1
|
Elmasry K, Habib S, Helwa I, Khaled ML, Ibrahim AS, Tawfik A, Al-Shabrawey M. Possible Role of Endothelial-Derived Cellular and Exosomal-miRNAs in Lipid-Mediated Diabetic Retinopathy: Microarray Studies. Cells 2024; 13:1886. [PMID: 39594634 PMCID: PMC11592818 DOI: 10.3390/cells13221886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Diabetic retinopathy (DR) is a salient cause of blindness worldwide. There is still an immense need to understand the pathophysiology of DR to discover better diagnostic and therapeutic modalities. Human retinal endothelial cells (HRECs) were treated with 15-HETE or D-glucose, then miRNAs were isolated, and a microarray was performed. MirWALK 2 and Ingenuity Pathway Analysis (IPA) were used to analyze the microarray results. Exosomal miRNAs from 15-HETE-treated HRECs were isolated, microarrayed, and then imported into IPA for further analysis. The microarray results showed that 15-HETE downregulated 343 miRNAs and upregulated 297 miRNAs in HRECs. High glucose treatment induced a differential expression of HREC-miRNAs where 185 miRNAs were downregulated and 244 were upregulated. Comparing the impact of 15-HETE versus DG or diabetic mouse retina elaborated commonly changing miRNAs. Pathway and target analysis for miRNAs changed in 15-HETE-treated HRECs revealed multiple targets and pathways that may be involved in 15-HETE-induced retinal endothelial dysfunction. The HREC-exosomal miRNAs were differentially expressed after 15-HETE treatment, with 34 miRNAs downregulated and 45 miRNAs upregulated, impacting different cellular pathways. Here, we show that 15-HETE induces various changes in the cellular and exosomal miRNA profile of HRECs, highlighting the importance of targeting the 12/15 lipoxygenase pathway in DR.
Collapse
Affiliation(s)
- Khaled Elmasry
- Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, Augusta, GA 30912, USA;
- DCG Center for Excellence in Research, Scholarship, and Innovation (CERSI), Augusta University, Augusta, GA 30912, USA
- Department of Cellular Biology and Anatomy, The Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (I.H.); (M.L.K.)
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Samar Habib
- Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, Augusta, GA 30912, USA;
- DCG Center for Excellence in Research, Scholarship, and Innovation (CERSI), Augusta University, Augusta, GA 30912, USA
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Inas Helwa
- Department of Cellular Biology and Anatomy, The Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (I.H.); (M.L.K.)
- Department of Histopathology, Faculty of Oral and Dental Medicine, Misr International University, Cairo 19648, Egypt
| | - Mariam Lotfy Khaled
- Department of Cellular Biology and Anatomy, The Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (I.H.); (M.L.K.)
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Ahmed S. Ibrahim
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA;
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Amany Tawfik
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA;
- Eye Research Center (OUWB)/ERC, William Beaumont School of Medicine, Rochester, MI 48073, USA
- Department of Foundational Medical Studies and Eye Research Center, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Mohamed Al-Shabrawey
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA;
- Eye Research Center (OUWB)/ERC, William Beaumont School of Medicine, Rochester, MI 48073, USA
- Department of Foundational Medical Studies and Eye Research Center, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| |
Collapse
|
2
|
Galeano D, Imrat, Haltom J, Andolino C, Yousey A, Zaksas V, Das S, Baylin SB, Wallace DC, Slack FJ, Enguita FJ, Wurtele ES, Teegarden D, Meller R, Cifuentes D, Beheshti A. sChemNET: a deep learning framework for predicting small molecules targeting microRNA function. Nat Commun 2024; 15:9149. [PMID: 39443444 PMCID: PMC11500171 DOI: 10.1038/s41467-024-49813-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 06/14/2024] [Indexed: 10/25/2024] Open
Abstract
MicroRNAs (miRNAs) have been implicated in human disorders, from cancers to infectious diseases. Targeting miRNAs or their target genes with small molecules offers opportunities to modulate dysregulated cellular processes linked to diseases. Yet, predicting small molecules associated with miRNAs remains challenging due to the small size of small molecule-miRNA datasets. Herein, we develop a generalized deep learning framework, sChemNET, for predicting small molecules affecting miRNA bioactivity based on chemical structure and sequence information. sChemNET overcomes the limitation of sparse chemical information by an objective function that allows the neural network to learn chemical space from a large body of chemical structures yet unknown to affect miRNAs. We experimentally validated small molecules predicted to act on miR-451 or its targets and tested their role in erythrocyte maturation during zebrafish embryogenesis. We also tested small molecules targeting the miR-181 network and other miRNAs using in-vitro and in-vivo experiments. We demonstrate that our machine-learning framework can predict bioactive small molecules targeting miRNAs or their targets in humans and other mammalian organisms.
Collapse
Affiliation(s)
- Diego Galeano
- Department of Electronics and Mechatronics Engineering, Facultad de Ingeniería, Universidad Nacional de Asunción - FIUNA, Luque, Paraguay.
- COVID-19 International Research Team, Medford, MA, USA.
| | - Imrat
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jeffrey Haltom
- COVID-19 International Research Team, Medford, MA, USA
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Chaylen Andolino
- Department of Nutrition Science, Purdue University, Indiana, USA
- Purdue Institute for Cancer Research, Purdue University, Indiana, USA
| | - Aliza Yousey
- COVID-19 International Research Team, Medford, MA, USA
- Neuroscience Institute, Department of Neurobiology/ Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Victoria Zaksas
- COVID-19 International Research Team, Medford, MA, USA
- Center for Translational Data Science, University of Chicago, Chicago, IL, USA
- Clever Research Lab, Springfield, IL, USA
| | - Saswati Das
- COVID-19 International Research Team, Medford, MA, USA
- Atal Bihari Vajpayee Institute of Medical Sciences and Dr Ram Manohar Lohia Hospital, New Delhi, India
| | - Stephen B Baylin
- COVID-19 International Research Team, Medford, MA, USA
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The Van Andel Institute, Grand Rapids, MI, USA
| | - Douglas C Wallace
- COVID-19 International Research Team, Medford, MA, USA
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frank J Slack
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Francisco J Enguita
- COVID-19 International Research Team, Medford, MA, USA
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Eve Syrkin Wurtele
- Bioinformatics and Computational Biology Program, Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| | - Dorothy Teegarden
- Department of Nutrition Science, Purdue University, Indiana, USA
- Purdue Institute for Cancer Research, Purdue University, Indiana, USA
| | - Robert Meller
- COVID-19 International Research Team, Medford, MA, USA
- Neuroscience Institute, Department of Neurobiology/ Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Daniel Cifuentes
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Afshin Beheshti
- COVID-19 International Research Team, Medford, MA, USA
- Blue Marble Space Institute of Science, NASA Ames Research Center, Moffett Field, CA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGowan Institute for Regenerative Medicine - Center for Space Biomedicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Yang TH, Kang EYC, Lin PH, Yu BBC, Wang JHH, Chen V, Wang NK. Mitochondria in Retinal Ganglion Cells: Unraveling the Metabolic Nexus and Oxidative Stress. Int J Mol Sci 2024; 25:8626. [PMID: 39201313 PMCID: PMC11354650 DOI: 10.3390/ijms25168626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
This review explored the role of mitochondria in retinal ganglion cells (RGCs), which are essential for visual processing. Mitochondrial dysfunction is a key factor in the pathogenesis of various vision-related disorders, including glaucoma, hereditary optic neuropathy, and age-related macular degeneration. This review highlighted the critical role of mitochondria in RGCs, which provide metabolic support, regulate cellular health, and respond to cellular stress while also producing reactive oxygen species (ROS) that can damage cellular components. Maintaining mitochondrial function is essential for meeting RGCs' high metabolic demands and ensuring redox homeostasis, which is crucial for their proper function and visual health. Oxidative stress, exacerbated by factors like elevated intraocular pressure and environmental factors, contributes to diseases such as glaucoma and age-related vision loss by triggering cellular damage pathways. Strategies targeting mitochondrial function or bolstering antioxidant defenses include mitochondrial-based therapies, gene therapies, and mitochondrial transplantation. These advances can offer potential strategies for addressing mitochondrial dysfunction in the retina, with implications that extend beyond ocular diseases.
Collapse
Affiliation(s)
- Tsai-Hsuan Yang
- Department of Education, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Eugene Yu-Chuan Kang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
| | - Pei-Hsuan Lin
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- National Taiwan University Hospital, Yunlin 640203, Taiwan
| | - Benjamin Ben-Chi Yu
- Fu Foundation School of Engineering & Applied Science, Columbia University, New York, NY 10027, USA;
| | - Jason Hung-Hsuan Wang
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- Columbian College of Arts and Sciences, George Washington University, Washington, DC 20052, USA
| | - Vincent Chen
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada
| | - Nan-Kai Wang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| |
Collapse
|
4
|
Rao S, Madhu LN, Babu RS, Nagarajan A, Upadhya R, Narvekar E, Shetty AK. Extracellular Vesicles from hiPSC-derived NSCs Protect Human Neurons against Aβ-42 Oligomers Induced Neurodegeneration, Mitochondrial Dysfunction and Tau Phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603159. [PMID: 39071270 PMCID: PMC11275725 DOI: 10.1101/2024.07.11.603159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background One of the hallmarks of Alzheimer's disease (AD) is the buildup of amyloid beta-42 (Aβ-42) in the brain, which leads to various adverse effects. Therefore, therapeutic interventions proficient in reducing Aβ-42-induced toxicity in AD are of great interest. One promising approach is to use extracellular vesicles from human induced pluripotent stem cell-derived neural stem cells (hiPSC-NSC-EVs) because they carry multiple therapeutic miRNAs and proteins capable of protecting neurons against Aβ-42-induced pathological changes. Therefore, this in vitro study investigated the proficiency of hiPSC-NSC-EVs to protect human neurons derived from two distinct hiPSC lines from Aβ-42o-induced neurodegeneration. Methods We isolated hiPSC-NSC-EVs using chromatographic methods and characterized their size, ultrastructure, expression of EV-specific markers and proficiency in getting incorporated into mature human neurons. Next, mature human neurons differentiated from two different hiPSC lines were exposed to 1 µM Aβ-42 oligomers (Aβ-42o) alone or with varying concentrations of hiPSC-NSC-EVs. The protective effects of hiPSC-NSC-EVs against Aβ-42o-induced neurodegeneration, increased oxidative stress, mitochondrial dysfunction, impaired autophagy, and tau phosphorylation were ascertained using multiple measures and one-way ANOVA with Newman-Keuls multiple comparisons post hoc tests. Results Significant neurodegeneration was observed when human neurons were exposed to Aβ-42o alone. Notably, neurodegeneration was associated with elevated levels of oxidative stress markers malondialdehyde (MDA) and protein carbonyls (PCs), increased expression of proapoptotic Bax and Bad genes and proteins, reduced expression of the antiapoptotic gene and protein Bcl-2, increased expression of genes encoding mitochondrial complex proteins, decreased expression of autophagy-related proteins Beclin-1 and microtubule-associated protein 1 light chain 3B, and increased phosphorylation of tau. However, the addition of an optimal dose of hiPSC-NSC-EVs (6 x 10 9 EVs) to human neuronal cultures exposed to Aβ-42o significantly reduced the extent of neurodegeneration, along with diminished levels of MDA and PCs, normalized expressions of Bax, Bad, and Bcl-2, and genes linked to mitochondrial complex proteins, and reduced tau phosphorylation. Conclusions The findings demonstrate that an optimal dose of hiPSC-NSC-EVs could significantly decrease the degeneration of human neurons induced by Aβ-42o. The results also support further research into the effectiveness of hiPSC-NSC-EVs in AD, particularly their proficiency in preserving neurons and slowing disease progression.
Collapse
|
5
|
Mashayekhi V, Schomisch A, Rasheed S, Aparicio-Puerta E, Risch T, Yildiz D, Koch M, Both S, Ludwig N, Legroux TM, Keller A, Müller R, Fuhrmann G, Hoppstädter J, Kiemer AK. The RNA binding protein IGF2BP2/IMP2 alters the cargo of cancer cell-derived extracellular vesicles supporting tumor-associated macrophages. Cell Commun Signal 2024; 22:344. [PMID: 38937789 PMCID: PMC11212187 DOI: 10.1186/s12964-024-01701-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Tumor cells release extracellular vesicles (EVs) that contribute to the polarization of macrophages towards tumor-associated macrophages (TAMs). High expression levels of the RNA binding protein IGF2BP2/IMP2 are correlated with increased tumor cell proliferation, invasion, and poor prognosis in the clinic. However, there is a lack of understanding of whether IMP2 affects the cargo of cancer cell-derived EVs, thereby modulating macrophage polarization. METHODS EVs were isolated from IMP2-expressing HCT116 parental cells (WT) and CRISPR/Cas9 IMP2 knockout (KO) cells. EVs were characterized according to MISEV guidelines, microRNA cargo was assessed by microRNA-Seq, and the protein cargo was analyzed by proteomics. Primary human monocyte-derived macrophages (HMDMs) were polarized by EVs, and the expression of genes and surface markers was assessed using qPCR and flow cytometry, respectively. Morphological changes of macrophages, as well as the migratory potential of cancer cells, were assessed by the Incucyte® system and macrophage matrix degradation potential by zymography. Changes in the metabolic activity of macrophages were quantified using a Seahorse® analyzer. For in vivo studies, EVs were injected into the yolk sac of zebrafish larvae, and macrophages were isolated by fluorescence-activated cell sorting. RESULTS EVs from WT and KO cells had a similar size and concentration and were positive for 25 vesicle markers. The expression of tumor-promoting genes was higher in macrophages polarized with WT EVs than KO EVs, while the expression of TNF and IL6 was reduced. A similar pattern was observed in macrophages from zebrafish larvae treated in vivo. WT EV-polarized macrophages showed a higher abundance of TAM-like surface markers, higher matrix degrading activity, as well as a higher promotion of cancer cell migration. MicroRNA-Seq revealed a significant difference in the microRNA composition of WT and KO EVs, particularly a high abundance of miR-181a-5p in WT EVs, which was absent in KO EVs. Inhibitors of macropinocytosis and phagocytosis antagonized the delivery of miR-181a-5p into macrophages and the downregulation of the miR-181a-5p target DUSP6. Proteomics data showed differences in protein cargo in KO vs. WT EVs, with the differentially abundant proteins mainly involved in metabolic pathways. WT EV-treated macrophages exhibited a higher basal oxygen consumption rate and a lower extracellular acidification rate than KO EV-treated cells. CONCLUSION Our results show that IMP2 determines the cargo of EVs released by cancer cells, thereby modulating the EVs' actions on macrophages. Expression of IMP2 is linked to the secretion of EVs that polarize macrophages towards a tumor-promoting phenotype.
