1
|
Chen Y, Qian F, Chen Y. Integrative Analyses of Biomarkers and Pathways in Oxidative Stress-Related Genes for Gestational Diabetes Mellitus. Am J Reprod Immunol 2025; 93:e70052. [PMID: 39876591 DOI: 10.1111/aji.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 05/17/2024] [Accepted: 01/19/2025] [Indexed: 01/30/2025] Open
Abstract
PROBLEM Oxidative stress (OS) plays a key role in the pathogenesis of gestational diabetes mellitus (GDM), but it was not well understood. We aimed to investigate the biomarkers and underlying mechanisms of OS-related genes in GDM. METHOD OF STUDY The GSE103552 and GSE70493 datasets of GDM were acquired from the Gene Expression Omnibus (GEO) database. Then, oxidative stress-related differentially expressed genes (OSDEGs) were screened between GDM and normal samples from these two datasets. Further analyses were conducted by gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene set enrichment analysis (GSEA) for these OSDEGs. Subsequently, protein-protein interaction (PPI) network analyses of these OSDEGs were carried out to screen the hub genes. Eventually, we used single-sample Gene-set enrichment analysis (ssGSEA) to compare the immune cell infiltration between GDM and normal samples. RESULTS We identified 26 OSDEGs. Enrichment analysis suggested that the OSDEGs enriched in OS and diabetes-related pathways. GSEA revealed that these OSDEGs enriched in sensory perception of taste and negative regulation of notch4 signaling pathways. Moreover, PPI analysis showed that 15 OSDEGs were the hub gene in GDM. A total of 14 hub genes were highly expressed in GDM and might be used as diagnosis biomarkers. Moreover, many potential agents might target 10 hub genes for GDM treatment. In addition, immune infiltrate analyses revealed that expression of 14 hub genes was positively correlated to immune infiltrates in GDM. CONCLUSION OSDEGs are significant in GDM and may provide potential diagnostic biomarkers and treatment targets for GDM.
Collapse
Affiliation(s)
- Yunyan Chen
- Department of gynecology and obstetrics, Deqing Hospital of Traditional Chinese Medicine, Deqing County, Zhejiang, China
| | - Fuchu Qian
- Department of Precision Medicine, Affiliated Central Hospital of Huzhou University, Huzhou Central Hospital, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Huzhou, Zhejiang, China
| | - Yingying Chen
- Department of gynecology and obstetrics, Huzhou Maternity & Child Health Care Hospital, Huzhou, Zhejiang, China
| |
Collapse
|
2
|
Zhao X, Liu J, Jin C, Pan K, Du Y, Zuo Z, Yu X. S100A8 regulates postoperative responses following tooth extraction in rats. Odontology 2025:10.1007/s10266-025-01056-x. [PMID: 39878930 DOI: 10.1007/s10266-025-01056-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
The reduction in alveolar ridge height and width after tooth extraction poses a substantial challenge for dental implant restoration. This study aimed to observe the roles of S100A8 in the inflammatory response and bone resorption following tooth extraction. Rat mandibular second molars were extracted. Western blotting, micro-computed tomography, tartrate-resistant acid phosphatase staining, immunohistochemistry, scanning electron microscopy (SEM), and immunofluorescence were applied to observe inflammatory responses and bone resorption after rat mandibular second molar extraction. S100A8 was overexpressed in RAW 246.7 cells, and transfection efficiency was confirmed using western blotting and immunofluorescence. Receptor Activator for Nuclear Factor-κB Ligand (RANKL)-induced osteoclastogenesis of RAW 246.7 cells and a lipopolysaccharide-stimulated environment were chosen to evaluate the roles and related mechanisms of S100A8. An increase in S100A8 expression was observed 2 weeks after molar extraction compared to normal gingival tissues. Subsequently, S100 expression decreased between the second and third weeks, coinciding with the progression of inflammatory response following tooth extraction. Positive S100A8 expression was detected in the infiltrating cells and osteoclasts. S100A8 overexpression in RAW 246.7 cells promoted tumor necrosis factor-α expression and osteoclast formation by activating nuclear factor (NF)-κB p65 signaling. In summary, S100A8 was involved in inflammatory responses and bone resorption following tooth extraction by activating NF-κB p65 signaling. Interventions targeted to decrease S100A8 levels may have therapeutic implications for minimizing post-extraction bone loss.
Collapse
Affiliation(s)
- Xinyu Zhao
- School of Stomatology, Jinan Hospital, Jinan, 250000, Shandong, China
- Central Laboratory, Jinan Key Laboratory of Oral Tissue Regeneration, Shandong Provincial Key Medical and Health Laboratory of Oral Diseases and Tissue Regeneration, Jinan Stomatological Hospital, Jinan, 250001, Shandong, China
| | - Jian Liu
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China
- Central Laboratory, Jinan Key Laboratory of Oral Tissue Regeneration, Shandong Provincial Key Medical and Health Laboratory of Oral Diseases and Tissue Regeneration, Jinan Stomatological Hospital, Jinan, 250001, Shandong, China
| | - Chaoran Jin
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China
- Central Laboratory, Jinan Key Laboratory of Oral Tissue Regeneration, Shandong Provincial Key Medical and Health Laboratory of Oral Diseases and Tissue Regeneration, Jinan Stomatological Hospital, Jinan, 250001, Shandong, China
| | - Kexu Pan
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China
- Central Laboratory, Jinan Key Laboratory of Oral Tissue Regeneration, Shandong Provincial Key Medical and Health Laboratory of Oral Diseases and Tissue Regeneration, Jinan Stomatological Hospital, Jinan, 250001, Shandong, China
| | - Yi Du
- Central Laboratory, Jinan Key Laboratory of Oral Tissue Regeneration, Shandong Provincial Key Medical and Health Laboratory of Oral Diseases and Tissue Regeneration, Jinan Stomatological Hospital, Jinan, 250001, Shandong, China
| | - Zhibin Zuo
- Department of Periodontology, Central Laboratory, Jinan Stomatological Hospital, Jinan Key Laboratory of Oral Tissue Regeneration, Shandong Provincial Key Medical and Health Laboratory of Oral Diseases and Tissue Regeneration, Jinan, 250001, Shandong, China.
| | - Xijiao Yu
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China.
- Central Laboratory, Jinan Key Laboratory of Oral Tissue Regeneration, Shandong Provincial Key Medical and Health Laboratory of Oral Diseases and Tissue Regeneration, Jinan Stomatological Hospital, Jinan, 250001, Shandong, China.
| |
Collapse
|
3
|
Yin X, Yang F, Lin J, Hu Q, Tang X, Yin L, Yan X, Zhuang H, Ma G, Shen L, Zhao D. iTRAQ proteomics analysis of placental tissue with gestational diabetes mellitus. Acta Diabetol 2024; 61:1589-1601. [PMID: 38976025 DOI: 10.1007/s00592-024-02321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND Gestational diabetes mellitus is an endocrine and metabolic disorder that appears for the first time during pregnancy and causes varying degrees of short- and/or long-term effects on the mother and child. The etiology of the disease is currently unknown and isobaric tags for relative and absolute quantitation proteomics approach, the present study attempted to identify potential proteins in placental tissues that may be involved in the pathogenesis of GDM and adverse foetal pregnancy outcomes. METHODS Pregnant women with GDM hospitalised were selected as the experimental group, and pregnant women with normal glucose metabolism as the control group. The iTRAQ protein quantification technology was used to screen the differentially expressed proteins between the GDM group and the normal control group, and the differentially expressed proteins were analysed by GO, KEGG, PPI, etc., and the key proteins were subsequently verified by western blot. RESULTS Based on the proteomics of iTRAQ, we experimented with three different samples of placental tissues from GDM and normal pregnant women, and the total number of identified proteins were 5906, 5959, and 6017, respectively, which were similar in the three different samples, indicating that the results were reliable. Through the Wayne diagram, we found that the total number of proteins coexisting in the three groups was 4475, and 91 differential proteins that could meet the quantification criteria were strictly screened, of which 32 proteins were up-regulated and 59 proteins were down-regulated. By GO enrichment analysis, these differential proteins are widely distributed in extracellular membrane-bounded organelle, mainly in extracellular exosome, followed by intracellular vesicle, extracellular organelle. It not only undertakes protein binding, protein complex binding, macromolecular complex binding, but also involves molecular biological functions such as neutrophil degranulation, multicellular organismal process, developmental process, cellular component organization, secretion, regulated exocytosis. Through the analysis of the KEGG signaling pathway, it is found that these differential proteins are mainly involved in HIF-1 signaling pathway, Glycolysis/Gluconeogenesis, Central carbon metabolism in cancer, AMPK signaling pathway, Proteoglycans in cancer, Protein processing in endoplasmic reticulum, Thyroid cancer, Alcoholism, Glucagon signaling pathway. DISCUSSION This preliminary study helps us to understand the changes in the placental proteome of GDM patients, and provides new insights into the pathophysiology of GDM.
Collapse
Affiliation(s)
- Xiaoping Yin
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Fei Yang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jin Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Qin Hu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Li Yin
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xi Yan
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Guanwei Ma
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China.
| | - Danqing Zhao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
4
|
He L, Wang W, Wang X, Zhang D, Zhang Y, Zhao Y, Zhao L, Li X, Cheng J, Xu D, Ma Z, Yang X, Huang Z, Cai Y, Liu X, Chen Z, Weng X, Lin C, Gong P, Zhang X. Identification of the FGB gene polymorphism and analysis of its association with fat deposition traits in Hu sheep. Anim Biotechnol 2024; 35:2344207. [PMID: 38669223 DOI: 10.1080/10495398.2024.2344207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
As a crucial economic trait, fat deposition is directly related to carcass quality and feed efficiency in sheep. The purpose of this study was to investigate the polymorphisms of the FGB gene related to fat deposition and detect the expression features of the FGB gene in different adipose tissues of sheep by using Sanger sequencing, MassARRAY® SNP technique, and quantitative real-time PCR (qRT-PCR). Results showed that in the intron region of the FGB gene, a SNP g. 3378953 A > T has been identified, and significant association was found between perirenal fat weight, perirenal fat relative weight, mesenteric fat weight, and mesenteric fat relative weight (P < 0.05). Moreover, qRT-PCR analysis showed that FGB was expressed in all three adipose tissues, and FGB gene expression level in the AA genotype was significantly lower than that in the AT or TT genotypes (P < 0.05). Therefore, the FGB gene can be used as a candidate gene to reduce fat deposition in Hu sheep breeding, and the selection of the AA genotype in Hu sheep in production practice is more conducive to improving production efficiency.
Collapse
Affiliation(s)
- Lijuan He
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Weimin Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaojuan Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Deyin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Yukun Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Yuan Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Liming Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaolong Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Jiangbo Cheng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Zongwu Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiaobin Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Zhiqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Youxin Cai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiaoqiang Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Zhanyu Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiuxiu Weng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Changchun Lin
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Science, Urumqi, China
| | - Ping Gong
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Science, Urumqi, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
5
|
Wang G, Huang K, Tian Q, Guo Y, Liu C, Li Z, Yu Z, Zhang Z, Li M. S100A9 aggravates early brain injury after subarachnoid hemorrhage via inducing neuroinflammation and inflammasome activation. iScience 2024; 27:109165. [PMID: 38420589 PMCID: PMC10901081 DOI: 10.1016/j.isci.2024.109165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/03/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Subarachnoid hemorrhage (SAH) is a stroke subtype with high mortality, and its severity is closely related to the short-term prognosis of SAH patients. S100 calcium-binding protein A9 (S100A9) has been shown to be associated with some neurological diseases. In this study, the concentration of S100A9 in clinical cerebrospinal fluid samples was detected by enzyme-linked immunosorbent assay (ELISA), and the relationship between S100A9 and the prognosis of patients was explored. In addition, WT mice and S100A9 knockout mice were used to establish an in vivo SAH model. Neurological scores, brain water content, and histopathological staining were performed after a specified time. A co-culture model of BV2 and HT22 cells was treated with heme chloride to establish an in vitro SAH model. Our study confirmed that the expression of S100A9 protein in the CSF of SAH patients is increased, and it is related to the short-term prognosis of SAH patients. S100A9 protein is highly expressed in microglia in the central nervous system. S100A9 gene knockout significantly improved neurological function scores and reduced neuronal apoptosis. S100A9 protein can activate TLR4 receptor, promote nuclear transcription of NF-κB, increase the activation of inflammatory body, and ultimately aggravate nerve injury.
