1
|
Shelke V, Dagar N, Puri B, Gaikwad AB. Natriuretic peptide system in hypertension: Current understandings of its regulation, targeted therapies and future challenges. Eur J Pharmacol 2024; 976:176664. [PMID: 38795757 DOI: 10.1016/j.ejphar.2024.176664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/03/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
The natriuretic peptide system (NPS) is the key driving force of the heart's endocrine function. Recent developments in NPS-targeted therapies have been found promising and effective against cardiovascular diseases, including hypertension. Notably, after discovering crosstalk between NPS and the renin-angiotensin-aldosterone system (RAAS), various combinations such as neprilysin/angiotensin II receptor type 1 AT1 receptor inhibitors and neprilysin/renin inhibitors have been preclinically and clinically tested against various cardiac complications. However, the therapeutic effects of such combinations on the pathophysiology of hypertension are poorly understood. Furthermore, the complicated phenomena underlying NPS regulation and function, particularly in hypertension, are still unexplored. Mounting evidence suggests that numerous regulatory mechanisms modulate the expression of NPS, which can be used as potential targets against hypertension and other cardiovascular diseases. Therefore, this review will specifically focus on epigenetic and other regulators of NPS, identifying prospective regulators that might serve as new therapeutic targets for hypertension. More importantly, it will shed light on recent developments in NPS-targeted therapies, such as M-atrial peptides, and their latest combinations with RAAS modulators, such as S086 and sacubitril-aliskiren. These insights will aid in the development of effective therapies to break the vicious cycle of high blood pressure during hypertension, ultimately addressing the expanding global heart failure pandemic.
Collapse
Affiliation(s)
- Vishwadeep Shelke
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Neha Dagar
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Bhupendra Puri
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India.
| |
Collapse
|
2
|
Patel D, Savvidou MD. Maternal Cardiac Function in Pregnancies with Metabolic Disorders. Eur Cardiol 2024; 19:e08. [PMID: 38983578 PMCID: PMC11231816 DOI: 10.15420/ecr.2023.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/17/2024] [Indexed: 07/11/2024] Open
Abstract
The obesity epidemic is growing and poses significant risks to pregnancy. Metabolic impairment can be associated with short- and long-term maternal and perinatal morbidity and mortality. The cardiovascular implications are known in those with metabolic disorder outside of pregnancy; however, little is known of the cardiac function in pregnancies complicated by obesity. Maternal cardiac adaptation plays a vital role in normal pregnancy and is known to be involved in the pathophysiology of adverse pregnancy outcomes. Bariatric surgery is the most successful treatment for sustainable weight loss and pre-pregnancy bariatric surgery can drastically change the maternal metabolic profile and pregnancy outcomes. In this review, we discuss the available evidence on maternal cardiac function in pregnancies affected by obesity and its associated consequences of gestational diabetes and hypertension (chronic and hypertensive disorders in pregnancy), as well as pregnancies following bariatric surgery.
Collapse
Affiliation(s)
- Deesha Patel
- Academic Department of Obstetrics and Gynaecology, Chelsea and Westminster Hospital, Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
| | - Makrina D Savvidou
- Academic Department of Obstetrics and Gynaecology, Chelsea and Westminster Hospital, Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
- Fetal Medicine Unit, Chelsea and Westminster Hospital London, UK
| |
Collapse
|
3
|
McFarlin BE, Duffin KL, Konkar A. Incretin and glucagon receptor polypharmacology in chronic kidney disease. Am J Physiol Endocrinol Metab 2024; 326:E747-E766. [PMID: 38477666 PMCID: PMC11551006 DOI: 10.1152/ajpendo.00374.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/10/2024] [Indexed: 03/14/2024]
Abstract
Chronic kidney disease is a debilitating condition associated with significant morbidity and mortality. In recent years, the kidney effects of incretin-based therapies, particularly glucagon-like peptide-1 receptor agonists (GLP-1RAs), have garnered substantial interest in the management of type 2 diabetes and obesity. This review delves into the intricate interactions between the kidney, GLP-1RAs, and glucagon, shedding light on their mechanisms of action and potential kidney benefits. Both GLP-1 and glucagon, known for their opposing roles in regulating glucose homeostasis, improve systemic risk factors affecting the kidney, including adiposity, inflammation, oxidative stress, and endothelial function. Additionally, these hormones and their pharmaceutical mimetics may have a direct impact on the kidney. Clinical studies have provided evidence that incretins, including those incorporating glucagon receptor agonism, are likely to exhibit improved kidney outcomes. Although further research is necessary, receptor polypharmacology holds promise for preserving kidney function through eliciting vasodilatory effects, influencing volume and electrolyte handling, and improving systemic risk factors.
Collapse
Affiliation(s)
- Brandon E McFarlin
- Lilly Research Laboratories, Lilly Corporate CenterIndianapolisIndianaUnited States
| | - Kevin L Duffin
- Lilly Research Laboratories, Lilly Corporate CenterIndianapolisIndianaUnited States
| | - Anish Konkar
- Lilly Research Laboratories, Lilly Corporate CenterIndianapolisIndianaUnited States
| |
Collapse
|
4
|
Nishibe S, Oikawa H, Mitsui-Saitoh K, Sakai J, Zhang W, Fujikawa T. The Differences of Mechanisms in Antihypertensive and Anti-Obesity Effects of Eucommia Leaf Extract between Rodents and Humans. Molecules 2023; 28:molecules28041964. [PMID: 36838952 PMCID: PMC9965471 DOI: 10.3390/molecules28041964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
In the 1970s, Eucommia leaf tea, known as Tochu-cha in Japanese, was developed from roasted Eucommia leaves in Japan and is considered as a healthy tea. The antihypertensive, diuretic, anti-stress, insulin resistance improving, and anti-obesity effects of Eucommia leaf extract have been reported. However, the identification and properties of the active components as well as the underlying mechanism of action are largely unknown. In this review, we summarize studies involving the oral administration of geniposidic acid, a major iridoid component of Eucommia leaf extract which increases plasma atrial natriuretic peptide (ANP) on the atria of spontaneously hypertensive rats (SHR) by activating the glucagon-like peptide-1 receptor (GLP-1R). To achieve the antihypertensive effects of the Eucommia leaf extract through ANP secretion in humans, combining a potent cyclic adenosine monophosphate phosphodiesterase (cAMP-PDE) inhibitor, such as pinoresinol di-β-d-glucoside, with geniposidic acid may be necessary. Changes in the gut microbiota are an important aspect involved in the efficacy of asperuloside, another component of the Eucommia leaf extract, which improves obesity and related sequelae, such as insulin resistance and glucose intolerance. There are species differences of mechanisms associated with the antihypertensive and anti-obesity effects between rodents and humans, and not all animal test results are consistent with that of human studies. This review is focused on the mechanisms in antihypertensive and anti-obesity effects of the Eucommia leaf extract and summarizes the differences of mechanisms in their effects on rodents and humans based on our studies and those of others.
Collapse
Affiliation(s)
- Sansei Nishibe
- Faculy of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari 061-0293, Hokkaido, Japan
- Correspondence: ; Fax: +81-11-812-5460
| | - Hirotaka Oikawa
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki-cho, Suzuka 513-8670, Mie, Japan
| | - Kumiko Mitsui-Saitoh
- Faculty of Health and Sports, Nagoya Gakuin Unversity, 1350 Kamishinano, Seto 480-1298, Aichi, Japan
| | - Junichi Sakai
- Faculty of Health and Sports, Nagoya Gakuin Unversity, 1350 Kamishinano, Seto 480-1298, Aichi, Japan
| | - Wenping Zhang
- Faculty of Acupuncture & Moxibustion, Suzuka University of Medical Science, 1001-1 Kishioka-cho, Suzuka 510-0293, Mie, Japan
| | - Takahiko Fujikawa
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki-cho, Suzuka 513-8670, Mie, Japan
| |
Collapse
|
5
|
Yazıcı D, Yapıcı Eser H, Kıyıcı S, Sancak S, Sezer H, Uygur M, Yumuk V. Clinical Impact of Glucagon-Like Peptide-1 Receptor Analogs on the Complications of Obesity. Obes Facts 2023; 16:149-163. [PMID: 36349778 PMCID: PMC10028372 DOI: 10.1159/000526808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/04/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Obesity is a chronic disease associated with increased morbidity and mortality due to its complications. The aims of obesity treatment are primarily to accomplish weight loss, and prevention or treatment of its complications. Lifestyle changes along with behavioral therapy constitute the first-line treatment of obesity followed by pharmacotherapy. Glucagon-like peptide receptor analogs (GLP-1 RAs) are among the approved pharmacotherapy options. Their central effect on suppressing appetite results in considerable weight loss. However, their effect on the complications of obesity has not been very well recognized. This review aims to analyze the effects of GLP-1 RAs on the complications of obesity, as diabetes mellitus, hypertension, nonalcoholic steatohepatitis (NASH), cardiovascular diseases, polycystic ovary syndrome, infertility, obstructive sleep apnea (OSA), osteoarthritis, cancer and central nervous system problems. SUMMARY Data from preclinical studies and clinical trials have been thoroughly evaluated. Effects regarding the complications as far as the scope of this review have covered can be summarized as blood glucose lowering, blood pressure lowering, resolution of NASH, improving major cardiovascular events, improving fertility and sex hormone levels, and improvement in OSA symptoms and in cognitive scores. Although the mechanisms are not fully elucidated, it is clear that the effects are not solely due to weight loss, but some pleiotropic effects like decreased inflammation, oxidative stress, and fibrosis also play a role in some of the complications. KEY MESSAGES Treating obesity is not only enabling weight loss but ameliorating complications related to obesity. Thus, any antiobesity medication has to have some favorable effects on the complications. As far as the GLP-RA's analogs are concerned, there seems to be an improvement in many of the complications regardless of the weight loss effect of these medications.
Collapse
Affiliation(s)
- Dilek Yazıcı
- Koç University Medical School Section of Endocrinology and Metabolism, Istanbul, Turkey
- *Dilek Yazıcı,
| | - Hale Yapıcı Eser
- Koç University Medical School Department of Psychiatry, Istanbul, Turkey
| | - Sinem Kıyıcı
- Health Sciences University Bursa Yİ Education and Research Hospital, Bursa, Turkey
| | - Seda Sancak
- Health Sciences University Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey
| | - Havva Sezer
- Koç University Medical School Section of Endocrinology and Metabolism, Istanbul, Turkey
| | - Melin Uygur
- Marmara University Medical School, Section of Endocrinology and Metabolism, Istanbul, Turkey
| | - Volkan Yumuk
- Cerrahpaşa U. Medical School Section of Endocrinology and Metabolism, Istanbul, Turkey
| |
Collapse
|
6
|
Wasim R, Ansari TM, Siddiqui MH, Ahsan F, Shamim A, Singh A, Shariq M, Anwar A, Siddiqui AR, Parveen S. Repurposing of Drugs for Cardiometabolic Disorders: An Out and Out Cumulation. Horm Metab Res 2023; 55:7-24. [PMID: 36599357 DOI: 10.1055/a-1971-6965] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cardiometabolic disorders (CMD) is a constellation of metabolic predisposing factors for atherosclerosis such as insulin resistance (IR) or diabetes mellitus (DM), systemic hypertension, central obesity, and dyslipidemia. Cardiometabolic diseases (CMDs) continue to be the leading cause of mortality in both developed and developing nations, accounting for over 32% of all fatalities globally each year. Furthermore, dyslipidemia, angina, arrhythmia, heart failure, myocardial infarction (MI), and diabetes mellitus are the major causes of death, accounting for an estimated 19 million deaths in 2012. CVDs will kill more than 23 million individuals each year by 2030. Nonetheless, new drug development (NDD) in CMDs has been increasingly difficult in recent decades due to increased costs and a lower success rate. Drug repositioning in CMDs looks promising in this scenario for launching current medicines for new therapeutic indications. Repositioning is an ancient method that dates back to the 1960s and is mostly based on coincidental findings during medication trials. One significant advantage of repositioning is that the drug's safety profile is well known, lowering the odds of failure owing to undesirable toxic effects. Furthermore, repositioning takes less time and money than NDD. Given these facts, pharmaceutical corporations are becoming more interested in medication repositioning. In this follow-up, we discussed the notion of repositioning and provided some examples of repositioned medications in cardiometabolic disorders.
