1
|
Zhang T, Sun J, Jiao Q, Li S, Meng X, Shi J, Wang B. Cannabinoid type 2 receptor deficiency leads to Aβ-induced cognitive impairment through promoting microglial sensitivity to Aβ in the prefrontal cortex in mice. IBRO Neurosci Rep 2024; 17:252-262. [PMID: 39297128 PMCID: PMC11409075 DOI: 10.1016/j.ibneur.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/08/2024] [Accepted: 08/17/2024] [Indexed: 09/21/2024] Open
Abstract
Aims This study is to investigate the effects of Cannabinoid type 2 receptor (CB2R) deficiency on microglia and cognitive function in both Aβ1-42-injected CB2R knockout mice and a transgenic mouse model of Alzheimer's disease (AD) in brain. Methods After hippocampal injection with Aβ1-42 oligomers in CB2R knockout mice with and without CB2R agonist treatment and in transgenic APP/PS1 mice with CB2R deletion, the novel object recognition (NOR) and Morris water maze (MWM) tests were performed to assess the animal behavior performance. Immunofluorescence staining was conducted to detect the microglial morphology and activation status. The expression of proinflammation and anti-inflammation cytokines were determined by qRT-PCR. Results CB2R deficiency significantly aggravated cognitive impairment in both Aβ1-42-induced and transgenic APP/PS1 animal model in NOR. In Aβ-injected mice lacking CB2R and transgenic APP/PS1 mice with CB2R deletion, microglia in the prefrontal cortex exhibited enhanced immunoreactivity with altered morphology. Furthermore, transformation of activated microglial phenotype in the prefrontal cortex was reduced in Aβ1-42-injected CB2R knockout mice after CB2R agonist treatment. The CB2R deficiency significantly increased the expression of proinflammatory cytokines in the prefrontal cortex, while it was observed in the hippocampus in both Aβ1-42-injected and transgenic APP/PS1 AD mouse model. Furthermore, CB2R deficiency increased concentrations of soluble Aβ 40 in the prefrontal cortex, but did not affect plaques deposition. Conclusion CB2R deletion led to enhanced neuroinflammatory responses via direct upregulating microglia activation in the prefrontal cortex during the early symptomatic phase of AD mice. CB2R modulates prefrontal cortical neuroinflammation, which is essential for regulating cognitive functions such as recognition memory at the early stage of AD.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - JiaGuang Sun
- Department of Anesthesiology, Xingtai People's Hospital, Hebei 054000, China
| | - Qiang Jiao
- Henan Institute of Food and Salt Industry Inspection Technology, Henan 450003, China
| | - ShuaiChen Li
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - XiangBo Meng
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - JingPu Shi
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Bo Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
2
|
Sandoval KE, Witt KA. Somatostatin: Linking Cognition and Alzheimer Disease to Therapeutic Targeting. Pharmacol Rev 2024; 76:1291-1325. [PMID: 39013601 DOI: 10.1124/pharmrev.124.001117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Over 4 decades of research support the link between Alzheimer disease (AD) and somatostatin [somatotropin-releasing inhibitory factor (SRIF)]. SRIF and SRIF-expressing neurons play an essential role in brain function, modulating hippocampal activity and memory formation. Loss of SRIF and SRIF-expressing neurons in the brain rests at the center of a series of interdependent pathological events driven by amyloid-β peptide (Aβ), culminating in cognitive decline and dementia. The connection between the SRIF and AD further extends to the neuropsychiatric symptoms, seizure activity, and inflammation, whereas preclinical AD investigations show SRIF or SRIF receptor agonist administration capable of enhancing cognition. SRIF receptor subtype-4 activation in particular presents unique attributes, with the potential to mitigate learning and memory decline, reduce comorbid symptoms, and enhance enzymatic degradation of Aβ in the brain. Here, we review the links between SRIF and AD along with the therapeutic implications. SIGNIFICANCE STATEMENT: Somatostatin and somatostatin-expressing neurons in the brain are extensively involved in cognition. Loss of somatostatin and somatostatin-expressing neurons in Alzheimer disease rests at the center of a series of interdependent pathological events contributing to cognitive decline and dementia. Targeting somatostatin-mediated processes has significant therapeutic potential for the treatment of Alzheimer disease.
Collapse
Affiliation(s)
- Karin E Sandoval
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| | - Ken A Witt
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| |
Collapse
|
3
|
Velázquez-Delgado C, Hernández-Ortiz E, Landa-Navarro L, Tapia-Rodríguez M, Moreno-Castilla P, Bermúdez-Rattoni F. Repeated exposure to novelty promotes resilience against the amyloid-beta effect through dopaminergic stimulation. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06650-5. [PMID: 39145803 DOI: 10.1007/s00213-024-06650-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/07/2024] [Indexed: 08/16/2024]
Abstract
RATIONALE The accumulation of beta-amyloid peptide (Aβ) in the forebrain leads to cognitive dysfunction and neurodegeneration in Alzheimer's disease. Studies have shown that individuals with a consistently cognitively active lifestyle are less vulnerable to Aβ toxicity. Recent research has demonstrated that intrahippocampal Aβ can impact catecholaminergic release and spatial memory. Interestingly, exposure to novelty stimuli has been found to stimulate the release of catecholamines in the hippocampus. However, it remains uncertain whether repeated enhancing catecholamine activity can effectively alleviate cognitive impairment in individuals with Alzheimer's disease. OBJECTIVES Our primary aim was to investigate whether repeated exposure to novelty could enable cognitive resilience against Aβ. This protection could be achieved by modulating catecholaminergic activity within the hippocampus. METHODS To investigate this hypothesis, we subjected mice to three different conditions-standard housing (SH), repeated novelty (Nov), or daily social interaction (Soc) for one month. We then infused saline solution (SS) or Aβ (Aβ1-42) oligomers intrahippocampally and measured spatial memory retrieval in a Morris Water Maze (MWM). Stereological analysis and extracellular baseline dopamine levels using in vivo microdialysis were assessed in independent groups of mice. RESULTS The mice that received Aβ1-42 intrahippocampal infusions and remained in SH or Soc conditions showed impaired spatial memory retrieval. In contrast, animals subjected to the Nov protocol demonstrated remarkable resilience, showing strong spatial memory expression even after Aβ1-42 intrahippocampal infusion. The stereological analysis indicated that the Aβ1-42 infusion reduced the tyrosine hydroxylase axonal length in SH or Soc mice compared to the Nov group. Accordingly, the hippocampal extracellular dopamine levels increased significantly in the Nov groups. CONCLUSIONS These compelling results demonstrate the potential for repeated novelty exposure to strengthen the dopaminergic system and mitigate the toxic effects of Aβ1-42. They also highlight new and promising therapeutic avenues for treating and preventing AD, especially in its early stages.
Collapse
Affiliation(s)
- Cintia Velázquez-Delgado
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Eduardo Hernández-Ortiz
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Lucia Landa-Navarro
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Miguel Tapia-Rodríguez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Perla Moreno-Castilla
- Laboratory of Cognitive Resilience, Center of Aging Research (CIE), Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV, Mexico City, Mexico.
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
4
|
Wang H, Li X, Zhang Q, Fu C, Jiang W, Xue J, Liu S, Meng Q, Ai L, Zhi X, Deng S, Liang W. Autophagy in Disease Onset and Progression. Aging Dis 2024; 15:1646-1671. [PMID: 37962467 PMCID: PMC11272186 DOI: 10.14336/ad.2023.0815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/15/2023] [Indexed: 11/15/2023] Open
Abstract
Autophagy is a biological phenomenon whereby components of cells can self-degrade using autophagosomes. During this process, cells can clear dysfunctional organelles or unwanted elements. Autophagy can recycle unnecessary biomolecules into new components or sometimes, even destroy the cells themselves. This cellular process was first observed in 1962 by Keith R. Porter et al. Since then, autophagy has been studied for over 60 years, and much has been learned on the topic. Nevertheless, the process is still not fully understood. It has been proven, for example, that autophagy can be a positive force for maintaining good health by removing older or damaged cells. By contrast, autophagy is also involved in the onset and progression of various conditions caused by pathogenic infections. These diseases generally involve several important organs in the human body, including the liver, kidney, heart, and central nervous system. The regulation of the defects of autophagy defects may potentially be used to treat some diseases. This review comprehensively discusses recent research frontiers and topics of interest regarding autophagy-related diseases.
Collapse
Affiliation(s)
- Hao Wang
- Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, Guangdong, China.
| | - Xiushen Li
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China.
| | - Qi Zhang
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China.
| | - Chengtao Fu
- School of Medicine, Huzhou University, Zhejiang, China.
| | - Wenjie Jiang
- Department of Artificial Intelligence and Data Science, Hebei University of Technology, Tianjin, China.
| | - Jun Xue
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China.
| | - Shan Liu
- Bioimaging Core of Shenzhen Bay Laboratory Shenzhen, China.
| | - Qingxue Meng
- Technology Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China.
| | - Lisha Ai
- Department of Teaching and Research, Shenzhen University General Hospital, Shenzhen, Guangdong, China.
| | - Xuejun Zhi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China.
| | - Shoulong Deng
- National Health Commission of China (NHC) Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.
| | - Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China.
| |
Collapse
|
5
|
Sobczuk J, Paczkowska K, Andrusiów S, Bolanowski M, Daroszewski J. Are Women with Polycystic Ovary Syndrome at Increased Risk of Alzheimer Disease? Lessons from Insulin Resistance, Tryptophan and Gonadotropin Disturbances and Their Link with Amyloid-Beta Aggregation. Biomolecules 2024; 14:918. [PMID: 39199306 PMCID: PMC11352735 DOI: 10.3390/biom14080918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Alzheimer disease, the leading cause of dementia, and polycystic ovary syndrome, one of the most prevalent female endocrine disorders, appear to be unrelated conditions. However, studies show that both disease entities have common risk factors, and the amount of certain protein marker of neurodegeneration is increased in PCOS. Reports on the pathomechanism of both diseases point to the possibility of common denominators linking them. Dysregulation of the kynurenine pathway, insulin resistance, and impairment of the hypothalamic-pituitary-gonadal axis, which are correlated with amyloid-beta aggregation are these common areas. This article discusses the relationship between Alzheimer disease and polycystic ovary syndrome, with a particular focus on the role of disorders of tryptophan metabolism in both conditions. Based on a review of the available literature, we concluded that systemic changes occurring in PCOS influence the increased risk of neurodegeneration.
Collapse
Affiliation(s)
- Joachim Sobczuk
- Department of Endocrinology, Diabetes and Isotope Therapy, University Clinical Hospital, 50-367 Wroclaw, Poland
| | | | - Szymon Andrusiów
- Department of Neurology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Marek Bolanowski
- Department of Endocrinology, Diabetes and Isotope Therapy, University Clinical Hospital, 50-367 Wroclaw, Poland
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Jacek Daroszewski
- Department of Endocrinology, Diabetes and Isotope Therapy, University Clinical Hospital, 50-367 Wroclaw, Poland
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
6
|
Uchiumi O, Zou J, Yamaki S, Hori Y, Ono M, Yamamoto R, Kato N. Disruption of sphingomyelin synthase 2 gene alleviates cognitive impairment in a mouse model of Alzheimer's disease. Brain Res 2024; 1835:148934. [PMID: 38609029 DOI: 10.1016/j.brainres.2024.148934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
The membrane raft accommodates the key enzymes synthesizing amyloid β (Aβ). One of the two characteristic components of the membrane raft, cholesterol, is well known to promote the key enzymes that produce amyloid-β (Aβ) and exacerbate Alzheimer's disease (AD) pathogenesis. Given that the raft is a physicochemical platform for the sound functioning of embedded bioactive proteins, the other major lipid component sphingomyelin may also be involved in AD. Here we knocked out the sphingomyelin synthase 2 gene (SMS2) in 3xTg AD model mice by hybridization, yielding SMS2KO mice (4S mice). The novel object recognition test in 9/10-month-old 4S mice showed that cognitive impairment in 3xTg mice was alleviated by SMS2KO, though performance in the Morris water maze (MWM) was not improved. The tail suspension test detected a depressive trait in 4S mice, which may have hindered the manifestation of performance in the wet, stressful environment of MWM. In the hippocampal CA1, hyperexcitability in 3xTg was also found alleviated by SMS2KO. In the hippocampal dentate gyrus of 4S mice, the number of neurons positive with intracellular Aβ or its precursor proteins, the hallmark of young 3xTg mice, is reduced to one-third, suggesting an SMS2KO-led suppression of syntheses of those peptides in the dentate gyrus. Although we previously reported that large-conductance calcium-activated potassium (BK) channels are suppressed in 3xTg mice and their recovery relates to cognitive amelioration, no changes occurred by hybridization. Sphingomyelin in the membrane raft may serve as a novel target for AD drugs.
Collapse
Affiliation(s)
- Osamu Uchiumi
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Jingyu Zou
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan; First Affiliated Hospital, China Medical University, Shenyang 110001, China
| | - Sachiko Yamaki
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Yoshie Hori
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Munenori Ono
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Ryo Yamamoto
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Nobuo Kato
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan.
| |
Collapse
|
7
|
Célestine M, Jacquier-Sarlin M, Borel E, Petit F, Lante F, Bousset L, Hérard AS, Buisson A, Dhenain M. Transmissible long-term neuroprotective and pro-cognitive effects of 1-42 beta-amyloid with A2T icelandic mutation in an Alzheimer's disease mouse model. Mol Psychiatry 2024:10.1038/s41380-024-02611-8. [PMID: 38871852 DOI: 10.1038/s41380-024-02611-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024]
Abstract
The amyloid cascade hypothesis assumes that the development of Alzheimer's disease (AD) is driven by a self-perpetuating cycle, in which β-amyloid (Aβ) accumulation leads to Tau pathology and neuronal damages. A particular mutation (A673T) of the amyloid precursor protein (APP) was identified among Icelandic population. It provides a protective effect against Alzheimer- and age-related cognitive decline. This APP mutation leads to the reduced production of Aβ with A2T (position in peptide sequence) change (Aβice). In addition, Aβice has the capacity to form protective heterodimers in association with wild-type Aβ. Despite the emerging interest in Aβice during the last decade, the impact of Aβice on events associated with the amyloid cascade has never been reported. First, the effects of Aβice were evaluated in vitro by electrophysiology on hippocampal slices and by studying synapse morphology in cortical neurons. We showed that Aβice protects against endogenous Aβ-mediated synaptotoxicity. Second, as several studies have outlined that a single intracerebral administration of Aβ can worsen Aβ deposition and cognitive functions several months after the inoculation, we evaluated in vivo the long-term effects of a single inoculation of Aβice or Aβ-wild-type (Aβwt) in the hippocampus of transgenic mice (APPswe/PS1dE9) over-expressing Aβ1-42 peptide. Interestingly, we found that the single intra-hippocampal inoculation of Aβice to mice rescued synaptic density and spatial memory losses four months post-inoculation, compared with Aβwt inoculation. Although Aβ load was not modulated by Aβice infusion, the amount of Tau-positive neuritic plaques was significantly reduced. Finally, a lower phagocytosis by microglia of post-synaptic compounds was detected in Aβice-inoculated animals, which can partly explain the increased density of synapses in the Aβice animals. Thus, a single event as Aβice inoculation can improve the fate of AD-associated pathology and phenotype in mice several months after the event. These results open unexpected fields to develop innovative therapeutic strategies against AD.
