1
|
Haller N, Lutz TA. Incretin therapy in feline diabetes mellitus - A review of the current state of research. Domest Anim Endocrinol 2024; 89:106869. [PMID: 38870560 DOI: 10.1016/j.domaniend.2024.106869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Incretin hormones potentiate the glucose-induced insulin secretion following enteral nutrient intake. The best characterised incretin hormones are glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) which are produced in and secreted from the gut in response to nutrient ingestion. The property of incretins to enhance endogenous insulin secretion only at elevated blood glucose levels makes them interesting therapeutics for type 2 diabetes mellitus with a better safety profile than exogenous insulin. While incretin therapeutics (especially GLP-1 agonists, and more recently also GLP-1 / GIP dual agonists and other drugs that influence the incretin metabolism (e.g., dipeptidyl peptidase-4 (DPP-4) inhibitors)) are already widely used treatment options for human type 2 diabetes, these drugs are not yet approved for the therapy of feline diabetes mellitus. This review provides an introduction to incretins and feline diabetes mellitus in general and summarises the current study situation on incretins as therapeutics for feline diabetes mellitus to assess their possible future potential in feline medicine. Studies to date on the use of GLP-1 receptor agonists (GLP-1RA) in healthy cats largely confirm their insulinotropic effect known from other species. In diabetic cats, GLP-1RAs appear to significantly reduce glycaemic variability (GV, an indicator for the quality of glycaemic control), which is important for the management of the disease and prevention of long-term complications. However, for widespread use in feline diabetes mellitus, further studies are required that include larger numbers of diabetic cats, and that consider and test a possible need for dose adjustments to overweight and diabetic cats. Also evaluation of the outcome of GLP-1RA monotherapy will be neceessary.
Collapse
Affiliation(s)
- Nina Haller
- Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 204, CH 8057 Zurich, Switzerland
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH 8057 Zurich, Switzerland.
| |
Collapse
|
2
|
Burdzinska A, Szopa IM, Majchrzak-Kuligowska K, Roszczyk A, Zielniok K, Zep P, Dąbrowski FA, Bhale T, Galanty M, Paczek L. The Comparison of Immunomodulatory Properties of Canine and Human Wharton Jelly-Derived Mesenchymal Stromal Cells. Int J Mol Sci 2024; 25:8926. [PMID: 39201612 PMCID: PMC11354339 DOI: 10.3390/ijms25168926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Although therapies based on mesenchymal stromal cells (MSCs) are being implemented in clinical settings, many aspects regarding these procedures require further optimization. Domestic dogs suffer from numerous immune-mediated diseases similar to those found in humans. This study aimed to assess the immunomodulatory activity of canine (c) Wharton jelly (WJ)-derived MSCs and refer them to human (h) MSCs isolated from the same tissue. Canine MSC(WJ)s appeared to be more prone to in vitro aging than their human counterparts. Both canine and human MSC(WJ)s significantly inhibited the activation as well as proliferation of CD4+ and CD8+ T cells. The treatment with IFNγ significantly upregulated indoleamine-2,3-dioxygenase 1 (IDO1) synthesis in human and canine MSC(WJ)s, and the addition of poly(I:C), TLR3 ligand, synergized this effect in cells from both species. Unstimulated human and canine MSC(WJ)s released TGFβ at the same level (p > 0.05). IFNγ significantly increased the secretion of TGFβ in cells from both species (p < 0.05); however, this response was significantly stronger in human cells than in canine cells. Although the properties of canine and human MSC(WJ)s differ in detail, cells from both species inhibit the proliferation of activated T cells to a very similar degree and respond to pro-inflammatory stimulation by enhancing their anti-inflammatory activity. These results suggest that testing MSC transplantation in naturally occurring immune-mediated diseases in dogs may have high translational value for human clinical trials.
Collapse
Affiliation(s)
- Anna Burdzinska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska Str. 159, 02-776 Warsaw, Poland; (I.M.S.); (K.M.-K.); (T.B.)
| | - Iwona Monika Szopa
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska Str. 159, 02-776 Warsaw, Poland; (I.M.S.); (K.M.-K.); (T.B.)
| | - Kinga Majchrzak-Kuligowska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska Str. 159, 02-776 Warsaw, Poland; (I.M.S.); (K.M.-K.); (T.B.)
| | - Aleksander Roszczyk
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka Str. 59, 02-006 Warsaw, Poland (L.P.)
| | - Katarzyna Zielniok
- Laboratory of Cellular and Genetic Therapies, Center for Preclinical Research, Medical University of Warsaw, Banacha Str. 1B, 02-097 Warsaw, Poland;
| | - Paweł Zep
- Veterinary Clinic “ochWET”, Pruszkowska Str. 19/21, 02-119 Warsaw, Poland
| | - Filip Andrzej Dąbrowski
- Department of Gynecology and Gynecological Oncology, Medical Centre of Postgraduate Education CMKP, Marymoncka Str. 99/103, 00-416 Warsaw, Poland;
| | - Tanushree Bhale
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska Str. 159, 02-776 Warsaw, Poland; (I.M.S.); (K.M.-K.); (T.B.)
| | - Marek Galanty
- Department of Small Animal Diseases and Clinic, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Leszek Paczek
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka Str. 59, 02-006 Warsaw, Poland (L.P.)
