1
|
Pscheidt VM, de Souza PO, Fazolo T, Modena JLP, Simeoni C, Teixeira D, Silva NB, Dos Santos KB, Júnior LR, Bonorino C. A flow cytometry-based assay to measure neutralizing antibodies against SARS-CoV-2 virus. Cytometry A 2024; 105:446-457. [PMID: 38624015 DOI: 10.1002/cyto.a.24838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024]
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 virus has highlighted the need for serological assays that can accurately evaluate the neutralizing efficiency of antibodies produced during infection or induced by vaccines. However, conventional assays often require the manipulation of live viruses on a level-three biosafety (BSL3) facility, which presents practical and safety challenges. Here, we present a novel, alternative assay that measures neutralizing antibodies (NAbs) against SARS-CoV-2 in plasma using flow cytometry. This assay is based on antibody binding to the S protein and has demonstrated precision in both intra- and inter-assay measurements at a dilution of 1:50. The cut-off was determined using Receiver Operating Characteristic (ROC) analysis and the value of 36.01% has shown high sensitivity and specificity in distinguishing between pre-pandemic sera, COVID-19 patients, and vaccinated individuals. The efficiency significantly correlates with the gold standard test, PRNT. Our new assay offers a safe and efficient alternative to conventional assays for evaluating NAbs against SARS-CoV-2.
Collapse
Affiliation(s)
- Veridiane M Pscheidt
- Immunotherapy Laboratory - (LAIT) - Department of Basic Health Sciences of Federal University of Health Sciences of Porto Alegre, UFCSPA, Porto Alegre, Brazil
| | - Priscila Oliveira de Souza
- Immunotherapy Laboratory - (LAIT) - Department of Basic Health Sciences of Federal University of Health Sciences of Porto Alegre, UFCSPA, Porto Alegre, Brazil
| | - Tiago Fazolo
- Immunotherapy Laboratory - (LAIT) - Department of Basic Health Sciences of Federal University of Health Sciences of Porto Alegre, UFCSPA, Porto Alegre, Brazil
| | - José Luiz Proença Modena
- Laboratory of Emerging Viruses (LEVE) - Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas - UNICAMP - Campinas, São Paulo, Brazil
| | - Camila Simeoni
- Laboratory of Emerging Viruses (LEVE) - Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas - UNICAMP - Campinas, São Paulo, Brazil
| | - Daniel Teixeira
- Laboratory of Emerging Viruses (LEVE) - Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas - UNICAMP - Campinas, São Paulo, Brazil
| | - Natália Brunetti Silva
- Laboratory of Emerging Viruses (LEVE) - Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas - UNICAMP - Campinas, São Paulo, Brazil
| | - Karina Bispo Dos Santos
- Laboratory of Emerging Viruses (LEVE) - Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas - UNICAMP - Campinas, São Paulo, Brazil
| | - Luiz Rodrigues Júnior
- Immunotherapy Laboratory - (LAIT) - Department of Basic Health Sciences of Federal University of Health Sciences of Porto Alegre, UFCSPA, Porto Alegre, Brazil
| | - Cristina Bonorino
- Immunotherapy Laboratory - (LAIT) - Department of Basic Health Sciences of Federal University of Health Sciences of Porto Alegre, UFCSPA, Porto Alegre, Brazil
- Department of Surgery, University of California at San Diego - UCSD, La Jolla, California, USA
| |
Collapse
|
2
|
Sehgal ANA, Safran J, Kratzer B, Gattinger P, Stieger RB, Musiejovsky L, Trapin D, Ettel P, Körmöczi U, Rottal A, Borochova K, Dorofeeva Y, Tulaeva I, Weber M, Grabmeier-Pfistershammer K, Perkmann T, Wiedermann U, Valenta R, Pickl WF. Flow Cytometry-Based Measurement of Antibodies Specific for Cell Surface-Expressed Folded SARS-CoV-2 Receptor-Binding Domains. Vaccines (Basel) 2024; 12:377. [PMID: 38675759 PMCID: PMC11053794 DOI: 10.3390/vaccines12040377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has now become endemic and is currently one of the important respiratory virus infections regularly affecting mankind. The assessment of immunity against SARS-CoV-2 and its variants is important for guiding active and passive immunization and SARS-CoV-2-specific treatment strategies. METHODS We here devised a novel flow cytometry-based diagnostic platform for the assessment of immunity against cell-bound virus antigens. This platform is based on a collection of HEK-293T cell lines which, as exemplified in our study, stably express the receptor-binding domains (RBDs) of the SARS-CoV-2 S-proteins of eight major SARS-CoV-2 variants, ranging from Wuhan-Hu-1 to Omicron. RESULTS RBD-expressing cell lines stably display comparable levels of RBD on the surface of HEK-293T cells, as shown with anti-FLAG-tag antibodies directed against a N-terminally introduced 3x-FLAG sequence while the functionality of RBD was proven by ACE2 binding. We exemplify the usefulness and specificity of the cell-based test by direct binding of IgG and IgA antibodies of SARS-CoV-2-exposed and/or vaccinated individuals in which the assay shows a wide linear performance range both at very low and very high serum antibody concentrations. In another application, i.e., antibody adsorption studies, the test proved to be a powerful tool for measuring the ratios of individual variant-specific antibodies. CONCLUSION We have established a toolbox for measuring SARS-CoV-2-specific immunity against cell-bound virus antigens, which may be considered as an important addition to the armamentarium of SARS-CoV-2-specific diagnostic tests, allowing flexible and quick adaptation to new variants of concern.
Collapse
Affiliation(s)
- Al Nasar Ahmed Sehgal
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Jera Safran
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Bernhard Kratzer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Pia Gattinger
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Robert B. Stieger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Laszlo Musiejovsky
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Doris Trapin
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Paul Ettel
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Ulrike Körmöczi
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Arno Rottal
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Kristina Borochova
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Yulia Dorofeeva
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Inna Tulaeva
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Milena Weber
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Katharina Grabmeier-Pfistershammer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Thomas Perkmann
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria;
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Rudolf Valenta
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- NRC Institute of Immunology FMBA of Russia, 115478 Moscow, Russia
- Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
| | - Winfried F. Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
- Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
| |
Collapse
|
3
|
Mai F, Kordt M, Bergmann-Ewert W, Reisinger EC, Müller-Hilke B. NVX-CoV2373 induces humoral and cellular immune responses that are functionally comparable to vector and mRNA-based vaccines. Front Immunol 2024; 15:1359475. [PMID: 38562927 PMCID: PMC10982398 DOI: 10.3389/fimmu.2024.1359475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Background After licensing of the protein-based vaccine NVX-CoV2373, three technically different vaccines against the SARS-CoV-2 became available for application to the human population - and for comparison of efficacies. Methods We here recruited 42 study participants who had obtained one initial dose of NVX-CoV2373 and analyzed their immune responses in contrast to 37 study participants who had obtained either the vector vaccine AZD1222 or the mRNA vaccine BNT162b2 a year earlier. 32 participants also donated blood before first vaccination to serve as a vaccine-naive control. In detail, we investigated and quantified at day 21 and approximately six months after primary immunization the amounts of vaccine-specific antibodies produced, their neutralization capacity, their quality in terms of binding different epitopes and their efficiency in inducing various isotypes. Cellular immunity and intracellular cytokine production following in vitro re-stimulation with BNT162b2 vaccine was analyzed via ELISpot or via flow cytometry. Results Our results show that even though vaccination including the mRNA vaccine yielded best results in almost any aspect of antibody levels and binding efficiency, the neutralization capacities against the wild-type Wuhan strain and the Omicron BA.1 variant early and at six months were comparable among all three vaccination groups. As for the T cells, we observed a prevailing CD8 response at three weeks which turned into a predominant CD4 memory at six months which has not yet been observed for AZD1222 and BNT162b2. While additional infection with SARS-CoV-2 resulted in a boost for the humoral response, T cell memory appeared rather unaffected. Conclusion Whether any of these differences translate into real world protection from infection, mitigation of severe disease courses and prevention of long/post COVID will need to be investigated in the future.