Collapse
Affiliation(s)
- Marina Célestine
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, 18 Route du Panorama, F-92265, Fontenay-aux-Roses, France
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut de Biologie François Jacob, MIRCen, 18 Route du Panorama, F-92265, Fontenay-aux-Roses, France
| | - Muriel Jacquier-Sarlin
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, GIN, 38000, Grenoble, France
| | - Eve Borel
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, GIN, 38000, Grenoble, France
| | - Fanny Petit
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, 18 Route du Panorama, F-92265, Fontenay-aux-Roses, France
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut de Biologie François Jacob, MIRCen, 18 Route du Panorama, F-92265, Fontenay-aux-Roses, France
| | - Fabien Lante
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, GIN, 38000, Grenoble, France
| | - Luc Bousset
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, 18 Route du Panorama, F-92265, Fontenay-aux-Roses, France
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut de Biologie François Jacob, MIRCen, 18 Route du Panorama, F-92265, Fontenay-aux-Roses, France
| | - Anne-Sophie Hérard
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, 18 Route du Panorama, F-92265, Fontenay-aux-Roses, France
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut de Biologie François Jacob, MIRCen, 18 Route du Panorama, F-92265, Fontenay-aux-Roses, France
| | - Alain Buisson
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, GIN, 38000, Grenoble, France
| | - Marc Dhenain
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, 18 Route du Panorama, F-92265, Fontenay-aux-Roses, France.
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut de Biologie François Jacob, MIRCen, 18 Route du Panorama, F-92265, Fontenay-aux-Roses, France.
| |
Collapse
|
8
|
Collins HM, Greenfield S. Rodent Models of Alzheimer's Disease: Past Misconceptions and Future Prospects. Int J Mol Sci 2024; 25:6222. [PMID: 38892408 PMCID: PMC11172947 DOI: 10.3390/ijms25116222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with no effective treatments, not least due to the lack of authentic animal models. Typically, rodent models recapitulate the effects but not causes of AD, such as cholinergic neuron loss: lesioning of cholinergic neurons mimics the cognitive decline reminiscent of AD but not its neuropathology. Alternative models rely on the overexpression of genes associated with familial AD, such as amyloid precursor protein, or have genetically amplified expression of mutant tau. Yet transgenic rodent models poorly replicate the neuropathogenesis and protein overexpression patterns of sporadic AD. Seeding rodents with amyloid or tau facilitates the formation of these pathologies but cannot account for their initial accumulation. Intracerebral infusion of proinflammatory agents offer an alternative model, but these fail to replicate the cause of AD. A novel model is therefore needed, perhaps similar to those used for Parkinson's disease, namely adult wildtype rodents with neuron-specific (dopaminergic) lesions within the same vulnerable brainstem nuclei, 'the isodendritic core', which are the first to degenerate in AD. Site-selective targeting of these nuclei in adult rodents may recapitulate the initial neurodegenerative processes in AD to faithfully mimic its pathogenesis and progression, ultimately leading to presymptomatic biomarkers and preventative therapies.
Collapse
Affiliation(s)
- Helen M. Collins
- Neuro-Bio Ltd., Building F5 The Culham Campus, Abingdon OX14 3DB, UK;
| | | |
Collapse
|
9
|
Meshref M, Ghaith HS, Hammad MA, Shalaby MMM, Ayasra F, Monib FA, Attia MS, Ebada MA, Elsayed H, Shalash A, Bahbah EI. The Role of RIN3 Gene in Alzheimer's Disease Pathogenesis: a Comprehensive Review. Mol Neurobiol 2024; 61:3528-3544. [PMID: 37995081 PMCID: PMC11087354 DOI: 10.1007/s12035-023-03802-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
Alzheimer's disease (AD) is a globally prevalent form of dementia that impacts diverse populations and is characterized by progressive neurodegeneration and impairments in executive memory. Although the exact mechanisms underlying AD pathogenesis remain unclear, it is commonly accepted that the aggregation of misfolded proteins, such as amyloid plaques and neurofibrillary tau tangles, plays a critical role. Additionally, AD is a multifactorial condition influenced by various genetic factors and can manifest as either early-onset AD (EOAD) or late-onset AD (LOAD), each associated with specific gene variants. One gene of particular interest in both EOAD and LOAD is RIN3, a guanine nucleotide exchange factor. This gene plays a multifaceted role in AD pathogenesis. Firstly, upregulation of RIN3 can result in endosomal enlargement and dysfunction, thereby facilitating the accumulation of beta-amyloid (Aβ) peptides in the brain. Secondly, RIN3 has been shown to impact the PICLAM pathway, affecting transcytosis across the blood-brain barrier. Lastly, RIN3 has implications for immune-mediated responses, notably through its influence on the PTK2B gene. This review aims to provide a concise overview of AD and delve into the role of the RIN3 gene in its pathogenesis.
Collapse
Affiliation(s)
- Mostafa Meshref
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | | | | | - Faris Ayasra
- Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | | | - Mohamed S Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | | | - Hanaa Elsayed
- Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ali Shalash
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eshak I Bahbah
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt.
| |
Collapse
|
10
|
Ren Q, Wang S, Li J, Cao K, Zhuang M, Wu M, Geng J, Jia Z, Xie W, Liu A. Novel Social Stimulation Ameliorates Memory Deficit in Alzheimer's Disease Model through Activating α-Secretase. J Neurosci 2024; 44:e1689232024. [PMID: 38418221 PMCID: PMC10957211 DOI: 10.1523/jneurosci.1689-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/24/2024] [Accepted: 02/09/2024] [Indexed: 03/01/2024] Open
Abstract
As the most common form of dementia in the world, Alzheimer's disease (AD) is a progressive neurological disorder marked by cognitive and behavioral impairment. According to previous researches, abundant social connections shield against dementia. However, it is still unclear how exactly social interactions benefit cognitive abilities in people with AD and how this process is used to increase their general cognitive performance. In this study, we found that single novel social (SNS) stimulation promoted c-Fos expression and increased the protein levels of mature ADAM10/17 and sAPPα in the ventral hippocampus (vHPC) of wild-type (WT) mice, which are hippocampal dorsal CA2 (dCA2) neuron activity and vHPC NMDAR dependent. Additionally, we discovered that SNS caused similar changes in an AD model, FAD4T mice, and these alterations could be reversed by α-secretase inhibitor. Furthermore, we also found that multiple novel social (MNS) stimulation improved synaptic plasticity and memory impairments in both male and female FAD4T mice, accompanied by α-secretase activation and Aβ reduction. These findings provide insight into the process underpinning how social interaction helps AD patients who are experiencing cognitive decline, and we also imply that novel social interaction and activation of the α-secretase may be preventative and therapeutic in the early stages of AD.
Collapse
Affiliation(s)
- Qiaoyun Ren
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Institute for Brain and Intelligence, Southeast University, Nanjing 210096, China
| | - Susu Wang
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Institute for Brain and Intelligence, Southeast University, Nanjing 210096, China
| | - Junru Li
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Institute for Brain and Intelligence, Southeast University, Nanjing 210096, China
| | - Kun Cao
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Institute for Brain and Intelligence, Southeast University, Nanjing 210096, China
| | - Mei Zhuang
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Institute for Brain and Intelligence, Southeast University, Nanjing 210096, China
| | - Miao Wu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Institute for Brain and Intelligence, Southeast University, Nanjing 210096, China
| | - Junhua Geng
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Institute for Brain and Intelligence, Southeast University, Nanjing 210096, China
| | - Zhengping Jia
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Institute for Brain and Intelligence, Southeast University, Nanjing 210096, China
- Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China
| | - An Liu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Institute for Brain and Intelligence, Southeast University, Nanjing 210096, China
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Shenzhen Research Institute, Southeast University, Shenzhen 518063, China
| |
Collapse
|
11
|
Liu P, Lapcinski IP, Hlynialuk CJ, Steuer EL, Loude TJ, Shapiro SL, Kemper LJ, Ashe KH. Aβ∗56 is a stable oligomer that impairs memory function in mice. iScience 2024; 27:109239. [PMID: 38433923 PMCID: PMC10905009 DOI: 10.1016/j.isci.2024.109239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 12/12/2023] [Accepted: 02/11/2024] [Indexed: 03/05/2024] Open
Abstract
Amyloid-β (Aβ) oligomers consist of fibrillar and non-fibrillar soluble assemblies of the Aβ peptide. Aβ∗56 is a non-fibrillar Aβ assembly that is linked to memory deficits. Previous studies did not decipher specific forms of Aβ present in Aβ∗56. Here, we confirmed the memory-impairing characteristics of Aβ∗56 and extended its biochemical characterization. We used anti-Aβ(1-x), anti-Aβ(x-40), anti-Aβ(x-42), and A11 anti-oligomer antibodies in conjunction with western blotting, immunoaffinity purification, and size-exclusion chromatography to probe aqueous brain extracts from Tg2576, 5xFAD, and APP/TTA mice. In Tg2576, Aβ∗56 is a ∼56-kDa, SDS-stable, A11-reactive, non-plaque-dependent, water-soluble, brain-derived oligomer containing canonical Aβ(1-40). In 5xFAD, Aβ∗56 is composed of Aβ(1-42), whereas in APP/TTA, it contains both Aβ(1-40) and Aβ(1-42). When injected into the hippocampus of wild-type mice, Aβ∗56 derived from Tg2576 mice impairs memory. The unusual stability of this oligomer renders it an attractive candidate for studying relationships between molecular structure and effects on brain function.
Collapse
Affiliation(s)
- Peng Liu
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ian P. Lapcinski
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chris J.W. Hlynialuk
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elizabeth L. Steuer
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Thomas J. Loude
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samantha L. Shapiro
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lisa J. Kemper
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Karen H. Ashe
- N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
12
|
Armbrust F, Bickenbach K, Altmeppen H, Foggetti A, Winkelmann A, Wulff P, Glatzel M, Pietrzik CU, Becker-Pauly C. A novel mouse model for N-terminal truncated Aβ2-x generation through meprin β overexpression in astrocytes. Cell Mol Life Sci 2024; 81:139. [PMID: 38480559 PMCID: PMC10937767 DOI: 10.1007/s00018-024-05139-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 03/17/2024]
Abstract
Neurotoxic amyloid-β (Aβ) peptides cause neurodegeneration in Alzheimer's disease (AD) patients' brains. They are released upon proteolytic processing of the amyloid precursor protein (APP) extracellularly at the β-secretase site and intramembranously at the γ-secretase site. Several AD mouse models were developed to conduct respective research in vivo. Most of these classical models overexpress human APP with mutations driving AD-associated pathogenic APP processing. However, the resulting pattern of Aβ species in the mouse brains differs from those observed in AD patients' brains. Particularly mutations proximal to the β-secretase cleavage site (e.g., the so-called Swedish APP (APPswe) fostering Aβ1-x formation) lead to artificial Aβ production, as N-terminally truncated Aβ peptides are hardly present in these mouse brains. Meprin β is an alternative β-secretase upregulated in brains of AD patients and capable of generating N-terminally truncated Aβ2-x peptides. Therefore, we aimed to generate a mouse model for the production of so far underestimated Aβ2-x peptides by conditionally overexpressing meprin β in astrocytes. We chose astrocytes as meprin β was detected in this cell type in close proximity to Aβ plaques in AD patients' brains. The meprin β-overexpressing mice showed elevated amyloidogenic APP processing detected with a newly generated neo-epitope-specific antibody. Furthermore, we observed elevated Aβ production from endogenous APP as well as AD-related behavior changes (hyperlocomotion and deficits in spatial memory). The novel mouse model as well as the established tools and methods will be helpful to further characterize APP cleavage and the impact of different Aβ species in future studies.
Collapse
Affiliation(s)
- Fred Armbrust
- Biochemical Institute, Unit for Degradomics of the Protease Web, University of Kiel, Otto-Hahn-Platz 9, 24118, Kiel, Germany.
| | - Kira Bickenbach
- Biochemical Institute, Unit for Degradomics of the Protease Web, University of Kiel, Otto-Hahn-Platz 9, 24118, Kiel, Germany
| | - Hermann Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Angelica Foggetti
- Institute of Physiology, University of Kiel, Kiel, Germany
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, 314400, China
- College of Medicine & Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Anne Winkelmann
- Biochemical Institute, Unit for Degradomics of the Protease Web, University of Kiel, Otto-Hahn-Platz 9, 24118, Kiel, Germany
| | - Peer Wulff
- Institute of Physiology, University of Kiel, Kiel, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claus U Pietrzik
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christoph Becker-Pauly
- Biochemical Institute, Unit for Degradomics of the Protease Web, University of Kiel, Otto-Hahn-Platz 9, 24118, Kiel, Germany.
| |
Collapse
|
13
|
Yook Y, Lee KY, Kim E, Lizarazo S, Yu X, Tsai NP. Hyperfunction of post-synaptic density protein 95 promotes seizure response in early-stage aβ pathology. EMBO Rep 2024; 25:1233-1255. [PMID: 38413732 PMCID: PMC10933348 DOI: 10.1038/s44319-024-00090-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
Accumulation of amyloid-beta (Aβ) can lead to the formation of aggregates that contribute to neurodegeneration in Alzheimer's disease (AD). Despite globally reduced neural activity during AD onset, recent studies have suggested that Aβ induces hyperexcitability and seizure-like activity during the early stages of the disease that ultimately exacerbate cognitive decline. However, the underlying mechanism is unknown. Here, we reveal an Aβ-induced elevation of postsynaptic density protein 95 (PSD-95) in cultured neurons in vitro and in an in vivo AD model using APP/PS1 mice at 8 weeks of age. Elevation of PSD-95 occurs as a result of reduced ubiquitination caused by Akt-dependent phosphorylation of E3 ubiquitin ligase murine-double-minute 2 (Mdm2). The elevation of PSD-95 is consistent with the facilitation of excitatory synapses and the surface expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors induced by Aβ. Inhibition of PSD-95 corrects these Aβ-induced synaptic defects and reduces seizure activity in APP/PS1 mice. Our results demonstrate a mechanism underlying elevated seizure activity during early-stage Aβ pathology and suggest that PSD-95 could be an early biomarker and novel therapeutic target for AD.