| |
Collapse
|
3
|
Farag HI, Murphy BA, Templeman JR, Hanlon C, Joshua J, Koch TG, Niel L, Shoveller AK, Bedecarrats GY, Ellison A, Wilcockson D, Martino TA. One Health: Circadian Medicine Benefits Both Non-human Animals and Humans Alike. J Biol Rhythms 2024; 39:237-269. [PMID: 38379166 PMCID: PMC11141112 DOI: 10.1177/07487304241228021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Circadian biology's impact on human physical health and its role in disease development and progression is widely recognized. The forefront of circadian rhythm research now focuses on translational applications to clinical medicine, aiming to enhance disease diagnosis, prognosis, and treatment responses. However, the field of circadian medicine has predominantly concentrated on human healthcare, neglecting its potential for transformative applications in veterinary medicine, thereby overlooking opportunities to improve non-human animal health and welfare. This review consists of three main sections. The first section focuses on the translational potential of circadian medicine into current industry practices of agricultural animals, with a particular emphasis on horses, broiler chickens, and laying hens. The second section delves into the potential applications of circadian medicine in small animal veterinary care, primarily focusing on our companion animals, namely dogs and cats. The final section explores emerging frontiers in circadian medicine, encompassing aquaculture, veterinary hospital care, and non-human animal welfare and concludes with the integration of One Health principles. In summary, circadian medicine represents a highly promising field of medicine that holds the potential to significantly enhance the clinical care and overall health of all animals, extending its impact beyond human healthcare.
Collapse
Affiliation(s)
- Hesham I. Farag
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, Canada
| | - Barbara A. Murphy
- School of Agriculture and Food Science, University College, Dublin, Ireland
| | - James R. Templeman
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Charlene Hanlon
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- Department of Poultry Science, Auburn University, Auburn, Alabama, USA
| | - Jessica Joshua
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Thomas G. Koch
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Lee Niel
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Anna K. Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | | - Amy Ellison
- School of Natural Sciences, Bangor University, Bangor, UK
| | - David Wilcockson
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Tami A. Martino
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
4
|
Rowe JC, Winston JA, Parker VJ, McCool KE, Suchodolski JS, Lopes R, Steiner JM, Gilor C, Rudinsky AJ. Gut microbiota promoting propionic acid production accompanies caloric restriction-induced intentional weight loss in cats. Sci Rep 2024; 14:11901. [PMID: 38789518 PMCID: PMC11126632 DOI: 10.1038/s41598-024-62243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Rodent models and human clinical studies have shown gut microbiota-derived short-chain fatty acids (SCFAs) play roles in obesity and insulin resistance. These roles have been minimally explored in cats, where in the USA an estimated 60% of cats are overweight or obese. Overweight/obese research cats (n = 7) were transitioned from a maintenance diet to a reduced calorie diet fed ad libitum for 7 days, then calories were restricted to achieve 1-2% weight loss per week for an additional 77 days. Cats then received their original maintenance diet again for 14 days. Significant intentional weight loss was noted after calorie restriction (adjusted p < 0.0001). 16S rRNA gene amplicon sequencing and targeted SCFA metabolomics were performed on fecal samples. Fecal microbial community structure significantly differed between the four study phases (PERMANOVA p = 0.011). Fecal propionic acid was significantly higher during caloric restriction-induced weight loss (adjusted p < 0.05). Repeated measures correlation revealed the relative abundances of Prevotella 9 copri (correlation coefficient = 0.532, 95% CI (0.275, 0.717), p = 0.0002) significantly correlated with propionic acid composition. Like humans, obese cats experienced an altered microbial community structure and function, favoring propionic acid production, during caloric restriction-induced weight loss.
Collapse
Affiliation(s)
- J C Rowe
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH, USA
- Comparative Hepatobiliary Intestinal Research Program (CHIRP), The Ohio State University College of Veterinary Medicine, Columbus, OH, USA
| | - J A Winston
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH, USA.
- Comparative Hepatobiliary Intestinal Research Program (CHIRP), The Ohio State University College of Veterinary Medicine, Columbus, OH, USA.
| | - V J Parker
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH, USA
- Comparative Hepatobiliary Intestinal Research Program (CHIRP), The Ohio State University College of Veterinary Medicine, Columbus, OH, USA
| | - K E McCool
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, USA
| | - J S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University College of Veterinary Medicine, College Station, TX, USA
| | - R Lopes
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University College of Veterinary Medicine, College Station, TX, USA
| | - J M Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University College of Veterinary Medicine, College Station, TX, USA
| | - C Gilor
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - A J Rudinsky
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH, USA
- Comparative Hepatobiliary Intestinal Research Program (CHIRP), The Ohio State University College of Veterinary Medicine, Columbus, OH, USA
| |
Collapse
|
5
|
Zomer HD, Cooke PS. Advances in Drug Treatments for Companion Animal Obesity. BIOLOGY 2024; 13:335. [PMID: 38785817 PMCID: PMC11117622 DOI: 10.3390/biology13050335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Companion animal obesity has emerged as a significant veterinary health concern globally, with escalating rates posing challenges for preventive and therapeutic interventions. Obesity not only leads to immediate health problems but also contributes to various comorbidities affecting animal well-being and longevity, with consequent emotional and financial burdens on owners. While past treatment strategies have shown limited success, recent breakthroughs in human medicine present new opportunities for addressing this complex issue in companion animals. Here, we discuss the potential of GLP-1 receptor agonists, specifically semaglutide and tirzepatide, already approved for human use, for addressing companion animal obesity. These drugs, originally developed to treat type 2 diabetes in humans and subsequently repurposed to treat obesity, have demonstrated remarkable weight loss effects in rodents, non-human primates and people. Additionally, newer drug combinations have shown even more promising results in clinical trials. Despite current cost and supply challenges, advancements in oral and/or extended-release formulations and increased production may make these drugs more accessible for veterinary use. Thus, these drugs may have utility in companion animal weight management, and future feasibility studies exploring their efficacy and safety in treating companion animal obesity are warranted.
