1
|
Wang Q, Li Q, Quan T, Liang H, Li J, Li K, Ye S, Zhu S, Li B. Effects of Illumination Color on Hypothalamic Appetite-Regulating Gene Expression and Glycolipid Metabolism. Nutrients 2024; 16:4330. [PMID: 39770951 PMCID: PMC11678393 DOI: 10.3390/nu16244330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/05/2025] Open
Abstract
Irregular illumination is a newly discovered ambient factor that affects dietary and metabolic processes. However, the effect of the modulation of long-term light exposure on appetite and metabolism remains elusive. Therefore, in this current study, we systematically investigated the effects of up to 8 weeks of exposure to red (RL), green (GL), and white light (WL) environments on appetite, food preferences, and glucose homeostasis in mice on both high-fat and low-fat dietary patterns. It was found that the RL group exacerbated high-fat-induced obesity in mice compared with GL- or WL-treated mice. RL-exposed mice exhibited worsened metabolic profiles, including impaired glucose tolerance/insulin sensitivity, elevated lipid levels, and reduced serum insulin levels. Serological analyses showed that RL exposure resulted in decreased leptin levels and increased levels of orexigenic and hunger hormones in mice. Further qPCR analysis showed that the expression levels of the hypothalamic appetite-related genes NPY and AgRP mRNA were upregulated in RL-treated mice, while the expression level of the appetite suppressor gene POMC mRNA was downregulated. The results of this study will be instructive for the regulation of appetite and metabolism from the perspective of illumination colors.
Collapse
Affiliation(s)
- Qi Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.L.); (T.Q.); (H.L.); (J.L.); (K.L.); (S.Y.); (S.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Qianru Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.L.); (T.Q.); (H.L.); (J.L.); (K.L.); (S.Y.); (S.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Tuo Quan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.L.); (T.Q.); (H.L.); (J.L.); (K.L.); (S.Y.); (S.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.L.); (T.Q.); (H.L.); (J.L.); (K.L.); (S.Y.); (S.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.L.); (T.Q.); (H.L.); (J.L.); (K.L.); (S.Y.); (S.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaikai Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.L.); (T.Q.); (H.L.); (J.L.); (K.L.); (S.Y.); (S.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuxin Ye
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.L.); (T.Q.); (H.L.); (J.L.); (K.L.); (S.Y.); (S.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Sijia Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.L.); (T.Q.); (H.L.); (J.L.); (K.L.); (S.Y.); (S.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.L.); (T.Q.); (H.L.); (J.L.); (K.L.); (S.Y.); (S.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Xiao J, Chen D, Yu S, Wang H, Sun Y, Wang H, Gou Z, Wang J. Time-Dependent Effects of Altered Prebedtime Light Exposure in Enclosed Spaces on Sleep Performance Associated with Human States. Nat Sci Sleep 2024; 16:1179-1200. [PMID: 39131165 PMCID: PMC11316495 DOI: 10.2147/nss.s472988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024] Open
Abstract
Purpose Exposure to artificial light influences human performance, which is essential for maintaining healthy work and sleep. However, existing research has not explored the intrinsic links between sleep performance and human states over time under prebedtime light exposure interventions (LEIs). Methods To investigate the time-dependent effects of altered prebedtime light exposure, four LEI groupings (#L1 - #L4) and a Time factor (D8, D9, and D10) were chosen for sleep experiments in enclosed spaces. Forty-eight young adults recruited were available for data analysis. Subjective alertness (SA), negative affect (NA), subjective sleep, and objective sleep were measured via the Karolinska Sleepiness Scale, Positive and Negative Affect Schedule, Next-day Self-assessment Sleep Quality, and joint assessment of wrist actigraphy and sleep diaries, respectively. Statistical analysis was used for the effects of light exposure on the human states (corresponding to the SA and NA) and sleep performance, while the process model helped construct the associations between the two. Results The statistical effects revealed that the Time had a significant main effect on subjective sleep and changes in prebedtime alertness; the LEI had a significant main effect only on sleep onset latency (SOL). After undergoing altered prebedtime light exposure, the mean SA increased at prebedtime of D9 (p = 0.022) and D10 (p = 0.044); No significant effect on the NA was observed; Mean subjective sleep had a significant increase from D8 to D10. Moreover, five actigraphy-estimated sleep parameters were interrelated. In light of this, a chained pathway relationship was identified. The SOL played a mediating predictor between prebedtime state and objective sleep, which was linked to the awakening state through subjective sleep. Conclusion Our study suggests that time-dependent effects of altered prebedtime light exposure on sleep performance are associated with human states at prebedtime and awakening, with implications for its prediction of sleep health.
Collapse
Affiliation(s)
- Jianghao Xiao
- Key Laboratory of Industrial Design and Ergonomics, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, 710072, People’s Republic of China
| | - Dengkai Chen
- Key Laboratory of Industrial Design and Ergonomics, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, 710072, People’s Republic of China
| | - Suihuai Yu
- Key Laboratory of Industrial Design and Ergonomics, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, 710072, People’s Republic of China
| | - Hui Wang
- Key Laboratory of Industrial Design and Ergonomics, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, 710072, People’s Republic of China
| | - Yiwei Sun
- Key Laboratory of Industrial Design and Ergonomics, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, 710072, People’s Republic of China
| | - Hanyu Wang
- Key Laboratory of Industrial Design and Ergonomics, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, 710072, People’s Republic of China
| | - Zhiming Gou
- Key Laboratory of Industrial Design and Ergonomics, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, 710072, People’s Republic of China
| | - Jingping Wang
- Key Laboratory of Industrial Design and Ergonomics, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, 710072, People’s Republic of China
| |
Collapse
|
3
|
Gürses G, Ömeroğlu Akkoç Fİ, Aktı A, Körez MK. Effectiveness of wearing glasses with green lenses on dental anxiety for third-molar surgery: A randomized clinical trial. J Am Dent Assoc 2024; 155:496-503.e1. [PMID: 38520420 DOI: 10.1016/j.adaj.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Dental anxiety is a common problem for oral surgeries. This study investigated the effectiveness of wearing glasses with green lenses in reducing dental anxiety, blood pressure, heart rate, and intraoperative pain in patients undergoing first-time third-molar surgery. METHODS The authors planned this study as a randomized and parallel-group clinical trial. Patients' dental anxiety was measured with the use of a visual analog scale and a State-Trait Anxiety Inventory for baseline measurement purposes. At the same time, blood pressure, oxygen saturation, and heart rate values were recorded. Patients were given glasses with clear or green lenses, depending on their group. After 10 minutes, all parameters were measured again for preoperative measurement. Patients wore glasses with either green or clear lenses throughout the operation. After the operation, patients were asked to estimate the degree of intraoperative pain using the visual analog scale. RESULTS The study included 128 patients. On the basis of the change between baseline and preoperative measurements, the authors found a statistically significant difference in anxiety and heart rate. Intraoperative pain showed a significant difference between groups. No significant changes were found in blood pressure and oxygen saturation. CONCLUSIONS Patients with anxiety could wear low-cost, easy-to-use glasses with green lenses for 10 minutes before an operation to reduce anxiety and heart rate. In addition, wearing glasses during the surgical procedure can reduce intraoperative pain. PRACTICAL IMPLICATIONS By means of using glasses with green lenses throughout the procedure, existing anxiety and pain can be reduced. An operation can be performed more comfortably for both the patient and the dentist. This clinical trial was registered at ClinicalTrials.gov. The registration number is NCT05584696.
Collapse
|
4
|
Farag HI, Murphy BA, Templeman JR, Hanlon C, Joshua J, Koch TG, Niel L, Shoveller AK, Bedecarrats GY, Ellison A, Wilcockson D, Martino TA. One Health: Circadian Medicine Benefits Both Non-human Animals and Humans Alike. J Biol Rhythms 2024; 39:237-269. [PMID: 38379166 PMCID: PMC11141112 DOI: 10.1177/07487304241228021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Circadian biology's impact on human physical health and its role in disease development and progression is widely recognized. The forefront of circadian rhythm research now focuses on translational applications to clinical medicine, aiming to enhance disease diagnosis, prognosis, and treatment responses. However, the field of circadian medicine has predominantly concentrated on human healthcare, neglecting its potential for transformative applications in veterinary medicine, thereby overlooking opportunities to improve non-human animal health and welfare. This review consists of three main sections. The first section focuses on the translational potential of circadian medicine into current industry practices of agricultural animals, with a particular emphasis on horses, broiler chickens, and laying hens. The second section delves into the potential applications of circadian medicine in small animal veterinary care, primarily focusing on our companion animals, namely dogs and cats. The final section explores emerging frontiers in circadian medicine, encompassing aquaculture, veterinary hospital care, and non-human animal welfare and concludes with the integration of One Health principles. In summary, circadian medicine represents a highly promising field of medicine that holds the potential to significantly enhance the clinical care and overall health of all animals, extending its impact beyond human healthcare.
Collapse
Affiliation(s)
- Hesham I. Farag
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, Canada
| | - Barbara A. Murphy
- School of Agriculture and Food Science, University College, Dublin, Ireland
| | - James R. Templeman
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Charlene Hanlon
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- Department of Poultry Science, Auburn University, Auburn, Alabama, USA
| | - Jessica Joshua
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Thomas G. Koch
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Lee Niel
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Anna K. Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | | - Amy Ellison
- School of Natural Sciences, Bangor University, Bangor, UK
| | - David Wilcockson
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Tami A. Martino
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
5
|
Lucas RJ, Allen AE, Brainard GC, Brown TM, Dauchy RT, Didikoglu A, Do MTH, Gaskill BN, Hattar S, Hawkins P, Hut RA, McDowell RJ, Nelson RJ, Prins JB, Schmidt TM, Takahashi JS, Verma V, Voikar V, Wells S, Peirson SN. Recommendations for measuring and standardizing light for laboratory mammals to improve welfare and reproducibility in animal research. PLoS Biol 2024; 22:e3002535. [PMID: 38470868 PMCID: PMC10931507 DOI: 10.1371/journal.pbio.3002535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Light enables vision and exerts widespread effects on physiology and behavior, including regulating circadian rhythms, sleep, hormone synthesis, affective state, and cognitive processes. Appropriate lighting in animal facilities may support welfare and ensure that animals enter experiments in an appropriate physiological and behavioral state. Furthermore, proper consideration of light during experimentation is important both when it is explicitly employed as an independent variable and as a general feature of the environment. This Consensus View discusses metrics to use for the quantification of light appropriate for nonhuman mammals and their application to improve animal welfare and the quality of animal research. It provides methods for measuring these metrics, practical guidance for their implementation in husbandry and experimentation, and quantitative guidance on appropriate light exposure for laboratory mammals. The guidance provided has the potential to improve data quality and contribute to reduction and refinement, helping to ensure more ethical animal use.