Collapse
Affiliation(s)
- Yeeun Yook
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kwan Young Lee
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Eunyoung Kim
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Simon Lizarazo
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xinzhu Yu
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
14
|
Rinauro DJ, Chiti F, Vendruscolo M, Limbocker R. Misfolded protein oligomers: mechanisms of formation, cytotoxic effects, and pharmacological approaches against protein misfolding diseases. Mol Neurodegener 2024; 19:20. [PMID: 38378578 PMCID: PMC10877934 DOI: 10.1186/s13024-023-00651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/17/2023] [Indexed: 02/22/2024] Open
Abstract
The conversion of native peptides and proteins into amyloid aggregates is a hallmark of over 50 human disorders, including Alzheimer's and Parkinson's diseases. Increasing evidence implicates misfolded protein oligomers produced during the amyloid formation process as the primary cytotoxic agents in many of these devastating conditions. In this review, we analyze the processes by which oligomers are formed, their structures, physicochemical properties, population dynamics, and the mechanisms of their cytotoxicity. We then focus on drug discovery strategies that target the formation of oligomers and their ability to disrupt cell physiology and trigger degenerative processes.
Collapse
Affiliation(s)
- Dillon J Rinauro
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, 10996, USA.
| |
Collapse
|
15
|
Malik N, Miah MU, Galgani A, McAleese K, Walker L, LeBeau FE, Attems J, Outeiro TF, Thomas A, Koss DJ. Regional AT-8 reactive tau species correlate with intracellular Aβ levels in cases of low AD neuropathologic change. Acta Neuropathol 2024; 147:40. [PMID: 38353753 PMCID: PMC10866780 DOI: 10.1007/s00401-024-02691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
The amyloid cascade hypothesis states that Aβ aggregates induce pathological changes in tau, leading to neurofibrillary tangles (NFTs) and cell death. A caveat with this hypothesis is the spatio-temporal divide between plaques and NFTs. This has been addressed by the inclusion of soluble Aβ and tau species in the revised amyloid cascade hypothesis. Nevertheless, despite the potential for non-plaque Aβ to contribute to tau pathology, few studies have examined relative correlative strengths between total Aβ, plaque Aβ and intracellular Aβ with tau pathology within a single tissue cohort. Employing frozen and fixed frontal cortex grey and white matter tissue from non-AD controls (Con; n = 39) and Alzheimer's disease (AD) cases (n = 21), biochemical and immunohistochemical (IHC) measures of Aβ and AT-8 phosphorylated tau were assessed. Biochemical native-state dot blots from crude tissue lysates demonstrated robust correlations between total Aβ and AT-8 tau, when considered as a combined cohort (Con and AD) and when as Con and AD cases, separately. In contrast, no associations between Aβ plaques and AT-8 were reported when using IHC measurements in either Con or AD cases. However, when intracellular Aβ was measured via the Aβ specific antibody MOAB-2, a correlative relationship with AT-8 tau was reported in non-AD controls but not in AD cases. Collectively the data suggests that accumulating intracellular Aβ may influence AT-8 pathology, early in AD-related neuropathological change. Despite the lower levels of phospho-tau and Aβ in controls, the robust correlative relationships observed suggest a physiological association of Aβ production and tau phosphorylation, which may be modified during disease. This study is supportive of a revised amyloid cascade hypothesis and demonstrates regional associative relationships between tau pathology and intracellular Aβ, but not extracellular Aβ plaques.
Collapse
Affiliation(s)
- Nauman Malik
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Mohi-Uddin Miah
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Alessandro Galgani
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Kirsty McAleese
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Lauren Walker
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Fiona E LeBeau
- Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Johannes Attems
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Tiago F Outeiro
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Alan Thomas
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - David J Koss
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK.
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK.
| |
Collapse
|
16
|
Li X, Quan M, Wei Y, Wang W, Xu L, Wang Q, Jia J. Critical thinking of Alzheimer's transgenic mouse model: current research and future perspective. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2711-2754. [PMID: 37480469 DOI: 10.1007/s11427-022-2357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/23/2023] [Indexed: 07/24/2023]
Abstract
Transgenic models are useful tools for studying the pathogenesis of and drug development for Alzheimer's Disease (AD). AD models are constructed usually using overexpression or knock-in of multiple pathogenic gene mutations from familial AD. Each transgenic model has its unique behavioral and pathological features. This review summarizes the research progress of transgenic mouse models, and their progress in the unique mechanism of amyloid-β oligomers, including the first transgenic mouse model built in China based on a single gene mutation (PSEN1 V97L) found in Chinese familial AD. We further summarized the preclinical findings of drugs using the models, and their future application in exploring the upstream mechanisms and multitarget drug development in AD.
Collapse
Affiliation(s)
- Xinyue Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Yiping Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Wei Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Lingzhi Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, 100053, China.
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, 100053, China.
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100053, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China.
| |
Collapse
|
17
|
Basak JM, Falk M, Mitchell DN, Coakley KA, Quillinan N, Orfila JE, Herson PS. Targeting BACE1-mediated production of amyloid beta improves hippocampal synaptic function in an experimental model of ischemic stroke. J Cereb Blood Flow Metab 2023; 43:66-77. [PMID: 37150606 PMCID: PMC10638992 DOI: 10.1177/0271678x231159597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/30/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023]
Abstract
Post-stroke cognitive impairment and dementia (PSCID) affects many survivors of large vessel cerebral ischemia. The molecular pathways underlying PSCID are poorly defined but may overlap with neurodegenerative pathophysiology. Specifically, synaptic dysfunction after stroke may be directly mediated by alterations in the levels of amyloid beta (Aβ), the peptide that accumulates in the brains of Alzheimer's disease (AD) patients. In this study, we use the transient middle cerebral artery occlusion (MCAo) model in young adult mice to evaluate if a large vessel stroke increases brain soluble Aβ levels. We show that soluble Aβ40 and Aβ42 levels are increased in the ipsilateral hippocampus in MCAo mice 7 days after the injury. We also analyze the level and activity of β-site amyloid precursor protein cleaving enzyme 1 (BACE1), an enzyme that generates Aβ in the brain, and observe that BACE1 activity is increased in the ipsilateral hippocampus of the MCAo mice. Finally, we highlight that treatment of MCAo mice with a BACE1 inhibitor during the recovery period rescues stroke-induced deficits in hippocampal synaptic plasticity. These findings support a molecular pathway linking ischemia to alterations in BACE1-mediated production of Aβ, and encourage future studies that evaluate whether targeting BACE1 activity improves the cognitive deficits seen with PSCID.
Collapse
Affiliation(s)
- Jacob M Basak
- Department of Anesthesiology, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Neuronal Injury and Plasticity Program, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
| | - Macy Falk
- Department of Anesthesiology, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Neuronal Injury and Plasticity Program, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
| | - Danae N Mitchell
- Department of Anesthesiology, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Neuronal Injury and Plasticity Program, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
| | - Kelley A Coakley
- Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Nidia Quillinan
- Department of Anesthesiology, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Neuronal Injury and Plasticity Program, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
| | - James E Orfila
- Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Paco S Herson
- Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
18
|
Falangola MF, Dhiman S, Voltin J, Jensen JH. Quantitative microglia morphological features correlate with diffusion MRI in 2-month-old 3xTg-AD mice. Magn Reson Imaging 2023; 103:8-17. [PMID: 37392805 PMCID: PMC10528126 DOI: 10.1016/j.mri.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Microglia (MØ) morphologies are closely related to their functional state and have a central role in the maintenance of brain homeostasis. It is well known that inflammation contributes to neurodegeneration at later stages of Alzheimer's Disease, but it is not clear which role MØ-mediated inflammation may play earlier in the disease pathogenesis. We have previously reported that diffusion MRI (dMRI) is able to detect early myelin abnormalities present in 2-month-old 3xTg-AD (TG) mice; since MØ actively participate in regulating myelination, the goal of this study was to assess quantitatively MØ morphological characteristics and its association with dMRI metrics patterns in 2-month-old 3xTg-AD mice. Our results show that, even at this young age (2-month-old), TG mice have statistically significantly more MØ cells, which are overall smaller and more complex, compared with age-matched normal control mice (NC). Our results also confirm that myelin basic protein is reduced in TG mice, particularly in fimbria (Fi) and cortex. Additionally, MØ morphological characteristics, in both groups, correlate with several dMRI metrics, depending on the brain region examined. For example, the increase in MØ number correlated with higher radial diffusivity (r = 0.59, p = 0.008), lower fractional anisotropy (FA) (r = -0.47, p = 0.03), and lower kurtosis fractional anisotropy (KFA) (r = -0.55, p = 0.01) in the CC. Furthermore, smaller MØ cells correlate with higher axial diffusivity) in the HV (r = 0.49, p = 0.03) and Sub (r = 0.57, p = 0.01). Our findings demonstrate, for the first time, that MØ proliferation/activation are a common and widespread feature in 2-month-old 3xTg-AD mice and suggest that dMRI measures are sensitive to these MØ alterations, which are associated in this model with myelin dysfunction and microstructural integrity abnormalities.
Collapse
Affiliation(s)
- Maria Fatima Falangola
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA.
| | - Siddhartha Dhiman
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Joshua Voltin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
| | - Jens H Jensen
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
19
|
Murayama MA. The past and present of therapeutic strategy for Alzheimer's diseases: potential for stem cell therapy. Exp Anim 2023; 72:285-293. [PMID: 36878603 PMCID: PMC10435354 DOI: 10.1538/expanim.22-0164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disease characterized by cognitive dysfunction and neuropsychiatric symptoms, is the most prevalent form of dementia among the elderly. Amyloid aggregation, tau hyperphosphorylation, and neural cell loss are the main pathological features. Various hypotheses have been proposed to explain the development of AD. Some therapeutic agents have shown clinical benefits in patients with AD; however, many of these agents have failed. The degree of neural cell loss is associated with the severity of AD. Adult neurogenesis, which governs cognitive and emotional behaviors, occurs in the hippocampus, and some research groups have reported that neural cell transplantation into the hippocampus improves cognitive dysfunction in AD model mice. Based on these clinical findings, stem cell therapy for patients with AD has recently attracted attention. This review provides past and present therapeutic strategies for the management and treatment of AD.
Collapse
Affiliation(s)
- Masanori A Murayama
- Department of Animal Models for Human Diseases, Institute of Biomedical Science, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
20
|
Li KT, Ji D, Zhou C. Memory rescue and learning in synaptic impaired neuronal circuits. iScience 2023; 26:106931. [PMID: 37534172 PMCID: PMC10391582 DOI: 10.1016/j.isci.2023.106931] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/05/2023] [Accepted: 05/16/2023] [Indexed: 08/04/2023] Open
Abstract
Neuronal impairment is a characteristic of Alzheimer's disease (AD), but its effect on neural activity dynamics underlying memory deficits is unclear. Here, we studied the effects of synaptic impairment on neural activities associated with memory recall, memory rescue, and learning a new memory, in an integrate-and-fire neuronal network. Our results showed that reducing connectivity decreases the neuronal synchronization of memory neurons and impairs memory recall performance. Although, slow-gamma stimulation rescued memory recall and slow-gamma oscillations, the rescue caused a side effect of activating mixed memories. During the learning of a new memory, reducing connectivity caused impairment in storing the new memory, but did not affect previously stored memories. We also explored the effects of other types of impairments including neuronal loss and excitation-inhibition imbalance and the rescue by general increase of excitability. Our results reveal potential computational mechanisms underlying the memory deficits caused by impairment in AD.
Collapse
Affiliation(s)
- Kwan Tung Li
- Department of Physics, Centre for Nonlinear Studies, Beijing–Hong Kong–Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong, China
- Research Center for Augmented Intelligence, Research Institute of Artificial Intelligence, Zhejiang Lab, Hangzhou 311100, China
| | - Daoyun Ji
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies, Beijing–Hong Kong–Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
21
|
Stroo E, Janssen L, Sin O, Hogewerf W, Koster M, Harkema L, Youssef SA, Beschorner N, Wolters AH, Bakker B, Becker L, Garrett L, Marschall S, Hoelter SM, Wurst W, Fuchs H, Gailus-Durner V, Hrabe de Angelis M, Thathiah A, Foijer F, van de Sluis B, van Deursen J, Jucker M, de Bruin A, Nollen EA. Deletion of SERF2 in mice delays embryonic development and alters amyloid deposit structure in the brain. Life Sci Alliance 2023; 6:e202201730. [PMID: 37130781 PMCID: PMC10155860 DOI: 10.26508/lsa.202201730] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/04/2023] Open
Abstract
In age-related neurodegenerative diseases, like Alzheimer's and Parkinson's, disease-specific proteins become aggregation-prone and form amyloid-like deposits. Depletion of SERF proteins ameliorates this toxic process in worm and human cell models for diseases. Whether SERF modifies amyloid pathology in mammalian brain, however, has remained unknown. Here, we generated conditional Serf2 knockout mice and found that full-body deletion of Serf2 delayed embryonic development, causing premature birth and perinatal lethality. Brain-specific Serf2 knockout mice, on the other hand, were viable, and showed no major behavioral or cognitive abnormalities. In a mouse model for amyloid-β aggregation, brain depletion of Serf2 altered the binding of structure-specific amyloid dyes, previously used to distinguish amyloid polymorphisms in the human brain. These results suggest that Serf2 depletion changed the structure of amyloid deposits, which was further supported by scanning transmission electron microscopy, but further study will be required to confirm this observation. Altogether, our data reveal the pleiotropic functions of SERF2 in embryonic development and in the brain and support the existence of modifying factors of amyloid deposition in mammalian brain, which offer possibilities for polymorphism-based interventions.