Collapse
Affiliation(s)
| | - Paul S. Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
6
|
Van de Weyer Y, Tahas SA. Avian Diabetes Mellitus: A Review. J Avian Med Surg 2024; 38:21-33. [PMID: 38686885 DOI: 10.1647/avianms-d-22-00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Diabetes mellitus (DM) is an uncommon, poorly documented metabolic disorder of birds. Extrapolating knowledge from DM in mammals is challenging because of marked differences in avian physiology and metabolism. A literature review from December 1991 to January 2022 identified 14 publications covering 16 diabetic birds, 63% (10/16) of which belonged to the order Psittaciformes with Ara as the predominant genus. No sex predilection was noted, but males generally presented at a younger age. Commonly reported clinical signs included polyuria 94% (15/16), polydipsia 88% (14/16), weight loss 75% (12/16), lethargy 63% (10/16), and polyphagia 38% (6/16). Diagnosis of DM was based on the presence of clinical signs and persistent hyperglycemia 100% (16/16), often with glucosuria 93% (13/14), response to insulin therapy 80% (8/10), and pancreatic pathology 90% (9/10). Specific treatment for DM was initiated in 14 patients, but blood glucose regulation for 6 months or longer was only achieved in 6 birds. Five of the regulated birds were managed with injectable long-acting insulin and 1 with oral glipizide combined with dietary modifications. However, glipizide yielded poor results in other cases, likely attributable to a lack of functional beta cells. Three diabetic birds progressed to remission. Treatment proved unsuccessful for 7 patients with a mean survival time of 36 days from diagnosis. One patient was lost to follow-up, and 2 were euthanized immediately following diagnosis. Histological examination of the pancreas frequently (90%, 9/10) revealed abnormalities including atrophy, fibrosis, and vacuolization of the endocrine islets with or without lymphoplasmacytic pancreatitis. Comorbidities, including hemosiderosis and infection, were common. This review suggests that birds diagnosed with DM are primarily affected by a type I diabetes as observed in dogs and humans. In contrast to mammalian species, avian DM is often associated with underlying disease and a complete clinical workup is essential to diagnose and address secondary disease conditions prior to initiating long-term insulin therapy.
Collapse
Affiliation(s)
- Yannick Van de Weyer
- Zoological Society London, Wildlife Health Services, Regent's Park, London, NW1 4RY, United Kingdom,
- Royal Veterinary College, London, NW1 0TU, United Kingdom
| | - Stamatios Alan Tahas
- Zoological Society London, Wildlife Health Services, Regent's Park, London, NW1 4RY, United Kingdom
- Copenhagen Zoo, 2000 Frederiksberg, Denmark
| |
Collapse
|
7
|
Strage EM, Ley C, Westermark GT, Tengholm A. Insulin release from isolated cat islets of Langerhans. Domest Anim Endocrinol 2024; 87:106836. [PMID: 38141375 DOI: 10.1016/j.domaniend.2023.106836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Feline diabetes mellitus is a common endocrine disease with increasing prevalence. It shows similarities with human type 2 diabetes and is characterized by insulin resistance and deficient insulin secretion. Moreover, cats and humans belong to the very few species that form amyloid depositions in the pancreatic islets. However, little is known about cat islet function and no studies have addressed insulin secretion from isolated islets ex vivo. The aim of this study was to establish a protocol for isolation of islets of Langerhans from pancreata of cats euthanized due to disease, and to evaluate insulin secretion responses to various physiological and pharmacological stimuli. Collagenase digestion of pancreatic tissue from 13 non-diabetic cats and two cats with diabetic ketoacidosis yielded individual islets surrounded by a layer of exocrine tissue that was reduced after two days in culture. Histological examination showed islet amyloid in pancreatic biopsies from most non-diabetic and in one diabetic cat. Islets from non-diabetic cats cultured at 5.5 mM glucose responded with increased insulin secretion to 16.7 mM glucose, 30 mM K+ and 20 µM of the sulfonylurea glipizide (2-3 times basal secretion at 3 mM glucose). The glucagon-like peptide-1 receptor agonist exendin-4 (100 nM) had no effect under basal conditions but potentiated glucose-triggered insulin release. Only one of nine islet batches from diabetic cats released detectable amounts of insulin, which was enhanced by exendin-4. Culture of islets from non-diabetic cats at 25 mM glucose impaired secretion both in response to glucose and K+ depolarization. In conclusion, we describe a procedure for isolation of islets from cat pancreas biopsies and demonstrate that isolated cat islets secrete insulin in response to glucose and antidiabetic drugs. The study provides a basis for future ex vivo studies of islet function relevant to the understanding of the pathophysiology and treatment of feline diabetes.