Collapse
Affiliation(s)
- Guijun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Kesheng Huang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yujia Guo
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Chengli Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Zhijie Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Zhui Yu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Zhan Zhang
- Department of Rehabilitation Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| |
Collapse
|
6
|
Timofeev YS, Kiselev AR, Dzhioeva ON, Drapkina OM. Heat Shock Proteins (HSPs) and Cardiovascular Complications of Obesity: Searching for Potential Biomarkers. Curr Issues Mol Biol 2023; 45:9378-9389. [PMID: 38132434 PMCID: PMC10742314 DOI: 10.3390/cimb45120588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Heat shock proteins (HSPs), a family of proteins that support cellular proteostasis and perform a protective function under various stress conditions, such as high temperature, intoxication, inflammation, or tissue hypoxia, constitute a promising group of possible biochemical markers for obesity and cardiovascular diseases. HSP27 is involved in essential cellular processes occurring in conditions of obesity and its cardiometabolic complications; it has protective properties, and its secretion may indicate a cellular response to stress. HSP40 plays a controversial role in the pathogenesis of obesity. HSP60 is involved in various pathological processes of the cardiovascular, immune, excretory, and nervous systems and is associated with obesity and concomitant diseases. The hypersecretion of HSP60 is associated with poor prognosis; hence, this protein may become a target for further research on obesity and its cardiovascular complications. According to most studies, intracellular HSP70 is an obesity-promoting factor, whereas extracellular HSP70 exhibited inconsistent dynamics across different patient groups and diagnoses. HSPs are involved in the pathogenesis of cardiovascular pathology. However, in the context of cardiovascular and metabolic pathology, these proteins require further investigation.
Collapse
Affiliation(s)
| | - Anton R. Kiselev
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | | | - Oxana M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| |
Collapse
|
7
|
Roverso M, Dogra R, Visentin S, Pettenuzzo S, Cappellin L, Pastore P, Bogialli S. Mass spectrometry-based "omics" technologies for the study of gestational diabetes and the discovery of new biomarkers. MASS SPECTROMETRY REVIEWS 2023; 42:1424-1461. [PMID: 35474466 DOI: 10.1002/mas.21777] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/15/2021] [Accepted: 04/04/2022] [Indexed: 06/07/2023]
Abstract
Gestational diabetes (GDM) is one of the most common complications occurring during pregnancy. Diagnosis is performed by oral glucose tolerance test, but harmonized testing methods and thresholds are still lacking worldwide. Short-term and long-term effects include obesity, type 2 diabetes, and increased risk of cardiovascular disease. The identification and validation of sensitidve, selective, and robust biomarkers for early diagnosis during the first trimester of pregnancy are required, as well as for the prediction of possible adverse outcomes after birth. Mass spectrometry (MS)-based omics technologies are nowadays the method of choice to characterize various pathologies at a molecular level. Proteomics and metabolomics of GDM were widely investigated in the last 10 years, and various proteins and metabolites were proposed as possible biomarkers. Metallomics of GDM was also reported, but studies are limited in number. The present review focuses on the description of the different analytical methods and MS-based instrumental platforms applied to GDM-related omics studies. Preparation procedures for various biological specimens are described and results are briefly summarized. Generally, only preliminary findings are reported by current studies and further efforts are required to determine definitive GDM biomarkers.
Collapse
Affiliation(s)
- Marco Roverso
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Raghav Dogra
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Silvia Visentin
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Silvia Pettenuzzo
- Department of Chemical Sciences, University of Padova, Padova, Italy
- Center Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, Italy
| | - Luca Cappellin
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Paolo Pastore
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padova, Padova, Italy
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), National Research Council-CNR, Padova, Italy
| |
Collapse
|
8
|
Fang X, Lian H, Liu S, Dong J, Hua X, Li W, Liao C, Yuan X. A positive feedback cycle between the alarmin S100A8/A9 and NLRP3 inflammasome-GSDMD signalling reinforces the innate immune response in Candida albicans keratitis. Inflamm Res 2023:10.1007/s00011-023-01757-5. [PMID: 37335321 DOI: 10.1007/s00011-023-01757-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023] Open
Abstract
OBJECTIVE Fungal keratitis is a severe sight-threatening ocular infection, without effective treatment strategies available now. Calprotectin S100A8/A9 has recently attracted great attention as a critical alarmin modulating the innate immune response against microbial challenges. However, the unique role of S100A8/A9 in fungal keratitis is poorly understood. METHODS Experimental fungal keratitis was established in wild-type and gene knockout (TLR4-/- and GSDMD-/-) mice by infecting mouse corneas with Candida albicans. The degree of mouse cornea injuries was evaluated by clinical scoring. To interrogate the molecular mechanism in vitro, macrophage RAW264.7 cell line was challenged with Candida albicans or recombinant S100A8/A9 protein. Label-free quantitative proteomics, quantitative real-time PCR, Western blotting, and immunohistochemistry were conducted in this research. RESULTS Herein, we characterized the proteome of mouse corneas infected with Candida albicans and found that S100A8/A9 was robustly expressed at the early stage of the disease. S100A8/A9 significantly enhanced disease progression by promoting NLRP3 inflammasome activation and Caspase-1 maturation, accompanied by increased accumulation of macrophages in infected corneas. In response to Candida albicans infection, toll-like receptor 4 (TLR4) sensed extracellular S100A8/A9 and acted as a bridge between S100A8/A9 and NLRP3 inflammasome activation in mouse corneas. Furthermore, the deletion of TLR4 resulted in noticeable improvement in fungal keratitis. Remarkably, NLRP3/GSDMD-mediated macrophage pyroptosis in turn facilitates S100A8/A9 secretion during Candida albicans keratitis, thus forming a positive feedback cycle that amplifies the proinflammatory response in corneas. CONCLUSIONS The present study is the first to reveal the critical roles of the alarmin S100A8/A9 in the immunopathology of Candida albicans keratitis, highlighting a promising approach for therapeutic intervention in the future.
Collapse
Affiliation(s)
- Xiaolong Fang
- School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Huifang Lian
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- Department of Ophthalmology, Baoding First Central Hospital, Baoding, Hebei, China
| | - Shuang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingcun Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xia Hua
- Aier Eye Hospital, Tianjin, China
| | - Wenguang Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Xiaoyong Yuan
- School of Medicine, Nankai University, Tianjin, China.
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin, China.
| |
Collapse
|
9
|
Moyce Gruber BL, Dolinsky VW. The Role of Adiponectin during Pregnancy and Gestational Diabetes. Life (Basel) 2023; 13:301. [PMID: 36836658 PMCID: PMC9958871 DOI: 10.3390/life13020301] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Pregnancy involves a range of metabolic adaptations to supply adequate energy for fetal growth and development. Gestational diabetes (GDM) is defined as hyperglycemia with first onset during pregnancy. GDM is a recognized risk factor for both pregnancy complications and long-term maternal and offspring risk of cardiometabolic disease development. While pregnancy changes maternal metabolism, GDM can be viewed as a maladaptation by maternal systems to pregnancy, which may include mechanisms such as insufficient insulin secretion, dysregulated hepatic glucose output, mitochondrial dysfunction and lipotoxicity. Adiponectin is an adipose-tissue-derived adipokine that circulates in the body and regulates a diverse range of physiologic mechanisms including energy metabolism and insulin sensitivity. In pregnant women, circulating adiponectin levels decrease correspondingly with insulin sensitivity, and adiponectin levels are low in GDM. In this review, we summarize the current state of knowledge about metabolic adaptations to pregnancy and the role of adiponectin in these processes, with a focus on GDM. Recent studies from rodent model systems have clarified that adiponectin deficiency during pregnancy contributes to GDM development. The upregulation of adiponectin alleviates hyperglycemia in pregnant mice, although much remains to be understood for adiponectin to be utilized clinically for GDM.
Collapse
Affiliation(s)
- Brittany L. Moyce Gruber
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Research Theme of the Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
| | - Vernon W. Dolinsky
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Research Theme of the Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
| |
Collapse
|
10
|
Abstract
Mass spectrometry-based protein methodologies have revolutionized the field of analytical biochemistry and enable the identification of hundreds to thousands of proteins in biological fluids, cell lines, and tissue. This methodology requires the initial separation of a protein constellation, and this has been successfully achieved using gel-based techniques, particularly that of fluorescence two-dimensional difference gel electrophoresis (2D-DIGE). However, given the complexity of the proteome, fractionation techniques may be required to optimize the detection of low-abundance proteins, which are often underrepresented but which may represent important players in health and disease. Such subcellular fractionation protocols typically utilize density-gradient centrifugation and have enabled the enrichment of crude microsomes, the cytosol, the plasmalemma, the nuclei, and the mitochondria. In this chapter, we describe the experimental steps involved in the enrichment of crude microsomes from the skeletal muscle using differential centrifugation and subsequent verification of enrichment by gel electrophoresis and immunoblotting, prior to comparative 2D-DIGE analysis.
Collapse
|
11
|
Dowling P, Bazou D. Identification of Ubiquitination-Associated Proteins Using 2D-DIGE. Methods Mol Biol 2023; 2596:83-96. [PMID: 36378432 DOI: 10.1007/978-1-0716-2831-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ubiquitination is a post-translational modification, in which a small regulatory protein (~8.6 kDa) is tagged as a single moiety or as a chain to target proteins. Ubiquitination is the most versatile cellular regulatory mechanism, essential to the physiological and pathophysiological cellular events that regulate protein turnover, gene transcription, cell cycle progression, DNA repair, apoptosis, viral budding, and receptor-mediated endocytosis. Changes and abnormalities within the ubiquitination process can result in a plethora of diseases, including various cancers. The ubiquitination process is tightly controlled in a stepwise manner by four enzymes: E1 ubiquitin-activating enzymes, E2 ubiquitin-conjugating enzymes, E3 ubiquitin-ligating enzymes, and deubiquitinating proteases. Using fluorescence two-dimensional difference gel electrophoresis (2D-DIGE) to detect and quantitate cellular proteins associated with the ubiquitination process will facilitate the evaluation of this post-translational modification associated with the pathophysiological phenotype.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Despina Bazou
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland.
| |
Collapse
|
12
|
Strieder-Barboza, Flesher CG, Geletka LM, Eichler T, Akinleye O, Ky A, Ehlers AP, Lumeng CN, O’Rourke RW. Lumican modulates adipocyte function in obesity-associated type 2 diabetes. Adipocyte 2022; 11:665-675. [PMID: 36457256 PMCID: PMC9728465 DOI: 10.1080/21623945.2022.2154112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Obesity-associated type 2 diabetes (DM) leads to adipose tissue dysfunction. Lumican is a proteoglycan implicated in obesity, insulin resistance (IR), and adipocyte dysfunction. Using human visceral adipose tissue (VAT) from subjects with and without DM, we studied lumican effects on adipocyte function. Lumican was increased in VAT and adipocytes in DM. Lumican knockdown in adipocytes decreased lipolysis and improved adipogenesis and insulin sensitivity in VAT adipocytes in DM, while treatment with human recombinant lumican increased lipolysis and impaired insulin-sensitivity in an ERK-dependent manner. We demonstrate that lumican impairs adipocyte metabolism, partially via ERK signalling, and is a potential target for developing adipose tissue-targeted therapeutics in DM.