Collapse
Affiliation(s)
- Franz Mai
- Institute of Immunology, Rostock University Medical Center, Rostock, Germany
| | - Marcel Kordt
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, Rostock, Germany
| | - Wendy Bergmann-Ewert
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, Rostock, Germany
| | - Emil C. Reisinger
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Brigitte Müller-Hilke
- Institute of Immunology, Rostock University Medical Center, Rostock, Germany
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
4
|
Lopez-Gomez A, Pelaez-Prestel HF, Juarez I. Approaches to evaluate the specific immune responses to SARS-CoV-2. Vaccine 2023; 41:6434-6443. [PMID: 37770298 DOI: 10.1016/j.vaccine.2023.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/12/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023]
Abstract
The SARS-CoV-2 pandemic has a huge impact on public health and global economy, meaning an enormous scientific, political, and social challenge. Studying how infection or vaccination triggers both cellular and humoral responses is essential to know the grade and length of protection generated in the population. Nowadays, scientists and authorities around the world are increasingly concerned about the arrival of new variants, which have a greater spread, due to the high mutation rate of this virus. The aim of this review is to summarize the different techniques available for the study of the immune responses after exposure or vaccination against SARS-CoV-2, showing their advantages and limitations, and proposing suitable combinations of different techniques to achieve extensive information in these studies. We wish that the information provided here will helps other scientists in their studies of the immune response against SARS-CoV-2 after vaccination with new vaccine candidates or infection with upcoming variants.
Collapse
Affiliation(s)
- Ana Lopez-Gomez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Hector F Pelaez-Prestel
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.
| | - Ignacio Juarez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
5
|
Miquel CH, Abbas F, Cenac C, Foret-Lucas C, Guo C, Ducatez M, Joly E, Hou B, Guéry JC. B cell-intrinsic TLR7 signaling is required for neutralizing antibody responses to SARS-CoV-2 and pathogen-like COVID-19 vaccines. Eur J Immunol 2023; 53:e2350437. [PMID: 37438976 DOI: 10.1002/eji.202350437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/16/2023] [Accepted: 06/13/2023] [Indexed: 07/14/2023]
Abstract
Toll-like receptor 7 (TLR7) triggers antiviral immune responses through its capacity to recognize single-stranded RNA. TLR7 loss-of-function mutants are associated with life-threatening pneumonia in severe COVID-19 patients. Whereas TLR7-driven innate induction of type I IFN appears central to control SARS-CoV2 virus spreading during the first days of infection, the impact of TLR7-deficiency on adaptive B-cell immunity is less clear. In the present study, we examined the role of TLR7 in the adaptive B cells response to various pathogen-like antigens (PLAs). We used inactivated SARS-CoV2 and a PLA-based COVID-19 vaccine candidate designed to mimic SARS-CoV2 with encapsulated bacterial ssRNA as TLR7 ligands and conjugated with the RBD of the SARS-CoV2 Spike protein. Upon repeated immunization with inactivated SARS-CoV2 or PLA COVID-19 vaccine, we show that Tlr7-deficiency abolished the germinal center (GC)-dependent production of RBD-specific class-switched IgG2b and IgG2c, and neutralizing antibodies to SARS-CoV2. We also provide evidence for a non-redundant role for B-cell-intrinsic TLR7 in the promotion of RBD-specific IgG2b/IgG2c and memory B cells. Together, these data demonstrate that the GC reaction and class-switch recombination to the Myd88-dependent IgG2b/IgG2c in response to SARS-CoV2 or PLAs is strictly dependent on cell-intrinsic activation of TLR7 in B cells.
Collapse
Affiliation(s)
- Charles-Henry Miquel
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
- Arthritis R&D, Neuilly-Sur-Seine, France
| | - Flora Abbas
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Claire Cenac
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Charlotte Foret-Lucas
- Interactions Hôtes Agents Pathogènes (IHAP), UMR1225, Université de Toulouse, INRAe, ENVT, Toulouse, France
| | - Chang Guo
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Mariette Ducatez
- Interactions Hôtes Agents Pathogènes (IHAP), UMR1225, Université de Toulouse, INRAe, ENVT, Toulouse, France
| | - Etienne Joly
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Baidong Hou
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jean-Charles Guéry
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| |
Collapse
|
6
|
Schlegel J, Porebski B, Andronico L, Hanke L, Edwards S, Brismar H, Murrell B, McInerney GM, Fernandez-Capetillo O, Sezgin E. A Multiparametric and High-Throughput Platform for Host-Virus Binding Screens. NANO LETTERS 2023; 23:3701-3707. [PMID: 36892970 PMCID: PMC10176574 DOI: 10.1021/acs.nanolett.2c04884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Speed is key during infectious disease outbreaks. It is essential, for example, to identify critical host binding factors to pathogens as fast as possible. The complexity of host plasma membrane is often a limiting factor hindering fast and accurate determination of host binding factors as well as high-throughput screening for neutralizing antimicrobial drug targets. Here, we describe a multiparametric and high-throughput platform tackling this bottleneck and enabling fast screens for host binding factors as well as new antiviral drug targets. The sensitivity and robustness of our platform were validated by blocking SARS-CoV-2 particles with nanobodies and IgGs from human serum samples.
Collapse
Affiliation(s)
- Jan Schlegel
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden
| | - Bartlomiej Porebski
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Luca Andronico
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden
| | - Leo Hanke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Steven Edwards
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, 17165 Solna, Sweden
| | - Hjalmar Brismar
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, 17165 Solna, Sweden
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Gerald M McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Oscar Fernandez-Capetillo
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165 Stockholm, Sweden
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden
| |
Collapse
|
7
|
Gonzalez-Garcia P, Muñoz-Miranda JP, Fernandez-Cisnal R, Olvera L, Moares N, Gabucio A, Fernandez-Ponce C, Garcia-Cozar F. Specific Activation of T Cells by an ACE2-Based CAR-Like Receptor upon Recognition of SARS-CoV-2 Spike Protein. Int J Mol Sci 2023; 24:ijms24087641. [PMID: 37108807 PMCID: PMC10145580 DOI: 10.3390/ijms24087641] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causative agent of the Coronavirus Disease 2019 (COVID-19) pandemic, which is still a health issue worldwide mostly due to a high rate of contagiousness conferred by the high-affinity binding between cell viral receptors, Angiotensin-Converting Enzyme 2 (ACE2) and SARS-CoV-2 Spike protein. Therapies have been developed that rely on the use of antibodies or the induction of their production (vaccination), but despite vaccination being still largely protective, the efficacy of antibody-based therapies wanes with the advent of new viral variants. Chimeric Antigen Receptor (CAR) therapy has shown promise for tumors and has also been proposed for COVID-19 treatment, but as recognition of CARs still relies on antibody-derived sequences, they will still be hampered by the high evasion capacity of the virus. In this manuscript, we show the results from CAR-like constructs with a recognition domain based on the ACE2 viral receptor, whose ability to bind the virus will not wane, as Spike/ACE2 interaction is pivotal for viral entry. Moreover, we have developed a CAR construct based on an affinity-optimized ACE2 and showed that both wild-type and affinity-optimized ACE2 CARs drive activation of a T cell line in response to SARS-CoV-2 Spike protein expressed on a pulmonary cell line. Our work sets the stage for the development of CAR-like constructs against infectious agents that would not be affected by viral escape mutations and could be developed as soon as the receptor is identified.
