1
|
Zanganeh S, Zahedi AM, Sattarzadeh Bardsiri M, Bazi A, Bastanifard M, Shool S, Kouhbananinejad SM, Farsinejad A, Afgar A, Shahabi A, Mirzaei-Parsa MJ. Recent advances and applications of the CRISPR-Cas system in the gene therapy of blood disorders. Gene 2024; 931:148865. [PMID: 39168259 DOI: 10.1016/j.gene.2024.148865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Affiliation(s)
- Saeed Zanganeh
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran; Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran.
| | - Amir Mohammad Zahedi
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahla Sattarzadeh Bardsiri
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Bazi
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdieh Bastanifard
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Sanaz Shool
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Alireza Farsinejad
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Arman Shahabi
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | | |
Collapse
|
2
|
Gilioli G, Lankester AC, de Kivit S, Staal FJT, Ott de Bruin LM. Gene therapy strategies for RAG1 deficiency: Challenges and breakthroughs. Immunol Lett 2024; 270:106931. [PMID: 39303994 DOI: 10.1016/j.imlet.2024.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Mutations in the recombination activating genes (RAG) cause various forms of immune deficiency. Hematopoietic stem cell transplantation (HSCT) is the only cure for patients with severe manifestations of RAG deficiency; however, outcomes are suboptimal with mismatched donors. Gene therapy aims to correct autologous hematopoietic stem and progenitor cells (HSPC) and is emerging as an alternative to allogeneic HSCT. Gene therapy based on viral gene addition exploits viral vectors to add a correct copy of a mutated gene into the genome of HSPCs. Only recently, after a prolonged phase of development, viral gene addition has been approved for clinical testing in RAG1-SCID patients. In the meantime, a new technology, CRISPR/Cas9, has made its debut to compete with viral gene addition. Gene editing based on CRISPR/Cas9 allows to perform targeted genomic integrations of a correct copy of a mutated gene, circumventing the risk of virus-mediated insertional mutagenesis. In this review, we present the biology of the RAG genes, the challenges faced during the development of viral gene addition for RAG1-SCID, and the current status of gene therapy for RAG1 deficiency. In particular, we highlight the latest advances and challenges in CRISPR/Cas9 gene editing and their potential for the future of gene therapy.
Collapse
Affiliation(s)
- Giorgio Gilioli
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arjan C Lankester
- Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, the Netherlands
| | - Sander de Kivit
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Frank J T Staal
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Lisa M Ott de Bruin
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands; Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, the Netherlands
| |
Collapse
|
3
|
Higuchi T, Shimada Y, Takahashi Y, Kato F, Ohashi T, Kobayashi H. Restoration of peripheral neuropathy in Fabry mice via intrathecal administration of an adeno-associated virus vector encoding mGLA cDNA. Mol Genet Metab 2024; 143:108545. [PMID: 39068683 DOI: 10.1016/j.ymgme.2024.108545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/11/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Anderson-Fabry disease (FD) is an X-linked lysosomal storage disorder caused by a pathological variant of the α-galactosidase A (GLA) gene that results in deficient GLA activity. GLA deficiency leads to the accumulation of globotriaosylceramide (Gb3) and lyso-Gb3 in many tissues. A certain number of FD patients have burning pain or acroparesthesia in the feet and hands since childhood. Enzyme replacement therapy (ERT) is available for FD patients. However, ERT does not dramatically improve these FD-related peripheral neuropathic pain. We generated an adeno-associated virus serotype PHP.eB (AAV-PHP.eB) vector encoding mouse GLA cDNA, which was administered to FD mice intrathecally (it) or intravenously (iv). In the it-administered AAV (it-AAV) FD mice, the GLA enzyme activity in the lumbar dorsal root ganglion (DRG) was significantly greater than that in the untreated (NT) FD mice, and the level of activity was similar to that in wild-type (WT) B6 mice. However, in iv-administered AAV (iv-AAV) FD mice, GLA activity in the DRG did not increase compared to that in NT FD mice. Gb3 storage in the DRG of it-AAV FD mice was reduced compared to that in the DRG of NT FD mice. However, compared with NT FD mice, iv-AAV FD mice did not exhibit a significant reduction in the expression of the Gb3 substrate. Compared with WT mice, FD mice were thermally hyposensitive at 52 °C according to the hot plate test. The it-AAV FD mice showed significant recovery from thermal hyposensitivity. However, the iv-AAV FD mice did not exhibit significant improvement in thermal hyposensitivity. These results suggest that the intrathecal delivery of AAV-PHP.eB-mGLA may be a valuable tool for the treatment of FD-related peripheral neuropathic pain.
Collapse
Affiliation(s)
- Takashi Higuchi
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo 1058461, Japan.
| | - Yohta Shimada
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo 1058461, Japan.
| | - Yukari Takahashi
- Division of Neuroscience, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo 1058461, Japan.
| | - Fusao Kato
- Division of Neuroscience, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo 1058461, Japan.
| | - Toya Ohashi
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo 1058461, Japan; Department of Human Health Science and Therapeutics, The Jikei University School of Nursing, Tokyo 1828570, Japan.
| | - Hiroshi Kobayashi
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo 1058461, Japan.
| |
Collapse
|
4
|
Ha TC, Morgan MA, Thrasher AJ, Schambach A. Alpharetroviral Vector-Mediated Gene Therapy for IL7RA-Deficient Severe Combined Immunodeficiency. Hum Gene Ther 2024; 35:669-679. [PMID: 39150017 DOI: 10.1089/hum.2024.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
Severe combined immunodeficiency (SCID) encompasses rare primary immunodeficiency disorders characterized by deficient T-cell development, which leads to a severely compromised immune system and susceptibility to life-threatening infections. Among SCID subtypes, IL7RA-SCID is caused by mutations in the interleukin 7 receptor alpha chain (IL7RA) and represents a significant subset of patients with limited treatment options. This study investigated the efficacy of a self-inactivating (SIN) alpharetroviral vector (ARV) engineered to deliver a codon-optimized IL7RA cDNA to restore T-cell development in Il7r-knockout mice. We compared the elongation factor 1 alpha short (EFS) promoter and the lymphoid-restricted Lck promoter for their ability to drive IL7RA expression and found that the EFS promoter enabled robust and sustained IL7RA expression that led to the functional rescue of T-lymphopoiesis in vitro and in vivo. Conversely, though effective in vitro, the Lck promoter failed to produce viable T-cell populations in vivo. Our results highlight the potential of using SIN-ARVs as a gene therapy (GT) strategy for treating IL7RA-SCID. Importantly, sustained production of T-lymphocytes was found in both primary and secondary transplant recipient animals with no adverse effects, supporting the safety and feasibility of this approach. Overall, this study provides valuable insights into the development of GT for IL7RA-SCID and underscores the clinical potential of an EFS-driven SIN-ARV to restore IL7RA-deficient immune function.
Collapse
Affiliation(s)
- Teng-Cheong Ha
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH, Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Michael A Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH, Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Adrian J Thrasher
- Infection, Immunity, and Inflammation Teaching and Research Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Center, London, United Kingdom
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH, Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Cetin B, Erendor F, Eksi YE, Sanlioglu AD, Sanlioglu S. Gene and cell therapy of human genetic diseases: Recent advances and future directions. J Cell Mol Med 2024; 28:e70056. [PMID: 39245805 PMCID: PMC11381193 DOI: 10.1111/jcmm.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024] Open
Abstract
Disruptions in normal development and the emergence of health conditions often result from the malfunction of vital genes in the human body. Decades of scientific research have focused on techniques to modify or substitute defective genes with healthy alternatives, marking a new era in disease treatment, prevention and cure. Recent strides in science and technology have reshaped our understanding of disorders, medication development and treatment recommendations, with human gene and cell therapy at the forefront of this transformative shift. Its primary objective is the modification of genes or adjustment of cell behaviour for therapeutic purposes. In this review, we focus on the latest advances in gene and cell therapy for treating human genetic diseases, with a particular emphasis on FDA and EMA-approved therapies and the evolving landscape of genome editing. We examine the current state of innovative gene editing technologies, particularly the CRISPR-Cas systems. As we explore the progress, ethical considerations and prospects of these innovations, we gain insight into their potential to revolutionize the treatment of genetic diseases, along with a discussion of the challenges associated with their regulatory pathways. This review traces the origins and evolution of these therapies, from conceptual ideas to practical clinical applications, marking a significant milestone in the field of medical science.
Collapse
Affiliation(s)
- Busra Cetin
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Fulya Erendor
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Yunus E Eksi
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Ahter D Sanlioglu
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Salih Sanlioglu
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
6
|
Charlesworth CT, Homma S, Suchy F, Wang S, Bhadhury J, Amaya AK, Camarena J, Zhang J, Tan TK, Igarashi K, Nakauchi H. Secreted Particle Information Transfer (SPIT) - A Cellular Platform for In Vivo Genetic Engineering. RESEARCH SQUARE 2024:rs.3.rs-4810212. [PMID: 39257970 PMCID: PMC11384819 DOI: 10.21203/rs.3.rs-4810212/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
A multitude of tools now exist that allow us to precisely manipulate the human genome in a myriad of different ways. However, successful delivery of these tools to the cells of human patients remains a major barrier to their clinical implementation. Here we introduce a new cellular approach for in vivo genetic engineering, Secreted Particle Information Transfer (SPIT) that utilizes human cells as delivery vectors for in vivo genetic engineering. We demonstrate the application of SPIT for cell-cell delivery of Cre recombinase and CRISPR-Cas9 enzymes, we show that genetic logic can be incorporated into SPIT and present the first demonstration of human cells as a delivery platform for in vivo genetic engineering in immunocompetent mice. We successfully applied SPIT to genetically modify multiple organs and tissue stem cells in vivo including the liver, spleen, intestines, peripheral blood, and bone marrow. We anticipate that by harnessing the large packaging capacity of a human cell's nucleus, the ability of human cells to engraft into patients' long term and the capacity of human cells for complex genetic programming, that SPIT will become a paradigm shifting approach for in vivo genetic engineering.
Collapse
Affiliation(s)
- Carsten T. Charlesworth
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
| | - Shota Homma
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Fabian Suchy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Sicong Wang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
| | - Joydeep Bhadhury
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Anais K. Amaya
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Joab Camarena
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jinyu Zhang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Tze Kai Tan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Kyomi Igarashi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Srivastava S, Tyagi A, Pawar VA, Khan NH, Arora K, Verma C, Kumar V. Revolutionizing Immunotherapy: Unveiling New Horizons, Confronting Challenges, and Navigating Therapeutic Frontiers in CAR-T Cell-Based Gene Therapies. Immunotargets Ther 2024; 13:413-433. [PMID: 39219644 PMCID: PMC11365499 DOI: 10.2147/itt.s474659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The CAR-T cell therapy has marked the dawn of new era in the cancer therapeutics and cell engineering techniques. The review emphasizes on the challenges that obstruct the therapeutic efficiency caused by cell toxicities, immunosuppressive tumor environment, and decreased T cell infiltration. In the interest of achieving the overall survival (OS) and event-free survival (EFS) of patients, the conceptual background of potential target selection and various CAR-T cell design techniques are described which can minimize the off-target effects, reduce toxicity, and thus increase the resilience of CAR-T cell treatment in the haematological malignancies as well as in solid tumors. Furthermore, it delves into cutting-edge technologies like gene editing and synthetic biology, providing new opportunities to enhance the functionality of CAR-T cells and overcome mechanisms of immune evasion. This review provides a comprehensive understanding of the complex and diverse aspects of CAR-T cell-based gene treatments, including both scientific and clinical aspects. By effectively addressing the obstacles and utilizing the capabilities of cutting-edge technology, CAR-T cell therapy shows potential in fundamentally changing immunotherapy and reshaping the approach to cancer treatment.