Collapse
Affiliation(s)
- Emma M Strage
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, P.O. Box 7054, Uppsala SE-750 07, Sweden.
| | - Cecilia Ley
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, P.O. Box 7028, Uppsala SE-750 07, Sweden; Department of Pathology and Wildlife Diseases, National Veterinary Institute (SVA), Uppsala SE-751 89, Sweden
| | - Gunilla T Westermark
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, P.O. Box 571, Uppsala SE-751 23, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, P.O. Box 571, Uppsala SE-751 23, Sweden
| |
Collapse
|
8
|
Rak MB, Gilor C, Niessen SJM, Furrow E. Spontaneous remission and relapse of diabetes mellitus in a male dog. J Vet Intern Med 2024; 38:1152-1156. [PMID: 38240130 PMCID: PMC10937483 DOI: 10.1111/jvim.16991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/21/2023] [Indexed: 02/18/2024] Open
Abstract
An 8-year-old male neutered Miniature Schnauzer was diagnosed with diabetes mellitus based on fasting hyperglycemia and glucosuria after a 2-week history of polydipsia and periuria, in line with the Agreeing Language in Veterinary Endocrinology consensus definition. Treatment of insulin and dietary management was initiated. The insulin dose was gradually reduced and eventually discontinued over the next year based on spot blood glucose concentrations that revealed euglycemia or hypoglycemia. After discontinuation, the dog remained free of clinical signs for 1 year until it was again presented for polyuria/polydipsia with fasting hyperglycemia and glucosuria. Insulin therapy was resumed and continued for the remainder of the dog's life. Although diabetic remission often occurs in cats and humans, the presumed etiopathogenesis of pancreatic beta cell loss makes remission rare in dogs, except for cases occurring with diestrus or pregnancy. This case demonstrates that diabetic remission is possible in dogs, even in cases without an identifiable reversible trigger.
Collapse
Affiliation(s)
- Mariola B. Rak
- Department of Small Animal Clinical Sciences at the College of Veterinary MedicineUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Chen Gilor
- Department of Small Animal Clinical SciencesCollege of Veterinary Medicine, University of FloridaGainesvilleFloridaUSA
| | - Stijn J. M. Niessen
- Department of Clinical Science and ServicesRoyal Veterinary College, University of LondonHertfordshireUK
- Veterinary Specialist Consultations & VIN EuropeHilversumThe Netherlands
| | - Eva Furrow
- Department of Veterinary Clinical SciencesCollege of Veterinary Medicine, University of MinnesotaSt. PaulMinnesotaUSA
| |
Collapse
|
9
|
Athmuri DN, Shiekh PA. Experimental diabetic animal models to study diabetes and diabetic complications. MethodsX 2023; 11:102474. [PMID: 38023309 PMCID: PMC10661736 DOI: 10.1016/j.mex.2023.102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
Diabetes is an endocrine illness involving numerous physiological systems. To understand the intricated pathophysiology and disease progression in diabetes, small animals are still the most relevant model systems, despite the availability and progression in numerous invitro and insilico research methods in recent years. In general, experimental diabetes is instigated mainly due to the effectiveness of animal models in illuminating disease etiology. Most diabetes trials are conducted on rodents, while some research is conducted on larger animals. This review will discuss the methodology and mechanisms in detail for preparing diabetic animal models, considering the following important points. The exact pathophysiology of the disease may or may not be replicated in animal models, the correct induction doses must be given and the combination of different approaches for the models is recommended to get desired results.•Animal models are essential to understand diabetes etiology and pathophysiology.•Diabetic models can be developed in both rodents and non-rodents.•Chemically induced and genetic models of diabetes are widely used to study diabetes and diabetic complications.
Collapse
Affiliation(s)
- Durga Nandini Athmuri
- SMART Lab, Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Parvaiz Ahmad Shiekh
- SMART Lab, Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
10
|
Udell M, Delgado M, Ekenstedt K, Shoveller AK, Croney C. CATastrophic myths part 2: Common misconceptions about the environmental, nutritional, and genetic management of domestic cats and their welfare implications. Vet J 2023; 300-302:106029. [PMID: 37683762 DOI: 10.1016/j.tvjl.2023.106029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Despite the cat's popularity as a companion species, many owners and practitioners lack high quality information about important aspects of their behavior and management. Myths, anecdotes, and narratives of cats as 'low maintenance, self-sufficient' animals are pervasive, and the degree to which these may underlie complacency about fully meeting cats' needs is unknown. Several studies suggest that cat welfare and the human-cat bond may benefit from improved education about how to optimize the domestic cat's management and husbandry needs in homes and elsewhere. This paper is the second of a two-part series addressing common myths about cats. The purpose of this paper is to review and debunk common misconceptions about optimal cat care, feeding behavior, genetics, and training. Replacing these misconceptions with scientifically generated information could have a significant impact on the behavioral management of cats, positively influencing their physical health, mental stimulation, and well-being, and reducing stress for both cats and the people caring for them. Areas where further research is required to address ambiguities, and to better meet cats' needs in homes and other environments, are also identified.
