1
|
Soloviev A, Sydorenko V. Oxidative and Nitrous Stress Underlies Vascular Malfunction Induced by Ionizing Radiation and Diabetes. Cardiovasc Toxicol 2024; 24:776-788. [PMID: 38916845 DOI: 10.1007/s12012-024-09878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/30/2024] [Indexed: 06/26/2024]
Abstract
Oxidative stress results from the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in quantities exceeding the potential activity of the body's antioxidant system and is one of the risk factors for the development of vascular dysfunction in diabetes and exposure to ionizing radiation. Being the secondary products of normal aerobic metabolism in living organisms, ROS and RNS act as signaling molecules that play an important role in the regulation of vital organism functions. Meanwhile, in high concentrations, these compounds are toxic and disrupt various metabolic pathways. The various stress factors (hyperglycemia, gamma-irradiation, etc.) trigger free oxygen and nitrogen radicals accumulation in cells that are capable to damage almost all cellular components including ion channels and transporters such as Na+/K+-ATPase, BKCa, and TRP channels. Vascular dysfunctions are governed by interaction of ROS and RNS. For example, the reaction of ROS with NO produces peroxynitrite (ONOO-), which not only oxidizes DNA, cellular proteins, and lipids, but also disrupts important signaling pathways that regulate the cation channel functions in the vascular endothelium. Further increasing in ROS levels and formation of ONOO- leads to reduced NO bioavailability and causes endothelial dysfunction. Thus, imbalance of ROS and RNS and their affect on membrane ion channels plays an important role in the pathogenesis of vascular dysfunction associated with various disorders.
Collapse
Affiliation(s)
- Anatoly Soloviev
- Department for Pharmacology of Cellular Signaling Systems and Experimental Therapeutics, Institute of Pharmacology and Toxicology, National Academy of Medical Science, Kyiv, Ukraine.
| | - Vadym Sydorenko
- Department for Pharmacology of Cellular Signaling Systems and Experimental Therapeutics, Institute of Pharmacology and Toxicology, National Academy of Medical Science, Kyiv, Ukraine
| |
Collapse
|
2
|
Sun X, Lee HC, Lu T. Sorbs2 Deficiency and Vascular BK Channelopathy in Diabetes. Circ Res 2024; 134:858-871. [PMID: 38362769 PMCID: PMC10978258 DOI: 10.1161/circresaha.123.323538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Vascular large conductance Ca2+-activated K+ (BK) channel, composed of the α-subunit (BK-α) and the β1-subunit (BK-β1), is a key determinant of coronary vasorelaxation and its function is impaired in diabetic vessels. However, our knowledge of diabetic BK channel dysregulation is incomplete. The Sorbs2 (Sorbin homology [SoHo] and Src homology 3 [SH3] domains-containing protein 2), is ubiquitously expressed in arteries, but its role in vascular pathophysiology is unknown. METHODS The role of Sorbs2 in regulating vascular BK channel activity was determined using patch-clamp recordings, molecular biological techniques, and in silico analysis. RESULTS Sorbs2 is not only a cytoskeletal protein but also an RNA-binding protein that binds to BK channel proteins and BK-α mRNA, regulating BK channel expression and function in coronary smooth muscle cells. Molecular biological studies reveal that the SH3 domain of Sorbs2 is necessary for Sorbs2 interaction with BK-α subunits, while both the SH3 and SoHo domains of Sorbs2 interact with BK-β1 subunits. Deletion of the SH3 or SoHo domains abolishes the Sorbs2 effect on the BK-α/BK-β1 channel current density. Additionally, Sorbs2 is a target gene of the Nrf2 (nuclear factor erythroid-2-related factor 2), which binds to the promoter of Sorbs2 and regulates Sorbs2 expression in coronary smooth muscle cells. In vivo studies demonstrate that Sorbs2 knockout mice at 4 months of age display a significant decrease in BK channel expression and function, accompanied by impaired BK channel Ca2+-sensitivity and BK channel-mediated vasodilation in coronary arteries, without altering their body weights and blood glucose levels. Importantly, Sorbs2 expression is significantly downregulated in the coronary arteries of db/db type 2 diabetic mice. CONCLUSIONS Sorbs2, a downstream target of Nrf2, plays an important role in regulating BK channel expression and function in vascular smooth muscle cells. Vascular Sorbs2 is downregulated in diabetes. Genetic knockout of Sorbs2 manifests coronary BK channelopathy and vasculopathy observed in diabetic mice, independent of obesity and glucotoxicity.
Collapse
Affiliation(s)
- Xiaojing Sun
- The Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Hon-Chi Lee
- The Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Tong Lu
- The Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
3
|
Lu T, Lee HC. Coronary Large Conductance Ca 2+-Activated K + Channel Dysfunction in Diabetes Mellitus. Front Physiol 2021; 12:750618. [PMID: 34744789 PMCID: PMC8567020 DOI: 10.3389/fphys.2021.750618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022] Open
Abstract
Diabetes mellitus (DM) is an independent risk of macrovascular and microvascular complications, while cardiovascular diseases remain a leading cause of death in both men and women with diabetes. Large conductance Ca2+-activated K+ (BK) channels are abundantly expressed in arteries and are the key ionic determinant of vascular tone and organ perfusion. It is well established that the downregulation of vascular BK channel function with reduced BK channel protein expression and altered intrinsic BK channel biophysical properties is associated with diabetic vasculopathy. Recent efforts also showed that diabetes-associated changes in signaling pathways and transcriptional factors contribute to the downregulation of BK channel expression. This manuscript will review our current understandings on the molecular, physiological, and biophysical mechanisms that underlie coronary BK channelopathy in diabetes mellitus.
Collapse
Affiliation(s)
- Tong Lu
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Hon-Chi Lee
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
4
|
Nieves-Cintrón M, Flores-Tamez VA, Le T, Baudel MMA, Navedo MF. Cellular and molecular effects of hyperglycemia on ion channels in vascular smooth muscle. Cell Mol Life Sci 2021; 78:31-61. [PMID: 32594191 PMCID: PMC7765743 DOI: 10.1007/s00018-020-03582-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Diabetes affects millions of people worldwide. This devastating disease dramatically increases the risk of developing cardiovascular disorders. A hallmark metabolic abnormality in diabetes is hyperglycemia, which contributes to the pathogenesis of cardiovascular complications. These cardiovascular complications are, at least in part, related to hyperglycemia-induced molecular and cellular changes in the cells making up blood vessels. Whereas the mechanisms mediating endothelial dysfunction during hyperglycemia have been extensively examined, much less is known about how hyperglycemia impacts vascular smooth muscle function. Vascular smooth muscle function is exquisitely regulated by many ion channels, including several members of the potassium (K+) channel superfamily and voltage-gated L-type Ca2+ channels. Modulation of vascular smooth muscle ion channels function by hyperglycemia is emerging as a key contributor to vascular dysfunction in diabetes. In this review, we summarize the current understanding of how diabetic hyperglycemia modulates the activity of these ion channels in vascular smooth muscle. We examine underlying mechanisms, general properties, and physiological relevance in the context of myogenic tone and vascular reactivity.
Collapse
Affiliation(s)
- Madeline Nieves-Cintrón
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Víctor A Flores-Tamez
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Thanhmai Le
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | | | - Manuel F Navedo
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
5
|
Tang Q, Zheng YM, Song T, Reyes-García J, Wang C, Wang YX. Inhibition of big-conductance Ca 2+-activated K + channels in cerebral artery (vascular) smooth muscle cells is a major novel mechanism for tacrolimus-induced hypertension. Pflugers Arch 2020; 473:53-66. [PMID: 33033891 DOI: 10.1007/s00424-020-02470-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/17/2020] [Accepted: 09/30/2020] [Indexed: 01/10/2023]
Abstract
Tacrolimus (TAC, also called FK506), a common immunosuppressive drug used to prevent allograft rejection in transplant patients, is well known to alter the functions of blood vessels. In this study, we sought to determine whether chronic treatment of TAC could inhibit the activity of big-conductance Ca2+-activated K+ (BK) channels in vascular smooth muscle cells (SMCs), leading to hypertension. Our data reveal that the activity of BK channels was inhibited in cerebral artery SMCs (CASMCs) from mice after intraperitoneal injection of TAC once a day for 4 weeks. The voltage sensitivity, Ca2+ sensitivity, and open time of single BK channels were all decreased. In support, BK channel β1-, but not α-subunit protein expression was significantly decreased in cerebral arteries. In TAC-treated mice, application of norepinephrine induced stronger vasoconstriction in both cerebral and mesenteric arteries as well as a larger [Ca2+]i in CASMCs. Chronic treatment of TAC, similar to BK channel β1-subunit knockout (KO), resulted in hypertension in mice, but did not cause a further increase in blood pressure in BK channel β1-subunit KO mice. Moreover, BK channel activity in CASMCs was negatively correlated with blood pressure. Our findings provide novel evidence that TAC inhibits BK channels by reducing the channel β1-subunit expression and functions in vascular SMCs, leading to enhanced vasoconstriction and hypertension.