Collapse
Affiliation(s)
- Shivani Srivastava
- Department of Pathology, School of Medicine, Yale University, New Haven, CT, USA
| | - Anuradha Tyagi
- Department of cBRN, Institute of Nuclear Medicine and Allied Science, Delhi, India
| | | | - Nawaid Hussain Khan
- Faculty of Medicine, Ala-Too International University, Bishkek, Kyrgyz Republic
| | - Kavita Arora
- Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi, India
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Chaitenya Verma
- Department of Pathology, Wexner Medical Center, Ohio State University, Columbus, OH, USA
- Department of Biotechnology, SSET, Sharda University, Greater Noida, 201306, India
| | - Vinay Kumar
- Pennsylvania State University Hershey Medical Center, 500 University Dr, Heshey, PA, USA
| |
Collapse
|
8
|
李 婷, 宋 红. [Advances in gene therapy for inborn errors of immunity]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:865-870. [PMID: 39148393 PMCID: PMC11334546 DOI: 10.7499/j.issn.1008-8830.2404027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/20/2024] [Indexed: 08/17/2024]
Abstract
Inborn errors of immunity (IEI) are a diverse group of disorders caused by defects in immune system structure or function, involving both innate and adaptive immunity. The 2022 update of the IEI classification includes 485 distinct disorders, categorized into ten major disease groups. With the rapid development of molecular biology, the specific pathogenesis of many IEI has been revealed, making gene therapy possible in preclinical and clinical research of this type of disease. This article reviews the advancements in gene therapy for IEI, aiming to increase awareness and understanding of these disorders.
Collapse
|
9
|
Mohammadian Gol T, Zahedipour F, Trosien P, Ureña-Bailén G, Kim M, Antony JS, Mezger M. Gene therapy in pediatrics - Clinical studies and approved drugs (as of 2023). Life Sci 2024; 348:122685. [PMID: 38710276 DOI: 10.1016/j.lfs.2024.122685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Gene therapy in pediatrics represents a cutting-edge therapeutic strategy for treating a range of genetic disorders that manifest in childhood. Gene therapy involves the modification or correction of a mutated gene or the introduction of a functional gene into a patient's cells. In general, it is implemented through two main modalities namely ex vivo gene therapy and in vivo gene therapy. Currently, a noteworthy array of gene therapy products has received valid market authorization, with several others in various stages of the approval process. Additionally, a multitude of clinical trials are actively underway, underscoring the dynamic progress within this field. Pediatric genetic disorders in the fields of hematology, oncology, vision and hearing loss, immunodeficiencies, neurological, and metabolic disorders are areas for gene therapy interventions. This review provides a comprehensive overview of the evolution and current progress of gene therapy-based treatments in the clinic for pediatric patients. It navigates the historical milestones of gene therapies, currently approved gene therapy products by the U.S. Food and Drug Administration (FDA) and/or European Medicines Agency (EMA) for children, and the promising future for genetic disorders. By providing a thorough compilation of approved gene therapy drugs and published results of completed or ongoing clinical trials, this review serves as a guide for pediatric clinicians to get a quick overview of the situation of clinical studies and approved gene therapy products as of 2023.
Collapse
Affiliation(s)
- Tahereh Mohammadian Gol
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Fatemeh Zahedipour
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Paul Trosien
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Guillermo Ureña-Bailén
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Miso Kim
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Justin S Antony
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Markus Mezger
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
10
|
Luo R, Le H, Wu Q, Gong C. Nanoplatform-Based In Vivo Gene Delivery Systems for Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312153. [PMID: 38441386 DOI: 10.1002/smll.202312153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/05/2024] [Indexed: 07/26/2024]
Abstract
Gene therapy uses modern molecular biology methods to repair disease-causing genes. As a burgeoning therapeutic, it has been widely applied for cancer therapy. Since 1989, there have been numerous clinical gene therapy cases worldwide. However, a few are successful. The main challenge of clinical gene therapy is the lack of efficient and safe vectors. Although viral vectors show high transfection efficiency, their application is still limited by immune rejection and packaging capacity. Therefore, the development of non-viral vectors is overwhelming. Nanoplatform-based non-viral vectors become a hotspot in gene therapy. The reasons are mainly as follows. 1) Non-viral vectors can be engineered to be uptaken by specific types of cells or tissues, providing effective targeting capability. 2) Non-viral vectors can protect goods that need to be delivered from degradation. 3) Nanoparticles can transport large-sized cargo such as CRISPR/Cas9 plasmids and nucleoprotein complexes. 4) Nanoparticles are highly biosafe, and they are not mutagenic in themselves compared to viral vectors. 5) Nanoparticles are easy to scale preparation, which is conducive to clinical conversion and application. Here, an overview of the categories of nanoplatform-based non-viral gene vectors, the limitations on their development, and their applications in cancer therapy.
Collapse
Affiliation(s)
- Rui Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Le
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qinjie Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Changyang Gong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
11
|
Mackall CL, Bollard CM, Goodman N, Carr C, Gardner R, Rouce R, Sotillo E, Stoner R, Urnov FD, Wayne AS, Park J, Kohn DB. Enhancing pediatric access to cell and gene therapies. Nat Med 2024; 30:1836-1846. [PMID: 38886624 DOI: 10.1038/s41591-024-03035-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/30/2024] [Indexed: 06/20/2024]
Abstract
Increasing numbers of cell and gene therapies (CGTs) are emerging to treat and cure pediatric diseases. However, small market sizes limit the potential return on investment within the traditional biopharmaceutical drug development model, leading to a market failure. In this Perspective, we discuss major factors contributing to this failure, including high manufacturing costs, regulatory challenges, and licensing practices that do not incorporate pediatric development milestones, as well as potential solutions. We propose the creation of a new entity, the Pediatric Advanced Medicines Biotech, to lead late-stage development and commercialize pediatric CGTs outside the traditional biopharmaceutical model in the United States-where organized efforts to solve this problem have been lacking. The Pediatric Advanced Medicines Biotech would partner with the academic ecosystem, manufacture products in academic good manufacturing practice facilities and work closely with regulatory bodies, to ferry CGTs across the drug development 'valley of death' and, ultimately, increase access to lifesaving treatments for children in need.
Collapse
Affiliation(s)
- Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pediatrics, Division of Pediatric Hematology, Oncology, Stem Cell Transplant and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Division of Bone Marrow Transplant and Cell Therapy, Stanford University School of Medicine, Stanford, CA, USA.
| | - Catherine M Bollard
- Center for Cancer and Immunology Research and Department of Pediatrics, Children's National Hospital and The George Washington University, Washington, DC, USA
| | | | - Casey Carr
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Rayne Rouce
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| | - Elena Sotillo
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Fyodor D Urnov
- Innovative Genomics Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Alan S Wayne
- Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Julie Park
- St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Donald B Kohn
- Departments of Microbiology, Immunology & Molecular Genetics; Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
12
|
Ellison S, Buckland K, Learmonth Y, Day V, Kalra S, Howe L, Roman-Rodriguez FJ, Bonafont J, Booth L, Holley R, Smythe J, Jones S, Thrasher A, Booth C, Bigger BW. Design and validation of a GMP stem cell manufacturing protocol for MPSII hematopoietic stem cell gene therapy. Mol Ther Methods Clin Dev 2024; 32:101271. [PMID: 38946936 PMCID: PMC11214401 DOI: 10.1016/j.omtm.2024.101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/17/2024] [Indexed: 07/02/2024]
Abstract
Hematopoietic stem cell gene therapy (HSCGT) is a promising therapeutic strategy for the treatment of neurodegenerative, metabolic disorders. The approach involves the ex vivo introduction of a missing gene into patients' own stem cells via lentiviral-mediated transduction (TD). Once transplanted back into a fully conditioned patient, these genetically modified HSCs can repopulate the blood system and produce the functional protein, previously absent or non-functional in the patient, which can then cross-correct other affected cells in somatic organs and the central nervous system. We previously developed an HSCGT approach for the treatment of Mucopolysaccharidosis type II (MPSII) (Hunter syndrome), a debilitating pediatric lysosomal disorder caused by mutations in the iduronate-2-sulphatase (IDS) gene, leading to the accumulation of heparan and dermatan sulfate, which causes severe neurodegeneration, skeletal abnormalities, and cardiorespiratory disease. In HSCGT proof-of-concept studies using lentiviral IDS fused to a brain-targeting peptide ApoEII (IDS.ApoEII), we were able to normalize brain pathology and behavior of MPSII mice. Here we present an optimized and validated good manufacturing practice hematopoietic stem cell TD protocol for MPSII in preparation for first-in-man studies. Inclusion of TEs LentiBOOST and protamine sulfate significantly improved TD efficiency by at least 3-fold without causing adverse toxicity, thereby reducing vector quantity required.
Collapse
Affiliation(s)
- Stuart Ellison
- Stem Cell & Neurotherapies Group, University of Manchester, Manchester, UK
| | - Karen Buckland
- UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Yuko Learmonth
- Stem Cell & Neurotherapies Group, University of Manchester, Manchester, UK
| | - Victoria Day
- Cellular and Molecular Therapies, NHSBT Barnsley, Barnsley, UK
| | - Spandan Kalra
- Cellular and Molecular Therapies, NHSBT Barnsley, Barnsley, UK
| | - Lauren Howe
- Cellular and Molecular Therapies, NHSBT Barnsley, Barnsley, UK
| | - Francisco José Roman-Rodriguez
- UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Jose Bonafont
- UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Laura Booth
- Stem Cell & Neurotherapies Group, University of Manchester, Manchester, UK
| | - Rebecca Holley
- Stem Cell & Neurotherapies Group, University of Manchester, Manchester, UK
| | - Jon Smythe
- Cellular and Molecular Therapies, NHSBT Barnsley, Barnsley, UK
| | - Simon Jones
- Manchester University NHS Foundation Trust, Manchester, UK
| | - Adrian Thrasher
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Claire Booth
- UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Brian W. Bigger
- Stem Cell & Neurotherapies Group, University of Manchester, Manchester, UK
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
13
|
Baylot V, Le TK, Taïeb D, Rocchi P, Colleaux L. Between hope and reality: treatment of genetic diseases through nucleic acid-based drugs. Commun Biol 2024; 7:489. [PMID: 38653753 PMCID: PMC11039704 DOI: 10.1038/s42003-024-06121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
Rare diseases (RD) affect a small number of people compared to the general population and are mostly genetic in origin. The first clinical signs often appear at birth or in childhood, and patients endure high levels of pain and progressive loss of autonomy frequently associated with short life expectancy. Until recently, the low prevalence of RD and the gatekeeping delay in their diagnosis have long hampered research. The era of nucleic acid (NA)-based therapies has revolutionized the landscape of RD treatment and new hopes arise with the perspectives of disease-modifying drugs development as some NA-based therapies are now entering the clinical stage. Herein, we review NA-based drugs that were approved and are currently under investigation for the treatment of RD. We also discuss the recent structural improvements of NA-based therapeutics and delivery system, which overcome the main limitations in their market expansion and the current approaches that are developed to address the endosomal escape issue. We finally open the discussion on the ethical and societal issues that raise this new technology in terms of regulatory approval and sustainability of production.