Collapse
Affiliation(s)
| | | | | | - Farogh Ahsan
- Pharmacology, Integral University, Lucknow, India
| | | | - Aditya Singh
- Pharmaceutics, Integral University, Lucknow, India
| | | | - Aamir Anwar
- Pharmacy, Integral University, Lucknow, India
| | | | - Saba Parveen
- Pharmacology, Integral University, Lucknow, India
| |
Collapse
|
7
|
Balk-Møller E, Hebsgaard MMB, Lilleør NB, Møller CH, Gøtze JP, Kissow H. Glucagon-like peptide-1 stimulates acute secretion of pro-atrial natriuretic peptide from the isolated, perfused pig lung exposed to warm ischemia. FRONTIERS IN TRANSPLANTATION 2022; 1:1082634. [PMID: 38994393 PMCID: PMC11235333 DOI: 10.3389/frtra.2022.1082634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/16/2022] [Indexed: 07/13/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) has proven to be protective in animal models of lung disease but the underlying mechanisms are unclear. Atrial natriuretic peptide (ANP) is mainly produced in the heart. As ANP possesses potent vaso- and bronchodilatory effects in pulmonary disease, we hypothesised that the protective functions of GLP-1 could involve potentiation of local ANP secretion from the lung. We examined whether the GLP-1 receptor agonist liraglutide was able to improve oxygenation in lungs exposed to 2 h of warm ischemia and if liraglutide stimulated ANP secretion from the lungs in the porcine ex vivo lung perfusion (EVLP) model. Pigs were given a bolus of 40 µg/kg liraglutide or saline 1 h prior to sacrifice. The lungs were then left in vivo for 2 h, removed en bloc and placed in the EVLP machinery. Lungs from the liraglutide treated group were further exposed to liraglutide in the perfusion buffer (1.125 mg). Main endpoints were oxygenation capacity, and plasma and perfusate concentrations of proANP and inflammatory markers. Lung oxygenation capacity, plasma concentrations of proANP or concentrations of inflammatory markers were not different between groups. ProANP secretion from the isolated perfused lungs were markedly higher in the liraglutide treated group (area under curve for the first 30 min in the liraglutide group: 635 ± 237 vs. 38 ± 38 pmol/L x min in the saline group) (p < 0.05). From these results, we concluded that liraglutide potentiated local ANP secretion from the lungs.
Collapse
Affiliation(s)
- Emilie Balk-Møller
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mathilde M. B. Hebsgaard
- Department of Cardiothoracic Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nikolaj B. Lilleør
- Department of Cardiothoracic Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christian H. Møller
- Department of Cardiothoracic Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jens P. Gøtze
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Hannelouise Kissow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Nyberg M, Terzic D, Ludvigsen TP, Mark PD, Michaelsen NB, Abildstrøm SZ, Engelmann M, Richards AM, Goetze JP. Review A State of Natriuretic Peptide Deficiency. Endocr Rev 2022; 44:379-392. [PMID: 36346821 PMCID: PMC10166265 DOI: 10.1210/endrev/bnac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/13/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
Abstract
Measurement of natriuretic peptides (NPs) has proven its clinical value as biomarker, especially in the context of heart failure (HF). In contrast, a state partial NP deficiency appears integral to several conditions in which lower NP concentrations in plasma presage overt cardiometabolic disease. Here, obesity and type 2 diabetes have attracted considerable attention. Other factors - including age, sex, race, genetics, and diurnal regulation - affect the NP "armory" and may leave some individuals more prone to development of cardiovascular disease. The molecular maturation of NPs has also proven complex with highly variable O-glycosylation within the biosynthetic precursors. The relevance of this regulatory step in post-translational propeptide maturation has recently become recognized in biomarker measurement/interpretation and cardiovascular pathophysiology. An important proportion of people appear to have reduced effective net NP bioactivity in terms of receptor activation and physiological effects. The state of NP deficiency, then, both entails a potential for further biomarker development and could also offer novel pharmacological possibilities. Alleviating the state of NP deficiency before development of overt cardiometabolic disease in selected patients could be a future path for improving precision medicine.
Collapse
Affiliation(s)
| | - Dijana Terzic
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Peter D Mark
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | - A Mark Richards
- Division of Cardiology, National University Heart Centre, National University Hospital, Singapore
| | - Jens P Goetze
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
9
|
Pauza AG, Thakkar P, Tasic T, Felippe I, Bishop P, Greenwood MP, Rysevaite-Kyguoliene K, Ast J, Broichhagen J, Hodson DJ, Salgado HC, Pauza DH, Japundzic-Zigon N, Paton JFR, Murphy D. GLP1R Attenuates Sympathetic Response to High Glucose via Carotid Body Inhibition. Circ Res 2022; 130:694-707. [PMID: 35100822 PMCID: PMC8893134 DOI: 10.1161/circresaha.121.319874] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Aberrant sympathetic nerve activity exacerbates cardiovascular risk in hypertension and diabetes, which are common comorbidities, yet clinically sympathetic nerve activity remains poorly controlled. The hypertensive diabetic state is associated with increased reflex sensitivity and tonic drive from the peripheral chemoreceptors, the cause of which is unknown. We have previously shown hypertension to be critically dependent on the carotid body (CB) input in spontaneously hypertensive rat, a model that also exhibits a number of diabetic traits. CB overstimulation by insulin and leptin has been similarly implicated in the development of increased sympathetic nerve activity in metabolic syndrome and obesity. Thus, we hypothesized that in hypertensive diabetic state (spontaneously hypertensive rat), the CB is sensitized by altered metabolic signaling causing excessive sympathetic activity levels and dysfunctional reflex regulation.
Collapse
Affiliation(s)
- Audrys G Pauza
- Bristol Medical School, Translational Health Sciences, University of Bristol, United Kingdom (A.G.P., P.B., M.P.G., D.M.)
| | - Pratik Thakkar
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, New Zealand (P.T., I.F., J.F.R.P.)
| | - Tatjana Tasic
- School of Dental Medicine, University of Belgrade, Serbia (T.T.)
| | - Igor Felippe
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, New Zealand (P.T., I.F., J.F.R.P.)
| | - Paul Bishop
- Bristol Medical School, Translational Health Sciences, University of Bristol, United Kingdom (A.G.P., P.B., M.P.G., D.M.)
| | - Michael P Greenwood
- Bristol Medical School, Translational Health Sciences, University of Bristol, United Kingdom (A.G.P., P.B., M.P.G., D.M.)
| | | | - Julia Ast
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, United Kingdom (J.A., D.J.H.)
| | | | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, United Kingdom (D.A., D.J.H.).,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, United Kingdom (J.A., D.J.H.)
| | - Helio C Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Brazil (H.C.S.)
| | - Dainius H Pauza
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas (K.R.-K., D.H.P.)
| | - Nina Japundzic-Zigon
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Serbia (N.J.-Z.)
| | - Julian F R Paton
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, New Zealand (P.T., I.F., J.F.R.P.)
| | - David Murphy
- Bristol Medical School, Translational Health Sciences, University of Bristol, United Kingdom (A.G.P., P.B., M.P.G., D.M.)
| |
Collapse
|
10
|
Durak A, Akkus E, Canpolat AG, Tuncay E, Corapcioglu D, Turan B. Glucagon-like peptide-1 receptor agonist treatment of high carbohydrate intake-induced metabolic syndrome provides pleiotropic effects on cardiac dysfunction through alleviations in electrical and intracellular Ca 2+ abnormalities and mitochondrial dysfunction. Clin Exp Pharmacol Physiol 2021; 49:46-59. [PMID: 34519087 DOI: 10.1111/1440-1681.13590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023]
Abstract
The pleiotropic effects of glucagon-like peptide-1 receptor (GLP-1R) agonists on the heart have been recognised in obese or diabetic patients. However, little is known regarding the molecular mechanisms of these agonists in cardioprotective actions under metabolic disturbances. We evaluated the effects of GLP-1R agonist liraglutide treatment on left ventricular cardiomyocytes from high-carbohydrate induced metabolic syndrome rats (MetS rats), characterised with insulin resistance and cardiac dysfunction with a long-QT. Liraglutide (0.3 mg/kg for 4 weeks) treatment of MetS rats significantly reversed long-QT, through a shortening the prolonged action potential duration and recovering inhibited K+ -currents. We also determined a significant recovery in the leaky sarcoplasmic reticulum (SR) and high cytosolic Ca2+ -level, which are confirmed with a full recovery in activated Na+ /Ca2+ -exchanger currents (INCX ). Moreover, the liraglutide treatment significantly reversed the depolarised mitochondrial membrane potential (MMP), increased production of oxidant markers, and cellular acidification together with the depressed ATP production. Our light microscopy analysis of isolated cardiomyocytes showed marked recoveries in the liraglutide-treated MetS group such as marked reverses in highly dilated T-tubules and SR-mitochondria junctions. Moreover, we determined a significant increase in depressed GLUT4 protein level in liraglutide-treated MetS group, possibly associated with recovery in casein kinase 2α. Overall, the study demonstrated a molecular mechanism of liraglutide-induced cardioprotection in MetS rats, at most, via its pleiotropic effects, such as alleviation in the electrical abnormalities, Ca2+ -homeostasis, and mitochondrial dysfunction in ventricular cardiomyocytes.
Collapse
Affiliation(s)
- Aysegul Durak
- Faculty of Medicine, Department of Biophysics, Ankara University, Ankara, Turkey
| | - Erman Akkus
- Faculty of Medicine, Department of Internal Medicine, Ankara University, Ankara, Turkey
| | - Asena Gokcay Canpolat
- Faculty of Medicine, Department of Endocrinology and Metabolism, Ankara University, Ankara, Turkey
| | - Erkan Tuncay
- Faculty of Medicine, Department of Biophysics, Ankara University, Ankara, Turkey
| | - Demet Corapcioglu
- Faculty of Medicine, Department of Endocrinology and Metabolism, Ankara University, Ankara, Turkey
| | - Belma Turan
- Faculty of Medicine, Department of Biophysics, Ankara University, Ankara, Turkey.,Faculty of Medicine, Department of Biophysics, Lokman Hekim University, Ankara, Turkey
| |
Collapse
|
11
|
Nauck MA, Quast DR, Wefers J, Pfeiffer AFH. The evolving story of incretins (GIP and GLP-1) in metabolic and cardiovascular disease: A pathophysiological update. Diabetes Obes Metab 2021; 23 Suppl 3:5-29. [PMID: 34310013 DOI: 10.1111/dom.14496] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 11/27/2022]
Abstract
The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) have their main physiological role in augmenting insulin secretion after their nutrient-induced secretion from the gut. A functioning entero-insular (gut-endocrine pancreas) axis is essential for the maintenance of a normal glucose tolerance. This is exemplified by the incretin effect (greater insulin secretory response to oral as compared to "isoglycaemic" intravenous glucose administration due to the secretion and action of incretin hormones). GIP and GLP-1 have additive effects on insulin secretion. Local production of GIP and/or GLP-1 in islet α-cells (instead of enteroendocrine K and L cells) has been observed, and its significance is still unclear. GLP-1 suppresses, and GIP increases glucagon secretion, both in a glucose-dependent manner. GIP plays a greater physiological role as an incretin. In type 2-diabetic patients, the incretin effect is reduced despite more or less normal secretion of GIP and GLP-1. While insulinotropic effects of GLP-1 are only slightly impaired in type 2 diabetes, GIP has lost much of its acute insulinotropic activity in type 2 diabetes, for largely unknown reasons. Besides their role in glucose homoeostasis, the incretin hormones GIP and GLP-1 have additional biological functions: GLP-1 at pharmacological concentrations reduces appetite, food intake, and-in the long run-body weight, and a similar role is evolving for GIP, at least in animal studies. Human studies, however, do not confirm these findings. GIP, but not GLP-1 increases triglyceride storage in white adipose tissue not only through stimulating insulin secretion, but also by interacting with regional blood vessels and GIP receptors. GIP, and to a lesser degree GLP-1, play a role in bone remodelling. GLP-1, but not GIP slows gastric emptying, which reduces post-meal glycaemic increments. For both GIP and GLP-1, beneficial effects on cardiovascular complications and neurodegenerative central nervous system (CNS) disorders have been observed, pointing to therapeutic potential over and above improving diabetes complications. The recent finding that GIP/GLP-1 receptor co-agonists like tirzepatide have superior efficacy compared to selective GLP-1 receptor agonists with respect to glycaemic control as well as body weight has renewed interest in GIP, which previously was thought to be without any therapeutic potential. One focus of this research is into the long-term interaction of GIP and GLP-1 receptor signalling. A GLP-1 receptor antagonist (exendin [9-39]) and, more recently, a GIP receptor agonist (GIP [3-30] NH2 ) and, hopefully, longer-acting GIP receptor agonists for human use will be helpful tools to shed light on the open questions. A detailed knowledge of incretin physiology and pathophysiology will be a prerequisite for designing more effective incretin-based diabetes drugs.