Collapse
Affiliation(s)
- Robert J. Lucas
- Centre for Biological Timing, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Annette E. Allen
- Centre for Biological Timing, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - George C. Brainard
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Timothy M. Brown
- Centre for Biological Timing, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Robert T. Dauchy
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane, Louisiana, United States of America
| | - Altug Didikoglu
- Department of Neuroscience, Izmir Institute of Technology, Gülbahçe, Urla, Izmir, Turkey
| | - Michael Tri H. Do
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Center for Life Science, Boston, Massachusetts, United States of America
| | - Brianna N. Gaskill
- Novartis Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Samer Hattar
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, John Edward Porter Neuroscience Research Center, Bethesda, Maryland, United States of America
| | | | - Roelof A. Hut
- Chronobiology Unit, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Richard J. McDowell
- Centre for Biological Timing, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Randy J. Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, United States of America
| | - Jan-Bas Prins
- The Francis Crick Institute, London, United Kingdom
- Leiden University Medical Centre, Leiden, the Netherlands
| | - Tiffany M. Schmidt
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Joseph S. Takahashi
- Department of Neuroscience, Peter O’Donnell Jr Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Vandana Verma
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, California, United States of America
| | - Vootele Voikar
- Laboratory Animal Center and Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sara Wells
- The Mary Lyon Centre, MRC Harwell, Harwell Campus, Oxfordshire, United Kingdom
| | - Stuart N. Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Jin J, Han W, Yang T, Xu Z, Zhang J, Cao R, Wang Y, Wang J, Hu X, Gu T, He F, Huang J, Li G. Artificial light at night, MRI-based measures of brain iron deposition and incidence of multiple mental disorders. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166004. [PMID: 37544462 DOI: 10.1016/j.scitotenv.2023.166004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Epidemiologic evidence on whether iron accumulation in brain modified the association between artificial light at night (ALAN) and incident mental disorders is lacking. The authors aims to investigate modification of brain iron deposition on the associations of ALAN with multiple mental disorders in the middle-aged and older adults. METHODS This prospective study used data from the UK Biobank. ALAN was drawn from satellite datasets. Susceptibility-weighted magnetic resonance imaging was used to ascertain iron content of each brain region. T2* signal loss was used as indices of iron deposition. The main outcomes are impacts of ALAN exposure on onset of wide spectrum of physician-diagnosed mental disorders, which was estimated by time-varying Cox proportional hazard model. The authors further conducted stratified analyses by levels of iron brain deposition to examine the potential modifying effects. RESULTS Among 298,283 participants followed for a median of 10.91 years, higher ALAN exposure was associated with increased risk of mental disorders. An IQR (11.37 nW/cm2/sr) increase in annual levels of ALAN was associated with an HR of 1.050 (95 % CI: 1.034,1.066) for any mental disorder, 1.076 (95 % CI: 1.053,1.099) for substance use disorder, and 1.036 (95 % CI: 1.004,1.069) for depression disorder in fully adjusted models. The exposure-response curves showed steeper trends at lower ALAN levels and a plateau at higher exposures. The associations were stronger in participants with high iron deposition in left hippocampus, left accumbens and left pallidum. CONCLUSIONS ALAN was associated with multiple mental disorders in the middle-aged and older adults, and the findings indicated stricter standards of ALAN is needed and targeted preventive measures are warranted, especially with high brain iron deposition.
Collapse
Affiliation(s)
- Jianbo Jin
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Wenxing Han
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Teng Yang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Zhihu Xu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Jin Zhang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Ru Cao
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Yuxin Wang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Jiawei Wang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Xin Hu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Tiantian Gu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Fan He
- Beijing Anding Hospital, Capital Medical University, Beijing, China.
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China; Peking University Institute for Global Health and Development, Beijing, China.
| | - Guoxing Li
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China; Environmental Research Group, School of Public Health, Imperial college London, London, UK.
| |
Collapse
|
7
|
Gutiérrez-Pérez M, González-González S, Estrada-Rodriguez KP, Espítia-Bautista E, Guzmán-Ruiz MA, Escalona R, Escobar C, Guerrero-Vargas NN. Dim Light at Night Promotes Circadian Disruption in Female Rats, at the Metabolic, Reproductive, and Behavioral Level. Adv Biol (Weinh) 2023; 7:e2200289. [PMID: 36650949 DOI: 10.1002/adbi.202200289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/09/2022] [Indexed: 01/19/2023]
Abstract
Inhabitants of urban areas are constantly exposed to light at night, which is an important environmental factor leading to circadian disruption. Streetlights filtering light through the windows and night dim light lamps are common sources of dim light at night (DLAN). The female population is susceptible to circadian disruption. The present study is aimed to determine the impact of DLAN on female Wistar rats circadian rhythms, metabolism, reproductive physiology, and behavior. After 5 weeks of DLAN exposure daily, oscillations in activity and body temperature of female rats are abolished. DLAN also decreases nocturnal food ingestion, which results in a diminishment in total food consumption. These alterations in the temporal organization of the body are associated with a significant decrease in melatonin plasmatic levels, reproductive disruptions, decreased exploration times, and marked anhedonia. This study highlights the importance of avoiding exposure to light at night, even at low intensities, to maintain the circadian organization of physiology, and denotes the great necessity of increasing the studies in females since the sexual dimorphism within the effects of desynchronizing protocols has been poorly studied.
Collapse
Affiliation(s)
- Mariana Gutiérrez-Pérez
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Shellye González-González
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Karla P Estrada-Rodriguez
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Estefania Espítia-Bautista
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Mara A Guzmán-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Rene Escalona
- Departamento de Embriología y Genética, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Carolina Escobar
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Natalí N Guerrero-Vargas
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| |
Collapse
|
8
|
Kahan A, Mahe K, Dutta S, Kassraian P, Wang A, Gradinaru V. Immediate responses to ambient light in vivo reveal distinct subpopulations of suprachiasmatic VIP neurons. iScience 2023; 26:107865. [PMID: 37766975 PMCID: PMC10520357 DOI: 10.1016/j.isci.2023.107865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/21/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The circadian rhythm pacemaker, the suprachiasmatic nucleus (SCN), mediates light entrainment via vasoactive intestinal peptide (VIP) neurons (SCNVIP). Yet, how these neurons uniquely respond and connect to intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing melanopsin (Opn4) has not been determined functionally in freely behaving animals. To address this, we first used monosynaptic tracing from SCNVIP neurons in mice and identified two SCNVIP subpopulations. Second, we recorded calcium changes in response to ambient light, at both bulk and single-cell levels, and found two unique activity patterns in response to high- and low-intensity blue light. The activity patterns of both subpopulations could be manipulated by application of an Opn4 antagonist. These results suggest that the two SCNVIP subpopulations connect to two types of Opn4-expressing ipRGCs, likely M1 and M2, but only one is responsive to red light. These findings have important implications for our basic understanding of non-image-forming circadian light processing.
Collapse
Affiliation(s)
- Anat Kahan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Karan Mahe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sayan Dutta
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pegah Kassraian
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alexander Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
9
|
Collery A, Browne JA, O'Brien C, Sheridan JT, Murphy BA. Optimised Stable Lighting Strengthens Circadian Clock Gene Rhythmicity in Equine Hair Follicles. Animals (Basel) 2023; 13:2335. [PMID: 37508112 PMCID: PMC10376498 DOI: 10.3390/ani13142335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Hair follicles (HF) represent a useful tissue for monitoring the circadian clock in mammals. Irregular light exposure causes circadian disruption and represents a welfare concern for stabled horses. We aimed to evaluate the impact of two stable lighting regimes on circadian clock gene rhythmicity in HF from racehorses. Two groups of five Thoroughbred racehorses in training at a commercial racehorse yard were exposed to standard incandescent light or a customized LED lighting system. The control group received light from incandescent bulbs used according to standard yard practice. The treatment group received timed, blue-enriched white LED light by day and dim red LED light at night. On weeks 0 and 20, mane hairs were collected at 4 h intervals for 24 h. Samples were stored in RNAlater at -20 °C. RNA was isolated and samples interrogated by quantitative PCR for the core clock genes: ARNTL, CRY1, PER1, PER2, NR1D2, and the clock-controlled gene DBP. Cosinor analyses revealed 24 h rhythmicity for NR1D2 and PER2 and approached significance for CRY1 (p = 0.013, p = 0.013, and p = 0.051, respectively) in week 20 in the treatment group only. No rhythmicity was detected in week 0 or in week 20 in the HF of control horses. Results suggest that lighting practices in racehorse stables may be improved to better stimulate optimum functioning of the circadian system.
Collapse
Affiliation(s)
- Aileen Collery
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Co. Dublin, Ireland
| | - John A Browne
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Co. Dublin, Ireland
| | | | - John T Sheridan
- School of Electrical, Electronic and Mechanical Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Co. Dublin, Ireland
| | - Barbara A Murphy
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Co. Dublin, Ireland
| |
Collapse
|
10
|
Ketelauri P, Scharov K, von Gall C, Johann S. Acute Circadian Disruption Due to Constant Light Promotes Caspase 1 Activation in the Mouse Hippocampus. Cells 2023; 12:1836. [PMID: 37508501 PMCID: PMC10378425 DOI: 10.3390/cells12141836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
In mammals, the circadian system controls various physiological processes to maintain metabolism, behavior, and immune function during a daily 24 h cycle. Although driven by a cell-autonomous core clock in the hypothalamus, rhythmic activities are entrained to external cues, such as environmental lighting conditions. Exposure to artificial light at night (ALAN) can cause circadian disruption and thus is linked to an increased occurrence of civilization diseases in modern society. Moreover, alterations of circadian rhythms and dysregulation of immune responses, including inflammasome activation, are common attributes of neurodegenerative diseases, including Alzheimer', Parkinson's, and Huntington's disease. Although there is evidence that the inflammasome in the hippocampus is activated by stress, the direct effect of circadian disruption on inflammasome activation remains poorly understood. In the present study, we aimed to analyze whether exposure to constant light (LL) affects inflammasome activation in the mouse hippocampus. In addition to decreased circadian power and reduced locomotor activity, we found cleaved caspase 1 significantly elevated in the hippocampus of mice exposed to LL. However, we did not find hallmarks of inflammasome priming or cleavage of pro-interleukins. These findings suggest that acute circadian disruption leads to an assembled "ready to start" inflammasome, which may turn the brain more vulnerable to additional aversive stimuli.
Collapse
Affiliation(s)
- Pikria Ketelauri
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University (HHU), 40225 Düsseldorf, Germany
| | - Katerina Scharov
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University (HHU), 40225 Düsseldorf, Germany
| | - Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University (HHU), 40225 Düsseldorf, Germany
| | - Sonja Johann
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University (HHU), 40225 Düsseldorf, Germany
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20251 Hamburg, Germany
| |
Collapse
|
11
|
Clancy BM, Theriault BR, Turcios R, Langan GP, Luchins KR. The Effect of Noise, Vibration, and Light Disturbances from Daily Health Checks on Breeding Performance, Nest Building, and Corticosterone in Mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2023; 62:291-302. [PMID: 37339873 PMCID: PMC10434751 DOI: 10.30802/aalas-jaalas-23-000002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/03/2023] [Accepted: 04/26/2023] [Indexed: 06/22/2023]
Abstract
At our institution, the techniques that technicians use for health checks vary for mice housed in cages on individually ventilated caging (IVC) racks. If the mice cannot be adequately visualized, some technicians partially undock the cage whereas others use an LED flashlight. These actions undoubtedly alter the cage microenvironment, particularly with regard to noise, vibration, and light, which are known to affect multiple welfare and research-related parameters in mice. The central aim of this study was to assess the effects of partial cage undocking and LED flashlight use during daily health checks on fecundity, nest building scores, and hair corticosterone concentrations in C57BL/6J mice to determine the least disturbing method of performing these health checks. In addition, we used an accelerometer, a microphone, and a light meter to measure intracage noise, vibration, and light under each condition. Breeding pairs (n = 100 pairs) were randomly assigned to one of 3 health check groups: partial undocking, LED flashlight, or control (in which mice were observed without any cage manipulation). We hypothesized that mice exposed to a flashlight or cage undocking during daily health checks would have fewer pups, poorer nest building scores, and higher hair corticosterone levels than did the control mice. We found no statistically significant difference in fecundity, nest building scores, or hair corticosterone levels between either experimental group as compared with the control group. However, hair corticosterone levels were significantly affected by the cage height on the rack and the amount of time on study. These results indicate that a short duration, once-daily exposure to partial cage undocking or to an LED flashlight during daily healthy checks does not affect breeding performance or wellbeing, as measured by nest scores and hair corticosterone levels, in C57BL/6J mice.
