1
|
Zheng GJ, Fang ZE, Zhou BY, Zuo L, Chen X, Liu ML, Yu L, Jing CX, Hao G. DNA methylation in the association between pesticide exposures and type 2 diabetes. World J Diabetes 2025; 16:99200. [DOI: 10.4239/wjd.v16.i2.99200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/30/2024] [Accepted: 11/21/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Numerous epidemiological studies have found that pesticide exposure is associated with the incidence of type 2 diabetes (T2D); however, the underlying mechanisms remain unknown. DNA methylation may play a role in this process.
AIM To identify the genes associated with pesticide exposure and T2D by reviewing the current literature.
METHODS We systematically searched PubMed and Embase for relevant studies that examined the association between pesticide exposure and DNA methylation, and studies on DNA methylation and T2D through January 15, 2024.
RESULTS We identified six genes (Alu, CABLES1, CDH1, PDX1, PTEN, PTPRN2) related to pesticide exposure and T2D. We also suggested future research directions to better define the role of DNA methylation in the association between pesticide exposure and T2D.
CONCLUSION DNA methylation of specific genes may play a vital role in the association between pesticide exposure and T2D.
Collapse
Affiliation(s)
- Guang-Jun Zheng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Zheng-Er Fang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Bi-Ying Zhou
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Lei Zuo
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Xia Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Ming-Liang Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Lei Yu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Chun-Xia Jing
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
- Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Guang Hao
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510632, Guangdong Province, China
| |
Collapse
|
2
|
Ahmed I, Chakraborty R, Faizy AF, Moin S. Exploring the key role of DNA methylation as an epigenetic modulator in oxidative stress related islet cell injury in patients with type 2 diabetes mellitus: a review. J Diabetes Metab Disord 2024; 23:1699-1718. [PMID: 39610516 PMCID: PMC11599646 DOI: 10.1007/s40200-024-01496-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/21/2024] [Indexed: 11/30/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a multifactorial metabolic disorder characterised by impaired insulin secretion and action, often exacerbated by oxidative stress. Recent research has highlighted the intricate involvement of epigenetic mechanisms, particularly DNA methylation, in the pathogenesis of T2DM. This review aims to elucidate the role of DNA methylation as an epigenetic modifier in oxidative stress-mediated beta cell dysfunction, a key component of T2DM pathophysiology. Oxidative stress, arising from an imbalance between reactive oxygen species (ROS) production and antioxidant defence mechanisms, is a hallmark feature of T2DM. Beta cells, responsible for insulin secretion, are particularly vulnerable to oxidative damage due to their low antioxidant capacity. Emerging evidence suggests that oxidative stress can induce aberrant DNA methylation patterns in beta cells, leading to altered gene expression profiles associated with insulin secretion and cell survival. Furthermore, studies have identified specific genes involved in beta cell function and survival that undergo DNA methylation changes in response to oxidative stress in T2DM. These epigenetic modifications can perpetuate beta cell dysfunction by dysregulating key pathways essential for insulin secretion, such as the insulin signalling cascade and mitochondrial function. Understanding the interplay between DNA methylation, oxidative stress, and beta cell dysfunction holds promise for developing novel therapeutic strategies for T2DM. Targeting aberrant DNA methylation patterns may offer new avenues for restoring beta cell function and improving glycemic control in patients with T2DM. However, further research is needed to elucidate the complex mechanisms underlying epigenetic regulation in T2DM and to translate these findings into clinical interventions.
Collapse
Affiliation(s)
- Istiaque Ahmed
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College and Hospital Aligarh Muslim University, Aligarh, Uttar Pradesh 202002 India
| | - Ritoja Chakraborty
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College and Hospital Aligarh Muslim University, Aligarh, Uttar Pradesh 202002 India
| | - Abul Faiz Faizy
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College and Hospital Aligarh Muslim University, Aligarh, Uttar Pradesh 202002 India
| | - Shagufta Moin
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College and Hospital Aligarh Muslim University, Aligarh, Uttar Pradesh 202002 India
| |
Collapse
|
3
|
Moghadasi M, Taherimoghaddam M, Babaeenezhad E, Birjandi M, Kaviani M, Moradi Sarabi M. MicroRNA-34a and promoter methylation contribute to peroxisome proliferator-activated receptor gamma gene expression in patients with type 2 diabetes. Diabetes Metab Syndr 2024; 18:103156. [PMID: 39522431 DOI: 10.1016/j.dsx.2024.103156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
AIMS This study aimed to investigate the roles of DNA methylation and miR-34a in the regulation of peroxisome proliferator-activated receptor gamma (PPARγ) in patients with type 2 diabetes (T2D). METHODS We investigated the methylation status of four regions of the PPARγ promoter and PPARγ expression in a panel of 84 T2D patients using methylation-specific PCR (MSP) and RT-qPCR, respectively. Moreover, we quantified DNA methyltransferases (DNMTs) expression and global DNA methylation levels by RT-qPCR and ELISA, respectively. We measured the expression levels of miR-34a and protein expression of PPARγ by stem-loop RT-qPCR and ELISA, respectively. RESULTS We found significant DNA hypermethylation in the R2 and R3 regions of the PPARγ promoter in people with diabetes. Functionally, this was associated with a significant reduction in PPARγ expression. In addition, we observed a significant increase in 5-methylcytosine levels in people with diabetes. A marked increase in circulating miR-34a in the early stages of T2D (up to 10 years) and a significant decrease in circulating miR-34a with increasing diabetes duration from 10 years after the onset of diabetes. Interestingly, upregulation of DNA methyltransferases 1 (DNMT1), DNMT3A, and DNMT3B was observed in people with diabetes, and the average expression of DNMTs was negatively correlated with circulating miR-34a levels. In contrast, the serum protein level of PPARγ, a direct target of miR-34a, increased considerably with diabetes duration and showed a negative correlation with circulating miR-34a, cholesterol, triglyceride, and low-density lipoprotein. CONCLUSION PPARγ promoter hypermethylation and miR-34a upregulation are associated with T2D pathogenesis through PPARγ dysregulation.
Collapse
Affiliation(s)
- Mona Moghadasi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department Clinical Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mozhgan Taherimoghaddam
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department Clinical Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Esmaeel Babaeenezhad
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department Clinical Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mehdi Birjandi
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department of Biostatistics and Epidemiology, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mozhgan Kaviani
- Department of Internal Medicine, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mostafa Moradi Sarabi
- Department Clinical Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran; Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
4
|
Attia SM, Albekairi NA, Alshamrani AA, Ahmad SF, Almutairi F, Attia MSM, Ansari MA, Bakheet SA, Harisa GI, Nadeem A. Dapagliflozin suppresses diabetes-induced oxidative DNA damage and hypermethylation in mouse somatic cells. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 896:503765. [PMID: 38821673 DOI: 10.1016/j.mrgentox.2024.503765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/02/2024]
Abstract
Diabetes mellitus is a complex metabolic disorder resulting from the interplay of environmental, genetic, and epigenetic factors that increase the risk of cancer development. However, it is unclear whether the increased cancer risk is due to poor glycemic control or the use of some antidiabetic medications. Therefore, we investigated the genetic and epigenetic changes in somatic cells in a mouse model of diabetes and studied whether multiple exposures to the antidiabetic medication dapagliflozin influence these changes. We also elucidated the mechanism(s) of these ameliorations. The micronucleus test and modified comet assay were used to investigate bone marrow DNA damage and methylation changes. These assays revealed that dapagliflozin is non-genotoxic in the tested regimen, and oxidative DNA damage and hypermethylation were significantly higher in diabetic mice. Spectrophotometry also evaluated oxidative DNA damage and global DNA methylation, revealing similar significant alterations induced by diabetes. Conversely, the dapagliflozin-treated diabetic animals significantly reduced these changes. The expression of some genes involved in DNA repair and DNA methylation was disrupted considerably in the somatic cells of diabetic animals. In contrast, dapagliflozin treatment significantly restored these disruptions and enhanced DNA repair. The simultaneous effects of decreased oxidative DNA damage and hypermethylation levels suggest that dapagliflozin can be used as a safe antidiabetic drug to reduce DNA damage and hypermethylation in diabetes, demonstrating its usefulness in patients with diabetes to control hyperglycemia and decrease the development of its subsequent complications.
Collapse
Affiliation(s)
- Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali A Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faris Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Gamaleldin I Harisa
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Luong RAM, Guan W, Vue FC, Dai J. Literary Identification of Differentially Hydroxymethylated DNA Regions for Type 2 Diabetes Mellitus: A Scoping Minireview. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:177. [PMID: 38397668 PMCID: PMC10887687 DOI: 10.3390/ijerph21020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a public health condition where environmental and genetic factors can intersect through hydroxymethylation. It was unclear which blood DNA regions were hydroxymethylated in human T2DM development. We aimed to identify the regions from the literature as designed in the ongoing Twins Discordant for Incident T2DM Study. A scoping review was performed using Medical Subject Headings (MeSH) and keyword methods to search PubMed for studies published in English and before 1 August 2022, following our registered protocol. The keyword and MeSH methods identified 12 and 3 records separately, and the keyword-identified records included all from the MeSH. Only three case-control studies met the criteria for the full-text review, including one MeSH-identified record. Increased global levels of 5-hydroxymethylated cytosine (5hmC) in T2DM patients versus healthy controls in blood or peripheral blood mononuclear cells were consistently reported (p < 0.05 for all). Among candidate DNA regions related to the human SOCS3, SREBF1, and TXNIP genes, only the SOCS3 gene yielded higher 5hmC levels in T2DM patients with high poly-ADP-ribosylation than participants combined from those with low PARylation and healthy controls (p < 0.05). Hydroxymethylation in the SOCS3-related region of blood DNA is promising to investigate for its mediation in the influences of environment on incident T2DM.
Collapse
Affiliation(s)
- Ryan Anh Minh Luong
- Doctoral Program of Osteopathic Medicine, College of Osteopathic Medicine, Des Moines University, West Des Moines, IA 50266, USA; (R.A.M.L.); (F.C.V.)
| | - Weihua Guan
- Division of Biostatistics & Health Data Science, University of Minnesota School of Public Health, Minneapolis, MN 55414, USA;
| | - Fue Chee Vue
- Doctoral Program of Osteopathic Medicine, College of Osteopathic Medicine, Des Moines University, West Des Moines, IA 50266, USA; (R.A.M.L.); (F.C.V.)
| | - Jun Dai
- Department of Public Health, College of Health Sciences, Des Moines University, West Des Moines, IA 50266, USA
| |
Collapse
|
6
|
Rai B, Srivastava J, Saxena P. The Functional Role of microRNAs and mRNAs in Diabetic Kidney Disease: A Review. Curr Diabetes Rev 2024; 20:e201023222412. [PMID: 37867275 DOI: 10.2174/0115733998270983231009094216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/03/2023] [Accepted: 09/08/2023] [Indexed: 10/24/2023]
Abstract
Diabetes is a group of diseases marked by poor control of blood glucose levels. Diabetes mellitus (DM) occurs when pancreatic cells fail to make insulin, which is required to keep blood glucose levels stable, disorders, and so on. High glucose levels in the blood induce diabetic effects, which can cause catastrophic damage to bodily organs such as the eyes and lower extremities. Diabetes is classified into many forms, one of which is controlled by hyperglycemia or Diabetic Kidney Disease (DKD), and another that is not controlled by hyperglycemia (nondiabetic kidney disease or NDKD) and is caused by other factors such as hypertension, hereditary. DKD is associated with diabetic nephropathy (DN), a leading cause of chronic kidney disease (CKD) and end-stage renal failure. The disease is characterized by glomerular basement membrane thickening, glomerular sclerosis, and mesangial expansion, resulting in a progressive decrease in glomerular filtration rate, glomerular hypertension, and renal failure or nephrotic syndrome. It is also represented by some microvascular complications such as nerve ischemia produced by intracellular metabolic changes, microvascular illness, and the direct impact of excessive blood glucose on neuronal activity. Therefore, DKD-induced nephrotic failure is worse than NDKD. MicroRNAs (miRNAs) are important in the development and progression of several diseases, including diabetic kidney disease (DKD). These dysregulated miRNAs can impact various cellular processes, including inflammation, fibrosis, oxidative stress, and apoptosis, all of which are implicated during DKD. MiRNAs can alter the course of DKD by targeting several essential mechanisms. Understanding the miRNAs implicated in DKD and their involvement in disease development might lead to identifying possible therapeutic targets for DKD prevention and therapy. Therefore, this review focuses specifically on DKD-associated DN, as well as how in-silico approaches may aid in improving the management of the disease.