Collapse
Affiliation(s)
- Monique Udell
- Department of Animal and Rangeland Sciences, Oregon State University, 2921 SW Campus Way, Corvallis, OR 97331, USA
| | | | - Kari Ekenstedt
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA
| | - Anna Kate Shoveller
- Department of Animal Biosciences, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Candace Croney
- Center for Animal Welfare Science, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA.
| |
Collapse
|
11
|
Yagihashi S. Contribution of animal models to diabetes research: Its history, significance, and translation to humans. J Diabetes Investig 2023; 14:1015-1037. [PMID: 37401013 PMCID: PMC10445217 DOI: 10.1111/jdi.14034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 07/05/2023] Open
Abstract
Diabetes mellitus is still expanding globally and is epidemic in developing countries. The combat of this plague has caused enormous economic and social burdens related to a lowered quality of life in people with diabetes. Despite recent significant improvements of life expectancy in patients with diabetes, there is still a need for efforts to elucidate the complexities and mechanisms of the disease processes to overcome this difficult disorder. To this end, the use of appropriate animal models in diabetes studies is invaluable for translation to humans and for the development of effective treatment. In this review, a variety of animal models of diabetes with spontaneous onset in particular will be introduced and discussed for their implication in diabetes research.
Collapse
Affiliation(s)
- Soroku Yagihashi
- Department of Exploratory Medicine for Nature, Life and HumansToho University School of MedicineChibaJapan
- Department of PathologyHirosaki University Graduate School of MedicineHirosakiJapan
| |
Collapse
|
12
|
Rowe JC, Winston JA, Parker VJ, McCool KE, Suchodolski JS, Lopes R, Steiner JM, Gilor C, Rudinsky AJ. Gut microbiota promoting propionic acid production accompanies diet-induced intentional weight loss in cats. RESEARCH SQUARE 2023:rs.3.rs-3273531. [PMID: 37693421 PMCID: PMC10491335 DOI: 10.21203/rs.3.rs-3273531/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Rodent models and human clinical studies have shown gut microbiota-derived short-chain fatty acids (SCFAs) play roles in obesity and insulin resistance. These roles have been minimally explored in cats, where in the USA an estimated 60% of cats are overweight or obese. Overweight/obese research cats (n = 7) were transitioned from a maintenance diet to a reduced calorie diet fed ad libitum for seven days, then calories were restricted to achieve 1-2% weight loss per week for an additional 77 days. Cats then received their original maintenance diet again for 14 days. Significant intentional weight loss was noted after calorie restriction (adjusted p < 0.0001). 16S rRNA gene amplicon sequencing and targeted SCFA metabolomics were performed on fecal samples. Fecal microbial community structure significantly differed between the four study phases (PERMANOVA p = 0.011). Fecal propionic acid was significantly higher during diet-induced weight loss (adjusted p < 0.05). Spearman correlation revealed the relative abundances of Prevotella 9 copri (ρ = 0.6385, p = 0.0006) and Blautia caecimuris (ρ = 0.5269, p = 0.0068) were significantly correlated with propionic acid composition. Like humans, obese cats experienced an altered microbial community structure and function, favoring propionic acid production, during diet-induced weight loss.
Collapse
Affiliation(s)
- J C Rowe
- The Ohio State University College of Veterinary Medicine
| | - J A Winston
- The Ohio State University College of Veterinary Medicine
| | - V J Parker
- The Ohio State University College of Veterinary Medicine
| | - K E McCool
- North Carolina State University College of Veterinary Medicine
| | | | - R Lopes
- Texas A&M University College of Veterinary Medicine
| | - J M Steiner
- Texas A&M University College of Veterinary Medicine
| | - C Gilor
- University of Florida College of Veterinary Medicine
| | - A J Rudinsky
- The Ohio State University College of Veterinary Medicine
| |
Collapse
|
13
|
Heeley AM, Brodbelt DC, O'Neill DG, Church DB, Davison LJ. Assessment of glucocorticoid and antibiotic exposure as risk factors for diabetes mellitus in selected dog breeds attending UK primary-care clinics. Vet Rec 2023; 192:e2785. [PMID: 37004211 PMCID: PMC10952602 DOI: 10.1002/vetr.2785] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Diabetes mellitus (DM) is an important endocrine disorder in dogs. This study explored prior exposure to glucocorticoids or antibiotic treatment as risk factors for developing DM in dogs attending primary-care VetCompass clinics in the UK. METHODS A breed frequency matched case-control study nested in a cohort of dogs (n = 480,469) aged 3 years or over was used to explore associations between glucocorticoid and antibiotic exposure and the odds of developing DM. RESULTS A total of 565 cases and 2179 controls were included. Dogs with DM had over four times the odds of exposure to glucocorticoids within 6 weeks prior to diagnosis (odds ratio [OR] 4.07, 95% confidence interval [CI] 2.41-6.89, p < 0.001) compared to controls within 6 weeks prior to a randomly selected quasi-date of diagnosis. Dogs that had only one unique documented antibiotic course had a decreased odds of developing DM (OR 0.65, 95% CI 0.46-0.91, p = 0.012) compared to dogs that had no documented courses of antibiotics. LIMITATIONS This study only included selected breeds, so the results may not be generalisable to all dog breeds. CONCLUSIONS Exposure to glucocorticoids is associated with a substantial increase in the risk of developing DM for the dog breeds included in this analysis.