Collapse
Affiliation(s)
- Bridget M Clancy
- Animal Resources Center and Department of Surgery, The University of Chicago, Chicago, Illinois
| | - Betty R Theriault
- Animal Resources Center and Department of Surgery, The University of Chicago, Chicago, Illinois
| | - Rebecca Turcios
- Animal Resources Center and Department of Surgery, The University of Chicago, Chicago, Illinois
| | - George P Langan
- Animal Resources Center and Department of Surgery, The University of Chicago, Chicago, Illinois
| | - Kerith R Luchins
- Animal Resources Center and Department of Surgery, The University of Chicago, Chicago, Illinois
| |
Collapse
|
12
|
Christoforou E, Dominoni D, Lindström J, Diamantopoulou C, Czyzewski J, Mirzai N, Spatharis S. The effects of artificial light at night (ALAN) on the gaping activity and feeding of mussels. MARINE POLLUTION BULLETIN 2023; 192:115105. [PMID: 37290299 DOI: 10.1016/j.marpolbul.2023.115105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023]
Abstract
Artificial Light at Night (ALAN) is a common environmental pollutant which affects >22 % of the world's coastlines. However, the impact of ALAN wavelengths on coastal organisms is under-investigated. Here, we tested the impact of red, green, and white ALAN on the gaping activity and phytoplankton consumption of Mytilus edulis mussels and compared these to dark night. Mussels exhibited a semi-diel activity pattern. Although ALAN did not significantly affect the time open nor the phytoplankton consumption, it did have a colour-specific effect on the gaping frequency with red and white ALAN resulting in lower activity compared to the dark night. Green ALAN caused higher gaping frequency and a negative relationship between consumption and proportion of time open compared to the other treatments. Our findings suggest colour-specific ALAN effects on mussels and call for further investigation on the associated physiological mechanisms and potential ecological consequences.
Collapse
Affiliation(s)
- Eleni Christoforou
- University of Glasgow, School of Biodiversity, One Health & Veterinary Medicine, G12 8QQ Glasgow, UK; Cyprus University of Technology, Department of Chemical Engineering, 3036 Limassol, Cyprus.
| | - Davide Dominoni
- University of Glasgow, School of Biodiversity, One Health & Veterinary Medicine, G12 8QQ Glasgow, UK
| | - Jan Lindström
- University of Glasgow, School of Biodiversity, One Health & Veterinary Medicine, G12 8QQ Glasgow, UK
| | - Christina Diamantopoulou
- University of Glasgow, School of Biodiversity, One Health & Veterinary Medicine, G12 8QQ Glasgow, UK; University of Amsterdam, Institute for Biodiversity and Ecosystem Dynamics, 1098 XH Amsterdam, Netherlands
| | - Jakub Czyzewski
- University of Glasgow, School of Biodiversity, One Health & Veterinary Medicine, BioElectronics Unit, G12 8QQ Glasgow, UK
| | - Nosrat Mirzai
- University of Glasgow, School of Biodiversity, One Health & Veterinary Medicine, BioElectronics Unit, G12 8QQ Glasgow, UK
| | - Sofie Spatharis
- University of Glasgow, School of Biodiversity, One Health & Veterinary Medicine, G12 8QQ Glasgow, UK
| |
Collapse
|
13
|
Viljoen A, Oosthuizen MK. Dim light at night affects the locomotor activity of nocturnal African pygmy mice ( Mus minutoides) in an intensity-dependent manner. Proc Biol Sci 2023; 290:20230526. [PMID: 37072046 PMCID: PMC10113032 DOI: 10.1098/rspb.2023.0526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/27/2023] [Indexed: 04/20/2023] Open
Abstract
Rodents are integral components of ecosystems as they provide several important ecosystem services. Despite their importance as prey, pollinators and seed distributors, African rodents are largely understudied. The effect of anthropogenic changes such as artificial light at night extends past urban areas to peri-urban and rural habitats, and can have profound effects on entire ecosystems. We investigated the effect of dim light at night (dLAN) on the locomotor activity rhythms of the African pygmy mouse (Mus minutoides). Pygmy mice showed a dramatic, intensity-dependent reduction in their locomotor activity when subjected to dLAN, which was accompanied by a delay in the activity onset. We also considered masking responses with a dark pulse (DP) during the day and a light pulse at night. All animals became inactive in response to a light pulse during the night, whereas approximately half of the animals showed activity during a DP in the day. Our results suggest that the African pygmy mouse is highly sensitive to light and that their activity is strongly masked by light. In their natural environment, vegetation could shield pygmy mice against high light levels; however, other anthropogenic disturbances can alter the behaviour of these animals and could affect their survival.
Collapse
Affiliation(s)
- A. Viljoen
- Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa
| | - M. K. Oosthuizen
- Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa
- Mammal Research Institute, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
14
|
Wang HB, Zhou D, Luk SHC, In Cha H, Mac A, Chae R, Matynia A, Harrison B, Afshari S, Block GD, Ghiani CA, Colwell CS. Long wavelength light reduces the negative consequences of dim light at night. Neurobiol Dis 2023; 176:105944. [PMID: 36493974 PMCID: PMC10594349 DOI: 10.1016/j.nbd.2022.105944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/22/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Many patients with autism spectrum disorders (ASD) show disturbances in their sleep/wake cycles, and they may be particularly vulnerable to the impact of circadian disruptors. We have previously shown that a 2-weeks exposure to dim light at night (DLaN) disrupts diurnal rhythms, increases repetitive behaviors and reduces social interactions in contactin-associated protein-like 2 knock out (Cntnap2 KO) mice. The deleterious effects of DLaN may be mediated by intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin, which is maximally sensitive to blue light (480 nm). In this study, the usage of a light-emitting diode array enabled us to shift the spectral properties of the DLaN while keeping the intensity of the illumination at 10 lx. First, we confirmed that the short-wavelength enriched lighting produced strong acute suppression of locomotor activity (masking), robust light-induced phase shifts, and cFos expression in the suprachiasmatic nucleus in wild-type (WT) mice, while the long-wavelength enriched lighting evoked much weaker responses. Opn4DTA mice, lacking the melanopsin expressing ipRGCs, were resistant to DLaN effects. Importantly, shifting the DLaN stimulus to longer wavelengths mitigated the negative impact on the activity rhythms and 'autistic' behaviors (i.e. reciprocal social interactions, repetitive grooming) in the Cntnap2 KO as well as in WT mice. The short-, but not the long-wavelength enriched, DLaN triggered cFos expression in in the basolateral amygdala (BLA) as well as in the peri-habenula region raising that possibility that these cell populations may mediate the effects. Broadly, our findings are consistent with the recommendation that spectral properties of light at night should be considered to optimize health in neurotypical as well as vulnerable populations.
Collapse
Affiliation(s)
- Huei-Bin Wang
- Molecular, Cellular, Integrative Physiology Graduate Program, David Geffen School of Medicine, University of California Los Angeles, USA; Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, USA
| | - David Zhou
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, USA
| | - Shu Hon Christopher Luk
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, USA
| | - Hye In Cha
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, USA
| | - Amanda Mac
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, USA
| | - Rim Chae
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, USA
| | - Anna Matynia
- Laboratory of Ocular Molecular and Cellular Biology and Genetics, Jules Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles, USA
| | | | | | - Gene D Block
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, USA
| | - Cristina A Ghiani
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, USA; Intellectual and Developmental Disabilities Center, David Geffen School of Medicine, University of California Los Angeles, USA
| | - Christopher S Colwell
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, USA; Intellectual and Developmental Disabilities Center, David Geffen School of Medicine, University of California Los Angeles, USA.
| |
Collapse
|
15
|
Guan Q, Wang Z, Cao J, Dong Y, Chen Y. The role of light pollution in mammalian metabolic homeostasis and its potential interventions: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120045. [PMID: 36030956 DOI: 10.1016/j.envpol.2022.120045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Irregular or unnatural artificial light causes severe environmental stress on the survival and health of organisms, which is rapidly becoming a widespread new type of environmental pollution. A series of disruptive behaviors to body homeostasis brought about by light pollution, including metabolic abnormalities, are likely to be the result of circadian rhythm disturbances. Recently, the proposed role of light pollution in metabolic dysregulation has accelerated it into an emerging field. Hence, the regulatory role of light pollution in mammalian metabolic homeostasis is reviewed in this contribution. Light at night is the most widely affected type of light pollution, which disrupts metabolic homeostasis largely due to its disruption of daily food intake patterns, alterations of hormone levels such as melatonin and glucocorticoids, and changes in the rhythm of inflammatory factor production. Besides, light pollution impairs mammalian metabolic processes in an intensity-, photoperiod-, and wavelength-dependent manner, and is also affected by species, gender, and diets. Nevertheless, metabolic disorders triggered by light pollution are not irreversible to some extent. Potential interventions such as melatonin supplementation, recovery to the LD cycle, time-restricted feeding, voluntary exercise, wearing blue light-shied goggles, and bright morning light therapy open a bright avenue to prevent light pollution. This work will help strengthen the relationship between light information and metabolic homeostasis and provide new insights for the better prevention of metabolic disorders and light pollution.
Collapse
Affiliation(s)
- Qingyun Guan
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Jing Cao
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China; Department of Nutrition and Health, China Agricultural University, Haidian, Beijing 100193, China.
| |
Collapse
|
16
|
Akansha EO, Bui BV, Ganeshrao SB, Bakthavatchalam P, Gopalakrishnan S, Mattam S, Poojary RR, Jathanna JS, Jose J, Theruveethi NN. Blue-Light-Blocking Lenses Ameliorate Structural Alterations in the Rodent Hippocampus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12922. [PMID: 36232222 PMCID: PMC9564388 DOI: 10.3390/ijerph191912922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Evidence suggests that prolonged blue-light exposure can impact vision; however, less is known about its impact on non-visual higher-order functions in the brain, such as learning and memory. Blue-light-blocking lenses (BBLs) claim to reduce these potential impacts. Hence, we assessed structural and functional hippocampal alterations following blue-light exposure and the protective efficacy of BBLs. Male Wistar rats were divided into (n = 6 in each group) normal control (NC), blue-light exposure (LE), and blue-light with BBLs (Crizal Prevencia, CP and DuraVision Blue, DB) groups. After 28 days of light exposure (12:12 light: dark cycle), rats were trained for the Morris water maze memory retention test, and brain tissues were sectioned for hippocampal neuronal analysis using Golgi and Cresyl violet stains. The memory retention test was significantly delayed (p < 0.05) in LE compared with DB groups on day 1 of training. Comparison of Golgi-stained neurons showed significant structural alterations, particularly in the basal dendrites of hippocampal neurons in the LE group, with BBLs significantly mitigating these structural changes (p < 0.05). Comparison of Cresyl-violet-stained neurons revealed significantly (p < 0.001) increased degenerated hippocampal neurons in LE rats, with fewer degenerated neurons in the CP lens group for CA1 neurons (p < 0.05), and for both CP and DB groups (p < 0.05) for CA3 neurons. Thus, in addition to documented effects on visual centers, high-level blue-light exposure also results in degeneration in hippocampal neurons with associated behavioral deficits. These changes can be partially ameliorated with blue-light-blocking lenses.