Collapse
Affiliation(s)
- Qiang Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA.,Department of Pharmacology, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA.
| | - Tengyao Song
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Jorge Reyes-García
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Chen Wang
- Department of Pharmacology, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA.
| |
Collapse
|
6
|
Qian LL, Liu XY, Yu ZM, Wang RX. BK Channel Dysfunction in Diabetic Coronary Artery: Role of the E3 Ubiquitin Ligases. Front Physiol 2020; 11:453. [PMID: 32547406 PMCID: PMC7274077 DOI: 10.3389/fphys.2020.00453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/09/2020] [Indexed: 01/11/2023] Open
Abstract
Diabetic coronary arterial disease is a leading cause of morbidity and mortality in diabetic patients. The impaired function of large-conductance calcium-activated potassium channels (BK channels) is involved in diabetic coronary arterial disease. Many studies have indicated that the reduced BK channel expression in diabetic coronary artery is attributed to ubiquitin-mediated protein degradation by the ubiquitin-proteasome system. This review focuses on the influence and the mechanisms of BK channel regulation by E3 ubiquitin ligases in diabetic coronary arterial disease. Thus, BK channels regulated by E3 ubiquitin ligase may play a pivotal role in the coronary pathogenesis of diabetic mellitus and, as such, is a potentially attractive target for therapeutic intervention.
Collapse
Affiliation(s)
| | | | | | - Ru-xing Wang
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|
7
|
Lu T, Chai Q, Jiao G, Wang XL, Sun X, Furuseth JD, Stulak JM, Daly RC, Greason KL, Cha YM, Lee HC. Downregulation of BK channel function and protein expression in coronary arteriolar smooth muscle cells of type 2 diabetic patients. Cardiovasc Res 2020; 115:145-153. [PMID: 29850792 DOI: 10.1093/cvr/cvy137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 05/22/2018] [Indexed: 12/20/2022] Open
Abstract
Aims Type 2 diabetes (T2D) is strongly associated with cardiovascular morbidity and mortality in patients. Vascular large conductance Ca2+-activated potassium (BK) channels, composed of four pore-forming α subunits (BK-α), and four regulatory β1 subunits (BK-β1), are densely expressed in coronary arterial smooth muscle cells (SMCs) and play an important role in regulating vascular tone and myocardial perfusion. However, the role of BK channels in coronary microvascular dysfunction of human subjects with diabetes is unclear. In this study, we examined BK channel function and protein expression, and BK channel-mediated vasodilation in freshly isolated coronary arterioles from T2D patients. Methods and results Atrial tissues were obtained from 16 patients with T2D and 25 matched non-diabetic subjects during cardiopulmonary bypass procedure. Microvessel videomicroscopy and immunoblot analysis were performed in freshly dissected coronary arterioles and inside-out single BK channel currents was recorded in enzymatically isolated coronary arteriolar SMCs. We found that BK channel sensitivity to physiological Ca2+ concentration and voltage was downregulated in the coronary arteriolar SMCs of diabetic patients, compared with non-diabetic controls. BK channel kinetics analysis revealed that there was significant shortening of the mean open time and prolongation of the mean closed time in diabetic patients, resulting in a remarkable reduction of the channel open probability. Functional studies showed that BK channel activation by dehydrosoyasaponin-1 was diminished and that BK channel-mediated vasodilation in response to shear stress was impaired in diabetic coronary arterioles. Immunoblot experiments confirmed that the protein expressions of BK-α and BK-β1 subunits were significantly downregulated, but the ratio of BK-α/BK-β1 was unchanged in the coronary arterioles of T2D patients. Conclusions Our results demonstrated for the first time that BK channel function and BK channel-mediated vasodilation were abnormal in the coronary microvasculature of diabetic patients, due to decreased protein expression and altered intrinsic properties of BK channels.
Collapse
Affiliation(s)
- Tong Lu
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW., Rochester, Minnesota, USA
| | - Qiang Chai
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW., Rochester, Minnesota, USA.,Department of Physiology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, 89 Jingshi Road, Jinan, Shandong, PR China
| | - Guoqing Jiao
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW., Rochester, Minnesota, USA.,Department of Cardiovascular Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, PR China
| | - Xiao-Li Wang
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW., Rochester, Minnesota, USA
| | - Xiaojing Sun
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW., Rochester, Minnesota, USA
| | - Jonathan D Furuseth
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW., Rochester, Minnesota, USA
| | - John M Stulak
- Department of Cardiovascular Surgery, Mayo Clinic, 200 First Street, SW., Rochester, Minnesota, USA
| | - Richard C Daly
- Department of Cardiovascular Surgery, Mayo Clinic, 200 First Street, SW., Rochester, Minnesota, USA
| | - Kevin L Greason
- Department of Cardiovascular Surgery, Mayo Clinic, 200 First Street, SW., Rochester, Minnesota, USA
| | - Yong-Mei Cha
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW., Rochester, Minnesota, USA
| | - Hon-Chi Lee
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW., Rochester, Minnesota, USA
| |
Collapse
|
8
|
Sun WT, Wang XC, Novakovic A, Wang J, He GW, Yang Q. Protection of dilator function of coronary arteries from homocysteine by tetramethylpyrazine: Role of ER stress in modulation of BK Ca channels. Vascul Pharmacol 2018; 113:27-37. [PMID: 30389615 DOI: 10.1016/j.vph.2018.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/10/2018] [Accepted: 10/27/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVES We recently reported the involvement of ER stress-mediated BKCa channel inhibition in homocysteine-induced coronary dilator dysfunction. In another study, we demonstrated that tetramethylpyrazine (TMP), an active ingredient of the Chinese herb Chuanxiong, possesses potent anti-ER stress capacity. The present study investigated whether TMP protects BKCa channels from homocysteine-induced inhibition and whether suppression of ER stress is a mechanism contributing to the protection. Furthermore, we explored the signaling transduction involved in TMP-conferred protection on BKCa channels. METHODS BKCa channel-mediated relaxation was studied in porcine small coronary arteries. Expressions of BKCa channel subunits, ER stress molecules, and E3 ubiquitin ligases, as well as BKCa ubiquitination were determined in porcine coronary arterial smooth muscle cells (PCASMCs). Whole-cell BKCa currents were recorded. RESULTS Exposure of PCASMCs to homocysteine or the chemical ER stressor tunicamycin increased the expression of ER stress molecules, which was significantly inhibited by TMP. Suppression of ER stress by TMP preserved the BKCa β1 protein level and restored the BKCa current in PCASMCs, concomitant with an improved BKCa-mediated dilatation in coronary arteries. TMP attenuated homocysteine-induced BKCa β1 protein ubiquitination, in which inhibition of ER stress-mediated FoxO3a activation and FoxO3a-dependent atrogin-1 and Murf-1 was involved. CONCLUSIONS Reversal of BKCa channel inhibition via suppressing ER stress-mediated loss of β1 subunits contributes to the protective effect of TMP against homocysteine on coronary dilator function. Inhibition of FoxO3a-dependent ubiquitin ligases is involved in TMP-conferred normalization of BKCa β1 protein level. These results provide new mechanistic insights into the cardiovascular benefits of TMP.
Collapse
Affiliation(s)
- Wen-Tao Sun
- Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Xiang-Chong Wang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Aleksandra Novakovic
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Jun Wang
- Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Guo-Wei He
- Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Qin Yang
- Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin, China.
| |
Collapse
|
9
|
Zhu Y, Ye P, Chen SL, Zhang DM. Functional regulation of large conductance Ca 2+-activated K + channels in vascular diseases. Metabolism 2018; 83:75-80. [PMID: 29373813 DOI: 10.1016/j.metabol.2018.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 01/03/2018] [Accepted: 01/18/2018] [Indexed: 12/17/2022]
Abstract
The large conductance Ca2+-activated potassium channels, the BK channels, is widely expressed in various tissues and activated in a Ca2+- and voltage-dependent manner. The activation of BK channels hyperpolarizes vascular smooth muscle cell membrane potential, resulting in vasodilation. Under pathophysiological conditions, such as diabetes mellitus and hypertension, impaired BK channel function exacerbates vascular vasodilation and leads to organ ischemia. The vascular BK channel is composed of 4 pore-forming subunits, BK-α together with 4 auxiliary subunits: β1 subunits (BK-β1) or γ1 subunits (BK-γ1). Recent studies have shown that down-regulation of the BK β1 subunit in diabetes mellitus induced vascular dysfunction; however, the molecular mechanism of these vascular diseases is not well understood. In this review, we summarize the potential mechanisms regarding BK channelopathy and the potential therapeutic targets of BK channels for vascular diseases.
Collapse
Affiliation(s)
- Yanrong Zhu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Peng Ye
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Shao-Liang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Dai-Min Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China.
| |
Collapse
|
10
|
Nieves-Cintrón M, Syed AU, Buonarati OR, Rigor RR, Nystoriak MA, Ghosh D, Sasse KC, Ward SM, Santana LF, Hell JW, Navedo MF. Impaired BK Ca channel function in native vascular smooth muscle from humans with type 2 diabetes. Sci Rep 2017; 7:14058. [PMID: 29070899 PMCID: PMC5656614 DOI: 10.1038/s41598-017-14565-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/11/2017] [Indexed: 01/04/2023] Open
Abstract
Large-conductance Ca2+-activated potassium (BKCa) channels are key determinants of vascular smooth muscle excitability. Impaired BKCa channel function through remodeling of BKCa β1 expression and function contributes to vascular complications in animal models of diabetes. Yet, whether similar alterations occur in native vascular smooth muscle from humans with type 2 diabetes is unclear. In this study, we evaluated BKCa function in vascular smooth muscle from small resistance adipose arteries of non-diabetic and clinically diagnosed type 2 diabetic patients. We found that BKCa channel activity opposes pressure-induced constriction in human small resistance adipose arteries, and this is compromised in arteries from diabetic patients. Consistent with impairment of BKCa channel function, the amplitude and frequency of spontaneous BKCa currents, but not Ca2+ sparks were lower in cells from diabetic patients. BKCa channels in diabetic cells exhibited reduced Ca2+ sensitivity, single-channel open probability and tamoxifen sensitivity. These effects were associated with decreased functional coupling between BKCa α and β1 subunits, but no change in total protein abundance. Overall, results suggest impairment in BKCa channel function in vascular smooth muscle from diabetic patients through unique mechanisms, which may contribute to vascular complications in humans with type 2 diabetes.
