1
|
Jia Z, Li H, Xu K, Li R, Yang S, Chen L, Zhang Q, Li S, Sun X. MAM-mediated mitophagy and endoplasmic reticulum stress: the hidden regulators of ischemic stroke. Front Cell Neurosci 2024; 18:1470144. [PMID: 39640236 PMCID: PMC11617170 DOI: 10.3389/fncel.2024.1470144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Ischemic stroke (IS) is the predominant subtype of stroke and a leading contributor to global mortality. The mitochondrial-associated endoplasmic reticulum membrane (MAM) is a specialized region that facilitates communication between the endoplasmic reticulum and mitochondria, and has been extensively investigated in the context of neurodegenerative diseases. Nevertheless, its precise involvement in IS remains elusive. This literature review elucidates the intricate involvement of MAM in mitophagy and endoplasmic reticulum stress during IS. PINK1, FUNDC1, Beclin1, and Mfn2 are highly concentrated in the MAM and play a crucial role in regulating mitochondrial autophagy. GRP78, IRE1, PERK, and Sig-1R participate in the unfolded protein response (UPR) within the MAM, regulating endoplasmic reticulum stress during IS. Hence, the diverse molecules on MAM operate independently and interact with each other, collectively contributing to the pathogenesis of IS as the covert orchestrator.
Collapse
Affiliation(s)
- Ziyi Jia
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongtao Li
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ke Xu
- The Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ruobing Li
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Siyu Yang
- The Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Long Chen
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qianwen Zhang
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shulin Li
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaowei Sun
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Xu B, Liu Z, Chen K, Zhao Q, Wen H, Lin J, Xu J, Wang H, Wang H, Wang Y. Mitofusin 2 Mediates the Protective Effect of NR6A1 Silencing Against Neuronal Injury in Experimental Stroke Models. Mol Neurobiol 2024:10.1007/s12035-024-04466-0. [PMID: 39259438 DOI: 10.1007/s12035-024-04466-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
An abnormal increase in the expression of nuclear receptor subfamily 6 group A member 1 (NR6A1) in the hippocampus has been reported to result in depressive-like behavior in mice. However, the role of NR6A1 in the progression of neuronal death induced by ischemic stroke remains unknown. In this study, we observed an increase in NR6A1 in neurons in both in vivo and in vitro cerebral ischemic models. We found that knocking down NR6A1 in HT-22 neuronal cells subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) attenuated mitochondrial dysfunction and endoplasmic reticulum (ER) stress. Conversely, NR6A1 overexpression exacerbated neuronal damage following OGD/R. NR6A1 hindered the transcription of mitonfusin 2 (MFN2), leading to a decrease in its expression. In contrast, MFN2 conferred the protective effect of NR6A1 silencing against both mitochondrial dysfunction and ER stress. In addition, NR6A1 silencing also attenuated brain infarction, ER stress, neuronal apoptosis, and loss of MFN2 in mice subjected to middle cerebral artery occlusion/reperfusion. These findings indicate that NR6A1 is a promising target for the treatment of neuronal death following cerebral ischemia. Furthermore, these results confirm the involvement of MFN2 in the effects of NR6A1 silencing. Therefore, targeting NR6A1 has potential as a viable strategy for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Bingtian Xu
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
- Center for Medical Research On Innovation and Translation, Institute of Clinical Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Zhuhe Liu
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Center for Medical Research On Innovation and Translation, Institute of Clinical Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Kechun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qian Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Haixia Wen
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Jingfang Lin
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Jiangping Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Haitao Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Honghao Wang
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
- Center for Medical Research On Innovation and Translation, Institute of Clinical Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Yuanyuan Wang
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
- Center for Medical Research On Innovation and Translation, Institute of Clinical Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
| |
Collapse
|
3
|
Wang Y, Wang Y, Yin H, Xiao Z, Ren Z, Ma X, Zhang J, Fu X, Zhang F, Zeng L. BI1 Activates Autophagy and Mediates TDP43 to Regulate ALS Pathogenesis. Mol Neurobiol 2024:10.1007/s12035-024-04313-2. [PMID: 38954254 DOI: 10.1007/s12035-024-04313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/16/2024] [Indexed: 07/04/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most prevalent motor neuron disease in adults. Currently, there are no known drugs or clinical approaches that have demonstrated efficacy in treating ALS. Mitochondrial function and autophagy have been identified as crucial mechanisms in the development of ALS. While Bax inhibitor 1 (BI1) has been implicated in neurodegenerative diseases, its exact mechanism remains unknown. This study investigates the therapeutic impact of BI1 overexpression on ALS both in vivo and in vitro, revealing its ability to mitigate SOD1G93A-induced apoptosis, nuclear damage, mitochondrial dysfunction, and axonal degeneration of motor neurons. At the same time, BI1 prolongs onset time and lifespan of ALS mice, improves motor function, and alleviates neuronal damage, muscle damage, neuromuscular junction damage among other aspects. The findings indicate that BI1 can inhibit pathological TDP43 morphology and initially stimulate autophagy through interaction with TDP43. This study establishes a solid theoretical foundation for understanding the regulation of autophagy by BI1 and TDP43 while shedding light on the pathogenesis of ALS through their interaction - offering new concepts and targets for clinical implementation and drug development.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Yuxiang Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Hanlan Yin
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Zixuan Xiao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Zhichao Ren
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Xueting Ma
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Jingtian Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Xueqi Fu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Fuqiang Zhang
- Scientific Research Centre of China-Japan Union Hospital, Jilin University, Changchun, 130033, China.
| | - Linlin Zeng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China.
| |
Collapse
|
4
|
Kongsui R, Jittiwat J. In vivo protective effects of 6‑gingerol in cerebral ischemia involve preservation of antioxidant defenses and activation of anti‑apoptotic pathways. Biomed Rep 2024; 20:85. [PMID: 38665422 PMCID: PMC11040226 DOI: 10.3892/br.2024.1773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Stroke is an important medical problem in developing countries, characterized by a sudden disruption of blood supply to the brain, either through occlusion or hemorrhage. It is a major cause of neurological impairment, resulting in high medical costs. The present study examined the effect of 6-gingerol on morphological changes, antioxidant defenses, and the anti-apoptotic factors p38 mitogen-activated protein kinase (MAPK) and mitofusin (Mfn)2, in a rat model of focal cerebral ischemia. A total of 60 healthy male Wistar rats were randomly allocated into six groups: Control, right middle cerebral artery occlusion (Rt.MCAO) + vehicle, Rt.MCAO + piracetam, and Rt.MCAO + 6-Gin 5, 10 and 20 mg/kg BW groups. The results indicated that 6-gingerol treatment for a duration of 7 days reverses morphological alterations, enhances catalase and glutathione peroxidase activities, reduces Bax, caspase-3 and MAPK expression, and increases Bcl-xL and Mfn2 expression in the cortex and hippocampus. In conclusion, 6-gingerol demonstrated significant in vivo effectiveness in mitigating pathological changes induced by cerebral ischemia. This beneficial effect is attributed, at least in part, to preservation of antioxidant defenses and activation of anti-apoptotic pathways.
Collapse
Affiliation(s)
- Ratchaniporn Kongsui
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Jinatta Jittiwat
- Faculty of Medicine, Mahasarakham University, Mahasarakham 44000, Thailand
| |
Collapse
|
5
|
Liu BH, Xu CZ, Liu Y, Lu ZL, Fu TL, Li GR, Deng Y, Luo GQ, Ding S, Li N, Geng Q. Mitochondrial quality control in human health and disease. Mil Med Res 2024; 11:32. [PMID: 38812059 PMCID: PMC11134732 DOI: 10.1186/s40779-024-00536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Mitochondria, the most crucial energy-generating organelles in eukaryotic cells, play a pivotal role in regulating energy metabolism. However, their significance extends beyond this, as they are also indispensable in vital life processes such as cell proliferation, differentiation, immune responses, and redox balance. In response to various physiological signals or external stimuli, a sophisticated mitochondrial quality control (MQC) mechanism has evolved, encompassing key processes like mitochondrial biogenesis, mitochondrial dynamics, and mitophagy, which have garnered increasing attention from researchers to unveil their specific molecular mechanisms. In this review, we present a comprehensive summary of the primary mechanisms and functions of key regulators involved in major components of MQC. Furthermore, the critical physiological functions regulated by MQC and its diverse roles in the progression of various systemic diseases have been described in detail. We also discuss agonists or antagonists targeting MQC, aiming to explore potential therapeutic and research prospects by enhancing MQC to stabilize mitochondrial function.
Collapse
Affiliation(s)
- Bo-Hao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen-Zhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zi-Long Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting-Lv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Rui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu Deng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Qing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
6
|
Aragoneses-Cazorla G, Alvarez-Fernandez Garcia R, Martinez-Lopez A, Gomez Gomez M, Vallet-Regí M, Castillo-Lluva S, González B, Luque-Garcia JL. Mechanistic insights into the antitumoral potential and in vivo antiproliferative efficacy of a silver-based core@shell nanosystem. Int J Pharm 2024; 655:124023. [PMID: 38513815 DOI: 10.1016/j.ijpharm.2024.124023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
This study delves into the biomolecular mechanisms underlying the antitumoral efficacy of a hybrid nanosystem, comprised of a silver core@shell (Ag@MSNs) functionalized with transferrin (Tf). Employing a SILAC proteomics strategy, we identified over 150 de-regulated proteins following exposure to the nanosystem. These proteins play pivotal roles in diverse cellular processes, including mitochondrial fission, calcium homeostasis, endoplasmic reticulum (ER) stress, oxidative stress response, migration, invasion, protein synthesis, RNA maturation, chemoresistance, and cellular proliferation. Rigorous validation of key findings substantiates that the nanosystem elicits its antitumoral effects by activating mitochondrial fission, leading to disruptions in calcium homeostasis, as corroborated by RT-qPCR and flow cytometry analyses. Additionally, induction of ER stress was validated through western blotting of ER stress markers. The cytotoxic action of the nanosystem was further affirmed through the generation of cytosolic and mitochondrial reactive oxygen species (ROS). Finally, in vivo experiments using a chicken embryo model not only confirmed the antitumoral capacity of the nanosystem, but also demonstrated its efficacy in reducing cellular proliferation. These comprehensive findings endorse the potential of the designed Ag@MSNs-Tf nanosystem as a groundbreaking chemotherapeutic agent, shedding light on its multifaceted mechanisms and in vivo applicability.
Collapse
Affiliation(s)
- Guillermo Aragoneses-Cazorla
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | | | - Angelica Martinez-Lopez
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Milagros Gomez Gomez
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Maria Vallet-Regí
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Sonia Castillo-Lluva
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Blanca González
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Jose L Luque-Garcia
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
7
|
Tang D, Zhao L, Huang S, Li W, He Q, Wang A. Mitochondrial outer membrane protein MTUS1/ATIP1 exerts antitumor effects through ROS-induced mitochondrial pyroptosis in head and neck squamous cell carcinoma. Int J Biol Sci 2024; 20:2576-2591. [PMID: 38725862 PMCID: PMC11077360 DOI: 10.7150/ijbs.94795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
We showed that microtubule-associated tumor suppressor gene (MTUS1/ATIP) downregulation correlated with poor survival in head and neck squamous cell carcinoma (HNSCC) patients and that MTUS1/ATIP1 was the most abundant isoform in HNSCC tissue. However, the location and function of MTUS1/ATIP1 have remain unclear. In this study, we confirmed that MTUS1/ATIP1 inhibited proliferation, growth and metastasis in HNSCC in cell- and patient-derived xenograft models in vitro and in vivo. MTUS1/ATIP1 localized in the outer mitochondrial membrane, influence the morphology, movement and metabolism of mitochondria and stimulated oxidative stress in HNSCC cells by directly interacting with MFN2. MTUS1/ATIP1 activated ROS, recruiting Bax to mitochondria, facilitating cytochrome c release to the cytosol to activate caspase-3, and inducing GSDME-dependent pyroptotic death in HNSCC cells. Our findings showed that MTUS1/ATIP1 localized in the outer mitochondrial membrane in HNSCC cells and mediated anticancer effects through ROS-induced pyroptosis, which may provide a novel therapeutic strategy for HNSCC treatment.
Collapse
Affiliation(s)
- Dongxiao Tang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Department of Stomatology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Luodan Zhao
- Department of Stomatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Shuojin Huang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Wuguo Li
- Animal Experiment Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Qianting He
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Anxun Wang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
8
|
Dong WT, Long LH, Deng Q, Liu D, Wang JL, Wang F, Chen JG. Mitochondrial fission drives neuronal metabolic burden to promote stress susceptibility in male mice. Nat Metab 2023; 5:2220-2236. [PMID: 37985735 DOI: 10.1038/s42255-023-00924-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
Neurons are particularly susceptible to energy fluctuations in response to stress. Mitochondrial fission is highly regulated to generate ATP via oxidative phosphorylation; however, the role of a regulator of mitochondrial fission in neuronal energy metabolism and synaptic efficacy under chronic stress remains elusive. Here, we show that chronic stress promotes mitochondrial fission in the medial prefrontal cortex via activating dynamin-related protein 1 (Drp1), resulting in mitochondrial dysfunction in male mice. Both pharmacological inhibition and genetic reduction of Drp1 ameliorates the deficit of excitatory synaptic transmission and stress-related depressive-like behavior. In addition, enhancing Drp1 fission promotes stress susceptibility, which is alleviated by coenzyme Q10, which potentiates mitochondrial ATP production. Together, our findings unmask the role of Drp1-dependent mitochondrial fission in the deficits of neuronal metabolic burden and depressive-like behavior and provides medication basis for metabolism-related emotional disorders.