Collapse
Affiliation(s)
- Elizebeth O. Akansha
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India
| | - Bang V. Bui
- Department of Optometry & Vision Sciences, School of Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Shonraj B. Ganeshrao
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India
- INSOFE Education, upGrad-INSOFE, Hyderabad 500034, India
| | - Pugazhandhi Bakthavatchalam
- Department of Anatomy, Melaka Manipal Medical College (Manipal Campus), Manipal Academy of Higher Education, Manipal 576104, India
| | - Sivakumar Gopalakrishnan
- Department of Physiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| | - Susmitha Mattam
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India
| | - Radhika R. Poojary
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India
| | - Judith S. Jathanna
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India
| | - Judy Jose
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India
| | - Nagarajan N. Theruveethi
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
17
|
Dim light in the evening causes coordinated realignment of circadian rhythms, sleep, and short-term memory. Proc Natl Acad Sci U S A 2021; 118:2101591118. [PMID: 34556572 PMCID: PMC8488663 DOI: 10.1073/pnas.2101591118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 12/28/2022] Open
Abstract
In modern societies, people are regularly exposed to artificial light (e.g., light-emitting electronic devices). Dim light in the evening (DLE) imposes an artificial extension of the solar day, increasing our alertness before bedtime, delaying melatonin timing and sleep onset, and increasing sleepiness in the next morning. Using laboratory mice as a model organism, we show that 2 wk of 4-h, 20-lux DLE postpones rest–activity rhythms, delays molecular rhythms in the brain and body, and reverses the diurnal pattern of short-term memory performance. These results highlight the biological impact of DLE and emphasize the need to optimize our evening light exposure if we are to avoid shifting our biological clocks. Light provides the primary signal for entraining circadian rhythms to the day/night cycle. In addition to rods and cones, the retina contains a small population of photosensitive retinal ganglion cells (pRGCs) expressing the photopigment melanopsin (OPN4). Concerns have been raised that exposure to dim artificial lighting in the evening (DLE) may perturb circadian rhythms and sleep patterns, and OPN4 is presumed to mediate these effects. Here, we examine the effects of 4-h, 20-lux DLE on circadian physiology and behavior in mice and the role of OPN4 in these responses. We show that 2 wk of DLE induces a phase delay of ∼2 to 3 h in mice, comparable to that reported in humans. DLE-induced phase shifts are unaffected in Opn4−/− mice, indicating that rods and cones are capable of driving these responses in the absence of melanopsin. DLE delays molecular clock rhythms in the heart, liver, adrenal gland, and dorsal hippocampus. It also reverses short-term recognition memory performance, which is associated with changes in preceding sleep history. In addition, DLE modifies patterns of hypothalamic and cortical cFos signals, a molecular correlate of recent neuronal activity. Together, our data show that DLE causes coordinated realignment of circadian rhythms, sleep patterns, and short-term memory process in mice. These effects are particularly relevant as DLE conditions―due to artificial light exposure―are experienced by the majority of the populace on a daily basis.
Collapse
|
18
|
Poltorak A. Replicating Cortical Signatures May Open the Possibility for "Transplanting" Brain States via Brain Entrainment. Front Hum Neurosci 2021; 15:710003. [PMID: 34630058 PMCID: PMC8492906 DOI: 10.3389/fnhum.2021.710003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/18/2021] [Indexed: 02/03/2023] Open
Abstract
Brain states, which correlate with specific motor, cognitive, and emotional states, may be monitored with noninvasive techniques such as electroencephalography (EEG) and magnetoencephalography (MEG) that measure macroscopic cortical activity manifested as oscillatory network dynamics. These rhythmic cortical signatures provide insight into the neuronal activity used to identify pathological cortical function in numerous neurological and psychiatric conditions. Sensory and transcranial stimulation, entraining the brain with specific brain rhythms, can effectively induce desired brain states (such as state of sleep or state of attention) correlated with such cortical rhythms. Because brain states have distinct neural correlates, it may be possible to induce a desired brain state by replicating these neural correlates through stimulation. To do so, we propose recording brain waves from a "donor" in a particular brain state using EEG/MEG to extract cortical signatures of the brain state. These cortical signatures would then be inverted and used to entrain the brain of a "recipient" via sensory or transcranial stimulation. We propose that brain states may thus be transferred between people by acquiring an associated cortical signature from a donor, which, following processing, may be applied to a recipient through sensory or transcranial stimulation. This technique may provide a novel and effective neuromodulation approach to the noninvasive, non-pharmacological treatment of a variety of psychiatric and neurological disorders for which current treatments are mostly limited to pharmacotherapeutic interventions.
Collapse
Affiliation(s)
- Alexander Poltorak
- Neuroenhancement Lab, Suffern, NY, United States
- The City College of New York, New York, NY, United States
| |
Collapse
|
19
|
The retinal ipRGC-preoptic circuit mediates the acute effect of light on sleep. Nat Commun 2021; 12:5115. [PMID: 34433830 PMCID: PMC8387462 DOI: 10.1038/s41467-021-25378-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 07/29/2021] [Indexed: 11/08/2022] Open
Abstract
Light regulates daily sleep rhythms by a neural circuit that connects intrinsically photosensitive retinal ganglion cells (ipRGCs) to the circadian pacemaker, the suprachiasmatic nucleus. Light, however, also acutely affects sleep in a circadian-independent manner. The neural circuits involving the acute effect of light on sleep remain unknown. Here we uncovered a neural circuit that drives this acute light response, independent of the suprachiasmatic nucleus, but still through ipRGCs. We show that ipRGCs substantially innervate the preoptic area (POA) to mediate the acute light effect on sleep in mice. Consistently, activation of either the POA projecting ipRGCs or the light-responsive POA neurons increased non-rapid eye movement (NREM) sleep without influencing REM sleep. In addition, inhibition of the light-responsive POA neurons blocked the acute light effects on NREM sleep. The predominant light-responsive POA neurons that receive ipRGC input belong to the corticotropin-releasing hormone subpopulation. Remarkably, the light-responsive POA neurons are inhibitory and project to well-known wakefulness-promoting brain regions, such as the tuberomammillary nucleus and the lateral hypothalamus. Therefore, activation of the ipRGC-POA circuit inhibits arousal brain regions to drive light-induced NREM sleep. Our findings reveal a functional retina-brain circuit that is both necessary and sufficient for the acute effect of light on sleep. The preoptic area (POA) is critical for sleep regulation but its role in acute, non-circadian, light effects on sleep are unclear. The authors show that intrinsically photosensitive retinal ganglion cells provide substantial input into the POA and through these modulate the amount of non-rapid eye movement (NREM) sleep.
Collapse
|
20
|
Guan D, Lazar MA. Interconnections between circadian clocks and metabolism. J Clin Invest 2021; 131:e148278. [PMID: 34338232 DOI: 10.1172/jci148278] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Circadian rhythms evolved through adaptation to daily light/dark changes in the environment; they are believed to be regulated by the core circadian clock interlocking feedback loop. Recent studies indicate that each core component executes general and specific functions in metabolism. Here, we review the current understanding of the role of these core circadian clock genes in the regulation of metabolism using various genetically modified animal models. Additionally, emerging evidence shows that exposure to environmental stimuli, such as artificial light, unbalanced diet, mistimed eating, and exercise, remodels the circadian physiological processes and causes metabolic disorders. This Review summarizes the reciprocal regulation between the circadian clock and metabolism, highlights remaining gaps in knowledge about the regulation of circadian rhythms and metabolism, and examines potential applications to human health and disease.
Collapse
Affiliation(s)
- Dongyin Guan
- Institute for Diabetes, Obesity, and Metabolism.,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism.,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
21
|
Bumgarner JR, Nelson RJ. Light at Night and Disrupted Circadian Rhythms Alter Physiology and Behavior. Integr Comp Biol 2021; 61:1160-1169. [PMID: 33787878 DOI: 10.1093/icb/icab017] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Life on earth has evolved during the past several billion years under relatively bright days and dark nights. Virtually, all organisms on the planet display an internal representation of the solar days in the form of circadian rhythms driven by biological clocks. Nearly every aspect of physiology and behavior is mediated by these internal clocks. The widespread adoption of electric lights during the past century has exposed animals, including humans, to significant light at night for the first time in our evolutionary history. Importantly, endogenous circadian clocks depend on light for synchronization with the external daily environment. Thus, light at night can derange temporal adaptations. Indeed, disruption of natural light-dark cycles results in several physiological and behavioral changes. In this review, we highlight recent evidence demonstrating how light at night exposure can have serious implications for adaptive physiology and behavior, including immune, endocrine, and metabolic function, as well as reproductive, foraging, and migratory behavior. Lastly, strategies to mitigate the consequences of light at night on behavior and physiology will be considered.
Collapse
Affiliation(s)
- Jacob R Bumgarner
- Department of Neuroscience Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505 USA
| | - Randy J Nelson
- Department of Neuroscience Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505 USA
| |
Collapse
|
22
|
Blue light insertion at night is involved in sleep and arousal-promoting response delays and depressive-like emotion in mice. Biosci Rep 2021; 41:227923. [PMID: 33624794 PMCID: PMC7938454 DOI: 10.1042/bsr20204033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/17/2022] Open
Abstract
Light plays a direct crucial role in the switch between sleep and arousal and the regulation of physiology and behaviour, such as circadian rhythms and emotional change. Artificial lights, which are different from natural light sources with a continuous light spectrum, are composed of three single-colour lights and are increasingly applied in modern society. However, in vivo research on the mechanisms of blue light-regulated sleep and arousal is still insufficient. In this work, we detected the effects of inserting white or blue light for 1 h during the dark period on the wheel-running activity and sucrose preference of C57 mice. The results showed that blue light could induce delays in sleep and arousal-promoting responses. Furthermore, this lighting pattern, including blue light alone, induced depressive-like emotions. The c-fos expression in the blue light group was significantly higher in the arcuate hypothalamic nucleus (Arc) and significantly lower in the cingulate cortex (Cg) and anterior part of the paraventricular thalamic nucleus (PVA) than in the white light group. Compared with the white light group, the phospho-ERK expression in the paraventricular hypothalamic nucleus (PVN) and PVA was lower in the blue light group. These molecular changes indicated that certain brain regions are involved in blue light-induced response processes. This study may provide useful information to explore the specific mechanism of special light-regulated physiological function.
Collapse
|
23
|
Chen R, Weitzner AS, McKennon LA, Fonken LK. Light at night during development in mice has modest effects on adulthood behavior and neuroimmune activation. Behav Brain Res 2021; 405:113171. [PMID: 33577883 DOI: 10.1016/j.bbr.2021.113171] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/01/2021] [Accepted: 02/04/2021] [Indexed: 11/15/2022]
Abstract
Exposure to light at night (LAN) can disrupt the circadian system, thereby altering neuroimmune reactivity and related behavior. Increased exposure to LAN affects people of all ages - and could have particularly detrimental effects during early-life and adolescence. Despite this, most research on the behavioral and physiological effects of LAN has been conducted in adult animals. Here we evaluated the effects of dim LAN during critical developmental windows on adulthood neuroimmune function and affective/sickness behaviors. Male and female C57BL/6 J mice were exposed to dim LAN [12:12 light (150 lx)/dim (15 lx) cycle] during early life (PND10-24) or adolescence (PND30-44) [control: 12:12 light (150 lx)/dark (0 lx) cycle]. Behaviors were assessed during juvenile (PND 42-44) and adult (PND60) periods. Contrary to our hypothesis, juvenile mice that were exposed to dim LAN did not exhibit changes in anxiety- or depressive-like behaviors. By adulthood, adolescent LAN-exposed female mice showed a modest anxiety-like phenotype in one behavioral task but not another. Adolescent LAN exposure also induced depressive-like behavior in a forced swim task in adulthood in both male and female mice. Additionally, developmental LAN exacerbated the hippocampal cytokine response (IL-1β) following peripheral LPS in female, but not male mice. These results suggest female mice may be more susceptible to developmental LAN than male mice: LAN female mice had a modest anxiety-like phenotype in adulthood, and upon LPS challenge, higher hippocampal IL-1β expression. Taken together, developmental LAN exposure in mice promotes a modest increase in susceptibility to anxiety- and depressive-like symptoms.