Collapse
Affiliation(s)
- Strieder-Barboza
- Department of Surgery , University of Michigan Medical School, MI, USA
- Department of Veterinary Sciences, Texas Tech University, Lubbock , TX, USA
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, USA
| | - Carmen G. Flesher
- Department of Surgery , University of Michigan Medical School, MI, USA
| | - Lynn M. Geletka
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Tad Eichler
- Department of Surgery , University of Michigan Medical School, MI, USA
| | - Olukemi Akinleye
- Department of Surgery , University of Michigan Medical School, MI, USA
| | - Alexander Ky
- Department of Surgery , University of Michigan Medical School, MI, USA
| | - Anne P. Ehlers
- Department of Surgery , University of Michigan Medical School, MI, USA
- Department of Surgery, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Carey N. Lumeng
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI ,USA
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robert W. O’Rourke
- Department of Surgery , University of Michigan Medical School, MI, USA
- Department of Surgery, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Dodson M, Shakya A, Anandhan A, Chen J, Garcia JG, Zhang DD. NRF2 and Diabetes: The Good, the Bad, and the Complex. Diabetes 2022; 71:2463-2476. [PMID: 36409792 PMCID: PMC9750950 DOI: 10.2337/db22-0623] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
Abstract
Despite decades of scientific effort, diabetes continues to represent an incredibly complex and difficult disease to treat. This is due in large part to the multifactorial nature of disease onset and progression and the multiple organ systems affected. An increasing body of scientific evidence indicates that a key mediator of diabetes progression is NRF2, a critical transcription factor that regulates redox, protein, and metabolic homeostasis. Importantly, while experimental studies have confirmed the critical nature of proper NRF2 function in preventing the onset of diabetic outcomes, we have only just begun to scratch the surface of understanding the mechanisms by which NRF2 modulates diabetes progression, particularly across different causative contexts. One reason for this is the contradictory nature of the current literature, which can often be accredited to model discrepancies, as well as whether NRF2 is activated in an acute or chronic manner. Furthermore, despite therapeutic promise, there are no current NRF2 activators in clinical trials for the treatment of patients with diabetes. In this review, we briefly introduce the transcriptional programs regulated by NRF2 as well as how NRF2 itself is regulated. We also review the current literature regarding NRF2 modulation of diabetic phenotypes across the different diabetes subtypes, including a brief discussion of contradictory results, as well as what is needed to progress the NRF2 diabetes field forward.
Collapse
Affiliation(s)
- Matthew Dodson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ
| | - Aryatara Shakya
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ
| | - Annadurai Anandhan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ
| | - Jinjing Chen
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ
| | - Joe G.N. Garcia
- Department of Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, AZ
| | - Donna D. Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ
- Arizona Cancer Center, University of Arizona, Tucson, AZ
| |
Collapse
|
14
|
Jurewicz E, Filipek A. Ca2+- binding proteins of the S100 family in preeclampsia. Placenta 2022; 127:43-51. [DOI: 10.1016/j.placenta.2022.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/28/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
|
15
|
Chatterjee B, Neelaveni K, Kenchey H, Thakur SS. An insight into major signaling pathways and protein-protein interaction networks involved in the pathogenesis of gestational diabetes mellitus. Proteomics 2022; 22:e2100200. [PMID: 35279034 DOI: 10.1002/pmic.202100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 11/11/2022]
Abstract
Gestational diabetes mellitus (GDM) is associated with the increase of glucose in the blood rather than being absorbed by the cells. A better understanding of the signaling pathways is necessary to understand the pathophysiology of GDM. This study provides details about a series of signaling pathways and protein-protein interactions involved in the pathogenesis of GDM and their evaluations in GDM development. Protein-protein interactions were found between proteins of several signaling pathways that suggest interlink between these signaling pathways. Protein-protein interactions were generated with high confidence interaction scores based on textmining, co-occurrence, coexpression, neighborhood, gene fusion, experiments and databases. The dysregulation of signaling pathways may also contribute to the increased risk of complications associated with GDM in the mother and child. Further, studies on signaling pathways involved in the pathogenesis of GDM would help in the development of an effective intervention to prevent GDM along with the identification of key targets for effective therapies in the future. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bhaswati Chatterjee
- National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | | | - Himaja Kenchey
- Institute of Diabetes, Endocrinology and Adiposity Clinics, Hyderabad, India
| | - Suman S Thakur
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| |
Collapse
|
16
|
Dasgupta S, Banerjee U, Mukhopadhyay P, Maity P, Saha S, Das B. Clinicopathological study and immunohistochemical analysis of expression of annexin A5 and apelin in human placentae of gestational diabetes mellitus. Diabetes Metab Syndr 2022; 16:102435. [PMID: 35245857 DOI: 10.1016/j.dsx.2022.102435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIMS Gestational diabetes mellitus (GDM) is one of the commonest medical complications of pregnancy. Annexin A5 (ANXA5) is a protein, found in apical surfaces of syncytiotrophoblasts, which prevents fetal and placental vascular thrombosis in GDM. Apelin is a bioactive peptide which has been linked to GDM. The aim of the present study was to correlate macroscopic as well as microscopic changes and immunohistochemical expression of ANXA5 and apelin in placentae of GDM with maternal and neonatal clinical features and also to compare the results with those in matched controls. METHODS This prospective observational study was undertaken for a period of one year from April 2020 to March 2021. It comprised of 42 patients of GDM. Gross features, microscopic features and intensity and grade of expression of ANXA5 and Apelin were analyzed in placentae of GDM. RESULTS Morphological changes detected in GDM placentae included increased immature villi (16 cases, 38%), increased syncytial knots (36, 86%), perivillous fibrin deposition (20, 48%), fibrosis of villous stroma (20, 48%), presence of nucleated red blood cells (12, 28.5%) and hypervascularity (34, 81%). The extent of histopathological changes noted in GDM placentae was significantly higher than that in matched controls. GDM placentae showed significantly reduced expression of ANXA5 and Apelin in terms of grade and intensity when compared with matched controls. Reduced expression (mild intensity) of ANXA5 was noted in 22 GDM cases (52.3%) whereas apelin expression was of weak intensity in 26 (61.9%) cases. Among GDM patients, statistically significant association was noted between ANXA5 intensity and neonatal resuscitation, apelin grade and preterm birth as well as low birth weight and apelin intensity and requirement of treatment in sick neonatal care unit. CONCLUSION The placental expression of the proteins, ANXA5 and Apelin, is altered in GDM though their exact pathogenetic mechanisms are yet to be understood. They can be targets for development of prophylactic and therapeutic agents in future.
Collapse
Affiliation(s)
- Senjuti Dasgupta
- Department of Pathology, Medical College, Kolkata, Kolkata, West Bengal, India.
| | - Uma Banerjee
- Department of Pathology, Medical College, Kolkata, Kolkata, West Bengal, India.
| | - Partha Mukhopadhyay
- Department of Obstetrics and Gynecology, Medical College, Kolkata, Kolkata, West Bengal, India.
| | - Priyanka Maity
- Department of Pathology, Medical College, Kolkata, Kolkata, West Bengal, India.
| | - Saswata Saha
- Department of Pathology, Medical College, Kolkata, Kolkata, West Bengal, India.
| | - Biplab Das
- Department of Pathology, Medical College, Kolkata, Kolkata, West Bengal, India.
| |
Collapse
|
17
|
Adipose tissue function in healthy pregnancy, gestational diabetes mellitus and pre-eclampsia. Eur J Clin Nutr 2021; 75:1745-1756. [PMID: 34131300 PMCID: PMC8636251 DOI: 10.1038/s41430-021-00948-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 01/12/2023]
Abstract
Gestational diabetes mellitus (GDM) is a common disorder of pregnancy with short- and long-term consequences for mother and baby. Pre-eclampsia is of major concern to obstetricians due to its sudden onset and increased morbidity and mortality for mother and baby. The incidence of these conditions continues to increase due to widespread maternal obesity. Maternal obesity is a risk factor for GDM and pre-eclampsia, yet our understanding of the role of adipose tissue and adipocyte biology in their aetiology is very limited. In this article, available data on adipose tissue and adipocyte function in healthy and obese pregnancy and how these are altered in GDM and pre-eclampsia are reviewed. Using our understanding of adipose tissue and adipocyte biology in non-pregnant populations, a role for underlying adipocyte dysfunction in the pathological pathways of these conditions is discussed.
Collapse
|
18
|
Mavreli D, Evangelinakis N, Papantoniou N, Kolialexi A. Quantitative Comparative Proteomics Reveals Candidate Biomarkers for the Early Prediction of Gestational Diabetes Mellitus: A Preliminary Study. In Vivo 2020; 34:517-525. [PMID: 32111749 DOI: 10.21873/invivo.11803] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 12/23/2022]
Abstract
AIM To identify differentially expressed proteins (DEPs) in 1st trimester maternal plasma between pregnant women at risk for gestational diabetes mellitus (GDM) and uncomplicated controls. MATERIALS AND METHODS First-trimester plasma from five women who developed GDM and five from non-diabetic ones were analyzed using isobaric tag for relative and absolute quantitation - labeled proteomics. Enzyme-linked immunosorbent assay was further applied in an independent cohort of 25 GDM cases and 25 controls for verification. RESULTS Prenylcysteine oxidase 1 (PCYOX1), beta-ala-his dipeptidase (CNDP1), extracellular matrix protein 1 (ECM1), basement membrane-specific heparan sulfate proteoglycan core protein (HSPG2), thrombospondin-4 (TSP-4) demonstrated significant differences in expression between the two groups (p<0.05). DEPs are mainly associated with complement and coagulation cascades. CONCLUSION The reported plasma proteomic changes represent potential biomarkers for the early identification of women at risk for GDM. Future studies using larger and more diverse cohorts are necessary to assess the clinical utility of these findings.
Collapse
Affiliation(s)
- Danai Mavreli
- 3 Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Department of Medical Genetics, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Nikolas Evangelinakis
- Department of Medical Genetics, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Nikolas Papantoniou
- 3 Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Aggeliki Kolialexi
- 3 Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens Medical School, Athens, Greece .,Department of Medical Genetics, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
19
|
Li Y, Ma Q, Li P, Wang J, Wang M, Fan Y, Wang T, Wang C, Wang T, Zhao B. Proteomics reveals different pathological processes of adipose tissue, liver, and skeletal muscle under insulin resistance. J Cell Physiol 2020; 235:6441-6461. [PMID: 32115712 DOI: 10.1002/jcp.29658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/12/2020] [Indexed: 12/17/2022]
Abstract
Type 2 diabetes mellitus is the most common type of diabetes, and insulin resistance (IR) is its core pathological mechanism. Proteomics is an ingenious and promising Omics technology that can comprehensively describe the global protein expression profiling of body or specific tissue, and is widely applied to the study of molecular mechanisms of diseases. In this paper, we focused on insulin target organs: adipose tissue, liver, and skeletal muscle, and analyzed the different pathological processes of IR in these three tissues based on proteomics research. By literature studies, we proposed that the main pathological processes of IR among target organs were diverse, which showed unique characteristics and focuses. We further summarized the differential proteins in target organs which were verified to be related to IR, and discussed the proteins that may play key roles in the emphasized pathological processes, aiming at discovering potentially specific differential proteins of IR, and providing new ideas for pathological mechanism research of IR.