Collapse
Affiliation(s)
- Wan-Ting Dong
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Hong Long
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science, Wuhan, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China
| | - Qiao Deng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Duo Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Lin Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science, Wuhan, China.
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China.
| | - Jian-Guo Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science, Wuhan, China.
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China.
| |
Collapse
|
9
|
Zhang J, Gong L, Zhu H, Sun W, Tian J, Zhang Y, Liu Q, Li X, Zhang F, Wang S, Zhu S, Ding D, Zhang W, Yang C. RICH2 decreases the mitochondrial number and affects mitochondrial localization in diffuse low-grade glioma-related epilepsy. Neurobiol Dis 2023; 188:106344. [PMID: 37926169 DOI: 10.1016/j.nbd.2023.106344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023] Open
Abstract
Epilepsy, a common complication of diffuse low-grade gliomas (DLGGs; diffuse oligodendroglioma and astrocytoma collectively), severely compromises the quality of life of patients. DLGG epileptogenicity may primarily be generated by interactions between the tumor and the neocortex. Neuronal uptake of dysfunctional mitochondria from the extracellular environment can lead to abnormal neuronal discharge. Mitochondrial dysfunction is frequently observed in gliomas that can transmigrate across the plasma membranes. Here, we examined the role of the Rho GTPase-activating protein 44 (RICH2) in mitochondrial dynamics and DLGG-related epilepsy. We investigated the association between mitochondrial and RICH2 expression in human DLGG tissues using immunohistochemistry. We examined the association between RICH2 and epilepsy in nude mouse glioma models by electrophysiology. The effect of RICH2 on mitochondrial morphology and calcium motility were assessed by single cell fluorescence microscopy. Quantitative RT-PCR (qRT-PCR) and Western blot analysis were performed to characterize RICH2 induced expression changes in the genes related to mitochondrial dynamics, mitogenesis and mitochondrial function. We found that RICH2 expression was higher in oligodendroglioma than in astrocytoma and was correlated with better prognosis and higher epilepsy rate in patients. The expression of mitochondria may be associated with clinical DLGG-related epilepsy and reduced by RICH2 overexpression. And RICH2 could promote DLGG-related epilepsy in tumorigenic nude mice. RICH2 overexpression decreased calcium flow and the mitochondria released from glioma cells (SW1088 and U251) into the extracellular environment, potentially via downregulation of MFN-1/MFN-2 levels which suggests reduced mitochondrial fusion. In addition, we observed decreased mitochondrial trafficking into neurons (released from glioma cells and trafficked into neurons), which could explain the higher incidence of DLGG-related epilepsy due to reduced neuroprotection. Furthermore, RICH2 downregulated MAPK/ERK/HIF-1 pathway. In conclusion, these results suggest that RICH2 could promote epilepsy by (i) inhibiting mitochondrial fusion via MFN downregulation and Drp-1 upregulation; (ii) altering the MAPK/ERK/Hif-1 signaling axis. RICH2 may be a potential target in the treatment of DLGG-related epilepsy.
Collapse
Affiliation(s)
- Jiarui Zhang
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China; Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Li Gong
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Huayu Zhu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Sun
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Tian
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yan Zhang
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qiao Liu
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaolan Li
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Fuqin Zhang
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Shumei Wang
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Shaojun Zhu
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Dongjing Ding
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Zhang
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| | - Chen Yang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
10
|
Kulkarni PG, Balasubramanian N, Manjrekar R, Banerjee T, Sakharkar A. DNA Methylation-Mediated Mfn2 Gene Regulation in the Brain: A Role in Brain Trauma-Induced Mitochondrial Dysfunction and Memory Deficits. Cell Mol Neurobiol 2023; 43:3479-3495. [PMID: 37193907 DOI: 10.1007/s10571-023-01358-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/30/2023] [Indexed: 05/18/2023]
Abstract
Repeated mild traumatic brain injuries (rMTBI) affect mitochondrial homeostasis in the brain. However, mechanisms of long-lasting neurobehavioral effects of rMTBI are largely unknown. Mitofusin 2 (Mfn2) is a critical component of tethering complexes in mitochondria-associated membranes (MAMs) and thereby plays a pivotal role in mitochondrial functions. Herein, we investigated the implications of DNA methylation in the Mfn2 gene regulation, and its consequences on mitochondrial dysfunction in the hippocampus after rMTBI. rMTBI dramatically reduced the mitochondrial mass, which was concomitant with decrease in Mfn2 mRNA and protein levels. DNA hypermethylation at the Mfn2 gene promoter was observed post 30 days of rMTBI. The treatment of 5-Azacytidine, a pan DNA methyltransferase inhibitor, normalized DNA methylation levels at Mfn2 promoter, which further resulted into restoration of Mfn2 function. The normalization of Mfn2 function was well correlated with recovery in memory deficits in rMTBI-exposed rats. Since, glutamate excitotoxicity serves as a primary insult after TBI, we employed in vitro model of glutamate excitotoxicity in human neuronal cell line SH-SY5Y to investigate the causal epigenetic mechanisms of Mfn2 gene regulation. The glutamate excitotoxicity reduced Mfn2 levels via DNA hypermethylation at Mfn2 promoter. Loss of Mfn2 caused significant surge in cellular and mitochondrial ROS levels with lowered mitochondrial membrane potential in cultured SH-SY5Y cells. Like rMTBI, these consequences of glutamate excitotoxicity were also prevented by 5-AzaC pre-treatment. Therefore, DNA methylation serves as a vital epigenetic mechanism involved in Mfn2 expression in the brain; and this Mfn2 gene regulation may play a pivotal role in rMTBI-induced persistent cognitive deficits. Closed head weight drop injury method was employed to induce repeated mild traumatic brain (rMTBI) in jury in adult, male Wistar rats. rMTBI causes hyper DNA methylation at the Mfn2 promoter and lowers the Mfn2 expression triggering mitochondrial dysfunction. However, the treatment of 5-azacytidine normalizes DNA methylation at the Mfn2 promoter and restores mitochondrial function.
Collapse
Affiliation(s)
- Prakash G Kulkarni
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India
| | | | - Ritika Manjrekar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India
| | - Tanushree Banerjee
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India.
- Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, 411 033, India.
| | - Amul Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India.
| |
Collapse
|
11
|
Tokuyama T, Yanagi S. Role of Mitochondrial Dynamics in Heart Diseases. Genes (Basel) 2023; 14:1876. [PMID: 37895224 PMCID: PMC10606177 DOI: 10.3390/genes14101876] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Mitochondrial dynamics, including fission and fusion processes, are essential for heart health. Mitochondria, the powerhouses of cells, maintain their integrity through continuous cycles of biogenesis, fission, fusion, and degradation. Mitochondria are relatively immobile in the adult heart, but their morphological changes due to mitochondrial morphology factors are critical for cellular functions such as energy production, organelle integrity, and stress response. Mitochondrial fusion proteins, particularly Mfn1/2 and Opa1, play multiple roles beyond their pro-fusion effects, such as endoplasmic reticulum tethering, mitophagy, cristae remodeling, and apoptosis regulation. On the other hand, the fission process, regulated by proteins such as Drp1, Fis1, Mff and MiD49/51, is essential to eliminate damaged mitochondria via mitophagy and to ensure proper cell division. In the cardiac system, dysregulation of mitochondrial dynamics has been shown to cause cardiac hypertrophy, heart failure, ischemia/reperfusion injury, and various cardiac diseases, including metabolic and inherited cardiomyopathies. In addition, mitochondrial dysfunction associated with oxidative stress has been implicated in atherosclerosis, hypertension and pulmonary hypertension. Therefore, understanding and regulating mitochondrial dynamics is a promising therapeutic tool in cardiac diseases. This review summarizes the role of mitochondrial morphology in heart diseases for each mitochondrial morphology regulatory gene, and their potential as therapeutic targets to heart diseases.
Collapse
Affiliation(s)
- Takeshi Tokuyama
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan
| | - Shigeru Yanagi
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Mejiro, Tokyo 171-0031, Japan;
| |
Collapse
|
12
|
Neves D, Salazar IL, Almeida RD, Silva RM. Molecular mechanisms of ischemia and glutamate excitotoxicity. Life Sci 2023; 328:121814. [PMID: 37236602 DOI: 10.1016/j.lfs.2023.121814] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/05/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Excitotoxicity is classically defined as the neuronal damage caused by the excessive release of glutamate, and subsequent activation of excitatory plasma membrane receptors. In the mammalian brain, this phenomenon is mainly driven by excessive activation of glutamate receptors (GRs). Excitotoxicity is common to several chronic disorders of the Central Nervous System (CNS) and is considered the primary mechanism of neuronal loss of function and cell death in acute CNS diseases (e.g. ischemic stroke). Multiple mechanisms and pathways lead to excitotoxic cell damage including pro-death signaling cascade events downstream of glutamate receptors, calcium (Ca2+) overload, oxidative stress, mitochondrial impairment, excessive glutamate in the synaptic cleft as well as altered energy metabolism. Here, we review the current knowledge on the molecular mechanisms that underlie excitotoxicity, emphasizing the role of Nicotinamide Adenine Dinucleotide (NAD) metabolism. We also discuss novel and promising therapeutic strategies to treat excitotoxicity, highlighting recent clinical trials. Finally, we will shed light on the ongoing search for stroke biomarkers, an exciting and promising field of research, which may improve stroke diagnosis, prognosis and allow better treatment options.
Collapse
Affiliation(s)
- Diogo Neves
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Ivan L Salazar
- Multidisciplinary Institute of Ageing, MIA - Portugal, University of Coimbra, Coimbra, Portugal
| | - Ramiro D Almeida
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | - Raquel M Silva
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; Universidade Católica Portuguesa, Faculdade de Medicina Dentária, Centro de Investigação Interdisciplinar em Saúde, Viseu, Portugal.
| |
Collapse
|
13
|
Mishra E, Thakur MK. Mdivi-1 Rescues Memory Decline in Scopolamine-Induced Amnesic Male Mice by Ameliorating Mitochondrial Dynamics and Hippocampal Plasticity. Mol Neurobiol 2023; 60:5426-5449. [PMID: 37314656 DOI: 10.1007/s12035-023-03397-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/22/2023] [Indexed: 06/15/2023]
Abstract
Memory loss, often known as amnesia, is common in the elderly population and refers to forgetting facts and experiences. It is associated with increased mitochondrial fragmentation, though the contribution of mitochondrial dynamics in amnesia is poorly understood. Therefore, the present study is aimed at elucidating the role of Mdivi-1 in mitochondrial dynamics, hippocampal plasticity, and memory during scopolamine (SC)-induced amnesia. The findings imply that Mdivi-1 significantly increased the expression of Arc and BDNF proteins in the hippocampus of SC-induced amnesic mice, validating improved recognition and spatial memory. Moreover, an improved mitochondrial ultrastructure was attributed to a decline in the percentage of fragmented and spherical-shaped mitochondria after Mdivi-1 treatment in SC-induced mice. The significant downregulation of p-Drp1 (S616) protein and upregulation of Mfn2, LC3BI, and LC3BII proteins in Mdivi-1-treated SC-induced mice indicated a decline in fragmented mitochondrial number and healthy mitochondrial dynamics. Mdivi-1 treatment alleviated ROS production and Caspase-3 activity and elevated mitochondrial membrane potential, Vdac1 expression, ATP production, and myelination, resulting in reduced neurodegeneration in SC mice. Furthermore, the decline of pro-apoptotic protein cytochrome-c and increase of anti-apoptotic proteins Procaspase-9 and Bcl-2 in Mdivi-1-treated SC-induced mice suggested improved neuronal health. Mdivi-1 also increased the dendritic arborization and spine density, which was further corroborated by increased expression of synaptophysin and PSD95. In conclusion, the current study suggests that Mdivi-1 treatment improves mitochondrial ultrastructure and function through the regulation of mitochondrial dynamics. These changes further improve neuronal cell density, myelination, dendritic arborization, and spine density, decrease neurodegeneration, and improve recognition and spatial memory. Schematic presentation depicts that Mdivi-1 rescues memory decline in scopolamine-induced amnesic male mice by ameliorating mitochondrial dynamics and hippocampal plasticity.
Collapse
Affiliation(s)
- Ela Mishra
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India
| | - Mahendra Kumar Thakur
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
14
|
Ma Y, Jiang Q, Yang B, Hu X, Shen G, Shen W, Xu J. Platelet mitochondria, a potent immune mediator in neurological diseases. Front Physiol 2023; 14:1210509. [PMID: 37719457 PMCID: PMC10502307 DOI: 10.3389/fphys.2023.1210509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023] Open
Abstract
Dysfunction of the immune response is regarded as a prominent feature of neurological diseases, including neurodegenerative diseases, malignant tumors, acute neurotraumatic insult, and cerebral ischemic/hemorrhagic diseases. Platelets play a fundamental role in normal hemostasis and thrombosis. Beyond those normal functions, platelets are hyperactivated and contribute crucially to inflammation and immune responses in the central nervous system (CNS). Mitochondria are pivotal organelles in platelets and are responsible for generating most of the ATP that is used for platelet activation and aggregation (clumping). Notably, platelet mitochondria show marked morphological and functional alterations under heightened inflammatory/oxidative stimulation. Mitochondrial dysfunction not only leads to platelet damage and apoptosis but also further aggravates immune responses. Improving mitochondrial function is hopefully an effective strategy for treating neurological diseases. In this review, the authors discuss the immunomodulatory roles of platelet-derived mitochondria (PLT-mitos) in neurological diseases and summarize the neuroprotective effects of platelet mitochondria transplantation.