Collapse
Affiliation(s)
- Virginie Baylot
- Aix Marseille Univ, CNRS, CINAM, ERL INSERM U 1326, CERIMED, Marseille, France.
| | - Thi Khanh Le
- Aix Marseille Univ, CNRS, CINAM, ERL INSERM U 1326, CERIMED, Marseille, France
| | - David Taïeb
- Aix Marseille Univ, CNRS, CINAM, ERL INSERM U 1326, CERIMED, Marseille, France
| | - Palma Rocchi
- Aix Marseille Univ, CNRS, CINAM, ERL INSERM U 1326, CERIMED, Marseille, France.
| | - Laurence Colleaux
- Aix Marseille Univ, CNRS, CINAM, ERL INSERM U 1326, CERIMED, Marseille, France
| |
Collapse
|
14
|
Soufizadeh P, Mansouri V, Ahmadbeigi N. A review of animal models utilized in preclinical studies of approved gene therapy products: trends and insights. Lab Anim Res 2024; 40:17. [PMID: 38649954 PMCID: PMC11034049 DOI: 10.1186/s42826-024-00195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 04/25/2024] Open
Abstract
Scientific progress heavily relies on rigorous research, adherence to scientific standards, and transparent reporting. Animal models play a crucial role in advancing biomedical research, especially in the field of gene therapy. Animal models are vital tools in preclinical research, allowing scientists to predict outcomes and understand complex biological processes. The selection of appropriate animal models is critical, considering factors such as physiological and pathophysiological similarities, availability, and ethical considerations. Animal models continue to be indispensable tools in preclinical gene therapy research. Advancements in genetic engineering and model selection have improved the fidelity and relevance of these models. As gene therapy research progresses, careful consideration of animal models and transparent reporting will contribute to the development of effective therapies for various genetic disorders and diseases. This comprehensive review explores the use of animal models in preclinical gene therapy studies for approved products up to September 2023. The study encompasses 47 approved gene therapy products, with a focus on preclinical trials. This comprehensive analysis serves as a valuable reference for researchers in the gene therapy field, aiding in the selection of suitable animal models for their preclinical investigations.
Collapse
Affiliation(s)
- Parham Soufizadeh
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Biomedical Research Institute, University of Tehran, Tehran, Iran
| | - Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Ahmadbeigi
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Kohn DB. Gene therapy for adenosine deaminase severe combined immune deficiency-An unexpected journey of four decades. Immunol Rev 2024; 322:148-156. [PMID: 38033164 DOI: 10.1111/imr.13293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Severe combined immune deficiency due to adenosine deaminase deficiency (ADA SCID) is an inborn error of immunity with pan-lymphopenia, due to accumulated cytotoxic adenine metabolites. ADA SCID has been treated using gene therapy with a normal human ADA gene added to autologous hematopoietic stem cells (HSC) for over 30 years. Iterative improvements in vector design, HSC processing methods, and clinical HSC transplant procedures have led nearly all ADA SCID gene therapy patients to achieve consistently beneficial immune restoration with stable engraftment of ADA gene-corrected HSC over the duration of observation (as long as 20 years). One gene therapy for ADA SCID is approved by the European Medicines Agency (EMA) in the European Union (EU) and another is being advanced to licensure in the U.S. and U.K. Despite the clear-cut benefits and safety of this curative gene and cell therapy, it remains challenging to achieve sustained availability and access, especially for rare disorders like ADA SCID.
Collapse
Affiliation(s)
- Donald B Kohn
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
16
|
Kitawi R, Ledger S, Kelleher AD, Ahlenstiel CL. Advances in HIV Gene Therapy. Int J Mol Sci 2024; 25:2771. [PMID: 38474018 DOI: 10.3390/ijms25052771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Early gene therapy studies held great promise for the cure of heritable diseases, but the occurrence of various genotoxic events led to a pause in clinical trials and a more guarded approach to progress. Recent advances in genetic engineering technologies have reignited interest, leading to the approval of the first gene therapy product targeting genetic mutations in 2017. Gene therapy (GT) can be delivered either in vivo or ex vivo. An ex vivo approach to gene therapy is advantageous, as it allows for the characterization of the gene-modified cells and the selection of desired properties before patient administration. Autologous cells can also be used during this process which eliminates the possibility of immune rejection. This review highlights the various stages of ex vivo gene therapy, current research developments that have increased the efficiency and safety of this process, and a comprehensive summary of Human Immunodeficiency Virus (HIV) gene therapy studies, the majority of which have employed the ex vivo approach.
Collapse
Affiliation(s)
- Rose Kitawi
- Kirby Institute, University of New South Wales, Kensington, NSW 2052, Australia
| | - Scott Ledger
- Kirby Institute, University of New South Wales, Kensington, NSW 2052, Australia
| | - Anthony D Kelleher
- Kirby Institute, University of New South Wales, Kensington, NSW 2052, Australia
- St. Vincent's Hospital, Darlinghurst, NSW 2010, Australia
- UNSW RNA Institute, University of New South Wales, Kensington, NSW 2052, Australia
| | - Chantelle L Ahlenstiel
- Kirby Institute, University of New South Wales, Kensington, NSW 2052, Australia
- UNSW RNA Institute, University of New South Wales, Kensington, NSW 2052, Australia
| |
Collapse
|
17
|
Zheng Y, Li Y, Zhou K, Li T, VanDusen NJ, Hua Y. Precise genome-editing in human diseases: mechanisms, strategies and applications. Signal Transduct Target Ther 2024; 9:47. [PMID: 38409199 PMCID: PMC10897424 DOI: 10.1038/s41392-024-01750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Precise genome-editing platforms are versatile tools for generating specific, site-directed DNA insertions, deletions, and substitutions. The continuous enhancement of these tools has led to a revolution in the life sciences, which promises to deliver novel therapies for genetic disease. Precise genome-editing can be traced back to the 1950s with the discovery of DNA's double-helix and, after 70 years of development, has evolved from crude in vitro applications to a wide range of sophisticated capabilities, including in vivo applications. Nonetheless, precise genome-editing faces constraints such as modest efficiency, delivery challenges, and off-target effects. In this review, we explore precise genome-editing, with a focus on introduction of the landmark events in its history, various platforms, delivery systems, and applications. First, we discuss the landmark events in the history of precise genome-editing. Second, we describe the current state of precise genome-editing strategies and explain how these techniques offer unprecedented precision and versatility for modifying the human genome. Third, we introduce the current delivery systems used to deploy precise genome-editing components through DNA, RNA, and RNPs. Finally, we summarize the current applications of precise genome-editing in labeling endogenous genes, screening genetic variants, molecular recording, generating disease models, and gene therapy, including ex vivo therapy and in vivo therapy, and discuss potential future advances.
Collapse
Affiliation(s)
- Yanjiang Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Tiange Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Nathan J VanDusen
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
18
|
Migliavacca M, Barzaghi F, Fossati C, Rancoita PMV, Gabaldo M, Dionisio F, Giannelli S, Salerio FA, Ferrua F, Tucci F, Calbi V, Gallo V, Recupero S, Consiglieri G, Pajno R, Sambuco M, Priolo A, Ferri C, Garella V, Monti I, Silvani P, Darin S, Casiraghi M, Corti A, Zancan S, Levi M, Cesana D, Carlucci F, Pituch-Noworolska A, AbdElaziz D, Baumann U, Finocchi A, Cancrini C, Ladogana S, Meinhardt A, Meyts I, Montin D, Notarangelo LD, Porta F, Pasquet M, Speckmann C, Stepensky P, Tommasini A, Rabusin M, Karakas Z, Galicchio M, Leonardi L, Duse M, Guner SN, Di Serio C, Ciceri F, Bernardo ME, Aiuti A, Cicalese MP. Long-term and real-world safety and efficacy of retroviral gene therapy for adenosine deaminase deficiency. Nat Med 2024; 30:488-497. [PMID: 38355973 PMCID: PMC7615698 DOI: 10.1038/s41591-023-02789-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/21/2023] [Indexed: 02/16/2024]
Abstract
Adenosine deaminase (ADA) deficiency leads to severe combined immunodeficiency (SCID). Previous clinical trials showed that autologous CD34+ cell gene therapy (GT) following busulfan reduced-intensity conditioning is a promising therapeutic approach for ADA-SCID, but long-term data are warranted. Here we report an analysis on long-term safety and efficacy data of 43 patients with ADA-SCID who received retroviral ex vivo bone marrow-derived hematopoietic stem cell GT. Twenty-two individuals (median follow-up 15.4 years) were treated in the context of clinical development or named patient program. Nineteen patients were treated post-marketing authorization (median follow-up 3.2 years), and two additional patients received mobilized peripheral blood CD34+ cell GT. At data cutoff, all 43 patients were alive, with a median follow-up of 5.0 years (interquartile range 2.4-15.4) and 2 years intervention-free survival (no need for long-term enzyme replacement therapy or allogeneic hematopoietic stem cell transplantation) of 88% (95% confidence interval 78.7-98.4%). Most adverse events/reactions were related to disease background, busulfan conditioning or immune reconstitution; the safety profile of the real world experience was in line with premarketing cohort. One patient from the named patient program developed a T cell leukemia related to treatment 4.7 years after GT and is currently in remission. Long-term persistence of multilineage gene-corrected cells, metabolic detoxification, immune reconstitution and decreased infection rates were observed. Estimated mixed-effects models showed that higher dose of CD34+ cells infused and younger age at GT affected positively the plateau of CD3+ transduced cells, lymphocytes and CD4+ CD45RA+ naive T cells, whereas the cell dose positively influenced the final plateau of CD15+ transduced cells. These long-term data suggest that the risk-benefit of GT in ADA remains favorable and warrant for continuing long-term safety monitoring. Clinical trial registration: NCT00598481 , NCT03478670 .