Collapse
Affiliation(s)
- Michael A Nauck
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Daniel R Quast
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Jakob Wefers
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Andreas F H Pfeiffer
- Charité - Universitätsmedizin Berlin, Klinik für Endokrinologie, Stoffwechsel- und Ernährungsmedizin, Berlin, Germany
| |
Collapse
|
12
|
Heuvelman VD, Van Raalte DH, Smits MM. Cardiovascular effects of glucagon-like peptide 1 receptor agonists: from mechanistic studies in humans to clinical outcomes. Cardiovasc Res 2020; 116:916-930. [PMID: 31825468 DOI: 10.1093/cvr/cvz323] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/11/2019] [Accepted: 12/09/2019] [Indexed: 12/23/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is currently one of the most prevalent diseases, with as many as 415 million patients worldwide. T2DM is characterized by elevated blood glucose levels and is often accompanied by several comorbidities, such as cardiovascular disease. Treatment of T2DM is focused on reducing glucose levels by either lifestyle changes or medical treatment. One treatment option for T2DM is based on the gut-derived hormone glucagon-like peptide 1 (GLP-1). GLP-1 reduces blood glucose levels by stimulating insulin secretion, however, it is rapidly degraded, and thereby losing its glycaemic effect. GLP-1 receptor agonists (GLP-1RAs) are immune to degradation, prolonging the glycaemic effect. Lately, GLP-1RAs have spiked the interest of researchers and clinicians due to their beneficial effects on cardiovascular disease. Preclinical and clinical data have demonstrated that GLP-1 receptors are abundantly present in the heart and that stimulation of these receptors by GLP-1 has several effects. In this review, we will discuss the effects of GLP-1RA on heart rate, blood pressure, microvascular function, lipids, and inflammation, as measured in human mechanistic studies, and suggest how these effects may translate into the improved cardiovascular outcomes as demonstrated in several trials.
Collapse
Affiliation(s)
- Valerie D Heuvelman
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, Location VUmc, De Boelelaan 1117, Room ZH 4A72, 1081 HV Amsterdam, The Netherlands
| | - Daniël H Van Raalte
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, Location VUmc, De Boelelaan 1117, Room ZH 4A72, 1081 HV Amsterdam, The Netherlands
| | - Mark M Smits
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, Location VUmc, De Boelelaan 1117, Room ZH 4A72, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
13
|
Terzic D, Zois NE, Hunter I, Christoffersen C, Plomgaard P, Olsen LH, Ringholm S, Pilegaard H, Goetze JP. Effect of insulin on natriuretic peptide gene expression in porcine heart. Peptides 2020; 131:170370. [PMID: 32663503 DOI: 10.1016/j.peptides.2020.170370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 11/16/2022]
Abstract
Gut hormones affect cardiac function and contractility. In this study, we examined whether insulin affects the cardiac atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) gene expression and release of proANP-derived peptides in pigs. Anaesthetized pigs were included in an experimental study comparing the effect of hyperinsulinemia in 15 pigs submitted to two different protocols versus 11 control pigs receiving saline infusion. Phosphorylation of Akt on Thr308 was determined by western blotting with a pAkt-Thr308 antibody. The mRNA contents of ANP and BNP were determined with real-time PCR; plasma and cardiac tissue proANP was measured with an immunoluminometric assay targeted against the mid-region of the propeptide and a processing-independent assay. Insulin stimulation increased phosphorylation of Akt Thr308 in both left atrium and left ventricle of porcine hearts (p < 0.005). No change was observed in ANP and BNP mRNA contents in the right or left atrium. BNP mRNA contents in the left ventricle, however, decreased 3-fold (p = 0.02) compared to control animals, whereas the BNP mRNA content in the right ventricle as well as ANP mRNA content in the right and left ventricle did not change following hyperinsulinemia. Moreover, the peptide contents did not change in the four cardiac chambers. Finally, proANP concentrations in plasma did not change during the insulin infusion compared to the control animals. These results suggest that insulin does not have direct effect on atrial natriuretic peptide expression but may have a role in the left ventricle.
Collapse
Affiliation(s)
- Dijana Terzic
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Nora E Zois
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Ingrid Hunter
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Plomgaard
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Lisbeth Høier Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Stine Ringholm
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Jens P Goetze
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Balk-Møller E, Windeløv JA, Svendsen B, Hunt J, Ghiasi SM, Sørensen CM, Holst JJ, Kissow H. Glucagon-Like Peptide 1 and Atrial Natriuretic Peptide in a Female Mouse Model of Obstructive Pulmonary Disease. J Endocr Soc 2019; 4:bvz034. [PMID: 32010874 PMCID: PMC6984785 DOI: 10.1210/jendso/bvz034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is protective in lung disease models but the underlying mechanisms remain elusive. Because the hormone atrial natriuretic peptide (ANP) also has beneficial effects in lung disease, we hypothesized that GLP-1 effects may be mediated by ANP expression. To study this putative link, we used a mouse model of chronic obstructive pulmonary disease (COPD) and assessed lung function by unrestrained whole-body plethysmography. In 1 study, we investigated the role of endogenous GLP-1 by genetic GLP-1 receptor (GLP-1R) knockout (KO) and pharmaceutical blockade of the GLP-1R with the antagonist exendin-9 to -39 (EX-9). In another study the effects of exogenous GLP-1 were assessed. Lastly, we investigated the bronchodilatory properties of ANP and a GLP-1R agonist on isolated bronchial sections from healthy and COPD mice. Lung function did not differ between mice receiving phosphate-buffered saline (PBS) and EX-9 or between GLP-1R KO mice and their wild-type littermates. The COPD mice receiving GLP-1R agonist improved pulmonary function (P < .01) with less inflammation, but no less emphysema compared to PBS-treated mice. Compared with the PBS-treated mice, treatment with GLP-1 agonist increased ANP (nppa) gene expression by 10-fold (P < .01) and decreased endothelin-1 (P < .01), a peptide associated with bronchoconstriction. ANP had moderate bronchodilatory effects in isolated bronchial sections and GLP-1R agonist also showed bronchodilatory properties but less than ANP. Responses to both peptides were significantly increased in COPD mice (P < .05, P < .01). Taken together, our study suggests a link between GLP-1 and ANP in COPD.
Collapse
Affiliation(s)
- Emilie Balk-Møller
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johanne Agerlin Windeløv
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Berit Svendsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jenna Hunt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Seyed Mojtaba Ghiasi
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Section for Cell Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Mehlin Sørensen
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hannelouise Kissow
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Müller TD, Finan B, Bloom SR, D'Alessio D, Drucker DJ, Flatt PR, Fritsche A, Gribble F, Grill HJ, Habener JF, Holst JJ, Langhans W, Meier JJ, Nauck MA, Perez-Tilve D, Pocai A, Reimann F, Sandoval DA, Schwartz TW, Seeley RJ, Stemmer K, Tang-Christensen M, Woods SC, DiMarchi RD, Tschöp MH. Glucagon-like peptide 1 (GLP-1). Mol Metab 2019; 30:72-130. [PMID: 31767182 PMCID: PMC6812410 DOI: 10.1016/j.molmet.2019.09.010] [Citation(s) in RCA: 915] [Impact Index Per Article: 183.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/10/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The glucagon-like peptide-1 (GLP-1) is a multifaceted hormone with broad pharmacological potential. Among the numerous metabolic effects of GLP-1 are the glucose-dependent stimulation of insulin secretion, decrease of gastric emptying, inhibition of food intake, increase of natriuresis and diuresis, and modulation of rodent β-cell proliferation. GLP-1 also has cardio- and neuroprotective effects, decreases inflammation and apoptosis, and has implications for learning and memory, reward behavior, and palatability. Biochemically modified for enhanced potency and sustained action, GLP-1 receptor agonists are successfully in clinical use for the treatment of type-2 diabetes, and several GLP-1-based pharmacotherapies are in clinical evaluation for the treatment of obesity. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GLP-1 and its pharmacology and discuss its therapeutic implications on various diseases. MAJOR CONCLUSIONS Since its discovery, GLP-1 has emerged as a pleiotropic hormone with a myriad of metabolic functions that go well beyond its classical identification as an incretin hormone. The numerous beneficial effects of GLP-1 render this hormone an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, and neurodegenerative disorders.
Collapse
Affiliation(s)
- T D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany.
| | - B Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - S R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - D D'Alessio
- Division of Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - D J Drucker
- The Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Ontario, M5G1X5, Canada
| | - P R Flatt
- SAAD Centre for Pharmacy & Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - A Fritsche
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | - F Gribble
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - H J Grill
- Institute of Diabetes, Obesity and Metabolism, Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J F Habener
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - J J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - W Langhans
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - J J Meier
- Diabetes Division, St Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - M A Nauck
- Diabetes Center Bochum-Hattingen, St Josef Hospital (Ruhr-Universität Bochum), Bochum, Germany
| | - D Perez-Tilve
- Department of Internal Medicine, University of Cincinnati-College of Medicine, Cincinnati, OH, USA
| | - A Pocai
- Cardiovascular & ImmunoMetabolism, Janssen Research & Development, Welsh and McKean Roads, Spring House, PA, 19477, USA
| | - F Reimann
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - D A Sandoval
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - T W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DL-2200, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - R J Seeley
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - K Stemmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - M Tang-Christensen
- Obesity Research, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - S C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - R D DiMarchi
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA; Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - M H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
16
|
Asmar A, Cramon PK, Simonsen L, Asmar M, Sorensen CM, Madsbad S, Moro C, Hartmann B, Jensen BL, Holst JJ, Bülow J. Extracellular Fluid Volume Expansion Uncovers a Natriuretic Action of GLP-1: A Functional GLP-1-Renal Axis in Man. J Clin Endocrinol Metab 2019; 104:2509-2519. [PMID: 30835273 DOI: 10.1210/jc.2019-00004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/27/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE We have previously demonstrated that glucagon-like peptide-1 (GLP-1) does not affect renal hemodynamics or function under baseline conditions in healthy participants and in patients with type 2 diabetes mellitus. However, it is possible that GLP-1 promotes natriuresis under conditions with addition of salt and water to the extracellular fluid. The current study was designed to investigate a possible GLP-1-renal axis, inducing natriuresis in healthy, volume-loaded participants. METHODS Under fixed sodium intake, eight healthy men were examined twice in random order during a 3-hour infusion of either GLP-1 (1.5 pmol/kg/min) or vehicle together with an intravenous infusion of 0.9% NaCl. Timed urine collections were conducted throughout the experiments. Renal plasma flow (RPF), glomerular filtration rate (GFR), and uptake and release of hormones and ions were measured via Fick's principle. RESULTS During GLP-1 infusion, urinary sodium and osmolar excretions increased significantly compared with vehicle. Plasma renin levels decreased similarly on both days, whereas angiotensin II (ANG II) levels decreased significantly only during GLP-1 infusion. RPF and GFR remained unchanged on both days. CONCLUSIONS In volume-loaded participants, GLP-1 induces natriuresis, probably brought about via a tubular mechanism secondary to suppression of ANG II, independent of renal hemodynamics, supporting the existence of a GLP-1-renal axis.