Collapse
Affiliation(s)
- Yan Ma
- Transfusion Research Department, Wuhan Blood Center, Wuhan, Hubei, China
- Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, China
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Jiang
- Transfusion Research Department, Wuhan Blood Center, Wuhan, Hubei, China
- Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, China
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Bingxin Yang
- Wuhan Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyu Hu
- Transfusion Research Department, Wuhan Blood Center, Wuhan, Hubei, China
- Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, China
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Shen
- Transfusion Research Department, Wuhan Blood Center, Wuhan, Hubei, China
- Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, China
| | - Wei Shen
- Wuhan Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Xu
- Wuhan Blood Center, Wuhan, Hubei, China
| |
Collapse
|
15
|
Quintana-Cabrera R, Scorrano L. Determinants and outcomes of mitochondrial dynamics. Mol Cell 2023; 83:857-876. [PMID: 36889315 DOI: 10.1016/j.molcel.2023.02.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/13/2023] [Accepted: 02/13/2023] [Indexed: 03/09/2023]
Abstract
Mitochondria are not only central organelles in metabolism and energy conversion but are also platforms for cellular signaling cascades. Classically, the shape and ultrastructure of mitochondria were depicted as static. The discovery of morphological transitions during cell death and of conserved genes controlling mitochondrial fusion and fission contributed to establishing the concept that mitochondrial morphology and ultrastructure are dynamically regulated by mitochondria-shaping proteins. These finely tuned, dynamic changes in mitochondrial shape can in turn control mitochondrial function, and their alterations in human diseases suggest that this space can be explored for drug discovery. Here, we review the basic tenets and molecular mechanisms of mitochondrial morphology and ultrastructure, describing how they can coordinately define mitochondrial function.
Collapse
Affiliation(s)
| | - Luca Scorrano
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy; Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy.
| |
Collapse
|
16
|
Kulkarni PG, Mohire VM, Bhaisa PK, Joshi MM, Puranik CM, Waghmare PP, Banerjee T. Mitofusin-2: Functional switch between mitochondrial function and neurodegeneration. Mitochondrion 2023; 69:116-129. [PMID: 36764501 DOI: 10.1016/j.mito.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/07/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Mitochondria are highly dynamic organelles known to play role in the regulation of several cellular biological processes. However, their dynamics such as number, shape, and biological functions are regulated by mitochondrial fusion and fission process. The balance between the fusion and fission process is most important for the maintenance of mitochondrial structure as well as cellular functions. The alterations within mitochondrial dynamic processes were found to be associated with the progression of neurodegenerative diseases. In recent years, mitofusin-2 (Mfn2), a GTPase has emerged as a multifunctional protein which not only is found to regulate the mitochondrial fusion-fission process but also known to regulate several cellular functions such as mitochondrial metabolism, cellular biogenesis, signalling, and apoptosis via maintaining the ER-mitochondria contact sites. In this review, we summarize the current knowledge of the structural and functional properties of the Mfn2, its transcriptional regulation and their roles in several cellular functions with a focus on current advances in the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Prakash G Kulkarni
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India
| | - Vaibhavi M Mohire
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033, India
| | - Pooja K Bhaisa
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033, India
| | - Mrudula M Joshi
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033, India
| | - Chitranshi M Puranik
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033, India
| | - Pranjal P Waghmare
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033, India
| | - Tanushree Banerjee
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033, India; Infosys Ltd., SEZ unit VI, Plot No. 1, Rajiv Gandhi Infotech Park, Hinjawadi Phase I, Pune, Maharashtra 411057, India.
| |
Collapse
|
17
|
Xu BT, Li MF, Chen KC, Li X, Cai NB, Xu JP, Wang HT. Mitofusin-2 mediates cannabidiol-induced neuroprotection against cerebral ischemia in rats. Acta Pharmacol Sin 2023; 44:499-512. [PMID: 36229600 PMCID: PMC9958179 DOI: 10.1038/s41401-022-01004-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/21/2022] [Indexed: 11/09/2022] Open
Abstract
Cannabidiol (CBD) reportedly exerts protective effects against many psychiatric disorders and neurodegenerative diseases, but the mechanisms are poorly understood. In this study, we explored the molecular mechanism of CBD against cerebral ischemia. HT-22 cells or primary cortical neurons were subjected to oxygen-glucose deprivation insult followed by reoxygenation (OGD/R). In both HT-22 cells and primary cortical neurons, CBD pretreatment (0.1, 0.3, 1 μM) dose-dependently attenuated OGD/R-induced cell death and mitochondrial dysfunction, ameliorated OGD/R-induced endoplasmic reticulum (ER) stress, and increased the mitofusin-2 (MFN2) protein level in HT-22 cells and primary cortical neurons. Knockdown of MFN2 abolished the protective effects of CBD. CBD pretreatment also suppressed OGD/R-induced binding of Parkin to MFN2 and subsequent ubiquitination of MFN2. Overexpression of Parkin blocked the effects of CBD in reducing MFN2 ubiquitination and reduced cell viability, whereas overexpressing MFN2 abolished Parkin's detrimental effects. In vivo experiments were conducted on male rats subjected to middle cerebral artery occlusion (MCAO) insult, and administration of CBD (2.5, 5 mg · kg-1, i.p.) dose-dependently reduced the infarct volume and ER stress in the brains. Moreover, the level of MFN2 within the ischemic penumbra of rats was increased by CBD treatment, while the binding of Parkin to MFN2 and the ubiquitination of MFN2 was decreased. Finally, short hairpin RNA against MFN2 reversed CBD's protective effects. Together, these results demonstrate that CBD protects brain neurons against cerebral ischemia by reducing MFN2 degradation via disrupting Parkin's binding to MFN2, indicating that MFN2 is a potential target for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Bing-Tian Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Neurology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, China
| | - Meng-Fan Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ke-Chun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xing Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ning-Bo Cai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiang-Ping Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China.
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, 510515, China.
| | - Hai-Tao Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China.
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, 510515, China.
| |
Collapse
|
18
|
Green A, Hossain T, Eckmann DM. Mitochondrial dynamics involves molecular and mechanical events in motility, fusion and fission. Front Cell Dev Biol 2022; 10:1010232. [PMID: 36340034 PMCID: PMC9626967 DOI: 10.3389/fcell.2022.1010232] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondria are cell organelles that play pivotal roles in maintaining cell survival, cellular metabolic homeostasis, and cell death. Mitochondria are highly dynamic entities which undergo fusion and fission, and have been shown to be very motile in vivo in neurons and in vitro in multiple cell lines. Fusion and fission are essential for maintaining mitochondrial homeostasis through control of morphology, content exchange, inheritance of mitochondria, maintenance of mitochondrial DNA, and removal of damaged mitochondria by autophagy. Mitochondrial motility occurs through mechanical and molecular mechanisms which translocate mitochondria to sites of high energy demand. Motility also plays an important role in intracellular signaling. Here, we review key features that mediate mitochondrial dynamics and explore methods to advance the study of mitochondrial motility as well as mitochondrial dynamics-related diseases and mitochondrial-targeted therapeutics.
Collapse
Affiliation(s)
- Adam Green
- Department of Anesthesiology, The Ohio State University, Columbus, OH, United States
| | - Tanvir Hossain
- Department of Anesthesiology, The Ohio State University, Columbus, OH, United States
| | - David M. Eckmann
- Department of Anesthesiology, The Ohio State University, Columbus, OH, United States
- Center for Medical and Engineering Innovation, The Ohio State University, Columbus, OH, United States
- *Correspondence: David M. Eckmann,
| |
Collapse
|
19
|
Wojtyniak P, Boratynska-Jasinska A, Serwach K, Gruszczynska-Biegala J, Zablocka B, Jaworski J, Kawalec M. Mitofusin 2 Integrates Mitochondrial Network Remodelling, Mitophagy and Renewal of Respiratory Chain Proteins in Neurons after Oxygen and Glucose Deprivation. Mol Neurobiol 2022; 59:6502-6518. [PMID: 35962299 PMCID: PMC9463309 DOI: 10.1007/s12035-022-02981-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
Abstract
In attempts to develop effective therapeutic strategies to limit post-ischemic injury, mitochondria emerge as a key element determining neuronal fate. Mitochondrial damage can be alleviated by various mechanisms including mitochondrial network remodelling, mitochondrial elimination and mitochondrial protein biogenesis. However, the mechanisms regulating relationships between these phenomena are poorly understood. We hypothesized that mitofusin 2 (Mfn2), a mitochondrial GTPase involved in mitochondrial fusion, mitochondria trafficking and mitochondria and endoplasmic reticulum (ER) tethering, may act as one of linking and regulatory factors in neurons following ischemic insult. To verify this assumption, we performed temporal oxygen and glucose deprivation (OGD/R) on rat cortical primary culture to determine whether Mfn2 protein reduction affected the onset of mitophagy, subsequent mitochondrial biogenesis and thus neuronal survival. We found that Mfn2 knockdown increased neuronal susceptibility to OGD/R, prevented mitochondrial network remodelling and resulted in prolonged mitophagosomes formation in response to the insult. Next, Mfn2 knockdown was observed to be accompanied by reduced Parkin protein levels and increased Parkin accumulation on mitochondria. As for wild-type neurons, OGD/R insult was followed by an elevated mtDNA content and an increase in respiratory chain proteins. Neither of these phenomena were observed for Mfn2 knockdown neurons. Collectively, our findings showed that Mfn2 in neurons affected their response to mild and transient OGD stress, balancing the extent of defective mitochondria elimination and positively influencing mitochondrial respiratory protein levels. Our study suggests that Mfn2 is one of essential elements for neuronal response to ischemic insult, necessary for neuronal survival.
Collapse
Affiliation(s)
- Piotr Wojtyniak
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | | | - Karolina Serwach
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | | | - Barbara Zablocka
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Jacek Jaworski
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Maria Kawalec
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
20
|
Li J, Bu Y, Li B, Zhang H, Guo J, Hu J, Zhang Y. Calenduloside E alleviates cerebral ischemia/reperfusion injury by preserving mitochondrial function. J Mol Histol 2022; 53:713-727. [PMID: 35819738 PMCID: PMC9374638 DOI: 10.1007/s10735-022-10087-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/31/2022] [Indexed: 12/16/2022]
Abstract
Calenduloside E (CE) isolated from Aralia elata (Miq.) Seem. is a natural triterpenoid saponin that can reportedly ameliorate myocardial ischemia/reperfusion injury. However, its potential roles and mechanism in cerebral ischemia/reperfusion injury are barely understood. In this study, we established an oxygen-glucose deprivation/reoxygenation (OGD/R) model in HT22 cells. We found that CE significantly attenuated the OGD/R-induced inhibition of cell viability and apoptotic cell death in HT22 cells. Moreover, CE treatment significantly ameliorated OGD/R-induced mitochondrial fission by inhibiting mitochondrial dynamin-related protein 1 (Drp1) recruitment and increasing Drp1 phosphorylation at Ser637. CE treatment significantly ameliorated OGD/R-induced mitochondrial dysfunction by increasing the mitochondrial membrane potential and reducing the mitochondrial ROS and cellular calcium accumulation. Moreover, CE treatment significantly inhibited the OGD/R-induced release of mitochondrial Cytochrome C and increase in Bax, Cleaved-caspase3 and Cleaved-caspase9 protein levels, whereas CE treatment significantly reversed the OGD/R-induced decrease in Bcl-2 and full length of caspase3 and caspase9 protein levels. In vivo, we found that CE treatment significantly ameliorated ischemic/hypoxic-induced brain infarct volume, neurological deficits, and neuronal apoptosis in mice after middle cerebral artery occlusion and reperfusion. CE treatment also significantly ameliorated the mitochondrial transmembrane potential, decreased Cytochrome C release, and reversed the increase in Bax, Cleaved-caspase3 and Cleaved-caspase9 protein levels and the decrease in Bcl-2 and full length of caspase3 and caspase9 protein levels induced by cerebral ischemia/reperfusion (I/R). All these results indicated that CE treatment exerted a neuroprotective effect by ameliorating mitochondrial dysfunction during cerebral I/R injury.