Collapse
Affiliation(s)
- Yaqi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Quantao Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Pengfei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jingkang Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Min Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Tieshan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chunguo Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
20
|
Liao WC, Huang BS, Yu YH, Yang HH, Chen PR, Huang CC, Huang HY, Wu MS, Chow LP. Galectin-3 and S100A9: Novel Diabetogenic Factors Mediating Pancreatic Cancer-Associated Diabetes. Diabetes Care 2019; 42:1752-1759. [PMID: 31262951 DOI: 10.2337/dc19-0217] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/12/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Pancreatic cancer-associated diabetes (PCDM) is a paraneoplastic phenomenon accounting for 1% of new-onset diabetes. We aimed to identify the mediators of PCDM and evaluate their usefulness in distinguishing PCDM from type 2 diabetes. RESEARCH DESIGN AND METHODS Secreted proteins of MIA PaCa-2 cells were identified by proteomics, and those with ≥10-fold overexpression in transcriptome analysis were assessed by bioinformatics and glucose uptake assay to identify candidate factors. Expression of factors was compared between tumors with and without PCDM by immunohistochemistry. Serum levels were measured in a training set including PC with and without PCDM, type 2 diabetes, pancreatitis, other pancreatic/peripancreatic tumors, and control subjects (n = 50 each). Cutoff values for differentiation between PCDM and type 2 diabetes from the training set were validated in a test set (n = 41 each). RESULTS Galectin-3 and S100A9 were overexpressed in tumors with PCDM and dose-dependently suppressed insulin-stimulated glucose uptake in C2C12 myotubes. In the training set, serum galectin-3 and S100A9 levels were exclusively increased in patients with PCDM and distinguished PCDM from type 2 diabetes (area under the curve [AUC] galectin-3: 0.73 [95% CI 0.64-0.83]; S100A9: 0.79 [95% CI 0.70-0.87]). Similar results were observed in the test set (AUC galectin-3: 0.83 [95% CI 0.74-0.92]; S100A9: 0.77 [95% CI 0.67-0.87]), with sensitivity and specificity 72.1% and 86.1%, respectively, for galectin-3 and 69.8% and 58.1% for S100A9 in differentiating between PCDM and type 2 diabetes. CONCLUSIONS Galectin-3 and S100A9 are overexpressed in PCDM tumors and mediate insulin resistance. Galectin-3 and S100A9 distinguish PCDM from type 2 diabetes in subjects with new-onset diabetes.
Collapse
Affiliation(s)
- Wei-Chih Liao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.,Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Bo-Shih Huang
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Han Yu
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Hua Yang
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Peng-Ruei Chen
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Chieh Huang
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yi Huang
- Department of Pathology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Shiang Wu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan .,Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Lu-Ping Chow
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
21
|
Verma R, Verma P, Budhwar S, Singh K. S100 proteins: An emerging cynosure in pregnancy & adverse reproductive outcome. Indian J Med Res 2019; 148:S100-S106. [PMID: 30964086 PMCID: PMC6469379 DOI: 10.4103/ijmr.ijmr_494_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
S100 proteins are calcium (Ca2+)-binding proteins and these have an important function in progression, manifestation and therapeutic aspects of various inflammatory, metabolic and neurodegenerative disorders. Based on their involvement in intracellular or extracellular regulatory effects, S100 proteins are classified into three subgroups: one subgroup is specialized in exerting only intracellular effects, other performs both intracellular and extracellular functions and the third subgroup members only display extracellular regulatory effects. S100 proteins are expressed particularly in vertebrates and have cell-specific expression. Functionally, S100 proteins act through their surface receptors and regulate cell functions in autocrine or paracrine mode. Receptor for advanced glycation end products (RAGEs) and toll-like receptor 4 are the main surface receptors. S100 proteins participate in the regulation of cellular differentiation, proliferation, apoptosis and inflammation along with Ca2+ homeostasis, energy metabolism and cellular migration, and perform the respective functions through their interaction with transcription factors, nucleic acids, enzymes, receptors, cytoskeleton system, etc. Currently, their role in adverse pregnancy outcomes and compromised reproductive health is being explored. These proteins are present in amniotic fluid, endometrium tissue and foetal brain; therefore, it is quite likely that alterations in the expression levels of S100 family members will be affecting the particular function they are involved in and ultimately affecting the pregnancy in adverse manner. The current review discusses about an association of S100 proteins in pregnancy disorders such as endometriosis, intrauterine growth retardation and miscarriage.
Collapse
Affiliation(s)
- Rachna Verma
- Department of Molecular & Human Genetics, Banaras Hindu University, Varanasi, India
| | - Priyanka Verma
- Department of Molecular & Human Genetics, Banaras Hindu University, Varanasi, India
| | - Snehil Budhwar
- Department of Molecular & Human Genetics, Banaras Hindu University, Varanasi, India
| | - Kiran Singh
- Department of Molecular & Human Genetics, Banaras Hindu University, Varanasi, India
| |
Collapse
|
22
|
The association of plasma peroxiredoxin 3 with insulin in pregnant women. Biochem Biophys Res Commun 2019; 508:805-810. [DOI: 10.1016/j.bbrc.2018.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/04/2018] [Indexed: 01/08/2023]
|
23
|
Nobis S, Achamrah N, Goichon A, L'Huillier C, Morin A, Guérin C, Chan P, do Rego JL, do Rego JC, Vaudry D, Déchelotte P, Belmonte L, Coëffier M. Colonic Mucosal Proteome Signature Reveals Reduced Energy Metabolism and Protein Synthesis but Activated Autophagy during Anorexia-Induced Malnutrition in Mice. Proteomics 2018; 18:e1700395. [PMID: 29938906 DOI: 10.1002/pmic.201700395] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 06/12/2018] [Indexed: 12/18/2022]
Abstract
Anorexia nervosa is an eating disorder often associated with intestinal disorders. To explore the underlying mechanisms of these disorders, the colonic proteome was evaluated during activity-based anorexia. Female C57Bl/6 mice were randomized into three groups: Control, Limited Food Access (LFA) and Activity-Based Anorexia (ABA). LFA and ABA mice had a progressive limited access to food but only ABA mice had access to an activity wheel. On colonic mucosal protein extracts, a 2D PAGE-based comparative proteomic analysis was then performed and differentially expressed proteins were identified by LC-ESI-MS/MS. Twenty-seven nonredundant proteins that were differentially expressed between Control, LFA, and ABA groups were identified. ABA mice exhibited alteration of several mitochondrial proteins involved in energy metabolism such as dihydrolipoyl dehydrogenase and 3-mercaptopyruvate sulfurtransferase. In addition, a downregulation of mammalian target of rapamycin (mTOR) pathway was observed leading, on the one hand, to the inhibition of protein synthesis, evaluated by puromycin incorporation and mediated by the increased phosphorylation of eukaryotic elongation factor 2, and on the other hand, to the activation of autophagy, assessed by the increase of the marker of autophagy, form LC3-phosphatidylethanolamine conjugate/Cytosolic form of Microtubule-associated protein 1A/1B light chain 3 (LC3II/LC3I) ratio. Colonic mucosal proteome is altered during ABA suggesting a downregulation of energy metabolism. A decrease of protein synthesis and an activation of autophagy were also observed mediated by mTOR pathway.
Collapse
Affiliation(s)
- Séverine Nobis
- INSERM Unit 1073, UNIROUEN, Normandie University, 76000, Rouen, France.,Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France
| | - Najate Achamrah
- INSERM Unit 1073, UNIROUEN, Normandie University, 76000, Rouen, France.,Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France.,Nutrition Department, Rouen University Hospital, 76000, Rouen, France
| | - Alexis Goichon
- INSERM Unit 1073, UNIROUEN, Normandie University, 76000, Rouen, France.,Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France
| | - Clément L'Huillier
- INSERM Unit 1073, UNIROUEN, Normandie University, 76000, Rouen, France.,Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France
| | - Aline Morin
- INSERM Unit 1073, UNIROUEN, Normandie University, 76000, Rouen, France.,Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France
| | - Charlène Guérin
- INSERM Unit 1073, UNIROUEN, Normandie University, 76000, Rouen, France.,Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France
| | - Philippe Chan
- Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France.,Platform in proteomics PISSARO, UNIROUEN, Normandie University, 76000, Rouen, France
| | - Jean Luc do Rego
- Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France.,Animal Behaviour Platform SCAC, UNIROUEN, Normandie University, 76000, Rouen, France
| | - Jean Claude do Rego
- Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France.,Animal Behaviour Platform SCAC, UNIROUEN, Normandie University, 76000, Rouen, France
| | - David Vaudry
- Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France.,Platform in proteomics PISSARO, UNIROUEN, Normandie University, 76000, Rouen, France.,INSERM Unit 1239, UNIROUEN, Normandie University, 76000, Rouen, France
| | - Pierre Déchelotte
- INSERM Unit 1073, UNIROUEN, Normandie University, 76000, Rouen, France.,Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France.,Nutrition Department, Rouen University Hospital, 76000, Rouen, France
| | - Liliana Belmonte
- INSERM Unit 1073, UNIROUEN, Normandie University, 76000, Rouen, France.,Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France.,Nutrition Department, Rouen University Hospital, 76000, Rouen, France
| | - Moïse Coëffier
- INSERM Unit 1073, UNIROUEN, Normandie University, 76000, Rouen, France.,Institute for Research and Innovation in Biomedicine, UNIROUEN, Normandie University, 76000, Rouen, France.,Nutrition Department, Rouen University Hospital, 76000, Rouen, France
| |
Collapse
|
24
|
Wang S, Song R, Wang Z, Jing Z, Wang S, Ma J. S100A8/A9 in Inflammation. Front Immunol 2018; 9:1298. [PMID: 29942307 PMCID: PMC6004386 DOI: 10.3389/fimmu.2018.01298] [Citation(s) in RCA: 862] [Impact Index Per Article: 123.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/24/2018] [Indexed: 12/11/2022] Open
Abstract
S100A8 and S100A9 (also known as MRP8 and MRP14, respectively) are Ca2+ binding proteins belonging to the S100 family. They often exist in the form of heterodimer, while homodimer exists very little because of the stability. S100A8/A9 is constitutively expressed in neutrophils and monocytes as a Ca2+ sensor, participating in cytoskeleton rearrangement and arachidonic acid metabolism. During inflammation, S100A8/A9 is released actively and exerts a critical role in modulating the inflammatory response by stimulating leukocyte recruitment and inducing cytokine secretion. S100A8/A9 serves as a candidate biomarker for diagnosis and follow-up as well as a predictive indicator of therapeutic responses to inflammation-associated diseases. As blockade of S100A8/A9 activity using small-molecule inhibitors or antibodies improves pathological conditions in murine models, the heterodimer has potential as a therapeutic target. In this review, we provide a comprehensive and detailed overview of the distribution and biological functions of S100A8/A9 and highlight its application as a diagnostic and therapeutic target in inflammation-associated diseases.