Collapse
Affiliation(s)
- Ali Asmar
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Per K Cramon
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Lene Simonsen
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Meena Asmar
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Endocrinology, Bispebjerg and Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Charlotte M Sorensen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, University Hospital of Copenhagen, Hvidovre, Denmark
| | - Cedric Moro
- Institut National de la Santé et de la Recherche Médicale UMR 1048, Institute of Metabolic and Cardiovascular Diseases, and Paul Sabatier University, Toulouse, France
| | - Bolette Hartmann
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Boye L Jensen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bülow
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Liakos A, Lambadiari V, Bargiota A, Kitsios K, Avramidis I, Kotsa K, Gerou S, Boura P, Tentolouris N, Dimitriadis G, Tsapas A. Effect of liraglutide on ambulatory blood pressure in patients with hypertension and type 2 diabetes: A randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab 2019; 21:517-524. [PMID: 30242948 DOI: 10.1111/dom.13541] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 01/02/2023]
Abstract
AIMS To assess the effect of liraglutide on 24-hour ambulatory blood pressure and heart rate in patients with hypertension (pre- and stage 1 hypertension) and inadequately controlled Type 2 diabetes (glycated haemoglobin 7%-10% [53-86 mmol/mol]). MATERIALS AND METHODS Eligible patients for this investigator-initiated, parallel-group, randomized, double-blind trial were on stable background antihyperglycaemic therapy excluding insulin, glucagon-like peptide-1 receptor agonists and dipeptidyl-peptidase-4 inhibitors. Participants were centrally randomized in a 1:1 ratio to daily liraglutide 0.6 mg, titrated to 1.2 mg after the first week, or placebo for 5 weeks. The primary outcome was change in 24-hour ambulatory systolic blood pressure (SBP), and secondary outcomes included change in ambulatory diastolic blood pressure (DBP) and heart rate. We also assessed renal sodium handling. RESULTS Of 87 patients assessed for eligibility, 62 (66.1% men) with a mean age of 60.2 years were randomized to liraglutide (n = 31) or placebo (n = 31). All participants received background therapy with metformin, whilst 35.5% were treated concomitantly with sulphonylureas and 14.5% with pioglitazone. Compared with placebo, liraglutide reduced 24-hour SBP by -5.73 mm Hg (95% confidence interval [CI] -9.81 to -1.65) and had a neutral effect on 24-hour DBP (mean difference - 1.42 mm Hg; 95% CI -4.25 to 1.40), whilst increasing 24-hour heart rate by 6.16 beats/min (95% CI 3.25 to 9.07). Findings were consistent for daytime and night-time measurements. Liraglutide did not increase urine sodium excretion. CONCLUSION Based on 24-hour ambulatory measurements, short-term treatment with liraglutide had a favourable effect on SBP whilst increasing heart rate.
Collapse
Affiliation(s)
- Aris Liakos
- Second Medical Department, Aristotle University Thessaloniki, Thessaloniki, Greece
| | - Vaia Lambadiari
- Research Institute and Diabetes Center, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandra Bargiota
- Department of Endocrinology and Metabolic Diseases, University of Thessaly, Larisa, Greece
| | - Konstantinos Kitsios
- Second Medical Department, Aristotle University Thessaloniki, Thessaloniki, Greece
| | - Iakovos Avramidis
- First Medical Department, G. Papanikolaou General Hospital, Thessaloniki, Greece
| | - Kalliopi Kotsa
- Division of Endocrinology-Diabetes, First Department of Internal Medicine, Aristotle University Thessaloniki, Thessaloniki, Greece
| | | | - Panagiota Boura
- Second Medical Department, Aristotle University Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Tentolouris
- First Department of Propedeutic and Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - George Dimitriadis
- Research Institute and Diabetes Center, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Apostolos Tsapas
- Second Medical Department, Aristotle University Thessaloniki, Thessaloniki, Greece
- Harris Manchester College, University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Clarke SJ, Pettit S, Giblett JP, Zhao T, Kydd AC, Albrechtsen NJW, Deacon CF, Parameshwar J, Hoole SP. Effects of Acute GLP-1 Infusion on Pulmonary and Systemic Hemodynamics in Patients With Heart Failure: A Pilot Study. Clin Ther 2019; 41:118-127.e0. [PMID: 30598343 DOI: 10.1016/j.clinthera.2018.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/13/2018] [Accepted: 11/28/2018] [Indexed: 01/10/2023]
Abstract
PURPOSE Cardiovascular-safety studies assessing glucagon-like peptide (GLP)-1 receptor agonists and dipeptidyl peptidase 4 inhibitors have provided inconsistent data on the risk for developing heart failure. Animal studies have shown that GLP-1 is a vasodilator; if confirmed in humans, this may ameliorate heart failure symptoms. METHODS In a single-center, observational pilot study, we recruited 10 patients with advanced heart failure undergoing right heart catheterization, and we recorded pulmonary hemodynamic measures, including cardiac output calculated by thermodilution and the indirect Fick method before and after a 15-minute continuous infusion of native GLP-1 (7-36) NH2. FINDINGS There was a neutral effect of GLP-1 on all pressure and hemodynamics indices as derived by cardiac output calculated by thermodilution. However, there was a small but consistent reduction in cardiac output as calculated by the indirect Fick method after GLP-1 infusion (baseline, 4.0 [1.1] L/min vs GLP-1, 3.6 [0.9] L/min; P = 0.003), driven by a consistent reduction in mixed venous oxygen saturation after GLP-1 infusion (baseline, 62.2% [7.0%] vs GLP-1, 59.3% [6.8%]; P < 0.001), whereas arterial saturation remained constant (baseline, 96.8% [3.3%] vs GLP-1, 97.0% [3.2%]; P = 0.34). This resulted in an increase in systemic vascular resistance by Fick (baseline, 1285 [228] dyn · s/cm5 vs GLP-1, 1562 [247] dyn · s/cm5; P = 0.001). IMPLICATIONS Acute infusion of GLP-1 has a neutral hemodynamic effect, when assessed by thermodilution, in patients with heart failure. However, GLP-1 reduces mixed venous oxygen saturation. ClinicalTrials.gov identifier: NCT02129179.
Collapse
Affiliation(s)
- Sophie J Clarke
- Department of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Stephen Pettit
- Department of Transplantation, Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Joel P Giblett
- Department of Transplantation, Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Tian Zhao
- Department of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Anna C Kydd
- Department of Transplantation, Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Nicolai J W Albrechtsen
- Department of Biomedical Sciences and NNF Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Carolyn F Deacon
- Department of Biomedical Sciences and NNF Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jayan Parameshwar
- Department of Transplantation, Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Stephen P Hoole
- Department of Interventional Cardiology, Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom.
| |
Collapse
|
19
|
Rowlands J, Heng J, Newsholme P, Carlessi R. Pleiotropic Effects of GLP-1 and Analogs on Cell Signaling, Metabolism, and Function. Front Endocrinol (Lausanne) 2018; 9:672. [PMID: 30532733 PMCID: PMC6266510 DOI: 10.3389/fendo.2018.00672] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022] Open
Abstract
The incretin hormone Glucagon-Like Peptide-1 (GLP-1) is best known for its "incretin effect" in restoring glucose homeostasis in diabetics, however, it is now apparent that it has a broader range of physiological effects in the body. Both in vitro and in vivo studies have demonstrated that GLP-1 mimetics alleviate endoplasmic reticulum stress, regulate autophagy, promote metabolic reprogramming, stimulate anti-inflammatory signaling, alter gene expression, and influence neuroprotective pathways. A substantial body of evidence has accumulated with respect to how GLP-1 and its analogs act to restore and maintain normal cellular functions. These findings have prompted several clinical trials which have reported GLP-1 analogs improve cardiac function, restore lung function and reduce mortality in patients with obstructive lung disease, influence blood pressure and lipid storage, and even prevent synaptic loss and neurodegeneration. Mechanistically, GLP-1 elicits its effects via acute elevation in cAMP levels, and subsequent protein kinase(s) activation, pathways well-defined in pancreatic β-cells which stimulate insulin secretion in conjunction with elevated Ca2+ and ATP. More recently, new studies have shed light on additional downstream pathways stimulated by chronic GLP-1 exposure, findings which have direct relevance to our understanding of the potential therapeutic effects of longer lasting analogs recently developed for clinical use. In this review, we provide a comprehensive description of the diverse roles for GLP-1 across multiple tissues, describe downstream pathways stimulated by acute and chronic exposure, and discuss novel pleiotropic applications of GLP-1 mimetics in the treatment of human disease.
Collapse
Affiliation(s)
| | | | - Philip Newsholme
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Perth, WA, Australia
| | - Rodrigo Carlessi
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Perth, WA, Australia
| |
Collapse
|
20
|
Coppolino G, Leporini C, Rivoli L, Ursini F, di Paola ED, Cernaro V, Arturi F, Bolignano D, Russo E, De Sarro G, Andreucci M. Exploring the effects of DPP-4 inhibitors on the kidney from the bench to clinical trials. Pharmacol Res 2018; 129:274-294. [DOI: 10.1016/j.phrs.2017.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/15/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023]
|
21
|
Frøssing S, Nylander M, Kistorp C, Skouby SO, Faber J. Effect of liraglutide on atrial natriuretic peptide, adrenomedullin, and copeptin in PCOS. Endocr Connect 2018; 7:115-123. [PMID: 29295870 PMCID: PMC5754509 DOI: 10.1530/ec-17-0327] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 11/28/2017] [Indexed: 12/12/2022]
Abstract
CONTEXT Women with polycystic ovary syndrome (PCOS) have an increased risk of cardiovascular disease (CVD), and biomarkers can be used to detect early subclinical CVD. Midregional-pro-adrenomedullin (MR-proADM), midregional-pro-atrial natriuretic peptide (MR-proANP) and copeptin are all associated with CVD and part of the delicate system controlling fluid and hemodynamic homeostasis through vascular tonus and diuresis. The GLP-1 receptor agonist liraglutide, developed for treatment of type 2 diabetes (T2D), improves cardiovascular outcomes in patients with T2D including a decrease in particular MR-proANP. OBJECTIVE To investigate if treatment with liraglutide in women with PCOS reduces levels of the cardiovascular biomarkers MR-proADM, MR-proANP and copeptin. METHODS Seventy-two overweight women with PCOS were treated with 1.8 mg/day liraglutide or placebo for 26 weeks in a placebo-controlled RCT. Biomarkers, anthropometrics, insulin resistance, body composition (DXA) and visceral fat (MRI) were examined. RESULTS Baseline median (IQR) levels were as follows: MR-proADM 0.52 (0.45-0.56) nmol/L, MR-proANP 44.8 (34.6-56.7) pmol/L and copeptin 4.95 (3.50-6.50) pmol/L. Mean percentage differences (95% CI) between liraglutide and placebo group after treatment were as follows: MR-proADM -6% (-11 to 2, P = 0.058), MR-proANP -25% (-37 to -11, P = 0.001) and copeptin +4% (-13 to 25, P = 0.64). Reduction in MR-proANP concentration correlated with both increased heart rate and diastolic blood pressure in the liraglutide group. Multiple regression analyses with adjustment for BMI, free testosterone, insulin resistance, visceral fat, heart rate and eGFR showed reductions in MR-proANP to be independently correlated with an increase in the heart rate. CONCLUSION In an RCT, liraglutide treatment in women with PCOS reduced levels of the cardiovascular risk biomarkers MR-proANP with 25% and MR-proADM with 6% (borderline significance) compared with placebo. The decrease in MR-proANP was independently associated with an increase in the heart rate.