Collapse
Affiliation(s)
- Jianxiong Li
- Department of Neurology, Lanzhou University Second Hospital, 730030, Lanzhou, Gansu Province, China
| | - Yujie Bu
- Department of Neurology, Lanzhou University Second Hospital, 730030, Lanzhou, Gansu Province, China
| | - Bin Li
- Department of Neurology, Lanzhou University Second Hospital, 730030, Lanzhou, Gansu Province, China
| | - Hailin Zhang
- Neurosurgery, Lanzhou University Second Hospital, 730030, Lanzhou, Gansu Province, China.
| | - Jia Guo
- Department of Neurology, Lanzhou University Second Hospital, 730030, Lanzhou, Gansu Province, China
| | - Jianping Hu
- Department of Neurology, Lanzhou University Second Hospital, 730030, Lanzhou, Gansu Province, China
| | - Yanfang Zhang
- Department of Neurology, Lanzhou University Second Hospital, 730030, Lanzhou, Gansu Province, China
| |
Collapse
|
21
|
Olesen MA, Villavicencio-Tejo F, Quintanilla RA. The use of fibroblasts as a valuable strategy for studying mitochondrial impairment in neurological disorders. Transl Neurodegener 2022; 11:36. [PMID: 35787292 PMCID: PMC9251940 DOI: 10.1186/s40035-022-00308-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
Neurological disorders (NDs) are characterized by progressive neuronal dysfunction leading to synaptic failure, cognitive impairment, and motor injury. Among these diseases, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) have raised a significant research interest. These disorders present common neuropathological signs, including neuronal dysfunction, protein accumulation, oxidative damage, and mitochondrial abnormalities. In this context, mitochondrial impairment is characterized by a deficiency in ATP production, excessive production of reactive oxygen species, calcium dysregulation, mitochondrial transport failure, and mitochondrial dynamics deficiencies. These defects in mitochondrial health could compromise the synaptic process, leading to early cognitive dysfunction observed in these NDs. Interestingly, skin fibroblasts from AD, PD, HD, and ALS patients have been suggested as a useful strategy to investigate and detect early mitochondrial abnormalities in these NDs. In this context, fibroblasts are considered a viable model for studying neurodegenerative changes due to their metabolic and biochemical relationships with neurons. Also, studies of our group and others have shown impairment of mitochondrial bioenergetics in fibroblasts from patients diagnosed with sporadic and genetic forms of AD, PD, HD, and ALS. Interestingly, these mitochondrial abnormalities have been observed in the brain tissues of patients suffering from the same pathologies. Therefore, fibroblasts represent a novel strategy to study the genesis and progression of mitochondrial dysfunction in AD, PD, HD, and ALS. This review discusses recent evidence that proposes fibroblasts as a potential target to study mitochondrial bioenergetics impairment in neurological disorders and consequently to search for new biomarkers of neurodegeneration.
Collapse
Affiliation(s)
- Margrethe A Olesen
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Francisca Villavicencio-Tejo
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
22
|
The Role of Mitochondrial Dynamin in Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2504798. [PMID: 35571256 PMCID: PMC9106451 DOI: 10.1155/2022/2504798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/17/2022] [Indexed: 11/25/2022]
Abstract
Stroke is one of the leading causes of death and disability in the world. However, the pathophysiological process of stroke is still not fully clarified. Mitochondria play an important role in promoting nerve survival and are an important drug target for the treatment of stroke. Mitochondrial dysfunction is one of the hallmarks of stroke. Mitochondria are in a state of continuous fission and fusion, which are termed as mitochondrial dynamics. Mitochondrial dynamics are very important for maintaining various functions of mitochondria. In this review, we will introduce the structure and functions of mitochondrial fission and fusion related proteins and discuss their role in the pathophysiologic process of stroke. A better understanding of mitochondrial dynamin in stroke will pave way for the development of new therapeutic options.
Collapse
|
23
|
Tang Y, Jia Y, Fan L, Liu H, Zhou Y, Wang M, Liu Y, Zhu J, Pang W, Zhou J. MFN2 Prevents Neointimal Hyperplasia in Vein Grafts via Destabilizing PFK1. Circ Res 2022; 130:e26-e43. [PMID: 35450439 DOI: 10.1161/circresaha.122.320846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mechanical forces play crucial roles in neointimal hyperplasia after vein grafting; yet, our understanding of their influences on vascular smooth muscle cell (VSMC) activation remains rudimentary. METHODS A cuff mouse model was used to study vein graft hyperplasia. Fifteen percent to 1 Hz uniaxial cyclic stretch (arterial strain), 5% to 1 Hz uniaxial cyclic stretch or a static condition (venous strain) were applied to the cultured VSMCs. Metabolomics analysis, cell proliferation and migration assays, immunoblotting, co-immunoprecipitation, mutagenesis, pull-down and surface plasmon resonance assays were employed to elucidate the potential molecular mechanisms. RESULTS RNA-sequencing in vein grafts and the controls identified changes in metabolic pathways and downregulation of mitochondrial protein MFN2 (mitofusin 2) in the vein grafts. Exposure of VSMCs to 15% stretch resulted in MFN2 downregulation, mitochondrial fragmentation, metabolic shift from mitochondrial oxidative phosphorylation to glycolysis, and cell proliferation and migration, as compared with that to a static condition or 5% stretch. Metabolomics analysis indicated an increased generation of fructose 1,6-bisphosphate, an intermediate in the glycolytic pathway converted by PFK1 (phosphofructokinase 1) from fructose-6-phosphate, in cells exposed to 15% stretch. Mechanistic study revealed that MFN2 physically interacts through its C-terminus with PFK1. MFN2 knockdown or exposure of cells to 15% stretch promoted stabilization of PFK1, likely through interfering the association between PFK1 and the E3 ubiquitin ligase TRIM21 (E3 ubiquitin ligase tripartite motif [TRIM]-containing protein 21), thus, decreasing the ubiquitin-protease-dependent PFK1 degradation. In addition, study of mechanotransduction utilizing pharmaceutical inhibition indicated that the MFN2 downregulation by 15% stretch was dependent on inactivation of the SP1 (specificity protein 1) and activation of the JNK (c-Jun N-terminal kinase) and ROCK (Rho-associated protein kinase). Adenovirus-mediated MFN2 overexpression or pharmaceutical inhibition of PFK1 suppressed the 15% stretch-induced VSMC proliferation and migration and alleviated neointimal hyperplasia in vein grafts. CONCLUSIONS MFN2 is a mechanoresponsive protein that interacts with PFK1 to mediate PFK1 degradation and therefore suppresses glycolysis in VSMCs.
Collapse
Affiliation(s)
- Yuanjun Tang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,(Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.T., Y.J., L.F., H.L., Y.Z., Y.L., J. Zhu, J. Zhou).,National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides (Y.T., L.F., H.L., Y.L., J. Zhu, J. Zhou).,Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, China (Y.T., L.F., H.L., Y.L., J. Zhu, J. Zhou)
| | - Yiting Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,(Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.T., Y.J., L.F., H.L., Y.Z., Y.L., J. Zhu, J. Zhou)
| | - Linwei Fan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,(Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.T., Y.J., L.F., H.L., Y.Z., Y.L., J. Zhu, J. Zhou).,National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides (Y.T., L.F., H.L., Y.L., J. Zhu, J. Zhou).,Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, China (Y.T., L.F., H.L., Y.L., J. Zhu, J. Zhou)
| | - Han Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,(Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.T., Y.J., L.F., H.L., Y.Z., Y.L., J. Zhu, J. Zhou).,National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides (Y.T., L.F., H.L., Y.L., J. Zhu, J. Zhou).,Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, China (Y.T., L.F., H.L., Y.L., J. Zhu, J. Zhou)
| | - Yuan Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.T., Y.J., L.F., H.L., Y.Z., Y.L., J. Zhu, J. Zhou).,Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China (Y.Z.)
| | - Miao Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. (M.W.).,Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. (M.W.)
| | - Yuefeng Liu
- (Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.T., Y.J., L.F., H.L., Y.Z., Y.L., J. Zhu, J. Zhou).,National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides (Y.T., L.F., H.L., Y.L., J. Zhu, J. Zhou).,Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, China (Y.T., L.F., H.L., Y.L., J. Zhu, J. Zhou)
| | - Juanjuan Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,(Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.T., Y.J., L.F., H.L., Y.Z., Y.L., J. Zhu, J. Zhou).,National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides (Y.T., L.F., H.L., Y.L., J. Zhu, J. Zhou).,Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, China (Y.T., L.F., H.L., Y.L., J. Zhu, J. Zhou)
| | - Wei Pang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,(Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.)
| | - Jing Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,(Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.T., Y.J., L.F., H.L., Y.Z., Y.L., J. Zhu, J. Zhou).,National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides (Y.T., L.F., H.L., Y.L., J. Zhu, J. Zhou).,Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, China (Y.T., L.F., H.L., Y.L., J. Zhu, J. Zhou)
| |
Collapse
|
24
|
Zhang Y, Zhang T, Li Y, Guo Y, Liu B, Tian Y, Wu P, Shi H. Metformin attenuates early brain injury after subarachnoid hemorrhage in rats via AMPK-dependent mitophagy. Exp Neurol 2022; 353:114055. [PMID: 35341746 DOI: 10.1016/j.expneurol.2022.114055] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/28/2022] [Accepted: 03/21/2022] [Indexed: 11/26/2022]
Abstract
Metformin is the most widely used drug to treat type 2 diabetes and its mitochondrial activity is through activation of adenosine monophosphate-activated protein kinase (AMPK). AMPK plays a dual regulatory role in mito-morphosis, controlling the phosphorylation and activation of dynamin-related protein 1 (DRP1) and mitofusin 2 (MFN2). The aim of this study was to investigate whether metformin could reduce early brain injury (EBI) after subarachnoid hemorrhage (SAH) by activating mitophagy and improving mitochondrial morphology through AMPK. This study used 308 male Sprague-Dawley rats. First, different metformin doses were injected intraperitoneally 30 min post-SAH. The dose that did not significantly alter blood glucose in the rats was selected for subsequent experiments. Before or after sacrificing rats, neurological function, brain water content, and blood-brain barrier (BBB) permeability were measured in each group. Transmission electron microscopy was used to observe the level of mitophagy and mito-morphology in each group. The expression of mitophagic and apoptotic proteins were investigated by immunofluorescence and western blot. Metformin at 20 mg/kg improved neurological function and attenuated brain edema and the disruption of BBB permeability 24 h after SAH. Metformin treatment after SAH promoted mitophagy in an AMPK-dependent manner. In addition to the effects on mitophagy, we also found that metformin alleviated oxidative stress and apoptosis after SAH in an AMPK-dependent manner. Lastly, metformin restored homeostasis between mitochondrial fusion and fission. Metformin attenuated EBI after SAH in rats through AMPK-dependent signaling. These protective effects might be achieved by regulating mitochondrial morphology and promoting mitophagy.
Collapse
Affiliation(s)
- Yongzhi Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Tongyu Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuchen Li
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yu Guo
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Harbin, Heilongjiang, China
| | - Binbing Liu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yang Tian
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Pei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
25
|
Bhatia D, Capili A, Nakahira K, Muthukumar T, Torres LK, Choi AMK, Choi ME. Conditional deletion of myeloid-specific mitofusin 2 but not mitofusin 1 promotes kidney fibrosis. Kidney Int 2022; 101:963-986. [PMID: 35227692 PMCID: PMC9038692 DOI: 10.1016/j.kint.2022.01.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/22/2021] [Accepted: 01/11/2022] [Indexed: 11/30/2022]
Abstract
Macrophages exert critical functions during kidney injury, inflammation, and tissue repair or fibrosis. Mitochondrial structural and functional aberrations due to an imbalance in mitochondrial fusion/fission processes are implicated in the pathogenesis of chronic kidney disease. Therefore, we investigated macrophage-specific functions of mitochondrial fusion proteins, mitofusin (MFN)1 and MFN2, in modulating macrophage mitochondrial dynamics, biogenesis, oxidative stress, polarization, and fibrotic response. MFN1 and MFN2 were found to be suppressed in mice after adenine diet-induced chronic kidney disease, in transforming growth factor-beta 1-treated bone marrow-derived macrophages, and in THP-1-derived human macrophages (a human leukemic cell line). However, abrogating Mfn2 but not Mfn1 in myeloid-lineage cells resulted in greater macrophage recruitment into the kidney during fibrosis and the macrophage-derived fibrotic response associated with collagen deposition culminating in worsening kidney function. Myeloid-specific Mfn1 /Mfn2 double knockout mice also showed increased adenine-induced fibrosis. Mfn2-deficient bone marrow-derived macrophages displayed enhanced polarization towards the profibrotic/M2 phenotype and impaired mitochondrial biogenesis. Macrophages in the kidney of Mfn2-deficient and double knockout but not Mfn1-deficient mice exhibited greater mitochondrial mass, size, oxidative stress and lower mitophagy under fibrotic conditions than the macrophages in the kidney of wild-type mice. Thus, downregulation of MFN2 but not MFN1 lead to macrophage polarization towards a profibrotic phenotype to promote kidney fibrosis through a mechanism involving suppression of macrophage mitophagy and dysfunctional mitochondrial dynamics.