Collapse
Affiliation(s)
- Bhuvnesh Rai
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Jyotika Srivastava
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Pragati Saxena
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
7
|
Deng JY, Wu XQ, He WJ, Liao X, Tang M, Nie XQ. Targeting DNA methylation and demethylation in diabetic foot ulcers. J Adv Res 2023; 54:119-131. [PMID: 36706989 DOI: 10.1016/j.jare.2023.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Poor wound healing is a significant complication of diabetes, which is commonly caused by neuropathy, trauma, deformities, plantar hypertension and peripheral arterial disease. Diabetic foot ulcers (DFU) are difficult to heal, which makes patients susceptible to infections and can ultimately conduce to limb amputation or even death in severe cases. An increasing number of studies have found that epigenetic alterations are strongly associated with poor wound healing in diabetes. AIM OF REVIEW This work provides significant insights into the development of therapeutics for improving chronic diabetic wound healing, particularly by targeting and regulating DNA methylation and demethylation in DFU. Key scientific concepts of review: DNA methylation and demethylation play an important part in diabetic wound healing, via regulating corresponding signaling pathways in different breeds of cells, including macrophages, vascular endothelial cells and keratinocytes. In this review, we describe the four main phases of wound healing and their abnormality in diabetic patients. Furthermore, we provided an in-depth summary and discussion on how DNA methylation and demethylation regulate diabetic wound healing in different types of cells; and gave a brief summary on recent advances in applying cellular reprogramming techniques for improving diabetic wound healing.
Collapse
Affiliation(s)
- Jun-Yu Deng
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Xing-Qian Wu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Wen-Jie He
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Xin Liao
- Affiliated Hospital of Zunyi Medical University, Zunyi 563006, China
| | - Ming Tang
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalized Health at the Translational Research Institute (TRI), Brisbane, QLD 4102, Australia.
| | - Xu-Qiang Nie
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalized Health at the Translational Research Institute (TRI), Brisbane, QLD 4102, Australia.
| |
Collapse
|
8
|
Sultan S, AlMalki S. Analysis of global DNA methylation and epigenetic modifiers (DNMTs and HDACs) in human foetal endothelium exposed to gestational and type 2 diabetes. Epigenetics 2023; 18:2201714. [PMID: 37066707 PMCID: PMC10114969 DOI: 10.1080/15592294.2023.2201714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/16/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023] Open
Abstract
Foetuses exposed to maternal gestational diabetes (GDM) and type 2 diabetes (T2D) have an increased risk of adverse perinatal outcomes. Epigenetic mechanisms, including DNA methylation and histone modifications, may act as mediators of persistent metabolic memory in endothelial cells (ECs) exposed to hyperglycaemia, even after glucose normalization. Therefore, we investigated alterations in global DNA methylation and epigenetic modifier expression (DNMT1, DNMT3a, DNMT3b, HDAC1, and HDAC2) in human umbilical vein ECs (HUVECs) from the umbilical cords of mothers with GDM (n = 8) and T2D (n = 3) compared to that of healthy mothers (n = 6). Global DNA alteration was measured using a 5-methylation cytosine colorimetric assay, followed by quantitative real-time polymerase chain reaction to measure DNA methyltransferase and histone acetylase transcript expression. We revealed that DNA hypermethylation occurs in both GDM- and T2D-HUVECs compared to that in Control-HUVECs. Furthermore, there was a significant increase in HDAC2 mRNA levels in GDM-HUVECs and increase in DNMT3b mRNA levels in T2D-HUVECs. Overall, our results suggest that GDM and T2D are associated with global DNA hypermethylation in foetal endothelial cells under normoglycemic conditions and the aberrant mRNA expression of HDAC2 and DNMT3b could play a role in this dysregulation.
Collapse
Affiliation(s)
- Samar Sultan
- Medical Laboratory Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sultanh AlMalki
- Medical Laboratory Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Liu HY, Qin S, Zhang Z, Qi J, Zhang W, Liu SM, Zhang Y. Associations of MTHFR Polymorphisms and Cytosine Modifications with Early-Gestational Diabetes Mellitus in Chinese Pregnant Women. Reprod Sci 2023; 30:2973-2982. [PMID: 37154866 DOI: 10.1007/s43032-023-01247-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
Early-Gestational Diabetes Mellitus (Early-GDM) is a complex condition that may cause complications in infants of affected mothers. The aim of this case-control study was to analyze the effects of genetic-epigenetic interaction on Early-GDM and fetal development with respect to cytosine modifications (i.e., 5mC, 5-methylcytosines; and 5hmC, 5-hydroxymethylcytosines) and single nucleotide polymorphisms (SNPs) of MTHFR, a key gene involving cytosine modifications. Peripheral blood samples were collected from 92 women in their first or second trimester of pregnancy (Early-GDM, n = 14; Controls, n = 78). Global DNA 5mC and 5hmC were quantified by HPLC-MS/MS, and MTHFR SNPs (rs1801133 C > T and rs1801131 A > C) were determined by TaqMan-qPCR. Association analysis suggested that MTHFR rs1801133 TT genotype was a risk factor of Early-GDM (OR [odds ratio] = 4.00; 95% CI [confidence interval]: 1.24, 12.86; p = 0.02). The C allele of rs1801131 appeared to be a protective factor for the 2-h OGTT (oral glucose tolerance test) (OR = -0.79; 95% CI: -1.48, -0.10; p = 0.03). Patients with Early-GDM had higher global 5mC and lower global 5hmC. The reduction of global 5hmC and the TT genotype of rs1801133 were associated with higher level of the 1st-FBG (fasting blood glucose in the first trimester) (p < 0.05). Additionally, global 5mC showed a positive correlation with birth weight, body length and head circumference of newborns, while global 5hmC showed a negative correlation with birth weight. The current study implicated MTHFR SNPs and cytosine modifications in the development of Early-GDM and potential complications in their newborns.
Collapse
Affiliation(s)
- Huan-Yu Liu
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei Province, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, China
| | - Shanshan Qin
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, 430072, Hubei, China
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jiahui Qi
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Song-Mei Liu
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, China.
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei Province, China.
| | - Yuanzhen Zhang
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei Province, China.
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, China.
| |
Collapse
|
10
|
Patricia da Silva E, da Silva Feltran G, Alexandre Alcântara Dos Santos S, Cardoso de Oliveira R, Assis RIF, Antônio Justulin Junior L, Carleto Andia D, Zambuzzi WF, Latini A, Foganholi da Silva RA. Hyperglycemic microenvironment compromises the homeostasis of communication between the bone-brain axis by the epigenetic repression of the osteocalcin receptor, Gpr158 in the hippocampus. Brain Res 2023; 1803:148234. [PMID: 36634900 DOI: 10.1016/j.brainres.2023.148234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease, mainly characterized by increased blood glucose and insulin dysfunction. In response to the persistent systemic hyperglycemic state, numerous metabolic and physiological complications have already been well characterized. However, its relationship to bone fragility, cognitive deficits and increased risk of dementia still needs to be better understood. The impact of chronic hyperglycemia on bone physiology and architecture was assessed in a model of chronic hyperglycemia induced by a single intraperitoneal administration of streptozotocin (STZ; 55 mg/kg) in Wistar rats. In addition, the bone-to-brain communication was investigated by analyzing the gene expression and methylation status of genes that encode the main osteokines released by the bone [Fgf23 (fibroblast growth factor 23), Bglap (bone gamma-carboxyglutamate protein) and Lcn2 (lipocalin 2) and their receptors in both, the bone and the brain [Fgfr1 (fibroblast growth factor receptor 1), Gpr6A (G-protein coupled receptor family C group 6 member A), Gpr158 (G protein-coupled receptor 158) and Slc22a17 (Solute carrier family 22 member 17)]. It was observed that chronic hyperglycemia negatively impacted on bone biology and compromised the balance of the bone-brain endocrine axis. Ultrastructural disorganization was accompanied by global DNA hypomethylation and changes in gene expression of DNA-modifying enzymes that were accompanied by changes in the methylation status of the osteokine promoter region Bglap and Lcn2 (lipocalin 2) in the femur. Additionally, the chronic hyperglycemic state was accompanied by modulation of gene expression of the osteokines Fgf23 (fibroblast growth factor 23), Bglap (bone gamma-carboxyglutamate protein) and Lcn2 (lipocalin 2) in the different brain regions. However, transcriptional regulation mediated by DNA methylation was observed only for the osteokine receptors, Fgfr1(fibroblast growth factor receptor 1) in the striatum and Gpr158 (G protein-coupled receptor 158) in the hippocampus. This is a pioneer study demonstrating that the chronic hyperglycemic state compromises the crosstalk between bone tissue and the brain, mainly affecting the hippocampus, through transcriptional silencing of the Bglap receptor by hypermethylation of Gpr158 gene.