Collapse
Affiliation(s)
- Vida Mashayekhi
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany
| | - Annika Schomisch
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany
| | - Sari Rasheed
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Brunswick, Germany
| | - Ernesto Aparicio-Puerta
- Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany
| | - Timo Risch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Brunswick, Germany
| | - Daniela Yildiz
- Institute of Experimental and Clinical Pharmacology and Toxicology, PZMS, ZHMB, Saarland University, Homburg, Germany
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Saarbrücken, Germany
| | - Simon Both
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany
| | - Nicole Ludwig
- Department of Human Genetics, Saarland University, Homburg, Germany
| | - Thierry M Legroux
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Brunswick, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Gregor Fuhrmann
- Department of Pharmaceutical Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jessica Hoppstädter
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany
| | - Alexandra K Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany.
| |
Collapse
|
6
|
Costa BLD, Quinn PMJ, Wu WH, Liu S, Nolan ND, Demirkol A, Tsai YT, Caruso SM, Cabral T, Wang NK, Tsang SH. Targeting miR-181a/b in retinitis pigmentosa: implications for disease progression and therapy. Cell Biosci 2024; 14:64. [PMID: 38773556 PMCID: PMC11110387 DOI: 10.1186/s13578-024-01243-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/30/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Retinitis pigmentosa (RP) is a genetically heterogeneous group of degenerative disorders causing progressive vision loss due to photoreceptor death. RP affects other retinal cells, including the retinal pigment epithelium (RPE). MicroRNAs (miRs) are implicated in RP pathogenesis, and downregulating miR-181a/b has shown therapeutic benefit in RP mouse models by improving mitochondrial function. This study investigates the expression profile of miR-181a/b in RPE cells and the neural retina during RP disease progression. We also evaluate how miR-181a/b downregulation, by knocking out miR-181a/b-1 cluster in RPE cells, confers therapeutic efficacy in an RP mouse model and explore the mechanisms underlying this process. RESULTS Our findings reveal distinct expression profiles, with downregulated miR-181a/b in RPE cells suggesting a protective response and upregulated miR-181a/b in the neural retina indicating a role in disease progression. We found that miR-181a/b-2, encoded in a separate genomic cluster, compensates for miR-181a/b-1 ablation in RPE cells at late time points. The transient downregulation of miR-181a/b in RPE cells at post-natal week 6 (PW6) led to improved RPE morphology, retarded photoreceptor degeneration and decreased RPE aerobic glycolysis. CONCLUSIONS Our study elucidates the underlying mechanisms associated with the therapeutic modulation of miR-181a/b, providing insights into the metabolic processes linked to its RPE-specific downregulation. Our data further highlights the impact of compensatory regulation between miR clusters with implications for the development of miR-based therapeutics.
Collapse
Affiliation(s)
- Bruna Lopes da Costa
- Jonas Children's Vision Care (JCVC) and Barbara & Donald Jonas Stem Cell Laboratory, New York-Presbyterian Hospital, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Peter M J Quinn
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Wen-Hsuan Wu
- Jonas Children's Vision Care (JCVC) and Barbara & Donald Jonas Stem Cell Laboratory, New York-Presbyterian Hospital, New York, NY, USA
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Siyuan Liu
- Jonas Children's Vision Care (JCVC) and Barbara & Donald Jonas Stem Cell Laboratory, New York-Presbyterian Hospital, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Nicholas D Nolan
- Jonas Children's Vision Care (JCVC) and Barbara & Donald Jonas Stem Cell Laboratory, New York-Presbyterian Hospital, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Aykut Demirkol
- Jonas Children's Vision Care (JCVC) and Barbara & Donald Jonas Stem Cell Laboratory, New York-Presbyterian Hospital, New York, NY, USA
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yi-Ting Tsai
- Jonas Children's Vision Care (JCVC) and Barbara & Donald Jonas Stem Cell Laboratory, New York-Presbyterian Hospital, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Salvatore Marco Caruso
- Jonas Children's Vision Care (JCVC) and Barbara & Donald Jonas Stem Cell Laboratory, New York-Presbyterian Hospital, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Thiago Cabral
- Department of Specialized Medicine, CCS and Vision Center Unit, Ophthalmology EBSERH, HUCAM/CCS, UFES-Federal University of Espírito Santo (UFES), Vitória, Brazil
- Department of Ophthalmology, Federal University of Sao Paulo (UNIFESP), São Paulo, Brazil
| | - Nan-Kai Wang
- Jonas Children's Vision Care (JCVC) and Barbara & Donald Jonas Stem Cell Laboratory, New York-Presbyterian Hospital, New York, NY, USA
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Stephen H Tsang
- Jonas Children's Vision Care (JCVC) and Barbara & Donald Jonas Stem Cell Laboratory, New York-Presbyterian Hospital, New York, NY, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
- Columbia Stem Cell Initiative, Institute of Human Nutrition ,Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Columbia University Irving Medical Center, Hammer Health Sciences Center 205b, 701 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
7
|
Barbato A, Piscopo F, Salati M, Pollastro C, Evangelista L, Ferrante L, Limongello D, Brillante S, Iuliano A, Reggiani-Bonetti L, Salatiello M, Iaccarino A, Pisapia P, Malapelle U, Troncone G, Indrieri A, Dominici M, Franco B, Carotenuto P. A MiR181/Sirtuin1 regulatory circuit modulates drug response in biliary cancers. Clin Exp Med 2024; 24:74. [PMID: 38598008 PMCID: PMC11006774 DOI: 10.1007/s10238-024-01332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024]
Abstract
Despite recent advances, biliary tract cancer (BTC) remains one of the most lethal tumor worldwide due to late diagnosis, limited therapeutic strategies and resistance to conventional therapies. In recent years, high-throughput technologies have enabled extensive genome, and transcriptome sequencing unveiling, among others, the regulatory potential of microRNAs (miRNAs). Compelling evidence shown that miRNA are attractive therapeutic targets and promising candidates as biomarkers for various therapy-resistant tumors. The analysis of miRNA profile successfully identified miR-181c and -181d as significantly downregulated in BTC patients. Low miR-181c and -181d expression levels were correlated with worse prognosis and poor treatment efficacy. In fact, progression-free survival analysis indicated poor survival rates in miR-181c and -181d low expressing patients. The expression profile of miR-181c and -181d in BTC cell lines revealed that both miRNAs were dysregulated. Functional in vitro experiments in BTC cell lines showed that overexpression of miR-181c and -181d affected cell viability and increased sensitivity to chemotherapy compared to controls. In addition, by using bioinformatic tools we showed that the miR-181c/d functional role is determined by binding to their target SIRT1 (Sirtuin 1). Moreover, BTC patients expressing high levels of miR-181 and low SIRT1 shown an improved survival and treatment response. An integrative network analysis demonstrated that, miR-181/SIRT1 circuit had a regulatory effect on several important metabolic tumor-related processes. Our study demonstrated that miR-181c and -181d act as tumor suppressor miRNA in BTC, suggesting the potential use as therapeutic strategy in resistant cancers and as predictive biomarker in the precision medicine of BTC.
Collapse
Affiliation(s)
- Anna Barbato
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
- Department of Translational Medical Science, Medical Genetics, University of Naples "Federico II", 80131, Naples, Italy
| | - Fabiola Piscopo
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
- Department of Translational Medical Science, Medical Genetics, University of Naples "Federico II", 80131, Naples, Italy
| | - Massimiliano Salati
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41125, Modena, Italy
| | - Carla Pollastro
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
- Department of Translational Medical Science, Medical Genetics, University of Naples "Federico II", 80131, Naples, Italy
| | - Lorenzo Evangelista
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Luigi Ferrante
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Davide Limongello
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Simona Brillante
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
- IRGB, Institute for Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| | - Antonella Iuliano
- Department of Mathematics, Computer Science and Economics (DIMIE), University of Basilicata, 85100, Potenza, Italy
| | - Luca Reggiani-Bonetti
- Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, 41125, Modena, Italy
| | - Maria Salatiello
- Department of Public Health, Universita' degli Studi di Napoli-AOU Federico II, 80131, Naples, Italy
| | - Antonino Iaccarino
- Department of Public Health, Universita' degli Studi di Napoli-AOU Federico II, 80131, Naples, Italy
| | - Pasquale Pisapia
- Department of Public Health, Universita' degli Studi di Napoli-AOU Federico II, 80131, Naples, Italy
| | - Umberto Malapelle
- Department of Public Health, Universita' degli Studi di Napoli-AOU Federico II, 80131, Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, Universita' degli Studi di Napoli-AOU Federico II, 80131, Naples, Italy
| | - Alessia Indrieri
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
- IRGB, Institute for Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41125, Modena, Italy
| | - Brunella Franco
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
- Department of Translational Medical Science, Medical Genetics, University of Naples "Federico II", 80131, Naples, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, 80078, Naples, Italy
| | - Pietro Carotenuto
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy.
- Department of Translational Medical Science, Medical Genetics, University of Naples "Federico II", 80131, Naples, Italy.
| |
Collapse
|
8
|
Boen HM, Cherubin M, Franssen C, Gevaert AB, Witvrouwen I, Bosman M, Guns PJ, Heidbuchel H, Loeys B, Alaerts M, Van Craenenbroeck EM. Circulating MicroRNA as Biomarkers of Anthracycline-Induced Cardiotoxicity: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2024; 6:183-199. [PMID: 38774014 PMCID: PMC11103047 DOI: 10.1016/j.jaccao.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 05/24/2024] Open
Abstract
Close monitoring for cardiotoxicity during anthracycline chemotherapy is crucial for early diagnosis and therapy guidance. Currently, monitoring relies on cardiac imaging and serial measurement of cardiac biomarkers like cardiac troponin and natriuretic peptides. However, these conventional biomarkers are nonspecific indicators of cardiac damage. Exploring new, more specific biomarkers with a clear link to the underlying pathomechanism of cardiotoxicity holds promise for increased specificity and sensitivity in detecting early anthracycline-induced cardiotoxicity. miRNAs (microRNAs), small single-stranded, noncoding RNA sequences involved in epigenetic regulation, influence various physiological and pathological processes by targeting expression and translation. Emerging as new biomarker candidates, circulating miRNAs exhibit resistance to degradation and offer a direct pathomechanistic link. This review comprehensively outlines their potential as early biomarkers for cardiotoxicity and their pathomechanistic link.
Collapse
Affiliation(s)
- Hanne M. Boen
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Martina Cherubin
- Centrum of Medical Genetics, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Constantijn Franssen
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Andreas B. Gevaert
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Isabel Witvrouwen
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Matthias Bosman
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Hein Heidbuchel
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Bart Loeys
- Centrum of Medical Genetics, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Maaike Alaerts
- Centrum of Medical Genetics, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Emeline M. Van Craenenbroeck
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
9
|
Zhang Z, Wu Z, Hu S, He M. Identification of serum microRNA alterations associated with long-term exercise-induced motor improvements in patients with Parkinson disease. Medicine (Baltimore) 2024; 103:e37470. [PMID: 38552099 PMCID: PMC10977540 DOI: 10.1097/md.0000000000037470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/12/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Long-term physical exercise has been shown to benefit patients with Parkinson disease (PD), but there is a lack of evidence regarding the underlying mechanism. A better understanding of how such benefits are induced by exercise might contribute to the development of therapeutic targets for improving the motor function in individuals with PD. The purpose of this study was therefore to investigate the possible association between exercise-induced motor improvements and the changes in serum microRNA (miRNA) levels of PD patients through small RNA sequencing for the first time. METHODS Thirteen PD patients completed our 3-month home-and-community-based exercise program, while 6 patients were assigned to the control group. Motor functions were measured, and small RNA sequencing with data analysis was performed on serum miRNAs both before and after the program. The results were further validated by quantitative real-time polymerase chain reaction. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were then conducted to determine the role of differentially expressed miRNAs. RESULTS The 3-month home-and-community-based exercise program induced significant motor improvements in PD patients in terms of Unified Parkinson's Disease Rating Scale activities of daily living and Motor Subscale (P < .05), comfortable walking speed (P = .003), fast walking speed (P = .028), Six-Minute Walk Test (P = .004), Berg Balance Scale (P = .039), and Timed Up and Go (P = .002). A total of 11 miRNAs (10 upregulated and one downregulated) were identified to be remarkably differentially expressed after intervention in the exercise group, but not in the control group. The results of miRNA sequencing were further validated by quantitative real-time polymerase chain reaction. It was found that the targets of altered miRNAs were mostly enriched in the mitogen-activated protein kinase, Wnt, and Hippo signaling pathways and the GO annotations mainly included binding, catalytic activity, and transcription regulator activity. CONCLUSION The exercise-induced motor improvements were possibly associated with changes in circulating miRNA levels in PD patients. These miRNAs, as well as the most enriched pathways and GO terms, may play a critical role in the mechanism of exercise-induced benefits in PD and serve as novel treatment targets for the disease, although further investigations are needed.