Collapse
Affiliation(s)
- Esther Stroo
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Leen Janssen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Olga Sin
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Wytse Hogewerf
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Mirjam Koster
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Liesbeth Harkema
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Sameh A Youssef
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Natalie Beschorner
- Department of Cellular Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Anouk Hg Wolters
- Department of Biomedical Sciences of Cells and Systems, University Medical Centre Groningen, Groningen, The Netherlands
| | - Bjorn Bakker
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Lore Becker
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Lilian Garrett
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Susan Marschall
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Sabine M Hoelter
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Technische Universität München, Freising-Weihenstephan, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Developmental Genetics, TUM School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
- Deutsches Institut für Neurodegenerative Erkrankungen (DZNE) Site Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Chair of Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Freising, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Amantha Thathiah
- VIB Center for the Biology of Disease, KU Leuven Center for Human Genetics, University of Leuven, Leuven, Belgium
- Department of Neurobiology, University of Pittsburgh Brain Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Bart van de Sluis
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Matthias Jucker
- Department of Cellular Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Alain de Bruin
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Ellen Aa Nollen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
22
|
Li W, Pang Y, Wang Y, Mei F, Guo M, Wei Y, Li X, Qin W, Wang W, Jia L, Jia J. Aberrant palmitoylation caused by a ZDHHC21 mutation contributes to pathophysiology of Alzheimer's disease. BMC Med 2023; 21:223. [PMID: 37365538 DOI: 10.1186/s12916-023-02930-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND The identification of pathogenic mutations in Alzheimer's disease (AD) causal genes led to a better understanding of the pathobiology of AD. Familial Alzheimer's disease (FAD) is known to be associated with mutations in the APP, PSEN1, and PSEN2 genes involved in Aβ production; however, these genetic defects occur in only about 10-20% of FAD cases, and more genes and new mechanism causing FAD remain largely obscure. METHODS We performed exome sequencing on family members with a FAD pedigree and identified gene variant ZDHHC21 p.T209S. A ZDHHC21T209S/T209S knock-in mouse model was then generated using CRISPR/Cas9. The Morris water navigation task was then used to examine spatial learning and memory. The involvement of aberrant palmitoylation of FYN tyrosine kinase and APP in AD pathology was evaluated using biochemical methods and immunostaining. Aβ and tau pathophysiology was evaluated using ELISA, biochemical methods, and immunostaining. Field recordings of synaptic long-term potentiation were obtained to examine synaptic plasticity. The density of synapses and dendritic branches was quantified using electron microscopy and Golgi staining. RESULTS We identified a variant (c.999A > T, p.T209S) of ZDHHC21 gene in a Han Chinese family. The proband presented marked cognitive impairment at 55 years of age (Mini-Mental State Examination score = 5, Clinical Dementia Rating = 3). Considerable Aβ retention was observed in the bilateral frontal, parietal, and lateral temporal cortices. The novel heterozygous missense mutation (p.T209S) was detected in all family members with AD and was not present in those unaffected, indicating cosegregation. ZDHHC21T209S/T209S mice exhibited cognitive impairment and synaptic dysfunction, suggesting the strong pathogenicity of the mutation. The ZDHHC21 p.T209S mutation significantly enhanced FYN palmitoylation, causing overactivation of NMDAR2B, inducing increased neuronal sensitivity to excitotoxicity leading to further synaptic dysfunction and neuronal loss. The palmitoylation of APP was also increased in ZDHHC21T209S/T209S mice, possibly contributing to Aβ production. Palmitoyltransferase inhibitors reversed synaptic function impairment. CONCLUSIONS ZDHHC21 p.T209S is a novel, candidate causal gene mutation in a Chinese FAD pedigree. Our discoveries strongly suggest that aberrant protein palmitoylation mediated by ZDHHC21 mutations is a new pathogenic mechanism of AD, warranting further investigations for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Wenwen Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yana Pang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yan Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Fan Mei
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Mengmeng Guo
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yiping Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Xinyue Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Wei Qin
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Wei Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China.
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China.
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China.
| |
Collapse
|
23
|
Suelves N, Saleki S, Ibrahim T, Palomares D, Moonen S, Koper MJ, Vrancx C, Vadukul DM, Papadopoulos N, Viceconte N, Claude E, Vandenberghe R, von Arnim CAF, Constantinescu SN, Thal DR, Decottignies A, Kienlen-Campard P. Senescence-related impairment of autophagy induces toxic intraneuronal amyloid-β accumulation in a mouse model of amyloid pathology. Acta Neuropathol Commun 2023; 11:82. [PMID: 37198698 DOI: 10.1186/s40478-023-01578-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/19/2023] Open
Abstract
Aging is the main risk factor for Alzheimer's disease (AD) and other neurodegenerative pathologies, but the molecular and cellular changes underlying pathological aging of the nervous system are poorly understood. AD pathology seems to correlate with the appearance of cells that become senescent due to the progressive accumulation of cellular insults causing DNA damage. Senescence has also been shown to reduce the autophagic flux, a mechanism involved in clearing damaged proteins from the cell, and such impairment has been linked to AD pathogenesis. In this study, we investigated the role of cellular senescence on AD pathology by crossing a mouse model of AD-like amyloid-β (Aβ) pathology (5xFAD) with a mouse model of senescence that is genetically deficient for the RNA component of the telomerase (Terc-/-). We studied changes in amyloid pathology, neurodegeneration, and the autophagy process in brain tissue samples and primary cultures derived from these mice by complementary biochemical and immunostaining approaches. Postmortem human brain samples were also processed to evaluate autophagy defects in AD patients. Our results show that accelerated senescence produces an early accumulation of intraneuronal Aβ in the subiculum and cortical layer V of 5xFAD mice. This correlates with a reduction in amyloid plaques and Aβ levels in connecting brain regions at a later disease stage. Neuronal loss was specifically observed in brain regions presenting intraneuronal Aβ and was linked to telomere attrition. Our results indicate that senescence affects intraneuronal Aβ accumulation by impairing autophagy function and that early autophagy defects can be found in the brains of AD patients. Together, these findings demonstrate the instrumental role of senescence in intraneuronal Aβ accumulation, which represents a key event in AD pathophysiology, and emphasize the correlation between the initial stages of amyloid pathology and defects in the autophagy flux.
Collapse
Affiliation(s)
- Nuria Suelves
- Aging and Dementia Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium
| | - Shirine Saleki
- Aging and Dementia Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium
| | - Tasha Ibrahim
- Aging and Dementia Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium
| | - Debora Palomares
- Aging and Dementia Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium
| | - Sebastiaan Moonen
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Vlaams Instituut Voor Biotechnologie (VIB) Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Marta J Koper
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Vlaams Instituut Voor Biotechnologie (VIB) Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Céline Vrancx
- Aging and Dementia Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium
- Laboratory for Membrane Trafficking, Department of Neurosciences, Vlaams Instituut Voor Biotechnologie (VIB) Center for Brain and Disease Research, KU Leuven, Leuven, Belgium
| | - Devkee M Vadukul
- Aging and Dementia Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Nicolas Papadopoulos
- Ludwig Institute for Cancer Research, Brussels, Belgium
- SIGN Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Nikenza Viceconte
- Genetic and Epigenetic Alterations of Genomes Unit, de Duve Institute, UCLouvain, Brussels, Belgium
- CENTOGENE GmbH, 18055, Rostock, Germany
| | - Eloïse Claude
- Genetic and Epigenetic Alterations of Genomes Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
- Department of Neurology, University Hospital Leuven, Leuven, Belgium
| | - Christine A F von Arnim
- Department of Neurology, University of Ulm, Ulm, Germany
- Department of Geriatrics, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan N Constantinescu
- Ludwig Institute for Cancer Research, Brussels, Belgium
- SIGN Unit, de Duve Institute, UCLouvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Brussels, Belgium
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, Oxford University, Oxford, UK
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Anabelle Decottignies
- Genetic and Epigenetic Alterations of Genomes Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Pascal Kienlen-Campard
- Aging and Dementia Group, Cellular and Molecular Division (CEMO), Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium.
| |
Collapse
|
24
|
Mabrouk R, Miettinen PO, Tanila H. Most dystrophic neurites in the common 5xFAD Alzheimer mouse model originate from axon terminals. Neurobiol Dis 2023; 182:106150. [PMID: 37172911 DOI: 10.1016/j.nbd.2023.106150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023] Open
Abstract
How dystrophic neurites form around amyloid plaques is a key aspect of understanding the early pathophysiology of Alzheimer's disease. At present, three hypotheses prevail: (1) dystrophies result from extracellular amyloid-beta (Aβ) toxicity; (2) dystrophies results from accumulation of Aβ into distal neurites; and (3) dystrophies represent blebbing of the somatic membrane of a neuron with high Aβ load. We utilized a unique feature of the common 5xFAD AD mouse model to test these hypotheses. Cortical layer 5 pyramidal neurons show intracellular APP and Aβ accumulation before amyloid plaque formation while dentate granule cells in these mice show no APP accumulation at any age. However, the dentate gyrus shows amyloid plaques by 3 months of age. By a careful confocal microscopic analysis we found no evidence of severe degeneration in amyloid laden layer 5 pyramidal neurons in contrast to hypothesis 3. Using injecting red fluorescent marker into lateral entorhinal projection neurons in 5xFAD mice with endogenous green fluorescent protein (GFP) in dentate granule cells we could demonstrate that all dystrophies is outer molecular layer originate from the axon terminal of entorhinal projection neurons. Immunostaining with vesicular glutamate transporter supported the axonal nature of the dystrophies in the acellular dentate molecular layer. We observed few small dystrophies in the GFP labeled granule cell dendrites. In general GFP labeled dendrites appear normal around the amyloid plaques. These findings favor hypothesis 2 as the most likely mechanism of dystrophic neurite formation.
Collapse
Affiliation(s)
- R Mabrouk
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - P O Miettinen
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - H Tanila
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
25
|
Watanabe-Nakayama T, Tsuji M, Umeda K, Oguchi T, Konno H, Noguchi-Shinohara M, Kiuchi Y, Kodera N, Teplow DB, Ono K. Structural Dynamics of Amyloid-β Protofibrils and Actions of Anti-Amyloid-β Antibodies as Observed by High-Speed Atomic Force Microscopy. NANO LETTERS 2023. [PMID: 37141711 DOI: 10.1021/acs.nanolett.3c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Amyloid-β (Aβ) aggregation intermediates, including oligomers and protofibrils (PFs), have attracted attention as neurotoxic aggregates in Alzheimer's disease. However, due to the complexity of the aggregation pathway, the structural dynamics of aggregation intermediates and how drugs act on them have not been clarified. Here we used high-speed atomic force microscopy to observe the structural dynamics of Aβ42 PF at the single-molecule level and the effect of lecanemab, an anti-Aβ PF antibody with the positive results from Phase 3 Clarity AD. PF was found to be a curved nodal structure with stable binding angle between individual nodes. PF was also a dynamic structure that associates with other PF molecules and undergoes intramolecular cleavage. Lecanemab remained stable in binding to PFs and to globular oligomers, inhibiting the formation of large aggregates. These results provide direct evidence for a mechanism by which antibody drugs interfere with the Aβ aggregation process.
Collapse
Affiliation(s)
- Takahiro Watanabe-Nakayama
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Mayumi Tsuji
- Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan
| | - Kenichi Umeda
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tatsunori Oguchi
- Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan
- Department of Pharmacology, Division of Medical Pharmacology, School of Medicine, Showa University, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Hiroki Konno
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Moeko Noguchi-Shinohara
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa University, 13-1, Takara-machi, Kanazawa 920-8640, Japan
| | - Yuji Kiuchi
- Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan
- Department of Pharmacology, Division of Medical Pharmacology, School of Medicine, Showa University, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - David B Teplow
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California, 635 Charles E. Young Drive South, Los Angeles, California 90095-7334, United States
| | - Kenjiro Ono
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa University, 13-1, Takara-machi, Kanazawa 920-8640, Japan
| |
Collapse
|
26
|
Célestine M, Jacquier-Sarlin M, Borel E, Petit F, Perot JB, Hérard AS, Bousset L, Buisson A, Dhenain M. Long term worsening of amyloid pathology, cerebral function, and cognition after a single inoculation of beta-amyloid seeds with Osaka mutation. Acta Neuropathol Commun 2023; 11:66. [PMID: 37087498 PMCID: PMC10122826 DOI: 10.1186/s40478-023-01559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/25/2023] [Indexed: 04/24/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by intracerebral deposition of abnormal proteinaceous assemblies made of amyloid-β (Aß) peptides or tau proteins. These peptides and proteins induce synaptic dysfunctions that are strongly correlated with cognitive decline. Intracerebral infusion of well-defined Aβ seeds from non-mutated Aβ1-40 or Aβ1-42 peptides can increase Aβ depositions several months after the infusion. Familial forms of AD are associated with mutations in the amyloid precursor protein (APP) that induce the production of Aβ peptides with different structures. The Aβ Osaka (Aβosa mutation (E693Δ)) is located within the Aβ sequence and thus the Aβosa peptides have different structures and properties as compared to non-mutated Aβ1-42 peptides (Aβwt). Here, we wondered if a single exposure to this mutated Aβ can worsen AD pathology as well as downstream events including cognition, cerebral connectivity and synaptic health several months after the inoculation. To answer this question we inoculated Aβ1-42-bearing Osaka mutation (Aβosa) in the dentate gyrus of APPswe/PS1dE9 mice at the age of two months. Their cognition and cerebral connectivity were analyzed at 4 months post-inoculation by behavioral evaluation and functional MRI. Aβ pathology as well as synaptic density were evaluated by histology. The impact of Aβosa peptides on synaptic health was also measured on primary cortical neurons. Remarkably, the intracerebral administration of Aβosa induced cognitive and synaptic impairments as well as a reduction of functional connectivity between different brain regions, 4 months post-inoculation. It increased Aβ plaque depositions and increased Aβ oligomers. This is the first study showing that a single, sporadic event as Aβosa inoculation can worsen the fate of the pathology and clinical outcome several months after the event. It suggests that a single inoculation of Aβ regulates a large cascade of events for a long time.