Collapse
Affiliation(s)
| | - Juan P Muñoz-Miranda
- Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cadiz, 11002 Cadiz, Spain
| | | | - Lucia Olvera
- Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cadiz, 11002 Cadiz, Spain
| | - Noelia Moares
- Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cadiz, 11002 Cadiz, Spain
| | - Antonio Gabucio
- Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cadiz, 11002 Cadiz, Spain
| | - Cecilia Fernandez-Ponce
- Institute of Biomedical Research Cadiz (INIBICA), 11009 Cadiz, Spain
- Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cadiz, 11002 Cadiz, Spain
| | - Francisco Garcia-Cozar
- Institute of Biomedical Research Cadiz (INIBICA), 11009 Cadiz, Spain
- Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cadiz, 11002 Cadiz, Spain
| |
Collapse
|
8
|
Andreu S, Ripa I, Bello-Morales R, López-Guerrero JA. Liposomal Lactoferrin Exerts Antiviral Activity against HCoV-229E and SARS-CoV-2 Pseudoviruses In Vitro. Viruses 2023; 15:v15040972. [PMID: 37112952 PMCID: PMC10142420 DOI: 10.3390/v15040972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
A limited number of effective therapies are currently available to treat human coronavirus SARS-CoV-2 and other human coronaviruses, which are responsible for nearly a third of global cases of the common cold. The possibility of new emerging coronaviruses demands powerful new antiviral strategies. Lactoferrin is a well-known protein that possesses anti-inflammatory and immunomodulatory activities, and it has previously shown antiviral activity against several viruses, including SARS-CoV-2. To increase this antiviral activity, here we present bovine liposomal lactoferrin. Liposomal encapsulation of the compound was proven to increase permeability, bioavailability, and time release. In the present work, we compare the antiviral activity of free and liposomal bovine lactoferrin against HCoV229E and SARS-CoV-2 in vitro and in human primary bronchial epithelial cells, and we demonstrated that the liposomal form exerts a more potent antiviral activity than its free form at non-cytotoxic doses.
Collapse
Affiliation(s)
- Sabina Andreu
- Department of Molecular Biology, Universidad Autónoma de Madrid, C/Darwin, 2 Cantoblanco, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Universidad Autónoma de Madrid (CSIC-UAM), C/Nicolás Cabrera, 1 Cantoblanco, 28049 Madrid, Spain
| | - Inés Ripa
- Department of Molecular Biology, Universidad Autónoma de Madrid, C/Darwin, 2 Cantoblanco, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Universidad Autónoma de Madrid (CSIC-UAM), C/Nicolás Cabrera, 1 Cantoblanco, 28049 Madrid, Spain
| | - Raquel Bello-Morales
- Department of Molecular Biology, Universidad Autónoma de Madrid, C/Darwin, 2 Cantoblanco, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Universidad Autónoma de Madrid (CSIC-UAM), C/Nicolás Cabrera, 1 Cantoblanco, 28049 Madrid, Spain
| | - José Antonio López-Guerrero
- Department of Molecular Biology, Universidad Autónoma de Madrid, C/Darwin, 2 Cantoblanco, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Universidad Autónoma de Madrid (CSIC-UAM), C/Nicolás Cabrera, 1 Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
9
|
Horndler L, Delgado P, Romero-Pinedo S, Quesada M, Balabanov I, Laguna-Goya R, Almendro-Vázquez P, Llamas MA, Fresno M, Paz-Artal E, van Santen HM, Álvarez-Fernández S, Olmo A, Alarcón B. Decreased breadth of the antibody response to the spike protein of SARS-CoV-2 after repeated vaccination. Front Immunol 2023; 14:1157263. [PMID: 37081876 PMCID: PMC10111966 DOI: 10.3389/fimmu.2023.1157263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
Introduction The rapid development of vaccines to prevent COVID-19 has raised the need to compare the capacity of different vaccines in terms of developing a protective humoral response. Previous studies have shown inconsistent results in this area, highlighting the importance of further research to evaluate the efficacy of different vaccines. Methods This study utilized a highly sensitive and reliable flow cytometry method to measure the titers of IgG1 isotype antibodies in the blood of healthy volunteers after receiving one or two doses of various vaccines administered in Spain. The method was also used to simultaneously measure the reactivity of antibodies to the S protein of the original Wuhan strain and variants B.1.1.7 (Alpha), B.1.617.2 (Delta), and B.1.617.1 (Kappa). Results Significant differences were observed in the titer of anti-S antibodies produced after a first dose of the vaccines ChAdOx1 nCov-19/AstraZeneca, mRNA-1273/Moderna, BNT162b2/Pfizer-BioNTech, and Ad26.COV.S/Janssen. Furthermore, a relative reduction in the reactivity of the sera with the Alpha, Delta, and Kappa variants, compared to the Wuhan strain, was observed after the second boosting immunization. Discussion The findings of this study provide a comparison of different vaccines in terms of anti-S antibody generation and cast doubts on the convenience of repeated immunization with the same S protein sequence. The multiplexed capacity of the flow cytometry method utilized in this study allowed for a comprehensive evaluation of the efficacy of various vaccines in generating a protective humoral response. Future research could focus on the implications of these findings for the development of effective COVID-19 vaccination strategies.
Collapse
Affiliation(s)
- Lydia Horndler
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Pilar Delgado
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | - Ivaylo Balabanov
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Rocío Laguna-Goya
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | | | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Estela Paz-Artal
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Universidad Complutense de Madrid, Madrid, Spain
| | - Hisse M. van Santen
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | - Balbino Alarcón
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
10
|
Yue H, Nowak RP, Overwijn D, Payne NC, Fischinger S, Atyeo C, Lam EC, St. Denis K, Brais LK, Konishi Y, Sklavenitis-Pistofidis R, Baden LR, Nilles EJ, Karlson EW, Yu XG, Li JZ, Woolley AE, Ghobrial IM, Meyerhardt JA, Balazs AB, Alter G, Mazitschek R, Fischer ES. Diagnostic TR-FRET assays for detection of antibodies in patient samples. CELL REPORTS METHODS 2023; 3:100421. [PMID: 37056371 PMCID: PMC10088089 DOI: 10.1016/j.crmeth.2023.100421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/15/2022] [Accepted: 02/14/2023] [Indexed: 02/22/2023]
Abstract
Serological assays are important diagnostic tools for surveying exposure to the pathogen, monitoring immune response post vaccination, and managing spread of the infectious agent among the population. Current serological laboratory assays are often limited because they require the use of specialized laboratory technology and/or work with a limited number of sample types. Here, we evaluate an alternative by developing time-resolved Förster resonance energy transfer (TR-FRET) homogeneous assays that exhibited exceptional versatility, scalability, and sensitivity and outperformed or matched currently used strategies in terms of sensitivity, specificity, and precision. We validated the performance of the assays measuring total immunoglobulin G (IgG) levels; antibodies against severe acute respiratory syndrome coronavirus (SARS-CoV) or Middle Eastern respiratory syndrome (MERS)-CoV spike (S) protein; and SARS-CoV-2 S and nucleocapsid (N) proteins and applied it to several large sample sets and real-world applications. We further established a TR-FRET-based ACE2-S competition assay to assess the neutralization propensity of the antibodies. Overall, these TR-FRET-based serological assays can be rapidly extended to other antigens and are compatible with commonly used plate readers.
