleus laminaris (NL) and its mammalian analogue, the medial superior olive (MSO), in rodents and humans. NL/MSO neurons are specialized for temporal processing of low-frequency sounds for binaural hearing, which is impaired in FXS. Protein BLAST analyses first demonstrate that the FMRP amino acid sequences in the alligator and chicken are highly similar to human FMRP with identical mRNA-binding and phosphorylation sites, suggesting that FMRP functions similarly across vertebrates. Immunocytochemistry further reveals that NL/MSO neurons have very high levels of dendritic FMRP in low-frequency hearing vertebrates including alligator, chicken, gerbil, and human. Remarkably, dendritic FMRP in NL/MSO neurons often accumulates at branch points and enlarged distal tips, loci known to be critical for branch-specific dendritic arbor dynamics. These observations support an important role for FMRP in regulating dendritic properties of binaural neurons that are essential for low-frequency sound localization and auditory scene segregation, and support the relevance of studying this regulation in nonhuman vertebrates that use low frequencies in order to further understand human auditory processing disorders.
Collapse
Affiliation(s)
- Yuan Wang
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, WA, 98195-7923
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Fragile X Syndrome (FXS) is commonly thought to arise from dysfunction of the synapse, the site of communication between neurons. However, loss of the protein that results in FXS occurs early in embryonic development, while synapses are formed relatively late. Fragile X Syndrome (FXS) is the leading known monogenic form of autism and the most common form of inherited intellectual disability. FXS results from silencing the FMR1 gene during embryonic development, leading to loss of Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein that regulates mRNA transport, stability, and translation. FXS is commonly thought of as a disease of synaptic dysfunction; however, FMRP expression is lost early in embryonic development, well before most synaptogenesis occurs. Recent studies suggest that loss of FMRP results in aberrant neurogenesis, but neurogenic defects have been variable. We investigated whether FMRP affects neurogenesis in Xenopus laevis tadpoles that express a homolog of FMR1. We used in vivo time-lapse imaging of neural progenitor cells and their neuronal progeny to evaluate the effect of acute loss or overexpression of FMRP on neurogenesis in the developing optic tectum. We complimented the time-lapse studies with SYTOX labeling to quantify apoptosis and CldU labeling to measure cell proliferation. Animals with increased or decreased levels of FMRP have significantly decreased neuronal proliferation and survival. They also have increased neuronal differentiation, but deficient dendritic arbor elaboration. The presence and severity of these defects was highly sensitive to FMRP levels. These data demonstrate that FMRP plays an important role in neurogenesis and suggest that endogenous FMRP levels are carefully regulated. These studies show promise in using Xenopus as an experimental system to study fundamental deficits in brain development with loss of FMRP and give new insight into the pathophysiology of FXS.
Collapse
|
46
|
Yoshihara SI, Takahashi H, Nishimura N, Kinoshita M, Asahina R, Kitsuki M, Tatsumi K, Furukawa-Hibi Y, Hirai H, Nagai T, Yamada K, Tsuboi A. Npas4 Regulates Mdm2 and thus Dcx in Experience-Dependent Dendritic Spine Development of Newborn Olfactory Bulb Interneurons. Cell Rep 2014; 8:843-57. [DOI: 10.1016/j.celrep.2014.06.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 06/05/2014] [Accepted: 06/26/2014] [Indexed: 02/03/2023] Open
|
47
|
Alterations in the Sp1 binding and Fmr-1 gene expression in the cortex of the brain during maturation and aging of mouse. Mol Biol Rep 2014; 41:6855-63. [DOI: 10.1007/s11033-014-3571-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 06/26/2014] [Indexed: 11/25/2022]
|
48
|
Boda B, Mendez P, Boury-Jamot B, Magara F, Muller D. Reversal of activity-mediated spine dynamics and learning impairment in a mouse model of Fragile X syndrome. Eur J Neurosci 2014; 39:1130-7. [DOI: 10.1111/ejn.12488] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 02/01/2023]
Affiliation(s)
- Bernadett Boda
- Department of Basic Neurosciences; School of Medicine; University of Geneva; Geneva 4 1211 Switzerland
| | - Pablo Mendez
- Department of Basic Neurosciences; School of Medicine; University of Geneva; Geneva 4 1211 Switzerland
| | | | - Fulvio Magara
- Center for Psychiatric Neurosciences; Cery; Prilly-Lausanne Switzerland
| | - Dominique Muller
- Department of Basic Neurosciences; School of Medicine; University of Geneva; Geneva 4 1211 Switzerland
| |
Collapse
|
49
|
Sun MK, Hongpaisan J, Lim CS, Alkon DL. Bryostatin-1 Restores Hippocampal Synapses and Spatial Learning and Memory in Adult Fragile X Mice. J Pharmacol Exp Ther 2014; 349:393-401. [DOI: 10.1124/jpet.114.214098] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
50
|
The adhesion-GPCR BAI3, a gene linked to psychiatric disorders, regulates dendrite morphogenesis in neurons. Mol Psychiatry 2013; 18:943-50. [PMID: 23628982 PMCID: PMC3730300 DOI: 10.1038/mp.2013.46] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 02/21/2013] [Accepted: 03/18/2013] [Indexed: 11/09/2022]
Abstract
Adhesion-G protein-coupled receptors (GPCRs) are a poorly studied subgroup of the GPCRs, which have diverse biological roles and are major targets for therapeutic intervention. Among them, the Brain Angiogenesis Inhibitor (BAI) family has been linked to several psychiatric disorders, but despite their very high neuronal expression, the function of these receptors in the central nervous system has barely been analyzed. Our results, obtained using expression knockdown and overexpression experiments, reveal that the BAI3 receptor controls dendritic arborization growth and branching in cultured neurons. This role is confirmed in Purkinje cells in vivo using specific expression of a deficient BAI3 protein in transgenic mice, as well as lentivirus driven knockdown of BAI3 expression. Regulation of dendrite morphogenesis by BAI3 involves activation of the RhoGTPase Rac1 and the binding to a functional ELMO1, a critical Rac1 regulator. Thus, activation of the BAI3 signaling pathway could lead to direct reorganization of the actin cytoskeleton through RhoGTPase signaling in neurons. Given the direct link between RhoGTPase/actin signaling pathways, neuronal morphogenesis and psychiatric disorders, our mechanistic data show the importance of further studying the role of the BAI adhesion-GPCRs to understand the pathophysiology of such brain diseases.
Collapse
|