Collapse
Affiliation(s)
- Marina Célestine
- Laboratoire Des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, 18 Route du Panorama, 92265, Fontenay-Aux-Roses, France
- Commissariat À L'Energie Atomique Et Aux Énergies Alternatives (CEA), Direction de La Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Muriel Jacquier-Sarlin
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, GIN, 38000, Grenoble, France
| | - Eve Borel
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, GIN, 38000, Grenoble, France
| | - Fanny Petit
- Laboratoire Des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, 18 Route du Panorama, 92265, Fontenay-Aux-Roses, France
- Commissariat À L'Energie Atomique Et Aux Énergies Alternatives (CEA), Direction de La Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Jean-Baptiste Perot
- Laboratoire Des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, 18 Route du Panorama, 92265, Fontenay-Aux-Roses, France
- Commissariat À L'Energie Atomique Et Aux Énergies Alternatives (CEA), Direction de La Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Anne-Sophie Hérard
- Laboratoire Des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, 18 Route du Panorama, 92265, Fontenay-Aux-Roses, France
- Commissariat À L'Energie Atomique Et Aux Énergies Alternatives (CEA), Direction de La Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Luc Bousset
- Laboratoire Des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, 18 Route du Panorama, 92265, Fontenay-Aux-Roses, France
- Commissariat À L'Energie Atomique Et Aux Énergies Alternatives (CEA), Direction de La Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Alain Buisson
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, GIN, 38000, Grenoble, France
| | - Marc Dhenain
- Laboratoire Des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, 18 Route du Panorama, 92265, Fontenay-Aux-Roses, France.
- Commissariat À L'Energie Atomique Et Aux Énergies Alternatives (CEA), Direction de La Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France.
| |
Collapse
|
27
|
Martínez RAS, Pinky PD, Harlan BA, Brewer GJ. GTP energy dependence of endocytosis and autophagy in the aging brain and Alzheimer's disease. GeroScience 2023; 45:757-780. [PMID: 36622562 PMCID: PMC9886713 DOI: 10.1007/s11357-022-00717-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/15/2022] [Indexed: 01/10/2023] Open
Abstract
Increased interest in the aging and Alzheimer's disease (AD)-related impairments in autophagy in the brain raise important questions about regulation and treatment. Since many steps in endocytosis and autophagy depend on GTPases, new measures of cellular GTP levels are needed to evaluate energy regulation in aging and AD. The recent development of ratiometric GTP sensors (GEVALS) and findings that GTP levels are not homogenous inside cells raise new issues of regulation of GTPases by the local availability of GTP. In this review, we highlight the metabolism of GTP in relation to the Rab GTPases involved in formation of early endosomes, late endosomes, and lysosomal transport to execute the autophagic degradation of damaged cargo. Specific GTPases control macroautophagy (mitophagy), microautophagy, and chaperone-mediated autophagy (CMA). By inference, local GTP levels would control autophagy, if not in excess. Additional levels of control are imposed by the redox state of the cell, including thioredoxin involvement. Throughout this review, we emphasize the age-related changes that could contribute to deficits in GTP and AD. We conclude with prospects for boosting GTP levels and reversing age-related oxidative redox shift to restore autophagy. Therefore, GTP levels could regulate the numerous GTPases involved in endocytosis, autophagy, and vesicular trafficking. In aging, metabolic adaptation to a sedentary lifestyle could impair mitochondrial function generating less GTP and redox energy for healthy management of amyloid and tau proteostasis, synaptic function, and inflammation.
Collapse
Affiliation(s)
| | - Priyanka D. Pinky
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697 USA
| | - Benjamin A. Harlan
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697 USA
| | - Gregory J. Brewer
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697 USA
- Center for Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA 92697 USA
- MIND Institute, University of California Irvine, Irvine, CA 92697 USA
| |
Collapse
|
28
|
Victorino DB, Faber J, Pinheiro DJLL, Scorza FA, Almeida ACG, Costa ACS, Scorza CA. Toward the Identification of Neurophysiological Biomarkers for Alzheimer's Disease in Down Syndrome: A Potential Role for Cross-Frequency Phase-Amplitude Coupling Analysis. Aging Dis 2023; 14:428-449. [PMID: 37008053 PMCID: PMC10017148 DOI: 10.14336/ad.2022.0906] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Cross-frequency coupling (CFC) mechanisms play a central role in brain activity. Pathophysiological mechanisms leading to many brain disorders, such as Alzheimer's disease (AD), may produce unique patterns of brain activity detectable by electroencephalography (EEG). Identifying biomarkers for AD diagnosis is also an ambition among research teams working in Down syndrome (DS), given the increased susceptibility of people with DS to develop early-onset AD (DS-AD). Here, we review accumulating evidence that altered theta-gamma phase-amplitude coupling (PAC) may be one of the earliest EEG signatures of AD, and therefore may serve as an adjuvant tool for detecting cognitive decline in DS-AD. We suggest that this field of research could potentially provide clues to the biophysical mechanisms underlying cognitive dysfunction in DS-AD and generate opportunities for identifying EEG-based biomarkers with diagnostic and prognostic utility in DS-AD.
Collapse
Affiliation(s)
- Daniella B Victorino
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| | - Jean Faber
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| | - Daniel J. L. L Pinheiro
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| | - Fulvio A Scorza
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| | - Antônio C. G Almeida
- Department of Biosystems Engineering, Federal University of São João Del Rei, Minas Gerais, MG, Brazil.
| | - Alberto C. S Costa
- Division of Psychiatry, Case Western Reserve University, Cleveland, OH, United States.
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, United States.
| | - Carla A Scorza
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| |
Collapse
|
29
|
Liu P, Lapcinski IP, Shapiro SL, Kemper LJ, Ashe KH. Aβ*56 is a stable oligomer that correlates with age-related memory loss in Tg2576 mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533414. [PMID: 36993768 PMCID: PMC10055265 DOI: 10.1101/2023.03.20.533414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Amyloid-β (Aβ) oligomers consist of fibrillar and non-fibrillar soluble assemblies of the Aβ peptide. Tg2576 human amyloid precursor protein (APP)-expressing transgenic mice modeling Alzheimer's disease produce Aβ*56, a non-fibrillar Aβ assembly that has been shown by several groups to relate more closely to memory deficits than plaques. Previous studies did not decipher specific forms of Aβ present in Aβ*56. Here, we confirm and extend the biochemical characterization of Aβ*56. We used anti-Aβ(1-x), anti-Aβ(x-40), and A11 anti-oligomer antibodies in conjunction with western blotting, immunoaffinity purification, and size-exclusion chromatography to probe aqueous brain extracts from Tg2576 mice of different ages. We found that Aβ*56 is a ∼56-kDa, SDS-stable, A11-reactive, non-plaque-related, water-soluble, brain-derived oligomer containing canonical Aβ(1-40) that correlates with age-related memory loss. The unusual stability of this high molecular-weight oligomer renders it an attractive candidate for studying relationships between molecular structure and effects on brain function.
Collapse
|
30
|
Penke B, Szűcs M, Bogár F. New Pathways Identify Novel Drug Targets for the Prevention and Treatment of Alzheimer's Disease. Int J Mol Sci 2023; 24:5383. [PMID: 36982456 PMCID: PMC10049476 DOI: 10.3390/ijms24065383] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Alzheimer's disease (AD) is an incurable, progressive neurodegenerative disorder. AD is a complex and multifactorial disease that is responsible for 60-80% of dementia cases. Aging, genetic factors, and epigenetic changes are the main risk factors for AD. Two aggregation-prone proteins play a decisive role in AD pathogenesis: β-amyloid (Aβ) and hyperphosphorylated tau (pTau). Both of them form deposits and diffusible toxic aggregates in the brain. These proteins are the biomarkers of AD. Different hypotheses have tried to explain AD pathogenesis and served as platforms for AD drug research. Experiments demonstrated that both Aβ and pTau might start neurodegenerative processes and are necessary for cognitive decline. The two pathologies act in synergy. Inhibition of the formation of toxic Aβ and pTau aggregates has been an old drug target. Recently, successful Aβ clearance by monoclonal antibodies has raised new hopes for AD treatments if the disease is detected at early stages. More recently, novel targets, e.g., improvements in amyloid clearance from the brain, application of small heat shock proteins (Hsps), modulation of chronic neuroinflammation by different receptor ligands, modulation of microglial phagocytosis, and increase in myelination have been revealed in AD research.
Collapse
Affiliation(s)
- Botond Penke
- Department of Medical Chemistry, University of Szeged, Dóm Square 8, H-6720 Szeged, Hungary
| | - Mária Szűcs
- Department of Medical Chemistry, University of Szeged, Dóm Square 8, H-6720 Szeged, Hungary
| | - Ferenc Bogár
- ELKH-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network (ELKH), Dóm Square 8, H-6720 Szeged, Hungary
| |
Collapse
|
31
|
Selles MC, Fortuna JTS, Cercato MC, Santos LE, Domett L, Bitencourt ALB, Carraro MF, Souza AS, Janickova H, Azevedo CV, Campos HC, de Souza JM, Alves-Leon S, Prado VF, Prado MAM, Epstein AL, Salvetti A, Longo BM, Arancio O, Klein WL, Sebollela A, De Felice FG, Jerusalinsky DA, Ferreira ST. AAV-mediated neuronal expression of an scFv antibody selective for Aβ oligomers protects synapses and rescues memory in Alzheimer models. Mol Ther 2023; 31:409-419. [PMID: 36369741 PMCID: PMC9931599 DOI: 10.1016/j.ymthe.2022.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
Abstract
The accumulation of soluble oligomers of the amyloid-β peptide (AβOs) in the brain has been implicated in synapse failure and memory impairment in Alzheimer's disease. Here, we initially show that treatment with NUsc1, a single-chain variable-fragment antibody (scFv) that selectively targets a subpopulation of AβOs and shows minimal reactivity to Aβ monomers and fibrils, prevents the inhibition of long-term potentiation in hippocampal slices and memory impairment induced by AβOs in mice. As a therapeutic approach for intracerebral antibody delivery, we developed an adeno-associated virus vector to drive neuronal expression of NUsc1 (AAV-NUsc1) within the brain. Transduction by AAV-NUsc1 induced NUsc1 expression and secretion in adult human brain slices and inhibited AβO binding to neurons and AβO-induced loss of dendritic spines in primary rat hippocampal cultures. Treatment of mice with AAV-NUsc1 prevented memory impairment induced by AβOs and, remarkably, reversed memory deficits in aged APPswe/PS1ΔE9 Alzheimer's disease model mice. These results support the feasibility of immunotherapy using viral vector-mediated gene delivery of NUsc1 or other AβO-specific single-chain antibodies as a potential therapeutic approach in Alzheimer's disease.
Collapse
Affiliation(s)
- Maria Clara Selles
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Skirball Institute for Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Juliana T S Fortuna
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Magali C Cercato
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biología Celular y Neurociencia "Profesor Eduardo De Robertis," Universidad de Buenos Aires/CONICET, Buenos Aires 1121, Argentina
| | - Luis Eduardo Santos
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Luciana Domett
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Andre L B Bitencourt
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, Brazil
| | - Mariane Favero Carraro
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, Brazil
| | - Amanda S Souza
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Helena Janickova
- Department of Physiology & Pharmacology and Department of Anatomy & Cell Biology, Robarts Research Institute, The University of Western Ontario, London, ON N6A 5K8, Canada
| | - Caroline Vieira Azevedo
- Laboratório de Neurofisiologia, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo 05508-000, Brazil
| | - Henrique Correia Campos
- Laboratório de Neurofisiologia, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo 05508-000, Brazil
| | - Jorge M de Souza
- Division of Neurosurgery and Division of Neurology/Epilepsy Program, Clementino Fraga Filho University Hospital, Rio de Janeiro 21941-617, Brazil
| | - Soniza Alves-Leon
- Division of Neurosurgery and Division of Neurology/Epilepsy Program, Clementino Fraga Filho University Hospital, Rio de Janeiro 21941-617, Brazil
| | - Vania F Prado
- Department of Physiology & Pharmacology and Department of Anatomy & Cell Biology, Robarts Research Institute, The University of Western Ontario, London, ON N6A 5K8, Canada
| | - Marco A M Prado
- Department of Physiology & Pharmacology and Department of Anatomy & Cell Biology, Robarts Research Institute, The University of Western Ontario, London, ON N6A 5K8, Canada
| | - Alberto L Epstein
- UMR INSERM U1179-UVSQ, Université de Versailles Saint Quentin en Yvelines, 78180 Montigny-le-Bretonneux, France
| | - Anna Salvetti
- CIRI - Centre International de Recherche en Infectiologie, University of Lyon, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR5308, ENS Lyon, 69007 Lyon, France
| | - Beatriz Monteiro Longo
- Laboratório de Neurofisiologia, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo 05508-000, Brazil
| | - Ottavio Arancio
- Department of Pathology and Cell Biology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
| | - William L Klein
- Department of Neurobiology, Northwestern University, Evanston, IL 60201, USA
| | - Adriano Sebollela
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Centre for Neuroscience Studies, Department of Molecular and Biomedical Sciences & Department of Psychiatry, Queen's University, Kingston, ON K7L 3N6, Canada; D'Or Institute for Research and Education, Rio de Janeiro 22281-100, Brazil
| | - Diana A Jerusalinsky
- Laboratorio de Neuroplasticidad y Neurotoxinas, Instituto de Biología Celular y Neurociencia "Profesor Eduardo De Robertis," Universidad de Buenos Aires/CONICET, Buenos Aires 1121, Argentina
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; D'Or Institute for Research and Education, Rio de Janeiro 22281-100, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-170, Brazil.