Collapse
Affiliation(s)
| | - Arsalan U Syed
- Department of Pharmacology, University of California, Davis, CA, 95616, USA
| | - Olivia R Buonarati
- Department of Pharmacology, University of California, Davis, CA, 95616, USA
| | - Robert R Rigor
- Department of Pharmacology, University of California, Davis, CA, 95616, USA
| | - Matthew A Nystoriak
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Debapriya Ghosh
- Department of Pharmacology, University of California, Davis, CA, 95616, USA
| | | | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Luis F Santana
- Department of Physiology & Membrane Biology, University of California, Davis, CA, 95616, USA
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, CA, 95616, USA
| | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
11
|
Tang X, Qian LL, Wang RX, Yao Y, Dang SP, Wu Y, Wang W, Ji Y, Sun MQ, Xia DY, Liu XY, Zhang DM, Chai Q, Lu T. Regulation of Coronary Arterial Large Conductance Ca2+-Activated K+ Channel Protein Expression and Function by n-3 Polyunsaturated Fatty Acids in Diabetic Rats. J Vasc Res 2017; 54:329-343. [PMID: 29040972 DOI: 10.1159/000479870] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/28/2017] [Indexed: 12/22/2022] Open
Abstract
AIM The objective of this study was to examine the effects of n-3 polyunsaturated fatty acids (n-3 PUFAs) on coronary arterial large conductance Ca2+-activated K+ (BK) channel function in coronary smooth muscle cells (SMCs) of streptozotocin-induced diabetic rats. METHODS The effects of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on coronary BK channel open probabilities were determined using the patch clamp technique. The mRNA and protein expressions of BK channel subunits were measured using qRT-PCR and Western blots. The coronary artery tension and coronary SMC Ca2+ concentrations were measured using a myograph system and fluorescence Ca2+ indicator. RESULTS Compared to nondiabetic control rats, the BK channel function was impaired with a reduced response to EPA and DHA in freshly isolated SMCs of diabetic rats. Oral administration of n-3 PUFAs had no effects on protein expressions of BK channel subunits in nondiabetic rats, but significantly enhanced those of BK-β1 in diabetic rats without altering BK-α protein levels. Moreover, coronary ring tension induced by iberiotoxin (a specific BK channel blocker) was increased and cytosolic Ca2+ concentrations in coronary SMCs were decreased in diabetic rats, but no changes were found in nondiabetic rats. CONCLUSIONS n-3 PUFAs protect the coronary BK channel function and coronary vasoreactivity in diabetic rats as a result of not only increasing BK-β1 protein expressions, but also decreasing coronary artery tension and coronary smooth muscle cytosolic Ca2+ concentrations.
Collapse
Affiliation(s)
- Xu Tang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lu T, Sun X, Li Y, Chai Q, Wang XL, Lee HC. Role of Nrf2 Signaling in the Regulation of Vascular BK Channel β1 Subunit Expression and BK Channel Function in High-Fat Diet-Induced Diabetic Mice. Diabetes 2017; 66:2681-2690. [PMID: 28465407 PMCID: PMC5606315 DOI: 10.2337/db17-0181] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/17/2017] [Indexed: 01/13/2023]
Abstract
The large conductance Ca2+-activated K+ (BK) channel β1-subunit (BK-β1) is a key modulator of BK channel electrophysiology and the downregulation of BK-β1 protein expression in vascular smooth muscle cells (SMCs) underlies diabetic vascular dysfunction. In this study, we hypothesized that the nuclear factor erythroid-2-related factor 2 (Nrf2) signaling pathway plays a significant role in the regulation of coronary BK channel function and vasodilation in high-fat diet (HFD)-induced obese/diabetic mice. We found that the protein expressions of BK-β1 and Nrf2 were markedly downregulated, whereas those of the nuclear factor-κB (NF-κB) and the muscle ring finger protein 1 (MuRF1 [a ubiquitin E3 ligase for BK-β1]) were significantly upregulated in HFD mouse arteries. Adenoviral expression of Nrf2 suppressed the protein expressions of NF-κB and MuRF1 but enhanced BK-β1 mRNA and protein expressions in cultured coronary SMCs. Knockdown of Nrf2 resulted in reciprocal changes of these proteins. Patch-clamp studies showed that coronary BK-β1-mediated channel activation was diminished in HFD mice. Importantly, the activation of Nrf2 by dimethyl fumarate significantly reduced the body weight and blood glucose levels of HFD mice, enhanced BK-β1 transcription, and attenuated MuRF1-dependent BK-β1 protein degradation, which in turn restored coronary BK channel function and BK channel-mediated coronary vasodilation in HFD mice. Hence, Nrf2 is a novel regulator of BK channel function with therapeutic implications in diabetic vasculopathy.
Collapse
Affiliation(s)
- Tong Lu
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Xiaojing Sun
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Yong Li
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
- Department of Cardiology, The Affiliated Wujin Hospital of Jiangsu University, Changzhou, Jiangsu, People's Republic of China
| | - Qiang Chai
- Department of Physiology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Xiao-Li Wang
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Hon-Chi Lee
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| |
Collapse
|
13
|
Li Y, Wang XL, Sun X, Chai Q, Li J, Thompson B, Shen WK, Lu T, Lee HC. Regulation of vascular large-conductance calcium-activated potassium channels by Nrf2 signalling. Diab Vasc Dis Res 2017; 14:353-362. [PMID: 28429615 DOI: 10.1177/1479164117703903] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BK channels are major ionic determinants of vasodilation. BK channel function is impaired in diabetic vessels due to accelerated proteolysis of its beta-1 (BK-β1) subunits in response to increased oxidative stress. The nuclear factor E2-related factor-2 (Nrf2) signalling pathway has emerged as a master regulator of cellular redox status, and we hypothesized that it plays a central role in regulating BK channel function in diabetic vessels. We found that Nrf2 expression was markedly reduced in db/db diabetic mouse aortas, and this was associated with significant downregulation of BK-β1. In addition, the muscle ring finger protein 1 (MuRF1), a known E-3 ligase targeting BK-β1 ubiquitination and proteasomal degradation, was significantly augmented. These findings were reproduced by knockdown of Nrf2 by siRNA in cultured human coronary artery smooth muscle cells. In contrast, adenoviral transfer of Nrf2 gene in these cells downregulated MuRF1 and upregulated BK-β1 expression. Activation of Nrf2 by dimethyl fumarate preserved BK-β1 expression and protected BK channel and vascular function in db/db coronary arteries. These results indicate that expression of BK-β1 is closely regulated by Nrf2 and vascular BK channel function can be restored by Nrf2 activation. Nrf2 should be considered a novel therapeutic target in the treatment of diabetic vasculopathy.
Collapse
Affiliation(s)
- Yong Li
- 1 Department of Cardiology, Affiliated Wujin Hospital of Jiangsu University, Changzhou, China
- 2 Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Xiao-Li Wang
- 2 Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Xiaojing Sun
- 2 Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Qiang Chai
- 2 Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- 3 Department of Physiology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, P.R. China
| | - Jingchao Li
- 2 Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- 4 Department of Emergency Medicine, Henan Provincial People's Hospital, Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Benjamin Thompson
- 2 Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Win-Kuang Shen
- 5 Department of Cardiovascular Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Tong Lu
- 2 Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Hon-Chi Lee
- 2 Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
14
|
Khavandi K, Baylie RA, Sugden SA, Ahmed M, Csato V, Eaton P, Hill-Eubanks DC, Bonev AD, Nelson MT, Greenstein AS. Pressure-induced oxidative activation of PKG enables vasoregulation by Ca2+ sparks and BK channels. Sci Signal 2016; 9:ra100. [PMID: 27729550 DOI: 10.1126/scisignal.aaf6625] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Activation of Ca2+-sensitive, large-conductance potassium (BK) channels in vascular smooth muscle cells (VSMCs) by local, ryanodine receptor-mediated Ca2+ signals (Ca2+ sparks) acts as a brake on pressure-induced (myogenic) vasoconstriction-a fundamental mechanism that regulates blood flow in small resistance arteries. We report that physiological intraluminal pressure within resistance arteries activated cGMP-dependent protein kinase (PKG) in VSMCs through oxidant-induced formation of an intermolecular disulfide bond between cysteine residues. Oxidant-activated PKG was required to trigger Ca2+ sparks, BK channel activity, and vasodilation in response to pressure. VSMCs from arteries from mice expressing a form of PKG that could not be activated by oxidants showed reduced Ca2+ spark frequency, and arterial preparations from these mice had decreased pressure-induced activation of BK channels. Thus, the absence of oxidative activation of PKG disabled the BK channel-mediated negative feedback regulation of vasoconstriction. Our results support the concept of a negative feedback control mechanism that regulates arterial diameter through mechanosensitive production of oxidants to activate PKG and enhance Ca2+ sparks.