Collapse
Affiliation(s)
- Angela M. Heeley
- Department of Pathobiology and Population SciencesRoyal Veterinary CollegeHatfieldUK
| | - Dave C. Brodbelt
- Department of Pathobiology and Population SciencesRoyal Veterinary CollegeHatfieldUK
| | - Dan G. O'Neill
- Department of Pathobiology and Population SciencesRoyal Veterinary CollegeHatfieldUK
| | - David B. Church
- Department of Clinical Science and ServicesRoyal Veterinary CollegeHatfieldUK
| | - Lucy J. Davison
- Department of Clinical Science and ServicesRoyal Veterinary CollegeHatfieldUK
| |
Collapse
|
14
|
Oikonomidis IL, Tsouloufi TK, Tzenetidou Z, Ceron JJ, Tvarijonaviciute A, Konstantinidis AO, Soubasis N. Diagnostic performance of glycated haemoglobin (HbA1c) for diabetes mellitus in dogs. Vet J 2023; 294:105958. [PMID: 36804904 DOI: 10.1016/j.tvjl.2023.105958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/05/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023]
Abstract
The objective of this study was to determine the diagnostic performance of glycated haemoglobin (HbA1c) for canine diabetes mellitus (DM) and compare it with that of serum fructosamine. Aliquots of blood samples collected for diagnostic purposes from adult dogs were used. HbA1c was measured using a previously validated capillary electrophoresis assay. The dogs were allocated into four groups: (1) DM; (2) hyperadrenocorticism (HAC); (3) long-term corticosteroid therapy (CST); and (4) various chronic diseases (VD). In total, 88 dogs were included as follows: DM (n = 11), HAC (n = 10), CST (n = 14), and VD (n = 53). Fructosamine was measured in all four groups as follows: DM (n = 6), HAC (n = 7), CST (n = 9), and VD (n = 42). Median (range) serum glucose concentration was higher (P < 0.001) in the DM group (22.8 mmol/L; range, 15.6-29.3 mmol/L) compared to HAC (5.9 mmol/L; range, 4.2-6.8 mmol/L), CST (5.6 mmol/L; range, 4.3-23.3 mmol/L), and VD (5.5 mmol/L; range, 4.1-9.4 mmol/L) groups. Mean (± standard deviation) HbA1c was higher (P < 0.001) in the DM group (6.3% ± 1.5%) compared to HAC (1.9% ± 0.5%), CST (1.7% ± 0.5%), and VD (1.9% ± 0.5%) groups. All diabetic dogs and none of the other dogs had HbA1c levels above the cut-off value for DM (3.3%), indicating an accuracy of 100% in diagnosing DM. Significant differences (P < 0.01) were observed in median fructosamine between the DM group (389 μmol/L; range, 348-865 μmol/L) and the HAC (306 μmol/L; range, 167-348 μmol/L) and the VD (316 μmol/L; range, 189-500 μmol/L) groups. Fructosamine had an accuracy of 84.4% for the diagnosis of DM. When used for the diagnosis of canine DM, HbA1c measured with this specific assay had excellent diagnostic accuracy and was superior to serum fructosamine.
Collapse
Affiliation(s)
| | | | - Z Tzenetidou
- Companion Animal Clinic, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - J J Ceron
- Interdisciplinary Laboratory of Clinical Analysis, Campus Mare Nostrum, University of Murcia, Spain
| | - A Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis, Campus Mare Nostrum, University of Murcia, Spain
| | - A O Konstantinidis
- Companion Animal Clinic, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - N Soubasis
- Companion Animal Clinic, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
15
|
Lutz TA. Mammalian models of diabetes mellitus, with a focus on type 2 diabetes mellitus. Nat Rev Endocrinol 2023; 19:350-360. [PMID: 36941447 DOI: 10.1038/s41574-023-00818-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/23/2023]
Abstract
Although no single animal model replicates all aspects of diabetes mellitus in humans, animal models are essential for the study of energy balance and metabolism control as well as to investigate the reasons for their imbalance that could eventually lead to overt metabolic diseases such as type 2 diabetes mellitus. The most frequently used animal models in diabetes mellitus research are small rodents that harbour spontaneous genetic mutations or that can be manipulated genetically or by other means to influence their nutrient metabolism and nutrient handling. Non-rodent species, including pigs, cats and dogs, are also useful models in diabetes mellitus research. This Review will outline the advantages and disadvantages of selected animal models of diabetes mellitus to build a basis for their most appropriate use in biomedical research.
Collapse
Affiliation(s)
- Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland.
| |
Collapse
|
16
|
Pathophysiology of Prediabetes, Diabetes, and Diabetic Remission in Cats. Vet Clin North Am Small Anim Pract 2023; 53:511-529. [PMID: 36898862 DOI: 10.1016/j.cvsm.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Diabetes mellitus (DM) has a heterogenous cause, and the exact pathogenesis differs between patients. Most diabetic cats have a cause similar to human type 2 DM but, in some, DM is associated with underlying conditions, such as hypersomatotropism, hyperadrenocorticism, or administration of diabetogenic drugs. Predisposing factors for feline DM include obesity, reduced physical activity, male sex, and increasing age. Gluco(lipo)toxicity and genetic predisposition also likely play roles in pathogenesis. Prediabetes cannot be accurately diagnosed in cats at the current time. Diabetic cats can enter remission, but relapses are common, as these cats might have ongoing, abnormal glucose homeostasis.