Collapse
Affiliation(s)
- Ericka Patricia da Silva
- CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University - UNIP, São Paulo, São Paulo, Brazil
| | - Geórgia da Silva Feltran
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | | | - Rodrigo Cardoso de Oliveira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo -FOB, Bauru, São Paulo, Brazil
| | - Rahyza I F Assis
- Department of Clinical Dentistry, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Luis Antônio Justulin Junior
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Denise Carleto Andia
- School of Dentistry, Health Science Institute, Paulista University - UNIP, São Paulo, São Paulo, Brazil
| | - Willian F Zambuzzi
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Alexandra Latini
- LABOX, Department of Biochemistry, Center for Biological Sciences, Federal University of Santa Catarina - UFSC, Florianopolis, Brazil.
| | - Rodrigo A Foganholi da Silva
- CEEpiRG, Program in Environmental and Experimental Pathology, Paulista University - UNIP, São Paulo, São Paulo, Brazil; Department of Dentistry, University of Taubaté - UNITAU, Taubaté, São Paulo, Brazil.
| |
Collapse
|
11
|
Noro F, Santonastaso F, Marotta A, Bonaccio M, Orlandi S, Tirozzi A, Costanzo S, De Curtis A, Gianfagna F, Di Castelnuovo A, Brighenti F, Cerletti C, Donati MB, de Gaetano G, Iacoviello L, Gialluisi A, Izzi B, de Gaetano G, Donati MB, Bonaccio M, Bonanni A, Cerletti C, Costanzo S, De Curtis A, Di Castelnuovo A, Gialluisi A, Gianfagna F, Persichillo M, Di Prospero T, Vermylen J, Pegoraro R, Spagnolo A, Assanelli D, Rago L, Costanzo S, Olivieri M, Panzera T, Di Castelnuovo A, Bonaccio M, Costanzo S, Esposito S, Gialluisi A, Gianfagna F, Orlandi S, Ruggiero E, Tirozzi A, De Curtis A, Magnacca S, Noro F, Tirozzi A, Persichillo M, Bracone F, Panzera T, Bonanni A. Association of nutritional glycaemic indices with global DNA methylation patterns: results from the Moli-sani cohort. Clin Epigenetics 2022; 14:189. [PMID: 36578055 PMCID: PMC9798643 DOI: 10.1186/s13148-022-01407-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND High dietary glycaemic index (GI) and load (GL) have been associated with increased risk of various cardiometabolic conditions. Among the molecular potential mechanisms underlying this relationship, DNA methylation has been studied, but a direct link between high GI and/or GL of diet and global DNA methylation levels has not been proved yet. We analyzed the associations between GI and GL and global DNA methylation patterns within an Italian population. RESULTS Genomic DNA methylation (5mC) and hydroxymethylation (5hmC) levels were measured in 1080 buffy coat samples from participants of the Moli-sani study (mean(SD) = 54.9(11.5) years; 52% women) via ELISA. A 188-item Food Frequency Questionnaire was used to assess food intake and dietary GI and GL for each participant were calculated. Multiple linear regressions were used to investigate the associations between dietary GI and GL and global 5mC and 5hmC levels, as well as the proportion of effect explained by metabolic and inflammatory markers. We found negative associations of GI with both 5mC (β (SE) = - 0.073 (0.027), p = 0.007) and 5hmC (- 0.084 (0.030), p = 0.006), and of GL with 5mC (- 0.14 (0.060), p = 0.014). Circulating biomarkers did not explain the above-mentioned associations. Gender interaction analyses revealed a significant association of the gender-x-GL interaction with 5mC levels, with men showing an inverse association three times as negative as in women (interaction β (SE) = - 0.16 (0.06), p = 0.005). CONCLUSIONS Our findings suggest that global DNA methylation and hydroxymethylation patterns represent a biomarker of carbohydrate intake. Based on the differential association of GL with 5mC between men and women, further gender-based separate approaches are warranted.
Collapse
Affiliation(s)
- Fabrizia Noro
- grid.419543.e0000 0004 1760 3561Department of Epidemiology and Prevention, IRCCS Neuromed, Via Dell’Elettronica, 86077 Pozzilli, IS Italy
| | - Federica Santonastaso
- grid.419543.e0000 0004 1760 3561Department of Epidemiology and Prevention, IRCCS Neuromed, Via Dell’Elettronica, 86077 Pozzilli, IS Italy ,grid.510779.d0000 0004 9414 6915Present Address: Human Technopole, Viale Rita Levi Montalcini 1, 20157 Milan, Italy ,grid.4708.b0000 0004 1757 2822Present Address: European School of Molecular Medicine, University of Milan, 20122 Milan, Italy
| | - Annalisa Marotta
- grid.419543.e0000 0004 1760 3561Department of Epidemiology and Prevention, IRCCS Neuromed, Via Dell’Elettronica, 86077 Pozzilli, IS Italy ,grid.412451.70000 0001 2181 4941Present Address: Center of Predictive Molecular Medicine, Center for Excellence on Ageing and Translational Medicine (CAST), University of Chieti-Pescara, Chieti, Italy
| | - Marialaura Bonaccio
- grid.419543.e0000 0004 1760 3561Department of Epidemiology and Prevention, IRCCS Neuromed, Via Dell’Elettronica, 86077 Pozzilli, IS Italy
| | - Sabatino Orlandi
- grid.419543.e0000 0004 1760 3561Department of Epidemiology and Prevention, IRCCS Neuromed, Via Dell’Elettronica, 86077 Pozzilli, IS Italy
| | - Alfonsina Tirozzi
- grid.419543.e0000 0004 1760 3561Department of Epidemiology and Prevention, IRCCS Neuromed, Via Dell’Elettronica, 86077 Pozzilli, IS Italy
| | - Simona Costanzo
- grid.419543.e0000 0004 1760 3561Department of Epidemiology and Prevention, IRCCS Neuromed, Via Dell’Elettronica, 86077 Pozzilli, IS Italy
| | - Amalia De Curtis
- grid.419543.e0000 0004 1760 3561Department of Epidemiology and Prevention, IRCCS Neuromed, Via Dell’Elettronica, 86077 Pozzilli, IS Italy
| | - Francesco Gianfagna
- grid.18147.3b0000000121724807EPIMED Research Center, Department of Medicine and Surgery, University of Insubria, Varese, Italy ,grid.477084.80000 0004 1787 3414Mediterranea Cardiocentro, Naples, Italy
| | | | - Furio Brighenti
- grid.10383.390000 0004 1758 0937Department of Food and Drug, University of Parma, Parma, Italy
| | - Chiara Cerletti
- grid.419543.e0000 0004 1760 3561Department of Epidemiology and Prevention, IRCCS Neuromed, Via Dell’Elettronica, 86077 Pozzilli, IS Italy
| | - Maria Benedetta Donati
- grid.419543.e0000 0004 1760 3561Department of Epidemiology and Prevention, IRCCS Neuromed, Via Dell’Elettronica, 86077 Pozzilli, IS Italy
| | - Giovanni de Gaetano
- grid.419543.e0000 0004 1760 3561Department of Epidemiology and Prevention, IRCCS Neuromed, Via Dell’Elettronica, 86077 Pozzilli, IS Italy
| | - Licia Iacoviello
- grid.419543.e0000 0004 1760 3561Department of Epidemiology and Prevention, IRCCS Neuromed, Via Dell’Elettronica, 86077 Pozzilli, IS Italy ,grid.18147.3b0000000121724807EPIMED Research Center, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Alessandro Gialluisi
- grid.419543.e0000 0004 1760 3561Department of Epidemiology and Prevention, IRCCS Neuromed, Via Dell’Elettronica, 86077 Pozzilli, IS Italy ,grid.18147.3b0000000121724807EPIMED Research Center, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Benedetta Izzi
- grid.419543.e0000 0004 1760 3561Department of Epidemiology and Prevention, IRCCS Neuromed, Via Dell’Elettronica, 86077 Pozzilli, IS Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ebrahim N, Shakirova K, Dashinimaev E. PDX1 is the cornerstone of pancreatic β-cell functions and identity. Front Mol Biosci 2022; 9:1091757. [PMID: 36589234 PMCID: PMC9798421 DOI: 10.3389/fmolb.2022.1091757] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetes has been a worldwide healthcare problem for many years. Current methods of treating diabetes are still largely directed at symptoms, aiming to control the manifestations of the pathology. This creates an overall need to find alternative measures that can impact on the causes of the disease, reverse diabetes, or make it more manageable. Understanding the role of key players in the pathogenesis of diabetes and the related β-cell functions is of great importance in combating diabetes. PDX1 is a master regulator in pancreas organogenesis, the maturation and identity preservation of β-cells, and of their role in normal insulin function. Mutations in the PDX1 gene are correlated with many pancreatic dysfunctions, including pancreatic agenesis (homozygous mutation) and MODY4 (heterozygous mutation), while in other types of diabetes, PDX1 expression is reduced. Therefore, alternative approaches to treat diabetes largely depend on knowledge of PDX1 regulation, its interaction with other transcription factors, and its role in obtaining β-cells through differentiation and transdifferentiation protocols. In this article, we review the basic functions of PDX1 and its regulation by genetic and epigenetic factors. Lastly, we summarize different variations of the differentiation protocols used to obtain β-cells from alternative cell sources, using PDX1 alone or in combination with various transcription factors and modified culture conditions. This review shows the unique position of PDX1 as a potential target in the genetic and cellular treatment of diabetes.
Collapse
Affiliation(s)
- Nour Ebrahim
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Ksenia Shakirova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Erdem Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia,*Correspondence: Erdem Dashinimaev,
| |
Collapse
|
13
|
Martínez-Ramírez OC, Salazar-Piña A, Cerón-Ramírez X, Rubio-Lightbourn J, Torres-Romero F, Casas-Avila L, Castro-Hernández C. Effect of Inulin Intervention on Metabolic Control and Methylation of INS and IRS1 Genes in Patients with Type 2 Diabetes Mellitus. Nutrients 2022; 14:nu14235195. [PMID: 36501225 PMCID: PMC9737482 DOI: 10.3390/nu14235195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND AIMS Currently, treatments are being sought to improve the control of type II diabetes mellitus (T2DM), and inulin has been shown to be effective in reducing glucose levels and other metabolic control parameters. These effects on metabolic control may be associated with changes in the epigenetic modulation of genes of the insulin pathway. Therefore, our objective is to determine the effect of agave inulin in metabolic control parameters and in INS and IRS1 genes' methylation in T2DM patients. METHODS This was a longitudinal experimental study with 67 Mexican participants who received an intervention of inulin agave (10 g daily) for 2 months. The methylation of the INS and IRS1 genes was determined by MSP. RESULTS For the INS gene, we found a significant decrease in the proportions of T2DM patients with methylated DNA after inulin intervention (p = 0.0001). In contrast, the difference in the proportions of the unmethylated IRS1 gene before and after the inulin intervention was not significant (p = 0.79). On the other hand, we observed changes in the number of T2DM patients' recommended categories for metabolic control depending on the methylation of INS and IRS1 genes before and after treatment with inulin. CONCLUSION For the first time, we report the modification in the methylation of two genes, INS and IRS1, of the insulin pathway and provide information on the possible relevant role of epigenetics as a key factor in positive changes in metabolic control parameters by inulin intake in T2DM patients.
Collapse
Affiliation(s)
- Ollin Celeste Martínez-Ramírez
- Facultad de Nutrición, Universidad Autónoma del Estado de Morelos, Cuernavaca C.P. 62350, Morelos, Mexico
- Correspondence:
| | - Azucena Salazar-Piña
- Facultad de Nutrición, Universidad Autónoma del Estado de Morelos, Cuernavaca C.P. 62350, Morelos, Mexico
| | - Ximena Cerón-Ramírez
- Facultad de Nutrición, Universidad Autónoma del Estado de Morelos, Cuernavaca C.P. 62350, Morelos, Mexico
| | - Julieta Rubio-Lightbourn
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico
| | - Fernando Torres-Romero
- Facultad de Nutrición, Universidad Autónoma del Estado de Morelos, Cuernavaca C.P. 62350, Morelos, Mexico
| | - Leonora Casas-Avila
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación, Ciudad de Mexico C.P. 14389, Mexico
| | - Clementina Castro-Hernández
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México C.P. 14080, Mexico
| |
Collapse
|
14
|
Ballesteros M, Gil-Lluís P, Ejarque M, Diaz-Perdigones C, Martinez-Guasch L, Fernández-Veledo S, Vendrell J, Megía A. DNA Methylation in Gestational Diabetes and its Predictive Value for Postpartum Glucose Disturbances. J Clin Endocrinol Metab 2022; 107:2748-2757. [PMID: 35914803 PMCID: PMC9516049 DOI: 10.1210/clinem/dgac462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 11/21/2022]
Abstract
CONTEXT DNA methylation in the diagnosis of gestational diabetes. OBJECTIVE To assess the value of DNA methylation in the diagnosis of gestational diabetes (GDM) and in the prediction of maternal postpartum glucose disturbances. METHODS Two-stage observational study performed between July 2006 and December 2010, at University Hospital. Forty-eight randomly selected pregnant women formed the discovery cohort (24 with GDM and 24 controls) and 252 pregnant women (94 with GDM and 158 controls) formed the replication cohort. GDM women were re-evaluated 4 years postpartum. The main outcome measures were GDM, type 2 diabetes or prediabetes at 4 years postpartum. RESULTS We identified 3 CpG sites related to LINC00917, TRAPPC9, and LEF1 that were differentially methylated in women with GDM and abnormal glucose tolerance; and sites associated with LINC00917 and TRAPPC9 were independently associated with an abnormal glucose tolerance status 4 years postpartum after controlling for clinical variables. Moreover, the site associated with LINC00917 and the combination of the 3 sites had the highest predictive values. CONCLUSION Our results suggest that some of these sites may be implicated in the development of GDM and postpartum abnormal glucose tolerance.