Collapse
Affiliation(s)
- Ziyi Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ziwei Wu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shenglan Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Miao He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
She Y, Chen Z, Zhang L, Wang Y. MiR-181a-5p knockdown ameliorates sevoflurane anesthesia-induced neuron injury via regulation of the DDX3X/Wnt/β-catenin signaling axis. Exp Brain Res 2024; 242:571-583. [PMID: 38218948 DOI: 10.1007/s00221-023-06739-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/02/2023] [Indexed: 01/15/2024]
Abstract
Sevoflurane is one of the most widely used inhaled anesthetics. MicroRNAs (miRNAs) have been demonstrated to affect sevoflurane anesthesia-induced neuron damage. The purpose of this study was to investigate the role and mechanism of miR-181a-5p in sevoflurane-induced hippocampal neuronal injury. Primary hippocampal neurons were identified using microscopy and immunofluorescence. The viability and apoptosis of sevoflurane anesthesia-induced neurons were detected by cell counting kit-8 (CCK-8) assay and terminal-deoxynucleoitidyl transferase-mediated nick end-labeling (TUNEL) staining assay, respectively. The levels of apoptosis- and oxidative stress-related proteins as well as the markers in the Wnt/β-catenin signaling pathway were examined by immunoblotting. Enzyme-linked immuno-sorbent assays were performed to examine the levels of inflammatory cytokines. Luciferase reporter assay was conducted to validate the combination between miR-181a-5p and DEAD-box helicase 3, X-linked (DDX3X). Sevoflurane exposure led to significantly inhibited hippocampal neuron viability and elevated miR-181a-5p expression. Knockdown of miR-181a-5p alleviated sevoflurane-induced neuron injury by reducing cell apoptosis, inflammatory response, and oxidative stress. Additionally, DDX3X was targeted and negatively regulated by miR-181a-5p. Moreover, miR-181a-5p inhibitor activated the Wnt/β-catenin pathway via DDX3X in sevoflurane-treated cells. Rescue experiments revealed that DDX3X knockdown or overexpression of Wnt antagonist Dickkopf-1 (DKK1) reversed the suppressive effects of miR-181a-5p inhibitor on cell apoptosis, inflammatory response, and oxidative stress in sevoflurane-treated neuronal cells. MiR-181a-5p ameliorated sevoflurane-triggered neuron injury by regulating the DDX3X/Wnt/β-catenin axis, suggesting the potential of miR-181a-5p as a novel and promising therapeutic target for the treatment of sevoflurane-evoked neurotoxicity.
Collapse
Affiliation(s)
- Yuqi She
- Department of Anesthesiology, Wuhan No 1 Hospital, No. 215 Zhongshan Avenue, Qiaokou District, Wuhan, 430030, Hebei, China
| | - Zhijun Chen
- Department of Anesthesiology, Wuhan No 1 Hospital, No. 215 Zhongshan Avenue, Qiaokou District, Wuhan, 430030, Hebei, China.
| | - Li Zhang
- Department of Anesthesiology, Wuhan No 1 Hospital, No. 215 Zhongshan Avenue, Qiaokou District, Wuhan, 430030, Hebei, China
| | - Yuan Wang
- Department of Neurosurgery, Wuhan No 1 Hospital, No. 215 Zhongshan Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| |
Collapse
|
11
|
Meng T, Liu X, Zhang J, Li S, He W, Li W. MicroRNA-181b attenuates lipopolysaccharide-induced inflammatory responses in pulpitis via the PLAU/AKT/NF-κB axis. Int Immunopharmacol 2024; 127:111451. [PMID: 38154211 DOI: 10.1016/j.intimp.2023.111451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/17/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
OBJECTIVE This study aimed to investigate the role and underlying mechanisms of microRNA (miRNA)-181b in the inflammatory response in pulpitis. METHODS Quantitative reverse-transcription polymerase chain reaction (qRT-PCR), fluorescence in situ hybridization (FISH), and immunofluorescence techniques were used to determine the miRNA-181b and urokinase-type plasminogen activator (PLAU) expression levels in inflamed human dental pulp tissues (HDPTs) and lipopolysaccharide (LPS)-stimulated human dental pulp cells (hDPCs). The targets of miRNA-181b were identified and confirmed using a bioinformatics analysis, RNA sequencing, and dual-luciferase gene reporter assays. The effect of miRNA-181b or PLAU on proinflammatory cytokine expression in hDPCs was examined using qRT-PCR and western blotting. RNA sequencing was conducted to examine the signaling pathways implicated in miRNA-181b-mediated pulpitis. Western blotting and qRT-PCR were used to determine the miRNA-181b /PLAU/AKT/NF-κB signaling axis in pulpitis. A rat pulpitis model was created to observe the histopathological changes in the dental pulp tissue after the topical application of miRNA-181b agomir. RESULTS A significant decrease in miRNA-181b and an increase in PLAU were observed in HDPTs compared to the healthy controls, and these two factors showed a negative correlation. MiRNA-181b directly targeted PLAU. The miRNA-181b inhibitor resulted in a significant upregulation of IL-1β, IL-6 and TNF-α, whereas the knockdown of PLAU reversed this proinflammatory effect. Conversely, PLAU overexpression prevented the anti-inflammatory effects of the miRNA-181b mimics. Mechanistically, miRNA-181b inhibited the AKT/NF-κB pathway by targeting PLAU. In vivo application of the miRNA-181b agomir to inflamed pulp tissue alleviated inflammation. CONCLUSION MiRNA-181b targets PLAU, negatively regulating pro-inflammatory cytokine expression via the AKT/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Tiantian Meng
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, 69# Mei Shan Road, Hefei 230032, Anhui, China.
| | - Xinpai Liu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, 69# Mei Shan Road, Hefei 230032, Anhui, China.
| | - Jing Zhang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, 69# Mei Shan Road, Hefei 230032, Anhui, China.
| | - Song Li
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, 69# Mei Shan Road, Hefei 230032, Anhui, China.
| | - Wei He
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, 69# Mei Shan Road, Hefei 230032, Anhui, China; School of Basic Medical Sciences, Anhui Medical University, 81#Mei Shan Road, Hefei 230032, Anhui, China.
| | - Wuli Li
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, 69# Mei Shan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
12
|
Yoon J, Kaya S, Matsumae G, Dole N, Alliston T. miR181a/b-1 controls osteocyte metabolism and mechanical properties independently of bone morphology. Bone 2023; 175:116836. [PMID: 37414200 PMCID: PMC11156520 DOI: 10.1016/j.bone.2023.116836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
Bone derives its ability to resist fracture from bone mass and quality concurrently; however, many questions about the molecular mechanisms controlling bone quality remain unanswered, limiting the development of diagnostics and therapeutics. Despite the increasing evidence on the importance of miR181a/b-1 in bone homeostasis and disease, whether and how osteocyte-intrinsic miR181a/b-1 controls bone quality remains elusive. Osteocyte-intrinsic deletion of miR181a/b-1 in osteocytes in vivo resulted in compromised overall bone mechanical behavior in both sexes, although the parameters affected by miR181a/b-1 varied distinctly based on sex. Furthermore, impaired fracture resistance in both sexes was unexplained by cortical bone morphology, which was altered in female mice and intact in male mice with miR181a/b-1-deficient osteocytes. The role of miR181a/b-1 in the regulation of osteocyte metabolism was apparent in bioenergetic testing of miR181a/b-1-deficient OCY454 osteocyte-like cells and transcriptomic analysis of cortical bone from mice with osteocyte-intrinsic ablation of miR181a/b-1. Altogether, this study demonstrates the control of osteocyte bioenergetics and the sexually dimorphic regulation of cortical bone morphology and mechanical properties by miR181a/b-1, hinting at the role of osteocyte metabolism in the regulation of mechanical behavior.
Collapse
Affiliation(s)
- Jihee Yoon
- Department of Orthopaedic Surgery, University of California San Francisco, California, USA; Oral and Craniofacial Sciences Program, School of Dentistry, University of California San Francisco, California, USA
| | - Serra Kaya
- Department of Orthopaedic Surgery, University of California San Francisco, California, USA
| | - Gen Matsumae
- Department of Orthopaedic Surgery, University of California San Francisco, California, USA
| | - Neha Dole
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, AR, USA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California San Francisco, California, USA; Oral and Craniofacial Sciences Program, School of Dentistry, University of California San Francisco, California, USA.
| |
Collapse
|
13
|
Hsu YL, Chen HJ, Gao JX, Yang MY, Fu RH. Chiisanoside Mediates the Parkin/ZNF746/PGC-1α Axis by Downregulating MiR-181a to Improve Mitochondrial Biogenesis in 6-OHDA-Caused Neurotoxicity Models In Vitro and In Vivo: Suggestions for Prevention of Parkinson's Disease. Antioxidants (Basel) 2023; 12:1782. [PMID: 37760085 PMCID: PMC10525196 DOI: 10.3390/antiox12091782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The degeneration of dopamine (DA) neurons is known to be associated with defects in mitochondrial biogenesis caused by aging, environmental factors, or mutations in genes, leading to Parkinson's disease (PD). As PD has not yet been successfully cured, the strategy of using small molecule drugs to protect and restore mitochondrial biogenesis is a promising direction. This study evaluated the efficacy of synthetic chiisanoside (CSS) identified in the leaves of Acanthopanax sessiliflorus to prevent PD symptoms. The results show that in the 6-hydroxydopamine (6-OHDA) model, CSS pretreatment can effectively alleviate the reactive oxygen species generation and apoptosis of SH-SY5Y cells, thereby lessening the defects in the C. elegans model including DA neuron degeneration, dopamine-mediated food sensitivity behavioral disorders, and shortened lifespan. Mechanistically, we found that CSS could restore the expression of proliferator-activated receptor gamma coactivator-1-alpha (PGC-1α), a key molecule in mitochondrial biogenesis, and its downstream related genes inhibited by 6-OHDA. We further confirmed that this is due to the enhanced activity of parkin leading to the ubiquitination and degradation of PGC-1α inhibitor protein Zinc finger protein 746 (ZNF746). Parkin siRNA treatment abolished this effect of CSS. Furthermore, we found that CSS inhibited 6-OHDA-induced expression of miR-181a, which targets parkin. The CSS's ability to reverse the 6-OHDA-induced reduction in mitochondrial biogenesis and activation of apoptosis was abolished after the transfection of anti-miR-181a and miR-181a mimics. Therefore, the neuroprotective effect of CSS mainly promotes mitochondrial biogenesis by regulating the miR-181a/Parkin/ZNF746/PGC-1α axis. CSS potentially has the opportunity to be developed into PD prevention agents.
Collapse
Affiliation(s)
- Yu-Ling Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-L.H.); (H.-J.C.); (J.-X.G.)
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Hui-Jye Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-L.H.); (H.-J.C.); (J.-X.G.)
| | - Jia-Xin Gao
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-L.H.); (H.-J.C.); (J.-X.G.)
| | - Ming-Yang Yang
- Ph.D. Program for Aging, China Medical University, Taichung 40402, Taiwan;
| | - Ru-Huei Fu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-L.H.); (H.-J.C.); (J.-X.G.)
- Ph.D. Program for Aging, China Medical University, Taichung 40402, Taiwan;
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| |
Collapse
|
14
|
Shamsnajafabadi H, MacLaren RE, Cehajic-Kapetanovic J. Current and Future Landscape in Genetic Therapies for Leber Hereditary Optic Neuropathy. Cells 2023; 12:2013. [PMID: 37566092 PMCID: PMC10416882 DOI: 10.3390/cells12152013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Leber hereditary optic neuropathy (LHON) is the most common primary mitochondrial genetic disease that causes blindness in young adults. Over 50 inherited mitochondrial DNA (mtDNA) variations are associated with LHON; however, more than 95% of cases are caused by one of three missense variations (m.11778 G > A, m.3460 G > A, and m.14484 T > C) encoding for subunits ND4, ND1, and ND6 of the respiration complex I, respectively. These variants remain silent until further and currently poorly understood genetic and environmental factors precipitate the visual loss. The clinical course that ensues is variable, and a convincing treatment for LHON has yet to emerge. In 2015, an antioxidant idebenone (Raxone) received European marketing authorisation to treat visual impairment in patients with LHON, and since then it was introduced into clinical practice in several European countries. Alternative therapeutic strategies, including gene therapy and gene editing, antioxidant and neurotrophic agents, mitochondrial biogenesis, mitochondrial replacement, and stem cell therapies are being investigated in how effective they might be in altering the course of the disease. Allotopic gene therapies are in the most advanced stage of development (phase III clinical trials) whilst most other agents are in phase I or II trials or at pre-clinical stages. This manuscript discusses the phenotype and genotype of the LHON disease with complexities and peculiarities such as incomplete penetrance and gender bias, which have challenged the therapies in development emphasising the most recent use of gene therapy. Furthermore, we review the latest results of the three clinical trials based on adeno-associated viral (AAV) vector-mediated delivery of NADH dehydrogenase subunit 4 (ND4) with mitochondrial targeting sequence, highlighting the differences in the vector design and the rationale behind their use in the allotopic transfer.