Collapse
Affiliation(s)
- Siwen Wang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, China
| | - Rui Song
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, China
| | - Ziyi Wang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, China
| | - Zhaocheng Jing
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, China
| | - Shaoxiong Wang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, China
| | - Jian Ma
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, China
| |
Collapse
|
25
|
Cao Y, Sun Y, Zou S, Duan B, Sun M, Xu X. Yeast β-Glucan Suppresses the Chronic Inflammation and Improves the Microenvironment in Adipose Tissues of ob/ob Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:621-629. [PMID: 29285925 DOI: 10.1021/acs.jafc.7b04921] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Inflammation in visceral adipose tissues (VATs) contributes to the pathology of diabetes. This study focused on the inflammatory regulation in VATs by a yeast β-1,3-glucan (BYG) orally administered to ob/ob mice. BYG decreased pro-inflammatory modulators of TNF-α, IL-6, IL-1β, CCL2, and SAA3, and increased anti-inflammatory factors of Azgp1 (2.53 ± 0.02-fold change) at protein and/or mRNA levels (p < 0.05). Remarkably, BYG decreased the degree of adipose tissue macrophages (ATMs) infiltration to 82.5 ± 8.3%, especially the newly recruited ATMs. Interestingly, BYG increased the protective Th2 cell regulator GATA3 (7.72 ± 0.04-fold change) and decreased immunosuppressors IL-10 and IL-1ra, suggesting that BYG elicited inflammation inhibition via stimulating immune responses. Additionally, BYG increased the gut microbiota proportion of Akkermansia from 0.07% to 4.85% and improved the microenvironment of VATs through decreasing fibrosis and angiogenesis. These findings suggest that BYG has anti-inflammatory effect in diabetic mice, which can be used as a food component and/or therapeutic agent for diabetes.
Collapse
Affiliation(s)
- Yan Cao
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Ying Sun
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Siwei Zou
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Bingchao Duan
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Mengying Sun
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| |
Collapse
|
26
|
Feist PE, Loughran EA, Stack MS, Hummon AB. Quantitative proteomic analysis of murine white adipose tissue for peritoneal cancer metastasis. Anal Bioanal Chem 2017; 410:1583-1594. [PMID: 29282499 DOI: 10.1007/s00216-017-0813-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/30/2017] [Accepted: 12/06/2017] [Indexed: 12/15/2022]
Abstract
Cancer metastasis risk increases in older individuals, but the mechanisms for this risk increase are unclear. Many peritoneal cancers, including ovarian cancer, preferentially metastasize to peritoneal fat depots. However, there is a dearth of studies exploring aged peritoneal adipose tissue in the context of cancer. Because adipose tissue produces signals which influence several diseases including cancer, proteomics of adipose tissue in aged and young mice may provide insight into metastatic mechanisms. We analyzed mesenteric, omental, and uterine adipose tissue groups from the peritoneal cavities of young and aged C57BL/6J mouse cohorts with a low-fraction SDS-PAGE gelLC-MS/MS method. We identified 2308 protein groups and quantified 2167 groups, among which several protein groups showed twofold or greater abundance differences between the aged and young cohorts. Cancer-related gene products previously identified as significant in another age-related study were found altered in this study. Several gene products known to suppress proliferation and cellular invasion were found downregulated in the aged cohort, including R-Ras, Arid1a, and heat shock protein β1. In addition, multiple protein groups were identified within single cohorts, including the proteins Cd11a, Stat3, and Ptk2b. These data suggest that adipose tissue is a strong candidate for analysis to identify possible contributors to cancer metastasis in older subjects. The results of this study, the first of its kind using uterine adipose tissue, contribute to the understanding of the role of adipose tissue in age-related alteration of oncogenic pathways, which may help elucidate the mechanisms of increased metastatic tumor burden in the aged. Graphical abstract We analyzed mesenteric, omental, and uterine adipose tissue groups from the peritoneal cavities of young and aged C57BL/6J mouse cohorts with a low-fraction SDS-PAGE gelLC-MS/MS method. These fat depots are preferential sites for many peritoneal cancers. The results of this study, the first of its kind using uterine adipose tissue, contribute to the understanding of the role of adipose tissue in age-related alteration of oncogenic pathways, which may help elucidate the mechanisms of increased metastatic tumor burden in the aged.
Collapse
Affiliation(s)
- Peter E Feist
- Integrated Biomedical Sciences Program, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, 251 140B McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Elizabeth A Loughran
- Integrated Biomedical Sciences Program, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, 251 140B McCourtney Hall, Notre Dame, IN, 46556, USA
| | - M Sharon Stack
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, 251 140B McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, 251 140B McCourtney Hall, Notre Dame, IN, 46556, USA.
| |
Collapse
|
27
|
Alfadda AA, Masood A, Al-Naami MY, Chaurand P, Benabdelkamel H. A Proteomics Based Approach Reveals Differential Regulation of Visceral Adipose Tissue Proteins between Metabolically Healthy and Unhealthy Obese Patients. Mol Cells 2017; 40:685-695. [PMID: 28927258 PMCID: PMC5638776 DOI: 10.14348/molcells.2017.0073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 12/16/2022] Open
Abstract
Obesity and the metabolic disorders that constitute metabolic syndrome are a primary cause of morbidity and mortality in the world. Nonetheless, the changes in the proteins and the underlying molecular pathways involved in the relevant pathogenesis are poorly understood. In this study a proteomic analysis of the visceral adipose tissue isolated from metabolically healthy and unhealthy obese patients was used to identify presence of altered pathway(s) leading to metabolic dysfunction. Samples were obtained from 18 obese patients undergoing bariatric surgery and were subdivided into two groups based on the presence or absence of comorbidities as defined by the International Diabetes Federation. Two dimensional difference in-gel electrophoresis coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was carried out. A total of 28 proteins were identified with a statistically significant difference in abundance and a 1.5-fold change (ANOVA, p ≤ 0.05) between the groups. 11 proteins showed increased abundance while 17 proteins were decreased in the metabolically unhealthy obese compared to the healthy obese. The differentially expressed proteins belonged broadly to three functional categories: (i) protein and lipid metabolism (ii) cytoskeleton and (iii) regulation of other metabolic processes. Network analysis by Ingenuity pathway analysis identified the NFκB, IRK/MAPK and PKC as the nodes with the highest connections within the connectivity map. The top network pathway identified in our protein data set related to cellular movement, hematological system development and function, and immune cell trafficking. The VAT proteome between the two groups differed substantially between the groups which could potentially be the reason for metabolic dysfunction.
Collapse
Affiliation(s)
- Assim A. Alfadda
- Obesity Research Center, College of Medicine, King Saud University,
Saudi Arabia
- Department of Medicine, College of Medicine, King Saud University,
Saudi Arabia
| | - Afshan Masood
- Obesity Research Center, College of Medicine, King Saud University,
Saudi Arabia
| | | | - Pierre Chaurand
- Department of Chemistry, Université de Montréal, Montreal,
Canada
| | - Hicham Benabdelkamel
- Obesity Research Center, College of Medicine, King Saud University,
Saudi Arabia
| |
Collapse
|
28
|
Qian Y, Sun H, Xiao H, Ma M, Xiao X, Qu Q. Microarray analysis of differentially expressed genes and their functions in omental visceral adipose tissues of pregnant women with vs. without gestational diabetes mellitus. Biomed Rep 2017; 6:503-512. [PMID: 28529732 PMCID: PMC5431681 DOI: 10.3892/br.2017.878] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/07/2016] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence has shown that insulin resistance in omental visceral adipose tissue (OVAT) is a characteristic of gestational diabetes mellitus (GDM). The present study aimed to identify differentially expressed genes (DEGs) and their associated functions and pathways involved in the pathogenesis of GDM by comparing the expression profiles of OVATs obtained from pregnant Chinese women with and without GDM during caesarian section. A total of 935 DEGs were identified, including 450 downregulated and 485 upregulated genes. In the gene ontology category cellular components, the DEGs were predominantly associated with functions of the extracellular region, while receptor binding was predominant in the molecular function category and biological process terms included antigen processing and presentation, extracellular matrix organization, positive regulation of cell-substrate adhesion, response to nutrients and response to dietary excess. Functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed and a functional interaction network was constructed. Functions of downregulated genes included antigen processing and presentation as well as cell adhesion molecules, while those of upregulated genes included transforming growth factor (TGF)-β-signaling, focal adhesion, phosphoinositide-3 kinase-Akt-signaling, P53 signaling, extracellular matrix-receptor interaction and regulation of actin cytoskeleton pathway. The five main pathways associated with GDM were antigen processing and presentation, cell adhesion molecules, Type 1 diabetes mellitus, natural killer cell-mediated cytotoxicity and TGF-β signaling. These pathways were included in the KEGG pathway categories of ‘signaling molecules and interaction’, ‘immune system’ and ‘inflammatory response’, suggesting that these processes are involved in GDM. The results of the present study enhanced the present understanding of the mechanisms associated with insulin resistance in OVATs of GDM.
Collapse
Affiliation(s)
- Yuan Qian
- Pre-natal Diagnosis Laboratory, Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Kunming Medical College, Kunming, Yunnan 650032, P.R. China
| | - Hao Sun
- Department of Human Genetics, Genetics Laboratory, The Institute of Medical Biology, Chinese Academy of Medical Science, Kunming, Yunnan 650032, P.R. China
| | - Hongli Xiao
- Pre-natal Diagnosis Laboratory, Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Kunming Medical College, Kunming, Yunnan 650032, P.R. China
| | - Meirun Ma
- Pre-natal Diagnosis Laboratory, Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Kunming Medical College, Kunming, Yunnan 650032, P.R. China
| | - Xue Xiao
- Pre-natal Diagnosis Laboratory, Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Kunming Medical College, Kunming, Yunnan 650032, P.R. China
| | - Qinzai Qu
- Pre-natal Diagnosis Laboratory, Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Kunming Medical College, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
29
|
Medeiros de Oliveira Silva R, Bonvino Stafuzza N, de Oliveira Fragomeni B, Miguel Ferreira de Camargo G, Matos Ceacero T, Noely dos Santos Gonçalves Cyrillo J, Baldi F, Augusti Boligon A, Zerlotti Mercadante ME, Lino Lourenco D, Misztal I, Galvão de Albuquerque L. Genome-Wide Association Study for Carcass Traits in an Experimental Nelore Cattle Population. PLoS One 2017; 12:e0169860. [PMID: 28118362 PMCID: PMC5261778 DOI: 10.1371/journal.pone.0169860] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 12/22/2016] [Indexed: 12/22/2022] Open
Abstract
The purpose of this study was to identify genomic regions associated with carcass traits in an experimental Nelore cattle population. The studied data set contained 2,306 ultrasound records for longissimus muscle area (LMA), 1,832 for backfat thickness (BF), and 1,830 for rump fat thickness (RF). A high-density SNP panel (BovineHD BeadChip assay 700k, Illumina Inc., San Diego, CA) was used for genotyping. After genomic data quality control, 437,197 SNPs from 761 animals were available, of which 721 had phenotypes for LMA, 669 for BF, and 718 for RF. The SNP solutions were estimated using a single-step genomic BLUP approach (ssGWAS), which calculated the variance for windows of 50 consecutive SNPs and the regions that accounted for more than 0.5% of the additive genetic variance were used to search for candidate genes. The results indicated that 12, 18, and 15 different windows were associated to LMA, BF, and RF, respectively. Confirming the polygenic nature of the studied traits, 43, 65, and 53 genes were found in those associated windows, respectively for LMA, BF, and RF. Among the candidate genes, some of them, which already had their functions associated with the expression of energy metabolism, were found associated with fat deposition in this study. In addition, ALKBH3 and HSD17B12 genes, which are related in fibroblast death and metabolism of steroids, were found associated with LMA. The results presented here should help to better understand the genetic and physiologic mechanism regulating the muscle tissue deposition and subcutaneous fat cover expression of Zebu animals. The identification of candidate genes should contribute for Zebu breeding programs in order to consider carcass traits as selection criteria in their genetic evaluation.