Collapse
Affiliation(s)
- Mónica Ballesteros
- Mónica Ballesteros, Rovira i Virgili University, 43005, Tarragona, Spain.
| | - Pilar Gil-Lluís
- Department of Endocrinology and Nutrition, University Hospital of Tortosa Verge de la Cinta, Tarragona, Spain
| | - Miriam Ejarque
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition. Research Unit. University Hospital of Tarragona Joan XXIII-Institut d´Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Cristina Diaz-Perdigones
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition. Research Unit. University Hospital of Tarragona Joan XXIII-Institut d´Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Laia Martinez-Guasch
- Department of Medicine and Surgery, Rovira i Virgili University, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition. Research Unit. University Hospital of Tarragona Joan XXIII-Institut d´Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Sonia Fernández-Veledo
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition. Research Unit. University Hospital of Tarragona Joan XXIII-Institut d´Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Joan Vendrell
- Correspondence: Joan Vendrell, PhD, MD, Hospital Universitari de Tarragona Joan XXIII, Dr. Mallafre Guasch, 4, 43005 Tarragona, Spain.
| | - Ana Megía
- Ana Megia, PhD, MD, Hospital Universitari de Tarragona Joan XXIII, Dr. Mallafre Guasch, 4, 43005 Tarragona, Spain.
| |
Collapse
|
15
|
Dye CK, Corley MJ, Ing C, Lum-Jones A, Li D, Mau MKLM, Maunakea AK. Shifts in the immunoepigenomic landscape of monocytes in response to a diabetes-specific social support intervention: a pilot study among Native Hawaiian adults with diabetes. Clin Epigenetics 2022; 14:91. [PMID: 35851422 PMCID: PMC9295496 DOI: 10.1186/s13148-022-01307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 07/04/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Native Hawaiians are disproportionately affected by type 2 diabetes mellitus (DM), a chronic metabolic, non-communicable disease characterized by hyperglycemia and systemic inflammation. Unrelenting systemic inflammation frequently leads to a cascade of multiple comorbidities associated with DM, including cardiovascular disease, microvascular complications, and renal dysfunction. Yet few studies have examined the link between chronic inflammation at a cellular level and its relationship to standard DM therapies such as diabetes-specific lifestyle and social support education, well recognized as the cornerstone of clinical standards of diabetes care. This pilot study was initiated to explore the association of monocyte inflammation using epigenetic, immunologic, and clinical measures following a 3-month diabetes-specific social support program among high-risk Native Hawaiian adults with DM. RESULTS From a sample of 16 Native Hawaiian adults with DM, monocytes enriched from peripheral blood mononuclear cells (PBMCs) of 8 individuals were randomly selected for epigenomic analysis. Using the Illumina HumanMethylation450 BeadChip microarray, 1,061 differentially methylated loci (DML) were identified in monocytes of participants at baseline and 3 months following a DM-specific social support program (DM-SSP). Gene ontology analysis showed that these DML were enriched within genes involved in immune, metabolic, and cardiometabolic pathways, a subset of which were also significantly differentially expressed. Ex vivo analysis of immune function showed improvement post-DM-SSP compared with baseline, characterized by attenuated interleukin 1β and IL-6 secretion from monocytes. Altered cytokine secretion in response to the DM-SSP was significantly associated with changes in the methylation and gene expression states of immune-related genes in monocytes between intervention time points. CONCLUSIONS Our pilot study provides preliminary evidence of changes to inflammatory monocyte activity, potentially driven by epigenetic modifications, 3 months following a DM-specific SSP intervention. These novel alterations in the trajectory of monocyte inflammatory states were identified at loci that regulate transcription of immune and metabolic genes in high-risk Native Hawaiians with DM, suggesting a relationship between improvements in psychosocial behaviors and shifts in the immunoepigenetic patterns following a diabetes-specific SSP. Further research is warranted to investigate how social support influences systemic inflammation via immunoepigenetic modifications in chronic inflammatory diseases such as DM.
Collapse
Affiliation(s)
- Christian K Dye
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, 96822, USA
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St. BSB222-K, Honolulu, HI, 96813, USA
| | - Michael J Corley
- Cornell Center for Immunology, Weill Cornell Medical Center, Cornell University, New York, NY, 10065, USA
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Claire Ing
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Annette Lum-Jones
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, 96813, USA
| | - Dongmei Li
- Department of Clinical and Translational Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Marjorie K L M Mau
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Alika K Maunakea
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St. BSB222-K, Honolulu, HI, 96813, USA.
| |
Collapse
|
16
|
Chen B, Du YR, Zhu H, Sun ML, Wang C, Cheng Y, Pang H, Ding G, Gao J, Tan Y, Tong X, Lv P, Zhou F, Zhan Q, Xu ZM, Wang L, Luo D, Ye Y, Jin L, Zhang S, Zhu Y, Lin X, Wu Y, Jin L, Zhou Y, Yan C, Sheng J, Flatt PR, Xu GL, Huang H. Maternal inheritance of glucose intolerance via oocyte TET3 insufficiency. Nature 2022; 605:761-766. [PMID: 35585240 DOI: 10.1038/s41586-022-04756-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/12/2022] [Indexed: 02/05/2023]
Abstract
Diabetes mellitus is prevalent among women of reproductive age, and many women are left undiagnosed or untreated1. Gestational diabetes has profound and enduring effects on the long-term health of the offspring2,3. However, the link between pregestational diabetes and disease risk into adulthood in the next generation has not been sufficiently investigated. Here we show that pregestational hyperglycaemia renders the offspring more vulnerable to glucose intolerance. The expression of TET3 dioxygenase, responsible for 5-methylcytosine oxidation and DNA demethylation in the zygote4, is reduced in oocytes from a mouse model of hyperglycaemia (HG mice) and humans with diabetes. Insufficient demethylation by oocyte TET3 contributes to hypermethylation at the paternal alleles of several insulin secretion genes, including the glucokinase gene (Gck), that persists from zygote to adult, promoting impaired glucose homeostasis largely owing to the defect in glucose-stimulated insulin secretion. Consistent with these findings, mouse progenies derived from the oocytes of maternal heterozygous and homozygous Tet3 deletion display glucose intolerance and epigenetic abnormalities similar to those from the oocytes of HG mice. Moreover, the expression of exogenous Tet3 mRNA in oocytes from HG mice ameliorates the maternal effect in offspring. Thus, our observations suggest an environment-sensitive window in oocyte development that confers predisposition to glucose intolerance in the next generation through TET3 insufficiency rather than through a direct perturbation of the oocyte epigenome. This finding suggests a potential benefit of pre-conception interventions in mothers to protect the health of offspring.
Collapse
Affiliation(s)
- Bin Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China.,State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Ya-Rui Du
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Hong Zhu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Mei-Ling Sun
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chao Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yi Cheng
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Haiyan Pang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guolian Ding
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Juan Gao
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yajing Tan
- Shanghai Key Laboratory of Embryo Original Diseases, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaomei Tong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Pingping Lv
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Qitao Zhan
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Mei Xu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Li Wang
- Shanghai Key Laboratory of Embryo Original Diseases, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Donghao Luo
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yinghui Ye
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Jin
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yimin Zhu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaona Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yanting Wu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Luyang Jin
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yin Zhou
- Center for Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Caochong Yan
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianzhong Sheng
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peter R Flatt
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Guo-Liang Xu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China. .,Shanghai Key Laboratory of Medical Epigenetics, Laboratory of Cancer Epigenetics, Institutes of Biomedical Sciences, Medical College of Fudan University, Chinese Academy of Medical Sciences (RU069), Shanghai, China.
| | - Hefeng Huang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China. .,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China. .,Shanghai Key Laboratory of Embryo Original Diseases, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
17
|
Ravari MS, Farrokhi E, Moradi Z, Chaleshtori MH, Jami MS, Zarandi MB. Association between GPX1 and IL-6 promoter methylation and type 2 diabetes. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Liu J, Heraud C, Véron V, Laithier J, Burel C, Prézelin A, Panserat S, Marandel L. Hepatic Global DNA Hypomethylation Phenotype in Rainbow Trout Fed Diets Varying in Carbohydrate to Protein Ratio. J Nutr 2022; 152:29-39. [PMID: 34550380 DOI: 10.1093/jn/nxab343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/30/2021] [Accepted: 09/17/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A high carbohydrate-low protein diet can induce hepatic global DNA hypomethylation in trout. The mechanisms remain unclear. OBJECTIVES We aimed to investigate whether an increase in dietary carbohydrates (dHCs) or a decrease in dietary proteins (dLPs) can cause hepatic global DNA hypomethylation, as well as explore the underlying mechanisms in trout. METHODS Two feeding trials were conducted on juvenile males, both of which involved a 4-d fasting and 4-d refeeding protocol. In trial 1, trout were fed either a high protein-no carbohydrate [HP-NC, protein 60% dry matter (DM), carbohydrates 0% DM] or a moderate protein-high carbohydrate (MP-HC, protein 40% DM, carbohydrates 30% DM) diet. In trial 2, fish were fed either a moderate protein-no carbohydrate (MP-NC, protein 40% DM, carbohydrates 0% DM), an MP-HC (protein 40% DM, carbohydrates 30% DM), or a low protein-no carbohydrate (LP-NC, protein 20% DM, carbohydrates 0% DM) diet to separate the effects of dHCs and dLPs on the hepatic methylome. Global CmCGG methylation, DNA demethylation derivative concentrations, and mRNA expression of DNA (de)methylation-related genes were measured. Differences were tested by 1-factor ANOVA when data were normally distributed or by Kruskal-Wallis nonparametric test if not. RESULTS In both trials, global CmCGG methylation concentrations remained unaffected, but the hepatic 5-mdC content decreased after refeeding (1-3%). The MP-HC group had 3.4-fold higher hepatic 5-hmdC and a similar 5-mdC concentration compared with the HP-NC group in trial 1. Both MP-HC and LP-NC diets lowered the hepatic 5-mdC content (1-2%), but only the LP-NC group had a significantly lower 5-hmdC concentration (P < 0.01) compared with MP-NC group in trial 2. CONCLUSIONS dHC and dLP independently induced hepatic global DNA demethylation in trout. The alterations in other methylation derivative concentrations indicated the demethylation process was achieved through an active demethylation pathway and probably occurred at non-CmCGG sites.