Collapse
Affiliation(s)
- Hong Yue
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Radosław P. Nowak
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Daan Overwijn
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - N. Connor Payne
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Systems Biology, Massachusetts General Hospital (MGH), Boston, MA 02114, USA
| | - Stephanie Fischinger
- Ragon Institute of MGH, Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA 02139, USA
| | - Caroline Atyeo
- Ragon Institute of MGH, Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA 02139, USA
| | - Evan C. Lam
- Ragon Institute of MGH, Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA 02139, USA
| | - Kerri St. Denis
- Ragon Institute of MGH, Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA 02139, USA
| | - Lauren K. Brais
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yoshinobu Konishi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Romanos Sklavenitis-Pistofidis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lindsey R. Baden
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Eric J. Nilles
- Department of Emergency Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | | | - Xu G. Yu
- Ragon Institute of MGH, Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA 02139, USA
| | - Jonathan Z. Li
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Ann E. Woolley
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Irene M. Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Alejandro B. Balazs
- Ragon Institute of MGH, Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA 02139, USA
| | - Galit Alter
- Ragon Institute of MGH, Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA 02139, USA
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital (MGH), Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eric S. Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
11
|
Ulinici M, Suljič A, Poggianella M, Milan Bonotto R, Resman Rus K, Paraschiv A, Bonetti AM, Todiras M, Corlateanu A, Groppa S, Ceban E, Petrovec M, Marcello A. Characterisation of the Antibody Response in Sinopharm (BBIBP-CorV) Recipients and COVID-19 Convalescent Sera from the Republic of Moldova. Vaccines (Basel) 2023; 11:vaccines11030637. [PMID: 36992221 DOI: 10.3390/vaccines11030637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023] Open
Abstract
The early availability of effective vaccines against SARS-CoV-2, the aetiologic cause of COVID-19, has been at the cornerstone of the global recovery from the pandemic. This study aimed to assess the antispike RBD IgG antibody titres and neutralisation potential of COVID-19 convalescent plasma and the sera of Moldovan adults vaccinated with the Sinopharm BBIBP-CorV vaccine. An IgG ELISA with recombinant SARS-CoV-2 spike RBD and two pseudovirus-based neutralisation assays have been developed to evaluate neutralising antibodies against SARS-CoV-2 in biosafety level 2 containment facilities. A significant moderate correlation was observed between IgG titres and the overall neutralising levels for each neutralisation assay (ρ = 0.64, p < 0.001; ρ = 0.52, p < 0.001). A separate analysis of convalescent and vaccinated individuals showed a higher correlation of neutralising and IgG titres in convalescent individuals (ρ = 0.68, p < 0.001, ρ = 0.45, p < 0.001) compared with vaccinated individuals (ρ = 0.58, p < 0.001; ρ = 0.53, p < 0.001). It can be concluded that individuals who recovered from infection developed higher levels of antispike RBD IgG antibodies. In comparison, the Sinopharm-vaccinated individuals produced higher levels of neutralising antibodies than convalescent plasma.
Collapse
Affiliation(s)
- Mariana Ulinici
- National Institute for Health and Medical Research, Faculty of Medicine, Nicolae Testemitanu State University of Medicine and Pharmacy, 2004 Chisinau, Moldova
- Alfa Diagnostica Laboratory, 2021 Chisinau, Moldova
| | - Alen Suljič
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Monica Poggianella
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Rafaela Milan Bonotto
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Katarina Resman Rus
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Angela Paraschiv
- National Institute for Health and Medical Research, Faculty of Medicine, Nicolae Testemitanu State University of Medicine and Pharmacy, 2004 Chisinau, Moldova
| | - Amedeo Marco Bonetti
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Mihail Todiras
- National Institute for Health and Medical Research, Faculty of Medicine, Nicolae Testemitanu State University of Medicine and Pharmacy, 2004 Chisinau, Moldova
| | - Alexandru Corlateanu
- National Institute for Health and Medical Research, Faculty of Medicine, Nicolae Testemitanu State University of Medicine and Pharmacy, 2004 Chisinau, Moldova
| | - Stanislav Groppa
- National Institute for Health and Medical Research, Faculty of Medicine, Nicolae Testemitanu State University of Medicine and Pharmacy, 2004 Chisinau, Moldova
| | - Emil Ceban
- National Institute for Health and Medical Research, Faculty of Medicine, Nicolae Testemitanu State University of Medicine and Pharmacy, 2004 Chisinau, Moldova
| | - Miroslav Petrovec
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| |
Collapse
|
12
|
Úbeda M, Maza MDC, Delgado P, Horndler L, Abia D, García-Bermejo L, Serrano-Villar S, Calvo C, Bastolla U, Sainz T, Fresno M. Diversity of immune responses in children highly exposed to SARS-CoV-2. Front Immunol 2023; 14:1105237. [PMID: 36936972 PMCID: PMC10020361 DOI: 10.3389/fimmu.2023.1105237] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Background Children are less susceptible than adults to symptomatic COVID-19 infection, but very few studies addressed their underlying cause. Moreover, very few studies analyzed why children highly exposed to the virus remain uninfected. Methods We analyzed the serum levels of ACE2, angiotensin II, anti-spike and anti-N antibodies, cytokine profiles, and virus neutralization in a cohort of children at high risk of viral exposure, cohabiting with infected close relatives during the lockdown in Spain. Results We analyzed 40 children who were highly exposed to the virus since they lived with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-infected relatives during the lockdown for several months without taking preventive measures. Of those, 26 reported mild or very mild symptoms. The induced immune response to the virus was analyzed 3 months after the household infection. Surprisingly, only 15 children had IgG anti-S (IgG+) determined by a sensitive method indicative of a past infection. The rest, negative for IgG anti-N or S in various tests, could be further subdivided, according to IgM antibodies, into those having IgM anti-S and IgM anti-N (IgG-IgMhigh) and those having only IgM anti-N (IgG-IgMlow). Interestingly, those two subgroups of children with IgM antibodies have strikingly different patterns of cytokines. The IgMhigh group had significantly higher IFN-α2 and IFN-γ levels as well as IL-10 and GM-CSF than the IgMlow group. In contrast, the IgMlow group had low levels of ACE2 in the serum. Both groups have a weaker but significant capacity to neutralize the virus in the serum than the IgG+ group. Two children were negative in all immunological antibody tests. Conclusions A significant proportion of children highly exposed to SARS-CoV-2 did not develop a classical adaptive immune response, defined by the production of IgG, despite being in close contact with infected relatives. A large proportion of those children show immunological signs compatible with innate immune responses (as secretion of natural antibodies and cytokines), and others displayed very low levels of the viral receptor ACE2 that may have protected them from the virus spreading in the body despite high and constant viral exposure.
Collapse
Affiliation(s)
- María Úbeda
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
- *Correspondence: Manuel Fresno, ; María Úbeda,
| | - María del Carmen Maza
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Pilar Delgado
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Lydia Horndler
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - David Abia
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura García-Bermejo
- Hospital Universitario Ramón y Cajal, Universidad de Alcalá, IRYCIS, Madrid, Spain
| | | | - Cristina Calvo
- Department of Pediatrics, Tropical and Infectious Diseases, Hospital La Paz, and La Paz Research Institute (IdiPAZ), Translational Research Network of Pediatric Infectious Diseases (RITIP), and CIBERINFEC, Madrid, Spain
| | - Ugo Bastolla
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Talia Sainz
- Department of Pediatrics, Tropical and Infectious Diseases, Hospital La Paz, and La Paz Research Institute (IdiPAZ), Translational Research Network of Pediatric Infectious Diseases (RITIP), and CIBERINFEC, Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
- Instituto Sanitario Princesa, Madrid, Spain
- *Correspondence: Manuel Fresno, ; María Úbeda,
| |
Collapse
|
13
|
Andreu S, von Kobbe C, Delgado P, Ripa I, Buzón MJ, Genescà M, Gironès N, del Moral-Salmoral J, Ramírez GA, Zúñiga S, Enjuanes L, López-Guerrero JA, Bello-Morales R. Dextran sulfate from Leuconostoc mesenteroides B512F exerts potent antiviral activity against SARS-CoV-2 in vitro and in vivo. Front Microbiol 2023; 14:1185504. [PMID: 37206325 PMCID: PMC10189130 DOI: 10.3389/fmicb.2023.1185504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023] Open
Abstract
The emergent human coronavirus SARS-CoV-2 and its resistance to current drugs makes the need for new potent treatments for COVID-19 patients strongly necessary. Dextran sulfate (DS) polysaccharides have long demonstrated antiviral activity against different enveloped viruses in vitro. However, their poor bioavailability has led to their abandonment as antiviral candidates. Here, we report for the first time the broad-spectrum antiviral activity of a DS-based extrapolymeric substance produced by the lactic acid bacterium Leuconostoc mesenteroides B512F. Time of addition assays with SARS-CoV-2 pseudoviruses in in vitro models confirm the inhibitory activity of DSs in the early stages of viral infection (viral entry). In addition, this exopolysaccharide substance also reports broad-spectrum antiviral activity against several enveloped viruses such as SARS-CoV-2, HCoV229E, HSV-1, in in vitro models and in human lung tissue. The toxicity and antiviral capacity of DS from L. mesenteroides was tested in vivo in mouse models which are susceptible to SARS-CoV-2 infection. The described DS, administered by inhalation, a new route of administration for these types of polymers, shows strong inhibition of SARS-CoV-2 infection in vivo, significantly reducing animal mortality and morbidity at non-toxic doses. Therefore, we suggest that it may be considered as a potential candidate for antiviral therapy against SARS-CoV-2.