Collapse
Affiliation(s)
- Rafael Medeiros de Oliveira Silva
- School of Agricultural and Veterinarian Sciences, FCAV/ UNESP–Sao Paulo State University, Department of Animal Science, Jaboticabal-SP, Brazil
| | - Nedenia Bonvino Stafuzza
- School of Agricultural and Veterinarian Sciences, FCAV/ UNESP–Sao Paulo State University, Department of Animal Science, Jaboticabal-SP, Brazil
| | | | - Gregório Miguel Ferreira de Camargo
- School of Agricultural and Veterinarian Sciences, FCAV/ UNESP–Sao Paulo State University, Department of Animal Science, Jaboticabal-SP, Brazil
| | - Thaís Matos Ceacero
- APTA Center of Beef Cattle, Animal Science Institute, Sertaozinho, SP, Brazil
| | | | - Fernando Baldi
- School of Agricultural and Veterinarian Sciences, FCAV/ UNESP–Sao Paulo State University, Department of Animal Science, Jaboticabal-SP, Brazil
| | | | | | - Daniela Lino Lourenco
- University of Georgia, Department of Animal and Dairy Science, Athens, GA, United States of America
| | - Ignacy Misztal
- University of Georgia, Department of Animal and Dairy Science, Athens, GA, United States of America
| | - Lucia Galvão de Albuquerque
- School of Agricultural and Veterinarian Sciences, FCAV/ UNESP–Sao Paulo State University, Department of Animal Science, Jaboticabal-SP, Brazil
- * E-mail:
| |
Collapse
|
30
|
Cugno G, Parreira JR, Ferlizza E, Hernández-Castellano LE, Carneiro M, Renaut J, Castro N, Arguello A, Capote J, Campos AMO, Almeida AM. The Goat (Capra hircus) Mammary Gland Mitochondrial Proteome: A Study on the Effect of Weight Loss Using Blue-Native PAGE and Two-Dimensional Gel Electrophoresis. PLoS One 2016; 11:e0151599. [PMID: 27031334 PMCID: PMC4816393 DOI: 10.1371/journal.pone.0151599] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/01/2016] [Indexed: 12/23/2022] Open
Abstract
Seasonal weight loss (SWL) is the most important limitation to animal production in the Tropical and Mediterranean regions, conditioning producer’s incomes and the nutritional status of rural communities. It is of importance to produce strategies to oppose adverse effects of SWL. Breeds that have evolved in harsh climates have acquired tolerance to SWL through selection. Most of the factors determining such ability are related to changes in biochemical pathways as affected by SWL. In this study, a gel based proteomics strategy (BN: Blue-Native Page and 2DE: Two-dimensional gel electrophoresis) was used to characterize the mitochondrial proteome of the secretory tissue of the goat mammary gland. In addition, we have conducted an investigation of the effects of weight loss in two goat breeds with different levels of adaptation to nutritional stress: Majorera (tolerant) and Palmera (susceptible). The study used Majorera and Palmera dairy goats, divided in 4 sets, 2 for each breed: underfed group fed on wheat straw (restricted diet, so their body weight would be 15–20% reduced by the end of experiment), and a control group fed with an energy-balanced diet. At the end of the experimental period (22 days), mammary gland biopsies were obtained for all experimental groups. The proteomic analysis of the mitochondria enabled the resolution of a total of 277 proteins, and 148 (53%) were identified by MALDI-TOF/TOF mass spectrometry. Some of the proteins were identified as subunits of the glutamate dehydrogenase complex and the respiratory complexes I, II, IV, V from mitochondria, as well as numerous other proteins with functions in: metabolism, development, localization, cellular organization and biogenesis, biological regulation, response to stimulus, among others, that were mapped in both BN and 2DE gels. The comparative proteomics analysis enabled the identification of several proteins: NADH-ubiquinone oxidoreductase 75 kDa subunit and lamin B1 mitochondrial (up-regulated in the Palmera breed), Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2 (up-regulated in the Majorera breed) and cytochrome b-c1 complex subunit 1, mitochondrial and Chain D, Bovine F1-C8 Sub-Complex Of Atp Synthase (down-regulated in the Majorera breed) as a consequence of weight loss.
Collapse
Affiliation(s)
- Graziano Cugno
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
- Animal Science Department, Universidad de Las Palmas de Gran Canaria, Arucas, Gran Canaria, Spain
| | - José R. Parreira
- IBET – Instituto de Biologia Experimental e Tecnologica, Oeiras, Portugal
- ITQB/UNL – Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Enea Ferlizza
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Lorenzo E. Hernández-Castellano
- Animal Science Department, Universidad de Las Palmas de Gran Canaria, Arucas, Gran Canaria, Spain
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Mariana Carneiro
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
| | - Jenny Renaut
- LIST – Luxemburg Institute of Science and Technology, Belvaux, Luxemburg
| | - Noemí Castro
- Animal Science Department, Universidad de Las Palmas de Gran Canaria, Arucas, Gran Canaria, Spain
| | - Anastasio Arguello
- Animal Science Department, Universidad de Las Palmas de Gran Canaria, Arucas, Gran Canaria, Spain
| | - Juan Capote
- Instituto Canario de Investigaciones Agrarias, Valle Guerra, Tenerife, Spain
| | - Alexandre M. O. Campos
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
| | - André M. Almeida
- IBET – Instituto de Biologia Experimental e Tecnologica, Oeiras, Portugal
- ITQB/UNL – Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- CIISA-Centro Interdisciplinar de Investigação em Sanidade Animal, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
31
|
Ma Y, Gao J, Yin J, Gu L, Liu X, Chen S, Huang Q, Lu H, Yang Y, Zhou H, Wang Y, Peng Y. Identification of a Novel Function of Adipocyte Plasma Membrane-Associated Protein (APMAP) in Gestational Diabetes Mellitus by Proteomic Analysis of Omental Adipose Tissue. J Proteome Res 2016; 15:628-37. [PMID: 26767403 DOI: 10.1021/acs.jproteome.5b01030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gestational diabetes mellitus (GDM) is considered as an early stage of type 2 diabetes mellitus. In this study, we compared demographic and clinical data between six GDM subjects and six normal glucose tolerance (NGT; healthy controls) subjects and found that homeostasis model of assessment for insulin resistance index (HOMA-IR) increased in GDM. Many previous studies demonstrated that omental adipose tissue dysfunction could induce insulin resistance. Thus, to investigate the cause of insulin resistance in GDM, we used label-free proteomics to identify differentially expressed proteins in omental adipose tissues from GDM and NGT subjects (data are available via ProteomeXchange with identifier PXD003095). A total of 3528 proteins were identified, including 66 significantly changed proteins. Adipocyte plasma membrane-associated protein (APMAP, a.k.a. C20orf3), one of the differentially expressed proteins, was down-regulated in GDM omental adipose tissues. Furthermore, mature 3T3-L1 adipocytes were used to simulate omental adipocytes. The inhibition of APMAP expression by RNAi impaired insulin signaling and activated NFκB signaling in these adipocytes. Our study revealed that the down-regulation of APMAP in omental adipose tissue may play an important role in insulin resistance in the pathophysiology of GDM.
Collapse
Affiliation(s)
| | - Jing Gao
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | | | | | - Xing Liu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | | | | | | | | | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | | | | |
Collapse
|
32
|
de Souza AP, Pedroso AP, Watanabe RLH, Dornellas APS, Boldarine VT, Laure HJ, do Nascimento CMO, Oyama LM, Rosa JC, Ribeiro EB. Gender-specific effects of intrauterine growth restriction on the adipose tissue of adult rats: a proteomic approach. Proteome Sci 2015; 13:32. [PMID: 26633942 PMCID: PMC4667418 DOI: 10.1186/s12953-015-0088-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/26/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Intrauterine growth restriction (IUGR) may program metabolic alterations affecting physiological functions and lead to diseases in later life. The adipose tissue is an important organ influencing energy homeostasis. The present study was aimed at exploring the consequences of IUGR on the retroperitoneal adipose tissue of adult male and female rats, using a proteomic approach. METHODS AND RESULTS Pregnant Wistar rats were fed with balanced chow, either ad libitum (control group) or restricted to 50 % of control intake (restricted group) during the whole gestation. The offspring were weaned to ad libitum chow and studied at 4 months of age. Retroperitoneal fat was analyzed by two-dimensional gel electrophoresis followed by mass spectrometry. Both male and female restricted groups had low body weight at birth and at weaning but normal body weight at adulthood. The restricted males had normal fat pads weight and serum glucose levels, with a trend to hyperinsulinemia. The restricted females had increased fat pads weight with normal glucose and insulin levels. The restricted males showed up-regulated levels of proteasome subunit α type 3, branched-chain-amino-acid aminotransferase, elongation 1- alpha 1, fatty acid synthase levels, cytosolic malate dehydrogenase and ATP synthase subunit alpha. These alterations point to increased proteolysis and lipogenesis rates and favoring of ATP generation. The restricted females showed down-regulated levels of L-lactate dehydrogenase perilipin-1, mitochondrial branched-chain alpha-keto acid dehydrogenase E1, and transketolase. These findings suggest impairment of glycemic control, stimulation of lipolysis and inhibition of proteolysis, pentose phosphate pathway and lipogenesis rates. In both genders, several proteins involved in oxidative stress and inflammation were affected, in a pattern compatible with impairment of these responses. CONCLUSIONS The proteomic analysis of adipose tissue showed that, although IUGR affected pathways of substrate and energy metabolism in both males and females, important gender differences were evident. While IUGR males displayed alterations pointing to a predisposition to later development of obesity, the alterations observed in IUGR females pointed to a metabolic status of established obesity, in agreement with their increased fat pads mass.
Collapse
Affiliation(s)
- Adriana Pereira de Souza
- Departamento de Fisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862 - 2 andar, Vila Clementino, São Paulo, SP 04023-062 Brazil
| | - Amanda Paula Pedroso
- Departamento de Fisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862 - 2 andar, Vila Clementino, São Paulo, SP 04023-062 Brazil
| | - Regina Lúcia Harumi Watanabe
- Departamento de Fisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862 - 2 andar, Vila Clementino, São Paulo, SP 04023-062 Brazil
| | - Ana Paula Segantine Dornellas
- Departamento de Fisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862 - 2 andar, Vila Clementino, São Paulo, SP 04023-062 Brazil
| | - Valter Tadeu Boldarine
- Departamento de Fisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862 - 2 andar, Vila Clementino, São Paulo, SP 04023-062 Brazil
| | - Helen Julie Laure
- Centro de Química de Proteínas - Hemocentro, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Claudia Maria Oller do Nascimento
- Departamento de Fisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862 - 2 andar, Vila Clementino, São Paulo, SP 04023-062 Brazil
| | - Lila Missae Oyama
- Departamento de Fisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862 - 2 andar, Vila Clementino, São Paulo, SP 04023-062 Brazil
| | - José Cesar Rosa
- Centro de Química de Proteínas - Hemocentro, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Eliane Beraldi Ribeiro
- Departamento de Fisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862 - 2 andar, Vila Clementino, São Paulo, SP 04023-062 Brazil
| |
Collapse
|
33
|
Zhao C, Wang F, Wang P, Ding H, Huang X, Shi Z. Early second-trimester plasma protein profiling using multiplexed isobaric tandem mass tag (TMT) labeling predicts gestational diabetes mellitus. Acta Diabetol 2015; 52:1103-12. [PMID: 26259496 DOI: 10.1007/s00592-015-0796-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 07/13/2015] [Indexed: 01/05/2023]
Abstract
AIMS Gestational diabetes mellitus (GDM) is associated with an increased risk of serious complications for mother and child during pregnancy. The main option for diagnosis of GDM is 75 g oral glucose tolerance test (OGTT) at 24-28 gestation weeks, when harms to both mother and child have already potentially occurred. The aim of this study was to investigate new biomarkers for earlier detection and assessment of GDM at early second trimester (16-18 gestation weeks). METHODS We systematically used multiplexed isobaric tandem mass tag labeling combined with liquid chromatography mass spectrometry (LC-MS/MS) to screen differentially expressed proteins in plasma collected at 16-18 gestational weeks between pregnant women with and without GDM outcome. RESULTS A total of 828 proteins were identified, of which 36 proteins implicated in immune response, inflammation, transport, platelet aggregation, catalyze and defense response were identified as differentially regulated proteins in GDM. To assess the validity of the results, four selected proteins including C-reactive protein, sex hormone-binding globulin, Ficolin 3 and pregnancy-specific beta-1-glycoprotein 4 were selected for subsequent Western blot analysis. CONCLUSIONS This is the first comprehensive study that integrates multiple state-of-the-art proteomic technologies to discover the earlier potential plasma biomarkers for GDM.