Collapse
Affiliation(s)
- Jingwei Liu
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, Saint-Pée-sur-Nivelle, France
| | - Cécile Heraud
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, Saint-Pée-sur-Nivelle, France
| | - Vincent Véron
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, Saint-Pée-sur-Nivelle, France
| | - Jésabel Laithier
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, Saint-Pée-sur-Nivelle, France
| | - Christine Burel
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, Saint-Pée-sur-Nivelle, France
| | - Audrey Prézelin
- Université Paris Saclay, UVSQ, INRAE, BREED, Jouy en Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Stéphane Panserat
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, Saint-Pée-sur-Nivelle, France
| | - Lucie Marandel
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, Saint-Pée-sur-Nivelle, France
| |
Collapse
|
19
|
Vasishta S, Umakanth S, Adiga P, Joshi MB. Extrinsic and intrinsic factors influencing metabolic memory in type 2 diabetes. Vascul Pharmacol 2021; 142:106933. [PMID: 34763098 DOI: 10.1016/j.vph.2021.106933] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/18/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022]
Abstract
Direct and indirect influence of pathological conditions in Type 2 Diabetes (T2D) on vasculature manifests in micro and/or macro vascular complications that act as a major source of morbidity and mortality. Although preventive therapies exist to control hyperglycemia, diabetic subjects are always at risk to accrue vascular complications. One of the hypotheses explained is 'glycemic' or 'metabolic' memory, a process of permanent epigenetic change in different cell types whereby diabetes associated vascular complications continue despite glycemic control by antidiabetic drugs. Epigenetic mechanisms including DNA methylation possess a strong influence on the association between environment and gene expression, thus indicating its importance in the pathogenesis of a complex disease such as T2D. The vascular system is more prone to environmental influences and present high flexibility in response to physiological and pathological challenges. DNA methylation based epigenetic changes during metabolic memory are influenced by sustained hyperglycemia, inflammatory mediators, gut microbiome composition, lifestyle modifications and gene-nutrient interactions. Hence, understanding underlying mechanisms in manifesting vascular complications regulated by DNA methylation is of high clinical importance. The review provides an insight into various extrinsic and intrinsic factors influencing the regulation of DNA methyltransferases contributing to the pathogenesis of vascular complications during T2D.
Collapse
Affiliation(s)
- Sampara Vasishta
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shashikiran Umakanth
- Department of Medicine, Dr. T.M.A. Pai Hospital, Manipal Academy of Higher Education, Udupi 576101, Karnataka, India
| | - Prashanth Adiga
- Department of Reproductive Medicine and Surgery (MARC), Kasturba Hospital, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
20
|
Davison GW, Irwin RE, Walsh CP. The metabolic-epigenetic nexus in type 2 diabetes mellitus. Free Radic Biol Med 2021; 170:194-206. [PMID: 33429021 DOI: 10.1016/j.freeradbiomed.2020.12.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
The prevalence of type 2 diabetes mellitus (T2DM) continues to rise globally. Yet the aetiology and pathophysiology of this noncommunicable, polygenic disease, is poorly understood. Lifestyle factors, such as poor dietary intake, lack of exercise, and abnormal glycaemia, are purported to play a role in disease onset and progression, and these environmental factors may disrupt specific epigenetic mechanisms, leading to a reprogramming of gene transcription. The hyperglycaemic cell per se, alters epigenetics through chemical modifications to DNA and histones via metabolic intermediates such as succinate, α-ketoglutarate and O-GlcNAc. To illustrate, α-ketoglutarate is considered a salient co-factor in the activation of the ten-eleven translocation (TET) dioxygenases, which drives DNA demethylation. On the contrary, succinate and other mitochondrial tricarboxylic acid cycle intermediates, inhibit TET activity predisposing to a state of hypermethylation. Hyperglycaemia depletes intracellular ascorbic acid, and damages DNA by enhancing the production of reactive oxygen species (ROS); this compromised cell milieu exacerbates the oxidation of 5-methylcytosine alongside a destabilisation of TET. These metabolic connections may regulate DNA methylation, affecting gene transcription and pancreatic islet β-cell function in T2DM. This complex interrelationship between metabolism and epigenetic alterations may provide a conceptual foundation for understanding how pathologic stimuli modify and control the intricacies of T2DM. As such, this narrative review will comprehensively evaluate and detail the interplay between metabolism and epigenetic modifications in T2DM.
Collapse
Affiliation(s)
- Gareth W Davison
- Ulster University, Sport and Exercise Sciences Research Institute, Newtownabbey, Northern Ireland, UK.
| | - Rachelle E Irwin
- Ulster University, Genomic Medicine Research Group, Biomedical Sciences Research Institute, Coleraine, Northern Ireland, UK
| | - Colum P Walsh
- Ulster University, Genomic Medicine Research Group, Biomedical Sciences Research Institute, Coleraine, Northern Ireland, UK
| |
Collapse
|
21
|
Zampieri M, Bacalini MG, Barchetta I, Scalea S, Cimini FA, Bertoccini L, Tagliatesta S, De Matteis G, Zardo G, Cavallo MG, Reale A. Increased PARylation impacts the DNA methylation process in type 2 diabetes mellitus. Clin Epigenetics 2021; 13:114. [PMID: 34001206 PMCID: PMC8130175 DOI: 10.1186/s13148-021-01099-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/10/2021] [Indexed: 11/28/2022] Open
Abstract
Background Epigenetic modifications, such as DNA methylation, can influence the genetic susceptibility to type 2 diabetes mellitus (T2DM) and the progression of the disease. Our previous studies demonstrated that the regulation of the DNA methylation pattern involves the poly(ADP-ribosyl)ation (PARylation) process, a post-translational modification of proteins catalysed by the poly(ADP-ribose) polymerase (PARP) enzymes. Experimental data showed that the hyperactivation of PARylation is associated with impaired glucose metabolism and the development of T2DM. Aims of this case–control study were to investigate the association between PARylation and global and site-specific DNA methylation in T2DM and to evaluate metabolic correlates. Results Data were collected from 61 subjects affected by T2DM and 48 healthy individuals, recruited as controls. Global levels of poly(ADP-ribose) (PAR, a surrogate of PARP activity), cytosine methylation (5-methylcytosine, 5mC) and de-methylation intermediates 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC) were determined in peripheral blood cells by ELISA-based methodologies. Site-specific DNA methylation profiling of SOCS3, SREBF1 and TXNIP candidate genes was performed by mass spectrometry-based bisulfite sequencing, methyl-sensitive endonucleases digestion and by DNA immuno-precipitation. T2DM subjects presented higher PAR levels than controls. In T2DM individuals, increased PAR levels were significantly associated with higher HbA1c levels and the accumulation of the de-methylation intermediates 5hmC and 5fC in the genome. In addition, T2DM patients with higher PAR levels showed reduced methylation with increased 5hmC and 5fC levels in specific SOCS3 sites, up-regulated SOCS3 expression compared to both T2DM subjects with low PAR levels and controls. Conclusions This study demonstrates the activation of PARylation processes in patients with T2DM, particularly in those with poor glycaemic control. PARylation is linked to dysregulation of DNA methylation pattern via activation of the DNA de-methylation cascade and may be at the basis of the differential gene expression observed in presence of diabetes. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01099-1.
Collapse
Affiliation(s)
- Michele Zampieri
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | | | - Ilaria Barchetta
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | - Stefania Scalea
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | - Flavia Agata Cimini
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | - Laura Bertoccini
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | - Stefano Tagliatesta
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | - Giovanna De Matteis
- Research Centre for Animal Production and Aquaculture, Consiglio Per La Ricerca in Agricoltura E L'Analisi Dell'Economia Agraria (CREA), 00015, Monterotondo, Italy
| | - Giuseppe Zardo
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy
| | - Maria Gisella Cavallo
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy.
| | - Anna Reale
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy.
| |
Collapse
|
22
|
Tan Y, Cao H, Li Q, Sun J. The role of transcription factor Ap1 in the activation of the Nrf2/ARE pathway through TET1 in diabetic nephropathy. Cell Biol Int 2021; 45:1654-1665. [PMID: 33760331 DOI: 10.1002/cbin.11599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/01/2021] [Accepted: 03/21/2021] [Indexed: 02/06/2023]
Abstract
TET1 mediates demethylation in tumors, but its role in diabetic nephropathy (DN), a prevalent diabetic complication, is unclear. We attempted to probe the possible mechanism of TET1 in DN. A DN rat model was established and verified by marker detection and histopathological observation. The in vitro model was established on human mesangial cells (HMCs) induced by high glucose (HG), and verified by evaluation of fibrosis and inflammation. The differentially expressed mRNA was screened out by microarray analysis. The most differentially expressed mRNA (TET1) was reduced in DN rats and HG-HMCs. The upstream and downstream factors of TET1 were verified, and their roles in DN were analyzed by gain- and loss-function assays. TET1 was decreased in DN rats and HG-HMCs. High expression of TET1 decreased biochemical indexes and renal injury of DN rats and hampered the activity, fibrosis, and inflammation of HG-HMCs. Ap1 lowered TET1 expression, and enhanced inflammation in HG-HMCs, and accentuated renal injury in DN rats. TET1 overexpression inhibited the effect of Ap1 on DN. TET1 promoted the transcription of Nrf2. The Ap1/TET1 axis mediated the Nrf2/ARE pathway activity. Overall, TET1 overexpression weakened the inhibitory effect of Ap1 on the Nrf2/ARE pathway, thus alleviating inflammation and renal injury in DN.
Collapse
Affiliation(s)
- Yongshun Tan
- Department of Nephrology, Jinan City People's Hospital, Jinan, Shandong, China
| | - Huaimin Cao
- Department of Endocrinology, Gaotang County People's Hospital, Liaocheng, Shandong, China
| | - Qingfei Li
- Department of Endocrinology, Linyi People's Hospital, Dezhou, Shandong, China
| | - Jianjun Sun
- Department 1 of Nephrology, Zibo Central Hospital, Zibo, Shandong, China
| |
Collapse
|
23
|
Liu J, Lang G, Shi J. Epigenetic Regulation of PDX-1 in Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2021; 14:431-442. [PMID: 33564250 PMCID: PMC7866918 DOI: 10.2147/dmso.s291932] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/16/2021] [Indexed: 12/25/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by hyperglycemia which is caused by insufficient insulin secretion or insulin resistance. Interaction of genetic, epigenetic and environmental factors plays a significant role in the development of T2DM. Several environmental factors including diet and lifestyle, as well as age have been associated with an increased risk for T2DM. It has been demonstrated that these environmental factors may affect global epigenetic status, and alter the expression of susceptible genes, thereby contributing to the pathogenesis of T2DM. In recent years, a growing body of molecular and genetic studies in diabetes have been focused on the ways to restore the numbers or function of β-cells in order to reverse a range of metabolic consequences of insulin deficiency. The pancreatic duodenal homeobox 1 (PDX-1) is a transcriptional factor that is essential for the development and function of islet cells. A number of studies have shown that there is a significant increase in the level of DNA methylation of PDX-1 resulting in reduced activity in T2DM islets. The decrease in PDX-1 activity may be a critical mediator causing dysregulation of pancreatic β cells in T2DM. This article reviews the epigenetic mechanisms of PDX-1 involved in T2DM, focusing on diabetes and DNA methylation, and discusses some potential strategies for the application of PDX-1 in the treatment of diabetes.