Collapse
|
17
|
O'Kell AL, Davison LJ. Etiology and Pathophysiology of Diabetes Mellitus in Dogs. Vet Clin North Am Small Anim Pract 2023; 53:493-510. [PMID: 36854636 DOI: 10.1016/j.cvsm.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Canine diabetes results from a wide spectrum of clinical pathophysiological processes that cause a similar set of clinical signs. Various causes of insulin deficiency and beta cell loss, insulin resistance, or both characterize the disease, with genetics and environment playing a role. Understanding the genetic and molecular causes of beta cell loss will provide future opportunities for precision medicine, both from a therapeutic and preventative perspective. This review presents current knowledge of the etiology and pathophysiology of canine diabetes, including the importance of disease classification. Examples of potential targets for future precision medicine-based approaches to therapy are discussed.
Collapse
Affiliation(s)
- Allison L O'Kell
- Department of Small Animal Clinical Sciences, University of Florida, 2015 Southwest 16th Avenue, Gainesville, FL 32610, USA.
| | - Lucy J Davison
- Royal Veterinary College, Clinical Sciences and Services, Hawkshead Lane, Hertfordshire AL9 7TA, UK.
| |
Collapse
|
18
|
Pantoja BTDS, Carvalho RC, Miglino MA, Carreira ACO. The Canine Pancreatic Extracellular Matrix in Diabetes Mellitus and Pancreatitis: Its Essential Role and Therapeutic Perspective. Animals (Basel) 2023; 13:ani13040684. [PMID: 36830471 PMCID: PMC9952199 DOI: 10.3390/ani13040684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 02/18/2023] Open
Abstract
Diabetes mellitus and pancreatitis are common pancreatic diseases in dogs, affecting the endocrine and exocrine portions of the organ. Dogs have a significant role in the history of research related to genetic diseases, being considered potential models for the study of human diseases. This review discusses the importance of using the extracellular matrix of the canine pancreas as a model for the study of diabetes mellitus and pancreatitis, in addition to focusing on the importance of using extracellular matrix in new regenerative techniques, such as decellularization and recellularization. Unlike humans, rabbits, mice, and pigs, there are no reports in the literature characterizing the healthy pancreatic extracellular matrix in dogs, in addition to the absence of studies related to matrix components that are involved in triggering diabetes melittus and pancreatitis. The extracellular matrix plays the role of physical support for the cells and allows the regulation of various cellular processes. In this context, it has already been demonstrated that physiologic and pathologic pancreatic changes lead to ECM remodeling, highlighting the importance of an in-depth study of the changes associated with pancreatic diseases.
Collapse
Affiliation(s)
- Bruna Tássia dos Santos Pantoja
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil
| | - Rafael Cardoso Carvalho
- Department of Animal Science, Center for Agricultural and Environmental Sciences, Federal University of Maranhao, Chapadinha 65500-000, MA, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, Santo Andre 09280-550, SP, Brazil
- Correspondence: or ; Tel.: +55-11-983229615
| |
Collapse
|
19
|
Suemanotham N, Phochantachinda S, Chatchaisak D, Sakcamduang W, Chansawhang A, Pitchakarn P, Chantong B. Antidiabetic effects of Andrographis paniculata supplementation on biochemical parameters, inflammatory responses, and oxidative stress in canine diabetes. Front Pharmacol 2023; 14:1077228. [PMID: 36865924 PMCID: PMC9971231 DOI: 10.3389/fphar.2023.1077228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction: Diabetes mellitus is a common endocrine disorder that causes hyperglycemia in dogs. Persistent hyperglycemia can induce inflammation and oxidative stress. This study aimed to investigate the effects of A. paniculata (Burm.f.) Nees (Acanthaceae) (A. paniculata) on blood glucose, inflammation, and oxidative stress in canine diabetes. A total of 41 client-owned dogs (23 diabetic and 18 clinically healthy) were included in this double-blind, placebo-controlled trial. Methods: The diabetic dogs were further divided into two treatments protocols: group 1 received A. paniculata extract capsules (50 mg/kg/day; n = 6) or received placebo for 90 days (n = 7); and group 2 received A. paniculata extract capsules (100 mg/kg/day; n = 6) or received a placebo for 180 days (n = 4). Blood and urine samples were collected every month. No significant differences in fasting blood glucose, fructosamine, interleukin-6, tumor necrosis factor-alpha, superoxide dismutase, and malondialdehyde levels were observed between the treatment and placebo groups (p > 0.05). Results and Discussion: The levels of alanine aminotransferase, alkaline phosphatase, blood urea nitrogen, and creatinine were stable in the treatment groups. The blood glucose levels and concentrations of inflammatory and oxidative stress markers in the client-owned diabetic dogs were not altered by A. paniculata supplementation. Furthermore, treatment with this extract did not have any adverse effects on the animals. Non-etheless, the effects of A. paniculata on canine diabetes must be appropriately evaluated using a proteomic approach and involving a wider variety of protein markers.