| |
Collapse
|
32
|
Amano A, Sanjo N, Araki W, Anraku Y, Nakakido M, Matsubara E, Tomiyama T, Nagata T, Tsumoto K, Kataoka K, Yokota T. Peripheral administration of nanomicelle-encapsulated anti-Aβ oligomer fragment antibody reduces various toxic Aβ species in the brain. J Nanobiotechnology 2023; 21:36. [PMID: 36721182 PMCID: PMC9888736 DOI: 10.1186/s12951-023-01772-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 01/07/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Although a large amount of evidence has revealed that amyloid β (Aβ), especially Aβ oligomers, protofibrils, and pyroglutamated Aβs, participate primarily in the pathophysiological processes of Alzheimer's disease, most clinical trials of anti-Aβ antibody therapy have never acquired successful efficacy in human clinical trials, partly because peripheral administration of antibody medications was unable to deliver sufficient amounts of the molecules to the brain. Recently, we developed polymeric nanomicelles capable of passing through the blood-brain barrier that function as chaperones to deliver larger amounts of heavy molecules to the brain. Herein, we aimed to evaluate the efficacy of newly developed antibody 6H4 fragments specific to Aβ oligomers encapsulated in polymeric nanomicelles on the development of Alzheimer's disease pathology in Alzheimer's disease model mice at the age of emergence of early Alzheimer's disease pathology. RESULTS During the 10-week administration of 6H4 antibody fragments in polymeric nanomicelles, a significant reduction in the amounts of various toxic Aβ species, such as Aβ oligomers, toxic Aβ conformers, and pyroglutamated Aβs in the brain was observed. In addition, immunohistochemistry indicated inhibition of diameters of Aβ plaques, Aβ-antibody immunoreactive areas, and also plaque core formation. Behavioral analysis of the mice model revealed that the 6H4 fragments-polymeric nanomicelle group was significantly better at maintaining long-term spatial reference memory in the probe and platform tests of the water maze, thereby indicating inhibition of the pathophysiological process of Alzheimer's disease. CONCLUSIONS The results indicated that the strategy of reducing toxic Aβ species in early dementia owing to Alzheimer's disease by providing sufficient antibodies in the brain may modify Alzheimer's disease progression.
Collapse
Affiliation(s)
- Akiko Amano
- grid.265073.50000 0001 1014 9130Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Nobuo Sanjo
- grid.265073.50000 0001 1014 9130Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Wataru Araki
- grid.265073.50000 0001 1014 9130Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Yasutaka Anraku
- grid.26999.3d0000 0001 2151 536XDepartment of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan ,grid.493442.c0000 0004 5936 3316Innovation Center of Nano Medicine, Kawasaki Institute of Industrial Promotion, Kanagawa, Japan
| | - Makoto Nakakido
- grid.26999.3d0000 0001 2151 536XDepartment of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Etsuro Matsubara
- grid.412334.30000 0001 0665 3553Department of Neurology, Oita University, Oita, Japan
| | - Takami Tomiyama
- grid.258799.80000 0004 0372 2033Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Tetsuya Nagata
- grid.265073.50000 0001 1014 9130Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Kouhei Tsumoto
- grid.26999.3d0000 0001 2151 536XDepartment of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XThe Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazunori Kataoka
- grid.493442.c0000 0004 5936 3316Innovation Center of Nano Medicine, Kawasaki Institute of Industrial Promotion, Kanagawa, Japan
| | - Takanori Yokota
- grid.265073.50000 0001 1014 9130Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510 Japan
| |
Collapse
|
33
|
Maki T, Sawahata M, Akutsu I, Amaike S, Hiramatsu G, Uta D, Izuo N, Shimizu T, Irie K, Kume T. APP Knock-In Mice Produce E22P-Aβ Exhibiting an Alzheimer's Disease-like Phenotype with Dysregulation of Hypoxia-Inducible Factor Expression. Int J Mol Sci 2022; 23:13259. [PMID: 36362046 PMCID: PMC9654501 DOI: 10.3390/ijms232113259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 10/13/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that requires further pathological elucidation to establish effective treatment strategies. We previously showed that amyloid β (Aβ) toxic conformer with a turn at positions 22-23 is essential for forming highly toxic oligomers. In the present study, we evaluated phenotypic changes with aging in AD model AppNL-P-F/NL-P-F (NL-P-F) mice with Swedish mutation (NL), Iberian mutation (F), and mutation (P) overproducing E22P-Aβ, a mimic of toxic conformer utilizing the knock-in technique. Furthermore, the role of the toxic conformer in AD pathology was investigated. NL-P-F mice produced soluble toxic conformers from an early age. They showed impaired synaptic plasticity, glial cell activation, and cognitive decline, followed by the accumulation of Aβ plaques and tau hyperphosphorylation. In addition, the protein expression of hypoxia-inducible factor (HIF)-1α was increased, and gene expression of HIF-3α was decreased in NL-P-F mice. HIF dysregulation due to the production of soluble toxic conformers may be involved in AD pathology in NL-P-F mice. This study could reveal the role of a highly toxic Aβ on AD pathogenesis, thereby contributing to the development of a novel therapeutic strategy targeting the toxic conformer.
Collapse
Affiliation(s)
- Takahito Maki
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Masahito Sawahata
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Ichiro Akutsu
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Shohei Amaike
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Genki Hiramatsu
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Daisuke Uta
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Naotaka Izuo
- Department of Pharmaceutical Therapy and Neuropharmacology, Graduate School of Medical and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Takahiko Shimizu
- Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University Kitashirakawa-Oiwake-Cho, Kyoto 606-8502, Japan
| | - Toshiaki Kume
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
34
|
Mu L, Xia D, Cai J, Gu B, Liu X, Friedman V, Liu QS, Zhao L. Treadmill Exercise Reduces Neuroinflammation, Glial Cell Activation and Improves Synaptic Transmission in the Prefrontal Cortex in 3 × Tg-AD Mice. Int J Mol Sci 2022; 23:12655. [PMID: 36293516 PMCID: PMC9604030 DOI: 10.3390/ijms232012655] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Physical exercise improves memory and cognition in physiological aging and Alzheimer's disease (AD), but the mechanisms remain poorly understood. Here, we test the hypothesis that Aβ oligomer accumulation, neuroinflammation, and glial cell activation may lead to disruption of synaptic transmission in the prefrontal cortex of 3 × Tg-AD Mice, resulting in impairment of learning and memory. On the other hand, treadmill exercise could prevent the pathogenesis and exert neuroprotective effects. Here, we used immunohistochemistry, western blotting, enzyme-linked immunosorbent assay, and slice electrophysiology to analyze the levels of GSK3β, Aβ oligomers (Aβ dimers and trimers), pro-inflammatory cytokines (IL-1β, IL-6, and TNFα), the phosphorylation of CRMP2 at Thr514, and synaptic currents in pyramidal neurons in the prefrontal cortex. We show that 12-week treadmill exercise beginning in three-month-old mice led to the inhibition of GSK3β kinase activity, decreases in the levels of Aβ oligomers, pro-inflammatory cytokines (IL-1β, IL-6, and TNFα), and the phosphorylation of CRMP2 at Thr514, reduction of microglial and astrocyte activation, and improvement of excitatory and inhibitory synaptic transmission of pyramidal neurons in the prefrontal cortex of 3 × Tg-AD Mice. Thus, treadmill exercise reduces neuroinflammation, glial cell activation and improves synaptic transmission in the prefrontal cortex in 3 × Tg-AD mice, possibly related to the inhibition of GSK3β kinase activity.
Collapse
Affiliation(s)
- Lianwei Mu
- Department of Exercise Physiology, Guangzhou Sport University, Guangzhou 510500, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Dongdong Xia
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
| | - Jiajia Cai
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
| | - Boya Gu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
| | - Xiaojie Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Vladislav Friedman
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Qing-Song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Li Zhao
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
35
|
Limone A, Veneruso I, D'Argenio V, Sarnataro D. Endosomal trafficking and related genetic underpinnings as a hub in Alzheimer's disease. J Cell Physiol 2022; 237:3803-3815. [PMID: 35994714 DOI: 10.1002/jcp.30864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/13/2022] [Accepted: 08/08/2022] [Indexed: 01/07/2023]
Abstract
Genetic studies support the amyloid cascade as the leading hypothesis for the pathogenesis of Alzheimer's disease (AD). Although significant efforts have been made in untangling the amyloid and other pathological events in AD, ongoing interventions for AD have not been revealed efficacious for slowing down disease progression. Recent advances in the field of genetics have shed light on the etiology of AD, identifying numerous risk genes associated with late-onset AD, including genes related to intracellular endosomal trafficking. Some of the bases for the development of AD may be explained by the recently emerging AD genetic "hubs," which include the processing pathway of amyloid precursor protein and the endocytic pathway. The endosomal genetic hub may represent a common pathway through which many pathological effects can be mediated and novel, alternative biological targets could be identified for therapeutic interventions. The aim of this review is to focus on the genetic and biological aspects of the endosomal compartments related to AD progression. We report recent studies which describe how changes in endosomal genetics impact on functional events, such as the amyloidogenic and non-amyloidogenic processing, degradative pathways, and the importance of receptors related to endocytic trafficking, including the 37/67 kDa laminin-1 receptor ribosomal protein SA, and their implications for neurodegenerative diseases.
Collapse
Affiliation(s)
- Adriana Limone
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Napoli, Italy
| | - Iolanda Veneruso
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Napoli, Italy.,CEINGE-Biotecnologie Avanzate, Napoli, Italy
| | - Valeria D'Argenio
- CEINGE-Biotecnologie Avanzate, Napoli, Italy.,Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, Roma, Italy
| | - Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Napoli, Italy
| |
Collapse
|
36
|
Zieneldien T, Kim J, Sawmiller D, Cao C. The Immune System as a Therapeutic Target for Alzheimer’s Disease. Life (Basel) 2022; 12:life12091440. [PMID: 36143476 PMCID: PMC9506058 DOI: 10.3390/life12091440] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is a heterogeneous neurodegenerative disorder and is the most common cause of dementia. Furthermore, aging is considered the most critical risk factor for AD. However, despite the vast amount of research and resources allocated to the understanding and development of AD treatments, setbacks have been more prominent than successes. Recent studies have shown that there is an intricate connection between the immune and central nervous systems, which can be imbalanced and thereby mediate neuroinflammation and AD. Thus, this review examines this connection and how it can be altered with AD. Recent developments in active and passive immunotherapy for AD are also discussed as well as suggestions for improving these therapies moving forward.
Collapse
Affiliation(s)
- Tarek Zieneldien
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Janice Kim
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Darrell Sawmiller
- MegaNano BioTech, Inc., 3802 Spectrum Blvd. Suite 122, Tampa, FL 33612, USA
| | - Chuanhai Cao
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
- USF-Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33613, USA
- Correspondence:
| |
Collapse
|
37
|
Goel P, Chakrabarti S, Goel K, Bhutani K, Chopra T, Bali S. Neuronal cell death mechanisms in Alzheimer's disease: An insight. Front Mol Neurosci 2022; 15:937133. [PMID: 36090249 PMCID: PMC9454331 DOI: 10.3389/fnmol.2022.937133] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Regulated cell death (RCD) is an ordered and tightly orchestrated set of changes/signaling events in both gene expression and protein activity and is responsible for normal development as well as maintenance of tissue homeostasis. Aberrant activation of this pathway results in cell death by various mechanisms including apoptosis, necroptosis, pyroptosis, ferroptosis, and autophagy-dependent cell death. Such pathological changes in neurons alone or in combination have been observed in the pathogenesis of various neurodegenerative diseases including Alzheimer's disease (AD). Pathological hallmarks of AD focus primarily on the accumulation of two main protein markers: amyloid β peptides and abnormally phosphorylated tau proteins. These protein aggregates result in the formation of A-β plaques and neuro-fibrillary tangles (NFTs) and induce neuroinflammation and neurodegeneration over years to decades leading to a multitude of cognitive and behavioral deficits. Autopsy findings of AD reveal massive neuronal death manifested in the form of cortical volume shrinkage, reduction in sizes of gyri to up to 50% and an increase in the sizes of sulci. Multiple forms of cell death have been recorded in neurons from different studies conducted so far. However, understanding the mechanism/s of neuronal cell death in AD patients remains a mystery as the trigger that results in aberrant activation of RCD is unknown and because of the limited availability of dying neurons. This review attempts to elucidate the process of Regulated cell death, how it gets unregulated in response to different intra and extracellular stressors, various forms of unregulated cell death, their interplay and their role in pathogenesis of Alzheimer's Disease in both human and experimental models of AD. Further we plan to explore the correlation of both amyloid-beta and Tau with neuronal loss as seen in AD.
Collapse
Affiliation(s)
- Parul Goel
- Department of Biochemistry, Shri Atal Bihari Vajpayee Government Medical College Chhainsa, Faridabad, India
| | - Sasanka Chakrabarti
- Department of Biochemistry, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | - Kapil Goel
- Department of Community Medicine and School of Public Health, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Karanpreet Bhutani
- Department of Biochemistry, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | - Tanya Chopra
- Department of Biochemistry, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | - Sharadendu Bali
- Department of Surgery, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| |
Collapse
|
38
|
Recombinant Integrin β1 Signal Peptide Blocks Gliosis Induced by Aβ Oligomers. Int J Mol Sci 2022; 23:ijms23105747. [PMID: 35628557 PMCID: PMC9146559 DOI: 10.3390/ijms23105747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/27/2023] Open
Abstract
Glial cells participate actively in the early cognitive decline in Alzheimer’s disease (AD) pathology. In fact, recent studies have found molecular and functional abnormalities in astrocytes and microglia in both animal models and brains of patients suffering from this pathology. In this regard, reactive gliosis intimately associated with amyloid plaques has become a pathological hallmark of AD. A recent study from our laboratory reports that astrocyte reactivity is caused by a direct interaction between amyloid beta (Aβ) oligomers and integrin β1. Here, we have generated four recombinant peptides including the extracellular domain of integrin β1, and evaluated their capacity both to bind in vitro to Aβ oligomers and to prevent in vivo Aβ oligomer-induced gliosis and endoplasmic reticulum stress. We have identified the minimal region of integrin β1 that binds to Aβ oligomers. This region is called signal peptide and corresponds to the first 20 amino acids of the integrin β1 N-terminal domain. This recombinant integrin β1 signal peptide prevented Aβ oligomer-induced ROS generation in primary astrocyte cultures. Furthermore, we carried out intrahippocampal injection in adult mice of recombinant integrin β1 signal peptide combined with or without Aβ oligomers and we evaluated by immunohistochemistry both astrogliosis and microgliosis as well as endoplasmic reticulum stress. The results show that recombinant integrin β1 signal peptide precluded both astrogliosis and microgliosis and endoplasmic reticulum stress mediated by Aβ oligomers in vivo. We have developed a molecular tool that blocks the activation of the molecular cascade that mediates gliosis via Aβ oligomer/integrin β1 signaling.