Collapse
Affiliation(s)
- Chun Zhao
- State Key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Fuqiang Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Ping Wang
- Liver Transplantation Center of the First Affiliated Hospital to Nanjing Medical University, Nanjing, 210029, China
| | - Hongjuan Ding
- State Key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Xiaoyan Huang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, China.
| | - Zhonghua Shi
- State Key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China.
| |
Collapse
|
34
|
Mi Y, Guo N, He T, Ji J, Li Z, Huang P. miR-410 enhanced hESC-derived pancreatic endoderm transplant to alleviate gestational diabetes mellitus. J Mol Endocrinol 2015; 55:219-29. [PMID: 26307561 DOI: 10.1530/jme-15-0100] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2015] [Indexed: 11/08/2022]
Abstract
Gestational diabetes mellitus (GDM) is a condition commonly encountered during mid to late pregnancy with pathologic manifestations including hyperglycemia, hyperinsulinemia, insulin resistance, and fetal mal-development. The deficit and dysfunction of insulin secreting β-cells are signature symptoms for GDM. Pancreatic progenitors derived from human embryonic stem cells (hESCs) were shown to be able to effectively treat diabetes in mice. In this study, we first identified that microRNA-410 (miR-410) directly targets lactate dehydrogenase A (LDHA), a gene selectively repressed in normal insulin secreting β-cells. hESCs that can be induced to express miR-410 hence keeping LDHA levels in check were then differentiated in vitro into pancreatic endoderm, followed by transplantation into db/+ mouse model of GDM. The transplant greatly improved glucose metabolism and reproductive outcome of the pregnant females suffering from GDM. Our findings describe for the first time the method of combining miRNA with hESCs, providing proof of concept by employing genetically modified stem cell therapy for treating GDM.
Collapse
Affiliation(s)
- Yang Mi
- Obstetrical DepartmentNorthwest Women's and Children's Hospital, 1616 Yanxiang Road, Xi'an, Shanxi Province 710061, ChinaDepartment of Obstetrics and GynecologyThe First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, 277 Yanta West Road, Xi'an, Shanxi Province 710061, China
| | - Na Guo
- Obstetrical DepartmentNorthwest Women's and Children's Hospital, 1616 Yanxiang Road, Xi'an, Shanxi Province 710061, ChinaDepartment of Obstetrics and GynecologyThe First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, 277 Yanta West Road, Xi'an, Shanxi Province 710061, China
| | - Tongqiang He
- Obstetrical DepartmentNorthwest Women's and Children's Hospital, 1616 Yanxiang Road, Xi'an, Shanxi Province 710061, ChinaDepartment of Obstetrics and GynecologyThe First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, 277 Yanta West Road, Xi'an, Shanxi Province 710061, China
| | - Jing Ji
- Obstetrical DepartmentNorthwest Women's and Children's Hospital, 1616 Yanxiang Road, Xi'an, Shanxi Province 710061, ChinaDepartment of Obstetrics and GynecologyThe First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, 277 Yanta West Road, Xi'an, Shanxi Province 710061, China
| | - Zhibin Li
- Obstetrical DepartmentNorthwest Women's and Children's Hospital, 1616 Yanxiang Road, Xi'an, Shanxi Province 710061, ChinaDepartment of Obstetrics and GynecologyThe First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, 277 Yanta West Road, Xi'an, Shanxi Province 710061, China
| | - Pu Huang
- Obstetrical DepartmentNorthwest Women's and Children's Hospital, 1616 Yanxiang Road, Xi'an, Shanxi Province 710061, ChinaDepartment of Obstetrics and GynecologyThe First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, 277 Yanta West Road, Xi'an, Shanxi Province 710061, China
| |
Collapse
|
35
|
Chapple SJ, Puszyk WM, Mann GE. Keap1-Nrf2 regulated redox signaling in utero: Priming of disease susceptibility in offspring. Free Radic Biol Med 2015; 88:212-220. [PMID: 26279476 DOI: 10.1016/j.freeradbiomed.2015.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/25/2015] [Accepted: 08/06/2015] [Indexed: 12/30/2022]
Abstract
Intrauterine exposure to gestational diabetes, pre-eclampsia or intrauterine growth restriction alters the redox status of the developing fetus. Such pregnancy-related diseases in most cases do not have a readily identifiable genetic cause, and epigenetic 'priming' mechanisms in utero may predispose both mother and child to later-life onset of cardiovascular and metabolic diseases. The concept of 'fetal programing' or 'developmental priming' and its association with an increased risk of disease in childhood or adulthood has been reviewed extensively. This review focuses on adaptive changes in the in utero redox environment during normal pregnancy and the consequences of alterations in redox control associated with pregnancies characterized by oxidative stress. We evaluate the evidence that the Keap1-Nrf2 pathway is important for protecting the fetus against adverse conditions in utero and may itself be subject to epigenetic priming, potentially contributing to an increased risk of vascular disease and insulin resistance in later life.
Collapse
Affiliation(s)
- Sarah J Chapple
- Cardiovascular Division, British Heart Foundation of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - William M Puszyk
- Cardiovascular Division, British Heart Foundation of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Giovanni E Mann
- Cardiovascular Division, British Heart Foundation of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
36
|
Singh A, Subramani E, Datta Ray C, Rapole S, Chaudhury K. Proteomic-driven biomarker discovery in gestational diabetes mellitus: a review. J Proteomics 2015. [PMID: 26216595 DOI: 10.1016/j.jprot.2015.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gestational diabetes mellitus (GDM) is defined as any degree of glucose intolerance with onset or first recognition during pregnancy and it affects 18% of pregnant women worldwide. GDM is considered a high-risk state which may lead to type II diabetes which is associated with an increase in a number of interrelated adverse perinatal outcomes. Given the fact that the progress of a successful pregnancy is dependent on the intricate communication between several biological molecules, identification of the proteomic profile perturbations in women with GDM is expected to help in understanding the disease pathogenesis and also discovery of clinical biomarker(s). In recent years, both gel-free and gel-based proteomics have been extensively investigated for improving maternal and child health. Although there are several reports integrating various aspects of proteomics in pregnancy related diseases such as preeclampsia, extensive Pubmed search shows no review so far on the application of proteomics in gestational diabetes. In this review, we focus on various high-throughput proteomic technologies for the identification of unique biosignatures and biomarkers responsible for the early prediction of GDM. Further, different analytical strategies and biological samples involved in proteomic analysis of this pregnancy-related disease are discussed.This article is part of a Special Issue entitled: Proteomics in India.
Collapse
Affiliation(s)
- Apoorva Singh
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Elavarasan Subramani
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Chaitali Datta Ray
- Department of Obstetrics & Gynecology, Institute of Post Graduate Medical Education & Research, Kolkata, West Bengal, India
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science, Ganesh khind, Pune, Maharashtra, India
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India.
| |
Collapse
|
37
|
Fang L, Kojima K, Zhou L, Crossman DK, Mobley JA, Grams J. Analysis of the Human Proteome in Subcutaneous and Visceral Fat Depots in Diabetic and Non-diabetic Patients with Morbid Obesity. ACTA ACUST UNITED AC 2015; 8:133-141. [PMID: 26472921 PMCID: PMC4603752 DOI: 10.4172/jpb.1000361] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
No longer regarded as simply a storage depot, fat is a dynamic organ acting locally and systemically to modulate energy homeostasis, glucose sensitivity, insulin resistance, and inflammatory pathways. Here, mass spectrometry was used to survey the proteome of patient matched subcutaneous fat and visceral fat in 20 diabetic vs 22 nondiabetic patients with morbid obesity. A similar number of proteins (~600) were identified in each tissue type. When stratified by diabetic status, 19 and 41 proteins were found to be differentially abundant in subcutaneous fat and omentum, respectively. These proteins represent pathways known to be involved in metabolism. Five of these proteins were differentially abundant in both fat depots: moesin, 78 kDa glucose-regulated protein, protein cordon-bleu, zinc finger protein 611, and cytochrome c oxidase subunit 6B1. Three proteins, decorin, cytochrome c oxidase subunit 6B1, and 78 kDa glucose-regulated protein, were further tested for validation by western blot analysis. Investigation of the proteins reported here is expected to expand on the current knowledge of adipose tissue driven biochemistry in diabetes and obesity, with the ultimate goal of identifying clinical targets for the development of novel therapeutic interventions in the treatment of type 2 diabetes mellitus. To our knowledge, this study is the first to survey the global proteome derived from each subcutaneous and visceral adipose tissue obtained from the same patient in the clinical setting of morbid obesity, with and without diabetes. It is also the largest study of diabetic vs nondiabetic patients with 42 patients surveyed.
Collapse
Affiliation(s)
- Lingling Fang
- Ningbo Lihuili Hospital; Ningbo, Zhejiang, China ; Department of Surgery, University of Alabama at Birmingham; Birmingham, AL, USA
| | - Kyoko Kojima
- Comprehensive Cancer Center, University of Alabama at Birmingham; Birmingham, AL, USA
| | - Lihua Zhou
- Department of Surgery, University of Alabama at Birmingham; Birmingham, AL, USA
| | - David K Crossman
- Heflin Center for Genomic Science, University of Alabama at Birmingham; Birmingham, AL, USA ; Department of Genetics, University of Alabama at Birmingham; Birmingham, AL, USA
| | - James A Mobley
- Department of Surgery, University of Alabama at Birmingham; Birmingham, AL, USA ; Comprehensive Cancer Center, University of Alabama at Birmingham; Birmingham, AL, USA ; Heflin Center for Genomic Science, University of Alabama at Birmingham; Birmingham, AL, USA
| | - Jayleen Grams
- Department of Surgery, University of Alabama at Birmingham; Birmingham, AL, USA ; Department of Surgery, Birmingham Veterans Administration Medical Center, Birmingham, AL, USA
| |
Collapse
|
38
|
Kim EY, Kim WK, Oh KJ, Han BS, Lee SC, Bae KH. Recent advances in proteomic studies of adipose tissues and adipocytes. Int J Mol Sci 2015; 16:4581-99. [PMID: 25734986 PMCID: PMC4394436 DOI: 10.3390/ijms16034581] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 12/29/2014] [Accepted: 02/16/2015] [Indexed: 12/27/2022] Open
Abstract
Obesity is a chronic disease that is associated with significantly increased levels of risk of a number of metabolic disorders. Despite these enhanced health risks, the worldwide prevalence of obesity has increased dramatically over the past few decades. Obesity is caused by the accumulation of an abnormal amount of body fat in adipose tissue, which is composed mostly of adipocytes. Thus, a deeper understanding of the regulation mechanism of adipose tissue and/or adipocytes can provide a clue for overcoming obesity-related metabolic diseases. In this review, we describe recent advances in the study of adipose tissue and/or adipocytes, focusing on proteomic approaches. In addition, we suggest future research directions for proteomic studies which may lead to novel treatments of obesity and obesity-related diseases.