Collapse
Affiliation(s)
- Hoda Shamsnajafabadi
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford University, Oxford OX3 9DU, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford University, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford University, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
15
|
Li L, Cao J, Li S, Cui T, Ni J, Zhang H, Zhu Y, Mao J, Gao X, Midgley AC, Zhu M, Fan G. M2 Macrophage-Derived sEV Regulate Pro-Inflammatory CCR2 + Macrophage Subpopulations to Favor Post-AMI Cardiac Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2202964. [PMID: 36950739 PMCID: PMC10190454 DOI: 10.1002/advs.202202964] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 02/21/2023] [Indexed: 05/18/2023]
Abstract
Tissue-resident cardiac macrophage subsets mediate cardiac tissue inflammation and repair after acute myocardial infarction (AMI). CC chemokine receptor 2 (CCR2)-expressing macrophages have phenotypical similarities to M1-polarized macrophages, are pro-inflammatory, and recruit CCR2+ circulating monocytes to infarcted myocardium. Small extracellular vesicles (sEV) from CCR2̶ macrophages, which phenotypically resemble M2-polarized macrophages, promote anti-inflammatory activity and cardiac repair. Here, the authors harvested M2 macrophage-derived sEV (M2EV ) from M2-polarized bone-marrow-derived macrophages for intramyocardial injection and recapitulation of sEV-mediated anti-inflammatory activity in ischemic-reperfusion (I/R) injured hearts. Rats and pigs received sham surgery; I/R without treatment; or I/R with autologous M2EV treatment. M2EV rescued cardiac function and attenuated injury markers, infarct size, and scar size. M2EV inhibited CCR2+ macrophage numbers, reduced monocyte-derived CCR2+ macrophage recruitment to infarct sites, induced M1-to-M2 macrophage switching and promoted neovascularization. Analysis of M2EV microRNA content revealed abundant miR-181b-5p, which regulated macrophage glucose uptake, glycolysis, and mitigated mitochondrial reactive oxygen species generation. Functional blockade of miR-181b-5p is detrimental to beneficial M2EV actions and resulted in failure to inhibit CCR2+ macrophage numbers and infarct size. Taken together, this investigation showed that M2EV rescued myocardial function, improved myocardial repair, and regulated CCR2+ macrophages via miR-181b-5p-dependent mechanisms, indicating an option for cell-free therapy for AMI.
Collapse
Affiliation(s)
- Lan Li
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionState Key Laboratory of Component‐based Chinese MedicineFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjin300193China
| | - Jiasong Cao
- Tianjin Key Laboratory of Human Development and Reproductive RegulationTianjin Central Hospital of Gynecology ObstetricsTianjin300052China
| | - Sheng Li
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Tianyi Cui
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Jingyu Ni
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionState Key Laboratory of Component‐based Chinese MedicineFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjin300193China
| | - Han Zhang
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Yan Zhu
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Jingyuan Mao
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionState Key Laboratory of Component‐based Chinese MedicineFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjin300193China
| | - Xiumei Gao
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Adam C. Midgley
- Key Laboratory of Bioactive Materials for the Ministry of EducationCollege of Life SciencesNankai UniversityTianjin300071China
| | - Meifeng Zhu
- Key Laboratory of Bioactive Materials for the Ministry of EducationCollege of Life SciencesNankai UniversityTianjin300071China
| | - Guanwei Fan
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionState Key Laboratory of Component‐based Chinese MedicineFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjin300193China
| |
Collapse
|
16
|
Moradi Vastegani S, Nasrolahi A, Ghaderi S, Belali R, Rashno M, Farzaneh M, Khoshnam SE. Mitochondrial Dysfunction and Parkinson's Disease: Pathogenesis and Therapeutic Strategies. Neurochem Res 2023:10.1007/s11064-023-03904-0. [PMID: 36943668 DOI: 10.1007/s11064-023-03904-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/23/2023]
Abstract
Parkinson's disease (PD) is a common age-related neurodegenerative disorder whose pathogenesis is not completely understood. Mitochondrial dysfunction and increased oxidative stress have been considered as major causes and central events responsible for the progressive degeneration of dopaminergic (DA) neurons in PD. Therefore, investigating mitochondrial disorders plays a role in understanding the pathogenesis of PD and can be an important therapeutic target for this disease. This study discusses the effect of environmental, genetic and biological factors on mitochondrial dysfunction and also focuses on the mitochondrial molecular mechanisms underlying neurodegeneration, and its possible therapeutic targets in PD, including reactive oxygen species generation, calcium overload, inflammasome activation, apoptosis, mitophagy, mitochondrial biogenesis, and mitochondrial dynamics. Other potential therapeutic strategies such as mitochondrial transfer/transplantation, targeting microRNAs, using stem cells, photobiomodulation, diet, and exercise were also discussed in this review, which may provide valuable insights into clinical aspects. A better understanding of the roles of mitochondria in the pathophysiology of PD may provide a rationale for designing novel therapeutic interventions in our fight against PD.
Collapse
Affiliation(s)
- Sadegh Moradi Vastegani
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Imam Khomeini Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahab Ghaderi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rafie Belali
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masome Rashno
- Asadabad School of Medical Sciences, Asadabad, Iran
- Student Research Committee, Asadabad School of Medical Sciences, Asadabad, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
17
|
Tryphena KP, Singh G, Jain N, Famta P, Srivastava S, Singh SB, Khatri DK. Integration of miRNA's Theranostic Potential with Nanotechnology: Promises and Challenges for Parkinson's Disease Therapeutics. Mech Ageing Dev 2023; 211:111800. [PMID: 36958539 DOI: 10.1016/j.mad.2023.111800] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/03/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
Despite the wide research going on in Parkinson's disease (PD), the burden of PD still remains high and continues to increase. The current drugs available for the treatment of PD are only aimed at symptomatic control. Hence, research is mainly focused on identifying the novel therapeutic targets that can be effectively targeted in order to slow down or culminate the disease progression. Recently the role of microRNAs (miRNAs) in the regulation of various pathological mechanisms of PD has been thoroughly explored and many of them were found to be dysregulated in the biological samples of PD patients. These miRNAs can be used as diagnostic markers and novel therapeutic options to manage PD. The delivery of miRNAs to the target site in brain is a challenging job owing to their nature of degradability by endonucleases as well as poor blood brain barrier (BBB) permeability. Nanoparticles appear to be the best solution to effectively encase the miRNA in their core as well as cross the BBB to deliver them into brain. Functionalisation of these nanoparticles further enhances the site-specific delivery.
Collapse
Affiliation(s)
- Kamatham Pushpa Tryphena
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad
| | - Gurpreet Singh
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad
| | - Naitik Jain
- Department of pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad
| | - Paras Famta
- Department of pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad
| | - Saurabh Srivastava
- Department of pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad.
| | - Shashi Bala Singh
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad
| | - Dharmendra Kumar Khatri
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad.
| |
Collapse
|
18
|
Hyttinen JMT, Blasiak J, Kaarniranta K. Non-Coding RNAs Regulating Mitochondrial Functions and the Oxidative Stress Response as Putative Targets against Age-Related Macular Degeneration (AMD). Int J Mol Sci 2023; 24:ijms24032636. [PMID: 36768958 PMCID: PMC9917342 DOI: 10.3390/ijms24032636] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Age-related macular degeneration (AMD) is an ever-increasing, insidious disease which reduces the quality of life of millions of elderly people around the world. AMD is characterised by damage to the retinal pigment epithelium (RPE) in the macula region of the retina. The origins of this multi-factorial disease are complex and still not fully understood. Oxidative stress and mitochondrial imbalance in the RPE are believed to be important factors in the development of AMD. In this review, the regulation of the mitochondrial function and antioxidant stress response by non-coding RNAs (ncRNAs), newly emerged epigenetic factors, is discussed. These molecules include microRNAs, long non-coding RNAs, and circular non-coding RNAs. They act mainly as mRNA suppressors, controllers of other ncRNAs, or by interacting with proteins. We include here examples of these RNA molecules which affect various mitochondrial processes and antioxidant signaling of the cell. As a future prospect, the possibility to manipulate these ncRNAs to strengthen mitochondrial and antioxidant response functions is discussed. Non-coding RNAs could be used as potential diagnostic markers for AMD, and in the future, also as therapeutic targets, either by suppressing or increasing their expression. In addition to AMD, it is possible that non-coding RNAs could be regulators in other oxidative stress-related degenerative diseases.
Collapse
Affiliation(s)
- Juha M. T. Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Correspondence:
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 Kuopio, Finland
| |
Collapse
|
19
|
Tryphena KP, Anuradha U, Kumar R, Rajan S, Srivastava S, Singh SB, Khatri DK. Understanding the Involvement of microRNAs in Mitochondrial Dysfunction and Their Role as Potential Biomarkers and Therapeutic Targets in Parkinson's Disease. J Alzheimers Dis 2023; 94:S187-S202. [PMID: 35848027 PMCID: PMC10473154 DOI: 10.3233/jad-220449] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 11/15/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, affecting the elderly worldwide and causing significant movement impairments. The goal of PD treatment is to restore dopamine levels in the striatum and regulate movement symptoms. The lack of specific biomarkers for early diagnosis, as well as medication aimed at addressing the pathogenic mechanisms to decelerate the progression of dopaminergic neurodegeneration, are key roadblocks in the management of PD. Various pathogenic processes have been identified to be involved in the progression of PD, with mitochondrial dysfunction being a major contributor to the disease's pathogenesis. The regulation of mitochondrial functions is influenced by a variety of factors, including epigenetics. microRNAs (miRNAs) are epigenetic modulators involved in the regulation of gene expression and regulate a variety of proteins that essential for proper mitochondrial functioning. They are found to be dysregulated in PD, as evidenced by biological samples from PD patients and in vitro and in vivo research. In this article, we attempt to provide an overview of several miRNAs linked to mitochondrial dysfunction and their potential as diagnostic biomarkers and therapeutic targets in PD.
Collapse
Affiliation(s)
- Kamatham Pushpa Tryphena
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Urati Anuradha
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Rohith Kumar
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Shruti Rajan
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Shashi Bala Singh
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Dharmendra Kumar Khatri
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| |
Collapse
|
20
|
Cai Z, Liu M, Zeng L, Zhao K, Wang C, Sun T, Li Z, Liu R. Role of traditional Chinese medicine in ameliorating mitochondrial dysfunction via non-coding RNA signaling: Implication in the treatment of neurodegenerative diseases. Front Pharmacol 2023; 14:1123188. [PMID: 36937876 PMCID: PMC10014574 DOI: 10.3389/fphar.2023.1123188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Neurodegenerative diseases (NDs) are common chronic disorders associated with progressive nervous system damage, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, among others. Mitochondria are abundant in various nervous system cells and provide a bulk supply of the adenosine triphosphate necessary for brain function, considered the center of the free-radical theory of aging. One common feature of NDs is mitochondrial dysfunction, which is involved in many physiopathological processes, including apoptosis, inflammation, oxidative stress, and calcium homeostasis. Recently, genetic studies revealed extensive links between mitochondrion impairment and dysregulation of non-coding RNAs (ncRNAs) in the pathology of NDs. Traditional Chinese medicines (TCMs) have been used for thousands of years in treating NDs. Numerous modern pharmacological studies have demonstrated the therapeutic effects of prescription, herbal medicine, bioactive ingredients, and monomer compounds of TCMs, which are important for managing the symptoms of NDs. Some highly effective TCMs exert protective effects on various key pathological features regulated by mitochondria and play a pivotal role in recovering disrupted signaling pathways. These disrupted signaling pathways are induced by abnormally-expressed ncRNAs associated with mitochondrial dysfunction, including microRNAs, long ncRNAs, and circular RNAs. In this review, we first explored the underlying ncRNA mechanisms linking mitochondrial dysfunction and neurodegeneration, demonstrating the implication of ncRNA-induced mitochondrial dysfunction in the pathogenesis of NDs. The ncRNA-induced mitochondrial dysfunctions affect mitochondrial biogenesis, dynamics, autophagy, Ca2+ homeostasis, oxidative stress, and downstream apoptosis. The review also discussed the targeting of the disease-related mitochondrial proteins in NDs and the protective effects of TCM formulas with definite composition, standardized extracts from individual TCMs, and monomeric compounds isolated from TCM. Additionally, we explored the ncRNA regulation of mitochondrial dysfunction in NDs and the effects and potential mechanisms of representative TCMs in alleviating mitochondrial pathogenesis and conferring anti-inflammatory, antioxidant, and anti-apoptotic pathways against NDs. Therefore, this review presents an overview of the role of mitochondrion-related ncRNAs and the target genes for TCM-based therapeutic interventions in NDs, providing insight into understanding the "multi-level compound-target-pathway regulatory" treatment mechanism of TCMs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rui Liu
- *Correspondence: Zhuorong Li, ; Rui Liu,
| |
Collapse
|
21
|
Wang Y, Tu S, Huang Y, Qin K, Chen Z. MicroRNA-181a regulates Treg functions via TGF-β1/Smad axis in the spleen of mice with acute gouty arthritis induced by MSU crystals. Braz J Med Biol Res 2022; 55:e12002. [PMID: 36477951 PMCID: PMC9728631 DOI: 10.1590/1414-431x2022e12002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 09/29/2022] [Indexed: 12/03/2022] Open
Abstract
Regulatory T cells (Tregs) play critical roles in restricting inflammatory pathogenesis and limiting undesirable Th2 response to environmental allergens. However, the role of miR-181a in regulating acute gouty arthritis (AGA) and Treg function remains unclear. This study aimed to investigate the potential roles of miR-181a in Treg immunity and the associated signaling pathway in the AGA mouse model. A solution with monosodium urate (MSU) crystals was injected into the joint tissue of mice to induce AGA. ELISA was used to examine inflammatory factors in blood samples, and flow cytometry was used to analyze Treg profile in mice with MSU-induced AGA. Cell proliferation and viability were assessed by CCK-8 assay. TGF-β1/Smad signaling activation was detected by western blot. We found that miR-181a expression showed a positive correlation with the changes of splenic Tregs percentage in AGA mice. miR-181a regulated the TGF-β1/Smad axis, since the transfection of miR-181a mimic increased the level of TGF-β1 and the phosphorylation of Smad2/3 in Tregs in AGA mice. Additionally, miR-181a mimic also promoted responses of Tregs via TGF-β1 in vitro and in vivo. Our work uncovered a vital role of miR-181a in the immune function of Treg cells by mediating the activity of the TGF-β1/Smad pathway in the AGA mouse model induced by MSU.