Collapse
Affiliation(s)
- Kaivan Khavandi
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Sciences Center, Manchester, M13 9NT, UK.,King's College London, Cardiovascular Division, The British Heart Foundation Centre of Excellence, The Rayne Institute, Saint Thomas' Hospital, London, SE1 7EH, UK
| | - Rachael A Baylie
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Sciences Center, Manchester, M13 9NT, UK
| | - Sarah A Sugden
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Sciences Center, Manchester, M13 9NT, UK
| | - Majid Ahmed
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Sciences Center, Manchester, M13 9NT, UK.,Department of Pharmacology, University of Vermont, Vermont, 05405-0068, USA
| | - Viktoria Csato
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Sciences Center, Manchester, M13 9NT, UK.,Division of Clinical Physiology, Institute of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen 4012, Hungary
| | - Philip Eaton
- King's College London, Cardiovascular Division, The British Heart Foundation Centre of Excellence, The Rayne Institute, Saint Thomas' Hospital, London, SE1 7EH, UK
| | | | - Adrian D Bonev
- Department of Pharmacology, University of Vermont, Vermont, 05405-0068, USA
| | - Mark T Nelson
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Sciences Center, Manchester, M13 9NT, UK.,Department of Pharmacology, University of Vermont, Vermont, 05405-0068, USA
| | - Adam S Greenstein
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Sciences Center, Manchester, M13 9NT, UK
| |
Collapse
|
15
|
Parajuli SP, Zheng YM, Levin R, Wang YX. Big-conductance Ca 2+-activated K + channels in physiological and pathophysiological urinary bladder smooth muscle cells. Channels (Austin) 2016; 10:355-364. [PMID: 27101440 DOI: 10.1080/19336950.2016.1180488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Contraction and relaxation of urinary bladder smooth muscle cells (UBSMCs) represent the important physiological functions of the bladder. Contractile responses in UBSMCs are regulated by a number of ion channels including big-conductance Ca2+- activated K+ (BK) channels. Great progress has been made in studies of BK channels in UBSMCs. The intent of this review is to summarize recent exciting findings with respect to the functional interactions of BK channels with muscarinic receptors, ryanodine receptors (RyRs) and inositol triphosphate receptors (IP3Rs) as well as their functional importance under normal and pathophysiological conditions. BK channels are highly expressed in UBSMCs. Activation of muscarinic M3 receptors inhibits the BK channel activity, facilitates opening of voltage-dependent Ca2+ (CaV) channels, and thereby enhances excitability and contractility of UBSMCs. Signaling molecules and regulatory mechanisms involving RyRs and IP3Rs have a significant effect on functions of BK channels and thereby regulate cellular responses in UBSMCs under normal and pathophysiological conditions including overactive bladders. Moreover, BK channels may represent a novel target for the treatment of bladder dysfunctions.
Collapse
Affiliation(s)
- Shankar P Parajuli
- a Center for Cardiovascular Sciences, Albany Medical College , Albany , NY , USA
| | - Yun-Min Zheng
- a Center for Cardiovascular Sciences, Albany Medical College , Albany , NY , USA
| | - Robert Levin
- b Stratton VA Medical Center , Albany , NY , USA
| | - Yong-Xiao Wang
- a Center for Cardiovascular Sciences, Albany Medical College , Albany , NY , USA
| |
Collapse
|
16
|
BK channel β1-subunit deficiency exacerbates vascular fibrosis and remodelling but does not promote hypertension in high-fat fed obesity in mice. J Hypertens 2016; 33:1611-23. [PMID: 26049174 DOI: 10.1097/hjh.0000000000000590] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Reduced expression or increased degradation of BK (large conductance Ca-activated K) channel β1-subunits has been associated with increased vascular tone and hypertension in some metabolic diseases. The contribution of BK channel function to control of blood pressure (BP), heart rate (HR) and vascular function/structure was determined in wild-type and BK channel β1-subunit knockout mice fed a high-fat or control diet. METHODS AND RESULTS After 24 weeks of high-fat diet, wild-type and BK β1-knockout mice were obese, diabetic, but normotensive. High-fat-BK β1-knockout mice had decreased HR, while high-fat-wild-type mice had increased HR compared with mice on the control diet. Ganglion blockade caused a greater fall in BP and HR in mice on a high-fat diet than in mice on the control diet. β1-adrenergic receptor blockade reduced BP and HR equally in all groups. α1-adrenergic receptor blockade decreased BP in high-fat-BK β1-knockout mice only. Echocardiographic evaluation revealed left ventricular hypertrophy in high-fat-BK β1-knockout mice. Although under anaesthesia, mice on a high-fat diet had higher absolute stroke volume and cardiac output, these measures were similar to control mice when adjusted for body weight. Mesenteric arteries from high-fat-BK β1-knockout mice had higher norepinephrine reactivity, greater wall thickness and collagen accumulation than high-fat-wild-type mesenteric arteries. Compared with control-wild-type mesenteric arteries, high-fat-wild-type mesenteric arteries had blunted contractile responses to a BK channel blocker, although BK α-subunit (protein) and β1-subunit (mRNA) expression were unchanged. CONCLUSION BK channel deficiency promotes increased sympathetic control of BP, and vascular dysfunction, remodelling and fibrosis, but does not cause hypertension in high-fat fed mice.
Collapse
|
17
|
Noblet JN, Owen MK, Goodwill AG, Sassoon DJ, Tune JD. Lean and Obese Coronary Perivascular Adipose Tissue Impairs Vasodilation via Differential Inhibition of Vascular Smooth Muscle K+ Channels. Arterioscler Thromb Vasc Biol 2015; 35:1393-400. [PMID: 25838427 DOI: 10.1161/atvbaha.115.305500] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/24/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The effects of coronary perivascular adipose tissue (PVAT) on vasomotor tone are influenced by an obese phenotype and are distinct from other adipose tissue depots. The purpose of this investigation was to examine the effects of lean and obese coronary PVAT on end-effector mechanisms of coronary vasodilation and to identify potential factors involved. APPROACH AND RESULTS Hematoxylin and eosin staining revealed similarities in coronary perivascular adipocyte size between lean and obese Ossabaw swine. Isometric tension studies of isolated coronary arteries from Ossabaw swine revealed that factors derived from lean and obese coronary PVAT attenuated vasodilation to adenosine. Lean coronary PVAT inhibited K(Ca) and KV7, but not KATP channel-mediated dilation in lean arteries. In the absence of PVAT, vasodilation to K(Ca) and KV7 channel activation was impaired in obese arteries relative to lean arteries. Obese PVAT had no effect on K(Ca) or KV7 channel-mediated dilation in obese arteries. In contrast, obese PVAT inhibited KATP channel-mediated dilation in both lean and obese arteries. The differential effects of obese versus lean PVAT were not associated with changes in either coronary KV7 or K(ATP) channel expression. Incubation with calpastatin attenuated coronary vasodilation to adenosine in lean but not in obese arteries. CONCLUSIONS These findings indicate that lean and obese coronary PVAT attenuates vasodilation via inhibitory effects on vascular smooth muscle K(+) channels and that alterations in specific factors such as calpastatin are capable of contributing to the initiation or progression of smooth muscle dysfunction in obesity.
Collapse
Affiliation(s)
- Jillian N Noblet
- From the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis (J.N.N., A.G.G., D.J.S., J.D.T.); and Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill (M.K.O.)
| | - Meredith K Owen
- From the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis (J.N.N., A.G.G., D.J.S., J.D.T.); and Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill (M.K.O.)
| | - Adam G Goodwill
- From the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis (J.N.N., A.G.G., D.J.S., J.D.T.); and Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill (M.K.O.)
| | - Daniel J Sassoon
- From the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis (J.N.N., A.G.G., D.J.S., J.D.T.); and Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill (M.K.O.)
| | - Johnathan D Tune
- From the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis (J.N.N., A.G.G., D.J.S., J.D.T.); and Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill (M.K.O.).
| |
Collapse
|
18
|
Ghasemi M, Khodaei N, Salari S, Eliassi A, Saghiri R. Gating behavior of endoplasmic reticulum potassium channels of rat hepatocytes in diabetes. IRANIAN BIOMEDICAL JOURNAL 2015; 18:165-72. [PMID: 24842143 PMCID: PMC4048481 DOI: 10.6091/ibj.1308.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Defects in endoplasmic reticulum homeostasis are common occurrences in different diseases, such as diabetes, in which the function of endoplasmic reticulum is disrupted. It is now well established that ion channels of endoplasmic reticulum membrane have a critical role in endoplasmic reticulum luminal homeostasis. Our previous studies showed the presence of an ATP-sensitive cationic channel in endoplasmic reticulum. Therefore, in this study, we examined and compared the activities of this channel in control and diabetic rats using single-channel recording techniques. METHOD Male Wistar rats were made diabetic for 2 weeks with a single dose injection of streptozotocin (45 mg/kg). Ion channel incorporation of rough endoplasmic reticulum of diabetic hepatocytes into the bilayer lipid membrane allowed the characterization of K+ channel. RESULTS Ion channel incorporation of rough endoplasmic reticulum vesicles into the bilayer lipid revealed that the channel current-voltage (I-V) relation with a mean slope conductance of 520 ± 19 pS was unaffected in diabetes. Interestingly, the channel Po-voltage relation was significantly lower in diabetic rats at voltages above +30 mV. CONCLUSION We concluded that the endoplasmic reticulum cationic channel is involved in diabetes. Also, this finding could be considered as a goal for further therapeutic plans.