Collapse
Affiliation(s)
- Sabina Andreu
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council—Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- *Correspondence: Sabina Andreu
| | - Cayetano von Kobbe
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council—Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Pilar Delgado
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council—Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Inés Ripa
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council—Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - María José Buzón
- Infectious Diseases Department, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, VHIR Task Force COVID-19, Barcelona, Spain
| | - Meritxell Genescà
- Infectious Diseases Department, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, VHIR Task Force COVID-19, Barcelona, Spain
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council—Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Javier del Moral-Salmoral
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council—Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | | | - Sonia Zúñiga
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - José Antonio López-Guerrero
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council—Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Raquel Bello-Morales
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council—Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| |
Collapse
|
14
|
Bian L, Li Z, He A, Wu B, Yang H, Wu Y, Hu F, Lin G, Zhang D. Ultrabright nanoparticle-labeled lateral flow immunoassay for detection of anti-SARS-CoV-2 neutralizing antibodies in human serum. Biomaterials 2022; 288:121694. [PMID: 35977850 PMCID: PMC9360774 DOI: 10.1016/j.biomaterials.2022.121694] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 11/02/2022]
Abstract
The level of anti-SARS-CoV-2 neutralizing antibodies (NAb) is an indispensable reference for evaluating the acquired protective immunity against SARS-CoV-2. Here, we established an ultrabright nanoparticles-based lateral flow immunoassay (LFIA) for one-step rapid semi-quantitative detection of anti-SARS-CoV-2 NAb in vaccinee's serum. Once embedded in polystyrene (PS) nanoparticles, the aggregation-induced emission (AIE) luminogen, AIE490, exhibited ultrabright fluorescence due to the rigidity of PS and severe inhibition of intramolecular motions. The ultrabright AIE490-PS nanoparticle was used as a fluorescent marker of LFIA. Upon optimized conditions including incubation time, concentrations of coated proteins and conjugated nanoparticles, amounts of antigens modified on the surface of nanoparticles, dilution rate of serum samples, and so on, the ultrabright nanoparticles-based LFIA could accurately identify 70 negative samples and 63 positive samples from human serum (p < 0.0001). The intra- and inter-assay precisions of the established method are above 13% and 16%, respectively. The established LFIA has tremendous practical value of generalization as a rapid semi-quantitative detection method of anti-SARS-CoV-2 NAb. Meanwhile, the AIE490-PS nanoparticle is also promising to detect many other analytes by altering the protein on the surface.
Collapse
Affiliation(s)
- Lun Bian
- Guangdong Province Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Zhaoyue Li
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - An He
- The First People's Hospital of Chenzhou City, Chenzhou, China
| | - Biru Wu
- Guangdong Province Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Hui Yang
- Guangdong Province Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Yingsong Wu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.
| | - Fang Hu
- Guangdong Province Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China.
| | - Guanfeng Lin
- Experimental Center of Teaching and Scientific Research, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
A new circular RNA-encoded protein BIRC6-236aa inhibits transmissible gastroenteritis virus (TGEV)-induced mitochondrial dysfunction. J Biol Chem 2022; 298:102280. [PMID: 35863430 PMCID: PMC9400091 DOI: 10.1016/j.jbc.2022.102280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/21/2022] Open
Abstract
Transmissible gastroenteritis virus (TGEV), a member of the coronavirus family, is the pathogen responsible for transmissible gastroenteritis, which results in mitochondrial dysfunction in host cells. Previously, we identified 123 differentially expressed circular RNAs (cRNA)from the TGEV-infected porcine intestinal epithelial cell line jejunum 2 (IPEC-J2). Previous bioinformatics analysis suggested that, of these, circBIRC6 had the potential to regulate mitochondrial function. Furthermore, mitochondrial permeability transition, a key step in the process of mitochondrial dysfunction, is known to be caused by abnormal opening of mitochondrial permeability transition pores (mPTPs) regulated by the voltage-dependent anion-selective channel protein 1 (VDAC)–Cyclophilin D (CypD) complex. Therefore, in the present study, we investigated the effects of circBIRC6-2 on mitochondrial dysfunction and opening of mPTPs. We found that TGEV infection reduced circBIRC6-2 levels, which in turn reduced mitochondrial calcium (Ca2+) levels, the decrease of mitochondrial membrane potential, and opening of mPTPs. In addition, we also identified ORFs and internal ribosomal entrance sites within the circBIRC6-2 RNA. We demonstrate circBIRC6-2 encodes a novel protein, BIRC6-236aa, which we show inhibits TGEV-induced opening of mPTPs during TGEV infection. Mechanistically, we identified an interaction between BIRC6-236aa and VDAC1, suggesting that BIRC6-236aa destabilizes the VDAC1–CypD complex. Taken together, the results suggest that the novel protein BIRC6-236aa encoded by cRNA circBIRC6-2 inhibits mPTP opening and subsequent mitochondrial dysfunction by interacting with VDAC1.
Collapse
|
16
|
Expression of the Heterotrimeric GP2/GP3/GP4 Spike of an Arterivirus in Mammalian Cells. Viruses 2022; 14:v14040749. [PMID: 35458479 PMCID: PMC9030998 DOI: 10.3390/v14040749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/05/2023] Open
Abstract
Equine arteritis virus (EAV), an enveloped positive-strand RNA virus, is an important pathogen of horses and the prototype member of the Arteiviridae family. Unlike many other enveloped viruses, which possess homotrimeric spikes, the spike responsible for cellular tropism in Arteriviruses is a heterotrimer composed of 3 glycoproteins: GP2, GP3, and GP4. Together with the hydrophobic protein E they are the minor components of virus particles. We describe the expression of all 3 minor glycoproteins, each equipped with a different tag, from a multi-cassette system in mammalian BHK-21 cells. Coprecipitation studies suggest that a rather small faction of GP2, GP3, and GP4 form dimeric or trimeric complexes. GP2, GP3, and GP4 co-localize with each other and also, albeit weaker, with the E-protein. The co-localization of GP3-HA and GP2-myc was tested with markers for ER, ERGIC, and cis-Golgi. The co-localization of GP3-HA was the same regardless of whether it was expressed alone or as a complex, whereas the transport of GP2-myc to cis-Golgi was higher when this protein was expressed as a complex. The glycosylation pattern was also independent of whether the proteins were expressed alone or together. The recombinant spike might be a tool for basic research but might also be used as a subunit vaccine for horses.