Collapse
Affiliation(s)
- Jiangman Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Guangping Lang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
- Correspondence: Jingshan Shi Tel +86-851-286-436-66Fax +86-851-286-423-03 Email
| |
Collapse
|
24
|
Hajishengallis G, Li X, Chavakis T. Immunometabolic control of hematopoiesis. Mol Aspects Med 2020; 77:100923. [PMID: 33160640 DOI: 10.1016/j.mam.2020.100923] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/24/2020] [Accepted: 10/30/2020] [Indexed: 02/08/2023]
Abstract
Hematopoietic stem cells (HSC) lie at the center of the hematopoiesis process, as they bear capacity to self-renew and generate all hematopoietic lineages, hence, all mature blood cells. The ability of HSCs to recognize systemic infection or inflammation or other forms of peripheral stress, such as blood loss, is essential for demand-adapted hematopoiesis. Also of critical importance for HSC function, specific metabolic cues (e.g., associated with changes in energy or O2 levels) can regulate HSC function and fate decisions. In this regard, the metabolic adaptation of HSCs facilitates their switching between different states, namely quiescence, self-renewal, proliferation and differentiation. Specific metabolic alterations in hematopoietic stem and progenitor cells (HSPCs) have been linked with the induction of trained myelopoiesis in the bone marrow as well as with HSPC dysfunction in aging and clonal hematopoiesis of indeterminate potential (CHIP). Thus, HSPC function is regulated by both immunologic/inflammatory and metabolic cues. The immunometabolic control of HSPCs and of hematopoiesis is discussed in this review along with the translational implications thereof, that is, how metabolic pathways can be therapeutically manipulated to prevent or reverse HSPC dysfunction or to enhance or attenuate trained myelopoiesis according to the needs of the host.
Collapse
Affiliation(s)
- George Hajishengallis
- Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA, United States.
| | - Xiaofei Li
- Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA, United States.
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Centre for Cardiovascular Science, Queen's Medical Research Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom; National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
25
|
Hypomethylation of IL1RN and NFKB1 genes is linked to the dysbalance in IL1β/IL-1Ra axis in female patients with type 2 diabetes mellitus. PLoS One 2020; 15:e0233737. [PMID: 32470060 PMCID: PMC7259508 DOI: 10.1371/journal.pone.0233737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammation has received considerable attention in the pathogenesis of type 2 diabetes mellitus (T2DM). Supporting this concept, enhanced expression of interleukin (IL)-1β and increased infiltration of macrophages are observed in pancreatic islets of patients with T2DM. Although IL-1 receptor antagonist (IL-1Ra) plays a major role in controlling of IL-1β-mediated inflammation, its counteraction effects and epigenetic alterations in T2DM are less studied. Thus, we aimed to analyze the DNA methylation status in IL1RN, RELA (p65) and NFKB1 (p50) genes in peripheral blood mononuclear cells (PBMCs) from treated T2DM patients (n = 35) and age-/sex- matched healthy controls (n = 31). Production of IL-1β and IL-1Ra was analyzed in plasma and supernatants from LPS-induced PBMCs. Immunomodulatory effects of IL-1β and IL-1Ra were studied on THP-1 cells. Average DNA methylation level of IL1RN and NFKB1 gene promoters was significantly decreased in T2DM patients in comparison with healthy controls (P< 0.05), which was associated with the increased IL-1Ra (P< 0.001) and IL-1β (P = 0.039) plasma levels in T2DM patients. Negative association between average methylation of IL1RN gene and IL-1Ra plasma levels were observed in female T2DM patients. Methylation of NFKB1 gene was negatively correlated with IL-1Ra levels in the patients and positively with IL-1β levels in female patients. LPS-stimulated PBMCs from female patients failed to raise IL-1β production, while the cells from healthy females increased IL-1β production in comparison with unstimulated cells (P< 0.001). Taken together, the findings suggest that hypomethylation of IL1RN and NFKB1 gene promoters may promote the increased IL-1β/IL-1Ra production and regulate chronic inflammation in T2DM. Further studies are necessary to elucidate the causal direction of these associations and potential role of IL-1Ra in anti-inflammatory processes in treated patients with T2DM.
Collapse
|
26
|
Zhu T, Brown AP, Ji H. The Emerging Role of Ten-Eleven Translocation 1 in Epigenetic Responses to Environmental Exposures. Epigenet Insights 2020; 13:2516865720910155. [PMID: 32166220 PMCID: PMC7054729 DOI: 10.1177/2516865720910155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 12/11/2022] Open
Abstract
Mounting evidence from epidemiological studies and animal models has linked exposures to environmental factors to changes in epigenetic markers, especially in DNA methylation. These epigenetic changes may lead to dysregulation of molecular processes and functions and mediate the impact of environmental exposures in complex diseases. However, detailed molecular events that result in epigenetic changes following exposures remain unclear. Here, we review the emerging evidence supporting a critical role of ten-eleven translocation 1 (TET1) in mediating these processes. Targeting TET1 and its associated pathways may have therapeutic potential in alleviating negative impacts of environmental exposures, preventing and treating exposure-related diseases.
Collapse
Affiliation(s)
- Tao Zhu
- California National Primate Research
Center, University of California, Davis, Davis, CA, USA
| | - Anthony P Brown
- California National Primate Research
Center, University of California, Davis, Davis, CA, USA
| | - Hong Ji
- California National Primate Research
Center, University of California, Davis, Davis, CA, USA
- Department of Anatomy, Physiology &
Cell Biology, School of Veterinary Medicine, University of California, Davis, CA,
USA
| |
Collapse
|
27
|
Dong C, Chen J, Zheng J, Liang Y, Yu T, Liu Y, Gao F, Long J, Chen H, Zhu Q, He Z, Hu S, He C, Lin J, Tang Y, Zhu H. 5-Hydroxymethylcytosine signatures in circulating cell-free DNA as diagnostic and predictive biomarkers for coronary artery disease. Clin Epigenetics 2020; 12:17. [PMID: 31964422 PMCID: PMC6974971 DOI: 10.1186/s13148-020-0810-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023] Open
Abstract
Background The 5-hydroxymethylcytosine (5hmC) DNA modification is an epigenetic marker involved in a range of biological processes. Its function has been studied extensively in tumors, neurodegenerative diseases, and atherosclerosis. Studies have reported that 5hmC modification is closely related to the phenotype transformation of vascular smooth muscle cells and endothelial dysfunction. However, its role in coronary artery disease (CAD) has not been fully studied. Results To investigate whether 5hmC modification correlates with CAD pathogenesis and whether 5hmC can be used as a biomarker, we used a low-input whole-genome sequencing technology based on selective chemical capture (hmC-Seal) to firstly generate the 5hmC profiles in the circulating cell-free DNA(cfDNA) of CAD patients, including stable coronary artery disease (sCAD) patients and acute myocardial infarction (AMI) patients. We detected a significant difference of 5hmC enrichment in gene bodies from CAD patients compared with normal coronary artery (NCA) individuals. Our results showed that CAD patients can be well separated from NCA individuals by 5hmC markers. The prediction performance of the model established by differentially regulated 5hmc modified genes were superior to common clinical indicators for the diagnosis of CAD (AUC = 0.93) and sCAD (AUC = 0.93). Specially, we found that 5hmC markers in cfDNA showed prediction potential for AMI (AUC = 0.95), which was superior to that of cardiac troponin I, muscle/brain creatine kinase, and myoglobin. Conclusions Our results suggest that 5hmC markers derived from cfDNA can serve as effective epigenetic biomarkers for minimally noninvasive diagnosis and prediction of CAD.
Collapse
Affiliation(s)
- Chaoran Dong
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing, 100050, China
| | - Jiemei Chen
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing, 100050, China
| | - Jilin Zheng
- Department of Cardiology, Coronary Heart Disease Center, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing, 100037, China
| | - Yiming Liang
- College of Chemistry and Molecular Engineering, Innovation Center for Genomics, Peking University, No. 5 Yiheyuan Road Haidian District, Beijing, 100871, China
| | - Tao Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yupeng Liu
- Department of Cardiology, Coronary Heart Disease Center, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing, 100037, China
| | - Feng Gao
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing, 100050, China
| | - Jie Long
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing, 100050, China
| | - Hangyu Chen
- College of Chemistry and Molecular Engineering, Innovation Center for Genomics, Peking University, No. 5 Yiheyuan Road Haidian District, Beijing, 100871, China
| | - Qianhui Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zilong He
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chuan He
- College of Chemistry and Molecular Engineering, Innovation Center for Genomics, Peking University, No. 5 Yiheyuan Road Haidian District, Beijing, 100871, China.,Department of Chemistry, Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Jian Lin
- College of Chemistry and Molecular Engineering, Innovation Center for Genomics, Peking University, No. 5 Yiheyuan Road Haidian District, Beijing, 100871, China.
| | - Yida Tang
- Department of Cardiology, Coronary Heart Disease Center, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing, 100037, China.
| | - Haibo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
28
|
Hawkins LJ, Storey KB. Advances and applications of environmental stress adaptation research. Comp Biochem Physiol A Mol Integr Physiol 2019; 240:110623. [PMID: 31778815 DOI: 10.1016/j.cbpa.2019.110623] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023]
Abstract
Evolution has produced animals that survive extreme fluctuations in environmental conditions including freezing temperatures, anoxia, desiccating conditions, and prolonged periods without food. For example, the wood frog survives whole-body freezing every winter, arresting all gross physiological functions, but recovers functions upon thawing in the spring. Likewise, many small mammals hibernate for months at a time with minimal metabolic activity, organ perfusion, and movement, yet do not suffer significant muscle atrophy upon arousal. These conditions and the biochemical adaptations employed to deal with them can be viewed as Nature's answer to problems that humans wish to answer, particularly in a biomedical context. This review focuses on recent advances in the field of animal environmental stress adaptation, starting with an emphasis on new areas of research such as epigenetics and microRNA. We then examine new and emerging technologies such as genome editing, novel sequencing applications, and single cell analysis and how these can push us closer to a deeper understanding of biochemical adaptation. Next, evaluate the potential contributions of new high-throughput technologies (e.g. next-generation sequencing, mass spectrometry proteomics) to better understanding the adaptations that support these extreme phenotypes. Concluding, we examine some of the human applications that can be gained from understanding the principles of biochemical adaptation including organ preservation and treatments for conditions such as ischemic stroke and muscle disuse atrophy.
Collapse
Affiliation(s)
- Liam J Hawkins
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
29
|
Yang Y, Zeng C, Lu X, Song Y, Nie J, Ran R, Zhang Z, He C, Zhang W, Liu SM. 5-Hydroxymethylcytosines in Circulating Cell-Free DNA Reveal Vascular Complications of Type 2 Diabetes. Clin Chem 2019; 65:1414-1425. [PMID: 31575611 DOI: 10.1373/clinchem.2019.305508] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Long-term complications of type 2 diabetes (T2D), such as macrovascular and microvascular events, are the major causes for T2D-related disability and mortality. A clinically convenient, noninvasive approach for monitoring the development of these complications would improve the overall life quality of patients with T2D and help reduce healthcare burden through preventive interventions. METHODS A selective chemical labeling strategy for 5-hydroxymethylcytosines (5hmC-Seal) was used to profile genome-wide 5hmCs, an emerging class of epigenetic markers implicated in complex diseases including diabetes, in circulating cell-free DNA (cfDNA) from a collection of Chinese patients (n = 62). Differentially modified 5hmC markers between patients with T2D with and without macrovascular/microvascular complications were analyzed under a case-control design. RESULTS Statistically significant changes in 5hmC markers were associated with T2D-related macrovascular/microvascular complications, involving genes and pathways relevant to vascular biology and diabetes, including insulin resistance and inflammation. A 16-gene 5hmC marker panel accurately distinguished patients with vascular complications from those without [testing set: area under the curve (AUC) = 0.85; 95% CI, 0.73-0.96], outperforming conventional clinical variables such as urinary albumin. In addition, a separate 13-gene 5hmC marker panel could distinguish patients with single complications from those with multiple complications (testing set: AUC = 0.84; 95% CI, 0.68-0.99), showing superiority over conventional clinical variables. CONCLUSIONS The 5hmC markers in cfDNA reflected the epigenetic changes in patients with T2D who developed macrovascular/microvascular complications. The 5hmC-Seal assay has the potential to be a clinically convenient, noninvasive approach that can be applied in the clinic to monitor the presence and severity of diabetic vascular complications.