Collapse
Affiliation(s)
- Maedeh Ghasemi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Evin, Tehran 19857, Iran
| | - Naser Khodaei
- Dept. of Physiology, Shahid Beheshti University of Medical Sciences, Evin, Tehran 19857, Iran
| | - Sajjad Salari
- Dept. of Physiology, Ilam University of Medical Sciences, Ilam, Iran
| | - Afsaneh Eliassi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Evin, Tehran 19857, Iran.,Dept. of Physiology, Shahid Beheshti University of Medical Sciences, Evin, Tehran 19857, Iran.,Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Evin, Tehran 19857, Iran
| | - Reza Saghiri
- Dept. of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
19
|
Impairment of brain mitochondrial charybdotoxin- and ATP-insensitive BK channel activities in diabetes. Neuromolecular Med 2014; 16:862-71. [PMID: 25344764 DOI: 10.1007/s12017-014-8334-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 10/17/2014] [Indexed: 12/22/2022]
Abstract
Existing evidence indicates an impairment of mitochondrial functions and alterations in potassium channel activities in diabetes. Because mitochondrial potassium channels have been involved in several mitochondrial functions including cytoprotection, apoptosis and calcium homeostasis, a study was carried out to consider whether the gating behavior of the mitochondrial ATP- and ChTx-insensitive Ca(2+)-activated potassium channel (mitoBKCa) is altered in a streptozotocin (STZ) model of diabetes. Using ion channel incorporation of brain mitochondrial inner membrane into the bilayer lipid membrane, we provide in this work evidence for modifications of the mitoBKCa ion permeation properties with channels from vesicles preparations coming from diabetic rats characterized by a significant decrease in conductance. More importantly, the open probability of channels from diabetic rats was reduced 1.5-2.5 fold compared to control, the most significant decrease being observed at depolarizing potentials. Because BKCa β4 subunit has been documented to left shift the BKCa channel voltage dependence curve in high Ca(2+) conditions, a Western blot analysis was undertaken where the expression of mitoBKCa α and β4 subunits was estimated using of anti-α and β4 subunit antibodies. Our results indicated a significant decrease in mitoBKCa β4 subunit expression coupled to a decrease in the expression of α subunit, an observation compatible with the observed decrease in Ca(2+) sensitivity. Our results thus demonstrate a modification in the mitoBKCa channel gating properties in membrane preparations coming from STZ model of diabetic rats, an effect potentially linked to a change in mitoBKCa β4 and α subunits expression and/or to an increase in reactive oxygen species production in high glucose conditions.
Collapse
|
20
|
Fernández-Velasco M, Ruiz-Hurtado G, Gómez AM, Rueda A. Ca(2+) handling alterations and vascular dysfunction in diabetes. Cell Calcium 2014; 56:397-407. [PMID: 25218935 DOI: 10.1016/j.ceca.2014.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/30/2014] [Accepted: 08/07/2014] [Indexed: 12/12/2022]
Abstract
More than 65% of patients with diabetes mellitus die from cardiovascular disease or stroke. Hyperglycemia, due to either reduced insulin secretion or reduced insulin sensitivity, is the hallmark feature of diabetes mellitus. Vascular dysfunction is a distinctive phenotype found in both types of diabetes and could be responsible for the high incidence of stroke, heart attack, and organ damage in diabetic patients. In addition to well-documented endothelial dysfunction, Ca(2+) handling alterations in vascular smooth muscle cells (VSMCs) play a key role in the development and progression of vascular complications in diabetes. VSMCs provide not only structural integrity to the vessels but also control myogenic arterial tone and systemic blood pressure through global and local Ca(2+) signaling. The Ca(2+) signalosome of VSMCs is integrated by an extensive number of Ca(2+) handling proteins (i.e. channels, pumps, exchangers) and related signal transduction components, whose function is modulated by endothelial effectors. This review summarizes recent findings concerning alterations in endothelium and VSMC Ca(2+) signaling proteins that may contribute to the vascular dysfunction found in the diabetic condition.
Collapse
Affiliation(s)
| | - Gema Ruiz-Hurtado
- Unidad de Hipertensión, Instituto de Investigación imas12, Hospital 12 de Octubre, Madrid, Spain; Instituto Pluridisciplinar, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - Ana M Gómez
- Inserm, UMR S769, Faculté de Pharmacie, Université Paris Sud, Labex LERMIT, DHU TORINO, Châtenay-Malabry, France
| | - Angélica Rueda
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico.
| |
Collapse
|
21
|
Owen MK, Noblet JN, Sassoon DJ, Conteh AM, Goodwill AG, Tune JD. Perivascular adipose tissue and coronary vascular disease. Arterioscler Thromb Vasc Biol 2014; 34:1643-9. [PMID: 24790142 DOI: 10.1161/atvbaha.114.303033] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Coronary perivascular adipose tissue is a naturally occurring adipose tissue depot that normally surrounds the major coronary arteries on the surface of the heart. Although originally thought to promote vascular health and integrity, there is a growing body of evidence to support that coronary perivascular adipose tissue displays a distinct phenotype relative to other adipose depots and is capable of producing local factors with the potential to augment coronary vascular tone, inflammation, and the initiation and progression of coronary artery disease. The purpose of the present review is to outline previous findings about the cardiovascular effects of coronary perivascular adipose tissue and the potential mechanisms by which adipose-derived factors may influence coronary vascular function and the progression of atherogenesis.
Collapse
Affiliation(s)
- Meredith Kohr Owen
- From the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill (M.K.O.); and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis (J.N.N., D.J.S., A.M.C., A.G.G., J.D.T.)
| | - Jillian N Noblet
- From the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill (M.K.O.); and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis (J.N.N., D.J.S., A.M.C., A.G.G., J.D.T.)
| | - Daniel J Sassoon
- From the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill (M.K.O.); and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis (J.N.N., D.J.S., A.M.C., A.G.G., J.D.T.)
| | - Abass M Conteh
- From the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill (M.K.O.); and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis (J.N.N., D.J.S., A.M.C., A.G.G., J.D.T.)
| | - Adam G Goodwill
- From the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill (M.K.O.); and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis (J.N.N., D.J.S., A.M.C., A.G.G., J.D.T.)
| | - Johnathan D Tune
- From the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill (M.K.O.); and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis (J.N.N., D.J.S., A.M.C., A.G.G., J.D.T.).
| |
Collapse
|
22
|
Effect of diet-induced obesity on BKCa function in contraction and dilation of rat isolated middle cerebral artery. Vascul Pharmacol 2014; 61:10-5. [DOI: 10.1016/j.vph.2014.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/13/2014] [Accepted: 02/16/2014] [Indexed: 01/09/2023]
|
23
|
Yi F, Wang H, Chai Q, Wang X, Shen WK, Willis MS, Lee HC, Lu T. Regulation of large conductance Ca2+-activated K+ (BK) channel β1 subunit expression by muscle RING finger protein 1 in diabetic vessels. J Biol Chem 2014; 289:10853-10864. [PMID: 24570002 DOI: 10.1074/jbc.m113.520940] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The large conductance Ca(2+)-activated K(+) (BK) channel, expressed abundantly in vascular smooth muscle cells (SMCs), is a key determinant of vascular tone. BK channel activity is tightly regulated by its accessory β1 subunit (BK-β1). However, BK channel function is impaired in diabetic vessels by increased ubiquitin/proteasome-dependent BK-β1 protein degradation. Muscle RING finger protein 1 (MuRF1), a muscle-specific ubiquitin ligase, is implicated in many cardiac and skeletal muscle diseases. However, the role of MuRF1 in the regulation of vascular BK channel and coronary function has not been examined. In this study, we hypothesized that MuRF1 participated in BK-β1 proteolysis, leading to the down-regulation of BK channel activation and impaired coronary function in diabetes. Combining patch clamp and molecular biological approaches, we found that MuRF1 expression was enhanced, accompanied by reduced BK-β1 expression, in high glucose-cultured human coronary SMCs and in diabetic vessels. Knockdown of MuRF1 by siRNA in cultured human SMCs attenuated BK-β1 ubiquitination and increased BK-β1 expression, whereas adenoviral expression of MuRF1 in mouse coronary arteries reduced BK-β1 expression and diminished BK channel-mediated vasodilation. Physical interaction between the N terminus of BK-β1 and the coiled-coil domain of MuRF1 was demonstrated by pulldown assay. Moreover, MuRF1 expression was regulated by NF-κB. Most importantly, pharmacological inhibition of proteasome and NF-κB activities preserved BK-β1 expression and BK-channel-mediated coronary vasodilation in diabetic mice. Hence, our results provide the first evidence that the up-regulation of NF-κB-dependent MuRF1 expression is a novel mechanism that leads to BK channelopathy and vasculopathy in diabetes.