Collapse
Affiliation(s)
- Signe Frøssing
- Department of Internal MedicineCenter of Endocrinology and Metabolism, Herlev Gentofte Hospital, Copenhagen, Denmark
- Faculty of Health and Medical SciencesCopenhagen University, Copenhagen, Denmark
| | - Malin Nylander
- Faculty of Health and Medical SciencesCopenhagen University, Copenhagen, Denmark
- Department of Obstetrics & GynecologyHerlev Gentofte Hospital, Copenhagen, Denmark
| | - Caroline Kistorp
- Department of Internal MedicineCenter of Endocrinology and Metabolism, Herlev Gentofte Hospital, Copenhagen, Denmark
- Faculty of Health and Medical SciencesCopenhagen University, Copenhagen, Denmark
| | - Sven O Skouby
- Faculty of Health and Medical SciencesCopenhagen University, Copenhagen, Denmark
- Department of Obstetrics & GynecologyHerlev Gentofte Hospital, Copenhagen, Denmark
| | - Jens Faber
- Department of Internal MedicineCenter of Endocrinology and Metabolism, Herlev Gentofte Hospital, Copenhagen, Denmark
- Faculty of Health and Medical SciencesCopenhagen University, Copenhagen, Denmark
| |
Collapse
|
22
|
Zheng WL, Chu C, Lv YB, Wang Y, Hu JW, Ma Q, Yan Y, Cao YM, Dang XL, Wang KK, Mu JJ. Effect of Salt Intake on Serum Glucagon-Like Peptide-1 Levels in Normotensive Salt-Sensitive Subjects. Kidney Blood Press Res 2017; 42:728-737. [PMID: 29050005 DOI: 10.1159/000484152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/22/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Excess dietary salt is a critical risk factor of salt-sensitive hypertension. Glucagon-like peptide-1 (GLP-1) , a gut incretin hormone, conferring benefits for blood pressure by natriuresis and diuresis. We implemented a randomized trial to verify the effect of altered salt intake on serum GLP-1 level in human beings. METHODS The 38 subjects were recruited from a rural community of Northern China. All subjects were sequentially maintained a baseline diet period for 3 days, a low-salt diet period for 7 days (3.0g/day of NaCl) , and a high-salt diet period for additional 7 days (18.0g/day of NaCl). RESULTS Serum GLP-1 level increased significantly with the change from the baseline period to the low-salt diet period and decreased with the change from the low-salt to high-salt diet in normotensive salt-sensitive (SS) but not salt-resistant (SR) individuals. There was a significant inverse correlation between the serum GLP-1 level and the MAP in SS subjects. Inverse correlation between the serum GLP-1 level and 24-h urinary sodium excretion was also found among different dietary interventions in SS subjects. CONCLUSIONS Our study indicates that variations in dietary salt intake affect the serum GLP-1 level in normotensive salt-sensitive Chinese adults.
Collapse
|
23
|
Nauck MA, Meier JJ, Cavender MA, Abd El Aziz M, Drucker DJ. Cardiovascular Actions and Clinical Outcomes With Glucagon-Like Peptide-1 Receptor Agonists and Dipeptidyl Peptidase-4 Inhibitors. Circulation 2017; 136:849-870. [PMID: 28847797 DOI: 10.1161/circulationaha.117.028136] [Citation(s) in RCA: 367] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Potentiation of glucagon-like peptide-1 (GLP-1) action through selective GLP-1 receptor (GLP-1R) agonism or by prevention of enzymatic degradation by inhibition of dipeptidyl peptidase-4 (DPP-4) promotes glycemic reduction for the treatment of type 2 diabetes mellitus by glucose-dependent control of insulin and glucagon secretion. GLP-1R agonists also decelerate gastric emptying, reduce body weight by reduction of food intake and lower circulating lipoproteins, inflammation, and systolic blood pressure. Preclinical studies demonstrate that both GLP-1R agonists and DPP-4 inhibitors exhibit cardioprotective actions in animal models of myocardial ischemia and ventricular dysfunction through incompletely characterized mechanisms. The results of cardiovascular outcome trials in human subjects with type 2 diabetes mellitus and increased cardiovascular risk have demonstrated a cardiovascular benefit (significant reduction in time to first major adverse cardiovascular event) with the GLP-1R agonists liraglutide (LEADER trial [Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Ourcome Results], -13%) and semaglutide (SUSTAIN-6 trial [Trial to Evaluate Cardiovascular and Other Long-term Outcomes with Semaglutide], -24%). In contrast, cardiovascular outcome trials examining the safety of the shorter-acting GLP-1R agonist lixisenatide (ELIXA trial [Evaluation of Lixisenatide in Acute Coronary Syndrom]) and the DPP-4 inhibitors saxagliptin (SAVOR-TIMI 53 trial [Saxagliptin Assessment of Vascular Outcomes Recorded in Patients With Diabetes Mellitus-Thrombolysis in Myocardial Infarction 53]), alogliptin (EXAMINE trial [Examination of Cardiovascular Outcomes With Alogliptin Versus Standard of Care in Patients With Type 2 Diabetes Mellitus and Acute Coronary Syndrome]), and sitagliptin (TECOS [Trial Evaluating Cardiovascular Outcomes With Sitagliptin]) found that these agents neither increased nor decreased cardiovascular events. Here we review the cardiovascular actions of GLP-1R agonists and DPP-4 inhibitors, with a focus on the translation of mechanisms derived from preclinical studies to complementary findings in clinical studies. We highlight areas of uncertainty requiring more careful scrutiny in ongoing basic science and clinical studies. As newer more potent GLP-1R agonists and coagonists are being developed for the treatment of type 2 diabetes mellitus, obesity, and nonalcoholic steatohepatitis, the delineation of the potential mechanisms that underlie the cardiovascular benefit and safety of these agents have immediate relevance for the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Michael A Nauck
- From Diabetes Center Bochum-Hattingen, St Josef-Hospital, Ruhr-University Bochum, Germany (M.A.N., J.J.M., M.A.E.A.); Department of Medicine, University of North Carolina, Chapel Hill (M.A.C.); and Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, University of Toronto, Ontario, Canada (D.J.D.).
| | - Juris J Meier
- From Diabetes Center Bochum-Hattingen, St Josef-Hospital, Ruhr-University Bochum, Germany (M.A.N., J.J.M., M.A.E.A.); Department of Medicine, University of North Carolina, Chapel Hill (M.A.C.); and Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, University of Toronto, Ontario, Canada (D.J.D.)
| | - Matthew A Cavender
- From Diabetes Center Bochum-Hattingen, St Josef-Hospital, Ruhr-University Bochum, Germany (M.A.N., J.J.M., M.A.E.A.); Department of Medicine, University of North Carolina, Chapel Hill (M.A.C.); and Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, University of Toronto, Ontario, Canada (D.J.D.)
| | - Mirna Abd El Aziz
- From Diabetes Center Bochum-Hattingen, St Josef-Hospital, Ruhr-University Bochum, Germany (M.A.N., J.J.M., M.A.E.A.); Department of Medicine, University of North Carolina, Chapel Hill (M.A.C.); and Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, University of Toronto, Ontario, Canada (D.J.D.)
| | - Daniel J Drucker
- From Diabetes Center Bochum-Hattingen, St Josef-Hospital, Ruhr-University Bochum, Germany (M.A.N., J.J.M., M.A.E.A.); Department of Medicine, University of North Carolina, Chapel Hill (M.A.C.); and Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, University of Toronto, Ontario, Canada (D.J.D.)
| |
Collapse
|
24
|
Abstract
The gastrointestinal tract - the largest endocrine network in human physiology - orchestrates signals from the external environment to maintain neural and hormonal control of homeostasis. Advances in understanding entero-endocrine cell biology in health and disease have important translational relevance. The gut-derived incretin hormone glucagon-like peptide 1 (GLP-1) is secreted upon meal ingestion and controls glucose metabolism by modulating pancreatic islet cell function, food intake and gastrointestinal motility, amongst other effects. The observation that the insulinotropic actions of GLP-1 are reduced in type 2 diabetes mellitus (T2DM) led to the development of incretin-based therapies - GLP-1 receptor agonists and dipeptidyl peptidase 4 (DPP-4) inhibitors - for the treatment of hyperglycaemia in these patients. Considerable interest exists in identifying effects of these drugs beyond glucose-lowering, possibly resulting in improved macrovascular and microvascular outcomes, including in diabetic kidney disease. As GLP-1 has been implicated as a mediator in the putative gut-renal axis (a rapid-acting feed-forward loop that regulates postprandial fluid and electrolyte homeostasis), direct actions on the kidney have been proposed. Here, we review the role of GLP-1 and the actions of associated therapies on glucose metabolism, the gut-renal axis, classical renal risk factors, and renal end points in randomized controlled trials of GLP-1 receptor agonists and DPP-4 inhibitors in patients with T2DM.
Collapse
|
25
|
Dalsgaard NB, Brønden A, Vilsbøll T, Knop FK. Cardiovascular safety and benefits of GLP-1 receptor agonists. Expert Opin Drug Saf 2017; 16:351-363. [DOI: 10.1080/14740338.2017.1281246] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Niels B. Dalsgaard
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Andreas Brønden
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Tina Vilsbøll
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K. Knop
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Pedersen JS, Borup C, Damgaard M, Yatawara VD, Floyd AK, Gadsbøll N, Bonfils PK. Early 24-hour blood pressure response to Roux-en-Y gastric bypass in obese patients. Scandinavian Journal of Clinical and Laboratory Investigation 2016; 77:53-59. [PMID: 27905219 DOI: 10.1080/00365513.2016.1258725] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Recently, it has been proposed, that the blood pressure (BP) lowering effect of gastric bypass surgery not only is explained by the obtained weight loss, but that the anatomical rearrangement of the gut after 'malabsorptive' surgical techniques, such as the laparoscopic Roux-en-Y gastric bypass (LRYGB), may affect BP through a change in a putative 'entero-renal' axis. If so one could anticipate a reduction in BP even before a noticeable weight loss was obtained. The purpose of the present study was to investigate the very early BP response to LRYGB surgery. Ten severely obese hypertensive (mean BMI 40.8 kg/m2) and 10 severely obese normotensive (mean BMI 41.7 kg/m2) patients underwent 24-h ambulatory blood pressure measurements (24 h ABPMs) before LRYGB and again day 1 and day 10 after LRYGB. No change in 24 h BP was observed day 1 after LRYGB. Day 10 after surgery both hypertensive and normotensive patients demonstrated a significant 12.6 mmHg and 9.5 reduction in systolic BP (SBP), respectively. Mean arterial pressure (MAP) decreased by 8.3 and 5.4 mmHg. At day 10 postoperatively, a weight loss of 7.9 kg in the hypertensive patients and 7.0 kg in the normotensive patients was observed. The reduction in BP after LRYGB takes place before any substantial weight loss has occurred. The reason for this remains speculative, but obese hypertensive patients may clearly benefit from the operation even if the goal of achieving 'normoweight' is not obtained.