Collapse
|
39
|
Guo C, Wen D, Zhang Y, Mustaklem R, Mustaklem B, Zhou M, Ma T, Ma YY. Amyloid-β oligomers in the nucleus accumbens decrease motivation via insertion of calcium-permeable AMPA receptors. Mol Psychiatry 2022; 27:2146-2157. [PMID: 35105968 PMCID: PMC9133055 DOI: 10.1038/s41380-022-01459-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/31/2021] [Accepted: 01/18/2022] [Indexed: 12/17/2022]
Abstract
It is essential to identify the neuronal mechanisms of Alzheimer's Disease (AD)-associated neuropsychiatric symptoms, e.g., apathy, before improving the life quality of AD patients. Here, we focused on the nucleus accumbens (NAc), a critical brain region processing motivation, also known to display AD-associated pathological changes in human cases. We found that the synaptic calcium permeable (CP)-AMPA receptors (AMPARs), which are normally absent in the NAc, can be revealed by acute exposure to Aβ oligomers (AβOs), and play a critical role in the emergence of synaptic loss and motivation deficits. Blockade of NAc CP-AMPARs can effectively prevent AβO-induced downsizing and pruning of spines and silencing of excitatory synaptic transmission. We conclude that AβO-triggered synaptic insertion of CP-AMPARs is a key mechanism mediating synaptic degeneration in AD, and preserving synaptic integrity may prevent or delay the onset of AD-associated psychiatric symptoms.
Collapse
Affiliation(s)
- Changyong Guo
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Di Wen
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yihong Zhang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Richie Mustaklem
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Basil Mustaklem
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Miou Zhou
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Tao Ma
- Department of Internal Medicine-Gerontology and Geriatric Medicine; Department of Physiology and Pharmacology; Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Yao-Ying Ma
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
40
|
PCSK9 acts as a key regulator of Aβ clearance across the blood-brain barrier. Cell Mol Life Sci 2022; 79:212. [PMID: 35344086 PMCID: PMC8960591 DOI: 10.1007/s00018-022-04237-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 12/18/2022]
Abstract
Despite the neurodegenerative disorder Alzheimer's disease (AD) is the most common form of dementia in late adult life, there is currently no therapy available to prevent the onset or slow down the progression of AD. The progressive cognitive decline in AD correlates with a successive accumulation of cerebral amyloid-β (Aβ) due to impaired clearance mechanisms. A significant percentage is removed by low-density lipoprotein receptor-related protein 1 (LRP1)-mediated transport across the blood-brain barrier (BBB) into the periphery. Circulating proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to members of the low-density lipoprotein receptor protein family at the cell surface and targets them for lysosomal degradation, which reduces the number of functional receptors. However, the adverse impact of PCSK9 on LRP1-mediated brain Aβ clearance remains elusive. By using an established BBB model, we identified reduced LRP1-mediated brain-to-blood Aβ clearance due to PCSK9 across different endothelial monolayer in vitro. Consequently, the repetitive application of FDA-approved monoclonal anti-PCSK9 antibodies into 5xFAD mice decreased the cerebral Aβ burden across variants and aggregation state, which was not reproducible in brain endothelial-specific LRP1-/- 5xFAD mice. The peripheral PCSK9 inhibition reduced Aβ pathology in prefrontal cortex and hippocampus-brain areas critically involved in memory processing-and prevented disease-related impairment in hippocampus-dependent memory formation. Our data suggest that peripheral inhibition of PCSK9 by already available therapeutic antibodies may be a novel and easily applicable potential AD treatment.
Collapse
|
41
|
Peripheral Aβ acts as a negative modulator of insulin secretion. Proc Natl Acad Sci U S A 2022; 119:e2117723119. [PMID: 35290109 PMCID: PMC8944757 DOI: 10.1073/pnas.2117723119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cerebral accumulation of amyloid β (Aβ) is a hallmark of Alzheimer’s disease (AD). While type 2 diabetes mellitus is known to be a risk factor for AD, the underlying mechanisms remain unclear. In the present study, we demonstrate that plasma Aβ is produced from glucose- and insulin-susceptible peripheral tissues, such as the pancreas, adipose tissues, skeletal muscles, and liver, to inhibit insulin secretion from islet β-cells. Our findings suggest a physiological role of peripheral Aβ in glucose and insulin metabolism and a possible mechanism linking diabetes to AD. In addition, although plasma Aβ levels are currently used as a diagnostic biomarker of AD, our data suggest they should be used with caution. Type 2 diabetes mellitus is known to be a risk factor for Alzheimer’s disease (AD), but the underlying mechanisms remain unclear. In AD, the cerebral accumulation of amyloid β (Aβ) triggers a pathological cascade leading to neurodegeneration. Plasma Aβ levels are thought to reflect the brain amyloid pathology and currently used as a diagnostic biomarker of AD. However, amyloid precursor protein and Aβ-generating enzymes, β- and γ-secretases, are widely expressed in various peripheral tissues. Previous reports have shown that glucose and insulin loading cause a transient increase of plasma Aβ in mice and humans. These findings led us to speculate that plasma Aβ is produced from glucose- and insulin-susceptible peripheral tissues to play a role in glucose and insulin metabolism. To test this hypothesis, we investigated the effects of glucose and insulin on Aβ secretion and the effect of Aβ on insulin secretion in vivo, ex vivo, and in vitro. Aβ was found to be secreted from β-cells of the pancreas along with insulin upon glucose stimulation. Upon insulin stimulation, Aβ was secreted from cells of insulin-targeted organs, such as adipose tissues, skeletal muscles, and the liver, along with their organokines. Furthermore, Aβ inhibited the glucose-triggered insulin secretion from β-cells, slowing down glucose clearance from the blood. These results suggest that peripheral Aβ acts as a negative modulator of insulin secretion. Our findings provide a possible mechanism linking diabetes to AD and call attention to how plasma Aβ levels are used in AD diagnosis.
Collapse
|
42
|
Mrdenovic D, Pieta IS, Nowakowski R, Kutner W, Lipkowski J, Pieta P. Amyloid β interaction with model cell membranes - What are the toxicity-defining properties of amyloid β? Int J Biol Macromol 2022; 200:520-531. [PMID: 35074328 DOI: 10.1016/j.ijbiomac.2022.01.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 01/26/2023]
Abstract
Disruption of the neuronal membrane by toxic amyloid β oligomers is hypothesized to be the major event associated with Alzheimer's disease's neurotoxicity. Misfolding of amyloid β is followed by aggregation via different pathways in which structurally different amyloid β oligomers can be formed. The respective toxic actions of these structurally diverse oligomers can vary significantly. Linking a particular toxic action to a structurally unique kind of amyloid β oligomers and resolving their toxicity-determining feature remains challenging because of their transient stability and heterogeneity. Moreover, the lipids that make up the membrane affect amyloid β oligomers' behavior, thus adding to the problem's complexity. The present review compares and analyzes the latest results to improve understanding of amyloid β oligomers' interaction with lipid bilayers.
Collapse
Affiliation(s)
- Dusan Mrdenovic
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Izabela S Pieta
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Robert Nowakowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; Faculty of Mathematics and Natural Sciences, School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-815 Warsaw, Poland
| | - Jacek Lipkowski
- Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Piotr Pieta
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
43
|
Bartley SC, Proctor MT, Xia H, Ho E, Kang DS, Schuster K, Bicca MA, Seckler HS, Viola KL, Patrie SM, Kelleher NL, De Mello FG, Klein WL. An Essential Role for Alzheimer’s-Linked Amyloid Beta Oligomers in Neurodevelopment: Transient Expression of Multiple Proteoforms during Retina Histogenesis. Int J Mol Sci 2022; 23:ijms23042208. [PMID: 35216328 PMCID: PMC8875314 DOI: 10.3390/ijms23042208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/04/2022] Open
Abstract
Human amyloid beta peptide (Aβ) is a brain catabolite that at nanomolar concentrations can form neurotoxic oligomers (AβOs), which are known to accumulate in Alzheimer’s disease. Because a predisposition to form neurotoxins seems surprising, we have investigated whether circumstances might exist where AβO accumulation may in fact be beneficial. Our investigation focused on the embryonic chick retina, which expresses the same Aβ as humans. Using conformation-selective antibodies, immunoblots, mass spectrometry, and fluorescence microscopy, we discovered that AβOs are indeed present in the developing retina, where multiple proteoforms are expressed in a highly regulated cell-specific manner. The expression of the AβO proteoforms was selectively associated with transiently expressed phosphorylated Tau (pTau) proteoforms that, like AβOs, are linked to Alzheimer’s disease (AD). To test whether the AβOs were functional in development, embryos were cultured ex ovo and then injected intravitreally with either a beta-site APP-cleaving enzyme 1 (BACE-1) inhibitor or an AβO-selective antibody to prematurely lower the levels of AβOs. The consequence was disrupted histogenesis resulting in dysplasia resembling that seen in various retina pathologies. We suggest the hypothesis that embryonic AβOs are a new type of short-lived peptidergic hormone with a role in neural development. Such a role could help explain why a peptide that manifests deleterious gain-of-function activity when it oligomerizes in the aging brain has been evolutionarily conserved.
Collapse
Affiliation(s)
- Samuel C. Bartley
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA; (S.C.B.); (M.T.P.); (H.X.); (E.H.); (D.S.K.); (K.S.); (M.A.B.); (K.L.V.)
| | - Madison T. Proctor
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA; (S.C.B.); (M.T.P.); (H.X.); (E.H.); (D.S.K.); (K.S.); (M.A.B.); (K.L.V.)
| | - Hongjie Xia
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA; (S.C.B.); (M.T.P.); (H.X.); (E.H.); (D.S.K.); (K.S.); (M.A.B.); (K.L.V.)
| | - Evelyn Ho
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA; (S.C.B.); (M.T.P.); (H.X.); (E.H.); (D.S.K.); (K.S.); (M.A.B.); (K.L.V.)
| | - Dong S. Kang
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA; (S.C.B.); (M.T.P.); (H.X.); (E.H.); (D.S.K.); (K.S.); (M.A.B.); (K.L.V.)
| | - Kristen Schuster
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA; (S.C.B.); (M.T.P.); (H.X.); (E.H.); (D.S.K.); (K.S.); (M.A.B.); (K.L.V.)
| | - Maíra A. Bicca
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA; (S.C.B.); (M.T.P.); (H.X.); (E.H.); (D.S.K.); (K.S.); (M.A.B.); (K.L.V.)
| | - Henrique S. Seckler
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA; (H.S.S.); (S.M.P.)
| | - Kirsten L. Viola
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA; (S.C.B.); (M.T.P.); (H.X.); (E.H.); (D.S.K.); (K.S.); (M.A.B.); (K.L.V.)
| | - Steven M. Patrie
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA; (H.S.S.); (S.M.P.)
| | - Neil L. Kelleher
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA;
| | - Fernando G. De Mello
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - William L. Klein
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA; (S.C.B.); (M.T.P.); (H.X.); (E.H.); (D.S.K.); (K.S.); (M.A.B.); (K.L.V.)
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University, Chicago, IL 60611, USA
- Correspondence: ; Tel.: +1-847-591-5510
| |
Collapse
|
44
|
Matsushima Y, Irie Y, Kageyama Y, Bellier JP, Tooyama I, Maki T, Kume T, Yanagita RC, Irie K. Structure optimization of the toxic conformation model of amyloid β42 by intramolecular disulfide bond formation. Chembiochem 2022; 23:e202200029. [PMID: 35165998 DOI: 10.1002/cbic.202200029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/14/2022] [Indexed: 11/07/2022]
Abstract
Amyloid β (Aβ) oligomers play a critical role in the pathology of Alzheimer's disease. Recently, we reported that a conformation-restricted Aβ42 with an intramolecular disulfide bond through cysteine residues at positions 17/28 formed stable oligomers with potent cytotoxicity. To further optimize this compound as a toxic conformer model, we synthesized three analogs with a combination of cysteine and homocysteine at positions 17/28. The analogs with Cys-Cys, Cys-homoCys, or homoCys-Cys, but not the homoCys-homoCys analog, exhibited potent cytotoxicity against SH-SY5Y and THP-1 cells even at 10 nM. In contrast, the cytotoxicity of conformation-restricted analogs at positions 16/29 or 18/27 was significantly weaker than that of wild-type Aβ42. Furthermore, a thioflavin-T assay, non-denaturing gel electrophoresis, and morphological study suggested that the majority of these conformation-restricted analogs existed in an oligomeric state in cell culture medium, indicating that the toxic conformation of Aβ42, rather than the oligomeric state, is essential to induce cytotoxicity.