Collapse
Affiliation(s)
- Fu Yi
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota 55905; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xian 710032, China
| | - Huan Wang
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Qiang Chai
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Xiaoli Wang
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Win-Kuang Shen
- Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona 85259
| | - Monte S Willis
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Hon-Chi Lee
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Tong Lu
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota 55905.
| |
Collapse
|
24
|
Affiliation(s)
- D.D. Gutterman
- From the Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee
| | - M.J. Durand
- From the Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee
| |
Collapse
|
25
|
Contreras GF, Castillo K, Enrique N, Carrasquel-Ursulaez W, Castillo JP, Milesi V, Neely A, Alvarez O, Ferreira G, González C, Latorre R. A BK (Slo1) channel journey from molecule to physiology. Channels (Austin) 2013; 7:442-58. [PMID: 24025517 DOI: 10.4161/chan.26242] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Calcium and voltage-activated potassium (BK) channels are key actors in cell physiology, both in neuronal and non-neuronal cells and tissues. Through negative feedback between intracellular Ca (2+) and membrane voltage, BK channels provide a damping mechanism for excitatory signals. Molecular modulation of these channels by alternative splicing, auxiliary subunits and post-translational modifications showed that these channels are subjected to many mechanisms that add diversity to the BK channel α subunit gene. This complexity of interactions modulates BK channel gating, modifying the energetic barrier of voltage sensor domain activation and channel opening. Regions for voltage as well as Ca (2+) sensitivity have been identified, and the crystal structure generated by the 2 RCK domains contained in the C-terminal of the channel has been described. The linkage of these channels to many intracellular metabolites and pathways, as well as their modulation by extracellular natural agents, has been found to be relevant in many physiological processes. This review includes the hallmarks of BK channel biophysics and its physiological impact on specific cells and tissues, highlighting its relationship with auxiliary subunit expression.
Collapse
Affiliation(s)
- Gustavo F Contreras
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso, Chile; Doctorado en Ciencias mención Neurociencia; Universidad de Valparaíso; Valparaíso, Chile
| | - Karen Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso, Chile
| | - Nicolás Enrique
- Grupo de Investigación en Fisiología Vascular (GINFIV); Universidad Nacional de la Plata; La Plata, Argentina
| | - Willy Carrasquel-Ursulaez
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso, Chile; Doctorado en Ciencias mención Neurociencia; Universidad de Valparaíso; Valparaíso, Chile
| | - Juan Pablo Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso, Chile; Facultad de Ciencias; Universidad de Chile; Santiago, Chile
| | - Verónica Milesi
- Grupo de Investigación en Fisiología Vascular (GINFIV); Universidad Nacional de la Plata; La Plata, Argentina
| | - Alan Neely
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso, Chile
| | | | - Gonzalo Ferreira
- Laboratorio de Canales Iónicos; Departamento de Biofísica; Facultad de Medicina; Universidad de la República; Montevideo, Uruguay
| | - Carlos González
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso, Chile
| | - Ramón Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso, Chile
| |
Collapse
|
26
|
Zheng YM, Park SW, Stokes L, Tang Q, Xiao JH, Wang YX. Distinct activity of BK channel β1-subunit in cerebral and pulmonary artery smooth muscle cells. Am J Physiol Cell Physiol 2013; 304:C780-9. [PMID: 23426969 DOI: 10.1152/ajpcell.00006.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study was designed to test a hypothesis that the functional activity of big-conductance, Ca(2+)-activated K(+) (BK) channels is different in cerebral and pulmonary artery smooth muscle cells (CASMCs and PASMCs). Using patch-clamp recordings, we found that the activity of whole cell and single BK channels were significantly higher in CASMCs than in PASMCs. The voltage and Ca(2+) sensitivity of BK channels were greater in CASMCs than in PASMCs. Targeted gene knockout of β(1)-subunits significantly reduced BK currents in CASMCs but had no effect in PASMCs. Western blotting experiments revealed that BK channel α-subunit protein expression level was comparable in CASMCs and PASMCs; however, β(1)-subunit protein expression level was higher in CASMCs than in PASMCs. Inhibition of BK channels by the specific blocker iberiotoxin enhanced norepinephrine-induced increase in intracellular calcium concentration in CASMCs but not in PASMCs. Systemic artery blood pressure was elevated in β(1)(-/-) mice. In contrast, pulmonary artery blood pressure was normal in β(1)(-/-) mice. These findings provide the first evidence that the activity of BK channels is higher in cerebral than in PASMCs. This heterogeneity is primarily determined by the differential β(1)-subunit function and contributes to diverse cellular responses in these two distinct types of cells.
Collapse
Affiliation(s)
- Yun-Min Zheng
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Ave., Albany, NY 12208, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Wan E, Kushner JS, Zakharov S, Nui XW, Chudasama N, Kelly C, Waase M, Doshi D, Liu G, Iwata S, Shiomi T, Katchman A, D'Armiento J, Homma S, Marx SO. Reduced vascular smooth muscle BK channel current underlies heart failure-induced vasoconstriction in mice. FASEB J 2013; 27:1859-67. [PMID: 23325318 DOI: 10.1096/fj.12-223511] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Excessively increased peripheral vasoconstriction is a hallmark of heart failure (HF). Here, we show that in mice with systolic HF post-myocardial infarction, the myogenic tone of third-order mesenteric resistance vessels is increased, the vascular smooth muscle (VSM) membrane potential is depolarized by ~20 mV, and vessel wall intracellular [Ca(2+)] is elevated relative to that in sham-operated control mice. Despite the increased [Ca(2+)], the frequency and amplitude of spontaneous transient outward currents (STOCs), mediated by large conductance, Ca(2+)-activated BK channels, were reduced by nearly 80% (P<0.01) and 25% (P<0.05), respectively, in HF. The expression of the BK α and β1 subunits was reduced in HF mice compared to controls (65 and 82% lower, respectively, P<0.01). Consistent with the importance of a reduction in BK channel expression and function in mediating the HF-induced increase in myogenic tone are two further findings: a blunting of paxilline-induced increase in myogenic tone in HF mice compared to controls (0.9 vs. 10.9%, respectively), and that HF does not alter the increased myogenic tone of BK β1-null mice. These findings identify electrical dysregulation within VSM, specifically the reduction of BK currents, as a key molecular mechanism sensitizing resistance vessels to pressure-induced vasoconstriction in systolic HF.
Collapse
Affiliation(s)
- Elaine Wan
- Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rueda A, Fernández-Velasco M, Benitah JP, Gómez AM. Abnormal Ca2+ spark/STOC coupling in cerebral artery smooth muscle cells of obese type 2 diabetic mice. PLoS One 2013; 8:e53321. [PMID: 23301060 PMCID: PMC3536748 DOI: 10.1371/journal.pone.0053321] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 11/30/2012] [Indexed: 01/19/2023] Open
Abstract
Diabetes is a major risk factor for stroke. However, the molecular mechanisms involved in cerebral artery dysfunction found in the diabetic patients are not completely elucidated. In cerebral artery smooth muscle cells (CASMCs), spontaneous and local increases of intracellular Ca2+ due to the opening of ryanodine receptors (Ca2+ sparks) activate large conductance Ca2+-activated K+ (BK) channels that generate spontaneous transient outward currents (STOCs). STOCs have a key participation in the control of vascular myogenic tone and blood pressure. Our goal was to investigate whether alterations in Ca(2+) spark and STOC activities, measured by confocal microscopy and patch-clamp technique, respectively, occur in isolated CASMCs of an experimental model of type-2 diabetes (db/db mouse). We found that mean Ca(2+) spark amplitude, duration, size and rate-of-rise were significantly smaller in Fluo-3 loaded db/db compared to control CASMCs, with a subsequent decrease in the total amount of Ca(2+) released through Ca(2+) sparks in db/db CASMCs, though Ca(2+) spark frequency remained. Interestingly, the frequency of large-amplitude Ca(2+) sparks was also significantly reduced in db/db cells. In addition, the frequency and amplitude of STOCs were markedly reduced at all voltages tested (from -50 to 0 mV) in db/db CASMCs. The latter correlates with decreased BK channel β1/α subunit ratio found in db/db vascular tissues. Taken together, Ca(2+) spark alterations lead to inappropriate BK channels activation in CASMCs of db/db mice and this condition is aggravated by the decrease in the BK β1 subunit/α subunit ratio which underlies the significant reduction of Ca(2+) spark/STOC coupling in CASMCs of diabetic animals.