Collapse
Affiliation(s)
- Yu Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shenghao Tu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ying Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Qin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhe Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
22
|
Falabella M, Minczuk M, Hanna MG, Viscomi C, Pitceathly RDS. Gene therapy for primary mitochondrial diseases: experimental advances and clinical challenges. Nat Rev Neurol 2022; 18:689-698. [PMID: 36257993 DOI: 10.1038/s41582-022-00715-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2022] [Indexed: 11/09/2022]
Abstract
The variable clinical and biochemical manifestations of primary mitochondrial diseases (PMDs), and the complexity of mitochondrial genetics, have proven to be a substantial barrier to the development of effective disease-modifying therapies. Encouraging data from gene therapy trials in patients with Leber hereditary optic neuropathy and advances in DNA editing techniques have raised expectations that successful clinical transition of genetic therapies for PMDs is feasible. However, obstacles to the clinical application of genetic therapies in PMDs remain; the development of innovative, safe and effective genome editing technologies and vectors will be crucial to their future success and clinical approval. In this Perspective, we review progress towards the genetic treatment of nuclear and mitochondrial DNA-related PMDs. We discuss advances in mitochondrial DNA editing technologies alongside the unique challenges to targeting mitochondrial genomes. Last, we consider ongoing trials and regulatory requirements.
Collapse
Affiliation(s)
- Micol Falabella
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Michael G Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- CESNE - Center for the Study of Neurodegeneration, University of Padova, Padova, Italy
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK.
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK.
| |
Collapse
|
23
|
Carrella S, Di Guida M, Brillante S, Piccolo D, Ciampi L, Guadagnino I, Garcia Piqueras J, Pizzo M, Marrocco E, Molinari M, Petrogiannakis G, Barbato S, Ezhova Y, Auricchio A, Franco B, De Leonibus E, Surace EM, Indrieri A, Banfi S. miR-181a/b downregulation: a mutation-independent therapeutic approach for inherited retinal diseases. EMBO Mol Med 2022; 14:e15941. [PMID: 36194668 DOI: 10.15252/emmm.202215941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/09/2022] Open
Abstract
Inherited retinal diseases (IRDs) are a group of diseases whose common landmark is progressive photoreceptor loss. The development of gene-specific therapies for IRDs is hampered by their wide genetic heterogeneity. Mitochondrial dysfunction is proving to constitute one of the key pathogenic events in IRDs; hence, approaches that enhance mitochondrial activities have a promising therapeutic potential for these conditions. We previously reported that miR-181a/b downregulation boosts mitochondrial turnover in models of primary retinal mitochondrial diseases. Here, we show that miR-181a/b silencing has a beneficial effect also in IRDs. In particular, the injection in the subretinal space of an adeno-associated viral vector (AAV) that harbors a miR-181a/b inhibitor (sponge) sequence (AAV2/8-GFP-Sponge-miR-181a/b) improves retinal morphology and visual function both in models of autosomal dominant (RHO-P347S) and of autosomal recessive (rd10) retinitis pigmentosa. Moreover, we demonstrate that miR-181a/b downregulation modulates the level of the mitochondrial fission-related protein Drp1 and rescues the mitochondrial fragmentation in RHO-P347S photoreceptors. Overall, these data support the potential use of miR-181a/b downregulation as an innovative mutation-independent therapeutic strategy for IRDs, which can be effective both to delay disease progression and to aid gene-specific therapeutic approaches.
Collapse
Affiliation(s)
- Sabrina Carrella
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Martina Di Guida
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Simona Brillante
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Davide Piccolo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Ludovica Ciampi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Irene Guadagnino
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Jorge Garcia Piqueras
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Mariateresa Pizzo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Elena Marrocco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Marta Molinari
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Georgios Petrogiannakis
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Molecular Life Science, Department of Science and Environmental, Biological and Farmaceutical Technologies, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sara Barbato
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Yulia Ezhova
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Molecular Life Science, Department of Science and Environmental, Biological and Farmaceutical Technologies, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Advanced Biomedicine, University of Naples "Federico II", Naples, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy.,Scuola Superiore Meridionale, School of Advanced Studies, Naples, Italy
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Institute of Biochemistry and Cellular Biology (IBBC), National Research Council (CNR), Monterotondo, Rome, Italy
| | - Enrico Maria Surace
- Medical Genetics, Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy
| | - Alessia Indrieri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan, Italy
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|
24
|
Avrutsky MI, Lawson JM, Smart JE, Chen CW, Troy CM. Noninvasive Ophthalmic Imaging Measures Retinal Degeneration and Vision Deficits in Ndufs4-/- Mouse Model of Mitochondrial Complex I Deficiency. Transl Vis Sci Technol 2022; 11:5. [PMID: 35921115 PMCID: PMC9360534 DOI: 10.1167/tvst.11.8.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To characterize postnatal ocular pathology in a Ndufs4−/− mouse model of complex I deficiency using noninvasive retinal imaging and visual testing. Methods Ndufs4−/− mice and wild-type (WT) littermates were analyzed at 3, 5, and 7 weeks postnatal. Retinal morphology was visualized by optical coherence tomography (OCT). OCT images were analyzed for changes in retinal thickness and reflectivity profiles. Visual function was assessed by electroretinogram (ERG) and optomotor reflex (OMR). Results Ndufs4−/− animals have normal OCT morphology at weaning and develop inner plexiform layer atrophy over weeks 5 to 7. Outer retinal layers show hyporeflectivity of the external limiting membrane (ELM) and photoreceptor ellipsoid zone (EZ). Retinal function is impaired at 3 weeks, with profound deficits in b-wave, a-wave, and oscillatory potential amplitudes. The b-wave and oscillatory potential implicit times are delayed, but the a-wave implicit time is unaffected. Ndufs4−/− animals have normal OMR at 3 weeks and present with increasing acuity and contrast OMR deficits at 5 and 7 weeks. Physiological thinning of inner retinal layers, attenuation of ELM reflectivity, and attenuation of ERG b- and a-wave amplitudes occur in WT C57BL/6 littermates between weeks 3 and 7. Conclusions Noninvasive ocular imaging captures early-onset retinal degeneration in Ndufs4−/− mice and is a tractable approach for investigating retinal pathology subsequent to complex I deficiency. Translational Relevance Ophthalmic imaging captures clinically relevant measures of retinal disease in a fast-progressing mouse model of complex I deficiency consistent with human Leigh syndrome.
Collapse
Affiliation(s)
- Maria I Avrutsky
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jacqueline M Lawson
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jade E Smart
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Claire W Chen
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Carol M Troy
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.,The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
25
|
Stein CS, McLendon JM, Witmer NH, Boudreau RL. Modulation of miR-181 influences dopaminergic neuronal degeneration in a mouse model of Parkinson's disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:1-15. [PMID: 35280925 PMCID: PMC8899134 DOI: 10.1016/j.omtn.2022.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/10/2022] [Indexed: 12/30/2022]
Abstract
Parkinson's disease (PD) is caused by the loss of dopaminergic (DA) neurons in the substantia nigra (SN). Although PD pathogenesis is not fully understood, studies implicate perturbations in gene regulation, mitochondrial function, and neuronal activity. MicroRNAs (miRs) are small gene regulatory RNAs that inhibit diverse subsets of target mRNAs, and several studies have noted miR expression alterations in PD brains. For example, miR-181a is abundant in the brain and is increased in PD patient brain samples; however, the disease relevance of this remains unclear. Here, we show that miR-181 target mRNAs are broadly downregulated in aging and PD brains. To address whether the miR-181 family plays a role in PD pathogenesis, we generated adeno-associated viruses (AAVs) to overexpress and inhibit the miR-181 isoforms. After co-injection with AAV overexpressing alpha-synuclein (aSyn) into mouse SN (PD model), we found that moderate miR-181a/b overexpression exacerbated aSyn-induced DA neuronal loss, whereas miR-181 inhibition was neuroprotective relative to controls (GFP alone and/or scrambled RNA). Also, prolonged miR-181 overexpression in SN alone elicited measurable neurotoxicity that is coincident with an increased immune response. mRNA-seq analyses revealed that miR-181a/b inhibits genes involved in synaptic transmission, neurite outgrowth, and mitochondrial respiration, along with several genes having known protective roles and genetic links in PD.
Collapse
Affiliation(s)
- Colleen S. Stein
- Department of Internal Medicine, Iowa Neuroscience Institute, Fraternal Order of Eagles Diabetes Research Center, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jared M. McLendon
- Department of Internal Medicine, Iowa Neuroscience Institute, Fraternal Order of Eagles Diabetes Research Center, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nathan H. Witmer
- Program in Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ryan L. Boudreau
- Department of Internal Medicine, Iowa Neuroscience Institute, Fraternal Order of Eagles Diabetes Research Center, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Program in Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
26
|
Dogan AE, Hamid SM, Yildirim AD, Yildirim Z, Sen G, Riera CE, Gottlieb RA, Erbay E. PACT establishes a posttranscriptional brake on mitochondrial biogenesis by promoting the maturation of miR-181c. J Biol Chem 2022; 298:102050. [PMID: 35598827 PMCID: PMC9218515 DOI: 10.1016/j.jbc.2022.102050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
The double-stranded RNA-dependent protein kinase activating protein (PACT), an RNA-binding protein that is part of the RNA-induced silencing complex, plays a key role in miR-mediated translational repression. Previous studies showed that PACT regulates the expression of various miRs, selects the miR strand to be loaded onto RNA-induced silencing complex, and determines proper miR length. Apart from PACT's role in mediating the antiviral response in immune cells, what PACT does in other cell types is unknown. Strikingly, it has also been shown that cold exposure leads to marked downregulation of PACT protein in mouse brown adipose tissue (BAT), where mitochondrial biogenesis and metabolism play a central role. Here, we show that PACT establishes a posttranscriptional brake on mitochondrial biogenesis (mitobiogenesis) by promoting the maturation of miR-181c, a key suppressor of mitobiogenesis that has been shown to target mitochondrial complex IV subunit I (Mtco1) and sirtuin 1 (Sirt1). Consistently, we found that a partial reduction in PACT expression is sufficient to enhance mitobiogenesis in brown adipocytes in culture as well as during BAT activation in mice. In conclusion, we demonstrate an unexpected role for PACT in the regulation of mitochondrial biogenesis and energetics in cells and BAT.
Collapse
Affiliation(s)
- Asli E Dogan
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Molecular Biology and Genetics, National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Syed M Hamid
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Asli D Yildirim
- Department of Molecular Biology and Genetics, National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Zehra Yildirim
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Molecular Biology and Genetics, National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Ganes Sen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Celine E Riera
- Department of Biomedical Sciences, Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Neurology, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA; David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Roberta A Gottlieb
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ebru Erbay
- David Geffen School of Medicine, University of California, Los Angeles, California, USA; Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| |
Collapse
|
27
|
Abstract
Higd1a is a conserved gene in evolution which is widely expressed in many tissues in mammals. Accumulating evidence has revealed multiple functions of Higd1a, as a mitochondrial inner membrane protein, in the regulation of metabolic homeostasis. It plays an important role in anti-apoptosis and promotes cellular survival in several cell types under hypoxic condition. And the survival of porcine Sertoli cells facilitated by Higd1a helps to support reproduction. In some cases, Higd1a can serve as a sign of metabolic stress. Over the past several years, a considerable amount of studies about how tumor fate is determined and how cancerous proliferation is regulated by Higd1a have been performed. In this review, we summarize the physiological functions of Higd1a in metabolic homeostasis and its pathophysiological roles in distinct diseases including cancer, nonalcoholic fatty liver disease (NAFLD), type II diabetes and mitochondrial diseases. The prospect of Higd1a with potential to preserve mammal health is also discussed. This review might pave the way for Higd1a-based research and application in clinical practice.
Collapse
|
28
|
Fishman ES, Han JS, La Torre A. Oscillatory Behaviors of microRNA Networks: Emerging Roles in Retinal Development. Front Cell Dev Biol 2022; 10:831750. [PMID: 35186936 PMCID: PMC8847441 DOI: 10.3389/fcell.2022.831750] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/07/2022] [Indexed: 01/02/2023] Open
Abstract
A broad repertoire of transcription factors and other genes display oscillatory patterns of expression, typically ranging from 30 min to 24 h. These oscillations are associated with a variety of biological processes, including the circadian cycle, somite segmentation, cell cycle, and metabolism. These rhythmic behaviors are often prompted by transcriptional feedback loops in which transcriptional activities are inhibited by their corresponding gene target products. Oscillatory transcriptional patterns have been proposed as a mechanism to drive biological clocks, the molecular machinery that transforms temporal information into accurate spatial patterning during development. Notably, several microRNAs (miRNAs) -small non-coding RNA molecules-have been recently shown to both exhibit rhythmic expression patterns and regulate oscillatory activities. Here, we discuss some of these new findings in the context of the developing retina. We propose that miRNA oscillations are a powerful mechanism to coordinate signaling pathways and gene expression, and that addressing the dynamic interplay between miRNA expression and their target genes could be key for a more complete understanding of many developmental processes.
Collapse
Affiliation(s)
| | | | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| |
Collapse
|
29
|
Du SW, Palczewski K. MicroRNA regulation of critical retinal pigment epithelial functions. Trends Neurosci 2021; 45:78-90. [PMID: 34753606 DOI: 10.1016/j.tins.2021.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 02/08/2023]
Abstract
MicroRNAs are short, evolutionarily conserved noncoding RNAs that are critical for the control of normal cellular physiology. In the retina, photoreceptors are highly specialized neurons that transduce light into electrical signals. Photoreceptors, however, are unable to process visual stimuli without the support of the retinal pigment epithelium (RPE). The RPE performs numerous functions to aid the retina, including the generation of visual chromophore and metabolic support. Recent work has underscored how microRNAs enable vision through their contributions to RPE functions. This review focuses on the biogenesis and control of microRNAs in rodents and humans, the roles microRNAs play in RPE function and degeneration, and how microRNAs could serve as potential therapeutics and biomarkers for visual diseases.