Collapse
Affiliation(s)
- Divya Bhatia
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Allyson Capili
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Kiichi Nakahira
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA; Department of Pharmacology, Nara Medical University, Nara, Japan
| | - Thangamani Muthukumar
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA; NewYork-Presbyterian Hospital, New York, New York, USA
| | - Lisa K Torres
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA; NewYork-Presbyterian Hospital, New York, New York, USA
| | - Mary E Choi
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA; NewYork-Presbyterian Hospital, New York, New York, USA.
| |
Collapse
|
26
|
Yang M, He Y, Deng S, Xiao L, Tian M, Xin Y, Lu C, Zhao F, Gong Y. Mitochondrial Quality Control: A Pathophysiological Mechanism and Therapeutic Target for Stroke. Front Mol Neurosci 2022; 14:786099. [PMID: 35153669 PMCID: PMC8832032 DOI: 10.3389/fnmol.2021.786099] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022] Open
Abstract
Stroke is a devastating disease with high mortality and disability rates. Previous research has established that mitochondria, as major regulators, are both influenced by stroke, and further regulated the development of poststroke injury. Mitochondria are involved in several biological processes such as energy generation, calcium homeostasis, immune response, apoptosis regulation, and reactive oxygen species (ROS) generation. Meanwhile, mitochondria can evolve into various quality control systems, including mitochondrial dynamics (fission and fusion) and mitophagy, to maintain the homeostasis of the mitochondrial network. Various activities of mitochondrial fission and fusion are associated with mitochondrial integrity and neurological injury after stroke. Additionally, proper mitophagy seems to be neuroprotective for its effect on eliminating the damaged mitochondria, while excessive mitophagy disturbs energy generation and mitochondria-associated signal pathways. The balance between mitochondrial dynamics and mitophagy is more crucial than the absolute level of each process. A neurovascular unit (NVU) is a multidimensional system by which cells release multiple mediators and regulate diverse signaling pathways across the whole neurovascular network in a way with a high dynamic interaction. The turbulence of mitochondrial quality control (MQC) could lead to NVU dysfunctions, including neuron death, neuroglial activation, blood–brain barrier (BBB) disruption, and neuroinflammation. However, the exact changes and effects of MQC on the NVU after stroke have yet to be fully illustrated. In this review, we will discuss the updated mechanisms of MQC and the pathophysiology of mitochondrial dynamics and mitophagy after stroke. We highlight the regulation of MQC as a potential therapeutic target for both ischemic and hemorrhagic stroke.
Collapse
Affiliation(s)
- Miaoxian Yang
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu He
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuixiang Deng
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Lei Xiao
- The State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mi Tian
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuewen Xin
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Chaocheng Lu
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Feng Zhao
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Feng Zhao,
| | - Ye Gong
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Ye Gong,
| |
Collapse
|
27
|
Zhang L, Dai L, Li D. Mitophagy in neurological disorders. J Neuroinflammation 2021; 18:297. [PMID: 34937577 PMCID: PMC8693476 DOI: 10.1186/s12974-021-02334-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/28/2021] [Indexed: 02/07/2023] Open
Abstract
Selective autophagy is an evolutionarily conserved mechanism that removes excess protein aggregates and damaged intracellular components. Most eukaryotic cells, including neurons, rely on proficient mitophagy responses to fine-tune the mitochondrial number and preserve energy metabolism. In some circumstances (such as the presence of pathogenic protein oligopolymers and protein mutations), dysfunctional mitophagy leads to nerve degeneration, with age-dependent intracellular accumulation of protein aggregates and dysfunctional organelles, leading to neurodegenerative disease. However, when pathogenic protein oligopolymers, protein mutations, stress, or injury are present, mitophagy prevents the accumulation of damaged mitochondria. Accordingly, mitophagy mediates neuroprotective effects in some forms of neurodegenerative disease (e.g., Alzheimer's disease, Parkinson’s disease, Huntington's disease, and Amyotrophic lateral sclerosis) and acute brain damage (e.g., stroke, hypoxic–ischemic brain injury, epilepsy, and traumatic brain injury). The complex interplay between mitophagy and neurological disorders suggests that targeting mitophagy might be applicable for the treatment of neurodegenerative diseases and acute brain injury. However, due to the complexity of the mitophagy mechanism, mitophagy can be both harmful and beneficial, and future efforts should focus on maximizing its benefits. Here, we discuss the impact of mitophagy on neurological disorders, emphasizing the contrast between the positive and negative effects of mitophagy.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.,Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, Sichuan, China
| | - Deyuan Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China. .,Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
28
|
Increased ROS-Dependent Fission of Mitochondria Causes Abnormal Morphology of the Cell Powerhouses in a Murine Model of Amyotrophic Lateral Sclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6924251. [PMID: 34691359 PMCID: PMC8531774 DOI: 10.1155/2021/6924251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/30/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease in humans and remains to have a fatal prognosis. Recent studies in animal models and human ALS patients indicate that increased reactive oxygen species (ROS) play an important role in the pathogenesis. Considering previous studies revealing the influence of ROS on mitochondrial physiology, our attention was focused on mitochondria in the murine ALS model, wobbler mouse. The aim of this study was to investigate morphological differences between wild-type and wobbler mitochondria with aid of superresolution structured illumination fluorescence microscopy, TEM, and TEM tomography. To get an insight into mitochondrial dynamics, expression studies of corresponding proteins were performed. Here, we found significantly smaller and degenerated mitochondria in wobbler motor neurons at a stable stage of the disease. Our data suggest a ROS-regulated, Ox-CaMKII-dependent Drp1 activation leading to disrupted fission-fusion balance, resulting in fragmented mitochondria. These changes are associated with numerous impairments, resulting in an overall self-reinforcing decline of motor neurons. In summary, our study provides common pathomechanisms with other ALS models and human ALS cases confirming mitochondria and related dysfunctions as a therapeutic target for the treatment of ALS.
Collapse
|
29
|
Casellas-Díaz S, Larramona-Arcas R, Riqué-Pujol G, Tena-Morraja P, Müller-Sánchez C, Segarra-Mondejar M, Gavaldà-Navarro A, Villarroya F, Reina M, Martínez-Estrada OM, Soriano FX. Mfn2 localization in the ER is necessary for its bioenergetic function and neuritic development. EMBO Rep 2021; 22:e51954. [PMID: 34296790 PMCID: PMC8419703 DOI: 10.15252/embr.202051954] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 06/10/2021] [Accepted: 06/23/2021] [Indexed: 12/31/2022] Open
Abstract
Mfn2 is a mitochondrial fusion protein with bioenergetic functions implicated in the pathophysiology of neuronal and metabolic disorders. Understanding the bioenergetic mechanism of Mfn2 may aid in designing therapeutic approaches for these disorders. Here we show using endoplasmic reticulum (ER) or mitochondria‐targeted Mfn2 that Mfn2 stimulation of the mitochondrial metabolism requires its localization in the ER, which is independent of its fusion function. ER‐located Mfn2 interacts with mitochondrial Mfn1/2 to tether the ER and mitochondria together, allowing Ca2+ transfer from the ER to mitochondria to enhance mitochondrial bioenergetics. The physiological relevance of these findings is shown during neurite outgrowth, when there is an increase in Mfn2‐dependent ER‐mitochondria contact that is necessary for correct neuronal arbor growth. Reduced neuritic growth in Mfn2 KO neurons is recovered by the expression of ER‐targeted Mfn2 or an artificial ER‐mitochondria tether, indicating that manipulation of ER‐mitochondria contacts could be used to treat pathologic conditions involving Mfn2.
Collapse
Affiliation(s)
- Sergi Casellas-Díaz
- Department of Cell Biology, Physiology and Immunology, Celltec-UB, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Raquel Larramona-Arcas
- Department of Cell Biology, Physiology and Immunology, Celltec-UB, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Guillem Riqué-Pujol
- Department of Cell Biology, Physiology and Immunology, Celltec-UB, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Paula Tena-Morraja
- Department of Cell Biology, Physiology and Immunology, Celltec-UB, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Claudia Müller-Sánchez
- Department of Cell Biology, Physiology and Immunology, Celltec-UB, University of Barcelona, Barcelona, Spain
| | - Marc Segarra-Mondejar
- Department of Cell Biology, Physiology and Immunology, Celltec-UB, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Aleix Gavaldà-Navarro
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine, University of Barcelona, Barcelona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Francesc Villarroya
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine, University of Barcelona, Barcelona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Manuel Reina
- Department of Cell Biology, Physiology and Immunology, Celltec-UB, University of Barcelona, Barcelona, Spain
| | - Ofelia M Martínez-Estrada
- Department of Cell Biology, Physiology and Immunology, Celltec-UB, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Francesc X Soriano
- Department of Cell Biology, Physiology and Immunology, Celltec-UB, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
30
|
Structure and Function of Mitochondria-Associated Endoplasmic Reticulum Membranes (MAMs) and Their Role in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4578809. [PMID: 34336092 PMCID: PMC8289621 DOI: 10.1155/2021/4578809] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022]
Abstract
Abnormal function of suborganelles such as mitochondria and endoplasmic reticulum often leads to abnormal function of cardiomyocytes or vascular endothelial cells and cardiovascular disease (CVD). Mitochondria-associated membrane (MAM) is involved in several important cellular functions. Increasing evidence shows that MAM is involved in the pathogenesis of CVD. MAM mediates multiple cellular processes, including calcium homeostasis regulation, lipid metabolism, unfolded protein response, ROS, mitochondrial dynamics, autophagy, apoptosis, and inflammation, which are key risk factors for CVD. In this review, we discuss the structure of MAM and MAM-associated proteins, their role in CVD progression, and the potential use of MAM as the therapeutic targets for CVD treatment.
Collapse
|
31
|
Zhu J, Yang X, Li X, Han S, Zhu Y, Xu L. Tang Luo Ning, a Traditional Chinese Compound Prescription, Ameliorates Schwannopathy of Diabetic Peripheral Neuropathy Rats by Regulating Mitochondrial Dynamics In Vivo and In Vitro. Front Pharmacol 2021; 12:650448. [PMID: 34054529 PMCID: PMC8160508 DOI: 10.3389/fphar.2021.650448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/12/2021] [Indexed: 01/12/2023] Open
Abstract
Tang Luo Ning (TLN), a traditional Chinese compound prescription, has been used clinically to treat diabetic peripheral neuropathy (DPN) in China. However, the exact mechanisms remain unclear. The objective of this study is to unravel the effects of TLN on mitochondrial dynamics of DPN in streptozotocin-induced rat models and Schwann cells cultured in 150 mM glucose. Mitochondrial function was determined by Ca2+ and ATP levels of streptozotocin (STZ)-induced DPN rats and mitochondria structure, mitochondrial membrane potential (MMP), and mtDNA of high glucose incubated SCs. Mitochondrial dynamics protein including mitofusin 1 (Mfn1), mitofusin 2 (Mfn2), optic atrophy 1 (Opa1), and dynamin-related protein 1 (Drp1) were investigated using Western blot or immunofluorescence. Myelin basic protein (MBP), myelin protein zero (MPZ), and sex-determining region Y (SRY)-box 10 (Sox10) were measured to represent schwannopathy. Our results showed that TLN increased ATP levels (0.38 of model, 0.69 of HTLN, 0.61 of LTLN, P<0.01; 0.52 of 150 mM glucose, 1.00 of 10% TLN, P<0.01, 0.94 of 1% TLN, P<0.05), MMP (0.56 of 150 mM glucose, P<0.01, 0.75 of 10% TLN, P<0.05, 0.83 of 1% TLN, P<0.01), and mtDNA (0.32 of 150 mM glucose, 0.43 of 10% TLN, P<0.01) while decreased Ca2+ (1.54 of model, 1.06 of HTLN, 0.96 of LTLN, P<0.01) to improve mitochondrial function in vivo and in vitro. TLN helps maintain balance of mitochondrial dynamics: it reduces the mitochondria number (1.60 of 150 mM glucose, 1.10 of 10% TLN, P<0.01) and increases the mitochondria coverage (0.51 of 150 mM glucose, 0.80 of 10% TLN, 0.87 of 1% TLN, P<0.01), mitochondrial network size (0.51 of 150 mM glucose, 0.95 of 10% TLN, 0.94 of 1% TLN, P<0.01), and branch length (0.63 of 150 mM glucose, P<0.01, 0.73 of 10% TLN, P<0.05, 0.78 of 1% TLN, P<0.01). Further, mitochondrial dynamics–related Mfn1 (0.47 of model, 0.82 of HTLN, 0.77 of LTLN, P<0.01; 0.42 of 150 mM glucose, 0.56 of 10% TLN, 0.57 of 1% TLN, P<0.01), Mfn2 (0.40 of model, 0.84 of HTLN, 0.63 of LTLN, P<0.01; 0.46 of 150 mM glucose, 1.40 of 10% TLN, 1.40 of 1% TLN, P<0.01), and Opa1 (0.58 of model, 0.71 of HTLN, 0.90 of LTLN, P<0.01; 0.69 of 150 mM glucose, 0.96 of 10% TLN, 0.98 of 1% TLN, P<0.05) were increased, while Drp1 (1.39 of model, 0.96 of HTLN, 1.18 of LTLN, P<0.01; 1.70 of 150 mM glucose, 1.20 of 10% TLN, 1.10 of 1% TLN, P<0.05), phosphorylated Drp1 (2.61 of model, 1.44 of HTLN, P<0.05; 2.80 of 150 mM glucose, 1.50 of 10% TLN, 1.30 of 1% TLN, P<0.01), and Drp1 located in mitochondria (1.80 of 150 mM glucose, 1.00 of 10% TLN, P<0.05) were decreased after treatment with TLN. Additionally, TLN improved schwannopathy by increasing MBP (0.50 of model, 1.05 of HTLN, 0.94 of HTLN, P<0.01; 0.60 of 150 mM glucose, 0.78 of 10% TLN, P<0.01, 0.72 of 1% TLN, P<0.05), Sox101 (0.41 of model, 0.99 of LTLN, P<0.01; 0.48 of 150 mM glucose, 0.65 of 10% TLN, P<0.05, 0.69 of 1% TLN, P<0.01), and MPZ (0.48 of model, 0.66 of HTLN, 0.55 of HTLN, P<0.01; 0.60 of 150 mM glucose, 0.78 of 10% TLN, P<0.01, 0.75 of 1% TLN, P<0.05) expressions. In conclusion, our study indicated that TLN’s function on DPN may link to the improvement of the mitochondrial dynamics, which provides scientific evidence for the clinical application.