Collapse
|
17
|
Maza MDC, Úbeda M, Delgado P, Horndler L, Llamas MA, van Santen HM, Alarcón B, Abia D, García-Bermejo L, Serrano-Villar S, Bastolla U, Fresno M. ACE2 Serum Levels as Predictor of Infectability and Outcome in COVID-19. Front Immunol 2022; 13:836516. [PMID: 35401548 PMCID: PMC8986157 DOI: 10.3389/fimmu.2022.836516] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/22/2022] [Indexed: 12/26/2022] Open
Abstract
Background COVID-19 can generate a broad spectrum of severity and symptoms. Many studies analysed the determinants of severity but not among some types of symptoms. More importantly, very few studies analysed patients highly exposed to the virus that nonetheless remain uninfected. Methods We analysed serum levels of ACE2, Angiotensin II and anti-Spike antibodies in 2 different cohorts at high risk of viral exposure, highly exposed but uninfected subjects, either high risk health care workers or persons cohabiting with infected close relatives and seropositive patients with symptoms. We tested the ability of the sera of these subjects to neutralize lentivirus pseudotyped with the Spike-protein. Results We found that the serum levels of ACE2 are significantly higher in highly exposed but uninfected subjects. Moreover, sera from this seronegative persons can neutralize SARS-CoV-2 infection in cellular assays more strongly that sera from non-exposed negative controls eventhough they do not have anti-CoV-2 IgG antibodies suggesting that high levels of ACE2 in serum may somewhat protect against an active infection without generating a conventional antibody response. Finally, we show that among patients with symptoms, ACE2 levels were significantly higher in infected patients who developed cutaneous as compared with respiratory symptoms and ACE2 was also higher in those with milder symptoms. Conclusions These findings suggest that soluble ACE2 could be used as a potential biomarker to predict SARS-CoV-2 infection risk and to discriminate COVID-19 disease subtypes.
Collapse
Affiliation(s)
- María del Carmen Maza
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - María Úbeda
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
- Instituto Sanitario Princesa, Madrid, Spain
| | - Pilar Delgado
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Lydia Horndler
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel A. Llamas
- EMPIREO Diagnóstico Molecular Sociedad Limitada (SL), Madrid, Spain
| | - Hisse M. van Santen
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Balbino Alarcón
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - David Abia
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura García-Bermejo
- Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Universidad de Alcalá, Madrid, Spain
| | - Sergio Serrano-Villar
- Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Universidad de Alcalá, Madrid, Spain
| | - Ugo Bastolla
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
- Instituto Sanitario Princesa, Madrid, Spain
| |
Collapse
|
18
|
Wang Z, Wang M, Xu Q, Liu S, Gao Y, Chang H, Sui Z. Rapid and Multiplexed Detection of Single Cells of Salmonella, Escherichia coli O157, and Shigella flexneri in Ground Beef by Flow Cytometry. Foodborne Pathog Dis 2022; 19:272-280. [PMID: 35263171 DOI: 10.1089/fpd.2021.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Salmonella, Escherichia coli O157, and Shigella flexneri are typical foodborne pathogens in ground beef, which can cause severe infection even when present as a single cell. Flow cytometry (FCM) methods are widely applied in the rapid detection of pathogens in food products. In this study, we report an FCM-based method for detecting single cells of Salmonella, E. coli O157, and S. flexneri in 25 g ground beef samples. We fluorescently labeled specific antibodies that could effectively identify bacterial cells, prepared single-cell samples by serial dilution, and optimized the pre-enrichment time. The results showed that 7 h of pre-enrichment is appropriate for sensitive single-cell detection by FCM. Finally, we evaluated this method in artificially contaminated and retail beef samples. This study outlines a novel highly sensitive FCM-based method to detect Salmonella, E. coli O157, and S. flexneri in beef samples within 8 h that can be applied to the rapid and multiplexed detection of foodborne pathogens.
Collapse
Affiliation(s)
- Ziquan Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Meng Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Qian Xu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Siyuan Liu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Ying Gao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Haiyan Chang
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zhiwei Sui
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| |
Collapse
|
19
|
Romero-Pinedo S, Quesada M, Horndler L, Álvarez-Fernández S, Olmo A, Abia D, Alarcón B, Delgado P. Vaccine Type-, Age- and Past Infection-Dependence of the Humoral Response to SARS-CoV-2 Spike S Protein. Front Immunol 2022; 13:809285. [PMID: 35296086 PMCID: PMC8918633 DOI: 10.3389/fimmu.2022.809285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/07/2022] [Indexed: 12/20/2022] Open
Abstract
The emergence of COVID-19 has led to a worldwide challenge for the rapid development of vaccines. Several types of safe and effective vaccines have been available in a time frame never seen before. Now that several hundred million people have been vaccinated there is an opportunity to compare vaccines in terms of protection and immune response. Here, we have applied a highly sensitive multiplexed flow cytometry method to measure simultaneously IgM, IgG1 and IgA anti-spike protein antibodies generated in response to three vaccines: ChAdOx1 (Oxford-AstraZeneca), mRNA-1273 (Moderna), and BNT162b2 (Pfizer-BioNTech). We have found that mRNA vaccines (mRNA-1273 and BNT162b2) induce a stronger humoral response, both after the first and the second dose, than the adenovirus-based ChAdOx1 vaccine. We also found that, in the elderly, antibody titers negatively correlate with the age of the donor but, also, that antibody titers remain stable for at least 6 months after complete vaccination. Finally, we found that one dose of BNT162b2 is sufficient to induce the highest antibody titers in seropositive pre-vaccination donors. We hope these data will help to guide future decisions on vaccination strategies.
Collapse
Affiliation(s)
| | | | - Lydia Horndler
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | - David Abia
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Balbino Alarcón
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Pilar Delgado
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
20
|
Zattoni IF, Huergo LF, Gerhardt ECM, Nardin JM, Dos Santos AMF, de Moraes Rego FG, Picheth G, Moure VR, Valdameri G. Multiplexed flow cytometric approach for detection of anti-SARS-CoV-2 IgG, IgM and IgA using beads covalently coupled to the nucleocapsid protein. Lett Appl Microbiol 2022; 74:863-872. [PMID: 35148433 PMCID: PMC9115257 DOI: 10.1111/lam.13674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/30/2022]
Abstract
Flow cytometry has emerged as a promising technique for detection of SARS‐CoV‐2 antibodies. In this study, we developed an innovative strategy for simultaneous detection of immunoglobulin G (IgG), IgM and IgA. The SARS‐CoV‐2 nucleocapsid protein was covalently bound to functional beads surface applying sulpho‐SMCC chemistry. BUV395 anti‐IgG, BB515 anti‐IgM, biotinylated anti‐IgA1/IgA2 and BV421 streptavidin were used as fluorophore conjugated secondary antibodies. Serum and antibodies reaction conditions were optimized for each antibody isotype detection and a multiplexed detection assay was developed. This new cell‐free assay efficiently discriminate COVID‐19 negative and positive samples. The simultaneous detection of IgG, IgM and IgA showed a sensitivity of 88·5–96·2% and specificity of 100%. This novel strategy opens a new avenue for flow cytometry‐based diagnosis.
Collapse
Affiliation(s)
- Ingrid Fatima Zattoni
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Paraná, 80210-170, Curitiba, PR, Brazil
| | - Luciano F Huergo
- Setor Litoral, Federal University of Paraná, 83260-000, Matinhos, PR, Brazil
| | - Edileusa C M Gerhardt
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, 80060-000, Curitiba, PR, Brazil
| | | | | | | | - Geraldo Picheth
- Department of Clinical Analysis, Federal University of Paraná, 80210-170, Curitiba, PR, Brazil
| | - Vivian Rotuno Moure
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Paraná, 80210-170, Curitiba, PR, Brazil.,Department of Clinical Analysis, Federal University of Paraná, 80210-170, Curitiba, PR, Brazil
| | - Glaucio Valdameri
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Paraná, 80210-170, Curitiba, PR, Brazil.,Department of Clinical Analysis, Federal University of Paraná, 80210-170, Curitiba, PR, Brazil
| |
Collapse
|
21
|
Wang H, Zhang J, Lu Z, Dai W, Ma C, Xiang Y, Zhang Y. Identification of potential therapeutic targets and mechanisms of COVID-19 through network analysis and screening of chemicals and herbal ingredients. Brief Bioinform 2022; 23:bbab373. [PMID: 34505138 PMCID: PMC8499921 DOI: 10.1093/bib/bbab373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/06/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
After experiencing the COVID-19 pandemic, it is widely acknowledged that a rapid drug repurposing method is highly needed. A series of useful drug repurposing tools have been developed based on data-driven modeling and network pharmacology. Based on the disease module, we identified several hub proteins that play important roles in the onset and development of the COVID-19, which are potential targets for repositioning approved drugs. Moreover, different network distance metrics were applied to quantify the relationship between drug targets and COVID-19 disease targets in the protein-protein-interaction (PPI) network and predict COVID-19 therapeutic effects of bioactive herbal ingredients and chemicals. Furthermore, the tentative mechanisms of candidates were illustrated through molecular docking and gene enrichment analysis. We obtained 15 chemical and 15 herbal ingredient candidates and found that different drugs may play different roles in the process of virus invasion and the onset and development of the COVID-19 disease. Given pandemic outbreaks, our method has an undeniable immense advantage in the feasibility analysis of drug repurposing or drug screening, especially in the analysis of herbal ingredients.