Collapse
Affiliation(s)
- Ying Yang
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chang Zeng
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL.,Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Xingyu Lu
- Shanghai Epican Genetech Co. Ltd., Shanghai, China
| | - Yanqun Song
- Shanghai Epican Genetech Co. Ltd., Shanghai, China
| | - Ji Nie
- Department of Chemistry, The University of Chicago, Chicago, IL
| | - Ruoxi Ran
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL; .,Department of Biochemistry and Molecular Biology; Institute for Biophysical Dynamics; and The Howard Hughes Medical Institute, The University of Chicago, Chicago, IL
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL;
| | - Song-Mei Liu
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China;
| |
Collapse
|
30
|
Identification of key genes involved in type 2 diabetic islet dysfunction: a bioinformatics study. Biosci Rep 2019; 39:BSR20182172. [PMID: 31088900 PMCID: PMC6542763 DOI: 10.1042/bsr20182172] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 05/03/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023] Open
Abstract
Aims: To identify the key differentially expressed genes (DEGs) in islet and investigate their potential pathway in the molecular process of type 2 diabetes. Methods: Gene Expression Omnibus (GEO) datasets (GSE20966, GSE25724, GSE38642) of type 2 diabetes patients and normal controls were downloaded from GEO database. DEGs were further assessed by enrichment analysis based on the Database for Annotation, Visualization and Integrated Discovery (DAVID) 6.8. Then, by using Search Tool for the Retrieval Interacting Genes (STRING) 10.0 and gene set enrichment analysis (GSEA), we identified hub gene and associated pathway. At last, we performed quantitative real-time PCR (qPCR) to validate the expression of hub gene. Results: Forty-five DEGs were co-expressed in the three datasets, most of which were down-regulated. DEGs are mostly involved in cell pathway, response to hormone and binding. In protein–protein interaction (PPI) network, we identified ATP-citrate lyase (ACLY) as hub gene. GSEA analysis suggests low expression of ACLY is enriched in glycine serine and threonine metabolism, drug metabolism cytochrome P450 (CYP) and NOD-like receptor (NLR) signaling pathway. qPCR showed the same expression trend of hub gene ACLY as in our bioinformatics analysis. Conclusion: Bioinformatics analysis revealed that ACLY and the pathways involved are possible target in the molecular mechanism of type 2 diabetes.
Collapse
|
31
|
Zhang J, Hawkins LJ, Storey KB. DNA methylation and regulation of DNA methyltransferases in a freeze-tolerant vertebrate. Biochem Cell Biol 2019; 98:145-153. [PMID: 31116953 DOI: 10.1139/bcb-2019-0091] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The wood frog is one of the few freeze-tolerance vertebrates. This is accomplished in part by the accumulation of cryoprotectant glucose, metabolic rate depression, and stress response activation. These may be achieved by mechanisms such as DNA methylation, which is typically associated with transcriptional repression. Hyperglycemia is also associated with modifications to epigenetic profiles, indicating an additional role that the high levels of glucose play in freeze tolerance. We sought to determine whether DNA methylation is affected during freezing exposure, and whether this is due to the wood frog's response to hyperglycemia. We examined global DNA methylation and DNA methyltransferases (DNMTs) in the liver and muscle of frozen and glucose-loaded wood frogs. The results showed that levels of 5-methylcytosine (5mC) increased in the muscle, suggesting elevated DNA methylation during freezing. DNMT activities also decreased in muscle during thawing, glucose loading, and in vitro glucose experiments. Liver DNMT activities were similar to muscle; however, a varied response to DNMT levels and a decrease in 5mC highlight the metabolic role the liver plays during freezing. Glucose was also shown to decrease DNMT activity levels in the wood frog, in vitro, elucidating a potentially novel regulatory mechanism. Together these results suggest an interplay between freeze tolerance and hyperglycemic regulation of DNA methylation.
Collapse
Affiliation(s)
- Jing Zhang
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.,Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Liam J Hawkins
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
32
|
Duraisamy AJ, Mishra M, Kowluru A, Kowluru RA. Epigenetics and Regulation of Oxidative Stress in Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2019; 59:4831-4840. [PMID: 30347077 PMCID: PMC6181189 DOI: 10.1167/iovs.18-24548] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose Oxidative stress plays a central role in the development of diabetic retinopathy, and in the pathogenesis of this blinding disease, activation of NADPH oxidase 2 (Nox2)-mediated cytosolic reactive oxygen species (ROS) production precedes mitochondrial damage. The multicomponent cytosolic Nox2 has an obligatory component, Ras-related C3 botulinum toxin substrate 1 (Rac1); in diabetes, Rac1 is functionally and transcriptionally active. Diabetes also facilitates many epigenetic modifications, and activates both DNA methylating (Dnmts) and hydroxymethylating (Tets) enzymes. Our aim was to investigate the role of epigenetics in Rac1 regulation in diabetes. Methods Using human retinal endothelial cells, exposed to high glucose, 5-methyl cytosine (5mC) and 5-hydroxy methyl cytosine (5hmC) levels, and binding of Dnmt and Tets were quantified at the Rac1 promoter. The effect of inhibition of Dnmts/Tets (pharmacological inhibitors or short interfering RNA [siRNA]) on glucose-induced activation of Rac1-ROS production was evaluated. Results were confirmed in retinal microvessels from streptozotocin-induced diabetic mice receiving intravitreally Dnmt1-siRNA. Results Despite high glucose-induced increased binding of Dnmt1, 5mC levels remained subnormal at Rac1 promoter. But, at the same site, 5hmC levels and transcription factor nuclear factor (NF)-kB binding were increased. Inhibition of Dnmts/Tets prevented increase in 5hmC and NF-kB binding, and attenuated Rac1 activation. Similarly, in mouse retinal microvessels, Dnmt1-siRNA ameliorated diabetes-induced increase in Rac1 transcripts and activity, and decreased ROS levels. Conclusions Thus, despite Dnmts activation, concomitant increase in Tets rapidly hydroxymethylates 5mC, allowing NF-κB to bind and activate Rac1. These results imply a critical role of an active DNA methylation in cytosolic ROS regulation in the development of diabetic retinopathy.
Collapse
Affiliation(s)
- Arul J Duraisamy
- Department of Ophthalmology, Wayne State University, Detroit, Michigan, United States
| | - Manish Mishra
- Department of Ophthalmology, Wayne State University, Detroit, Michigan, United States
| | - Anjaneyulu Kowluru
- Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, United States.,John D. Dingell VA Medical Center, Detroit, Michigan, United States
| | - Renu A Kowluru
- Department of Ophthalmology, Wayne State University, Detroit, Michigan, United States.,Anatomy/Cell Biology, Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
33
|
Yuan EF, Yang Y, Cheng L, Deng X, Chen SM, Zhou X, Liu SM. Hyperglycemia affects global 5-methylcytosine and 5-hydroxymethylcytosine in blood genomic DNA through upregulation of SIRT6 and TETs. Clin Epigenetics 2019; 11:63. [PMID: 30987683 PMCID: PMC6466651 DOI: 10.1186/s13148-019-0660-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 03/31/2019] [Indexed: 01/20/2023] Open
Abstract
Background Accumulating evidence suggests that epigenetic changes play key roles in the pathogenesis of type 2 diabetes mellitus (T2DM). However, the dynamic regulation of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in diabetic peripheral blood DNA remains to be elucidated. Results We collected fasting blood samples (104 patients and 108 healthy controls) and glucose-stimulated blood samples at different time points (11 patients and 5 healthy controls underwent oral glucose tolerance test (OGTT)), as well as blood samples from six couples of diabetic and control rats. A HPLC-MS/MS system was used for quantifying global 5mC and 5hmC in genomic DNA from white blood cells (WBCs), and qPCR was performed for detecting mRNA expression of SIRT6 and TETs. We found that global 5mC decreased, while global 5hmC increased in both patients and diabetic rats, with lower 5mC being a risk factor of T2DM (OR = 0.524, 95%CI 0.402–0.683, p = 1.64 × 10−6). The OGTT data from patients showed that 5mC declined within 1 h and then returned to the fasting status at 2 h, while 5hmC rose from 0.5 h to 3 h with increasing glucose. However, the similar patterns were not found in the controls. The mRNA expression of TET2, TET3, and SIRT6 was upregulated in patients (p = 0.012, p = 0.026, and p = 0.035, respectively). The similar results were observed in diabetic OGTT and rats. Correlation analysis indicated that SIRT6 was positively correlated with TET2 in humans (r = 0.277, p < 0.001) and rats (r = 0.942, p < 0.001), in addition to a correlation between glucose and SIRT6 (r = 0.162, p = 0.045) and TET2 (r = 0.174, p = 0.036). Conclusions Hyperglycemia appeared to promote the mRNA expression of SIRT6 and TETs, which in turn might cause the dynamic changes of 5mC and 5hmC in WBCs from T2DM patients. Electronic supplementary material The online version of this article (10.1186/s13148-019-0660-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Er-Feng Yuan
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, 169# Donghu Road, Wuhan, 430071, Hubei Province, China.,Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Ying Yang
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, 169# Donghu Road, Wuhan, 430071, Hubei Province, China
| | - Lin Cheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Xujing Deng
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, 169# Donghu Road, Wuhan, 430071, Hubei Province, China
| | - Shao-Min Chen
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, 169# Donghu Road, Wuhan, 430071, Hubei Province, China
| | - Xin Zhou
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, 169# Donghu Road, Wuhan, 430071, Hubei Province, China
| | - Song-Mei Liu
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, 169# Donghu Road, Wuhan, 430071, Hubei Province, China.
| |
Collapse
|
34
|
Cencioni C, Gaetano C, Spallotta F. Dissecting cytosine methylation mechanics of dysmetabolism. Aging (Albany NY) 2019; 11:837-838. [PMID: 30674712 PMCID: PMC6382438 DOI: 10.18632/aging.101788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/17/2019] [Indexed: 11/25/2022]
Affiliation(s)
- Chiara Cencioni
- National Research Council, Institute of Cell Biology and Neurobiology, Monterotondo, Rome, Italy
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Francesco Spallotta
- Cancer Epigenetics Laboratory, Candiolo Cancer Institute, FPO - IRCCS - Candiolo, Turin, Italy
| |
Collapse
|
35
|
Ciccarone F, Castelli S, Ioannilli L, Ciriolo MR. High Dietary Fat Intake Affects DNA Methylation/Hydroxymethylation in Mouse Heart: Epigenetic Hints for Obesity-Related Cardiac Dysfunction. Mol Nutr Food Res 2018; 63:e1800970. [PMID: 30515977 DOI: 10.1002/mnfr.201800970] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/12/2018] [Indexed: 12/15/2022]
Abstract
SCOPE Epigenetic aberrations caused by environmental factors and lifestyle choices have been associated with the development of a number of pathologies, including cardiovascular disorders. However, whether obesity-related heart dysfunction can occur via epigenetic mechanisms is largely undisclosed. The manifested role of DNA hydroxymethylation in heart pathophysiology prompts an investigation of its levels/machinery in heart of mice fed with high-fat diet (HFD) and its possible relation with genes linked to obesity-associated cardiac remodeling. METHODS AND RESULTS Alterations in levels of DNA methylation/hydroxymethylation modifications and in expression of Tet family of DNA hydroxylases are observed in hearts of mice treated with HFD for 8 and 16 weeks. Decreased levels of the Tet co-substrate α-ketoglutarate are also observed and associate with mitochondrial mass reduction and augmented oxidative stress. Finally, expression markers of cardiac remodeling are monitored by RT-qPCR analysis and associate with DNA hydroxymethylation signature by DNA immunoprecipitation and correlation analyses. CONCLUSION Global changes of DNA hydroxymethylation in hearts of HFD-fed mice are associated with upregulation of the dioxygenase Tet3 and decreased content of α-ketoglutarate. A relation between Tet genes and markers of cardiac hypertrophic response is observed and, if further validated, it will provide insights concerning epigenetics and obesity-related cardiac complications.