Collapse
Affiliation(s)
- Jiayue Zhu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Diasease Theory Research, Capital Medical University, Beijing, China
| | - Xinwei Yang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Diasease Theory Research, Capital Medical University, Beijing, China
| | - Xiao Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Diasease Theory Research, Capital Medical University, Beijing, China
| | - Shuo Han
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Diasease Theory Research, Capital Medical University, Beijing, China
| | - Yanbo Zhu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Diasease Theory Research, Capital Medical University, Beijing, China
| | - Liping Xu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Diasease Theory Research, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Jin C, Miao X, Zhong Y, Han J, Liu Q, Zhu J, Xia X, Peng X. The renoprotective effect of diosgenin on aristolochic acid I-induced renal injury in rats: impact on apoptosis, mitochondrial dynamics and autophagy. Food Funct 2021; 11:7456-7467. [PMID: 32789347 DOI: 10.1039/d0fo00401d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aristolochic acid I (AA-I) remains a leading cause of aristolochic acid nephropathy (AAN), however few prevention and treatment strategies exist. In this work, the nephroprotective effect of diosgenin, a steroidal saponin distributed abundantly in several plants, on AA-I-induced renal injury and its underlying mechanism were investigated. Sprague-Dawley rats were intragastrically administered with 30 mg kg-1 d-1 diosgenin two hours before exposure to 10 mg kg-1 d-1 AA-I for consecutive four weeks, and the histological change, the renal and liver function, apoptosis, autophagy and the involved pathways were investigated. The results showed that diosgenin relieved AA-I-induced renal histological damage, including mild edematous disorder of renal tubular arrangement and widening of renal tubular lumen. No obvious changes in the hepatic tissue structure were observed in all treatment groups. Moreover, diosgenin up-regulated the expression of Bcl-2 and down-regulated Bax, and subsequently inhibited AIF expression and the cleaved form of Caspase-3, thereby alleviating apoptosis triggered by AA-I. Diosgenin also mitigated AA-I-induced renal mitochondrial dynamics disorder by increasing the expression of mitochondrial dynamics-related proteins including DRP1 and MFN2. Diosgenin inhibited AA-I-evoked autophagy via ULK1-mediated inhibition of the mTOR pathway. Overall, these results suggest that diosgenin has a protective effect against AA-I-induced renal damage and it may be a potential agent for preventing AA-I-induced AAN.
Collapse
Affiliation(s)
- Chengni Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xin Miao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yujie Zhong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jiahui Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Qi Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jiachang Zhu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaoli Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China. and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, China
| |
Collapse
|
33
|
Abolhasanpour N, Alihosseini S, Golipourkhalili S, Badalzadeh R, Mahmoudi J, Hosseini L. Insight into the effects of melatonin on endoplasmic reticulum, mitochondrial function, and their cross-talk in the stroke. Arch Med Res 2021; 52:673-682. [PMID: 33926763 DOI: 10.1016/j.arcmed.2021.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/13/2021] [Accepted: 04/07/2021] [Indexed: 12/28/2022]
Abstract
Ischemic stroke has remained a principal cause of mortality and neurological disabilities worldwide. Blood flow resumption, reperfusion, in the cerebral ischemia prompts a cascade in the brain characterized by various cellular mechanisms like mitochondrial dysfunction, oxidative stresses, endoplasmic reticulum (ER) stress, and excitotoxicity, finally resulting in programmed cell death. Any changes in the ER-mitochondria axis are probably responsible for both the onset and progression of central nervous system diseases. Melatonin, a neurohormone secreted by the pineal gland, has antioxidative, anti-inflammatory, and anti-apoptotic properties. Most studies have shown that it exerts neuroprotective effects against ischemic stroke. It was observed that melatonin therapy after the stroke not only leads to reduce mitochondrial dysfunction but also cause to alleviate ER stress and inflammation. This review discusses the impact of melatonin on mitochondrial, ER function, and on the crosstalk between two organelles as a therapeutic target for stroke. Given that the influences of melatonin on each organelle separately, its effects on mechanisms of crosstalk between ER and mitochondria are discussed.
Collapse
Affiliation(s)
- Nasrin Abolhasanpour
- Research Center for Evidence-Based Medicine, Tabriz University of Medical Sciences
| | - Samin Alihosseini
- Student research center, Tabriz university of medical sciences, Tabriz, Iran
| | - Sevda Golipourkhalili
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Badalzadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Hosseini
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, IR Iran; Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
34
|
Zappaterra M, Gioiosa S, Chillemi G, Zambonelli P, Davoli R. Dissecting the Gene Expression Networks Associated with Variations in the Major Components of the Fatty Acid Semimembranosus Muscle Profile in Large White Heavy Pigs. Animals (Basel) 2021; 11:ani11030628. [PMID: 33673460 PMCID: PMC7997476 DOI: 10.3390/ani11030628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The amount and fatty acid composition of intramuscular fat are important features for the qualitative characteristics of processed and fresh meat products, but the knowledge of the key molecular drivers controlling these traits is still scant. To this aim, the present study investigated the co-expression networks of genes related to variations in the major fatty acids deposited in pig Semimembranosus muscle. Palmitic and palmitoleic acid contents were associated with a downregulation of genes involved in autophagy, mitochondrial fusion, and mitochondrial activity, suggesting that the deposition of these fatty acids may be enhanced in muscles with a reduced mitochondrial function. A higher proportion of oleic acid and a reduction in the percentages of n-6 and n-3 polyunsaturated fatty acids were related to changes in the mRNA levels of genes involved in Mitogen-Activated Protein Kinase (MAPK) signaling. The obtained results indicated gene expression networks and new candidate genes associated with the studied traits. Further studies are needed to confirm our results and identify in the discussed genes molecular markers for future selection schemes aimed at improving pork nutritional and technological quality. Furthermore, as pigs are considered reliable animal models for several human conditions, the obtained results may also be of interest for improving the knowledge of the molecular pathways associated with obesity and diabetes. Abstract To date, high-throughput technology such as RNA-sequencing has been successfully applied in livestock sciences to investigate molecular networks involved in complex traits, such as meat quality. Pork quality depends on several organoleptic, technological, and nutritional characteristics, and it is also influenced by the fatty acid (FA) composition of intramuscular fat (IMF). To explore the molecular networks associated with different IMF FA compositions, the Semimembranosus muscle (SM) from two groups of Italian Large White (ILW) heavy pigs divergent for SM IMF content was investigated using transcriptome analysis. After alignment and normalization, the obtained gene counts were used to perform the Weighted Correlation Network Analysis (WGCNA package in R environment). Palmitic and palmitoleic contents showed association with the same gene modules, comprising genes significantly enriched in autophagy, mitochondrial fusion, and mitochondrial activity. Among the key genes related to these FAs, we found TEAD4, a gene regulating mitochondrial activity that seems to be a promising candidate for further studies. On the other hand, the genes comprised in the modules associated with the IMF contents of oleic, n-6, and n-3 polyunsaturated FAs (PUFAs) were significantly enriched in Mitogen-Activated Protein Kinase (MAPK) signaling, in agreement with previous studies suggesting that several MAPK players may have a primary role in regulating lipid deposition. These results give an insight into the molecular cascade associated with different IMF FA composition in ILW heavy pigs. Further studies are needed to validate the results and confirm whether some of the identified key genes may be effective candidates for pork quality.
Collapse
Affiliation(s)
- Martina Zappaterra
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 46, I-40127 Bologna, Italy;
- Correspondence: (M.Z.); (R.D.)
| | - Silvia Gioiosa
- CINECA SuperComputing Applications and Innovation Department (SCAI), Via dei Tizii 6, I-00185 Roma, Italy;
| | - Giovanni Chillemi
- Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali (DIBAF), La Tuscia University of Viterbo, Via S. Camillo de Lellis, I-01100 Viterbo, Italy;
| | - Paolo Zambonelli
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 46, I-40127 Bologna, Italy;
| | - Roberta Davoli
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 46, I-40127 Bologna, Italy;
- Correspondence: (M.Z.); (R.D.)
| |
Collapse
|
35
|
Che L, Yang CL, Chen Y, Wu ZL, Du ZB, Wu JS, Gan CL, Yan SP, Huang J, Guo NJ, Lin YC, Lin ZN. Mitochondrial redox-driven mitofusin 2 S-glutathionylation promotes neuronal necroptosis via disrupting ER-mitochondria crosstalk in cadmium-induced neurotoxicity. CHEMOSPHERE 2021; 262:127878. [PMID: 33182097 DOI: 10.1016/j.chemosphere.2020.127878] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Reactive oxygen species (ROS)-mediated endoplasmic reticulum (ER) stress and mitochondrial dysfunction are known to affect the structural and functional damage in the neural system. Cadmium (Cd) is an environmental contaminant that is widely found in numerous environmental matrices and exhibits potential neurotoxic risk. However, it remains unclear how mitochondrial redox status induces, and whether Cd destabilizes, the ER-mitochondria crosstalk to have a toxic effect on the nervous system. Herein, in our present study, bioinformatics analysis revealed an important role of protein interaction and mitochondrial machinery in brain samples from Alzheimer's disease (AD) patients. Furthermore, we established a neurotoxicity model in vivo and in vitro induced by cadmium chloride (CdCl2). We demonstrated that CdCl2 exposure disrupts the balance in mitochondrial redox represented by enhanced mitochondrial ROS (mitoROS) levels, which enhance mitofusin 2 (Mfn2) S-glutathionylation and interrupt the mitochondria-associated ER membranes (MAMs) for crosstalk between the ER and mitochondria to induce neuronal necroptosis. Mechanistically, it was shown that CdCl2 exposure significantly enhances the mitochondria-associated degradation (MAD) of Mfn2 via S-glutathionylation, which inhibits Mfn2 localization to the MAMs and subsequently leads to the formation of the RIPK1-RIPK3-p-MLKL complex (a key component of the necrosome) at MAMs, to promote neuronal necroptosis. Furthermore, the glutaredoxin 1 (Grx1) catalyzed and Mfn2 overexpression restored S-glu-Mfn2, MAMs perturbation, necrosome formation, and necroptosis in neurons induced by CdCl2 exposure in vitro. Moreover, the intervention with antioxidants to reduce mitochondrial redox, such as N-acetyl-l-cysteine (NAC) and mitochondria-targeted antioxidant Mito-TEMPO, reduced the S-glutathionylation of Mfn2 involved in the antagonism of CdCl2-induced necroptosis and neurotoxicity in vivo and in vitro. Taken together, our results are the first time to demonstrate that S-glutathionylation of Mfn2 promotes neuronal necroptosis via disruption of ER-mitochondria crosstalk in CdCl2-induced neurotoxicity, providing the novel mechanistic insight into how hazardous chemical-induced adverse effects in various organs and tissues could be interpreted by intraorganellar pathways under the control of MAMs components in neurons.
Collapse
Affiliation(s)
- Lin Che
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Chuan-Li Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yu Chen
- School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Zi-Li Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Ze-Bang Du
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jia-Shen Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Cong-Ling Gan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Si-Ping Yan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jing Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Ni-Jun Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yu-Chun Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Zhong-Ning Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
36
|
Molecular Dysfunctions of Mitochondria-Associated Membranes (MAMs) in Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21249521. [PMID: 33327665 PMCID: PMC7765134 DOI: 10.3390/ijms21249521] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD) is a multifactorial neurodegenerative pathology characterized by a progressive decline of cognitive functions. Alteration of various signaling cascades affecting distinct subcellular compartment functions and their communication likely contribute to AD progression. Among others, the alteration of the physical association between the endoplasmic reticulum (ER) and mitochondria, also referred as mitochondria-associated membranes (MAMs), impacts various cellular housekeeping functions such as phospholipids-, glucose-, cholesterol-, and fatty-acid-metabolism, as well as calcium signaling, which are all altered in AD. Our review describes the physical and functional proteome crosstalk between the ER and mitochondria and highlights the contribution of distinct molecular components of MAMs to mitochondrial and ER dysfunctions in AD progression. We also discuss potential strategies targeting MAMs to improve mitochondria and ER functions in AD.
Collapse
|
37
|
Głombik K, Detka J, Kurek A, Budziszewska B. Impaired Brain Energy Metabolism: Involvement in Depression and Hypothyroidism. Front Neurosci 2020; 14:586939. [PMID: 33343282 PMCID: PMC7746780 DOI: 10.3389/fnins.2020.586939] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Although hypothyroidism appears to be an important factor in the pathogenesis of depression, the impact of thyroid hormones on the bioenergetics of the adult brain is still poorly known. Since metabolic changes are reported to be a key player in the manifestation of depressive disorder, we investigated whether there are differences in selected metabolic markers in the frontal cortex and hippocampus of Wistar Kyoto rats (WKY; an animal model of depression) compared to those of control Wistar rats and whether the induction of hypothyroidism by propylthiouracil (PTU) elicits similar effects in these animals or intensifies some parameters in the WKY rats. In our study, we used WKY rats as a model of depression since this strain exhibits lower levels of monoamines in the brain than control rats and exhibits behavioral and hormonal alterations resembling those of depression, including increased reactivity to stress. The findings indicate a decrease in glycolysis intensity in both brain structures in the WKY rats as well as in both strains under hypothyroidism conditions. Furthermore, hypothyroidism disrupted the connection between glycolysis and the Krebs cycle in the frontal cortex and hippocampus in the depression model used in this study. Decreased thyroid hormone action was also shown to attenuate oxidative phosphorylation, and this change was greater in the WKY rats. Our results suggest that both the depression and hypothyroidism models are characterized by similar impairments in brain energy metabolism and mitochondrial function and, additionally, that the co-occurrence of hypothyroidism and depression may exacerbate some of the metabolic changes observed in depression.