Collapse
Affiliation(s)
- Angélica Rueda
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, México
- Inserm, U-637; Université de Montpellier 1, Université de Montpellier 2, Montpellier, France
- * E-mail: (AMG); (AR)
| | - María Fernández-Velasco
- Inserm, U-637; Université de Montpellier 1, Université de Montpellier 2, Montpellier, France
- Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Jean-Pierre Benitah
- Inserm, U769; Université de Paris-Sud, IFR141, Labex Lermit, Châtenay-Malabry, France
| | - Ana María Gómez
- Inserm, U769; Université de Paris-Sud, IFR141, Labex Lermit, Châtenay-Malabry, France
- * E-mail: (AMG); (AR)
| |
Collapse
|
29
|
Dysfunction of large-conductance Ca2+-activated K+ channels in vascular: risks developed in fetal origins. Hypertens Res 2012; 36:115-6. [DOI: 10.1038/hr.2012.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Hu XQ, Zhang L. Function and regulation of large conductance Ca(2+)-activated K+ channel in vascular smooth muscle cells. Drug Discov Today 2012; 17:974-87. [PMID: 22521666 PMCID: PMC3414640 DOI: 10.1016/j.drudis.2012.04.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/06/2012] [Accepted: 04/05/2012] [Indexed: 12/23/2022]
Abstract
Large conductance Ca(2+)-activated K(+) (BK(Ca)) channels are abundantly expressed in vascular smooth muscle cells. Activation of BK(Ca) channels leads to hyperpolarization of cell membrane, which in turn counteracts vasoconstriction. Therefore, BK(Ca) channels have an important role in regulation of vascular tone and blood pressure. The activity of BK(Ca) channels is subject to modulation by various factors. Furthermore, the function of BK(Ca) channels are altered in both physiological and pathophysiological conditions, such as pregnancy, hypertension and diabetes, which has dramatic impacts on vascular tone and hemodynamics. Consequently, compounds and genetic manipulation that alter activity and expression of the channel might be of therapeutic interest.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | | |
Collapse
|
31
|
Lu T, Chai Q, Yu L, d'Uscio LV, Katusic ZS, He T, Lee HC. Reactive oxygen species signaling facilitates FOXO-3a/FBXO-dependent vascular BK channel β1 subunit degradation in diabetic mice. Diabetes 2012; 61:1860-8. [PMID: 22586590 PMCID: PMC3379647 DOI: 10.2337/db11-1658] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Activity of the vascular large conductance Ca(2+)-activated K(+) (BK) channel is tightly regulated by its accessory β(1) subunit (BK-β(1)). Downregulation of BK-β(1) expression in diabetic vessels is associated with upregulation of the forkhead box O subfamily transcription factor-3a (FOXO-3a)-dependent F-box-only protein (FBXO) expression. However, the upstream signaling regulating this process is unclear. Overproduction of reactive oxygen species (ROS) is a common finding in diabetic vasculopathy. We hypothesized that ROS signaling cascade facilitates the FOXO-3a/FBXO-mediated BK-β(1) degradation and leads to diabetic BK channel dysfunction. Using cellular biology, patch clamp, and videomicroscopy techniques, we found that reduced BK-β(1) expression in streptozotocin (STZ)-induced diabetic mouse arteries and in human coronary smooth muscle cells (SMCs) cultured with high glucose was attributable to an increase in protein kinase C (PKC)-β and NADPH oxidase expressions and accompanied by attenuation of Akt phosphorylation and augmentation of atrogin-1 expression. Treatment with ruboxistaurin (a PKCβ inhibitor) or with GW501516 (a peroxisome proliferator-activated receptor δ activator) reduced atrogin-1 expression and restored BK channel-mediated coronary vasodilation in diabetic mice. Our results suggested that oxidative stress inhibited Akt signaling and facilitated the FOXO-3a/FBXO-dependent BK-β(1) degradation in diabetic vessels. Suppression of the FOXO-3a/FBXO pathway prevented vascular BK-β(1) degradation and protected coronary function in diabetes.
Collapse
Affiliation(s)
- Tong Lu
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Bagi Z, Feher A, Cassuto J. Microvascular responsiveness in obesity: implications for therapeutic intervention. Br J Pharmacol 2012; 165:544-60. [PMID: 21797844 DOI: 10.1111/j.1476-5381.2011.01606.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Obesity has detrimental effects on the microcirculation. Functional changes in microvascular responsiveness may increase the risk of developing cardiovascular complications in obese patients. Emerging evidence indicates that selective therapeutic targeting of the microvessels may prevent life-threatening obesity-related vascular complications, such as ischaemic heart disease, heart failure and hypertension. It is also plausible that alterations in adipose tissue microcirculation contribute to the development of obesity. Therefore, targeting adipose tissue arterioles could represent a novel approach to reducing obesity. This review aims to examine recent studies that have been focused on vasomotor dysfunction of resistance arteries in obese humans and animal models of obesity. Particularly, findings in coronary resistance arteries are contrasted to those obtained in other vascular beds. We provide examples of therapeutic attempts, such as use of statins, ACE inhibitors and insulin sensitizers to prevent obesity-related microvascular complications. We further identify some of the important challenges and opportunities going forward. LINKED ARTICLES This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-3.
Collapse
Affiliation(s)
- Zsolt Bagi
- Department of Pharmacology, University of Oxford, UK Department of Physiology, New York Medical College, Valhalla, New York, USA.
| | | | | |
Collapse
|
33
|
Berwick ZC, Dick GM, Tune JD. Heart of the matter: coronary dysfunction in metabolic syndrome. J Mol Cell Cardiol 2012; 52:848-56. [PMID: 21767548 PMCID: PMC3206994 DOI: 10.1016/j.yjmcc.2011.06.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 06/16/2011] [Accepted: 06/30/2011] [Indexed: 12/14/2022]
Abstract
Metabolic syndrome (MetS) is a collection of risk factors including obesity, dyslipidemia, insulin resistance/impaired glucose tolerance, and/or hypertension. The incidence of obesity has reached pandemic levels, as ~20-30% of adults in most developed countries can be classified as having MetS. This increased prevalence of MetS is critical as it is associated with a two-fold elevated risk for cardiovascular disease. Although the pathophysiology underlying this increase in disease has not been clearly defined, recent evidence indicates that alterations in the control of coronary blood flow could play an important role. The purpose of this review is to highlight current understanding of the effects of MetS on regulation of coronary blood flow and to outline the potential mechanisms involved. In particular, the role of neurohumoral modulation via sympathetic α-adrenoceptors and the renin-angiotensin-aldosterone system (RAAS) are explored. Alterations in the contribution of end-effector K(+), Ca(2+), and transient receptor potential (TRP) channels are also addressed. Finally, future perspectives and potential therapeutic targeting of the microcirculation in MetS are discussed. This article is part of a Special Issue entitled "Coronary Blood Flow".
Collapse
Affiliation(s)
- Zachary C. Berwick
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Gregory M. Dick
- Department of Exercise Physiology Center for Cardiovascular and Respiratory Sciences West Virginia University School of Medicine
| | - Johnathan D. Tune
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
34
|
Lifshitz LM, Carmichael JD, Lai FA, Sorrentino V, Bellvé K, Fogarty KE, ZhuGe R. Spatial organization of RYRs and BK channels underlying the activation of STOCs by Ca(2+) sparks in airway myocytes. ACTA ACUST UNITED AC 2011; 138:195-209. [PMID: 21746845 PMCID: PMC3149436 DOI: 10.1085/jgp.201110626] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Short-lived, localized Ca2+ events mediate Ca2+ signaling with high efficiency and great fidelity largely as a result of the close proximity between Ca2+-permeable ion channels and their molecular targets. However, in most cases, direct evidence of the spatial relationship between these two types of molecules is lacking, and, thus, mechanistic understanding of local Ca2+ signaling is incomplete. In this study, we use an integrated approach to tackling this issue on a prototypical local Ca2+ signaling system composed of Ca2+ sparks resulting from the opening of ryanodine receptors (RYRs) and spontaneous transient outward currents (STOCs) caused by the opening of Ca2+-activated K+ (BK) channels in airway smooth muscle. Biophysical analyses of STOCs and Ca2+ sparks acquired at 333 Hz demonstrate that these two events are associated closely in time, and approximately eight RYRs open to give rise to a Ca2+ spark, which activates ∼15 BK channels to generate a STOC at 0 mV. Dual immunocytochemistry and 3-D deconvolution at high spatial resolution reveal that both RYRs and BK channels form clusters and RYR1 and RYR2 (but not RYR3) localize near the membrane. Using the spatial relationship between RYRs and BK channels, the spatial-temporal profile of [Ca2+] resulting from Ca2+ sparks, and the kinetic model of BK channels, we estimate that an average Ca2+ spark caused by the opening of a cluster of RYR1 or RYR2 acts on BK channels from two to three clusters that are randomly distributed within an ∼600-nm radius of RYRs. With this spatial organization of RYRs and BK channels, we are able to model BK channel currents with the same salient features as those observed in STOCs across a range of physiological membrane potentials. Thus, this study provides a mechanistic understanding of the activation of STOCs by Ca2+ sparks using explicit knowledge of the spatial relationship between RYRs (the Ca2+ source) and BK channels (the Ca2+ target).