Collapse
Affiliation(s)
- Ruizhuo Chen
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX 78712, USA
| | - Aidan S Weitzner
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX 78712, USA
| | - Lara A McKennon
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX 78712, USA
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
24
|
Ortín-Piqueras V, Freitag TL, Andersson LC, Lehtonen SH, Meri SK, Spillmann T, Frias R. Urinary Excretion of Iohexol as a Permeability Marker in a Mouse Model of Intestinal Inflammation: Time Course, Performance and Welfare Considerations. Animals (Basel) 2021; 11:ani11010079. [PMID: 33406796 PMCID: PMC7824797 DOI: 10.3390/ani11010079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 11/22/2022] Open
Abstract
Simple Summary In mammals, different diseases are associated with intestinal changes that may cause an increase in gut permeability. Intestinal permeability tests allow the evaluation of intestinal damage in humans, veterinary patients and laboratory animal models. When used in mouse models, these tests require that animals are singly housed in metabolic cages with a wire-grid floor to collect urine samples. This raises welfare concerns. Iohexol meets several criteria for an ideal intestinal permeability marker and has recently been used in several species. Here, we examined the performance of an intestinal permeability test using iohexol administered by mouth and following excretion over 24 h in urine. As a model, we chose immunodeficient mice with intestinal inflammation induced by adoptive transfer of effector/memory T cells. We collected urine samples at seven time points to profile the urinary excretion of iohexol, in addition to intestinal tissue samples for histological assessment. We conclude that a 6 h cumulative urine sample may be sufficient to evaluate small intestinal permeability in this mouse model and increased urinary excretion of iohexol is correlated with increased severity of duodenitis. The welfare of mice housed in metabolic cages could be improved by reducing the cage periods from 24 to 6 h. Abstract Intestinal permeability (IP) tests are used to assess intestinal damage in patients and research models. The probe iohexol has shown advantages compared to 51Cr-EDTA or absorbable/nonabsorbable sugars. During IP tests, animals are housed in metabolic cages (MCs) to collect urine. We examined the performance of an iohexol IP test in mice. Rag1-/- (C57BL/6) mice of both sexes were divided into controls or treatment groups, the latter receiving injections of effector/memory T cells to induce intestinal inflammation. After two, four and five weeks (W), a single dose of iohexol was orally administered. Urine was collected seven times over 24 h in MCs. Iohexol concentration was measured by ELISA. Intestinal histological damage was scored in duodenal sections. In control and treated mice of both sexes, urinary excretion of iohexol peaked at 4 h. From W2 to W4/W5, urinary iohexol excretion increased in treated mice of both sexes, consistent with development of duodenitis in this model. Positive correlations were observed between the urinary excretion of iohexol in W4/W5 and the histological severity of duodenitis in treated male mice. We conclude that a 6 h cumulative urine sample appears sufficient to evaluate small IP to iohexol in this mouse model, improving animal welfare by reducing cage periods.
Collapse
Affiliation(s)
- Victoria Ortín-Piqueras
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, FIN-00014 Helsinki, Finland;
- Comparative Medicine, Karolinska Institute, SE-171 77 Stockholm, Sweden;
- Correspondence:
| | - Tobias L Freitag
- Translational Immunology Research Program, University of Helsinki, FIN-00014 Helsinki, Finland; (T.L.F.); (S.K.M.)
| | - Leif C Andersson
- Department of Pathology, University of Helsinki, FIN-00014 Helsinki, Finland; (L.C.A.); (S.H.L.)
| | - Sanna H Lehtonen
- Department of Pathology, University of Helsinki, FIN-00014 Helsinki, Finland; (L.C.A.); (S.H.L.)
- Research Programme for Clinical and Molecular Medicine, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Seppo K Meri
- Translational Immunology Research Program, University of Helsinki, FIN-00014 Helsinki, Finland; (T.L.F.); (S.K.M.)
| | - Thomas Spillmann
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, FIN-00014 Helsinki, Finland;
| | - Rafael Frias
- Comparative Medicine, Karolinska Institute, SE-171 77 Stockholm, Sweden;
| |
Collapse
|
25
|
Xie B, Zhang Y, Qi H, Yao H, Shang Y, Yuan S, Zhang J. Red light exaggerated sepsis-induced learning impairments and anxiety-like behaviors. Aging (Albany NY) 2020; 12:23739-23760. [PMID: 33197883 PMCID: PMC7762485 DOI: 10.18632/aging.103940] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/01/2020] [Indexed: 01/01/2023]
Abstract
Light exerts critical non-visual effects on a multitude of physiological processes and behaviors, including sleep-wake behavior and cognitive function. In this study, we investigated the effects of continued exposure to different colors of light on cognitive function after sepsis in old mice. We found that exposure to red light, but not green light, exaggerated learning impairments and anxiety-like behaviors after sepsis. Red light also induced remarkable splenomegaly and altered the diversity and composition of the fecal microbiota. Pseudo germ-free mice transplanted with fecal bacteria from septic mice exposed to red light developed the same behavioral defects and splenomegaly as their donors. Intriguingly, splenectomy and subdiaphragmatic vagotomy reversed the learning impairments and anxiety-like behaviors resulting from red light exposure after sepsis. After subdiaphragmatic vagotomy, no differences in behavior or spleen size were observed among pseudo germ-free mice transplanted with fecal bacteria from septic mice exposed to different colors of light. Our results suggested that red light exposure after sepsis in old mice causes gut microbiota dysfunction, thus stimulating signaling through the subdiaphragmatic vagus nerve that induces splenomegaly and aggravates learning impairments and anxiety-like behaviors.
Collapse
Affiliation(s)
- Bing Xie
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yujing Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hong Qi
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hua Yao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
26
|
Touitou Y, Point S. Effects and mechanisms of action of light-emitting diodes on the human retina and internal clock. ENVIRONMENTAL RESEARCH 2020; 190:109942. [PMID: 32758719 DOI: 10.1016/j.envres.2020.109942] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/29/2020] [Accepted: 07/10/2020] [Indexed: 05/11/2023]
Abstract
White light-emitting diodes (LEDs) will likely become the most used lighting devices worldwide in the future because of their very low prices over the course of their long lifespans which can be up to several tens of thousands of hours. The expansion of LED use in both urban and domestic lighting has prompted questions regarding their possible health effects, because the light that they provide is potentially high in the harmful blue band (400-500 nm) of the visible light spectrum. Research on the potential effects of LEDs and their blue band on human health has followed three main directions: 1) examining their retinal phototoxicity; 2) examining disruption of the internal clock, i.e., an out-of-sync clock, in shift workers and night workers, including the accompanying health issues, most concerningly an increased relative risk of cancer; and 3) examining risky, inappropriate late-night use of smartphones and consoles among children and adolescents. Here, we document the recognized or potential health issues associated with LED lighting together with their underlying mechanisms of action. There is so far no evidence that LED lighting is deleterious to human retina under normal use. However, exposure to artificial light at night is a new source of pollution because it affects the circadian clock. Blue-rich light, including cold white LEDs, should be considered a new endocrine disruptor, because it affects estrogen secretion and has unhealthful consequences in women, as demonstrated to occur via a complex mechanism.
Collapse
Affiliation(s)
- Yvan Touitou
- Unité de Chronobiologie, Fondation A. de Rothschild, 75019, Paris, France.
| | | |
Collapse
|
27
|
Weil ZM, Fonken LK, Walker WH, Bumgarner JR, Liu JA, Melendez-Fernandez OH, Zhang N, DeVries AC, Nelson RJ. Dim light at night exacerbates stroke outcome. Eur J Neurosci 2020; 52:4139-4146. [PMID: 32691462 PMCID: PMC7958865 DOI: 10.1111/ejn.14915] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/08/2020] [Indexed: 12/15/2022]
Abstract
Circadian rhythms are endogenous biological cycles that synchronize physiology and behaviour to promote optimal function. These ~24-hr internal rhythms are set to precisely 24 hr daily by exposure to the sun. However, the prevalence of night-time lighting has the potential to dysregulate these biological functions. Hospital patients may be particularly vulnerable to the consequences of light at night because of their compromised physiological state. A mouse model of stroke (middle cerebral artery occlusion; MCAO) was used to test the hypothesis that exposure to dim light at night impairs responses to a major insult. Stroke lesion size was substantially larger among animals housed in dLAN after reperfusion than animals maintained in dark nights. Mice housed in dLAN for three days after the stroke displayed increased post-stroke anxiety-like behaviour. Overall, dLAN amplified pro-inflammatory pathways in the CNS, which may have exacerbated neuronal damage. Our results suggest that exposure to LAN is detrimental to stroke recovery.
Collapse
Affiliation(s)
- Zachary M. Weil
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Laura K. Fonken
- Division of Pharmacology and Toxicology, University of Texas, Austin, TX, USA
| | - William H. Walker
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Jacob R. Bumgarner
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Jennifer A. Liu
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV, USA
| | - O. Hecmarie Melendez-Fernandez
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Ning Zhang
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV, USA
| | - A. Courtney DeVries
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Medicine, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Randy J. Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
28
|
Fleury G, Masís‐Vargas A, Kalsbeek A. Metabolic Implications of Exposure to Light at Night: Lessons from Animal and Human Studies. Obesity (Silver Spring) 2020; 28 Suppl 1:S18-S28. [PMID: 32700826 PMCID: PMC7497102 DOI: 10.1002/oby.22807] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 02/06/2023]
Abstract
Lately, the incidence of overweight, obesity, and type 2 diabetes has shown a staggering increase. To prevent and treat these conditions, one must look at their etiology. As life on earth has evolved under the conditions of nature's 24-hour light/dark cycle, it seems likely that exposure to artificial light at night (LAN) would affect physiology. Indeed, ample evidence has shown that LAN impacts many metabolic parameters, at least partly via the biological clock in the suprachiasmatic nucleus of the hypothalamus. This review focuses on the impact of chronic and acute effects of LAN of different wavelengths on locomotor activity, food intake, the sleep/wake cycle, body temperature, melatonin, glucocorticoids, and glucose and lipid metabolism. While chronic LAN disturbs daily rhythms in these parameters, experiments using short-term LAN exposure also have shown acute negative effects in metabolically active peripheral tissues. Experiments using LAN of different wavelengths not only have indicated an important role for melanopsin, the photopigment found in intrinsically photosensitive retinal ganglion cells, but also provided evidence that each wavelength may have a specific impact on energy metabolism. Importantly, exposure to LAN has been shown to impact glucose homeostasis also in humans and to be associated with an increased incidence of overweight, obesity, and atherosclerosis.
Collapse
Affiliation(s)
- Giulia Fleury
- Department of Endocrinology and MetabolismAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - Anayanci Masís‐Vargas
- Department of Endocrinology and MetabolismAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
- Hypothalamic Integration MechanismsNetherlands Institute for Neuroscience (NIN)Amsterdamthe Netherlands
- Institute of Cellular and Integrative Neurosciences (INCI)UPR‐3212 CNRSUniversity of StrasbourgStrasbourgFrance
| | - Andries Kalsbeek
- Department of Endocrinology and MetabolismAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
- Hypothalamic Integration MechanismsNetherlands Institute for Neuroscience (NIN)Amsterdamthe Netherlands
| |
Collapse
|
29
|
Red light at night permits the nocturnal rise of melatonin production in horses. Vet J 2019; 252:105360. [DOI: 10.1016/j.tvjl.2019.105360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 12/26/2022]
|
30
|
Gladanac B, Jonkman J, Shapiro CM, Brown TJ, Ralph MR, Casper RF, Rahman SA. Removing Short Wavelengths From Polychromatic White Light Attenuates Circadian Phase Resetting in Rats. Front Neurosci 2019; 13:954. [PMID: 31551702 PMCID: PMC6746919 DOI: 10.3389/fnins.2019.00954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/23/2019] [Indexed: 11/13/2022] Open
Abstract
Visible light is the principal stimulus for resetting the mammalian central circadian pacemaker. Circadian phase resetting is most sensitive to short-wavelength (blue) visible light. We examined the effects of removing short-wavelengths < 500 nm from polychromatic white light using optical filters on circadian phase resetting in rats. Under high irradiance conditions, both long- (7 h) and short- (1 h) duration short-wavelength filtered (< 500 nm) light exposure attenuated phase-delay shifts in locomotor activity rhythms by (∼40-50%) as compared to unfiltered light exposure. However, there was no attenuation in phase resetting under low irradiance conditions. Additionally, the reduction in phase-delay shifts corresponded to regionally specific attenuation in molecular markers of pacemaker activation in response to light exposure, including c-FOS, Per1 and Per2. These results demonstrate that removing short-wavelengths from polychromatic white light can attenuate circadian phase resetting in an irradiance dependent manner. These results have important implications for designing and optimizing lighting interventions to enhance circadian adaptation.