Collapse
Affiliation(s)
- Yuka Matsushima
- Kyoto University Graduate School of Agriculture Faculty of Agriculture: Kyoto Daigaku Nogaku Kenkyuka Nogakubu, Division of Food Science and Biotechnology, JAPAN
| | - Yumi Irie
- Kyoto University Graduate School of Agriculture Faculty of Agriculture: Kyoto Daigaku Nogaku Kenkyuka Nogakubu, Division of Food Science and Biotechnology, JAPAN
| | - Yusuke Kageyama
- Shiga University of Medical Science: Shiga Ika Daigaku, Molecular Neuroscience Research Center, JAPAN
| | - Jean-Pierre Bellier
- Shiga University of Medical Science: Shiga Ika Daigaku, Molecular Neuroscience Research Center, JAPAN
| | - Ikuo Tooyama
- Shiga University of Medical Science: Shiga Ika Daigaku, Molecular Neuroscience Research Center, JAPAN
| | - Takahito Maki
- University of Toyama: Toyama Daigaku, Department of Applied Pharmacology, JAPAN
| | - Toshiaki Kume
- University of Toyama: Toyama Daigaku, Department of Applied Pharmacology, JAPAN
| | - Ryo C Yanagita
- Kagawa University Faculty of Agriculture Graduate School of Agriculture: Kagawa Daigaku Nogakubu Daigakuin Nogaku Kenkyuka, Department of Applied Biological Sciences, JAPAN
| | - Kazuhiro Irie
- Kyoto University Graduate School of Agriculture Faculty of Agriculture: Kyoto Daigaku Nogaku Kenkyuka Nogakubu, Division of Food Science and Biotechnology, Kitashirakawa Oiwake-cho, Sakyo-ku, 606-8502, Kyoto, JAPAN
| |
Collapse
|
45
|
Umeda T, Uekado R, Shigemori K, Eguchi H, Tomiyama T. Nasal Rifampicin Halts the Progression of Tauopathy by Inhibiting Tau Oligomer Propagation in Alzheimer Brain Extract-Injected Mice. Biomedicines 2022; 10:biomedicines10020297. [PMID: 35203506 PMCID: PMC8869211 DOI: 10.3390/biomedicines10020297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
The cell-to-cell transmission of tau aggregates is considered a mechanism underlying the intracerebral spreading of tau pathology in Alzheimer’s disease (AD) and other tauopathies. Recent studies suggest that tau oligomers, rather than fibrils, participate in this process. We previously showed that intranasal rifampicin inhibits tau oligomer accumulation and improves cognition in tauopathy mice. In the present study, we examined the effects of nasal rifampicin on tau propagation in a new mouse model of tauopathy. A tau oligomer-rich fraction prepared from the brain of an AD patient was injected into a unilateral hippocampus of tau264 mice that express both 3-repeat and 4-repeat wild-type human tau. Rifampicin administration was started one week after the injection and performed three times a week for 24 weeks. Cognitive function and tau pathology were assessed by the Morris water maze test and brain section staining. Rifampicin treatment inhibited the spreading of tau oligomers from the injection site to other brain regions and neurofibrillary tangle formation in the entorhinal cortex. Synapse and neuronal loss in the hippocampus were also prevented, and cognitive function remained normal. These results suggest that intranasal rifampicin could be a promising remedy that halts the progression of tauopathy by inhibiting tau oligomer propagation.
Collapse
Affiliation(s)
- Tomohiro Umeda
- Department of Translational Neuroscience, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; (T.U.); (R.U.); (K.S.)
| | - Rumi Uekado
- Department of Translational Neuroscience, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; (T.U.); (R.U.); (K.S.)
| | - Keiko Shigemori
- Department of Translational Neuroscience, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; (T.U.); (R.U.); (K.S.)
| | - Hiroshi Eguchi
- Pharmaceutical Discovery Research Laboratories, Teijin Pharma Ltd., 4-3-2 Asahigaoka, Hino 191-8512, Japan;
| | - Takami Tomiyama
- Department of Translational Neuroscience, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; (T.U.); (R.U.); (K.S.)
- Correspondence: ; Tel.: +81-6-6645-3921
| |
Collapse
|
46
|
Mrdenovic D, Lipkowski J, Pieta P. Analyzing Morphological Properties of Early-Stage Toxic Amyloid β Oligomers by Atomic Force Microscopy. Methods Mol Biol 2022; 2402:227-241. [PMID: 34854048 DOI: 10.1007/978-1-0716-1843-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protein misfolding diseases, like Alzheimer's, Parkinson's, and Huntington's disease, are associated with misfolded protein aggregation. Alzheimer's disease is related to a progressive neuronal death induced by small amyloid β oligomers. Here, we describe the procedure to prepare and identify different types of small toxic amyloid β oligomers by atomic force microscopy (AFM).
Collapse
Affiliation(s)
- Dusan Mrdenovic
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
- Department of Chemistry, University of Guelph, Guelph, ON, Canada
| | - Jacek Lipkowski
- Department of Chemistry, University of Guelph, Guelph, ON, Canada
| | - Piotr Pieta
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
47
|
Umeda T, Sakai A, Shigemori K, Yokota A, Kumagai T, Tomiyama T. Oligomer-Targeting Prevention of Neurodegenerative Dementia by Intranasal Rifampicin and Resveratrol Combination - A Preclinical Study in Model Mice. Front Neurosci 2021; 15:763476. [PMID: 34966254 PMCID: PMC8710719 DOI: 10.3389/fnins.2021.763476] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Amyloidogenic protein oligomers are thought to play an important role in the pathogenesis of neurodegenerative dementia, including Alzheimer’s disease, frontotemporal dementia, and dementia with Lewy bodies. Previously we demonstrated that oral or intranasal rifampicin improved the cognition of APP-, tau-, and α-synuclein-transgenic mice by reducing the amount of Aβ, tau, and α-synuclein oligomers in the brain. In the present study, to explore more effective and safer medications for dementia, we tested the drug combination of rifampicin and resveratrol, which is a multifunctional natural polyphenol with the potential to antagonize the adverse effects of rifampicin. The mixture was intranasally administered to APP-, tau-, and α-synuclein-transgenic mice, and their memory and oligomer-related pathologies were evaluated. Compared with rifampicin and resveratrol alone, the combinatorial medicine significantly improved mouse cognition, reduced amyloid oligomer accumulation, and recovered synaptophysin levels in the hippocampus. The plasma levels of liver enzymes, which reflect hepatic injury and normally increase by rifampicin treatment, remained normal by the combination treatment. Notably, resveratrol alone and the combinatorial medicine, but not rifampicin alone, enhanced the levels of brain-derived neurotrophic factor (BDNF) and its precursor, pro-BDNF, in the hippocampus. Furthermore, the combination showed a synergistic effect in ameliorating mouse cognition. These results show the advantages of this combinatorial medicine with regards to safety and effectiveness over single-drug rifampicin. Our findings may provide a feasible means for the prevention of neurodegenerative dementia that targets toxic oligomers.
Collapse
Affiliation(s)
- Tomohiro Umeda
- Department of Translational Neuroscience, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Ayumi Sakai
- Department of Translational Neuroscience, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Keiko Shigemori
- Department of Translational Neuroscience, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Ayumi Yokota
- Department of Translational Neuroscience, Osaka City University Graduate School of Medicine, Osaka, Japan
| | | | - Takami Tomiyama
- Department of Translational Neuroscience, Osaka City University Graduate School of Medicine, Osaka, Japan.,Medilabo RFP, Inc., Kyoto, Japan
| |
Collapse
|
48
|
The effect of beta-amyloid and tau protein aggregations on magnetic susceptibility of anterior hippocampal laminae in Alzheimer's diseases. Neuroimage 2021; 244:118584. [PMID: 34537383 DOI: 10.1016/j.neuroimage.2021.118584] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/27/2021] [Accepted: 09/15/2021] [Indexed: 11/20/2022] Open
Abstract
Previous studies have reported the changes of magnetic susceptibility induced by iron deposition in hippocampus of Alzheimer's disease (AD) brains. It is well-known that hippocampus is divided into well-defined laminar architecture, which, however, is difficult to be resolved with in-vivo MRI due to the limited imaging resolution. The present study aims to investigate layer-specific magnetic susceptibility in the hippocampus of AD patients using high-resolution ex-vivo MRI, and elucidate its relationship with beta amyloid (Aβ) and tau protein histology. We performed quantitative susceptibility mapping (QSM) and T2* mapping on postmortem anterior hippocampus samples from four AD, four Primary Age-Related Tauopathy (PART), and three control brains. We manually segmented each sample into seven layers, including four layers in the cornu ammonis1 (CA1) and three layers in the dentate gyrus (DG), and then evaluated AD-related alterations of susceptibility and T2* values and their correlations with Aβ and tau in each hippocampal layer. Specifically, we found (1) layer-specific variations of susceptibility and T2* measurements in all samples; (2) the heterogeneity of susceptibility were higher in all layers of AD patients compared with the age- and gender-matched PART cases while the heterogeneity of T2* values were lower in four layers of CA1; and (3) voxel-wise MRI-histological correlation revealed both susceptibility and T2* values in the stratum molecular (SM) and stratum lacunosum (SL) layers were correlated with the Aβ content in AD, while the T2* values in the stratum radiatum (SR) layer were correlated with the tau content in the PART but not AD. These findings suggest a selective effect of the Aβ- and tau-pathology on the susceptibility and T2* values in the different layers of anterior hippocampus. Particularly, the alterations of magnetic susceptibility in the SM and SL layers may be associated with Aβ aggregation, while those in the SR layermay reflect the age-related tau protein aggregation.
Collapse
|
49
|
Han F, Zhao J, Zhao G. Prolonged Volatile Anesthetic Exposure Exacerbates Cognitive Impairment and Neuropathology in the 5xFAD Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2021; 84:1551-1562. [PMID: 34690137 DOI: 10.3233/jad-210374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disease which shows a set of symptoms involving cognitive changes and psychological changes. Given that AD is the most common form of dementia in aging population and the increasing demand for anesthesia/surgery with aging, there has been significant interest in the exact impact of volatile anesthetics on cognitive function and pathological alterations in AD population. OBJECTIVE This study aimed to investigate behavioral changes and neuropathology in the 5xFAD mouse model of Alzheimer's disease with short-term exposure or long-term exposure to desflurane, sevoflurane, or isoflurane. METHODS In this study, we exposed 5xFAD mouse model of AD to isoflurane, sevoflurane, or desflurane in two different time periods (30 min and 6 h), and the memory related behaviors as well as the pathological changes in 5xFAD mice were evaluated 7 days after the anesthetic exposure. RESULTS We found that short-term exposure to volatile anesthetics did not affect hippocampus dependent memory and the amyloid-β (Aβ) deposition in the brain. However, long-term exposure to sevoflurane or isoflurane significantly increased the Aβ deposition in CA1 and CA3 regions of hippocampus, as well as the glial cell activation in amygdala. Besides, the PSD-95 expression was decreased in 5xFAD mice with exposure to sevoflurane or isoflurane and the caspase-3 activation was enhanced in isoflurane, sevoflurane, and desflurane groups. CONCLUSION Our results demonstrate the time-dependent effects of common volatile anesthetics and implicate that desflurane has the potential benefits to prolonged anesthetic exposure in AD patients.
Collapse
Affiliation(s)
- Fanglei Han
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Jia Zhao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Guoqing Zhao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
50
|
Fernandez‐Perez EJ, Muñoz B, Bascuñan DA, Peters C, Riffo‐Lepe NO, Espinoza MP, Morgan PJ, Filippi C, Bourboulou R, Sengupta U, Kayed R, Epsztein J, Aguayo LG. Synaptic dysregulation and hyperexcitability induced by intracellular amyloid beta oligomers. Aging Cell 2021; 20:e13455. [PMID: 34409748 PMCID: PMC8441418 DOI: 10.1111/acel.13455] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/21/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022] Open
Abstract
Intracellular amyloid beta oligomer (iAβo) accumulation and neuronal hyperexcitability are two crucial events at early stages of Alzheimer's disease (AD). However, to date, no mechanism linking iAβo with an increase in neuronal excitability has been reported. Here, the effects of human AD brain-derived (h-iAβo) and synthetic (iAβo) peptides on synaptic currents and action potential firing were investigated in hippocampal neurons. Starting from 500 pM, iAβo rapidly increased the frequency of synaptic currents and higher concentrations potentiated the AMPA receptor-mediated current. Both effects were PKC-dependent. Parallel recordings of synaptic currents and nitric oxide (NO)-associated fluorescence showed that the increased frequency, related to pre-synaptic release, was dependent on a NO-mediated retrograde signaling. Moreover, increased synchronization in NO production was also observed in neurons neighboring those dialyzed with iAβo, indicating that iAβo can increase network excitability at a distance. Current-clamp recordings suggested that iAβo increased neuronal excitability via AMPA-driven synaptic activity without altering membrane intrinsic properties. These results strongly indicate that iAβo causes functional spreading of hyperexcitability through a synaptic-driven mechanism and offers an important neuropathological significance to intracellular species in the initial stages of AD, which include brain hyperexcitability and seizures.
Collapse
Affiliation(s)
| | - Braulio Muñoz
- Laboratory of NeurophysiologyDepartment of PhysiologyUniversidad de ConcepciónConcepciónChile
| | - Denisse A. Bascuñan
- Laboratory of NeurophysiologyDepartment of PhysiologyUniversidad de ConcepciónConcepciónChile
| | - Christian Peters
- Laboratory of NeurophysiologyDepartment of PhysiologyUniversidad de ConcepciónConcepciónChile
| | - Nicolas O. Riffo‐Lepe
- Laboratory of NeurophysiologyDepartment of PhysiologyUniversidad de ConcepciónConcepciónChile
| | - Maria P. Espinoza
- Laboratory of NeurophysiologyDepartment of PhysiologyUniversidad de ConcepciónConcepciónChile
| | - Peter J. Morgan
- Institute of Neurobiology of the Mediterranean Sea (INMED)Institut National de la Santé et de la Recherche Médicale (INSERM) U901, Aix-Marseille UniversitéMarseilleFrance
| | - Caroline Filippi
- Institute of Neurobiology of the Mediterranean Sea (INMED)Institut National de la Santé et de la Recherche Médicale (INSERM) U901, Aix-Marseille UniversitéMarseilleFrance
| | - Romain Bourboulou
- Institute of Neurobiology of the Mediterranean Sea (INMED)Institut National de la Santé et de la Recherche Médicale (INSERM) U901, Aix-Marseille UniversitéMarseilleFrance
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Department of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Department of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Jérôme Epsztein
- Institute of Neurobiology of the Mediterranean Sea (INMED)Institut National de la Santé et de la Recherche Médicale (INSERM) U901, Aix-Marseille UniversitéMarseilleFrance
| | - Luis G. Aguayo
- Laboratory of NeurophysiologyDepartment of PhysiologyUniversidad de ConcepciónConcepciónChile
| |
Collapse
|