Collapse
Affiliation(s)
- Samuel W Du
- Center for Translational Vision Research, University of California, Irvine School of Medicine, CA, USA; Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine School of Medicine, CA, USA; Department of Physiology and Biophysics, University of California, Irvine School of Medicine, CA, USA
| | - Krzysztof Palczewski
- Center for Translational Vision Research, University of California, Irvine School of Medicine, CA, USA; Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine School of Medicine, CA, USA; Department of Physiology and Biophysics, University of California, Irvine School of Medicine, CA, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine School of Medicine, CA, USA; Department of Chemistry, University of California, Irvine School of Medicine, CA, USA.
| |
Collapse
|
30
|
Blood biomarkers for assessment of mitochondrial dysfunction: An expert review. Mitochondrion 2021; 62:187-204. [PMID: 34740866 DOI: 10.1016/j.mito.2021.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022]
Abstract
Although mitochondrial dysfunction is the known cause of primary mitochondrial disease, mitochondrial dysfunction is often difficult to measure and prove, especially when biopsies of affected tissue are not available. In order to identify blood biomarkers of mitochondrial dysfunction, we reviewed studies that measured blood biomarkers in genetically, clinically or biochemically confirmed primary mitochondrial disease patients. In this way, we were certain that there was an underlying mitochondrial dysfunction which could validate the biomarker. We found biomarkers of three classes: 1) functional markers measured in blood cells, 2) biochemical markers of serum/plasma and 3) DNA markers. While none of the reviewed single biomarkers may perfectly reveal all underlying mitochondrial dysfunction, combining biomarkers that cover different aspects of mitochondrial impairment probably is a good strategy. This biomarker panel may assist in the diagnosis of primary mitochondrial disease patients. As mitochondrial dysfunction may also play a significant role in the pathophysiology of multifactorial disorders such as Alzheimer's disease and glaucoma, the panel may serve to assess mitochondrial dysfunction in complex multifactorial diseases as well and enable selection of patients who could benefit from therapies targeting mitochondria.
Collapse
|
31
|
Zia A, Farkhondeh T, Sahebdel F, Pourbagher-Shahri AM, Samarghandian S. Key miRNAs in Modulating Aging and Longevity: A Focus on Signaling Pathways and Cellular Targets. Curr Mol Pharmacol 2021; 15:736-762. [PMID: 34533452 DOI: 10.2174/1874467214666210917141541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/02/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
Aging is a multifactorial procedure accompanied by gradual deterioration of most biological procedures of cells. MicroRNAs (miRNAs) are a class of short non-coding RNAs that post-transcriptionally regulate the expression of mRNAs through sequence-specific binding, and contributing to many crucial aspects of cell biology. Several miRNAs are expressed differently in various organisms through aging. The function of miRNAs in modulating aging procedures has been disclosed recently with the detection of miRNAs that modulate longevity in the invertebrate model organisms, through the IIS pathway. In these model organisms, several miRNAs have been detected to both negatively and positively regulate lifespan via commonly aging pathways. miRNAs modulate age-related procedures and disorders in different mammalian tissues by measuring their tissue-specific expression in older and younger counterparts, including heart, skin, bone, brain, and muscle tissues. Moreover, several miRNAs have been contributed to modulating senescence in different human cells, and the roles of these miRNAs in modulating cellular senescence have allowed illustrating some mechanisms of aging. The review discusses the available data on miRNAs through the aging process and we highlight the roles of miRNAs as aging biomarkers and regulators of longevity in cellular senescence, tissue aging, and organism lifespan.
Collapse
Affiliation(s)
- Aliabbas Zia
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Faezeh Sahebdel
- Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, MN, United States
| | | | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
32
|
Li J, Tran OT, Crowley TB, Moore TM, Zackai EH, Emanuel BS, McDonald-McGinn DM, Gur RE, Wallace DC, Anderson SA. Association of Mitochondrial Biogenesis With Variable Penetrance of Schizophrenia. JAMA Psychiatry 2021; 78:911-921. [PMID: 34009292 PMCID: PMC8135063 DOI: 10.1001/jamapsychiatry.2021.0762] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Discovery of mechanisms that underlie variable penetrance for neuropsychiatric illness in the context of genetic variants that carry elevated risk can advance novel treatment approaches for these disorders. OBJECTIVE To test the hypothesis that mitochondrial compensation is associated with the variable penetrance of schizophrenia in the 22q11.2 deletion syndrome (22q11DS). DESIGN, SETTING, AND PARTICIPANTS This case-control study compared measures of mitochondrial function and the expression of related genes in 14 induced pluripotent stem cell-derived neurons from typically developing control individuals (6 lines) and from adults with 22q11DS (8 lines). The individuals with 22q11DS included 2 groups, those carrying a diagnosis of schizophrenia and those without this diagnosis (4 lines each). Similar measures were made of lymphoblastic cells lines (LCLs) from a separate group of adults with 22q11DS with (10 lines) or without (8 lines) schizophrenia. The study included samples derived from a clinical setting. The induced pluripotent stem cell lines were derived from individuals with 22q11DS with or without a diagnosis of schizophrenia at Stanford University. The LCLs were from adults within the 22q and You Center at the Children's Hospital of Philadelphia. Data were analyzed between July 1, 2019, and January 24, 2021. MAIN OUTCOMES AND MEASURES Total adenosine triphosphate (ATP), oxidative phosphorylation (OXPHOS) complex activity, and messenger RNA expression via reverse transcription-polymerase chain reaction of selected genes encoding for mitochondrial proteins. RESULTS Study participants included men and women aged 18 to 37 years. Of 32 participants, the mean (SD) age of men was 27 (1.9) years and of women was 29 (1.2) years. Replicating a previous study, neurons from the 22q11DS and schizophrenia (22q+Sz) group had reduced ATP levels (mean [SD], 15.6 [1.5] vs 21.9 [1.4]; P = .02) and reduced OXPHOS activity (ie, complex I; 1.51 [0.1] vs 1.89 [0.1]; P = .01). These deficits were not present in neurons from individuals with 22q11DS without schizophrenia (22q[-]Sz). In this group, the expression of multiple genes encoding OXPHOS subunits was significantly upregulated. For example, compared with control individuals, NDUFV2 expression was increased by 50% in the 22q(-)Sz group (P < .001) but not significantly changed in the 22q+Sz group. Expression of genes driving mitochondrial biogenesis, including PGC1α, showed a similar pattern of upregulation in the 22q(-)Sz group compared with the control and the 22q+Sz groups. Stimulation of mitochondrial biogenesis normalizes the ATP deficit seen in 22q+Sz neurons. Finally, using LCLs from a separate group of adults with 22q11DS, evidence for enhanced mitochondrial biogenesis was again found in the 22q(-)Sz group. CONCLUSIONS AND RELEVANCE In this study, an increase in mitochondrial biogenesis and function was associated with the absence of schizophrenia in neurons and LCLs from individuals with 22q11DS, but the deficit in the 22q+Sz group was reversible by agents that enhance mitochondrial biogenesis. Enhancement of mitochondrial biogenesis may provide a targetable opportunity for treatment or prevention of this disorder in individuals with 22q11DS.
Collapse
Affiliation(s)
- Jianping Li
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Oanh T. Tran
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - T. Blaine Crowley
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Tyler M. Moore
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Elaine H. Zackai
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Beverly S. Emanuel
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Donna M. McDonald-McGinn
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Raquel E. Gur
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania,Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Douglas C. Wallace
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia,Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia
| | - Stewart A. Anderson
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania,Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
33
|
Iaconis D, Crina C, Brillante S, Indrieri A, Morleo M, Franco B. The HOPS complex subunit VPS39 controls ciliogenesis through autophagy. Hum Mol Genet 2021; 29:1018-1029. [PMID: 32077937 PMCID: PMC7158379 DOI: 10.1093/hmg/ddaa029] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Primary cilia are microtubule-based organelles that assemble and protrude from the surface of most mammalian cells during quiescence. The biomedical relevance of cilia is indicated by disorders ascribed to cilia dysfunction, known as ciliopathies, that display distinctive features including renal cystic disease. In this report, we demonstrate that vacuolar protein sorting 39 (VPS39), a component of the homotypic fusion and vacuole protein sorting (HOPS) complex, acts as a negative regulator of ciliogenesis in human renal cells, by controlling the localization of the intraflagellar transport 20 protein at the base of cilia through autophagy. Moreover, we show that VPS39 controls ciliogenesis through autophagy also in vivo in renal tubules of medaka fish. These observations suggest a direct involvement of the HOPS complex in the regulation of autophagy-mediated ciliogenesis and eventually in target selection. Interestingly, we show that the impact of autophagy modulation on ciliogenesis is cell-type dependent and strictly related to environmental stimuli. This report adds a further tile to the cilia-autophagy connection and suggests that VPS39 could represent a new biological target for the recovery of the cilia-related phenotypes observed in the kidneys of patients affected by ciliopathies.
Collapse
Affiliation(s)
- Daniela Iaconis
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Claudia Crina
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Simona Brillante
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Alessia Indrieri
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy.,Medical Genetics, Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy.,Institute for Genetic and Biomedical Research, National Research Council, 35 20122 Milan, Italy
| | - Manuela Morleo
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy.,Medical Genetics, Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy.,Medical Genetics, Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
34
|
Mead B, Kerr A, Nakaya N, Tomarev SI. miRNA Changes in Retinal Ganglion Cells after Optic Nerve Crush and Glaucomatous Damage. Cells 2021; 10:1564. [PMID: 34206213 PMCID: PMC8305746 DOI: 10.3390/cells10071564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 12/25/2022] Open
Abstract
The purpose of this study was to characterize the miRNA profile of purified retinal ganglion cells (RGC) from healthy and diseased rat retina. Diseased retina includes those after a traumatic optic nerve crush (ONC), and after ocular hypertension/glaucoma. Rats were separated into four groups: healthy/intact, 7 days after laser-induced ocular hypertension, 2 days after traumatic ONC, and 7 days after ONC. RGC were purified from rat retina using microbeads conjugated to CD90.1/Thy1. RNA were sequenced using Next Generation Sequencing. Over 100 miRNA were identified that were significantly different in diseased retina compared to healthy retina. Considerable differences were seen in the miRNA expression of RGC 7 days after ONC, whereas after 2 days, few changes were seen. The miRNA profiles of RGC 7 days after ONC and 7 days after ocular hypertension were similar, but discrete miRNA differences were still seen. Candidate mRNA showing different levels of expression after retinal injury were manipulated in RGC cultures using mimics/AntagomiRs. Of the five candidate miRNA identified and subsequently tested for therapeutic efficacy, miR-194 inhibitor and miR-664-2 inhibitor elicited significant RGC neuroprotection, whereas miR-181a mimic and miR-181d-5p mimic elicited significant RGC neuritogenesis.
Collapse
Affiliation(s)
- Ben Mead
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Alicia Kerr
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (A.K.); (N.N.)
| | - Naoki Nakaya
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (A.K.); (N.N.)
| | - Stanislav I. Tomarev
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (A.K.); (N.N.)
| |
Collapse
|
35
|
Carrella S, Massa F, Indrieri A. The Role of MicroRNAs in Mitochondria-Mediated Eye Diseases. Front Cell Dev Biol 2021; 9:653522. [PMID: 34222230 PMCID: PMC8249810 DOI: 10.3389/fcell.2021.653522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
The retina is among the most metabolically active tissues with high-energy demands. The peculiar distribution of mitochondria in cells of retinal layers is necessary to assure the appropriate energy supply for the transmission of the light signal. Photoreceptor cells (PRs), retinal pigment epithelium (RPE), and retinal ganglion cells (RGCs) present a great concentration of mitochondria, which makes them particularly sensitive to mitochondrial dysfunction. To date, visual loss has been extensively correlated to defective mitochondrial functions. Many mitochondrial diseases (MDs) show indeed neuro-ophthalmic manifestations, including retinal and optic nerve phenotypes. Moreover, abnormal mitochondrial functions are frequently found in the most common retinal pathologies, i.e., glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR), that share clinical similarities with the hereditary primary MDs. MicroRNAs (miRNAs) are established as key regulators of several developmental, physiological, and pathological processes. Dysregulated miRNA expression profiles in retinal degeneration models and in patients underline the potentiality of miRNA modulation as a possible gene/mutation-independent strategy in retinal diseases and highlight their promising role as disease predictive or prognostic biomarkers. In this review, we will summarize the current knowledge about the participation of miRNAs in both rare and common mitochondria-mediated eye diseases. Definitely, given the involvement of miRNAs in retina pathologies and therapy as well as their use as molecular biomarkers, they represent a determining target for clinical applications.
Collapse
Affiliation(s)
| | - Filomena Massa
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | - Alessia Indrieri
- Telethon Institute of Genetics and Medicine, Naples, Italy.,Institute for Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| |
Collapse
|
36
|
Peron C, Maresca A, Cavaliere A, Iannielli A, Broccoli V, Carelli V, Di Meo I, Tiranti V. Exploiting hiPSCs in Leber's Hereditary Optic Neuropathy (LHON): Present Achievements and Future Perspectives. Front Neurol 2021; 12:648916. [PMID: 34168607 PMCID: PMC8217617 DOI: 10.3389/fneur.2021.648916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/26/2021] [Indexed: 01/19/2023] Open
Abstract
More than 30 years after discovering Leber's hereditary optic neuropathy (LHON) as the first maternally inherited disease associated with homoplasmic mtDNA mutations, we still struggle to achieve effective therapies. LHON is characterized by selective degeneration of retinal ganglion cells (RGCs) and is the most frequent mitochondrial disease, which leads young people to blindness, in particular males. Despite that causative mutations are present in all tissues, only a specific cell type is affected. Our deep understanding of the pathogenic mechanisms in LHON is hampered by the lack of appropriate models since investigations have been traditionally performed in non-neuronal cells. Effective in-vitro models of LHON are now emerging, casting promise to speed our understanding of pathophysiology and test therapeutic strategies to accelerate translation into clinic. We here review the potentials of these new models and their impact on the future of LHON patients.