Collapse
Affiliation(s)
- Bojana Gladanac
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - James Jonkman
- Advanced Optical Microscopy Facility, University Health Network, Toronto, ON, Canada
| | - Colin M Shapiro
- Department of Psychiatry and Ophthalmology, University of Toronto, Toronto, ON, Canada.,Youthdale Child and Adolescent Sleep Centre, Toronto, ON, Canada
| | - Theodore J Brown
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Division of Reproductive Endocrinology and Infertility, University of Toronto, Toronto, ON, Canada
| | - Martin R Ralph
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Robert F Casper
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Division of Reproductive Endocrinology and Infertility, University of Toronto, Toronto, ON, Canada
| | - Shadab A Rahman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, United States.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
31
|
Zhang S, Zhang Y, Zhang W, Chen S, Liu C. Chronic exposure to green light aggravates high-fat diet-induced obesity and metabolic disorders in male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 178:94-104. [PMID: 30999185 DOI: 10.1016/j.ecoenv.2019.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Light is involved in many critical physiological or biochemical processes of human beings, such as visual sensing and the production of vitamin D. Recent studies have showed that the lights of different wavelengths have a profound influence in life activities. For example, blue light promotes alertness, whereas green light (GL) induces sleep in mice. On the other hand, metabolic homeostasis is regulated by a variety of factors, including dietary habits and light exposure. Our study aims to study whether certain wavelength of light would affect metabolic status of mice. Mice were divided into normal diet-fed group and high-fat diet (HFD)-fed group, and then exposed to various colors of the light. Physiological parameters, such as body weight, food intake and water drinking were regularly measured. Glucose tolerance test and pyruvate tolerance test were simultaneously performed. After mice were humanely sacrificed, liver histology and serologic analysis were performed for detecting lipid levels. We found that GL group showed obvious glucose intolerance and increased levels of serum and liver lipid contents compared to white light group. Meanwhile, the expression levels of lipid metabolism-related genes were almost down-regulated in liver. Furthermore, melatonin receptor-1b and thyroid hormone receptor-β expression levels were significantly lowered in liver of GL-treated obese mice, suggesting that these hormone pathways may mediate the changes of lipid metabolism. Our data indicate that GL has a detrimental effect on the energy metabolism and aggravates HFD-induced obesity in mice. In addition to malnutrition, the colors of the lights also have a profound influence in the metabolic homeostasis and should be taken into consideration in the therapy of metabolic disorders.
Collapse
Affiliation(s)
- Shiyao Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China; School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yanchen Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China; School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Wenxiang Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China; School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Siyu Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China; School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Chang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China; School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
32
|
Daut RA, Fonken LK. Circadian regulation of depression: A role for serotonin. Front Neuroendocrinol 2019; 54:100746. [PMID: 31002895 PMCID: PMC9826732 DOI: 10.1016/j.yfrne.2019.04.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/13/2019] [Accepted: 04/15/2019] [Indexed: 01/11/2023]
Abstract
Synchronizing circadian (24 h) rhythms in physiology and behavior with the environmental light-dark cycle is critical for maintaining optimal health. Dysregulation of the circadian system increases susceptibility to numerous pathological conditions including major depressive disorder. Stress is a common etiological factor in the development of depression and the circadian system is highly interconnected to stress-sensitive neurotransmitter systems such as the serotonin (5-hydroxytryptamine, 5-HT) system. Thus, here we propose that stress-induced perturbation of the 5-HT system disrupts circadian processes and increases susceptibility to depression. In this review, we first provide an overview of the basic components of the circadian system. Next, we discuss evidence that circadian dysfunction is associated with changes in mood in humans and rodent models. Finally, we provide evidence that 5-HT is a critical factor linking dysregulation of the circadian system and mood. Determining how these two systems interact may provide novel therapeutic targets for depression.
Collapse
Affiliation(s)
- Rachel A Daut
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Laura K Fonken
- University of Texas at Austin, Division of Pharmacology and Toxicology, Austin, TX 78712, USA.
| |
Collapse
|
33
|
González MMC. Dim Light at Night and Constant Darkness: Two Frequently Used Lighting Conditions That Jeopardize the Health and Well-being of Laboratory Rodents. Front Neurol 2018; 9:609. [PMID: 30116218 PMCID: PMC6084421 DOI: 10.3389/fneur.2018.00609] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/09/2018] [Indexed: 12/27/2022] Open
Abstract
The influence of light on mammalian physiology and behavior is due to the entrainment of circadian rhythms complemented with a direct modulation of light that would be unlikely an outcome of circadian system. In mammals, physiological and behavioral circadian rhythms are regulated by the suprachiasmatic nucleus (SCN) of the hypothalamus. This central control allows organisms to predict and anticipate environmental change, as well as to coordinate different rhythmic modalities within an individual. In adult mammals, direct retinal projections to the SCN are responsible for resetting and synchronizing physiological and behavioral rhythms to the light-dark (LD) cycle. Apart from its circadian effects, light also has direct effects on certain biological functions in such a way that the participation of the SCN would not be fundamental for this network. The objective of this review is to increase awareness, within the scientific community and commercial providers, of the fact that laboratory rodents can experience a number of adverse health and welfare outcomes attributed to commonly-used lighting conditions in animal facilities during routine husbandry and scientific procedures, widely considered as “environmentally friendly.” There is increasing evidence that exposure to dim light at night, as well as chronic constant darkness, challenges mammalian physiology and behavior resulting in disrupted circadian rhythms, neural death, a depressive-behavioral phenotype, cognitive impairment, and the deregulation of metabolic, physiological, and synaptic plasticity in both the short and long terms. The normal development and good health of laboratory rodents requires cyclical light entrainment, adapted to the solar cycle of day and night, with null light at night and safe illuminating qualities during the day. We therefore recommend increased awareness of the limited information available with regards to lighting conditions, and therefore that lighting protocols must be taken into consideration when designing experiments and duly highlighted in scientific papers. This practice will help to ensure the welfare of laboratory animals and increase the likelihood of producing reliable and reproducible results.
Collapse
Affiliation(s)
- Mónica M C González
- Sección Cronobiología y Sueño, Instituto Ferrero de Neurología y Sueño, Buenos Aires, Argentina
| |
Collapse
|
34
|
Emmer KM, Russart KL, Walker WH, Nelson RJ, DeVries AC. Effects of light at night on laboratory animals and research outcomes. Behav Neurosci 2018; 132:302-314. [PMID: 29952608 PMCID: PMC6062441 DOI: 10.1037/bne0000252] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Light has substantial influences on the physiology and behavior of most laboratory animals. As such, lighting conditions within animal rooms are potentially significant and often underappreciated variables within experiments. Disruption of the light/dark cycle, primarily by exposing animals to light at night (LAN), disturbs biological rhythms and has widespread physiological consequences because of mechanisms such as melatonin suppression, sympathetic stimulation, and altered circadian clock gene expression. Thus, attention to the lighting environment of laboratory animals and maintaining consistency of a light/dark cycle is imperative for study reproducibility. Light intensity, as well as wavelength, photoperiod, and timing, are all important variables. Although modern rodent facilities are designed to facilitate appropriate light cycling, there are simple ways to modify rooms to prevent extraneous light exposure during the dark period. Attention to lighting conditions of laboratory animals by both researchers and research care staff ensures best practices for maintaining animal welfare, as well as reproducibility of research results. (PsycINFO Database Record
Collapse
Affiliation(s)
- Kathryn M. Emmer
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, 43210 USA
- Department of Veterinary Preventative Medicine, The Ohio State University, Columbus, Ohio, 43210 USA
| | - Kathryn L.G. Russart
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, 43210 USA
| | - William H. Walker
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, 43210 USA
| | - Randy J. Nelson
- Department of Behavioral Medicine and Psychiatry, West Virginia University, Morgantown, West Virginia, 26505 USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, 26505 USA
| | - A. Courtney DeVries
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, 26505 USA
- Department of Medicine, West Virginia University, Morgantown, West Virginia, 26505 USA
| |
Collapse
|
35
|
Mason IC, Boubekri M, Figueiro MG, Hasler BP, Hattar S, Hill SM, Nelson RJ, Sharkey KM, Wright KP, Boyd WA, Brown MK, Laposky AD, Twery MJ, Zee PC. Circadian Health and Light: A Report on the National Heart, Lung, and Blood Institute's Workshop. J Biol Rhythms 2018; 33:451-457. [PMID: 30033850 DOI: 10.1177/0748730418789506] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite the omnipresence of artificial and natural light exposure, there exists little guidance in the United States and elsewhere on light exposure in terms of timing, intensity, spectrum, and other light characteristics known to affect human health, performance, and well-being; in parallel, there is little information regarding the quantity and characteristics of light exposure that people receive. To address this, the National Center on Sleep Disorders Research, in the Division of Lung Diseases, National Heart, Lung, and Blood Institute, held a workshop in August 2016 on circadian health and light. Workshop participants discussed scientific research advances on the effects of light on human physiology, identified remaining knowledge gaps in these research areas, and articulated opportunities to use appropriate lighting to protect and improve circadian-dependent health. Based on this workshop, participants put forth the following strategic intent, objectives, and strategies to guide discovery, measurement, education, and implementation of the appropriate use of light to achieve, promote, and maintain circadian health in modern society.
Collapse
Affiliation(s)
- Ivy C Mason
- Center for Circadian and Sleep Medicine, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Mohamed Boubekri
- Illinois School of Architecture, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Mariana G Figueiro
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, New York
| | - Brant P Hasler
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Samer Hattar
- Department of Biology, Johns Hopkins University, Baltimore, Maryland
| | - Steven M Hill
- Departments of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Randy J Nelson
- Department of Behavioral Medicine and Psychiatry, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia
| | - Katherine M Sharkey
- Departments of Medicine and Psychiatry & Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Kenneth P Wright
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - Windy A Boyd
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Marishka K Brown
- Division of Lung Diseases, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Aaron D Laposky
- Division of Lung Diseases, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael J Twery
- Division of Lung Diseases, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Phyllis C Zee
- Center for Circadian and Sleep Medicine, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
36
|
Martin D, Hurlbert A, Cousins DA. Sleep Disturbance and the Change from White to Red Lighting at Night on Old Age Psychiatry Wards: A Quality Improvement Project. Arch Psychiatr Nurs 2018; 32:379-383. [PMID: 29784218 DOI: 10.1016/j.apnu.2017.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 11/30/2017] [Accepted: 12/03/2017] [Indexed: 11/30/2022]
Abstract
UNLABELLED Psychiatric inpatient units often maintain a degree of lighting at night to facilitate the observation of patients, but this has the potential to disrupt sleep. Certain wavelengths of light may be less likely to disturb sleep and if such lighting permitted adequate observations, patient wellbeing may be improved. AIMS AND METHOD This study explored the effects of changing night-lights from broad-band white to narrow-band red on the amount of sleep observed, 'as required' medication administered and number of falls, in an old age psychiatry inpatient setting. Qualitative data was also gathered with a staff questionnaire. We hypothesised that compared to the use of white lights, red lights would be associated with a greater amount of recorded sleep, lesser use of 'as required' medication and no increase in the number of falls (reflecting comparable safety). RESULTS Whilst there were no significant differences in quantitative measures recorded, there were more observations of sleep during the red light period than the white light period (14.1 versus 13.9 times per night) (U=627.5, z=-0.69, p=0.49) and fewer 'as required' medication administrations during the red light period compared to the white light period (3.3 versus 4.8 times per night) (U=640.0, z=0.56, p=0.57). Qualitatively, the staff of the organic assessment unit reported that patients were sleeping better and less agitated at night. CLINICAL IMPLICATIONS Larger and more in-depth studies are required to examine the full effectiveness of using safe, sleep-enhancing lighting on wards at night.