Collapse
Affiliation(s)
- Hong Wang
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Medical Data Science Academy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Engineering Research Center for Clinical Big-data and Drug Evaluation, Chongqing Medical University, Chongqing, 401331, China
| | - Jingqing Zhang
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Zhigang Lu
- Department of Neurology, The First People's Hospital of Jingmen affiliated to Hubei Minzu University, Jingmen, 448000, China
| | - Weina Dai
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Chuanjiang Ma
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Yun Xiang
- Gynaecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China
| | - Yonghong Zhang
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Medical Data Science Academy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Engineering Research Center for Clinical Big-data and Drug Evaluation, Chongqing Medical University, Chongqing, 401331, China
| |
Collapse
|
22
|
Performance of a flow cytometry-based immunoassay for detection of antibodies binding to SARS-CoV-2 spike protein. Sci Rep 2022; 12:586. [PMID: 35022478 PMCID: PMC8755750 DOI: 10.1038/s41598-021-04565-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 12/24/2021] [Indexed: 01/08/2023] Open
Abstract
The performance of a laboratory-developed IgG/IgA flow cytometry-based immunoassay (FCI) using Jurkat T cells stably expressing full-length native S protein was compared against Elecsys electrochemiluminiscent (ECLIA) Anti-SARS-CoV-2 S (Roche Diagnostics, Pleasanton, CA, USA), and Liaison SARS-CoV-2 TrimericS IgG chemiluminiscent assay (CLIA) (Diasorin S.p.a, Saluggia, IT) for detection of SARS-CoV-2-specific antibodies. A total of 225 serum/plasma specimens from 120 acute or convalescent COVID-19 individuals were included. Overall, IgG/IgA-FCI yielded the highest number of positives (n = 179), followed by IgA-FCI (n = 177), Roche ECLIA (n = 175), IgG-FCI (n = 172) and Diasorin CLIA (n = 154). For sera collected early after the onset of symptoms (within 15 days) IgG/IgA-FCI also returned the highest number of positive results (52/72; 72.2%). Positive percent agreement between FCI and compared immunoassays was highest for Roche ECLIA, ranging from 96.1 (IgG/IgA-FCI) to 97.7% (IgG-FCI), whereas negative percent agreement was higher between FCI and Diasosin CLIA, regardless of antibody isotype. The data suggest that FCI may outperform Roche ECLIA and Diasorin CLIA in terms of clinical sensitivity for serological diagnosis of SARS-CoV-2 infection.
Collapse
|
23
|
Almendro-Vázquez P, Laguna-Goya R, Ruiz-Ruigomez M, Utrero-Rico A, Lalueza A, Maestro de la Calle G, Delgado P, Perez-Ordoño L, Muro E, Vila J, Zamarron I, Moreno-Batanero M, Chivite-Lacaba M, Gil-Etayo FJ, Martín-Higuera C, Meléndez-Carmona MÁ, Lumbreras C, Arellano I, Alarcon B, Allende LM, Aguado JM, Paz-Artal E. Longitudinal dynamics of SARS-CoV-2-specific cellular and humoral immunity after natural infection or BNT162b2 vaccination. PLoS Pathog 2021; 17:e1010211. [PMID: 34962970 PMCID: PMC8757952 DOI: 10.1371/journal.ppat.1010211] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/13/2022] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
The timing of the development of specific adaptive immunity after natural SARS-CoV-2 infection, and its relevance in clinical outcome, has not been characterized in depth. Description of the long-term maintenance of both cellular and humoral responses elicited by real-world anti-SARS-CoV-2 vaccination is still scarce. Here we aimed to understand the development of optimal protective responses after SARS-CoV-2 infection and vaccination. We performed an early, longitudinal study of S1-, M- and N-specific IFN-γ and IL-2 T cell immunity and anti-S total and neutralizing antibodies in 88 mild, moderate or severe acute COVID-19 patients. Moreover, SARS-CoV-2-specific adaptive immunity was also analysed in 234 COVID-19 recovered subjects, 28 uninfected BNT162b2-vaccinees and 30 uninfected healthy controls. Upon natural infection, cellular and humoral responses were early and coordinated in mild patients, while weak and inconsistent in severe patients. The S1-specific cellular response measured at hospital arrival was an independent predictive factor against severity. In COVID-19 recovered patients, four to seven months post-infection, cellular immunity was maintained but antibodies and neutralization capacity declined. Finally, a robust Th1-driven immune response was developed in uninfected BNT162b2-vaccinees. Three months post-vaccination, the cellular response was comparable, while the humoral response was consistently stronger, to that measured in COVID-19 recovered patients. Thus, measurement of both humoral and cellular responses provides information on prognosis and protection from infection, which may add value for individual and public health recommendations.
Collapse
Affiliation(s)
| | - Rocio Laguna-Goya
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBER), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Ruiz-Ruigomez
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Internal Medicine, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Alberto Utrero-Rico
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Antonio Lalueza
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Guillermo Maestro de la Calle
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Internal Medicine, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Pilar Delgado
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas (CSIC), Universidad Autonoma de Madrid, Madrid, Spain
| | - Luis Perez-Ordoño
- Department of Emergency Medicine, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Eva Muro
- Department of Emergency Medicine, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Juan Vila
- Department of Emergency Medicine, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Isabel Zamarron
- Department of Emergency Medicine, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Marta Chivite-Lacaba
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Francisco Javier Gil-Etayo
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Carmen Martín-Higuera
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Clinical Microbiology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - María Ángeles Meléndez-Carmona
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Clinical Microbiology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Carlos Lumbreras
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Irene Arellano
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas (CSIC), Universidad Autonoma de Madrid, Madrid, Spain
| | - Balbino Alarcon
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas (CSIC), Universidad Autonoma de Madrid, Madrid, Spain
| | - Luis Miguel Allende
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Universidad Complutense de Madrid, Madrid, Spain
| | - Jose Maria Aguado
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Internal Medicine, Hospital Universitario 12 de Octubre, Madrid, Spain
- Unit of Infectious Diseases, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Estela Paz-Artal
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
24
|
Vesper N, Ortiz Y, Bartels-Burgahn F, Yang J, de la Rosa K, Tenbusch M, Schulz S, Finzel S, Jäck HM, Eibel H, Voll RE, Reth M. A Barcoded Flow Cytometric Assay to Explore the Antibody Responses Against SARS-CoV-2 Spike and Its Variants. Front Immunol 2021; 12:730766. [PMID: 34630410 PMCID: PMC8496935 DOI: 10.3389/fimmu.2021.730766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/03/2021] [Indexed: 11/30/2022] Open
Abstract
The SARS-CoV-2 pandemic has spread to all parts of the world and can cause life-threatening pneumonia and other severe disease manifestations known as COVID-19. This health crisis has resulted in a significant effort to stop the spread of this new coronavirus. However, while propagating itself in the human population, the virus accumulates mutations and generates new variants with increased fitness and the ability to escape the human immune response. Here we describe a color-based barcoded spike flow cytometric assay (BSFA) that is particularly useful to evaluate and directly compare the humoral immune response directed against either wild type (WT) or mutant spike (S) proteins or the receptor-binding domains (RBD) of SARS-CoV-2. This assay employs the human B lymphoma cell line Ramos, transfected for stable expression of WT or mutant S proteins or a chimeric RBD-CD8 fusion protein. We find that the alpha and beta mutants are more stably expressed than the WT S protein on the Ramos B cell surface and/or bind with higher affinity to the viral entry receptor ACE2. However, we find a reduce expression of the chimeric RBD-CD8 carrying the point mutation N501Y and E484K characteristic for the alpha and beta variant, respectively. The comparison of the humoral immune response of 12 vaccinated probands with 12 COVID-19 patients shows that after the boost, the S-specific IgG class immune response in the vaccinated group is similar to that of the patient group. However, in comparison to WT the specific IgG serum antibodies bind less well to the alpha variant and only poorly to the beta variant S protein. This is in line with the notion that the beta variant is an immune escape variant of SARS-CoV-2. The IgA class immune response was more variable than the IgG response and higher in the COVID-19 patients than in the vaccinated group. In summary, we think that our BSFA represents a useful tool to evaluate the humoral immunity against emerging variants of SARS-CoV-2 and to analyze new vaccination protocols against these variants.