Collapse
Affiliation(s)
- Lawrence M Lifshitz
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Chang H, Ma YG, Wang YY, Song Z, Li Q, Yang N, Zhao HZ, Feng HZ, Chang YM, Ma J, Yu ZB, Xie MJ. High glucose alters apoptosis and proliferation in HEK293 cells by inhibition of cloned BK Ca channel. J Cell Physiol 2011; 226:1660-75. [PMID: 21413024 DOI: 10.1002/jcp.22497] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It has been reported that diabetic vascular dysfunction is associated with impaired function of large conductance Ca(2+) -activated K(+) (BK(Ca) ) channels. However, it is unclear whether impaired BK(Ca) channel directly participates in regulating diabetic vascular remodeling by altering cell growth in response to hyperglycemia. In the present study, we investigated the specific role of BK(Ca) channel in controlling apoptosis and proliferation under high glucose concentration (25 mM). The cDNA encoding the α+β1 subunit of BK(Ca) channel, hSloα+β1, was transiently transfected into human embryonic kidney 293 (HEK293) cells. Cloned BK(Ca) currents were recorded by both whole-cell and cell-attached patch clamp techniques. Cell apoptosis was assessed with immunocytochemistry and analysis of fragmented DNA by agarose gel electrophoresis. Cell proliferation was investigated by flow cytometry assays, MTT test, and immunocytochemistry. In addition, the expression of anti-apoptotic protein Bcl-2, intracellular Ca(2+) , and mitochondrial membrane potential (Δψm) were also examined to investigate the possible mechanisms. Our results indicate that inhibition of cloned BK(Ca) channels might be responsible for hyperglycemia-altered apoptosis and proliferation in HEK-hSloα+β1 cells. However, activation of BK(Ca) channel by NS1619 or Tamoxifen significantly induced apoptosis and suppressed proliferation in HEK-hSloα+β1 cells under hyperglycemia condition. When rat cerebral smooth muscle cells were cultured in hyperglycemia, similar findings were observed. Moreover, the possible mechanisms underlying the activation of BK(Ca) channel were associated with decreased expression of Bcl-2, elevation of intracellular Ca(2+) , and a concomitant depolarization of Δψm in HEK-hSloα+β1 cells. In conclusion, cloned BK(Ca) channel directly regulated apoptosis and proliferation of HEK293 cell under hyperglycemia condition.
Collapse
Affiliation(s)
- Hui Chang
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhang DM, He T, Katusic ZS, Lee HC, Lu T. Muscle-specific f-box only proteins facilitate bk channel β(1) subunit downregulation in vascular smooth muscle cells of diabetes mellitus. Circ Res 2010; 107:1454-9. [PMID: 20966391 DOI: 10.1161/circresaha.110.228361] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RATIONALE activity of the large conductance Ca(2+)-activated K(+) (BK) channels is profoundly modulated by its β(1) subunit (BK-β(1)). However, BK-β(1) expression is downregulated in diabetic vessels. The ubiquitin-proteasome system (UPS) is a major mechanism of intracellular protein degradation. Whether UPS participates in BK-β(1) downregulation in diabetic vessels is unknown. OBJECTIVE we hypothesize that UPS facilitates vascular BK-β(1) degradation in diabetes. METHODS AND RESULTS using patch clamp and molecular biological approaches, we found that BK-β(1)-mediated channel activation and BK-β(1) protein expression were reduced in aortas of streptozotocin-induced diabetic rats and in human coronary arterial smooth muscle cells (CASMCs) cultured in high glucose. This was accompanied by upregulation of F-box only protein (FBXO)-9 and FBXO-32 (atrogin-1), the key components of the Skp1-Cullin-F-box (SCF) type ubiquitin ligase complex. BK-β(1) expression was suppressed by the FBXO activator doxorubicin but enhanced by FBXO-9 small interfering RNA or by the proteasome inhibitor MG-132. Cotransfection of atrogin-1 in HEK293 cells significantly reduced Flag-hSlo-β(1) expression by 2.16-fold, compared with expression of Flag-hSlo-β(1)V146A (a mutant without the PDZ-binding motif). After cotransfection with atrogin-1, the ubiquitination of Flag-hSlo-β(1) was increased by 1.91-fold, compared with that of hSlo-β(1)V146A, whereas cotransfection with atrogin-1ΔF (a nonfunctional mutant without the F-box motif) had no effect. Moreover, inhibition of Akt signaling attenuated the phosphorylation of forkhead box O transcription factor (FOXO)-3a and enhanced atrogin-1 expression, which in turn suppressed BK-β(1) protein levels in human CASMCs. CONCLUSIONS downregulation of vascular BK-β(1) expression in diabetes and in high-glucose culture conditions was associated with FOXO-3a/FBXO-dependent increase in BK-β(1) degradation.
Collapse
Affiliation(s)
- Dai-Min Zhang
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
37
|
Ohya S, Fujimori T, Kimura T, Yamamura H, Imaizumi Y. Novel spliced variants of large-conductance Ca(2+)-activated K(+)-channel β2-subunit in human and rodent pancreas. J Pharmacol Sci 2010; 114:198-205. [PMID: 20859064 DOI: 10.1254/jphs.10159fp] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Large-conductance Ca(2+)-activated K(+ )(BK) channel regulates action potential firing in pancreatic β-cells. We cloned novel spliced variants of the BK-channel β(2)-subunit (BKβ2b), which consisted of 36 amino acids including the N-terminal in the original human BKβ2 (BKβ2a), from human and rodent pancreas. Real-time PCR analysis showed the abundant expression of BKβ2b transcripts in human and rodent pancreas and also in the RINm5f insulinoma cell line. In addition, up-regulation of both BK-channel α-subunit (BKα) and BKβ2b transcripts was observed in pancreas tissues from diabetes mellitus patients. In HEK293 cells co-expressing BKα and BKβ2b, the inactivation of BK-channel currents, which is typical for BKα + BKβ2a, was not observed, and electrophysiological and pharmacological properties of BKα + BKβ2b were almost identical to those of BKα alone. In HEK293 cells stably expressing BKα, the transient co-expression of yellow fluorescence protein (YFP)-tagged BKβ2a proteins resulted in their distribution along the cell membrane. In contrast, the co-expression of YFP-tagged BKβ2b with BKα showed diffusely distributed fluorescence signals throughout the cell body. Taken together, the predominant splicing of BKβ2b versus that of BKβ2a presumably enhances the contribution of BK channels to membrane potential and may possibly be a factor modulating insulin secretion in a suppressive manner in pancreatic β-cells.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Japan
| | | | | | | | | |
Collapse
|
38
|
Dunn KM, Nelson MT. Calcium and diabetic vascular dysfunction. Focus on “Elevated Ca2+ sparklet activity during acute hyperglycemia and diabetes in cerebral arterial smooth muscle cells”. Am J Physiol Cell Physiol 2010; 298:C203-5. [DOI: 10.1152/ajpcell.00499.2009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Kathryn M. Dunn
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont
| | - Mark T. Nelson
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont
| |
Collapse
|
39
|
Exercise training changes the gating properties of large-conductance Ca2+-activated K+ channels in rat thoracic aorta smooth muscle cells. J Biomech 2010; 43:263-7. [DOI: 10.1016/j.jbiomech.2009.08.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Revised: 08/26/2009] [Accepted: 08/27/2009] [Indexed: 12/25/2022]
|
40
|
Rusch NJ. BK channels in cardiovascular disease: a complex story of channel dysregulation. Am J Physiol Heart Circ Physiol 2009; 297:H1580-2. [PMID: 19749161 DOI: 10.1152/ajpheart.00852.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
Dong L, Xie MJ, Zhang P, Ji LL, Liu WC, Dong MQ, Gao F. Rotenone partially reverses decreased BK Ca currents in cerebral artery smooth muscle cells from streptozotocin-induced diabetic mice. Clin Exp Pharmacol Physiol 2009; 36:e57-64. [PMID: 19515065 DOI: 10.1111/j.1440-1681.2009.05222.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
1. Reactive oxygen species (ROS) cause vascular complications and impair vasodilation in diabetes mellitus. Large-conductance Ca(2+)-activated potassium channels (BK(Ca)) modulate vascular tone and play an important negative feedback role in vasoconstriction. In the present study, we tested the hypothesis that ROS regulate the function of BK(Ca) in diabetic cerebral artery smooth muscle cells. 2. Diabetes was induced in male BALB/c mice by injection of streptozotocin (STZ; 180 mg/kg, i.p., dissolved in sterile saline). Control and diabetic mice were treated with 12.7 micromol/L rotenone, an inhibitor of the mitochondrial electron transport chain complex I, or placebo every other day for 5 weeks. The whole-cell patch clamp-technique and functional vasomotor methods were used to record BK(Ca) currents and myogenic tone of cerebral artery smooth muscle cells. 3. In the diabetic group, there was a significant decrease in spontaneous transient outward currents in cerebral artery smooth muscle cells compared with control. Although the currents were only moderately increased in rotenone-treated diabetic mice, they remained significantly lower than in the control group. Furthermore, the macroscopic BK(Ca) currents that were decreased in diabetic mice were partially recovered in rotenone-treated diabetic mice (P < 0.05 vs untreated diabetic group). 4. The posterior cerebral artery from diabetic mice had a significantly higher myogenic tone than the control group, but this impaired contraction was partially reversed in the rotenone-treated diabetic group (P < 0.05 vs untreated diabetic group). 5. The H(2)O(2) concentration was significantly increased in cerebral arteries from diabetic mice compared with control. This increase in H(2)O(2) was significantly blunted by rotenone treatment. 6. In conclusion, rotenone partially reverses the decreased macroscopic BK(Ca) currents in STZ-induced Type 1 diabetic mice and this reversal of BK(Ca) currents may be related to the inhibitory effects of rotenone on H(2)O(2) production. Reactive oxygen species, particularly H(2)O(2), are important regulators of BK(Ca) channels and myogenic tone in diabetic cerebral artery.
Collapse
Affiliation(s)
- Ling Dong
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | |
Collapse
|