Collapse
Affiliation(s)
- Maddalena Migliavacca
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Fossati
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola M V Rancoita
- University Centre for Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | | | - Francesca Dionisio
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Giannelli
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Andrea Salerio
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Ferrua
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Tucci
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Calbi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vera Gallo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Salvatore Recupero
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Consiglieri
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Pajno
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Sambuco
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessio Priolo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Ferri
- Università Vita-Salute San Raffaele, Milan, Italy
| | | | - Ilaria Monti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Silvani
- Department of Anesthesia and Critical Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Darin
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Miriam Casiraghi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ambra Corti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Daniela Cesana
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Filippo Carlucci
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Dalia AbdElaziz
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ulrich Baumann
- Department of Paediatric Pulmonology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Andrea Finocchi
- Research Unit of Primary Immunodeficiencies, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Caterina Cancrini
- Research Unit of Primary Immunodeficiencies, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Saverio Ladogana
- Paediatric Onco-haematology Unit, 'Casa Sollievo della Sofferenza' Hospital, IRCCS, San Giovanni Rotondo, Italy
| | - Andrea Meinhardt
- Department of Pediatric Hematology and Oncology, Medical Center, University Hospital Giessen, Giessen, Germany
| | - Isabelle Meyts
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Childhood Immunology, Department of Pediatrics, UZ Leuven, Leuven, Belgium
| | - Davide Montin
- Department of Pediatric and Public Health Sciences, University of Torino, Turin, Italy
- Regina Margherita Children's Hospital, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | | | - Fulvio Porta
- Pediatric Oncology-Hematology and BMT Unit, Spedali Civili di Brescia, Brescia, Italy
| | - Marlène Pasquet
- Pediatric Hematology and Immunology, Children's Hospital, Toulouse, France
| | - Carsten Speckmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Polina Stepensky
- Department of Bone Marrow Transplantation and Cancer Immunotherapy and Faculty of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Alberto Tommasini
- Department of Pediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Marco Rabusin
- Department of Pediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Zeynep Karakas
- Department of Pediatrics, Hematology/Oncology Unit, Istanbul School of Medicine, Istanbul University, Istanbul, Turkey
| | - Miguel Galicchio
- Allergy and Immnunology Service, Hospital de Niños VJ Vilela, Rosario, Argentina
| | - Lucia Leonardi
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Marzia Duse
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Sukru Nail Guner
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Clelia Di Serio
- University Centre for Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Fabio Ciceri
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Università Vita-Salute San Raffaele, Milan, Italy.
| | - Maria Pia Cicalese
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
19
|
Charlesworth CT, Homma S, Suchy F, Wang S, Bhadhury J, Amaya AK, Camarena J, Zhang J, Tan TK, Igarishi K, Nakauchi H. Secreted Particle Information Transfer (SPIT) - A Cellular Platform for In Vivo Genetic Engineering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575257. [PMID: 38260654 PMCID: PMC10802600 DOI: 10.1101/2024.01.11.575257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
A multitude of tools now exist that allow us to precisely manipulate the human genome in a myriad of different ways. However, successful delivery of these tools to the cells of human patients remains a major barrier to their clinical implementation. Here we introduce a new cellular approach for in vivo genetic engineering, Secreted Particle Information Transfer (SPIT) that utilizes human cells as delivery vectors for in vivo genetic engineering. We demonstrate the application of SPIT for cell-cell delivery of Cre recombinase and CRISPR-Cas9 enzymes, we show that genetic logic can be incorporated into SPIT and present the first demonstration of human cells as a delivery platform for in vivo genetic engineering in immunocompetent mice. We successfully applied SPIT to genetically modify multiple organs and tissue stem cells in vivo including the liver, spleen, intestines, peripheral blood, and bone marrow. We anticipate that by harnessing the large packaging capacity of a human cell's nucleus, the ability of human cells to engraft into patients' long term and the capacity of human cells for complex genetic programming, that SPIT will become a paradigm shifting approach for in vivo genetic engineering.
Collapse
Affiliation(s)
- Carsten T. Charlesworth
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
| | - Shota Homma
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Fabian Suchy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Sicong Wang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
| | - Joydeep Bhadhury
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Anais K. Amaya
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Joab Camarena
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jinyu Zhang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Tze Kai Tan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Kyomi Igarishi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Sharma R. Innovative Genoceuticals in Human Gene Therapy Solutions: Challenges and Safe Clinical Trials of Orphan Gene Therapy Products. Curr Gene Ther 2024; 24:46-72. [PMID: 37702177 DOI: 10.2174/1566523223666230911120922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 09/14/2023]
Abstract
The success of gene therapy attempts is controversial and inconclusive. Currently, it is popular among the public, the scientific community, and manufacturers of Gene Therapy Medical Products. In the absence of any remedy or treatment options available for untreatable inborn metabolic orphan or genetic diseases, cancer, or brain diseases, gene therapy treatment by genoceuticals and T-cells for gene editing and recovery remains the preferred choice as the last hope. A new concept of "Genoceutical Gene Therapy" by using orphan 'nucleic acid-based therapy' aims to introduce scientific principles of treating acquired tissue damage and rare diseases. These Orphan Genoceuticals provide new scope for the 'genodrug' development and evaluation of genoceuticals and gene products for ideal 'gene therapy' use in humans with marketing authorization application (MAA). This perspective study focuses on the quality control, safety, and efficacy requirements of using 'nucleic acid-based and human cell-based new gene therapy' genoceutical products to set scientific advice on genoceutical-based 'orphan genodrug' design for clinical trials as per Western and European guidelines. The ethical Western FDA and European EMA guidelines suggest stringent legal and technical requirements on genoceutical medical products or orphan genodrug use for other countries to frame their own guidelines. The introduction section proposes lessknown 'orphan drug-like' properties of modified RNA/DNA, human cell origin gene therapy medical products, and their transgene products. The clinical trial section explores the genoceutical sources, FDA/EMA approvals for genoceutical efficacy criteria with challenges, and ethical guidelines relating to gene therapy of specific rare metabolic, cancer and neurological diseases. The safety evaluation of approved genoceuticals or orphan drugs is highlighted with basic principles and 'genovigilance' requirements (to observe any adverse effects, side effects, developed signs/symptoms) to establish their therapeutic use. Current European Union and Food and Drug Administration guidelines continuously administer fast-track regulatory legal framework from time to time, and they monitor the success of gene therapy medical product efficacy and safety. Moreover, new ethical guidelines on 'orphan drug-like genoceuticals' are updated for biodistribution of the vector, genokinetics studies of the transgene product, requirements for efficacy studies in industries for market authorization, and clinical safety endpoints with their specific concerns in clinical trials or public use.
Collapse
Affiliation(s)
- Rakesh Sharma
- Surgery NMR Lab, Plastic Surgery Research, Massachusetts General Hospital, Boston, MA 02114, USA
- CCSU, Government Medical College, Saharanpur, 247232 India
| |
Collapse
|
21
|
Ott de Bruin LM, Lankester AC, Staal FJ. Advances in gene therapy for inborn errors of immunity. Curr Opin Allergy Clin Immunol 2023; 23:467-477. [PMID: 37846903 PMCID: PMC10621649 DOI: 10.1097/aci.0000000000000952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
PURPOSE OF REVIEW Provide an overview of the landmark accomplishments and state of the art of gene therapy for inborn errors of immunity (IEI). RECENT FINDINGS Three decades after the first clinical application of gene therapy for IEI, there is one market authorized product available, while for several others efficacy has been demonstrated or is currently being tested in ongoing clinical trials. Gene editing approaches using programmable nucleases are being explored preclinically and could be beneficial for genes requiring tightly regulated expression, gain-of-function mutations and dominant-negative mutations. SUMMARY Gene therapy by modifying autologous hematopoietic stem cells (HSCs) offers an attractive alternative to allogeneic hematopoietic stem cell transplantation (HSCT), the current standard of care to treat severe IEI. This approach does not require availability of a suitable allogeneic donor and eliminates the risk of graft versus host disease (GvHD). Gene therapy can be attempted by using a viral vector to add a copy of the therapeutic gene (viral gene addition) or by using programmable nucleases (gene editing) to precisely correct mutations, disrupt a gene or introduce an entire copy of a gene at a specific locus. However, gene therapy comes with its own challenges such as safety, therapeutic effectiveness and access. For viral gene addition, a major safety concern is vector-related insertional mutagenesis, although this has been greatly reduced with the introduction of safer vectors. For gene editing, the risk of off-site mutagenesis is a main driver behind the ongoing search for modified nucleases. For both approaches, HSCs have to be manipulated ex vivo, and doing this efficiently without losing stemness remains a challenge, especially for gene editing.
Collapse
Affiliation(s)
- Lisa M. Ott de Bruin
- Willem-Alexander Children's Hospital, Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arjan C. Lankester
- Willem-Alexander Children's Hospital, Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology
| | - Frank J.T. Staal
- Willem-Alexander Children's Hospital, Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
22
|
von Asmuth EGJ, Neven B, Albert MH, Mohseny AB, Schilham MW, Binder H, Putter H, Lankester AC. Predicting Patient Death after Allogeneic Stem Cell Transplantation for Inborn Errors Using Machine Learning (PREPAD): A European Society for Blood and Marrow Transplantation Inborn Errors Working Party Study. Transplant Cell Ther 2023; 29:775.e1-775.e8. [PMID: 37709203 DOI: 10.1016/j.jtct.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative treatment for many inborn errors of immunity, metabolism, and hematopoiesis. No predictive models are available for these disorders. We created a machine learning model using XGBoost to predict survival after HSCT using European Society for Blood and Marrow Transplant registry data of 10,888 patients who underwent HSCT for inborn errors between 2006 and 2018, and compared it to a simple linear Cox model, an elastic net Cox model, and a random forest model. The XGBoost model had a cross-validated area under the curve value of .73 at 1 year, which was significantly superior to the other models, and it accurately predicted for countries excluded while training. It predicted close to 0% and >30% mortality more often than other models at 1 year, while maintaining good calibration. The 5-year survival was 94.7% in the 25% of patients at lowest risk and 62.3% in the 25% at highest risk. Within disease and donor subgroups, XGBoost outperformed the best univariate predictor. We visualized the effect of the main predictors-diagnosis, performance score, patient age and donor type-using the SHAP ML explainer and developed a stand-alone application, which can predict using the model and visualize predictions. The risk of mortality after HSCT for inborn errors can be accurately predicted using an explainable machine learning model. This exceeds the performance of models described in the literature. Doing so can help detect deviations from expected survival and improve risk stratification in trials.
Collapse
Affiliation(s)
- Erik G J von Asmuth
- Willem Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands.
| | - Bénédicte Neven
- Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, Assistance Publique-Hopitaux de Paris, Paris, France
| | - Michael H Albert
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital LMU Munich, Germany
| | - Alexander B Mohseny
- Willem Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Marco W Schilham
- Willem Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Harald Binder
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Hein Putter
- Department of Medical Statistics, Leiden University Medical Center, Leiden, The Netherlands
| | - Arjan C Lankester
- Willem Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
23
|
Cui Z, Wei H, Goding C, Cui R. Stem cell heterogeneity, plasticity, and regulation. Life Sci 2023; 334:122240. [PMID: 37925141 DOI: 10.1016/j.lfs.2023.122240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
As a population of homogeneous cells with both self-renewal and differentiation potential, stem cell pools are highly compartmentalized and contain distinct subsets that exhibit stable but limited heterogeneity during homeostasis. However, their striking plasticity is showcased under natural or artificial stress, such as injury, transplantation, cancer, and aging, leading to changes in their phenotype, constitution, metabolism, and function. The complex and diverse network of cell-extrinsic niches and signaling pathways, together with cell-intrinsic genetic and epigenetic regulators, tightly regulate both the heterogeneity during homeostasis and the plasticity under perturbation. Manipulating these factors offers better control of stem cell behavior and a potential revolution in the current state of regenerative medicine. However, disruptions of normal regulation by genetic mutation or excessive plasticity acquisition may contribute to the formation of tumors. By harnessing innovative techniques that enhance our understanding of stem cell heterogeneity and employing novel approaches to maximize the utilization of stem cell plasticity, stem cell therapy holds immense promise for revolutionizing the future of medicine.