Collapse
Affiliation(s)
- Camille Peron
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Andrea Cavaliere
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Angelo Iannielli
- San Raffaele Scientific Institute, Milan, Italy.,National Research Council (CNR), Institute of Neuroscience, Milan, Italy
| | - Vania Broccoli
- San Raffaele Scientific Institute, Milan, Italy.,National Research Council (CNR), Institute of Neuroscience, Milan, Italy
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences-DIBINEM, University of Bologna, Bologna, Italy
| | - Ivano Di Meo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Valeria Tiranti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
37
|
Tai Y, Pu M, Yuan L, Guo H, Qiao J, Lu H, Wang G, Chen J, Qi X, Tao Z, Ren J. miR-34a-5p regulates PINK1-mediated mitophagy via multiple modes. Life Sci 2021; 276:119415. [PMID: 33775690 DOI: 10.1016/j.lfs.2021.119415] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022]
Abstract
AIMS PTEN induced putative kinase 1 (PINK1)-mediated mitophagy process is tightly associated with various age-dependent diseases in mammals. The roles of miRNAs (miRNAs) in the PINK1-mediated mitophagy process are not fully understood. Here we discovered that miR-34a-5p suppresses PINK1 expression directly though two post-transcriptional non-classical binding modes, resulting in inhibition of PINK1-mediated mitophagy process. MAIN METHODS For in vivo experiments, brains were dissected from 8 weeks old and 40 weeks old C57BL/6 male mice to measure miR-34a-5p expression and PINK1 expression. For in vitro experiments, overexpression of miR-34a-5p mimics in HEK293 cells was performed to investigate the effect of miR-34a-5p on PINK1 expression and its regulatory mechanism, parkin recruitment and mitophagy process. KEY FINDINGS The level of miR-34a-5p was upregulated and the level of PINK1 mRNA was downregulated in brains of aged mice. Both the 3'-untranslated region (3'UTR) and the Coding DNA sequence (CDS) of PINK1 mRNA were bound to the non-seed region of miR-34a-5p, rather than the seed region, resulting in a decrease in PINK1 expression. Endogenous miR-34a-5p knockout increased PINK1 expression. Further results indicated that miR-34a-5p inhibits mitophagy process by reduction of PINK1. miR-34a-5p hinders phosphorylated Ser65-ubiquitin (pS65-Ub) accumulation, prevents the mitochondrial recruitment of Parkin, attenuates ubiquitination and delays the clearance of damaged mitochondria. SIGNIFICANCE We firstly found that miR-34a-5p suppresses PINK1 directly and further regulates mitophagy through non-canonical modes. This finding hints at a crucial role of miR-34a-5p implicated in accelerating the pathogenesis of age-related neurological diseases.
Collapse
Affiliation(s)
- Yusi Tai
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Mei Pu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Luyang Yuan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huijie Guo
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Junwen Qiao
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Henglei Lu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases & Department of Pharmacology, College of Pharmaceutical, Soochow University, Suzhou, China
| | - Jing Chen
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinming Qi
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhouteng Tao
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Jin Ren
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
38
|
Skeie JM, Nishimura DY, Wang CL, Schmidt GA, Aldrich BT, Greiner MA. Mitophagy: An Emerging Target in Ocular Pathology. Invest Ophthalmol Vis Sci 2021; 62:22. [PMID: 33724294 PMCID: PMC7980050 DOI: 10.1167/iovs.62.3.22] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/20/2021] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial function is essential for the viability of aerobic eukaryotic cells, as mitochondria provide energy through the generation of adenosine triphosphate (ATP), regulate cellular metabolism, provide redox balancing, participate in immune signaling, and can initiate apoptosis. Mitochondria are dynamic organelles that participate in a cyclical and ongoing process of regeneration and autophagy (clearance), termed mitophagy specifically for mitochondrial (macro)autophagy. An imbalance in mitochondrial function toward mitochondrial dysfunction can be catastrophic for cells and has been characterized in several common ophthalmic diseases. In this article, we review mitochondrial homeostasis in detail, focusing on the balance of mitochondrial dynamics including the processes of fission and fusion, and provide a description of the mechanisms involved in mitophagy. Furthermore, this article reviews investigations of ocular diseases with impaired mitophagy, including Fuchs endothelial corneal dystrophy, primary open-angle glaucoma, diabetic retinopathy, and age-related macular degeneration, as well as several primary mitochondrial diseases with ocular phenotypes that display impaired mitophagy, including mitochondrial encephalopathy lactic acidosis stroke, Leber hereditary optic neuropathy, and chronic progressive external ophthalmoplegia. The results of various studies using cell culture, animal, and human tissue models are presented and reflect a growing awareness of mitophagy impairment as an important feature of ophthalmic disease pathology. As this review indicates, it is imperative that mitophagy be investigated as a targetable mechanism in developing therapies for ocular diseases characterized by oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jessica M. Skeie
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| | - Darryl Y. Nishimura
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| | - Cheryl L. Wang
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
| | | | - Benjamin T. Aldrich
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| | - Mark A. Greiner
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| |
Collapse
|
39
|
Integrated Genomics Identifies miR-181/TFAM Pathway as a Critical Driver of Drug Resistance in Melanoma. Int J Mol Sci 2021; 22:ijms22041801. [PMID: 33670365 PMCID: PMC7918089 DOI: 10.3390/ijms22041801] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are attractive therapeutic targets and promising candidates as molecular biomarkers for various therapy-resistant tumors. However, the association between miRNAs and drug resistance in melanoma remains to be elucidated. We used an integrative genomic analysis to comprehensively study the miRNA expression profiles of drug-resistant melanoma patients and cell lines. MicroRNA-181a and -181b (miR181a/b) were identified as the most significantly down-regulated miRNAs in resistant melanoma patients and cell lines. Re-establishment of miR-181a/b expression reverses the resistance of melanoma cells to the BRAF inhibitor dabrafenib. Introduction of miR-181 mimics markedly decreases the expression of TFAM in A375 melanoma cells resistant to BRAF inhibitors. Furthermore, melanoma growth was inhibited in A375 and M14 resistant melanoma cells transfected with miR-181a/b mimics, while miR-181a/b depletion enhanced resistance in sensitive cell lines. Collectively, our study demonstrated that miR-181a/b could reverse the resistance to BRAF inhibitors in dabrafenib resistant melanoma cell lines. In addition, miR-181a and -181b are strongly down-regulated in tumor samples from patients before and after the development of resistance to targeted therapies. Finally, melanoma tissues with high miR-181a and -181b expression presented favorable outcomes in terms of Progression Free Survival, suggesting that miR-181 is a clinically relevant candidate for therapeutic development or biomarker-based therapy selection.
Collapse
|
40
|
Purohit PK, Saini N. Mitochondrial microRNA (MitomiRs) in cancer and complex mitochondrial diseases: current status and future perspectives. Cell Mol Life Sci 2021; 78:1405-1421. [PMID: 33084945 PMCID: PMC11072739 DOI: 10.1007/s00018-020-03670-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/13/2020] [Accepted: 10/05/2020] [Indexed: 02/08/2023]
Abstract
Mitochondria are not only important for cellular bioenergetics but also lie at the heart of critical metabolic pathways. They can rapidly adjust themselves in response to changing conditions and the metabolic needs of the cell. Mitochondrial involvement as well as its dysfunction has been found to be associated with variety of pathological processes and diseases. mitomiRs are class of miRNA(s) that regulate mitochondrial gene expression and function. This review sheds light on the role of mitomiRs in regulating different biological processes-mitochondrial dynamics, oxidative stress, cell metabolism, chemoresistance, apoptosis,and their relevance in metabolic diseases, neurodegenerative disorders, and cancer. Insilico analysis of predicted targets of mitomiRs targeting energy metabolism identified several significantly altered pathways (needs in vivo validations) that may provide a new therapeutic approach for the treatment of human diseases. Last part of the review discusses about the clinical aspects of miRNA(s) and mitomiRs in Medicine.
Collapse
Affiliation(s)
- Paresh Kumar Purohit
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, 201 002, India
| | - Neeru Saini
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India.
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|
41
|
Pawlick JS, Zuzic M, Pasquini G, Swiersy A, Busskamp V. MiRNA Regulatory Functions in Photoreceptors. Front Cell Dev Biol 2021; 8:620249. [PMID: 33553155 PMCID: PMC7858257 DOI: 10.3389/fcell.2020.620249] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/31/2020] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression. These small, non-coding RNAs post-transcriptionally silence messenger RNAs (mRNAs) in a sequence-specific manner. In this way, miRNAs control important regulatory functions, also in the retina. If dysregulated, these molecules are involved in several retinal pathologies. For example, several miRNAs have been linked to essential photoreceptor functions, including light sensitivity, synaptic transmission, and modulation of inflammatory responses. Mechanistic miRNA knockout and knockdown studies further linked their functions to degenerative retinal diseases. Of note, the type and timing of genetic manipulation before, during, or after retinal development, is important when studying specific miRNA knockout effects. Within this review, we focus on miR-124 and the miR-183/96/182 cluster, which have assigned functions in photoreceptors in health and disease. As a single miRNA can regulate hundreds of mRNAs, we will also discuss the experimental validation and manipulation approaches to study complex miRNA/mRNA regulatory networks. Revealing these networks is essential to understand retinal pathologies and to harness miRNAs as precise therapeutic and diagnostic tools to stabilize the photoreceptors’ transcriptomes and, thereby, function.
Collapse
Affiliation(s)
- Julia Sophie Pawlick
- Universitäts-Augenklinik Bonn, Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Marta Zuzic
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Giovanni Pasquini
- Universitäts-Augenklinik Bonn, Department of Ophthalmology, University of Bonn, Bonn, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Anka Swiersy
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Volker Busskamp
- Universitäts-Augenklinik Bonn, Department of Ophthalmology, University of Bonn, Bonn, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
42
|
Prasuhn J, Davis RL, Kumar KR. Targeting Mitochondrial Impairment in Parkinson's Disease: Challenges and Opportunities. Front Cell Dev Biol 2021; 8:615461. [PMID: 33469539 PMCID: PMC7813753 DOI: 10.3389/fcell.2020.615461] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
The underlying pathophysiology of Parkinson's disease is complex, but mitochondrial dysfunction has an established and prominent role. This is supported by an already large and rapidly growing body of evidence showing that the role of mitochondrial (dys)function is central and multifaceted. However, there are clear gaps in knowledge, including the dilemma of explaining why inherited mitochondriopathies do not usually present with parkinsonian symptoms. Many aspects of mitochondrial function are potential therapeutic targets, including reactive oxygen species production, mitophagy, mitochondrial biogenesis, mitochondrial dynamics and trafficking, mitochondrial metal ion homeostasis, sirtuins, and endoplasmic reticulum links with mitochondria. Potential therapeutic strategies may also incorporate exercise, microRNAs, mitochondrial transplantation, stem cell therapies, and photobiomodulation. Despite multiple studies adopting numerous treatment strategies, clinical trials to date have generally failed to show benefit. To overcome this hurdle, more accurate biomarkers of mitochondrial dysfunction are required to detect subtle beneficial effects. Furthermore, selecting study participants early in the disease course, studying them for suitable durations, and stratifying them according to genetic and neuroimaging findings may increase the likelihood of successful clinical trials. Moreover, treatments involving combined approaches will likely better address the complexity of mitochondrial dysfunction in Parkinson's disease. Therefore, selecting the right patients, at the right time, and using targeted combination treatments, may offer the best chance for development of an effective novel therapy targeting mitochondrial dysfunction in Parkinson's disease.
Collapse
Affiliation(s)
- Jannik Prasuhn
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Department of Neurology, University Medical Center Schleswig-Holstein, Lübeck, Germany.,Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| | - Ryan L Davis
- Department of Neurogenetics, Kolling Institute, University of Sydney and Northern Sydney Local Health District, Sydney, NSW, Australia.,Department of Neurogenetics, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Kishore R Kumar
- Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| |
Collapse
|
43
|
Liu G, Sun Y, Liu F. Curcumin Reduces Neuroinflammation and Improves the Impairments of Anesthetics on Learning and Memory by Regulating the Expression of miR-181a-5p. Neuroimmunomodulation 2021; 28:38-46. [PMID: 33849031 DOI: 10.1159/000514548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/14/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The purpose of this study was to explore the role of curcumin (Cur) in isoflurane (ISO)-induced learning and memory dysfunction in Sprague-Dawley rats and further elucidate the mechanism of the protective effect produced by Cur. METHODS Rat models of cognitive impairment were established by inhaling 3% ISO. The Morris water maze test was used to assess the cognitive function of rats. ELISA and qRT-PCR were used to analyze the protein levels of pro-inflammatory cytokines and expression levels of miR-181a-5p, respectively. RESULTS Cur significantly improved the ISO-induced cognitive dysfunction in rats and alleviated the ISO-induced neuroinflammation. miR-181a-5p was overexpressed in ISO-induced rats, while Cur treatment significantly reduced the expression of miR-181a-5p. Overexpression of miR-181a-5p promoted the cognitive impairment and the release of inflammatory cytokines and reversed the neuroprotective effect of Cur. CONCLUSION Cur has a protective effect on ISO-induced cognitive dysfunction, which may be achieved by regulating the expression of miR-181a-5p.