Collapse
Affiliation(s)
- Katarzyna Głombik
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Jan Detka
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Anna Kurek
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Bogusława Budziszewska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
38
|
Chen Y, Guo S, Tang Y, Mou C, Hu X, Shao F, Yan W, Wu Q. Mitochondrial Fusion and Fission in Neuronal Death Induced by Cerebral Ischemia-Reperfusion and Its Clinical Application: A Mini-Review. Med Sci Monit 2020; 26:e928651. [PMID: 33156817 PMCID: PMC7654336 DOI: 10.12659/msm.928651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are highly dynamic organelles which are joined by mitochondrial fusion and divided by mitochondrial fission. The balance of mitochondrial fusion and fission plays a critical role in maintaining the normal function of neurons, of which the processes are both mediated by several proteins activated by external stimulation. Cerebral ischemia-reperfusion (I/R) injury can disrupt the balance of mitochondrial fusion and fission through regulating the expression and post-translation modification of fusion- and fission-related proteins, thereby destroying homeostasis of the intracellular environment and causing neuronal death. Furthermore, human intervention in fusion- and fission-related proteins can influence the function of neurons and change the outcomes of cerebral I/R injury. In recent years, researchers have found that mitochondrial dysfunction was one of the main factors involved in I/R, and mitochondria is an attractive target in I/R neuroprotection. Therefore, mitochondrial-targeted therapy of the nervous system for I/R gradually started from basic study to clinical application. In the present review, we highlight recent progress in mitochondria fusion and fission in neuronal death induced by cerebral I/R to help understanding the regulatory factors and signaling networks of aberrant mitochondrial fusion and fission contributing to neuronal death during I/R, as well as the potential neuroprotective therapeutics targeting mitochondrial dynamics, which may help clinical treatment and development of relevant dugs.
Collapse
Affiliation(s)
- Yike Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Songxue Guo
- Department of Plastic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Yajuan Tang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Chaohui Mou
- Department of Neurosurgery, Taizhou First People's Hospital, Taizhou, Zhejiang, China (mainland)
| | - Xinben Hu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Fangjie Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Wei Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Qun Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
39
|
Zhang Y, Ma Y, Xiao Y, Lu C, Xiao F. Drp1-dependent mitochondrial fission contributes to Cr(VI)-induced mitophagy and hepatotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:110928. [PMID: 32888618 DOI: 10.1016/j.ecoenv.2020.110928] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/18/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
Hexavalent chromium [Cr(VI)] is seriously harmful to ecosystems and living organisms due to its strong toxicity. Role of dynamin-related protein 1 (Drp1) and Drp1-associated mitochondrial fragmentation in mitophagy and cytotoxicity after Cr(VI) exposure has not been clarified so far. We confirmed that Cr(VI) caused mitochondrial fission by up-regulating Drp1 expression and enhancing Drp1 mitochondrial translocation. By applying the intracellular Ca2+ antagonist BAPTA-AM and mitochondrial Ca2+ antagonist Ru360, we demonstrated that Cr(VI)-induced excessive mitochondrial fission was in a Ca2+-Drp1 dependent manner. The administration of Drp1 siRNA significantly suppressed the overactivation of mitophagy in Cr(VI)-induced hepatotoxicity. The specific Drp1 inhibitor mitochondrial division inhibitor-1 (Mdivi-1) blocked the overactive mitophagy and subsequently ameliorated hepatotoxicity caused by Cr(VI) in vivo. We reached the conclusion that Drp1-dependent mitochondrial fission contributes to Cr(VI)-induced mitophagy and hepatotoxicity, which may provide experimental basis for the study of chromium-associated toxicity, especially for the prevention of health damage in chromium-exposed population.
Collapse
Affiliation(s)
- Yujing Zhang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, PR China
| | - Yu Ma
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, PR China
| | - Yuanyuan Xiao
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, PR China
| | - Chan Lu
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, PR China
| | - Fang Xiao
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, PR China.
| |
Collapse
|
40
|
Jin C, Zhong Y, Han J, Zhu J, Liu Q, Sun D, Xia X, Peng X. Drp1-mediated mitochondrial fission induced autophagy attenuates cell apoptosis caused by 3-chlorpropane-1,2-diol in HEK293 cells. Food Chem Toxicol 2020; 145:111740. [PMID: 32910998 DOI: 10.1016/j.fct.2020.111740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/29/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
3-chlorpropane-1,2-diol (3-MCPD) is a heat-induced food process contaminant that threatens human health. As the primary target organ, the morphological and functional impairment of kidney and the related mechanism such as apoptosis and mitochondrial dysfunction were observed. However, the precise molecular mechanism remains largely unclear. This study aimed to explore the important role of mitochondrial fission and autophagy in the 3-MCPD-caused apoptosis of human embryonic kidney 293 (HEK293) cells. The results showed that blockage of dynamin-related protein-1 (Drp1) by mitochondrial division inhibitor 1 (Mdivi-1, 15 μM) apparently restored 3-MCPD-induced mitochondrial dysfunction, accompanied by prevented the collapse of mitochondrial membrane potential and ATP depletion, and suppressed the occurrence of autophagy. Induction of autophagy occurred following 2.5-10 mM 3-MCPD treatment for 24 h via AMPK mediated mTOR signaling pathway. Meanwhile, enhancement of autophagy by pretreatment with rapamycin (1 nM) alleviated the loss of cell viability and apoptosis induced by 3-MCPD whereas suppression of autophagy by 3-methyladenine (1 mM) further accelerated apoptosis, which was modulated through the mitochondria-dependent apoptotic pathway. Taking together, this study provides novel insights into the 3-MCPD-induced apoptosis in HEK293 cells and reveals that autophagy has potential as an effective intervention strategy for the treatment of 3-MCPD-induced nephrotoxicity.
Collapse
Affiliation(s)
- Chengni Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yujie Zhong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiahui Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiachang Zhu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qi Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dianjun Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoli Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
41
|
He M, Ma Y, Wang R, Zhang J, Jing L, Li PA. Deletion of Mitochondrial Uncoupling Protein 2 Exacerbates Mitochondrial Damage in Mice Subjected to Cerebral Ischemia and Reperfusion Injury under both Normo- and Hyperglycemic Conditions. Int J Biol Sci 2020; 16:2788-2802. [PMID: 33061796 PMCID: PMC7545711 DOI: 10.7150/ijbs.48204] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
Deletion of mitochondrial uncoupling protein 2 (UCP2) has been shown to aggravate ischemic damage in the brain. However, the underlying mechanisms are not fully understood. The objective of this study is to explore the impact of homozygous UCP2 deletion (UCP2-/-) on mitochondrial fission and fusion dynamic balance in ischemic mice under normo- and hyperglycemic conditions. UCP2-/- and wildtype mice were subjected to a 60 min middle cerebral artery occlusion (MCAO) and allowed reperfusion for 6h, 24h and 72h. Our results demonstrated that deletion of UCP2 enlarged infarct volumes and increased numbers of cell death in both normo- and hyperglycemic ischemic mice compared with their wildtype counterparts subjected to the same duration of ischemia and reperfusion. The detrimental effects of UCP deletion were associated with increased ROS production, elevated mitochondrial fission markers Drp1 and Fis1 and suppressed fusion markers Opa1 and Mfn2 in UCP2-/- mice. Electron microscopic study demonstrated a marked mitochondrial swolling after 6h of reperfusion in UCP2-/- mice, contrasting to a mild mitochondrial swolling in wildtype ischemic animals. It is concluded that the exacerbating effects of UCP2-/- on ischemic outcome in both normo- and hyperglycemic animals are associated with increased ROS production, disturbed mitochondrial dynamic balance towards fission and early damage to mitochondrial ultrastructure.
Collapse
Affiliation(s)
- Maotao He
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.,School of Basic Medical Sciences, Department of Pathology, Ningxia Medical University; Ningxia Key Laboratory of Vascular Injury and Repair, Yinchuan, Ningxia 750004, China.,Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), College of Health and Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Yanmei Ma
- School of Basic Medical Sciences, Department of Pathology, Ningxia Medical University; Ningxia Key Laboratory of Vascular Injury and Repair, Yinchuan, Ningxia 750004, China
| | - Rui Wang
- School of Basic Medical Sciences, Department of Pathology, Ningxia Medical University; Ningxia Key Laboratory of Vascular Injury and Repair, Yinchuan, Ningxia 750004, China
| | - Jianzhong Zhang
- School of Basic Medical Sciences, Department of Pathology, Ningxia Medical University; Ningxia Key Laboratory of Vascular Injury and Repair, Yinchuan, Ningxia 750004, China
| | - Li Jing
- School of Basic Medical Sciences, Department of Pathology, Ningxia Medical University; Ningxia Key Laboratory of Vascular Injury and Repair, Yinchuan, Ningxia 750004, China
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), College of Health and Sciences, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
42
|
Vidal-Sancho L, Fernández-García S, Solés-Tarrés I, Alberch J, Xifró X. Decreased Myocyte Enhancer Factor 2 Levels in the Hippocampus of Huntington's Disease Mice Are Related to Cognitive Dysfunction. Mol Neurobiol 2020; 57:4549-4562. [PMID: 32757160 DOI: 10.1007/s12035-020-02041-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022]
Abstract
People suffering from Huntington's disease (HD) present cognitive deficits. Hippocampal dysfunction has been involved in the HD learning and memory impairment, but proteins leading this dysregulation are not fully characterized. Here, we studied the contribution of the family of transcription factors myocyte enhancer factor 2 (MEF2) to the HD cognitive deficits. To this aim, we first analyzed MEF2 protein levels and found that they are reduced in the hippocampus of exon-1 (R6/1) and full-length (HdhQ7/Q111) mutant huntingtin (mHTT) mice at the onset of cognitive dysfunction. By the analysis of MEF2 mRNA levels and mHTT-MEF2 interaction, we discarded that reduced MEF2 levels are due to changes in the transcription or sequestration in mHTT aggregates. Interestingly, we showed in R6/1 primary hippocampal cultures that reduction of MEF2 is strongly related to a basal and non-apoptotic caspase activity. To decipher the involvement of hippocampal decreased MEF2 in memory impairment, we used the BML-210 molecule that activates MEF2 transcriptional activity by the disruption MEF2-histone deacetylase class IIa interaction. BML-210 treatment increased the number and length of neurites in R6/1 primary hippocampal cultures. Importantly, this effect was prevented by transduction of lentiviral particles containing shRNA against MEF2. Then, we demonstrated that intraperitoneal administration of BML-210 (150 mg/Kg/day) for 4 days in R6/1 mice improved cognitive performance. Finally, we observed that BML-210 treatment also promoted the activation of MEF2-dependent memory-related genes and the increase of synaptic markers in the hippocampus of R6/1 mice. Our findings point out that reduced hippocampal MEF2 is an important mediator of cognitive dysfunction in HD and suggest that MEF2 slight basal activation could be a good therapeutic option.
Collapse
Affiliation(s)
- Laura Vidal-Sancho
- New Therapeutic Targets Group, Department of Medical Science, Faculty of Medicine, University of Girona, 17003, Girona, Spain
| | - Sara Fernández-García
- Departament de Biomedicina, Institut de Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, 28031, Spain
| | - Irene Solés-Tarrés
- New Therapeutic Targets Group, Department of Medical Science, Faculty of Medicine, University of Girona, 17003, Girona, Spain
| | - Jordi Alberch
- Departament de Biomedicina, Institut de Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, 28031, Spain
| | - Xavier Xifró
- New Therapeutic Targets Group, Department of Medical Science, Faculty of Medicine, University of Girona, 17003, Girona, Spain. .,Departament de Ciències Mèdiques, Facultat de Medicina, Universitat de Girona, 17003, Girona, Spain.
| |
Collapse
|
43
|
Yang L, Youngblood H, Wu C, Zhang Q. Mitochondria as a target for neuroprotection: role of methylene blue and photobiomodulation. Transl Neurodegener 2020; 9:19. [PMID: 32475349 PMCID: PMC7262767 DOI: 10.1186/s40035-020-00197-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dysfunction plays a central role in the formation of neuroinflammation and oxidative stress, which are important factors contributing to the development of brain disease. Ample evidence suggests mitochondria are a promising target for neuroprotection. Recently, methods targeting mitochondria have been considered as potential approaches for treatment of brain disease through the inhibition of inflammation and oxidative injury. This review will discuss two widely studied approaches for the improvement of brain mitochondrial respiration, methylene blue (MB) and photobiomodulation (PBM). MB is a widely studied drug with potential beneficial effects in animal models of brain disease, as well as limited human studies. Similarly, PBM is a non-invasive treatment that promotes energy production and reduces both oxidative stress and inflammation, and has garnered increasing attention in recent years. MB and PBM have similar beneficial effects on mitochondrial function, oxidative damage, inflammation, and subsequent behavioral symptoms. However, the mechanisms underlying the energy enhancing, antioxidant, and anti-inflammatory effects of MB and PBM differ. This review will focus on mitochondrial dysfunction in several different brain diseases and the pathological improvements following MB and PBM treatment.