Collapse
Affiliation(s)
- Ziyang Cui
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing 100034, China.
| | - Hope Wei
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, United States of America
| | - Colin Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX37DQ, UK
| | - Rutao Cui
- Skin Disease Research Institute, The 2nd Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
24
|
Galy A, Dewannieux M. Recent advances in hematopoietic gene therapy for genetic disorders. Arch Pediatr 2023; 30:8S24-8S31. [PMID: 38043980 DOI: 10.1016/s0929-693x(23)00224-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Hematopoietic gene therapy is based on the transplantation of gene-modified autologous hematopoietic stem cells and since the inception of this approach, many technological and medical improvements have been achieved. This review focuses on the clinical studies that have used hematopoietic gene therapy to successfully treat several rare and severe genetic disorders of the blood or immune system as well as some non-hematological diseases. Today, in some cases hematopoietic gene therapy has progressed to the point of being equal to, or better than, allogeneic bone marrow transplant. In others, further improvements are needed to obtain more consistent efficacy or to reduce the risks posed by vectors or protocols. Several hematopoietic gene therapy products showing both long-term efficacy and safety have reached the market, but economic considerations challenge the possibility of patient access to novel disease-modifying therapies. © 2023 Published by Elsevier Masson SAS on behalf of French Society of Pediatrics.
Collapse
Affiliation(s)
- Anne Galy
- ART-TG, Inserm US35, Corbeil-Essonnes, France.
| | | |
Collapse
|
25
|
Boespflug-Tanguy O, Sevin C, Piguet F. Gene therapy for neurodegenerative disorders in children: dreams and realities. Arch Pediatr 2023; 30:8S32-8S40. [PMID: 38043981 DOI: 10.1016/s0929-693x(23)00225-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Gene therapy encompasses the administration of biological medicinal products containing recombinant nucleic acids, mainly DNA, with the aim of treating or curing diseases. This represents a unique therapeutic strategy to reach the brain, in order to prevent or halt a neurodegenerative process. During the past decade, active multidisciplinary research has started to solve many issues for gene therapy in neurodegenerative disorders in terms of vectors, modes of administration, and expression of the therapeutic DNA. The engineering of hematopoietic stem cells (HSC) with lentivirus vectors for ex vivo gene therapy has demonstrated efficiency in reaching the brain through their transformation into microglial/macrophages cells with a long-term gene expression of the therapeutic vector as an alternative to autologous HSC transplants. Two drugs based on this strategy have been approved to date. The first is for metachromatic leukodystrophy (MLD), a severe lysosomal storage disease, and provides high levels of the deficient enzyme; the second one is for cerebral forms of X-linked adrenoleukodystrophy (X-ALD), and works by halting the neuroinflammation process. However, due to the long-lasting effect of the procedure, the therapy is applicable only to pre- or pauci/oligo-symptomatic patients. In vivo gene therapy via direct injection into the brain or the cerebrospinal fluid, but also by intravenous injection, represents a more efficient approach; however, many challenges remain to be solved despite the approval of two drugs: one for the early infantile form of spinal muscular atrophy (SMA), in which the gene product injected intravenously is able to prevent spinal motoneuron neurodegeneration. The second one, for aromatic L-amino acid decarboxylase (AADC) deficiency, provides the defective enzyme to the basal ganglia via intraparenchymal injection. The production of vectors able to reach the brain target cells with a sufficiently high expression remains a major bottleneck. In parallel, efforts must continue in order to better define (i) the natural history and clinical outcomes of many neurodegenerative disorders with childhood onset, and (ii) the mechanisms involved in the neurodegenerative process. © 2023 Published by Elsevier Masson SAS on behalf of French Society of Pediatrics.
Collapse
Affiliation(s)
- Odile Boespflug-Tanguy
- APHP, Service de Neuropediatrie, Hôpital Robert Debré, Paris, France; Université Paris Cité, INSERM UMR 1141, Hôpital Robert Debré, Paris France.
| | - Caroline Sevin
- APHP, Service de Neuropediatrie, Hôpital du Kremlin Bicêtre, Paris, France; GENOV, Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France
| | - Francoise Piguet
- GENOV, Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France
| |
Collapse
|
26
|
Barhate A, Bajaj P, Shirbhate U, Reche A, Pahade A, Agrawal R. Implications of Gene Therapy in Dentistry and Periodontics: A Narrative Review. Cureus 2023; 15:e49437. [PMID: 38149156 PMCID: PMC10750132 DOI: 10.7759/cureus.49437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/26/2023] [Indexed: 12/28/2023] Open
Abstract
The relentless march of technological progress entails constant evolution and adaptation. A concerted effort is underway in medical research to unravel various diseases' cellular and molecular underpinnings. The traditional approaches to disease treatment often fall short of delivering entirely satisfactory outcomes, which has prompted a shifting spotlight on gene therapy as a versatile solution for many inherited and acquired disorders. Genes, intricate sequences of genetic code, are the complicated blueprints dictating the production of essential proteins within the human body. Remarkably, each individual's genetic makeup is uniquely distinct, with variations in these genetic sequences serving as the bedrock of our diversity. Gene therapy represents an innovative medical strategy that harnesses the power of genes themselves to function as therapeutic agents. It serves as a conduit through which defective genes are either substituted or mended with the introduction of remedial genetic material. This groundbreaking method can tackle various illnesses, from conditions originating from single-gene abnormalities to intricate disorders influenced by multiple genes. In dentistry and periodontics, gene therapy finds a promising array of applications. It contributes significantly to managing salivary gland disorders, autoimmune diseases, and the regeneration of damaged bone tissue, as well as addressing cancerous and precancerous conditions. Moreover, the possibilities extend into DNA vaccination and broader areas of oral health. The advent of gene therapy in dentistry represents a new era of significant progress, offering substantial advancements in the management of periodontal disease and the reconstruction of the dental alveolar apparatus. The aim of this narrative review is to provide a comprehensive overview of the landscape of gene therapy investigations in these disciplines, shedding light on its potential implications for oral health and treatment. With its potential to rectify the genetic underpinnings of various conditions, gene therapy offers a novel frontier in healthcare that continually shapes the landscape of medicine and holds the promise of more effective and personalised treatments.
Collapse
Affiliation(s)
- Arpit Barhate
- Department of Dentistry, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Pavan Bajaj
- Department of Periodontics, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Unnati Shirbhate
- Department of Periodontics, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Amit Reche
- Department of Public Health Dentistry, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Abhishek Pahade
- Department of Dentistry, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ritiksha Agrawal
- Department of Dentistry, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
27
|
Zhu X, Xu J, Ling G, Zhang P. Tunable metal-organic frameworks assist in catalyzing DNAzymes with amplification platforms for biomedical applications. Chem Soc Rev 2023; 52:7549-7578. [PMID: 37817667 DOI: 10.1039/d3cs00386h] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Various binding modes of tunable metal organic frameworks (MOFs) and functional DNAzymes (Dzs) synergistically catalyze the emergence of abundant functional nanoplatforms. Given their serial variability in formation, structural designability, and functional controllability, Dzs@MOFs tend to be excellent building blocks for the precise "intelligent" manufacture of functional materials. To present a clear outline of this new field, this review systematically summarizes the progress of Dz integration into MOFs (MOFs@Dzs) through different methods, including various surface infiltration, pore encapsulation, covalent binding, and biomimetic mineralization methods. Atomic-level and time-resolved catalytic mechanisms for biosensing and imaging are made possible by the complex interplay of the distinct molecular structure of Dzs@MOF, conformational flexibility, and dynamic regulation of metal ions. Exploiting the precision of DNAzymes, MOFs@Dzs constructed a combined nanotherapy platform to guide intracellular drug synthesis, photodynamic therapy, catalytic therapy, and immunotherapy to enhance gene therapy in different ways, solving the problems of intracellular delivery inefficiency and insufficient supply of cofactors. MOFs@Dzs nanostructures have become excellent candidates for biosensing, bioimaging, amplification delivery, and targeted cancer gene therapy while emphasizing major advancements and seminal endeavors in the fields of biosensing (nucleic acid, protein, enzyme activity, small molecules, and cancer cells), biological imaging, and targeted cancer gene delivery and gene therapy. Overall, based on the results demonstrated to date, we discuss the challenges that the emerging MOFs@Dzs might encounter in practical future applications and briefly look forward to their bright prospects in other fields.
Collapse
Affiliation(s)
- Xiaoguang Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Jiaqi Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
28
|
Domingues C, Jarak I, Veiga F, Dourado M, Figueiras A. Pediatric Drug Development: Reviewing Challenges and Opportunities by Tracking Innovative Therapies. Pharmaceutics 2023; 15:2431. [PMID: 37896191 PMCID: PMC10610377 DOI: 10.3390/pharmaceutics15102431] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The paradigm of pediatric drug development has been evolving in a "carrot-and-stick"-based tactic to address population-specific issues. However, the off-label prescription of adult medicines to pediatric patients remains a feature of clinical practice, which may compromise the age-appropriate evaluation of treatments. Therefore, the United States and the European Pediatric Formulation Initiative have recommended applying nanotechnology-based delivery systems to tackle some of these challenges, particularly applying inorganic, polymeric, and lipid-based nanoparticles. Connected with these, advanced therapy medicinal products (ATMPs) have also been highlighted, with optimistic perspectives for the pediatric population. Despite the results achieved using these innovative therapies, a workforce that congregates pediatric patients and/or caregivers, healthcare stakeholders, drug developers, and physicians continues to be of utmost relevance to promote standardized guidelines for pediatric drug development, enabling a fast lab-to-clinical translation. Therefore, taking into consideration the significance of this topic, this work aims to compile the current landscape of pediatric drug development by (1) outlining the historic regulatory panorama, (2) summarizing the challenges in the development of pediatric drug formulation, and (3) delineating the advantages/disadvantages of using innovative approaches, such as nanomedicines and ATMPs in pediatrics. Moreover, some attention will be given to the role of pharmaceutical technologists and developers in conceiving pediatric medicines.
Collapse
Affiliation(s)
- Cátia Domingues
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal;
| | - Ivana Jarak
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- Institute for Health Research and Innovation (i3s), University of Porto, 4200-135 Porto, Portugal
| | - Francisco Veiga
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Marília Dourado
- Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal;
- Univ Coimbra, Center for Health Studies and Research of the University of Coimbra (CEISUC), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Studies and Development of Continuous and Palliative Care (CEDCCP), Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Ana Figueiras
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
29
|
Ellison S, Parker H, Bigger B. Advances in therapies for neurological lysosomal storage disorders. J Inherit Metab Dis 2023; 46:874-905. [PMID: 37078180 DOI: 10.1002/jimd.12615] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/21/2023]
Abstract
Lysosomal Storage Disorders (LSDs) are a diverse group of inherited, monogenic diseases caused by functional defects in specific lysosomal proteins. The lysosome is a cellular organelle that plays a critical role in catabolism of waste products and recycling of macromolecules in the body. Disruption to the normal function of the lysosome can result in the toxic accumulation of storage products, often leading to irreparable cellular damage and organ dysfunction followed by premature death. The majority of LSDs have no curative treatment, with many clinical subtypes presenting in early infancy and childhood. Over two-thirds of LSDs present with progressive neurodegeneration, often in combination with other debilitating peripheral symptoms. Consequently, there is a pressing unmet clinical need to develop new therapeutic interventions to treat these conditions. The blood-brain barrier is a crucial hurdle that needs to be overcome in order to effectively treat the central nervous system (CNS), adding considerable complexity to therapeutic design and delivery. Enzyme replacement therapy (ERT) treatments aimed at either direct injection into the brain, or using blood-brain barrier constructs are discussed, alongside more conventional substrate reduction and other drug-related therapies. Other promising strategies developed in recent years, include gene therapy technologies specifically tailored for more effectively targeting treatment to the CNS. Here, we discuss the most recent advances in CNS-targeted treatments for neurological LSDs with a particular emphasis on gene therapy-based modalities, such as Adeno-Associated Virus and haematopoietic stem cell gene therapy approaches that encouragingly, at the time of writing are being evaluated in LSD clinical trials in increasing numbers. If safety, efficacy and improved quality of life can be demonstrated, these therapies have the potential to be the new standard of care treatments for LSD patients.