Collapse
Affiliation(s)
- Guizhen Liu
- Department of Anesthesiology, Laiyang Central Hospital, Yantai City, China
| | - Yuchuan Sun
- Department of Anesthesiology, Laiyang Central Hospital, Yantai City, China
| | - Fei Liu
- Department of Anesthesiology, Laiyang Central Hospital, Yantai City, China
| |
Collapse
|
44
|
Ng WSV, Trigano M, Freeman T, Varrichio C, Kandaswamy DK, Newland B, Brancale A, Rozanowska M, Votruba M. New avenues for therapy in mitochondrial optic neuropathies. THERAPEUTIC ADVANCES IN RARE DISEASE 2021; 2:26330040211029037. [PMID: 37181108 PMCID: PMC10032437 DOI: 10.1177/26330040211029037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/10/2021] [Indexed: 05/16/2023]
Abstract
Mitochondrial optic neuropathies are a group of optic nerve atrophies exemplified by the two commonest conditions in this group, autosomal dominant optic atrophy (ADOA) and Leber's hereditary optic neuropathy (LHON). Their clinical features comprise reduced visual acuity, colour vision deficits, centro-caecal scotomas and optic disc pallor with thinning of the retinal nerve fibre layer. The primary aetiology is genetic, with underlying nuclear or mitochondrial gene mutations. The primary pathology is owing to retinal ganglion cell dysfunction and degeneration. There is currently only one approved treatment and no curative therapy is available. In this review we summarise the genetic and clinical features of ADOA and LHON and then examine what new avenues there may be for therapeutic intervention. The therapeutic strategies to manage LHON and ADOA can be split into four categories: prevention, compensation, replacement and repair. Prevention is technically an option by modifying risk factors such as smoking cessation, or by utilising pre-implantation genetic diagnosis, although this is unlikely to be applied in mitochondrial optic neuropathies due to the non-life threatening and variable nature of these conditions. Compensation involves pharmacological interventions that ameliorate the mitochondrial dysfunction at a cellular and tissue level. Replacement and repair are exciting new emerging areas. Clinical trials, both published and underway, in this area are likely to reveal future potential benefits, since new therapies are desperately needed. Plain language summary Optic nerve damage leading to loss of vision can be caused by a variety of insults. One group of conditions leading to optic nerve damage is caused by defects in genes that are essential for cells to make energy in small organelles called mitochondria. These conditions are known as mitochondrial optic neuropathies and two predominant examples are called autosomal dominant optic atrophy and Leber's hereditary optic neuropathy. Both conditions are caused by problems with the energy powerhouse of cells: mitochondria. The cells that are most vulnerable to this mitochondrial malfunction are called retinal ganglion cells, otherwise collectively known as the optic nerve, and they take the electrical impulse from the retina in the eye to the brain. The malfunction leads to death of some of the optic nerve cells, the degree of vision loss being linked to the number of those cells which are impacted in this way. Patients will lose visual acuity and colour vision and develop a central blind spot in their field of vision. There is currently no cure and very few treatment options. New treatments are desperately needed for patients affected by these devastating diseases. New treatments can potentially arise in four ways: prevention, compensation, replacement and repair of the defects. Here we explore how present and possible future treatments might provide hope for those suffering from these conditions.
Collapse
Affiliation(s)
| | - Matthieu Trigano
- Mitochondria and Vision Lab, School of
Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - Thomas Freeman
- Mitochondria and Vision Lab, School of
Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - Carmine Varrichio
- School of Pharmacy and Pharmaceutical Sciences,
Cardiff University, Cardiff, UK
| | - Dinesh Kumar Kandaswamy
- Mitochondria and Vision Lab, School of
Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - Ben Newland
- School of Pharmacy and Pharmaceutical Sciences,
Cardiff University, Cardiff, UK
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences,
Cardiff University, Cardiff, UK
| | - Malgorzata Rozanowska
- Mitochondria and Vision Lab, School of
Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - Marcela Votruba
- School of Optometry and Vision Sciences,
Cardiff University, Maindy Road, Cardiff, CF24 4HQ, Wales, UK; Cardiff Eye
Unit, University Hospital of Wales, Cardiff, UK
| |
Collapse
|
45
|
Amore G, Romagnoli M, Carbonelli M, Barboni P, Carelli V, La Morgia C. Therapeutic Options in Hereditary Optic Neuropathies. Drugs 2021; 81:57-86. [PMID: 33159657 PMCID: PMC7843467 DOI: 10.1007/s40265-020-01428-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Options for the effective treatment of hereditary optic neuropathies have been a long time coming. The successful launch of the antioxidant idebenone for Leber's Hereditary Optic Neuropathy (LHON), followed by its introduction into clinical practice across Europe, was an important step forward. Nevertheless, other options, especially for a variety of mitochondrial optic neuropathies such as dominant optic atrophy (DOA), are needed, and a number of pharmaceutical agents, acting on different molecular pathways, are currently under development. These include gene therapy, which has reached Phase III development for LHON, but is expected to be developed also for DOA, whilst most of the other agents (other antioxidants, anti-apoptotic drugs, activators of mitobiogenesis, etc.) are almost all at Phase II or at preclinical stage of research. Here, we review proposed target mechanisms, preclinical evidence, available clinical trials with primary endpoints and results, of a wide range of tested molecules, to give an overview of the field, also providing the landscape of future scenarios, including gene therapy, gene editing, and reproductive options to prevent transmission of mitochondrial DNA mutations.
Collapse
Affiliation(s)
- Giulia Amore
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Martina Romagnoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy
| | - Michele Carbonelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy
| | | | - Valerio Carelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy.
| |
Collapse
|
46
|
Chen Z, Liang Y, Feng X, Liang Y, Shen G, Huang H, Chen Z, Yu J, Liu H, Lin T, Chen H, Wu D, Li G, Zhao B, Guo W, Hu Y. Vitamin-B12-conjugated PLGA-PEG nanoparticles incorporating miR-532-3p induce mitochondrial damage by targeting apoptosis repressor with caspase recruitment domain (ARC) on CD320-overexpressed gastric cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111722. [PMID: 33545873 DOI: 10.1016/j.msec.2020.111722] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022]
Abstract
Among various methods, the use of targeting nucleic acid therapy is a promising method for inhibiting gastric cancer (GC) cells' rapid growth and metastasis abilities. In this study, vitamin B12-labeled poly (d,l-lactide-co-glycolide) and polyethylene glycol nanoparticles (PLGA-PEG-VB12 NPs) were developed for microRNAs-532-3p mimics incorporating as targeting gene delivery systems (miR-532-3p@PLGA-PEG-VB12 NPs) to fight against transcobalamin II (CD320)-overexpressed GC cells' progression. The PLGA-PEG-VB12 NPs with appropriate particle sizes and good bio-compatibility could be selectively delivered into CD320-overexpressed GC cells, and significantly decrease the expression of apoptosis repressor with caspase recruitment domain (ARC). Following that, more pro-apoptotic protein (Bax) flowed from cytoplasm into mitochondria to form Bax oligomerization, thus induced mitochondrial damage, including mitochondrial membrane potentials (MMPs) loss and excessive production of mitochondrial reactive oxygen species (mitoROS). Since that, mitochondrial permeability transition pore (mPTP) was opened, followed by induced more cytochrome c (Cyto C) releasing from mitochondria into cytosol, and finally activated caspase-depended cell apoptosis pathway. Therefore, our designed miR-532-3p@PLGA-PEG-VB12 NPs showed enhanced GC targeting ability, and could induce apoptosis through activating ARC/Bax/mitochondria-mediated apoptosis signaling pathway, finally remarkably suppressed proliferation of GC cells both in vitro and in vivo, which presented a promising treatment for GC.
Collapse
Affiliation(s)
- Zhian Chen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanrui Liang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaoli Feng
- Guangdong Provincial Stomatology Hospital, Southern Medical University, Guangzhou 510000, China
| | - Yu Liang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guodong Shen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Huilin Huang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhaoyu Chen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiang Yu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hao Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Tian Lin
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hao Chen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dong Wu
- Institute of Respiratory Diseases, Department of Respiratory, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bingxia Zhao
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Weihong Guo
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Yanfeng Hu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
47
|
Indrieri A, Pizzarelli R, Franco B, De Leonibus E. Dopamine, Alpha-Synuclein, and Mitochondrial Dysfunctions in Parkinsonian Eyes. Front Neurosci 2020; 14:567129. [PMID: 33192254 PMCID: PMC7604532 DOI: 10.3389/fnins.2020.567129] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by motor dysfunctions including bradykinesia, tremor at rest and motor instability. These symptoms are associated with the progressive degeneration of dopaminergic neurons originating in the substantia nigra pars compacta and projecting to the corpus striatum, and by accumulation of cytoplasmic inclusions mainly consisting of aggregated alpha-synuclein, called Lewy bodies. PD is a complex, multifactorial disorder and its pathogenesis involves multiple pathways and mechanisms such as α-synuclein proteostasis, mitochondrial function, oxidative stress, calcium homeostasis, axonal transport, and neuroinflammation. Motor symptoms manifest when there is already an extensive dopamine denervation. There is therefore an urgent need for early biomarkers to apply disease-modifying therapeutic strategies. Visual defects and retinal abnormalities, including decreased visual acuity, abnormal spatial contrast sensitivity, color vision defects, or deficits in more complex visual tasks are present in the majority of PD patients. They are being considered for early diagnosis together with retinal imaging techniques are being considered as non-invasive biomarkers for PD. Dopaminergic cells can be found in the retina in a subpopulation of amacrine cells; however, the molecular mechanisms leading to visual deficits observed in PD patients are still largely unknown. This review provides a comprehensive analysis of the retinal abnormalities observed in PD patients and animal models and of the molecular mechanisms underlying neurodegeneration in parkinsonian eyes. We will review the role of α-synuclein aggregates in the retina pathology and/or in the onset of visual symptoms in PD suggesting that α-synuclein aggregates are harmful for the retina as well as for the brain. Moreover, we will summarize experimental evidence suggesting that the optic nerve pathology observed in PD resembles that seen in mitochondrial optic neuropathies highlighting the possible involvement of mitochondrial abnormalities in the development of PD visual defects. We finally propose that the eye may be considered as a complementary experimental model to identify possible novel disease’ pathways or to test novel therapeutic approaches for PD.
Collapse
Affiliation(s)
- Alessia Indrieri
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Institute for Genetic and Biomedical Research, National Research Council, Milan, Italy
| | - Rocco Pizzarelli
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Medical Genetics, Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Institute of Biochemistry and Cellular Biology, National Research Council, Rome, Italy
| |
Collapse
|
48
|
Wang Z, Li C, Sun X, Li Z, Li J, Wang L, Sun Y. Hypermethylation of miR-181b in monocytes is associated with coronary artery disease and promotes M1 polarized phenotype via PIAS1-KLF4 axis. Cardiovasc Diagn Ther 2020; 10:738-751. [PMID: 32968630 DOI: 10.21037/cdt-20-407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Dysregulated microRNAs are involved in the macrophage polarization and atherosclerotic development. Apart from microRNAs, alteration in DNA methylation is considered as one of the most frequent epigenetic changes. The purpose of the research is to investigate the altered methylation status of miR-181b in the circulating monocytes from patients with coronary artery disease (CAD) and explore the underlying mechanisms. Methods We examined the methylation status of miR-181b in purified circulating monocytes from patients with CAD and healthy controls. We then transfected monocytes with miR-181b mimics and determined the role of miR-181b on the phenotypic switch of macrophages and inflammatory response. DNA methylation levels determined by MethyLight PCR and pyrosequencing at the promoter of miR-181b significantly increased in CAD patients. Based on TargetScan database, we identified PIAS1 as the target gene of miR-181b and explored the interaction of miR-181b and PIAS1 by Dual-Luciferase assay, quantitative PCR and immunoblots. We also investigated the role of miR-181b and PIAS1 on macrophage polarization and inflammation. Results Hypermethylation at the promoter of miR-181b directly contributed to the decrease of miR-181b activity and expression. Overexpression of miR-181b reduced M1 polarization and facilitated M2 polarization determined by quantitative PCR. While knockdown of PIAS1 induced KLF4 degradation and SUMOylation in monocytes, miR-181b mimics reverse the KLF4 SUMOylation via suppression of PIAS1. Moreover, KLF4 SUMOylation by PIAS1 reversed M1 polarization induced by depletion of miR-181b in monocytes. Conclusions Hypermethylation of miR-181b induces M1 polarization and promotes atherosclerosis through activation of PIAS1 and KLF4 SUMOylation in macrophages.
Collapse
Affiliation(s)
- Zhonghua Wang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chunlei Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinyong Sun
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhuqin Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jia Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lanfeng Wang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanming Sun
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
49
|
Carrella S, Indrieri A, Franco B, Banfi S. Mutation-Independent Therapies for Retinal Diseases: Focus on Gene-Based Approaches. Front Neurosci 2020; 14:588234. [PMID: 33071752 PMCID: PMC7541846 DOI: 10.3389/fnins.2020.588234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022] Open
Abstract
Gene therapy is proving to be an effective approach to treat or prevent ocular diseases ensuring a targeted, stable, and regulated introduction of exogenous genetic material with therapeutic action. Retinal diseases can be broadly categorized into two groups, namely monogenic and complex (multifactorial) forms. The high genetic heterogeneity of monogenic forms represents a significant limitation to the application of gene-specific therapeutic strategies for a significant fraction of patients. Therefore, mutation-independent therapeutic strategies, acting on common pathways that underly retinal damage, are gaining interest as complementary/alternative approaches for retinal diseases. This review will provide an overview of mutation-independent strategies that rely on the modulation in the retina of key genes regulating such crucial degenerative pathways. In particular, we will describe how gene-based approaches explore the use of neurotrophic factors, microRNAs (miRNAs), genome editing and optogenetics in order to restore/prolong visual function in both outer and inner retinal diseases. We predict that the exploitation of gene delivery procedures applied to mutation/gene independent approaches may provide the answer to the unmet therapeutic need of a large fraction of patients with genetically heterogeneous and complex retinal diseases.
Collapse
Affiliation(s)
- Sabrina Carrella
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessia Indrieri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
50
|
Abstract
This review focuses on recent progress in understanding the role of mitochondrial markers in the context of mitochondrial dysfunction in glaucoma and discussing new therapeutic approaches to modulate mitochondrial function and potentially lead to improved outcomes in glaucoma.
Collapse
|