Collapse
Affiliation(s)
- Julie S Pedersen
- a Department of Medicine , Zealand University Hospital , Koege , Denmark
| | - Christian Borup
- a Department of Medicine , Zealand University Hospital , Koege , Denmark
| | - Morten Damgaard
- b Department of Clinical Physiology and Nuclear Medicine , Hvidovre Hospital, University of Copenhagen , Copenhagen , Denmark
| | - Vindhya D Yatawara
- a Department of Medicine , Zealand University Hospital , Koege , Denmark
| | - Andrea K Floyd
- c Department of Surgery, Division of Bariatric Surgery , Zealand University Hospital , Koege , Denmark
| | - Niels Gadsbøll
- a Department of Medicine , Zealand University Hospital , Koege , Denmark
| | - Peter K Bonfils
- a Department of Medicine , Zealand University Hospital , Koege , Denmark.,d Department of Clinical Physiology and Nuclear Medicine , Zealand University Hospital , Koege , Denmark
| |
Collapse
|
27
|
|
28
|
Skov J, Pedersen M, Holst JJ, Madsen B, Goetze JP, Rittig S, Jonassen T, Frøkiaer J, Dejgaard A, Christiansen JS. Short-term effects of liraglutide on kidney function and vasoactive hormones in type 2 diabetes: a randomized clinical trial. Diabetes Obes Metab 2016; 18:581-9. [PMID: 26910107 DOI: 10.1111/dom.12651] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 11/17/2015] [Accepted: 02/18/2016] [Indexed: 02/06/2023]
Abstract
AIMS To investigate the effects of a single dose of 1.2 mg liraglutide, a once-daily glucagon-like peptide-1 (GLP-1) receptor agonist, on key renal variables in patients with type 2 diabetes. METHODS The study was a placebo-controlled, double-blind, crossover trial in 11 male patients with type 2 diabetes. Measurements included (51) Cr-EDTA plasma clearance estimated glomerular filtration rate (GFR) and MRI-based renal blood flow (RBF), tissue perfusion and oxygenation. RESULTS Liraglutide had no effect on GFR [95% confidence interval (CI) -6.8 to 3.6 ml/min/1.73 m(2) ] or on RBF (95% CI -39 to 30 ml/min) and did not change local renal blood perfusion or oxygenation. The fractional excretion of lithium increased by 14% (p = 0.01) and sodium clearance tended to increase (p = 0.06). Liraglutide increased diastolic and systolic blood pressure (3 and 6 mm Hg) and heart rate (2 beats per min; all p < 0.05). Angiotensin II (ANG II) concentration decreased by 21% (p = 0.02), but there were no effects on other renin-angiotensin system components, atrial natriuretic peptides (ANPs), methanephrines or excretion of catecholamines. CONCLUSIONS Short-term liraglutide treatment did not affect renal haemodynamics but decreased the proximal tubular sodium reabsorption. Blood pressure increased with short-term as opposed to long-term treatment. Catecholamine levels were unchanged and the results did not support a GLP-1-ANP axis. ANG II levels decreased, which may contribute to renal protection by GLP-1 receptor agonists.
Collapse
Affiliation(s)
- J Skov
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Novo Nordisk A/S, Bagsvaerd, Denmark
| | - M Pedersen
- Comparative Medicine Laboratory, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - J J Holst
- Department of Biomedical Sciences, NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - B Madsen
- Department of Nephrology, Aarhus University Hospital, Aarhus, Denmark
| | - J P Goetze
- Department of Clinical Biochemistry, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - S Rittig
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - T Jonassen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - J Frøkiaer
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Physiology and Molecular Imaging, Aarhus University Hospital, Aarhus, Denmark
| | | | - J S Christiansen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
29
|
Poudyal H. Mechanisms for the cardiovascular effects of glucagon-like peptide-1. Acta Physiol (Oxf) 2016; 216:277-313. [PMID: 26384481 DOI: 10.1111/apha.12604] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/25/2015] [Accepted: 09/10/2015] [Indexed: 12/16/2022]
Abstract
Over the past three decades, at least 10 hormones secreted by the enteroendocrine cells have been discovered, which directly affect the cardiovascular system through their innate receptors expressed in the heart and blood vessels or through a neural mechanism. Glucagon-like peptide-1 (GLP-1), an important incretin, is perhaps best studied of these gut-derived hormones with important cardiovascular effects. In this review, I have discussed the mechanism of GLP-1 release from the enteroendocrine L-cells and its physiological effects on the cardiovascular system. Current evidence suggests that GLP-1 has positive inotropic and chronotropic effects on the heart and may be important in preserving left ventricular structure and function by direct and indirect mechanisms. The direct effects of GLP-1 in the heart may be mediated through GLP-1R expressed in atria as well as arteries and arterioles in the left ventricle and mainly involve in the activation of multiple pro-survival kinases and enhanced energy utilization. There is also good evidence to support the involvement of a second, yet to be identified, GLP-1 receptor. Further, GLP-1(9-36)amide, which was previously thought to be the inactive metabolite of the active GLP-1(7-36)amide, may also have direct cardioprotective effects. GLP-1's action on GLP-1R expressed in the central nervous system, kidney, vasculature and the pancreas may indirectly contribute to its cardioprotective effects.
Collapse
Affiliation(s)
- H. Poudyal
- Department of Diabetes, Endocrinology and Nutrition; Graduate School of Medicine and Hakubi Centre for Advanced Research; Kyoto University; Kyoto Japan
| |
Collapse
|
30
|
|
31
|
Nathanson D, Frick M, Ullman B, Nyström T. Exenatide infusion decreases atrial natriuretic peptide levels by reducing cardiac filling pressures in type 2 diabetes patients with decompensated congestive heart failure. Diabetol Metab Syndr 2016; 8:5. [PMID: 26759609 PMCID: PMC4709886 DOI: 10.1186/s13098-015-0116-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/19/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The vascular effects exerted by GLP-1 are mediated by several synergistic mechanisms such as involvement of nitric oxide and natriuresis. Recently, it was demonstrated that atrial natriuretic peptide (ANP) is essential for the glucagon-like peptide-1 (GLP-1)-stimulated vascular smooth muscle relaxation that mediates anti-hypertensive action in rodents. Therefore a GLP-1-ANP axis has been suggested. The aim of this study was to investigate whether this effect can be demonstrated in patients with type 2 diabetes and congestive heart failure. METHODS The study was a post hoc analysis of a randomized double-blinded, placebo-controlled trial. Twenty male patients with type 2 diabetes and congestive heart failure were randomized to receive a 6-h infusion of exenatide or placebo. Cardiac filling pressures were measured by right heart catheterization, and plasma levels of ANP, N-terminal pro-brain natriuretic peptide, and exenatide were measured at baseline and at the end of the exenatide infusion. RESULTS Exenatide infusion resulted in a significant decrease of circulating ANP levels compared with placebo, concomitant with a decrease in pulmonary capillary wedge pressure (PCWP), pulmonary artery pressure (PAP) and right arterial pressure (RAP), and increased cardiac output. There was no correlation between plasma ANP levels and exenatide levels. A negative correlation between ANP levels and PCWP, PAP, and RAP, which remained significant after adjustment for plasma exenatide levels, was demonstrated during exenatide infusion. CONCLUSIONS Exenatide infusion decreases cardiac filling pressure and ANP levels. The reduction of ANP levels was primarily because of the reduction in cardiac filling pressure, independent of exenatide levels. It seems unlikely that this was mediated via ANP. TRIAL REGISTRATION http://www.isrctn.org/ISRCTN47533126.
Collapse
Affiliation(s)
- David Nathanson
- />Department of Clinical Science and Education, Karolinska Institutet, 11883 Stockholm, Sweden
- />Department of Endocrinology and Diabetology, Södersjukhuset, 11883 Stockholm, Sweden
| | - Mats Frick
- />Department of Clinical Science and Education, Karolinska Institutet, 11883 Stockholm, Sweden
- />Department of Cardiology, Södersjukhuset, 11883 Stockholm, Sweden
| | - Bengt Ullman
- />Department of Clinical Science and Education, Karolinska Institutet, 11883 Stockholm, Sweden
- />Department of Cardiology, Södersjukhuset, 11883 Stockholm, Sweden
| | - Thomas Nyström
- />Department of Clinical Science and Education, Karolinska Institutet, 11883 Stockholm, Sweden
- />Department of Endocrinology and Diabetology, Södersjukhuset, 11883 Stockholm, Sweden
| |
Collapse
|
32
|
Wu MH, Liu J, Gao Y, Hu GC. Advances in understanding relationship between GLP-1 based drugs and the kidney. Shijie Huaren Xiaohua Zazhi 2015; 23:5004-5010. [DOI: 10.11569/wcjd.v23.i31.5004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The drugs based on glucagon-like peptide-1 (GLP-1) not only lower urinary protein, but also increase urine sodium excretion and improve the pathological changes of kidney disease. However, the mechanism is not very clear and may be associated with atrial natriuretic peptide, renin angiotensin axis, and oxidative stress. This review focuses on the progress in understanding the relationship between GLP-1 and the kidney.
Collapse
|
33
|
Farah LXS, Valentini V, Pessoa TD, Malnic G, McDonough AA, Girardi ACC. The physiological role of glucagon-like peptide-1 in the regulation of renal function. Am J Physiol Renal Physiol 2015; 310:F123-7. [PMID: 26447224 DOI: 10.1152/ajprenal.00394.2015] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/06/2015] [Indexed: 01/27/2023] Open
Abstract
Glucagon like peptide-1 (GLP-1) is an incretin hormone constantly secreted from the intestine at low basal levels in the fasted state; plasma concentrations rise rapidly after nutrient ingestion. Upon release, GLP-1 exerts insulinotropic effects via a G protein-coupled receptor, stimulation of adenylyl cyclase, and cAMP generation. Although primarily involved in glucose homeostasis, GLP-1 can induce diuresis and natriuresis when administered in pharmacological doses in humans and rodents. However, whether endogenous GLP-1 plays a role in regulating renal function remains an open question. This study aimed to test the hypothesis that blockade of GLP-1 receptor (GLP-1R) signaling at baseline influences renal salt and water handling. To this end, the GLP-1R antagonist exendin-9 (100 μg·kg(-1)·min(-1)) or vehicle was administered intravenously to overnight-fasted male Wistar rats for 30 min. This treatment reduced urinary cAMP excretion and renal cortical PKA activity, demonstrating blockade of renal GLP-1R signaling. Exendin-9-infused-rats exhibited reduced glomerular filtration rate, lithium clearance, urinary volume flow, and sodium excretion compared with vehicle-infused controls. Exendin-9 infusion also reduced renal cortical Na(+)/H(+) exchanger isotope 3 (NHE3) phosphorylation at serine 552 (NHE3pS552), a PKA consensus site that correlates with reduced transport activity. Collectively, these results provide novel evidence that GLP-1 is a physiologically relevant natriuretic factor that contributes to sodium balance, in part via tonic modulation of NHE3 activity in the proximal tubule.
Collapse
Affiliation(s)
- Lívia X S Farah
- Heart Institute (InCor), University of São Paulo, São Paulo, Brazil
| | | | - Thaissa D Pessoa
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil; and
| | - Gerhard Malnic
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil; and
| | - Alicia A McDonough
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | | |
Collapse
|
34
|
Ramos HR, Birkenfeld AL, de Bold AJ. INTERACTING DISCIPLINES: Cardiac natriuretic peptides and obesity: perspectives from an endocrinologist and a cardiologist. Endocr Connect 2015; 4:R25-36. [PMID: 26115665 PMCID: PMC4485177 DOI: 10.1530/ec-15-0018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since their discovery in 1981, the cardiac natriuretic peptides (cNP) atrial natriuretic peptide (also referred to as atrial natriuretic factor) and brain natriuretic peptide have been well characterised in terms of their renal and cardiovascular actions. In addition, it has been shown that cNP plasma levels are strong predictors of cardiovascular events and mortality in populations with no apparent heart disease as well as in patients with established cardiac pathology. cNP secretion from the heart is increased by humoral and mechanical stimuli. The clinical significance of cNP plasma levels has been shown to differ in obese and non-obese subjects. Recent lines of evidence suggest important metabolic effects of the cNP system, which has been shown to activate lipolysis, enhance lipid oxidation and mitochondrial respiration. Clinically, these properties lead to browning of white adipose tissue and to increased muscular oxidative capacity. In human association studies in patients without heart disease higher cNP concentrations were observed in lean, insulin-sensitive subjects. Highly elevated cNP levels are generally observed in patients with systolic heart failure or high blood pressure, while obese and type-2 diabetics display reduced cNP levels. Together, these observations suggest that the cNP system plays a role in the pathophysiology of metabolic vascular disease. Understanding this role should help define novel principles in the treatment of cardiometabolic disease.