Collapse
Affiliation(s)
- Niklas Vesper
- Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Research Centres Bioss, Centre for Biological signal studies, CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Yaneth Ortiz
- Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Research Centres Bioss, Centre for Biological signal studies, CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Frauke Bartels-Burgahn
- Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Research Centres Bioss, Centre for Biological signal studies, CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Jianying Yang
- Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Research Centres Bioss, Centre for Biological signal studies, CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Kathrin de la Rosa
- Department of Cancer and Immunology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Sebastian Schulz
- Division of Molecular Immunology, Internal Medicine III, Nikolaus-Fiebiger-Center of Molecular Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Stephanie Finzel
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Internal Medicine III, Nikolaus-Fiebiger-Center of Molecular Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Hermann Eibel
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Freiburg, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Freiburg, Germany
| | - Michael Reth
- Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Research Centres Bioss, Centre for Biological signal studies, CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
25
|
Piñero P, Marco De La Calle FM, Horndler L, Alarcón B, Uribe Barrientos M, Sarmiento H, Tarín F. Flow cytometry detection of sustained humoral immune response (IgG + IgA) against native spike glycoprotein in asymptomatic/mild SARS-CoV-2 infection. Sci Rep 2021; 11:10716. [PMID: 34021205 PMCID: PMC8140089 DOI: 10.1038/s41598-021-90054-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/04/2021] [Indexed: 11/23/2022] Open
Abstract
SARS-CoV-2 is the virus that causes the disease called COVID-19, which has caused the worst pandemic of the century. Both, to know the immunological status of general population and to evaluate the efficacy of the vaccination process that is taking place around the world, serological tests represent a key tool. Classic serological tests, based on colorimetric techniques, such as ELISA or CLIA, continue to be the most widely used option. However, a real improvement in results is still needed. We developed a highly sensitive and specific FCM assay that allows the detection of IgG and IgA antibodies, directed against the native and functional S-protein of SARS-CoV-2 exposed on the membrane of a transfected cell line, up to 8 months after infection.
Collapse
Affiliation(s)
- Paula Piñero
- ISABIAL, Hospital General de Alicante, Alicante, Spain.
| | | | - Lydia Horndler
- Centro de Biología Molecular Severo Ochoa, Madrid, Spain
| | | | | | | | | |
Collapse
|
26
|
Qu J, Chenier M, Zhang Y, Xu CQ. A Microflow Cytometry-Based Agglutination Immunoassay for Point-of-Care Quantitative Detection of SARS-CoV-2 IgM and IgG. MICROMACHINES 2021; 12:mi12040433. [PMID: 33919836 PMCID: PMC8070841 DOI: 10.3390/mi12040433] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/31/2022]
Abstract
A rapid, sensitive and simple microflow cytometry-based agglutination immunoassay (MCIA) was developed for point-of-care (POC) quantitative detection of SARS-CoV-2 IgM and IgG antibodies. The antibody concentration was determined by using the transit time of beads aggregates. A linear relationship was established between the average transit time and the concentration of SARS-CoV-2 IgM and IgG, respectively. The limit of detection (LOD) of SARS-CoV-2 IgM and IgG by the MCIA measurement are 0.06 mg/L and 0.10 mg/L, respectively. The 10 µL sample consumption, 30 min assay time and the compact setup make this technique suitable for POC quantitative detection of SARS-CoV-2 antibodies.
Collapse
Affiliation(s)
- Jianxi Qu
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (J.Q.); (Y.Z.)
| | - Mathieu Chenier
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada;
| | - Yushan Zhang
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (J.Q.); (Y.Z.)
| | - Chang-qing Xu
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (J.Q.); (Y.Z.)
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada;
- Correspondence: ; Tel.: +1-905-525-9140
| |
Collapse
|
27
|
Horndler L, Delgado P, Abia D, Balabanov I, Martínez‐Fleta P, Cornish G, Llamas MA, Serrano‐Villar S, Sánchez‐Madrid F, Fresno M, van Santen HM, Alarcón B. Flow cytometry multiplexed method for the detection of neutralizing human antibodies to the native SARS-CoV-2 spike protein. EMBO Mol Med 2021; 13:e13549. [PMID: 33471406 PMCID: PMC7933943 DOI: 10.15252/emmm.202013549] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
A correct identification of seropositive individuals for the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is of paramount relevance to assess the degree of protection of a human population to present and future outbreaks of the COVID-19 pandemic. We describe here a sensitive and quantitative flow cytometry method using the cytometer-friendly non-adherent Jurkat T-cell line that stably expresses the full-length native spike "S" protein of SARS-CoV-2 and a truncated form of the human EGFR that serves a normalizing role. S protein and huEGFRt coding sequences are separated by a T2A self-cleaving sequence, allowing to accurately quantify the presence of anti-S immunoglobulins by calculating a score based on the ratio of fluorescence intensities obtained by double-staining with the test sera and anti-EGFR. The method allows to detect immune individuals regardless of the result of other serological tests or even repeated PCR monitoring. As examples of its use, we show that as much as 28% of the personnel working at the CBMSO in Madrid is already immune. Additionally, we show that anti-S antibodies with protective neutralizing activity are long-lasting and can be detected in sera 8 months after infection.
Collapse
Affiliation(s)
- Lydia Horndler
- Centro de Biología Molecular Severo OchoaConsejo Superior de Investigaciones Científicas (CSIC)Universidad Autónoma de MadridMadridSpain
| | - Pilar Delgado
- Centro de Biología Molecular Severo OchoaConsejo Superior de Investigaciones Científicas (CSIC)Universidad Autónoma de MadridMadridSpain
| | - David Abia
- Bioinformatics FacilityCentro de Biología Molecular Severo OchoaConsejo Superior de Investigaciones Científicas (CSIC)Universidad Autónoma de MadridMadridSpain
| | - Ivaylo Balabanov
- Centro de Biología Molecular Severo OchoaConsejo Superior de Investigaciones Científicas (CSIC)Universidad Autónoma de MadridMadridSpain
| | | | | | | | | | | | - Manuel Fresno
- Centro de Biología Molecular Severo OchoaConsejo Superior de Investigaciones Científicas (CSIC)Universidad Autónoma de MadridMadridSpain
| | - Hisse M van Santen
- Centro de Biología Molecular Severo OchoaConsejo Superior de Investigaciones Científicas (CSIC)Universidad Autónoma de MadridMadridSpain
| | - Balbino Alarcón
- Centro de Biología Molecular Severo OchoaConsejo Superior de Investigaciones Científicas (CSIC)Universidad Autónoma de MadridMadridSpain
| |
Collapse
|