Collapse
Affiliation(s)
- Eun Young Kim
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Korea.
| | - Won Kon Kim
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Korea.
- Department of Functional Genomics, University of Science and Technology of Korea, Daejeon 305-806, Korea.
| | - Kyoung-Jin Oh
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Korea.
| | - Baek Soo Han
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Korea.
- Department of Functional Genomics, University of Science and Technology of Korea, Daejeon 305-806, Korea.
| | - Sang Chul Lee
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Korea.
- Department of Functional Genomics, University of Science and Technology of Korea, Daejeon 305-806, Korea.
| | - Kwang-Hee Bae
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Korea.
- Department of Functional Genomics, University of Science and Technology of Korea, Daejeon 305-806, Korea.
| |
Collapse
|
39
|
Gestational diabetes is characterized by reduced mitochondrial protein expression and altered calcium signaling proteins in skeletal muscle. PLoS One 2014; 9:e106872. [PMID: 25216282 PMCID: PMC4162568 DOI: 10.1371/journal.pone.0106872] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/04/2014] [Indexed: 12/14/2022] Open
Abstract
The rising prevalence of gestational diabetes mellitus (GDM) affects up to 18% of pregnant women with immediate and long-term metabolic consequences for both mother and infant. Abnormal glucose uptake and lipid oxidation are hallmark features of GDM prompting us to use an exploratory proteomics approach to investigate the cellular mechanisms underlying differences in skeletal muscle metabolism between obese pregnant women with GDM (OGDM) and obese pregnant women with normal glucose tolerance (ONGT). Functional validation was performed in a second cohort of obese OGDM and ONGT pregnant women. Quantitative proteomic analysis in rectus abdominus skeletal muscle tissue collected at delivery revealed reduced protein content of mitochondrial complex I (C-I) subunits (NDUFS3, NDUFV2) and altered content of proteins involved in calcium homeostasis/signaling (calcineurin A, α1-syntrophin, annexin A4) in OGDM (n = 6) vs. ONGT (n = 6). Follow-up analyses showed reduced enzymatic activity of mitochondrial complexes C-I, C-III, and C-IV (−60–75%) in the OGDM (n = 8) compared with ONGT (n = 10) subjects, though no differences were observed for mitochondrial complex protein content. Upstream regulators of mitochondrial biogenesis and oxidative phosphorylation were not different between groups. However, AMPK phosphorylation was dramatically reduced by 75% in the OGDM women. These data suggest that GDM is associated with reduced skeletal muscle oxidative phosphorylation and disordered calcium homeostasis. These relationships deserve further attention as they may represent novel risk factors for development of GDM and may have implications on the effectiveness of physical activity interventions on both treatment strategies for GDM and for prevention of type 2 diabetes postpartum.
Collapse
|
40
|
Abstract
Maternal peripheral insulin resistance and increased inflammation are two features of pregnancies, complicated by gestational diabetes mellitus (GDM). The nucleotide-binding oligomerisation domain (NOD) intracellular molecules recognise a wide range of microbial products, as well as other intracellular danger signals, thereby initiating inflammation through activation of nuclear factor κB (NFκB). The aim of this study was to determine whether levels of NOD1 and NOD2 are increased in adipose tissue of women with GDM. The effect of NOD1 and NOD2 activation on inflammation and the insulin signalling pathway was also assessed. NOD1, but not NOD2, expression was higher in omental and subcutaneous adipose tissues obtained from women with GDM when compared with those from women with normal glucose tolerance (NGT). In both omental and subcutaneous adipose tissues from NGT and GDM women, the NOD1 ligand g-d-glutamyl-meso-diaminopimelic acid (iE-DAP) significantly induced the expression and secretion of the pro-inflammatory cytokine interleukin 6 (IL6) and chemokine IL8; COX2 (PTGS2) gene expression and subsequent prostaglandin production; the expression and secretion of the extracellular matrix remodelling enzyme matrix metalloproteinase 9 (MMP9) and the gene expression and secretion of the adhesion molecules ICAM1 and VCAM1. There was no effect of the NOD2 ligand muramyl dipeptide on any of the endpoints tested. The effects of the NOD1 ligand iE-DAP were mediated via NFκB, as the NFκB inhibitor BAY 11-7082 significantly attenuated iE-DAP-induced expression and secretion of pro-inflammatory cytokines, COX2 gene expression and subsequent prostaglandin production, MMP9 expression and secretion and ICAM1 and VCAM1 gene expression and secretion. In conclusion, the present findings describe an important role for NOD1 in the development of insulin resistance and inflammation in pregnancies complicated by GDM.
Collapse
Affiliation(s)
- Martha Lappas
- ObstetricsNutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Level 4/163 Studley Road, Heidelberg, Victoria 3084, AustraliaMercy Perinatal Research CentreMercy Hospital for Women, Heidelberg, Victoria, AustraliaObstetricsNutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Level 4/163 Studley Road, Heidelberg, Victoria 3084, AustraliaMercy Perinatal Research CentreMercy Hospital for Women, Heidelberg, Victoria, Australia
| |
Collapse
|
41
|
Little D, Thompson JW, Dubois LG, Ruch DS, Moseley MA, Guilak F. Proteomic differences between male and female anterior cruciate ligament and patellar tendon. PLoS One 2014; 9:e96526. [PMID: 24818782 PMCID: PMC4018326 DOI: 10.1371/journal.pone.0096526] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 04/08/2014] [Indexed: 12/30/2022] Open
Abstract
The risk of anterior cruciate ligament (ACL) injury and re-injury is greater for women than men. Among other factors, compositional differences may play a role in this differential risk. Patellar tendon (PT) autografts are commonly used during reconstruction. The aim of the study was to compare protein expression in male and female ACL and PT. We hypothesized that there would be differences in key structural components between PT and ACL, and that components of the proteome critical for response to mechanical loading and response to injury would demonstrate significant differences between male and female. Two-dimensional liquid chromatography-tandem mass spectrometry and a label-free quantitative approach was used to identify proteomic differences between male and female PT and ACL. ACL contained less type I and more type III collagen than PT. There were tissue-specific differences in expression of proteoglycans, and ACL was enriched in elastin, tenascin C and X, cartilage oligomeric matrix protein, thrombospondin 4 and periostin. Between male and female donors, alcohol dehydrogenase 1B and complement component 9 were enriched in female compared to male. Myocilin was the major protein enriched in males compared to females. Important compositional differences between PT and ACL were identified, and we identified differences in pathways related to extracellular matrix regulation, complement, apoptosis, metabolism of advanced glycation end-products and response to mechanical loading between males and females. Identification of proteomic differences between male and female PT and ACL has identified novel pathways which may lead to improved understanding of differential ACL injury and re-injury risk between males and females.
Collapse
Affiliation(s)
- Dianne Little
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| | - J. Will Thompson
- Proteomics Core Facility, Institute for Genome Science & Policy, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Laura G. Dubois
- Proteomics Core Facility, Institute for Genome Science & Policy, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David S. Ruch
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - M. Arthur Moseley
- Proteomics Core Facility, Institute for Genome Science & Policy, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Biomedical Engineering, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
42
|
Murri M, Insenser M, Luque M, Tinahones FJ, Escobar-Morreale HF. Proteomic analysis of adipose tissue: informing diabetes research. Expert Rev Proteomics 2014; 11:491-502. [PMID: 24684164 DOI: 10.1586/14789450.2014.903158] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Diabetes, one of the most common endocrine diseases worldwide, results from complex pathophysiological mechanisms that are not fully understood. Adipose tissue is considered a major endocrine organ and plays a central role in the development of diabetes. The identification of the adipose tissue-derived factors that contribute to the onset and progression of diabetes will hopefully lead to the development of preventive and therapeutic interventions. Proteomic techniques may be useful tools for this purpose. In the present review, we have summarized the studies conducting adipose tissue proteomics in subjects with diabetes and insulin resistance, and discussed the proteins identified in these studies as candidates to exert important roles in these disorders.
Collapse
Affiliation(s)
- Mora Murri
- Department of Endocrinology and Nutrition, Diabetes, Obesity and Human Reproduction Research Group, Hospital Universitario Ramón y Cajal and Universidad de Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), E-28034 Madrid, Spain
| | | | | | | | | |
Collapse
|
43
|
Jeon Y, Song S, Kim H, Cheon YP. Diphlorethohydroxycarmalol of Ishige okamurae and Caffeine Modified the Expression of Extracellular Fibrillars during Adipogenesis of Mouse Subcutaneous Adipose Derived Stem Cell. Dev Reprod 2013; 17:275-87. [PMID: 25949143 PMCID: PMC4282291 DOI: 10.12717/dr.2013.17.3.275] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 09/06/2013] [Accepted: 09/13/2013] [Indexed: 01/18/2023]
Abstract
Although, one of the etiologies of localized lipodystrophy of the subcutaneous connective tissue (cellulite) is the histological alternation of adipose tissue, the characteristics of expression of the components of extracellular matrix (ECM) components during adipogenesis are not uncovered. In this study, the effects of caffeine and Ishige okamurae originated diphlorethohydroxycarmalol (DPHC) on the expression of extracellualr fibers was analyzed with quantitative RT-PCR during differentiation induction of mouse subcutaneous adipose derived stem cells (msADSC) into adipocyte. The expression levels of Col1a, Col3a1, and Col61a were decreased by the adipogenci induction in a time-dependent manners. However, Col2a mRNA and Col4a1 mRNA expressions were oposit to them. Caffeine and DPHC stimulated the changes of the expression of these collagens. Eln mRNA expression was increased by induction. DPHC stimulated the expression of it. Mfap5 mRNA expression was deceased in both adipogenic cell and matured adipocytes. Caffeine suppressed the expression of Mfap5 but the effect of DPHC was different by the concentration. The expression of bioglycan, decorin, and lumican were also modified by caffeine and DPHC in a concentration-dependent manner. Based on this study, we revealed firstly the effects of caffeine and DPHC on the expression of collagens, elastin, and glycoproteins during adipogenesis of msADSCs. Those results suggest that DPHC may have antiadipogenic effect and has more positive effets on normal adipose tissue generation and work as suppressor the abnormality of ECM structure. Such results indicate that DPHC can be applied in keeping the stability of the ECM of adipogenic tissues.
Collapse
Affiliation(s)
- Younmi Jeon
- Division of Developmental Biology and Physiology, School of Biosicences and Chemistry, Sungshin Women’s University, Seoul 142-742, Republic of Korea
| | - Siyoung Song
- NSTECH Co. Ltd., Incheon 405-848, Republic of Korea
| | - Hagju Kim
- Seojin BioTech Co. Ltd., Suwon 443-373, Republic of Korea
| | - Yong-Pil Cheon
- Division of Developmental Biology and Physiology, School of Biosicences and Chemistry, Sungshin Women’s University, Seoul 142-742, Republic of Korea
| |
Collapse
|