Collapse
Affiliation(s)
- Hugo R Ramos
- Department of Internal Medicine, Faculty of Medicine, Hospital de Urgencias, National University of Córdoba, Córdoba, X5000,
Argentina
- Correspondence should be addressed to H R Ramos or A L Birkenfeld or
| | - Andreas L Birkenfeld
- Section of Metabolic Vascular Medicine, Medical Clinic III and Paul Langerhans Institute Dresden (PLID), Dresden University School of Medicine, 01307 DresdenGermany
- Division of Diabetes and Nutritional Sciences, King's College London, Rayne Institute, London, SE5 9NU, UK
- Correspondence should be addressed to H R Ramos or A L Birkenfeld or
| | - Adolfo J de Bold
- Cardiovascular Endocrinology Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| |
Collapse
|
35
|
Trahair LG, Horowitz M, Stevens JE, Feinle-Bisset C, Standfield S, Piscitelli D, Rayner CK, Deane AM, Jones KL. Effects of exogenous glucagon-like peptide-1 on blood pressure, heart rate, gastric emptying, mesenteric blood flow and glycaemic responses to oral glucose in older individuals with normal glucose tolerance or type 2 diabetes. Diabetologia 2015; 58:1769-78. [PMID: 26048234 DOI: 10.1007/s00125-015-3638-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/30/2015] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS A postprandial fall in BP occurs frequently in older individuals and in patients with type 2 diabetes. The magnitude of this decrease in BP is related to the rate of gastric emptying (GE). Intravenous administration of glucagon-like peptide-1 (GLP-1) attenuates the hypotensive response to intraduodenal glucose in healthy older individuals. We sought to determine the effects of exogenous GLP-1 on BP, GE, superior mesenteric artery (SMA) flow and glycaemic response to oral ingestion of glucose in healthy older individuals and patients with type 2 diabetes. METHODS Fourteen older volunteers (six men, eight women; age 72.1 ± 1.1 years) and ten patients with type 2 diabetes (six men, four women; age 68.7 ± 3.4 years; HbA1c 6.6 ± 0.2% [48.5 ± 2.0 mmol/mol]; nine with blood glucose managed with metformin, two with a sulfonylurea and one with a dipeptidyl-peptidase 4 inhibitor) received an i.v. infusion of GLP-1 (0.9 pmol kg(-1) min(-1)) or saline (154 mmol/l NaCl) for 150 min (t = -30 min to t = 120 min) in randomised order. At t = 0 min, volunteers consumed a radiolabelled 75 g glucose drink. BP was assessed with an automated device, GE by scintigraphy and SMA flow by ultrasonography. Blood glucose and serum insulin were measured. RESULTS GLP-1 attenuated the fall in diastolic BP after the glucose drink in older individuals (p < 0.05) and attenuated the fall in systolic and diastolic BP in patients with type 2 diabetes (p < 0.05). GE was faster in patients with type 2 diabetes than in healthy individuals (p < 0.05). In both groups, individuals had slower GE (p < 0.001), decreased SMA flow (p < 0.05) and a lower degree of glycaemia (p < 0.001) when receiving GLP-1. CONCLUSIONS/INTERPRETATION Intravenous GLP-1 attenuates the hypotensive response to orally administered glucose and decreases SMA flow, probably by slowing GE. GLP-1 and 'short-acting' GLP-1 agonists may be useful in the management of postprandial hypotension.
Collapse
Affiliation(s)
- Laurence G Trahair
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, North Terrace, Adelaide, SA, 5000, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lovshin JA, Zinman B. Blood pressure-lowering effects of incretin-based diabetes therapies. Can J Diabetes 2015; 38:364-71. [PMID: 25284699 DOI: 10.1016/j.jcjd.2014.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/29/2014] [Accepted: 05/01/2014] [Indexed: 01/28/2023]
Abstract
Glucagon-like peptide-1 receptor (GLP-1) agonists and dipeptidyl-peptidase-4 (DPP-4) inhibitors are therapies that are used to treat hyperglycemia in patients with type 2 diabetes mellitus. Although both of these medication types primarily lower prandial and fasting blood glucose levels by enhanced GLP-1 receptor signalling, they have distinct mechanisms of action. Whereas DPP-4 inhibitors boost patient levels of endogenously produced GLP-1 (and glucose-dependent insulinotropic peptide) by preventing its metabolism by DPP-4 enzymatic activity, GLP-1 receptor agonists are either synthetic analogues of human GLP-1 or exendin-4 based molecules. They are tailored to resist hydrolysis by DPP-4 activity and to provide longer durability in the circulation compared with native GLP-1. Several roles for incretin-based diabetes therapies beyond the endocrine pancreas and their glycemic-lowering properties have now been described, including attenuation of cardiac myocyte injury and reduction in post-ischemic infarction size after cardiovascular insult. Favourable outcomes have also been observed on systolic blood pressure reduction, postprandial intestinal lipoprotein metabolism, endothelial cell function, modulation of innate immune-mediated inflammation and surrogate markers of renal function. As hypertension is an independent risk factor for premature death in patients with type 2 diabetes, potential favourable extrapancreatic actions, particularly within the heart, blood vessels and kidney, for this drug class are of considerable clinical interest. Herein, we highlight and provide critical appraisal of the clinical data supporting the antihypertensive effects of GLP-1 receptor agonists and DPP-4 inhibitors and link possible mechanisms of action to clinical outcomes reported for this drug class.
Collapse
Affiliation(s)
- Julie A Lovshin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Division of Endocrinology and Metabolism, University of Toronto, Toronto, Ontario, Canada.
| | - Bernard Zinman
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Division of Endocrinology and Metabolism, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Ryan D, Acosta A. GLP-1 receptor agonists: Nonglycemic clinical effects in weight loss and beyond. Obesity (Silver Spring) 2015; 23:1119-29. [PMID: 25959380 PMCID: PMC4692091 DOI: 10.1002/oby.21107] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/06/2015] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Glucagon-like peptide-1 (GLP-1) receptor agonists are indicated for treatment of type 2 diabetes since they mimic the actions of native GLP-1 on pancreatic islet cells, stimulating insulin release, while inhibiting glucagon release, in a glucose-dependent manner. The observation of weight loss has led to exploration of their potential as antiobesity agents, with liraglutide 3.0 mg day(-1) approved for weight management in the US on December 23, 2014, and in the EU on March 23, 2015. This review examines the potential nonglycemic effects of GLP-1 receptor agonists. METHODS A literature search was conducted to identify preclinical and clinical evidence on nonglycemic effects of GLP-1 receptor agonists. RESULTS GLP-1 receptors are distributed widely in a number of tissues in humans, and their effects are not limited to the well-recognized effects on glycemia. Nonglycemic effects include weight loss, which is perhaps the most widely recognized nonglycemic effect. In addition, effects on the cardiovascular, neurologic, and renal systems and on taste perception may occur independently of weight loss. CONCLUSIONS GLP-1 receptor agonists may provide other nonglycemic clinical effects besides weight loss. Understanding these effects is important for prescribers in using GLP-1 receptor agonists for diabetic patients, but also if approved for chronic weight management.
Collapse
Affiliation(s)
- Donna Ryan
- Pennington Biomedical Research Center, Baton RougeLouisiana, USA
| | - Andres Acosta
- Division of Gastroenterology and Hepatology, Mayo ClinicRochester, Minnesota, USA
| |
Collapse
|
38
|
Smits MM, Muskiet MH, Tonneijck L, Kramer MH, Diamant M, van Raalte DH, Serné EH. GLP-1 Receptor Agonist Exenatide Increases Capillary Perfusion Independent of Nitric Oxide in Healthy Overweight Men. Arterioscler Thromb Vasc Biol 2015; 35:1538-43. [DOI: 10.1161/atvbaha.115.305447] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/07/2015] [Indexed: 01/08/2023]
Abstract
Objective—
The insulinotropic gut–derived hormone glucagon-like peptide-1 (GLP-1) increases capillary perfusion via a nitric oxide–dependent mechanism in rodents. This improves skeletal muscle glucose use and cardiac function. In humans, the effect of clinically used GLP-1 receptor agonists (GLP-1RAs) on capillary density is unknown. We aimed to assess the effects of the GLP-1RA exenatide on capillary density as well as the involvement of nitric oxide in humans.
Approach and Results—
We included 10 healthy overweight men (age, 20–27 years; body mass index, 26–31 kg/m
2
). Measurements were performed during intravenous infusion of placebo (saline 0.9%), exenatide, and a combination of exenatide and the nonselective nitric oxide–synthase inhibitor
l
-
N
G
-monomethyl arginine. Capillary videomicroscopy was performed, and baseline and postocclusive (peak) capillary densities were counted. Compared with placebo, exenatide increased baseline and peak capillary density by 20.1% and 8.3%, respectively (both
P
=0.016). Concomitant
l
-
N
G
-monomethyl arginine infusion did not alter the effects of exenatide. Vasomotion was assessed using laser Doppler fluxmetry. Exenatide nonsignificantly reduced the neurogenic domain of vasomotion measurements (
R
=−5.6%;
P
=0.092), which was strongly and inversely associated with capillary perfusion (
R
=−0.928;
P
=0.036). Glucose levels were reduced during exenatide infusion, whereas levels of insulin were unchanged.
Conclusions—
Acute exenatide infusion increases capillary perfusion via nitric oxide–independent pathways in healthy overweight men, suggesting direct actions of this GLP-1RA on microvascular perfusion or interaction with vasoactive factors.
Collapse
Affiliation(s)
- Mark M. Smits
- From the Diabetes Center, Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Marcel H.A. Muskiet
- From the Diabetes Center, Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Lennart Tonneijck
- From the Diabetes Center, Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Mark H.H. Kramer
- From the Diabetes Center, Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Michaela Diamant
- From the Diabetes Center, Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Daniël H. van Raalte
- From the Diabetes Center, Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Erik H. Serné
- From the Diabetes Center, Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Asmar A, Simonsen L, Asmar M, Madsbad S, Holst JJ, Frandsen E, Moro C, Jonassen T, Bülow J. Renal extraction and acute effects of glucagon-like peptide-1 on central and renal hemodynamics in healthy men. Am J Physiol Endocrinol Metab 2015; 308:E641-9. [PMID: 25670826 DOI: 10.1152/ajpendo.00429.2014] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 02/03/2015] [Indexed: 01/21/2023]
Abstract
The present experiments were performed to elucidate the acute effects of intravenous infusion of glucagon-like peptide (GLP)-1 on central and renal hemodynamics in healthy men. Seven healthy middle-aged men were examined on two different occasions in random order. During a 3-h infusion of either GLP-1 (1.5 pmol·kg⁻¹·min⁻¹) or saline, cardiac output was estimated noninvasively, and intraarterial blood pressure and heart rate were measured continuously. Renal plasma flow, glomerular filtration rate, and uptake/release of hormones and ions were measured by Fick's Principle after catheterization of a renal vein. Subjects remained supine during the experiments. During GLP-1 infusion, both systolic blood pressure and arterial pulse pressure increased by 5±1 mmHg (P=0.015 and P=0.002, respectively). Heart rate increased by 5±1 beats/min (P=0.005), and cardiac output increased by 18% (P=0.016). Renal plasma flow and glomerular filtration rate as well as the clearance of Na⁺ and Li⁺ were not affected by GLP-1. However, plasma renin activity decreased (P=0.037), whereas plasma levels of atrial natriuretic peptide were unaffected. Renal extraction of intact GLP-1 was 43% (P<0.001), whereas 60% of the primary metabolite GLP-1 9-36amide was extracted (P=0.017). In humans, an acute intravenous administration of GLP-1 leads to increased cardiac output due to a simultaneous increase in stroke volume and heart rate, whereas no effect on renal hemodynamics could be demonstrated despite significant extraction of both the intact hormone and its primary metabolite.