Collapse
Affiliation(s)
- S Ellison
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, United Kingdom
| | - H Parker
- Division of Immunology, Immunity to Infection and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - B Bigger
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
30
|
Bueren JA, Auricchio A. Advances and Challenges in the Development of Gene Therapy Medicinal Products for Rare Diseases. Hum Gene Ther 2023; 34:763-775. [PMID: 37694572 DOI: 10.1089/hum.2023.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
The development of viral vectors and recombinant DNA technology since the 1960s has enabled gene therapy to become a real therapeutic option for several inherited and acquired diseases. After several ups and downs in the gene therapy field, we are currently living a new era in the history of medicine in which several ex vivo and in vivo gene therapies have reached maturity. This is testified by the recent marketing authorization of several gene therapy medicinal products. In addition, many others are currently under evaluation after exhaustive investigation in human clinical trials. In this review, we summarize some of the most significant milestones in the development of gene therapy medicinal products that have already facilitated the treatment of a significant number of rare diseases. Despite progresses in the gene therapy field, the transfer of these innovative therapies to clinical practice is also finding important restrictions. Advances and also challenges in the progress of gene therapy for rare diseases are discussed in this opening review of a Human Gene Therapy issue dedicated to the 30th annual Congress of the European Society for Gene and Cell Therapy.
Collapse
Affiliation(s)
- Juan A Bueren
- Biomedical Innovation Unit, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| |
Collapse
|
31
|
Paris K, Wall LA. The Treatment of Primary Immune Deficiencies: Lessons Learned and Future Opportunities. Clin Rev Allergy Immunol 2023; 65:19-30. [PMID: 35776401 PMCID: PMC9247903 DOI: 10.1007/s12016-022-08950-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 11/30/2022]
Abstract
Primary immunodeficiency is a group of disorders associated with susceptibility to infectious agents and the development of various comorbidities. Many primary immunodeficiencies are complicated by immune dysregulation, autoinflammation, or autoimmunity which impacts multiple organ systems. Major advances in the treatment of these disorders have occurred over the last half-century, and deeper molecular understanding of many disorders combined with clinically available genetic testing is allowing for use of precision therapy for several primary immunodeficiencies. Patients with antibody deficiencies who rely on immunoglobulin replacement therapy now have many treatment options with products that are much safer and better tolerated compared to the past. Newborn screening for severe combined immunodeficiency, now implemented throughout the USA and in many countries worldwide, has lowered the age at which many patients are diagnosed with these diseases. Early diagnosis of severe combined immunodeficiency allows infants to proceed to definitive therapy such as stem cell transplantation or gene therapy prior to facing potentially life-threatening infections. While stem cell transplantation continues to carry significant risks, knowledge gained over recent decades is allowing for improved survival with less toxicity and less graft versus host disease.
Collapse
Affiliation(s)
- Kenneth Paris
- Department of Pediatrics, Division of Allergy and Immunology, Louisiana State University Health Sciences Center New Orleans and Children’s Hospital New Orleans, New Orleans, LA USA
| | - Luke A. Wall
- Department of Pediatrics, Division of Allergy and Immunology, Louisiana State University Health Sciences Center New Orleans and Children’s Hospital New Orleans, New Orleans, LA USA
| |
Collapse
|
32
|
Papaioannou I, Owen JS, Yáñez‐Muñoz RJ. Clinical applications of gene therapy for rare diseases: A review. Int J Exp Pathol 2023; 104:154-176. [PMID: 37177842 PMCID: PMC10349259 DOI: 10.1111/iep.12478] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 03/08/2023] [Accepted: 04/16/2023] [Indexed: 05/15/2023] Open
Abstract
Rare diseases collectively exact a high toll on society due to their sheer number and overall prevalence. Their heterogeneity, diversity, and nature pose daunting clinical challenges for both management and treatment. In this review, we discuss recent advances in clinical applications of gene therapy for rare diseases, focusing on a variety of viral and non-viral strategies. The use of adeno-associated virus (AAV) vectors is discussed in the context of Luxturna, licenced for the treatment of RPE65 deficiency in the retinal epithelium. Imlygic, a herpes virus vector licenced for the treatment of refractory metastatic melanoma, will be an example of oncolytic vectors developed against rare cancers. Yescarta and Kymriah will showcase the use of retrovirus and lentivirus vectors in the autologous ex vivo production of chimeric antigen receptor T cells (CAR-T), licenced for the treatment of refractory leukaemias and lymphomas. Similar retroviral and lentiviral technology can be applied to autologous haematopoietic stem cells, exemplified by Strimvelis and Zynteglo, licenced treatments for adenosine deaminase-severe combined immunodeficiency (ADA-SCID) and β-thalassaemia respectively. Antisense oligonucleotide technologies will be highlighted through Onpattro and Tegsedi, RNA interference drugs licenced for familial transthyretin (TTR) amyloidosis, and Spinraza, a splice-switching treatment for spinal muscular atrophy (SMA). An initial comparison of the effectiveness of AAV and oligonucleotide therapies in SMA is possible with Zolgensma, an AAV serotype 9 vector, and Spinraza. Through these examples of marketed gene therapies and gene cell therapies, we will discuss the expanding applications of such novel technologies to previously intractable rare diseases.
Collapse
Affiliation(s)
| | - James S. Owen
- Division of MedicineUniversity College LondonLondonUK
| | - Rafael J. Yáñez‐Muñoz
- AGCTlab.orgCentre of Gene and Cell TherapyCentre for Biomedical SciencesDepartment of Biological SciencesSchool of Life Sciences and the EnvironmentRoyal Holloway University of LondonEghamUK
| |
Collapse
|
33
|
Salafutdinov II, Gatina DZ, Markelova MI, Garanina EE, Malanin SY, Gazizov IM, Izmailov AA, Rizvanov AA, Islamov RR, Palotás A, Safiullov ZZ. A Biosafety Study of Human Umbilical Cord Blood Mononuclear Cells Transduced with Adenoviral Vector Carrying Human Vascular Endothelial Growth Factor cDNA In Vitro. Biomedicines 2023; 11:2020. [PMID: 37509661 PMCID: PMC10377014 DOI: 10.3390/biomedicines11072020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The biosafety of gene therapy remains a crucial issue for both the direct and cell-mediated delivery of recombinant cDNA encoding biologically active molecules for the pathogenetic correction of congenital or acquired disorders. The diversity of vector systems and cell carriers for the delivery of therapeutic genes revealed the difficulty of developing and implementing a safe and effective drug containing artificial genetic material for the treatment of human diseases in practical medicine. Therefore, in this study we assessed changes in the transcriptome and secretome of umbilical cord blood mononuclear cells (UCB-MCs) genetically modified using adenoviral vector (Ad5) carrying cDNA encoding human vascular endothelial growth factor (VEGF165) or reporter green fluorescent protein (GFP). A preliminary analysis of UCB-MCs transduced with Ad5-VEGF165 and Ad5-GFP with MOI of 10 showed efficient transgene expression in gene-modified UCB-MCs at mRNA and protein levels. The whole transcriptome sequencing of native UCB-MCs, UCB-MC+Ad5-VEGF165, and UCB-MC+Ad5-GFP demonstrated individual sample variability rather than the effect of Ad5 or the expression of recombinant vegf165 on UCB-MC transcriptomes. A multiplex secretome analysis indicated that neither the transduction of UCB-MCs with Ad5-GFP nor with Ad5-VEGF165 affects the secretion of the studied cytokines, chemokines, and growth factors by gene-modified cells. Here, we show that UCB-MCs transduced with Ad5 carrying cDNA encoding human VEGF165 efficiently express transgenes and preserve transcriptome and secretome patterns. This data demonstrates the biosafety of using UCB-MCs as cell carriers of therapeutic genes.
Collapse
Affiliation(s)
- Ilnur I Salafutdinov
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan 420012, Russia
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Dilara Z Gatina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Maria I Markelova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Ekaterina E Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Sergey Yu Malanin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Ilnaz M Gazizov
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan 420012, Russia
| | - Andrei A Izmailov
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan 420012, Russia
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Rustem R Islamov
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan 420012, Russia
| | - András Palotás
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Asklepios-Med (Private Medical Practice and Research Center), H-6722 Szeged, Hungary
- Tokaj-Hegyalja University, H-3910 Tokaj, Hungary
| | - Zufar Z Safiullov
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan 420012, Russia
| |
Collapse
|
34
|
Gennery AR. Gene silencing on a WHIM. Blood 2023; 142:1-2. [PMID: 37410507 DOI: 10.1182/blood.2023020478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
|
35
|
Davleeva MA, Garifulin RR, Bashirov FV, Izmailov AA, Nurullin LF, Salafutdinov II, Gatina DZ, Shcherbinin DN, Lysenko AA, Tutykhina IL, Shmarov MM, Islamov RR. Molecular and cellular changes in the post-traumatic spinal cord remodeling after autoinfusion of a genetically-enriched leucoconcentrate in a mini-pig model. Neural Regen Res 2023; 18:1505-1511. [PMID: 36571355 PMCID: PMC10075125 DOI: 10.4103/1673-5374.360241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Post-traumatic spinal cord remodeling includes both degenerating and regenerating processes, which affect the potency of the functional recovery after spinal cord injury (SCI). Gene therapy for spinal cord injury is proposed as a promising therapeutic strategy to induce positive changes in remodeling of the affected neural tissue. In our previous studies for delivering the therapeutic genes at the site of spinal cord injury, we developed a new approach using an autologous leucoconcentrate transduced ex vivo with chimeric adenoviruses (Ad5/35) carrying recombinant cDNA. In the present study, the efficacy of the intravenous infusion of an autologous genetically-enriched leucoconcentrate simultaneously producing recombinant vascular endothelial growth factor (VEGF), glial cell line-derived neurotrophic factor (GDNF), and neural cell adhesion molecule (NCAM) was evaluated with regard to the molecular and cellular changes in remodeling of the spinal cord tissue at the site of damage in a model of mini-pigs with moderate spinal cord injury. Experimental animals were randomly divided into two groups of 4 pigs each: the therapeutic (infused with the leucoconcentrate simultaneously transduced with a combination of the three chimeric adenoviral vectors Ad5/35-VEGF165, Ad5/35-GDNF, and Ad5/35-NCAM1) and control groups (infused with intact leucoconcentrate). The morphometric and immunofluorescence analysis of the spinal cord regeneration in the rostral and caudal segments according to the epicenter of the injury in the treated animals compared to the control mini-pigs showed: (1) higher sparing of the grey matter and increased survivability of the spinal cord cells (lower number of Caspase-3-positive cells and decreased expression of Hsp27); (2) recovery of synaptophysin expression; (3) prevention of astrogliosis (lower area of glial fibrillary acidic protein-positive astrocytes and ionized calcium binding adaptor molecule 1-positive microglial cells); (4) higher growth rates of regenerating βIII-tubulin-positive axons accompanied by a higher number of oligodendrocyte transcription factor 2-positive oligodendroglial cells in the lateral corticospinal tract region. These results revealed the efficacy of intravenous infusion of the autologous genetically-enriched leucoconcentrate producing recombinant VEGF, GDNF, and NCAM in the acute phase of spinal cord injury on the positive changes in the post-traumatic remodeling nervous tissue at the site of direct injury. Our data provide a solid platform for a new ex vivo gene therapy for spinal cord injury and will facilitate further translation of regenerative therapies in clinical neurology.