Collapse
Affiliation(s)
- Fabio Ciccarone
- Department of Biology, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Serena Castelli
- Department of Biology, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Laura Ioannilli
- Department of Biology, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome "Tor Vergata", 00133, Rome, Italy.,IRCCS San Raffaele 'La Pisana', Rome, Italy
| |
Collapse
|
36
|
Dias S, Adam S, Van Wyk N, Rheeder P, Louw J, Pheiffer C. Global DNA methylation profiling in peripheral blood cells of South African women with gestational diabetes mellitus. Biomarkers 2018; 24:225-231. [PMID: 30369264 DOI: 10.1080/1354750x.2018.1539770] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background/Objective: Recently, several studies have reported that DNA methylation changes in tissue are reflected in blood, sparking interest in the potential use of global DNA methylation as a biomarker for gestational diabetes mellitus (GDM). This study investigated whether global DNA methylation is associated with GDM in South African women. Methods: Global DNA methylation was quantified in peripheral blood cells of women with (n = 63) or without (n = 138) GDM using the MDQ1 Imprint® DNA Quantification Kit. Results: Global DNA methylation levels were not different between women with or without GDM and were not associated with fasting glucose or insulin concentrations. However, levels were 18% (p = 0.012) higher in obese compared to non-obese pregnant women and inversely correlated with serum adiponectin concentrations (p = 0.005). Discussion: Contrary to our hypothesis, global DNA methylation was not associated with GDM in our population. These preliminary findings suggest that despite being a robust marker of overall genomic methylation that offers opportunities as a biomarker, global DNA methylation profiling may not offer the resolution required to detect methylation differences in the peripheral blood cells of women with GDM. Moreover, global DNA methylation in peripheral blood cells may not reflect changes in placental tissue. Further studies in a larger sample are required to explore the candidacy of a more targeted approach using gene-specific methylation as a biomarker for GDM in our population.
Collapse
Affiliation(s)
- Stephanie Dias
- a South African Medical Research Council , Biomedical Research and Innovation Platform (BRIP) , Tygerberg , South Africa.,b Department of Obstetrics and Gynecology , University of Pretoria , Pretoria , South Africa
| | - Sumaiya Adam
- b Department of Obstetrics and Gynecology , University of Pretoria , Pretoria , South Africa
| | - Nastasja Van Wyk
- a South African Medical Research Council , Biomedical Research and Innovation Platform (BRIP) , Tygerberg , South Africa
| | - Paul Rheeder
- c Department of Internal Medicine, Faculty of Health Sciences , University of Pretoria , Pretoria , South Africa
| | - Johan Louw
- a South African Medical Research Council , Biomedical Research and Innovation Platform (BRIP) , Tygerberg , South Africa.,d Department of Biochemistry and Microbiology , University of Zululand , Kwa-Dlangezwa , South Africa
| | - Carmen Pheiffer
- a South African Medical Research Council , Biomedical Research and Innovation Platform (BRIP) , Tygerberg , South Africa.,e Division of Medical Physiology, Faculty of Health Sciences , Stellenbosch University , Tygerberg , South Africa
| |
Collapse
|
37
|
Ornoy A, Koren G, Yanai J. Is post exposure prevention of teratogenic damage possible: Studies on diabetes, valproic acid, alcohol and anti folates in pregnancy: Animal studies with reflection to human. Reprod Toxicol 2018; 80:92-104. [DOI: 10.1016/j.reprotox.2018.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/06/2018] [Accepted: 05/25/2018] [Indexed: 12/20/2022]
|
38
|
Şerban RC, Scridon A. Data Linking Diabetes Mellitus and Atrial Fibrillation-How Strong Is the Evidence? From Epidemiology and Pathophysiology to Therapeutic Implications. Can J Cardiol 2018; 34:1492-1502. [PMID: 30404752 DOI: 10.1016/j.cjca.2018.08.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 01/01/2023] Open
Abstract
According to estimates, around 5% of the world population has hazel eyes. And there are about as many people with diabetes mellitus (DM). Red hair occurs naturally in up to 2% of the human population. And about as many people are estimated to have atrial fibrillation (AF). If a hazel eyed person with red hair does not surprise us, should a diabetic patient with AF? Accumulating epidemiologic data suggest, however, that the DM-AF association may be more than a simple coincidence. But, how strong is this evidence? Experimental studies bring evidence for a DM-induced atrial proarrhythmic remodelling. But how relevant are these data for the clinical setting? In this review, we aim to provide a critical analysis of the existing clinical and experimental, epidemiologic, and mechanistic data that bridge DM and AF, we emphasize a number of questions that remain to be answered, and we identify hotspots for future research. The therapeutic implications of the DM-AF coexistence are also discussed, with a focus on rhythm control and on conventional and DM-specific upstream therapies for AF management.
Collapse
Affiliation(s)
- Răzvan C Şerban
- Physiology Department, University of Medicine and Pharmacy of Târgu Mureş, Târgu Mureş, Romania; Laboratory of Cardiac Catheterization, Angiography and Electrophysiology, Emergency Institute for Cardiovascular Diseases and Transplantation, Târgu Mureş, Romania
| | - Alina Scridon
- Physiology Department, University of Medicine and Pharmacy of Târgu Mureş, Târgu Mureş, Romania.
| |
Collapse
|
39
|
Willmer T, Johnson R, Louw J, Pheiffer C. Blood-Based DNA Methylation Biomarkers for Type 2 Diabetes: Potential for Clinical Applications. Front Endocrinol (Lausanne) 2018; 9:744. [PMID: 30564199 PMCID: PMC6288427 DOI: 10.3389/fendo.2018.00744] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/23/2018] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes (T2D) is a leading cause of death and disability worldwide. It is a chronic metabolic disorder that develops due to an interplay of genetic, lifestyle, and environmental factors. The biological onset of the disease occurs long before clinical symptoms develop, thus the search for early diagnostic and prognostic biomarkers, which could facilitate intervention strategies to prevent or delay disease progression, has increased considerably in recent years. Epigenetic modifications represent important links between genetic, environmental and lifestyle cues and increasing evidence implicate altered epigenetic marks such as DNA methylation, the most characterized and widely studied epigenetic mechanism, in the pathogenesis of T2D. This review provides an update of the current status of DNA methylation as a biomarker for T2D. Four databases, Scopus, Pubmed, Cochrane Central, and Google Scholar were searched for studies investigating DNA methylation in blood. Thirty-seven studies were identified, and are summarized with respect to population characteristics, biological source, and method of DNA methylation quantification (global, candidate gene or genome-wide). We highlight that differential methylation of the TCF7L2, KCNQ1, ABCG1, TXNIP, PHOSPHO1, SREBF1, SLC30A8, and FTO genes in blood are reproducibly associated with T2D in different population groups. These genes should be prioritized and replicated in longitudinal studies across more populations in future studies. Finally, we discuss the limitations faced by DNA methylation studies, which include including interpatient variability, cellular heterogeneity, and lack of accounting for study confounders. These limitations and challenges must be overcome before the implementation of blood-based DNA methylation biomarkers into a clinical setting. We emphasize the need for longitudinal prospective studies to support the robustness of the current findings of this review.
Collapse
Affiliation(s)
- Tarryn Willmer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- *Correspondence: Tarryn Willmer
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
40
|
Zhao S, Jia T, Tang Y, Zhang X, Mao H, Tian X, Li R, Ma L, Chen G. Reduced mRNA and Protein Expression Levels of Tet Methylcytosine Dioxygenase 3 in Endothelial Progenitor Cells of Patients of Type 2 Diabetes With Peripheral Artery Disease. Front Immunol 2018; 9:2859. [PMID: 30574144 PMCID: PMC6291445 DOI: 10.3389/fimmu.2018.02859] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/20/2018] [Indexed: 02/05/2023] Open
Abstract
Endothelial progenitor cells (EPCs) with immunological properties repair microvasculature to prevent the complications in patients with diabetes. Epigenetic changes such as DNA methylation alter the functions of cells. Tet methylcytosine dioxygenases (TETs) are enzymes responsible for the demethylation of cytosine on genomic DNA in cells. We hypothesized that EPCs of diabetic patients with peripheral artery disease (D-PAD) might have altered expression levels of TETs. Subjects who were non-diabetic (ND, n = 22), with diabetes only (D, n = 29) and with D-PAD (n = 22) were recruited for the collection of EPCs, which were isolated and subjected to analysis. The mRNA and protein expression levels of TET1, TET2, and TET3 were determined using real-time PCR and immunoblot, respectively. The TET1 mRNA expression level in ND group was lower than that in the D and D-PAD groups. The TET3 mRNA level in the ND group was higher than that in the D group, which was higher than that in the D-PAD group. The TET1 protein level in the D-PAD group, but not the D group, was higher than that in the ND group. The TET2 protein level in the D-PAD group, but not the D group, was lower than that in the ND group. The TET3 protein level in the ND group was higher than that in the D group, which was higher than that in the D-PAD group, which is the lowest among the three groups. The changes of TETs protein levels were due to the alterations of their transcripts. These probably lead to epigenetic changes, which may be responsible for the reductions of EPCs numbers and functions in patients with the D-PAD. The expression pattern of TET3 mRNA and TET3 protein in EPCs may be a biomarker of angiopathy in diabetic patients.
Collapse
Affiliation(s)
- Shi Zhao
- Department of Endocrinology, Wuhan Central Hospital, Wuhan, China
- *Correspondence: Shi Zhao
| | - Ting Jia
- Department of Endocrinology, Wuhan Central Hospital, Wuhan, China
| | - Yang Tang
- School of Social Sciences, Nanyang Technology University, Singapore, Singapore
| | | | - Hong Mao
- Department of Endocrinology, Wuhan Central Hospital, Wuhan, China
| | - Xiaojia Tian
- School of Social Sciences, Nanyang Technology University, Singapore, Singapore
| | - Rui Li
- School of Social Sciences, Nanyang Technology University, Singapore, Singapore
| | - Lu Ma
- School of Social Sciences, Nanyang Technology University, Singapore, Singapore
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee, Knoxville, TN, United States
- Guoxun Chen
| |
Collapse
|