Collapse
Affiliation(s)
- Ali Asmar
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg University Hospital, Copenhagen, Denmark;
| | - Lene Simonsen
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Meena Asmar
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre University Hospital, Copenhagen, Denmark
| | - Jens J Holst
- NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erik Frandsen
- Department of Diagnostics, Clinical Physiology and Nuclear Medicine, Glostrup University Hospital, Copenhagen, Denmark; and
| | - Cedric Moro
- Institut National de la Santé et de la Recherche Médicale, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Thomas Jonassen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bülow
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg University Hospital, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
40
|
von Scholten BJ, Lajer M, Goetze JP, Persson F, Rossing P. Time course and mechanisms of the anti-hypertensive and renal effects of liraglutide treatment. Diabet Med 2015; 32:343-52. [PMID: 25251901 DOI: 10.1111/dme.12594] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/14/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023]
Abstract
AIMS Glucagon-like peptide-1 receptor agonist studies have revealed clinically significant reductions in systolic blood pressure (SBP). The aim was to investigate the time course of the anti-hypertensive effect of liraglutide treatment and potential underlying mechanisms. METHODS We used an open-label, single-centre trial; 31 participants with Type 2 diabetes and hypertension completed the study. All participants were treated with liraglutide escalated to a maximum dose of 1.8 mg/day for 7 weeks, followed by a 21-day washout period. The primary outcome was a change in 24-h SBP. RESULTS Twenty-four-h SBP increased by 10 mmHg on day 3 (P = 0.008) and 7 mmHg on day 7 (P = 0.033, 0.6 mg/day). On day 29, (1.8 mg/day), 24-h SBP was 7 mmHg lower compared with baseline (P = 0.11). Following the treatment period (day 49) and after washout (day 70), 24-h BP was equivalent to baseline. In addition, extracellular volume (ECV) was reduced by 2.0 l [95% confidence interval (CI) = 1.0-3.1 l, P < 0.001] and midregional-pro-atrial natriuretic peptide (MR-proANP) was reduced by 20% (95% CI = 12-28%, P < 0.001). Also, urinary albumin excretion declined by 30% (95% CI = 12-44%, P = 0.003), GFR by 11 ml/min/1.73 m(2) (95% CI = 7.2-14.4 ml/min/1.73 m(2) , P < 0.001) and fractional albumin excretion by 29% (95% CI = 3-48%, P = 0.032). CONCLUSIONS Liraglutide treatment was associated with an initial increase in 24-h SBP, followed by a 7 mmHg reduction after escalation to 1.8 mg/day. This effect subsided after 4 weeks of maximum dose. Reductions in ECV and MR-proANP may explain the anti-hypertensive potential. Liraglutide treatment was associated with reversible reductions in albuminuria and GFR, which has to be confirmed in randomized trials.
Collapse
|
41
|
Salles TA, dos Santos L, Barauna VG, Girardi ACC. Potential role of dipeptidyl peptidase IV in the pathophysiology of heart failure. Int J Mol Sci 2015; 16:4226-49. [PMID: 25690036 PMCID: PMC4346954 DOI: 10.3390/ijms16024226] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 02/05/2015] [Accepted: 02/09/2015] [Indexed: 12/14/2022] Open
Abstract
Dipeptidyl peptidase IV (DPPIV) is a widely expressed multifunctional serine peptidase that exists as a membrane-anchored cell surface protein or in a soluble form in the plasma and other body fluids. Numerous substrates are cleaved at the penultimate amino acid by DPPIV, including glucagon-like peptide-1 (GLP-1), brain natriuretic peptide (BNP) and stromal cell-derived factor-1 (SDF-α), all of which play important roles in the cardiovascular system. In this regard, recent reports have documented that circulating DPPIV activity correlates with poorer cardiovascular outcomes in human and experimental heart failure (HF). Moreover, emerging evidence indicates that DPPIV inhibitors exert cardioprotective and renoprotective actions in a variety of experimental models of cardiac dysfunction. On the other hand, conflicting results have been found when translating these promising findings from preclinical animal models to clinical therapy. In this review, we discuss how DPPIV might be involved in the cardio-renal axis in HF. In addition, the potential role for DPPIV inhibitors in ameliorating heart disease is revised, focusing on the effects of the main DPPIV substrates on cardiac remodeling and renal handling of salt and water.
Collapse
Affiliation(s)
- Thiago A Salles
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo 05403-000, SP, Brazil.
| | - Leonardo dos Santos
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitoria 29043-900, ES, Brazil.
| | - Valério G Barauna
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitoria 29043-900, ES, Brazil.
| | - Adriana C C Girardi
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo 05403-000, SP, Brazil.
| |
Collapse
|
42
|
Rudovich N, Pivovarova O, Gögebakan Ö, Sparwasser A, Doehner W, Anker SD, Arafat AM, Bergmann A, Nauck MA, Pfeiffer AFH. Effect of exogenous intravenous administrations of GLP-1 and/or GIP on circulating pro-atrial natriuretic peptide in subjects with different stages of glucose tolerance. Diabetes Care 2015; 38:e7-8. [PMID: 25538323 DOI: 10.2337/dc14-1452] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Natalia Rudovich
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany Department of Endocrinology, Diabetes and Nutrition, Charité Universitätsmedizin, Campus Benjamin Franklin, Berlin, Germany
| | - Olga Pivovarova
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany Department of Endocrinology, Diabetes and Nutrition, Charité Universitätsmedizin, Campus Benjamin Franklin, Berlin, Germany
| | - Özlem Gögebakan
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany Department of Endocrinology, Diabetes and Nutrition, Charité Universitätsmedizin, Campus Benjamin Franklin, Berlin, Germany
| | - Andrea Sparwasser
- Thermo Fisher Scientific, B.R.A.H.M.S GmbH (part of Thermo Fisher Scientific), Biotechnology Centre Hennigsdorf, Berlin, Germany
| | - Wolfram Doehner
- Interdiscplinary Stroke Research, Center for Stroke Research, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan D Anker
- Department of Innovative Clinical Trials, University Medical Centre Göttingen, Göttingen, Germany Institute of Diabetes for Older People, University of Bedfordshire, Bedfordshire, U.K
| | - Ayman M Arafat
- Department of Endocrinology, Diabetes and Nutrition, Charité Universitätsmedizin, Campus Benjamin Franklin, Berlin, Germany
| | - Andreas Bergmann
- Thermo Fisher Scientific, B.R.A.H.M.S GmbH (part of Thermo Fisher Scientific), Biotechnology Centre Hennigsdorf, Berlin, Germany Sphingotec GmbH, Biotechnology Centre Hennigsdorf, Berlin, Germany
| | | | - Andreas F H Pfeiffer
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany Department of Endocrinology, Diabetes and Nutrition, Charité Universitätsmedizin, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
43
|
Chalmer T, Almdal TP, Vilsbøll T, Knop FK. Adverse drug reactions associated with the use of liraglutide in patients with type 2 diabetes--focus on pancreatitis and pancreas cancer. Expert Opin Drug Saf 2014; 14:171-80. [PMID: 25363438 DOI: 10.1517/14740338.2015.975205] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The glucagon-like peptide-1 (GLP-1) receptor agonist, liraglutide , is a widely used drug for the treatment of type 2 diabetes. Liraglutide is one of several incretin-based agents that have been suggested to be associated with pancreatitis and pancreas cancer. The suspicion accelerated after publication of an autopsy study claiming increased incidences of several pathological changes in pancreata from patients with diabetes treated with incretin-based drugs. AREAS COVERED The aim of the present review is to give an overview of the pharmacology of liraglutide and provide a review of adverse reactions associated with liraglutide with a focus on the risk of pancreatitis and pancreas cancer. EXPERT OPINION When comprehensively reviewing the available literature, no clear and significant associations between liraglutide and pancreatitis and/or pancreas cancer seem evident. However, a recently published analysis suggests a trend toward a slightly elevated risk of pancreatitis with GLP-1 receptor agonists (including liraglutide), which may become statistical significant as more data become available. Well-established side effects are of gastrointestinal origin, typical mild-to-moderate and of transient character. The risk of hypoglycemia associated with liraglutide treatment is low.
Collapse
Affiliation(s)
- Thor Chalmer
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen , Hellerup , Denmark
| | | | | | | |
Collapse
|
44
|
Blood pressure effects of glucagon-like peptide 1 analogues and sodium glucose transporter 2 inhibitors. Curr Opin Nephrol Hypertens 2014; 23:468-72. [DOI: 10.1097/01.mnh.0000449846.91046.ac] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Abstract
The incretin hormone, glucagon-like peptide-1 (GLP-1), stimulates insulin secretion and forms the basis of a new drug class for diabetes treatment. GLP-1 has several extra-pancreatic properties which include effects on kidney function. Although renal GLP-1 receptors have been identified, their exact localization and physiological role are incompletely understood. GLP-1 increases natriuresis through inhibition of the sodium-hydrogen ion exchanger isoform 3 in the proximal tubule. This may in part explain why GLP-1 receptor agonists have antihypertensive effects. Glomerular filtration rate is regulated by GLP-1, but the mechanisms are complex and may depend on e.g. glycaemic conditions. Atrial natriuretic peptide or the renin-angiotensin system may be involved in the signalling of GLP-1-mediated renal actions. Several studies in rodents have shown that GLP-1 therapy is renoprotective beyond metabolic improvements in models of diabetic nephropathy and acute kidney injury. Inhibition of renal inflammation and oxidative stress probably mediate this protection. Clinical studies supporting GLP-1-mediated renal protection exist, but they are few and with limitations. However, acute and chronic kidney diseases are major global health concerns and measures improving renal outcome are highly needed. Therefore, the renoprotective potential of GLP-1 therapy need to be thoroughly investigated in humans.
Collapse
Affiliation(s)
- Jeppe Skov
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Norrebrogade 44, 8000, Aarhus, Denmark,
| |
Collapse
|
46
|
Vallon V, Docherty NG. Intestinal regulation of urinary sodium excretion and the pathophysiology of diabetic kidney disease: a focus on glucagon-like peptide 1 and dipeptidyl peptidase 4. Exp Physiol 2014; 99:1140-5. [PMID: 25085841 DOI: 10.1113/expphysiol.2014.078766] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The tubular hypothesis of glomerular filtration and nephropathy in diabetes is a pathophysiological concept that assigns a critical role to the tubular system, including proximal tubular hyper-reabsorption and growth, which is relevant for early glomerular hyperfiltration and later chronic kidney disease. Here we focus on how harnessing the bioactivity of hormones released from the gut may ameliorate the early effects of diabetes on the kidney in part by attenuating proximal tubular hyper-reabsorption and growth. The endogenous tone of the glucagon-like peptide 1 (GLP-1)/GLP-1 receptor (GLP-1R) system and its pharmacological activation are nephroprotective in diabetes independent of changes in blood glucose. This is associated with suppression of increases in kidney weight and glomerular hyperfiltration, which may reflect, at least in part, its inhibitory effects on tubular hyper-reabsorption and growth. Inhibition of dipeptidyl peptidase 4 (DPP-4) is also nephroprotective independent of changes in blood glucose and involves GLP-1/GLP-1R-dependent and -independent mechanisms. The GLP-1R agonist exendin-4 induces natriuresis via activation of the GLP-1R. In contrast, DPP4 inhibition increases circulating GLP-1, but drives a GLP-1R-independent natriuretic response, implying a role for other DPP-4 substrates. The extent to which the intrarenal DPP-4/GLP-1 receptor system contributes to all these changes remains to be established, as does the direct impact of the system on renal inflammation.
Collapse
Affiliation(s)
- Volker Vallon
- Department of Medicine, University of California San Diego, La Jolla, CA, USA Department of Pharmacology, University of California San Diego, La Jolla, CA, USA Department of Veterans Affairs, San Diego Healthcare System, San Diego, CA, USA
| | - Neil G Docherty
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
47
|
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors represent 2 distinct classes of incretin-based therapies used for the treatment of type 2 diabetes mellitus. Activation of GLP-1R signaling or inhibition of DPP-4 activity produces a broad range of overlapping and unique cardiovascular actions. Native GLP-1 regulates cardiovascular biology via activation of the classical GLP-1R, or through GLP-1(9-36), a cardioactive metabolite generated by DPP-4-mediated cleavage. In contrast, clinically approved GLP-1R agonists are not cleaved to GLP-1(9-36) and produce the majority of their actions through the classical GLP-1R. The cardiovascular mechanisms engaged by DPP-4 inhibition are more complex, encompassing increased levels of intact GLP-1, reduced levels of GLP-1(9-36), and changes in levels of numerous cardioactive peptides. Herein we review recent experimental and clinical advances that reveal how GLP-1R agonists and DPP-4 inhibitors affect the normal and diabetic heart and coronary vasculature, often independent of changes in blood glucose. Improved understanding of the complex science of incretin-based therapies is required to optimize the selection of these therapeutic agents for the treatment of diabetic patients with cardiovascular disease.
Collapse
Affiliation(s)
- John R Ussher
- From the Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Ontario, Canada
| | - Daniel J Drucker
- From the Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Ontario, Canada.
| |
Collapse
|