Collapse
Affiliation(s)
| | | | | | | | - Leniz Faritovich Nurullin
- Department of Histology, Cytology and Embryology, Kazan State Medical University; Kazan Institute of Biochemistry and Biophysics, Federal Research Center of Kazan Scientific Center of Russian Academy of Sciences, Kazan, Russia
| | - Ilnur Ildusovich Salafutdinov
- Department of Histology, Cytology and Embryology, Kazan State Medical University; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | | | - Dmitrij Nikolaevich Shcherbinin
- The National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrei Aleksandrovich Lysenko
- The National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Irina Leonidovna Tutykhina
- The National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Maksim Mikhailovich Shmarov
- The National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, Moscow, Russia
| | | |
Collapse
|
36
|
Arlabosse T, Booth C, Candotti F. Gene Therapy for Inborn Errors of Immunity. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1592-1601. [PMID: 37084938 DOI: 10.1016/j.jaip.2023.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/23/2023]
Abstract
In the early 1990s, gene therapy (GT) entered the clinical arena as an alternative to hematopoietic stem cell transplantation for forms of inborn errors of immunity (IEIs) that are not medically manageable because of their severity. In principle, the use of gene-corrected autologous hematopoietic stem cells presents several advantages over hematopoietic stem cell transplantation, including making donor searches unnecessary and avoiding the risks for graft-versus-host disease. In the past 30 years or more of clinical experience, the field has witnessed multiple examples of successful applications of GT to a number of IEIs, as well as some serious drawbacks, which have highlighted the potential genotoxicity of integrating viral vectors and stimulated important progress in the development of safer gene transfer tools. The advent of gene editing technologies promises to expand the spectrum of IEIs amenable to GT to conditions caused by mutated genes that require the precise regulation of expression or by dominant-negative variants. Here, we review the main concepts of GT as it applies to IEIs and the clinical results obtained to date. We also describe the challenges faced by this branch of medicine, which operates in the unprofitable sector of human rare diseases.
Collapse
Affiliation(s)
- Tiphaine Arlabosse
- Pediatric Immuno-Rheumatology of Western Switzerland, Division of Pediatrics, Women-Mother-Child Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Claire Booth
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital for Sick Children NHS Foundation Trust, London, United Kingdom.
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
37
|
Ferrari S, Valeri E, Conti A, Scala S, Aprile A, Di Micco R, Kajaste-Rudnitski A, Montini E, Ferrari G, Aiuti A, Naldini L. Genetic engineering meets hematopoietic stem cell biology for next-generation gene therapy. Cell Stem Cell 2023; 30:549-570. [PMID: 37146580 DOI: 10.1016/j.stem.2023.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 05/07/2023]
Abstract
The growing clinical success of hematopoietic stem/progenitor cell (HSPC) gene therapy (GT) relies on the development of viral vectors as portable "Trojan horses" for safe and efficient gene transfer. The recent advent of novel technologies enabling site-specific gene editing is broadening the scope and means of GT, paving the way to more precise genetic engineering and expanding the spectrum of diseases amenable to HSPC-GT. Here, we provide an overview of state-of-the-art and prospective developments of the HSPC-GT field, highlighting how advances in biological characterization and manipulation of HSPCs will enable the design of the next generation of these transforming therapeutics.
Collapse
Affiliation(s)
- Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Erika Valeri
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Anastasia Conti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Annamaria Aprile
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Anna Kajaste-Rudnitski
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Giuliana Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy.
| |
Collapse
|
38
|
Gene-based delivery of immune-activating cytokines for cancer treatment. Trends Mol Med 2023; 29:329-342. [PMID: 36828711 DOI: 10.1016/j.molmed.2023.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/24/2023]
Abstract
Tumors evolve together with the tumor microenvironment (TME) and reshape it towards immunosuppression. Immunostimulating cytokines can be used to revert this state leading to effective antitumor immune responses, but their exploitation as anticancer drugs has been hampered by severe toxicity associated with systemic administration. Local, TME-targeted delivery of immune activating cytokines can deploy their antitumoral function more effectively than systemic administration while, at the same time, avoiding exposure of healthy organs and limiting toxicity. Here, we review different gene and cell therapy platforms developed for tumor-directed cytokine delivery highlighting their potential for clinical translation.
Collapse
|
39
|
Castiello MC, Ferrari S, Villa A. Correcting inborn errors of immunity: From viral mediated gene addition to gene editing. Semin Immunol 2023; 66:101731. [PMID: 36863140 PMCID: PMC10109147 DOI: 10.1016/j.smim.2023.101731] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/25/2023] [Accepted: 02/14/2023] [Indexed: 03/04/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation is an effective treatment to cure inborn errors of immunity. Remarkable progress has been achieved thanks to the development and optimization of effective combination of advanced conditioning regimens and use of immunoablative/suppressive agents preventing rejection as well as graft versus host disease. Despite these tremendous advances, autologous hematopoietic stem/progenitor cell therapy based on ex vivo gene addition exploiting integrating γ-retro- or lenti-viral vectors, has demonstrated to be an innovative and safe therapeutic strategy providing proof of correction without the complications of the allogeneic approach. The recent advent of targeted gene editing able to precisely correct genomic variants in an intended locus of the genome, by introducing deletions, insertions, nucleotide substitutions or introducing a corrective cassette, is emerging in the clinical setting, further extending the therapeutic armamentarium and offering a cure to inherited immune defects not approachable by conventional gene addition. In this review, we will analyze the current state-of-the art of conventional gene therapy and innovative protocols of genome editing in various primary immunodeficiencies, describing preclinical models and clinical data obtained from different trials, highlighting potential advantages and limits of gene correction.
Collapse
Affiliation(s)
- Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (IRGB-CNR), Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (IRGB-CNR), Milan, Italy.
| |
Collapse
|
40
|
Mudde A, Booth C. Gene therapy for inborn error of immunity - current status and future perspectives. Curr Opin Allergy Clin Immunol 2023; 23:51-62. [PMID: 36539381 DOI: 10.1097/aci.0000000000000876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Development of hematopoietic stem cell (HSC) gene therapy (GT) for inborn errors of immunity (IEIs) continues to progress rapidly. Although more patients are being treated with HSC GT based on viral vector mediated gene addition, gene editing techniques provide a promising new approach, in which transgene expression remains under the control of endogenous regulatory elements. RECENT FINDINGS Many gene therapy clinical trials are being conducted and evidence showing that HSC GT through viral vector mediated gene addition is a successful and safe curative treatment option for various IEIs is accumulating. Gene editing techniques for gene correction are, on the other hand, not in clinical use yet, despite rapid developments during the past decade. Current studies are focussing on improving rates of targeted integration, while preserving the primitive HSC population, which is essential for future clinical translation. SUMMARY As HSC GT is becoming available for more diseases, novel developments should focus on improving availability while reducing costs of the treatment. Continued follow up of treated patients is essential for providing information about long-term safety and efficacy. Editing techniques have great potential but need to be improved further before the translation to clinical studies can happen.
Collapse
Affiliation(s)
- Anne Mudde
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health
| | - Claire Booth
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital, London, UK
| |
Collapse
|
41
|
Eichler HG, Kossmeier M, Zeitlinger M, Schwarzer-Daum B. Orphan drugs' clinical uncertainty and prices: Addressing allocative and technical inefficiencies in orphan drug reimbursement. Front Pharmacol 2023; 14:1074512. [PMID: 36778019 PMCID: PMC9909264 DOI: 10.3389/fphar.2023.1074512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Legislations incentivising orphan drug development and scientific advances have made orphan drugs pharma's high-end favourite for the past two decades. Currently, around 50% of new marketing authorizations are for orphan drugs. For third-party healthcare payers ("payers") the rise of orphan drugs presents new challenges, including a high degree of uncertainty around clinical benefits and harms, a moderate effect size (for many orphan drugs), and a high price tag. The association of high clinical uncertainty and moderate effect sizes is not surprising in small target populations but in combination with high prices creates the risk of allocative and technical inefficiencies for payers. We here discuss and illustrate these risks. A combination of policies is needed for mitigation of allocative inefficiency: while there may be a rationale for higher prices for orphan than non-orphan drugs, a focus of pricing and reimbursement negotiations should include considerations of product profitability and of the consequences of orphan drug costs on the distribution inequality of medication costs for individual insured persons, coupled to knowledge generation from reimbursement contracts covering high-price orphan drugs that would benefit the wider patient community. Performance-based managed entry agreements could help to de-risk the economic consequences of clinical uncertainty and to mitigate technical inefficiency.
Collapse
Affiliation(s)
| | | | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
42
|
Abstract
There are more than 7,000 paediatric genetic diseases (PGDs) but less than 5% have treatment options. Treatment strategies targeting different levels of the biological process of the disease have led to optimal health outcomes in a subset of patients with PGDs, where treatment is available. In the past 3 decades, there has been rapid advancement in the development of novel therapies, including gene therapy, for many PGDs. The therapeutic success of treatment relies heavily on knowledge of the genetic basis and the disease mechanism. Specifically, gene therapy has been shown to be effective in various clinical trials, and indeed, these trials have led to regulatory approvals, paving the way for gene therapies for other types of PGDs. In this review, we provide an overview of the treatment strategies and focus on some of the recent advancements in therapeutics for PGDs.