Collapse
Affiliation(s)
- David Martin
- Gateshead Health NHS Foundation Trust, Queen Elizabeth Hospital, Sheriff Hill, Gateshead, Tyne and Wear NE9 6SX, United Kingdom
| | - Anya Hurlbert
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - David Andrew Cousins
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom.
| |
Collapse
|
37
|
Russart KLG, Nelson RJ. Artificial light at night alters behavior in laboratory and wild animals. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 329:401-408. [PMID: 29806740 DOI: 10.1002/jez.2173] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/24/2018] [Accepted: 05/01/2018] [Indexed: 12/20/2022]
Abstract
Life has evolved to internalize and depend upon the daily and seasonal light cycles to synchronize physiology and behavior with environmental conditions. The nightscape has been vastly changed in response to the use of artificial lighting. Wildlife is now often exposed to direct lighting via streetlights or indirect lighting via sky glow at night. Because many activities rely on daily and seasonal light cues, the effects of artificial light at night could be extensive, but remain largely unknown. Laboratory studies suggest exposure to light at night can alter typical timing of daily locomotor activity and shift the timing of foraging/food intake to the daytime in nocturnal rodents. Additionally, nocturnal rodents decrease anxiety-like behaviors (i.e., spend more time in the open and increase rearing up) in response to even dim light at night. These are all likely maladaptive responses in the wild. Photoperiodic animals rely on seasonal changes in day length as a cue to evoke physiological and behavioral modifications to anticipate favorable and unfavorable conditions for survival and reproduction. Light at night can mask detection of short days, inappropriately signal long days, and thus desynchronize seasonal reproductive activities. We review laboratory and the sparse field studies that address the effects of exposure to artificial light at night to propose that exposure to light at night disrupts circadian and seasonal behavior in wildlife, which potentially decreases individual fitness and modifies ecosystems.
Collapse
Affiliation(s)
- Kathryn L G Russart
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Randy J Nelson
- Behavioral Medicine and Psychiatry, School of Medicine, West Virginia University, Morgantown, West Virginia
| |
Collapse
|
38
|
A hypothalamic circuit for the circadian control of aggression. Nat Neurosci 2018; 21:717-724. [PMID: 29632359 PMCID: PMC5920747 DOI: 10.1038/s41593-018-0126-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/09/2018] [Indexed: 11/21/2022]
Abstract
“Sundowning” in dementia and Alzheimer’s disease is characterized by early evening agitation and aggression. While such periodicity suggests a circadian origin, whether the circadian clock directly regulates aggressive behavior is unknown. We demonstrate that a daily rhythm in aggression propensity in male mice is gated by GABAergic subparaventricular zone (SPZGABA) neurons, the major postsynaptic targets of the central circadian clock, the suprachiasmatic nucleus (SCN). Optogenetic mapping revealed that SPZGABA neurons receive input from vasoactive intestinal polypeptide SCN neurons and innervate neurons in the ventrolateral part of the ventromedial hypothalamus (VMHvl) known to regulate aggression. Additionally, VMH-projecting dorsal SPZ neurons are more active during early day than early night, and acute chemogenetic inhibition of SPZGABA transmission phase-dependently increases aggression. Finally, SPZGABA-recipient central VMH neurons directly innervate VMHvl neurons and activation of this intra-VMH circuit drove attack behavior. Altogether, we reveal a functional polysynaptic circuit by which the SCN clock regulates aggression.
Collapse
|
39
|
Cleary-Gaffney M, Coogan AN. Limited evidence for affective and diurnal rhythm responses to dim light-at-night in male and female C57Bl/6 mice. Physiol Behav 2018. [PMID: 29540316 DOI: 10.1016/j.physbeh.2018.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Circadian rhythms are recurring patterns in a range of behavioural, physiological and molecular parameters that display periods of near 24 h, and are underpinned by an endogenous biological timekeeping system. Circadian clocks are increasingly recognised as being key for health. Environmental light is the key stimulus that synchronises the internal circadian system with the external time cues. There are emergent health concerns regarding increasing worldwide prevalence of electric lighting, especially man-made light-at-night, and light's impact on the circadian system may be central to these effects. A number of previous studies have demonstrated increased depression-like behaviour in various rodent experimental models exposed to dim light-at-night. In this study we set out to study the impact of dim light-at-night on circadian and affective behaviours in C57Bl/6 mice. We set out specifically to examine the impact of sex on light at night's effects, as well as the impact of housing conditions. We report minimal impact of light-at-night on circadian and affective behaviours, as measured by the tail suspension test, the forced swim test, the sucrose preference test and the elevated plus maze. Light-at-night was also not associated with an increase in body weight, but was associated with a decrease in the cell proliferation marker Ki-67 in the dentate gyrus. In summary, we conclude that experimental contextual factors, such as model species or strain, may be considerable importance in the investigation of the impact of light at night on mood-related parameters.
Collapse
Affiliation(s)
- Michael Cleary-Gaffney
- Department of Psychology, Maynooth University, National University of Ireland, Maynooth, Ireland
| | - Andrew N Coogan
- Department of Psychology, Maynooth University, National University of Ireland, Maynooth, Ireland.
| |
Collapse
|
40
|
The Effect of Gentle Handling on Depressive-Like Behavior in Adult Male Mice: Considerations for Human and Rodent Interactions in the Laboratory. Behav Neurol 2018; 2018:2976014. [PMID: 29692869 PMCID: PMC5859797 DOI: 10.1155/2018/2976014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/08/2017] [Accepted: 12/19/2017] [Indexed: 02/04/2023] Open
Abstract
Environmental factors play a significant role in well-being of laboratory animals. Regulations and guidelines recommend, if not require, that stressors such as bright lighting, smells, and noises are eliminated or reduced to maximize animal well-being. A factor that is often overlooked is handling and how researchers interact with their animals. Researchers, lab assistants, and husbandry staff in animal facilities may use inconsistent handling methods when interacting with rodents, but humans should be considered a part of the animal's social environment. This study examined the effects of different handling techniques on depressive-like behavior, measured by the Porsolt forced swim test, in adult C57BL/6J male mice. The same two researchers handled the mice in a gentle, aggressive, or minimal (control) fashion over approximately two weeks prior to testing. The results demonstrated a beneficial effect of gentle handling: gentle handling reduced swimming immobility in the forced swim test compared to mice that were aggressively or minimally handled. We argue that gentle handling, rather than methodical handling, can foster a better relationship between the handlers and rodents. Although handling is not standardized across labs, consistent gentle handling allows for less challenging behavioral testing, better data collection, and overall improved animal welfare.
Collapse
|
41
|
Fisk AS, Tam SKE, Brown LA, Vyazovskiy VV, Bannerman DM, Peirson SN. Light and Cognition: Roles for Circadian Rhythms, Sleep, and Arousal. Front Neurol 2018; 9:56. [PMID: 29479335 PMCID: PMC5811463 DOI: 10.3389/fneur.2018.00056] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/22/2018] [Indexed: 01/12/2023] Open
Abstract
Light exerts a wide range of effects on mammalian physiology and behavior. As well as synchronizing circadian rhythms to the external environment, light has been shown to modulate autonomic and neuroendocrine responses as well as regulating sleep and influencing cognitive processes such as attention, arousal, and performance. The last two decades have seen major advances in our understanding of the retinal photoreceptors that mediate these non-image forming responses to light, as well as the neural pathways and molecular mechanisms by which circadian rhythms are generated and entrained to the external light/dark (LD) cycle. By contrast, our understanding of the mechanisms by which lighting influences cognitive processes is more equivocal. The effects of light on different cognitive processes are complex. As well as the direct effects of light on alertness, indirect effects may also occur due to disrupted circadian entrainment. Despite the widespread use of disrupted LD cycles to study the role circadian rhythms on cognition, the different experimental protocols used have subtly different effects on circadian function which are not always comparable. Moreover, these protocols will also disrupt sleep and alter physiological arousal, both of which are known to modulate cognition. Studies have used different assays that are dependent on different cognitive and sensory processes, which may also contribute to their variable findings. Here, we propose that studies addressing the effects of different lighting conditions on cognitive processes must also account for their effects on circadian rhythms, sleep, and arousal if we are to fully understand the physiological basis of these responses.
Collapse
Affiliation(s)
- Angus S Fisk
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Shu K E Tam
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Laurence A Brown
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
42
|
Lunn RM, Blask DE, Coogan AN, Figueiro MG, Gorman MR, Hall JE, Hansen J, Nelson RJ, Panda S, Smolensky MH, Stevens RG, Turek FW, Vermeulen R, Carreón T, Caruso CC, Lawson CC, Thayer KA, Twery MJ, Ewens AD, Garner SC, Schwingl PJ, Boyd WA. Health consequences of electric lighting practices in the modern world: A report on the National Toxicology Program's workshop on shift work at night, artificial light at night, and circadian disruption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:1073-1084. [PMID: 28724246 PMCID: PMC5587396 DOI: 10.1016/j.scitotenv.2017.07.056] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 05/24/2023]
Abstract
The invention of electric light has facilitated a society in which people work, sleep, eat, and play at all hours of the 24-hour day. Although electric light clearly has benefited humankind, exposures to electric light, especially light at night (LAN), may disrupt sleep and biological processes controlled by endogenous circadian clocks, potentially resulting in adverse health outcomes. Many of the studies evaluating adverse health effects have been conducted among night- and rotating-shift workers, because this scenario gives rise to significant exposure to LAN. Because of the complexity of this topic, the National Toxicology Program convened an expert panel at a public workshop entitled "Shift Work at Night, Artificial Light at Night, and Circadian Disruption" to obtain input on conducting literature-based health hazard assessments and to identify data gaps and research needs. The Panel suggested describing light both as a direct effector of endogenous circadian clocks and rhythms and as an enabler of additional activities or behaviors that may lead to circadian disruption, such as night-shift work and atypical and inconsistent sleep-wake patterns that can lead to social jet lag. Future studies should more comprehensively characterize and measure the relevant light-related exposures and link these exposures to both time-independent biomarkers of circadian disruption and biomarkers of adverse health outcomes. This information should lead to improvements in human epidemiological and animal or in vitro models, more rigorous health hazard assessments, and intervention strategies to minimize the occurrence of adverse health outcomes due to these exposures.
Collapse
Affiliation(s)
- Ruth M Lunn
- Office of the Report on Carcinogens, Division of the National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, United States
| | - David E Blask
- Department of Structural and Cellular Biology, Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Andrew N Coogan
- Maynooth University Department of Psychology, National University of Ireland, Maynooth, County Kildare, Ireland
| | - Mariana G Figueiro
- Light and Health Program, Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Michael R Gorman
- Department of Psychology and Center for Circadian Biology, University of California, San Diego, CA, United States
| | - Janet E Hall
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Johnni Hansen
- Danish Cancer Society Research Centre, Copenhagen, Denmark
| | - Randy J Nelson
- Department of Neuroscience, Neuroscience Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | | | - Michael H Smolensky
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States; Sleep Medicine, The University of Texas-Houston McGovern School of Medicine, Houston, TX, United States
| | - Richard G Stevens
- School of Medicine, University of Connecticut, Farmington, CT, United States
| | - Fred W Turek
- Center for Sleep & Circadian Biology, Northwestern University, Evanston, IL, United States
| | - Roel Vermeulen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Tania Carreón
- National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention, Cincinnati, OH, United States
| | - Claire C Caruso
- National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention, Cincinnati, OH, United States
| | - Christina C Lawson
- National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention, Cincinnati, OH, United States
| | - Kristina A Thayer
- Office of Health Assessment and Translation, Division of the National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, United States
| | - Michael J Twery
- National Center on Sleep Disorders Research, Division of Lung Diseases, National Heart, Lung, and Blood Institute (NHLBI), Bethesda, MD, United States
| | - Andrew D Ewens
- Contractor in support of the NIEHS Report on Carcinogens, Integrated Laboratory Systems (ILS), Durham, NC, United States
| | - Sanford C Garner
- Contractor in support of the NIEHS Report on Carcinogens, Integrated Laboratory Systems (ILS), Durham, NC, United States
| | - Pamela J Schwingl
- Contractor in support of the NIEHS Report on Carcinogens, Integrated Laboratory Systems (ILS), Durham, NC, United States
| | - Windy A Boyd
- Office of Health Assessment and Translation, Division of the National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, United States.
| |
Collapse
|
43
|
Medical hypothesis: Light at night is a factor worth considering in critical care units. ADVANCES IN INTEGRATIVE MEDICINE 2017; 4:115-120. [PMID: 34094846 DOI: 10.1016/j.aimed.2017.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exposure to light at night is not an innocuous consequence of modernization. There are compelling data linking long-term exposure to occupational and environmental light at night with serious health conditions, including heart disease, obesity, diabetes, and cancer. However, far less is known about the physiological and behavioral effects of acute exposure to light at night. Among healthy volunteers, acute night-time light exposure increases systolic blood pressure and inflammatory markers in the blood, and impairs glucose regulation. Whether critically ill patients in a hospital setting experience the same physiological shifts in response to evening light exposure is not known. This paper reviews the available data on light at night effects on health and wellbeing, and argues that the data are sufficiently compelling to warrant studies of how lighting in intensive care units may be influencing patient recovery.