Collapse
Affiliation(s)
- Luodan Yang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Hannah Youngblood
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Chongyun Wu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
44
|
Ruiz A, Quintela-López T, Sánchez-Gómez MV, Gaminde-Blasco A, Alberdi E, Matute C. Mitochondrial division inhibitor 1 disrupts oligodendrocyte Ca 2+ homeostasis and mitochondrial function. Glia 2020; 68:1743-1756. [PMID: 32060978 DOI: 10.1002/glia.23802] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/02/2020] [Accepted: 02/05/2020] [Indexed: 12/31/2022]
Abstract
Mitochondrial fission mediated by cytosolic dynamin related protein 1 (Drp1) is essential for mitochondrial quality control but may contribute to apoptosis as well. Blockade of Drp1 with mitochondrial division inhibitor 1 (mdivi-1) provides neuroprotection in several models of neurodegeneration and cerebral ischemia and has emerged as a promising therapeutic drug. In oligodendrocytes, overactivation of AMPA-type ionotropic glutamate receptors (AMPARs) induces intracellular Ca2+ overload and excitotoxic death that contributes to demyelinating diseases. Mitochondria are key to Ca2+ homeostasis, however it is unclear how it is disrupted during oligodendroglial excitotoxicity. In the current study, we have analyzed mitochondrial dynamics during AMPAR activation and the effects of mdivi-1 on excitotoxicity in optic nerve-derived oligodendrocytes. Sublethal AMPAR activation triggered Drp1-dependent mitochondrial fission, whereas toxic AMPAR activation produced Drp1-independent mitochondrial swelling. Accordingly, mdivi-1 efficiently inhibited Drp1-mediated mitochondrial fission and did not prevent oligodendrocyte excitotoxicity. Unexpectedly, mdivi-1 also induced mitochondrial depolarization, ER Ca2+ depletion and modulation of AMPA-induced Ca2+ signaling. These off-target effects of mdivi-1 sensitized oligodendrocytes to excitotoxicity and ER stress and eventually produced oxidative stress and apoptosis. Interestingly, in cultured astrocytes mdivi-1 induced nondetrimental mitochondrial depolarization and oxidative stress that did not cause toxicity or sensitization to apoptotic stimuli. In summary, our results provide evidence of Drp1-mediated mitochondrial fission during activation of ionotropic glutamate receptors in oligodendrocytes, and uncover a deleterious and Drp1-independent effect of mdivi-1 on mitochondrial and ER function in these cells. These off-target effects of mdivi-1 limit its therapeutic potential and should be taken into account in clinical studies.
Collapse
Affiliation(s)
- Asier Ruiz
- Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), Achucarro Basque Center for Neuroscience and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Tania Quintela-López
- Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), Achucarro Basque Center for Neuroscience and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain.,Department of Neuroscience, Physiology, & Pharmacology, University College London, London, UK
| | - María V Sánchez-Gómez
- Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), Achucarro Basque Center for Neuroscience and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Adhara Gaminde-Blasco
- Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), Achucarro Basque Center for Neuroscience and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Elena Alberdi
- Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), Achucarro Basque Center for Neuroscience and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Carlos Matute
- Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), Achucarro Basque Center for Neuroscience and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| |
Collapse
|
45
|
Ren KD, Liu WN, Tian J, Zhang YY, Peng JJ, Zhang D, Li NS, Yang J, Peng J, Luo XJ. Mitochondrial E3 ubiquitin ligase 1 promotes brain injury by disturbing mitochondrial dynamics in a rat model of ischemic stroke. Eur J Pharmacol 2019; 861:172617. [DOI: 10.1016/j.ejphar.2019.172617] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
|
46
|
Bucha S, Mukhopadhyay D, Bhattacharyya NP. E2F1 activates MFN2 expression by binding to the promoter and decreases mitochondrial fission and mitophagy in HeLa cells. FEBS J 2019; 286:4525-4541. [DOI: 10.1111/febs.14980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Sudha Bucha
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics HBNI Kolkata India
| | - Debashis Mukhopadhyay
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics HBNI Kolkata India
| | - Nitai Pada Bhattacharyya
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics HBNI Kolkata India
| |
Collapse
|
47
|
Hu J, Hu X, Kan T. MiR-34c Participates in Diabetic Corneal Neuropathy Via Regulation of Autophagy. Invest Ophthalmol Vis Sci 2019; 60:16-25. [PMID: 30601927 DOI: 10.1167/iovs.18-24968] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the contribution and mechanism of miRNAs and autophagy in diabetic peripheral neuropathy. Methods In this study, we used streptozotocin (STZ)-induced type I diabetes C57 mice as animal models, and we detected the expression of miR-34c and autophagic intensity in trigeminal ganglion (TG) tissue. The bioinformatics software was used to predict and analyze the potential targets of miR-34c. Primary trigeminal ganglion neurons were cultured in vitro to investigate the effect of miR-34c on axon growth and survival of TG cells. A corneal epithelial damage-healing model was established on the diabetic mice, then miR-34c antagomir was injected subconjunctivally. The condition of corneal epithelial healing was observed through sodium fluorescein staining, and the peripheral nerve degeneration of the cornea was evaluated by β-tublin corneal nerve staining. Results The expression of miR-34c was significantly increased in TG tissue of type I diabetic mice by real-time PCR. Western blot showed that autophagy-related proteins Atg4B and LC3-II were significantly down-regulated in diabetes TG compared with normal control. Trigeminal neuron immunofluorescence showed that the length of the trigeminal ganglion cell synapses was significantly increased after miR-34c antagomir treatment compared with normal cultures. Subconjunctival injection of miR-34c antagomir can significantly promote corneal epithelium healing of diabetic mice and appreciably promote the regeneration of corneal nerve. At the same time, it can significantly increase the expression of autophagy in TG tissue of type I diabetic mice. Conclusions In this study , miR-34c was found to affect the growth of trigeminal sensory neurons and the repair of diabetic corneal nerve endings by acting directly on Atg4B.
Collapse
Affiliation(s)
- Jianzhang Hu
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fu Zhou, China
| | - XinYing Hu
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fu Zhou, China
| | - Tong Kan
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fu Zhou, China
| |
Collapse
|
48
|
Zhang X, Huang W, Fan Y, Sun Y, Ge X. Role of GTPases in the regulation of mitochondrial dynamics in Parkinson's disease. Exp Cell Res 2019; 382:111460. [PMID: 31194975 DOI: 10.1016/j.yexcr.2019.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/27/2019] [Accepted: 06/08/2019] [Indexed: 12/11/2022]
Abstract
Mitochondria are highly dynamic organelle that undergo frequent fusion and division, and the balance of these opposing processes regulates mitochondrial morphology, distribution, and function. Mitochondrial fission facilitates the replication and distribution of mitochondria during cell division, whereas the fusion process including inner and outer mitochondrial membrane fusion allows the exchange of intramitochondrial material between adjacent mitochondria. Despite several GTPase family proteins have been implicated as key modulators of mitochondrial dynamics, the mechanisms by which these proteins regulate mitochondrial homeostasis and function remain not clearly understood. Neuronal function and survival are closely related to mitochondria dynamics, and disturbed mitochondrial fission/fusion may influence neurotransmission, synaptic maintenance, neuronal survival and function. Recent studies have shown that mitochondrial dysfunction caused by aberrant mitochondrial dynamics plays an essential role in the pathogenesis of both sporadic and familial Parkinson's disease (PD). Collectively, we review the molecular mechanism of known GTPase proteins in regulating mitochondrial fission and fusion, but also highlight the causal role for mitochondrial dynamics in PD pathogenesis.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Department of Pharmacology, Medical College, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China
| | - Wenmin Huang
- Department of Pharmacology, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Yiyun Fan
- Department of Pharmacology, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Ying Sun
- Department of Pharmacology, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoqun Ge
- Department of Pharmacology, Medical College, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
49
|
Kim JE, Choi HC, Song HK, Kang TC. Blockade of AMPA Receptor Regulates Mitochondrial Dynamics by Modulating ERK1/2 and PP1/PP2A-Mediated DRP1-S616 Phosphorylations in the Normal Rat Hippocampus. Front Cell Neurosci 2019; 13:179. [PMID: 31118889 PMCID: PMC6504797 DOI: 10.3389/fncel.2019.00179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/12/2019] [Indexed: 12/14/2022] Open
Abstract
N-Methyl-D-aspartate receptor (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) activations induce fast and transient mitochondrial fragmentation under pathophysiological conditions. However, it is still unknown whether NMDAR or AMPAR activity contributes to mitochondrial dynamics under physiological conditions. In the present study, MK801 (a non-competitive NMDAR antagonist) did not affect mitochondrial length in hippocampal neurons as well as phosphorylation levels of dynamin-related protein 1 (DRP1)-serine (S) 616, extracellular-signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38 MAPK) and AMPAR. In contrast, perampanel (a non-competitive AMPAR antagonist) elongated mitochondrial length in neurons concomitant with diminishing phosphorylations of DRP1-S616, ERK1/2, and JNK, but not p38 MAPK. Perampanel also reduced protein phosphatase (PP) 1, PP2A and PP2B phosphorylations, indicating activations of these PPs which were unaffected by MK801. U0126 (an ERK1/2 inhibitor) elongated mitochondrial length, accompanied by the reduced DRP1-S616 phosphorylation. SP600125 (a JNK inhibitor) did not influence mitochondrial length and DRP1 phosphorylations. Okadaic acid (a PP1/PP2A inhibitor) reduced mitochondrial length with the up-regulated DRP1-S616 phosphorylation, while CsA (a PP2B inhibitor) increased it with the elevated DRP1-S637 phosphorylation. Co-treatment of okadaic acid or CsA with perampanel attenuated the reductions in DRP1-S616 and -S637 phosphorylation without changing DRP1 expression level, respectively. GYKI 52466 (another non-competitive AMPAR antagonist) showed the similar effects of perampanel on phosphorylations of DRP1, ERK1/2, JNK, PPs, and GluR1 AMPAR subunits. Taken together, our findings suggest that a blockade of AMPAR may regulate the cooperation of ERK1/2- and PP1/PP2A for the modulation of DRP1 phosphorylations, which facilitate mitochondrial fusion.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, South Korea.,Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Hui-Chul Choi
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea.,Department of Neurology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Hong-Ki Song
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea.,Department of Neurology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, South Korea.,Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea
| |
Collapse
|
50
|
Klacanova K, Kovalska M, Chomova M, Pilchova I, Tatarkova Z, Kaplan P, Racay P. Global brain ischemia in rats is associated with mitochondrial release and downregulation of Mfn2 in the cerebral cortex, but not the hippocampus. Int J Mol Med 2019; 43:2420-2428. [PMID: 31017259 PMCID: PMC6488171 DOI: 10.3892/ijmm.2019.4168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/27/2019] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are crucial for neuronal cell survival and death through their functions in ATP production and the intrinsic pathway of apoptosis. Mitochondrial dysfunction is considered to play a central role in several serious human diseases, including neurodegenerative diseases, such as Parkinson's and Alzheimer's disease and ischemic neurodegeneration. The aim of the present study was to investigate the impact of transient global brain ischemia on the expression of selected proteins involved in mitochondrial dynamics and mitochondria‑associated membranes. The main foci of interest were the proteins mitofusin 2 (Mfn2), dynamin‑related protein 1 (DRP1), voltage‑dependent anion‑selective channel 1 (VDAC1) and glucose‑regulated protein 75 (GRP75). Western blot analysis of total cell extracts and mitochondria isolated from either the cerebral cortex or hippocampus of experimental animals was performed. In addition, Mfn2 was localized intracellularly by laser scanning confocal microscopy. It was demonstrated that 15‑min ischemia, or 15‑min ischemia followed by 1, 3, 24 or 72 h of reperfusion, was associated with a marked decrease of the Mfn2 protein in mitochondria isolated from the cerebral cortex, but not in hippocampal mitochondria. Moreover, a translocation of the Mfn2 protein to the cytoplasm was documented immediately after global brain ischemia in the neurons of the cerebral cortex by laser scanning confocal microscopy. Mfn2 translocation was followed by decreased expression of Mfn2 during reperfusion. Markedly elevated levels of the VDAC1 protein were also documented in total cell extracts isolated from the hippocampus of rats after 15 min of global brain ischemia followed by 3 h of reperfusion, and from the cerebral cortex of rats after 15 min of global brain ischemia followed by 72 h of reperfusion. The mitochondrial Mfn2 release observed during the early stages of reperfusion may thus represent an important mechanism of mitochondrial dysfunction associated with neuronal dysfunction or death induced by global brain ischemia.
Collapse
Affiliation(s)
- Katarina Klacanova
- Biomedical Center and Institute of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK‑03601 Martin, Slovak Republic
| | - Maria Kovalska
- Department of Histology and Embryology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK‑03601 Martin, Slovak Republic
| | - Maria Chomova
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University in Bratislava, SK‑81108 Bratislava, Slovak Republic
| | - Ivana Pilchova
- Biomedical Center and Institute of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK‑03601 Martin, Slovak Republic
| | - Zuzana Tatarkova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK‑03601 Martin, Slovak Republic
| | - Peter Kaplan
- Biomedical Center and Institute of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK‑03601 Martin, Slovak Republic
| | - Peter Racay
- Biomedical Center and Institute of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK‑03601 Martin, Slovak Republic
| |
Collapse
|