Collapse
Affiliation(s)
- Ai Ling Koh
- Genetics Service, Department of Paediatrics, KK Women's and Children's Hospital, Singapore,SingHealth Duke-NUS Genomic Medicine Centre, Nanyang Technological University, Singapore,Duke-NUS Medical School, Nanyang Technological University, Singapore,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore,Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Saumya Shekhar Jamuar
- Genetics Service, Department of Paediatrics, KK Women's and Children's Hospital, Singapore,SingHealth Duke-NUS Genomic Medicine Centre, Nanyang Technological University, Singapore,Duke-NUS Medical School, Nanyang Technological University, Singapore,Yong Loo Lin School of Medicine, National University of Singapore, Singapore,SingHealth Duke-NUS Institute of Precision Medicine, Singapore,Correspondence: Dr. Saumya Shekhar Jamuar, Senior Consultant, Genetics Service, Department of Paediatrics, KK Women's and Children's Hospital, 100 Bukit Timah Road, 229899, Singapore. E-mail:
| |
Collapse
|
43
|
Crippa S, Conti A, Vavassori V, Ferrari S, Beretta S, Rivis S, Bosotti R, Scala S, Pirroni S, Jofra-Hernandez R, Santi L, Basso-Ricci L, Merelli I, Genovese P, Aiuti A, Naldini L, Di Micco R, Bernardo ME. Mesenchymal stromal cells improve the transplantation outcome of CRISPR-Cas9 gene-edited human HSPCs. Mol Ther 2023; 31:230-248. [PMID: 35982622 PMCID: PMC9840125 DOI: 10.1016/j.ymthe.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/29/2022] [Accepted: 08/12/2022] [Indexed: 01/26/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have been employed in vitro to support hematopoietic stem and progenitor cell (HSPC) expansion and in vivo to promote HSPC engraftment. Based on these studies, we developed an MSC-based co-culture system to optimize the transplantation outcome of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene-edited (GE) human HSPCs. We show that bone marrow (BM)-MSCs produce several hematopoietic supportive and anti-inflammatory factors capable of alleviating the proliferation arrest and mitigating the apoptotic and inflammatory programs activated in GE-HSPCs, improving their expansion and clonogenic potential in vitro. The use of BM-MSCs resulted in superior human engraftment and increased clonal output of GE-HSPCs contributing to the early phase of hematological reconstitution in the peripheral blood of transplanted mice. In conclusion, our work poses the biological bases for a novel clinical use of BM-MSCs to promote engraftment of GE-HSPCs and improve their transplantation outcome.
Collapse
Affiliation(s)
- Stefania Crippa
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Anastasia Conti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Valentina Vavassori
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Silvia Rivis
- Laboratory of Tumor Inflammation and Angiogenesis, VIB-KULeuven, 3000 Leuven, Belgium
| | - Roberto Bosotti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Raisa Jofra-Hernandez
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ludovica Santi
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Luca Basso-Ricci
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; National Research Council, Institute for Biomedical Technologies, 20132 Milan, Italy
| | - Pietro Genovese
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Department of Pediatric Oncology, Harvard Medical School, Boston, MA 02115, USA
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy; (")Vita Salute" San Raffaele University, 20132 Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (")Vita Salute" San Raffaele University, 20132 Milan, Italy
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy; (")Vita Salute" San Raffaele University, 20132 Milan, Italy.
| |
Collapse
|
44
|
Shakirova A, Karpov T, Komarova Y, Lepik K. In search of an ideal template for therapeutic genome editing: A review of current developments for structure optimization. Front Genome Ed 2023; 5:1068637. [PMID: 36911237 PMCID: PMC9992834 DOI: 10.3389/fgeed.2023.1068637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
Gene therapy is a fast developing field of medicine with hundreds of ongoing early-stage clinical trials and numerous preclinical studies. Genome editing (GE) now is an increasingly important technology for achieving stable therapeutic effect in gene correction, with hematopoietic cells representing a key target cell population for developing novel treatments for a number of hereditary diseases, infections and cancer. By introducing a double strand break (DSB) in the defined locus of genomic DNA, GE tools allow to knockout the desired gene or to knock-in the therapeutic gene if provided with an appropriate repair template. Currently, the efficiency of methods for GE-mediated knock-in is limited. Significant efforts were focused on improving the parameters and interaction of GE nuclease proteins. However, emerging data suggests that optimal characteristics of repair templates may play an important role in the knock-in mechanisms. While viral vectors with notable example of AAVs as a donor template carrier remain the mainstay in many preclinical trials, non-viral templates, including plasmid and linear dsDNA, long ssDNA templates, single and double-stranded ODNs, represent a promising alternative. Furthermore, tuning of editing conditions for the chosen template as well as its structure, length, sequence optimization, homology arm (HA) modifications may have paramount importance for achieving highly efficient knock-in with favorable safety profile. This review outlines the current developments in optimization of templates for the GE mediated therapeutic gene correction.
Collapse
Affiliation(s)
- Alena Shakirova
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, Saint Petersburg, Russia
| | - Timofey Karpov
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, Saint Petersburg, Russia.,Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Yaroslava Komarova
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, Saint Petersburg, Russia
| | - Kirill Lepik
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, Saint Petersburg, Russia
| |
Collapse
|
45
|
Solomon M, Liang C. Pseudotyped Viruses for Retroviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:61-84. [PMID: 36920692 DOI: 10.1007/978-981-99-0113-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Since the discovery of retroviruses, their genome and replication strategies have been extensively studied, leading to the discovery of several unique features that make them invaluable vectors for virus pseudotyping, gene delivery, and gene therapy. Notably, retroviral vectors enable the integration of a gene of interest into the host genome, they can be used to stably transduce both dividing and nondividing cells, and they can deliver relatively large genes. Today, retroviral vectors are commonly used for many research applications and have become an active tool in gene therapy and clinical trials. This chapter will discuss the important features of the retroviral genome and replication cycle that are crucial for the development of retroviral vectors, the different retrovirus-based vector systems that are commonly used, and finally the research and clinical applications of retroviral vectors.
Collapse
Affiliation(s)
- Magan Solomon
- Lady Davis Institute, Jewish General Hospital, McGill Centre for Viral Diseases, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, McGill Centre for Viral Diseases, Montreal, QC, Canada. .,Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
46
|
Davison AS, Norman BP. Alkaptonuria – Past, present and future. Adv Clin Chem 2023. [DOI: 10.1016/bs.acc.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
47
|
Li Z, Yang L. Current status of producing autologous hematopoietic stem cells. Curr Res Transl Med 2023; 71:103377. [PMID: 36638755 DOI: 10.1016/j.retram.2023.103377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/06/2023]
Abstract
Hematopoietic stem cells (HSCs) transplantation is an established therapy for many diseases of the hematopoietic system, for example aplastic anemia, acute myeloid leukemia and acute lymphoblastic leukemia. With the development of the HSCs research, HSCs provide an attractive method for treating hereditary blood disorders and immunotherapy of cancer by introducing gene modification. Compared with allogenic HSCs transplantation, using autologous HSCs or HSCs from induced pluripotent stem cells (iPSCs) would eliminate the probability of alloimmunization and transfusion-transmitted infectious diseases. The methods for obtaining autologous HSCs include amplifying patients' HSCs or inducing patients' somatic cells to HSCs (graph abstract). However, the biggest problem is inducing HSCs to proliferate in vitro and maintaining their stemness at the same time. Although many tests have been made to transform iPSCs to HSCs, the artificially generated HSCs still have substantial disparity compared with physiological HSCs. This review summarized the application status and obstacles to implantation of autologous HSCs and iPSC-derived HSCs. Meanwhile, we summarized the latest research progress in HSCs amplification and iPSCs reprogramming methods, which will help to solve the problems mentioned above.
Collapse
Affiliation(s)
- Zhonglin Li
- Division of Gastroenterology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Ling Yang
- Division of Gastroenterology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
| |
Collapse
|
48
|
Pinto MV, Neves JF. Precision medicine: The use of tailored therapy in primary immunodeficiencies. Front Immunol 2022; 13:1029560. [PMID: 36569887 PMCID: PMC9773086 DOI: 10.3389/fimmu.2022.1029560] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Primary immunodeficiencies (PID) are rare, complex diseases that can be characterised by a spectrum of phenotypes, from increased susceptibility to infections to autoimmunity, allergy, auto-inflammatory diseases and predisposition to malignancy. With the introduction of genetic testing in these patients and wider use of next-Generation sequencing techniques, a higher number of pathogenic genetic variants and conditions have been identified, allowing the development of new, targeted treatments in PID. The concept of precision medicine, that aims to tailor the medical interventions to each patient, allows to perform more precise diagnosis and more importantly the use of treatments directed to a specific defect, with the objective to cure or achieve long-term remission, minimising the number and type of side effects. This approach takes particular importance in PID, considering the nature of causative defects, disease severity, short- and long-term complications of disease but also of the available treatments, with impact in life-expectancy and quality of life. In this review we revisit how this approach can or is already being implemented in PID and provide a summary of the most relevant treatments applied to specific diseases.
Collapse
Affiliation(s)
- Marta Valente Pinto
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, CHULC-EPE, Lisbon, Portugal
- Centro de Investigação Egas Moniz (CiiEM), Instituto Universitário Egas Moniz (IUEM), Quinta da Granja, Monte da Caparica, Caparica, Portugal
| | - João Farela Neves
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, CHULC-EPE, Lisbon, Portugal
- CHRC, Comprehensive Health Research Centre, Nova Medical School, Lisbon, Portugal
| |
Collapse
|
49
|
Charlesworth CT, Hsu I, Wilkinson AC, Nakauchi H. Immunological barriers to haematopoietic stem cell gene therapy. Nat Rev Immunol 2022; 22:719-733. [PMID: 35301483 PMCID: PMC8929255 DOI: 10.1038/s41577-022-00698-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2022] [Indexed: 12/12/2022]
Abstract
Cell and gene therapies using haematopoietic stem cells (HSCs) epitomize the transformative potential of regenerative medicine. Recent clinical successes for gene therapies involving autologous HSC transplantation (HSCT) demonstrate the potential of genetic engineering in this stem cell type for curing disease. With recent advances in CRISPR gene-editing technologies, methodologies for the ex vivo expansion of HSCs and non-genotoxic conditioning protocols, the range of clinical indications for HSC-based gene therapies is expected to significantly expand. However, substantial immunological challenges need to be overcome. These include pre-existing immunity to gene-therapy reagents, immune responses to neoantigens introduced into HSCs by genetic engineering, and unique challenges associated with next-generation and off-the-shelf HSC products. By synthesizing these factors in this Review, we hope to encourage more research to address the immunological issues associated with current and next-generation HSC-based gene therapies to help realize the full potential of this field.
Collapse
Affiliation(s)
- Carsten T Charlesworth
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ian Hsu
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Adam C Wilkinson
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
50
|
Khodabukus A, Guyer T, Moore AC, Stevens MM, Guldberg RE, Bursac N. Translating musculoskeletal bioengineering into tissue regeneration therapies. Sci Transl Med 2022; 14:eabn9074. [PMID: 36223445 PMCID: PMC7614064 DOI: 10.1126/scitranslmed.abn9074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Musculoskeletal injuries and disorders are the leading cause of physical disability worldwide and a considerable socioeconomic burden. The lack of effective therapies has driven the development of novel bioengineering approaches that have recently started to gain clinical approvals. In this review, we first discuss the self-repair capacity of the musculoskeletal tissues and describe causes of musculoskeletal dysfunction. We then review the development of novel biomaterial, immunomodulatory, cellular, and gene therapies to treat musculoskeletal disorders. Last, we consider the recent regulatory changes and future areas of technological progress that can accelerate translation of these therapies to clinical practice.
Collapse
Affiliation(s)
- Alastair Khodabukus
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Tyler Guyer
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA
| | - Axel C Moore
- Departments of Materials and Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK.,Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Molly M Stevens
- Departments of Materials and Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK.,Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17177, Sweden
| | - Robert E Guldberg
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|