Collapse
|
44
|
Circadian disruption affects initial learning but not cognitive flexibility in an automated set-shifting task in adult Long-Evans rats. Physiol Behav 2017; 179:226-234. [DOI: 10.1016/j.physbeh.2017.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/01/2017] [Accepted: 06/25/2017] [Indexed: 12/26/2022]
|
45
|
Russart KLG, Nelson RJ. Light at night as an environmental endocrine disruptor. Physiol Behav 2017; 190:82-89. [PMID: 28870443 DOI: 10.1016/j.physbeh.2017.08.029] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 12/14/2022]
Abstract
Environmental endocrine disruptors (EEDs) are often consequences of human activity; however, the effects of EEDs are not limited to humans. A primary focus over the past ∼30years has been on chemical EEDs, but the repercussions of non-chemical EEDs, such as artificial light at night (LAN), are of increasing interest. The sensitivity of the circadian system to light and the influence of circadian organization on overall physiology and behavior make the system a target for disruption with widespread effects. Indeed, there is increasing evidence for a role of LAN in human health, including disruption of circadian regulation and melatonin signaling, metabolic dysregulation, cancer risk, and disruption of other hormonally-driven systems. These effects are not limited to humans; domesticated animals as well as wildlife are also exposed to LAN, and at risk for disrupted circadian rhythms. Here, we review data that support the role of LAN as an endocrine disruptor in humans to be considered in treatments and lifestyle suggestions. We also present the effects of LAN in other animals, and discuss the potential for ecosystem-wide effects of artificial LAN. This can inform decisions in agricultural practices and urban lighting decisions to avoid unintended outcomes.
Collapse
Affiliation(s)
- Kathryn L G Russart
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Randy J Nelson
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
46
|
Opperhuizen AL, Stenvers DJ, Jansen RD, Foppen E, Fliers E, Kalsbeek A. Light at night acutely impairs glucose tolerance in a time-, intensity- and wavelength-dependent manner in rats. Diabetologia 2017; 60:1333-1343. [PMID: 28374068 PMCID: PMC5487588 DOI: 10.1007/s00125-017-4262-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/02/2017] [Indexed: 10/25/2022]
Abstract
AIMS/HYPOTHESIS Exposure to light at night (LAN) has increased dramatically in recent decades. Animal studies have shown that chronic dim LAN induced obesity and glucose intolerance. Furthermore, several studies in humans have demonstrated that chronic exposure to artificial LAN may have adverse health effects with an increased risk of metabolic disorders, including type 2 diabetes. It is well-known that acute exposure to LAN affects biological clock function, hormone secretion and the activity of the autonomic nervous system, but data on the effects of LAN on glucose homeostasis are lacking. This study aimed to investigate the acute effects of LAN on glucose metabolism. METHODS Male Wistar rats were subjected to i.v. glucose or insulin tolerance tests while exposed to 2 h of LAN in the early or late dark phase. In subsequent experiments, different light intensities and wavelengths were used. RESULTS LAN exposure early in the dark phase at ZT15 caused increased glucose responses during the first 20 min after glucose infusion (p < 0.001), whereas LAN exposure at the end of the dark phase, at ZT21, caused increased insulin responses during the first 10 min (p < 0.01), indicating that LAN immediately induces glucose intolerance in rats. Subsequent experiments demonstrated that the effect of LAN was both intensity- and wavelength-dependent. White light of 50 and 150 lx induced greater glucose responses than 5 and 20 lx, whereas all intensities other than 5 lx reduced locomotor activity. Green light induced glucose intolerance, but red and blue light did not, suggesting the involvement of a specific retina-brain pathway. CONCLUSIONS/INTERPRETATION Together, these data show that exposure to LAN has acute adverse effects on glucose metabolism in a time-, intensity- and wavelength-dependent manner.
Collapse
Affiliation(s)
- Anne-Loes Opperhuizen
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands.
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Centre (AMC) University of Amsterdam, Amsterdam, the Netherlands.
| | - Dirk J Stenvers
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Centre (AMC) University of Amsterdam, Amsterdam, the Netherlands
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC) University of Amsterdam, Amsterdam, the Netherlands
| | - Remi D Jansen
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands
| | - Ewout Foppen
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Centre (AMC) University of Amsterdam, Amsterdam, the Netherlands
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC) University of Amsterdam, Amsterdam, the Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC) University of Amsterdam, Amsterdam, the Netherlands
| | - Andries Kalsbeek
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Centre (AMC) University of Amsterdam, Amsterdam, the Netherlands
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC) University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
47
|
Zhang Z, Wang HJ, Wang DR, Qu WM, Huang ZL. Red light at intensities above 10 lx alters sleep-wake behavior in mice. LIGHT, SCIENCE & APPLICATIONS 2017; 6:e16231. [PMID: 30167247 PMCID: PMC6062196 DOI: 10.1038/lsa.2016.231] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 09/16/2016] [Accepted: 09/21/2016] [Indexed: 05/10/2023]
Abstract
Sleep is regulated by two mechanisms: the homeostatic process and the circadian clock. Light affects sleep and alertness by entraining the circadian clock, and acutely inducing sleep/alertness, in a manner mediated by intrinsically photosensitive retinal ganglion cells. Because intrinsically photosensitive retinal ganglion cells are believed to be minimally sensitive to red light, which is widely used for illumination to reduce the photic disturbance to nocturnal animals during the dark phase. However, the appropriate intensity of the red light is unknown. In the present study, we recorded electroencephalograms and electromyograms of freely moving mice to investigate the effects of red light emitted by light-emitting diodes at different intensities and for different durations on the sleep-wake behavior of mice. White light was used as a control. Unexpectedly, red light exerted potent sleep-inducing effects and changed the sleep architecture in terms of the duration and number of sleep episodes, the stage transition, and the EEG power density when the intensity was >20 lx. Subsequently, we lowered the light intensity and demonstrated that red light at or below 10 lx did not affect sleep-wake behavior. White light markedly induced sleep and disrupted sleep architecture even at an intensity as low as 10 lx. Our findings highlight the importance of limiting the intensity of red light (⩽10 lx) to avoid optical influence in nocturnal behavioral experiments, particularly in the field of sleep and circadian research.
Collapse
|
48
|
Peirson SN, Brown LA, Pothecary CA, Benson LA, Fisk AS. Light and the laboratory mouse. J Neurosci Methods 2017; 300:26-36. [PMID: 28414048 PMCID: PMC5909038 DOI: 10.1016/j.jneumeth.2017.04.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 02/06/2023]
Abstract
Light exerts widespread effects on physiology and behaviour. As well as the widely-appreciated role of light in vision, light also plays a critical role in many non-visual responses, including regulating circadian rhythms, sleep, pupil constriction, heart rate, hormone release and learning and memory. In mammals, responses to light are all mediated via retinal photoreceptors, including the classical rods and cones involved in vision as well as the recently identified melanopsin-expressing photoreceptive retinal ganglion cells (pRGCs). Understanding the effects of light on the laboratory mouse therefore depends upon an appreciation of the physiology of these retinal photoreceptors, including their differing sens itivities to absolute light levels and wavelengths. The signals from these photoreceptors are often integrated, with different responses involving distinct retinal projections, making generalisations challenging. Furthermore, many commonly used laboratory mouse strains carry mutations that affect visual or non-visual physiology, ranging from inherited retinal degeneration to genetic differences in sleep and circadian rhythms. Here we provide an overview of the visual and non-visual systems before discussing practical considerations for the use of light for researchers and animal facility staff working with laboratory mice.
Collapse
Affiliation(s)
- Stuart N Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford Molecular Pathology Institute, Dunn School of Pathology, South Parks Road, Oxford, United Kingdom.
| | - Laurence A Brown
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford Molecular Pathology Institute, Dunn School of Pathology, South Parks Road, Oxford, United Kingdom
| | - Carina A Pothecary
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford Molecular Pathology Institute, Dunn School of Pathology, South Parks Road, Oxford, United Kingdom
| | - Lindsay A Benson
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford Molecular Pathology Institute, Dunn School of Pathology, South Parks Road, Oxford, United Kingdom
| | - Angus S Fisk
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford Molecular Pathology Institute, Dunn School of Pathology, South Parks Road, Oxford, United Kingdom
| |
Collapse
|
49
|
Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: Health impacts and mechanisms of circadian disruption. Life Sci 2017; 173:94-106. [PMID: 28214594 DOI: 10.1016/j.lfs.2017.02.008] [Citation(s) in RCA: 341] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/02/2017] [Accepted: 02/14/2017] [Indexed: 01/20/2023]
Abstract
Exposure to Artificial Light At Night (ALAN) results in a disruption of the circadian system, which is deleterious to health. In industrialized countries, 75% of the total workforce is estimated to have been involved in shift work and night work. Epidemiologic studies, mainly of nurses, have revealed an association between sustained night work and a 50-100% higher incidence of breast cancer. The potential and multifactorial mechanisms of the effects include the suppression of melatonin secretion by ALAN, sleep deprivation, and circadian disruption. Shift and/or night work generally decreases the time spent sleeping, and it disrupts the circadian time structure. In the long run, this desynchronization is detrimental to health, as underscored by a large number of epidemiological studies that have uncovered elevated rates of several diseases, including cancer, diabetes, cardiovascular risks, obesity, mood disorders and age-related macular degeneration. It amounts to a public health issue in the light of the very substantial number of individuals involved. The IARC has classified shift work in group 2A of "probable carcinogens to humans" since "they involve a circadian disorganization". Countermeasures to the effects of ALAN, such as melatonin, bright light, or psychotropic drugs, have been proposed as a means to combat circadian clock disruption and improve adaptation to shift and night work. We review the evidence for the ALAN impacts on health. Furthermore, we highlight the importance of an in-depth mechanistic understanding to combat the detrimental properties of exposure to ALAN and develop strategies of prevention.
Collapse
|
50
|
Timing of light exposure affects mood and brain circuits. Transl Psychiatry 2017; 7:e1017. [PMID: 28140399 PMCID: PMC5299389 DOI: 10.1038/tp.2016.262] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/27/2016] [Accepted: 10/04/2016] [Indexed: 12/27/2022] Open
Abstract
Temporal organization of physiology is critical for human health. In the past, humans experienced predictable periods of daily light and dark driven by the solar day, which allowed for entrainment of intrinsic circadian rhythms to the environmental light-dark cycles. Since the adoption of electric light, however, pervasive exposure to nighttime lighting has blurred the boundaries of day and night, making it more difficult to synchronize biological processes. Many systems are under circadian control, including sleep-wake behavior, hormone secretion, cellular function and gene expression. Circadian disruption by nighttime light perturbs those processes and is associated with increasing incidence of certain cancers, metabolic dysfunction and mood disorders. This review focuses on the role of artificial light at night in mood regulation, including mechanisms through which aberrant light exposure affects the brain. Converging evidence suggests that circadian disruption alters the function of brain regions involved in emotion and mood regulation. This occurs through direct neural input from the clock or indirect effects, including altered neuroplasticity, neurotransmission and clock gene expression. Recently, the aberrant light exposure has been recognized for its health effects. This review summarizes the evidence linking aberrant light exposure to mood.
Collapse
|