Collapse
Affiliation(s)
- Namphung Suemanotham
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand,Department of pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sataporn Phochantachinda
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Duangthip Chatchaisak
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Walasinee Sakcamduang
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Anchana Chansawhang
- The Center for Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Boonrat Chantong
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand,*Correspondence: Boonrat Chantong,
| |
Collapse
|
20
|
Miceli DD, García JD, Rey Amunategui JP, Pompili GA, Rial LA, Más J, Molina EM, Pignataro OP. Prevalence of hypersomatotropism and hyperthyroidism in cats with diabetes mellitus from referral centers in Buenos Aires (2020-2022). J Feline Med Surg 2023; 25:1098612X221148565. [PMID: 36779783 PMCID: PMC10812081 DOI: 10.1177/1098612x221148565] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
OBJECTIVES The aim of this study was to estimate the prevalence of hypersomatotropism (HST) and hyperthyroidism in cats with diabetes mellitus (DM) from referral centers in Buenos Aires, Argentina. METHODS This was a prospective study. Systematic screening of serum insulin-like growth factor 1 (IGF-1) and total thyroxine was performed in all cats diagnosed with DM at referral centers in Buenos Aires between February 2020 and February 2022. RESULTS In total, 154 diabetic cats were evaluated (99 males and 55 females; median age 12 years [range 3-21]; mean body weight 5 kg [range 2-12]). Altogether, there were 115 (75%) domestic shorthairs and one domestic longhair; the remaining 38 cats were purebred (mainly Siamese, n = 25 [16%]). Twenty (12.9%) cats had IGF-1 concentrations >1000 ng/ml, and three (1.9%) had IGF-1 concentrations between 800 and 1000 ng/ml along with pituitary enlargement on CT, resulting in a 14.9% HST prevalence rate in diabetic cats. Intracranial imaging was performed in all cats with HST; median pituitary dorsoventral height was 5.8 mm (range 3.1-9.5). Fourteen of 23 (61%) cats had phenotypic changes consistent with acromegaly at the time of diagnosis of HST. Four of 154 (2.5%) cats had concurrent hyperthyroidism. CONCLUSIONS AND RELEVANCE To date, this is the first study outside of Europe to have evaluated the prevalence of HST and hyperthyroidism in cats with DM. In Buenos Aires referral centers, feline HST is the most common concurrent endocrinopathy in cats with DM but with a lower prevalence than has previously been reported. Hyperthyroidism is a rare concurrent endocrinopathy in diabetic cats from referral centers in Buenos Aires.
Collapse
Affiliation(s)
- Diego D Miceli
- Laboratory of Molecular Endocrinology and Signal Transduction, Institute of Experimental Biology and Medicine – CONICET, Buenos Aires, Argentina
- Veterinary Science Center, Maimonides University, Buenos Aires, Argentina
| | - Jorge D García
- Hospital School of Veterinary Medicine, University of Buenos Aires, Faculty of Veterinary Sciences, Buenos Aires, Argentina
| | | | - Gustavo A Pompili
- Hospital School of Veterinary Medicine, University of Buenos Aires, Faculty of Veterinary Sciences, Buenos Aires, Argentina
| | - Laura A Rial
- Department of Animal Welfare and Ethology, University of Buenos Aires, Faculty of Veterinary Sciences, Buenos Aires, Argentina
| | - Javier Más
- Diagnotest Laboratory, Buenos Aires, Argentina
| | - Estela M Molina
- Hospital School of Veterinary Medicine, University of Buenos Aires, Faculty of Veterinary Sciences, Buenos Aires, Argentina
| | - Omar P Pignataro
- Laboratory of Molecular Endocrinology and Signal Transduction, Institute of Experimental Biology and Medicine – CONICET, Buenos Aires, Argentina
| |
Collapse
|
21
|
Corbee RJ, van Everdingen DL, Kooistra HS, Penning LC. Fibroblast growth factor-21 (FGF21) analogs as possible treatment options for diabetes mellitus in veterinary patients. Front Vet Sci 2023; 9:1086987. [PMID: 36699319 PMCID: PMC9868460 DOI: 10.3389/fvets.2022.1086987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/13/2022] [Indexed: 01/10/2023] Open
Abstract
Fibroblast growth factors (FGFs) are involved in numerous metabolic processes. The endocrine subfamily of FGFs, consisting of FGF19, FGF21, and FGF23, might have beneficial effects in the treatment of diabetes mellitus (DM) and/or obesity. The analog with the greatest potential, FGF21, lowers blood glucose levels, improves insulin sensitivity, and induces weight loss in several animal models. In this review we summarize recent (pre)clinical findings with FGF21 analogs in animal models and men. Furthermore, possible applications of FGF21 analogs for pets with DM will be discussed. As currently, information about the use of FGF21 analogs in pet animals is scarce.
Collapse
|
22
|
de Laat MA, Fitzgerald DM, Harris PA, Bailey SR. A glucagon-like peptide-1 receptor antagonist reduces the insulin response to a glycemic meal in ponies. J Anim Sci 2023; 101:skad389. [PMID: 38066683 PMCID: PMC10724109 DOI: 10.1093/jas/skad389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
High plasma concentrations of insulin can cause acute laminitis. Ponies and horses with insulin dysregulation (ID) exhibit marked hyperinsulinemia in response to dietary hydrolyzable carbohydrates. Glucagon-like peptide-1 (GLP-1), an incretin hormone released from the gastrointestinal tract, enhances insulin release, and is increased postprandially in ponies with ID. The aim of this study was to determine whether blocking the GLP-1 receptor reduces the insulin response to a high glycemic meal. Five adult ponies were adapted to a cereal meal and then given two feed challenges 24 h apart of a meal containing 3 g/kg BW micronized maize. Using a randomized cross-over design all ponies received both treatments, where one of the feeds was preceded by the IV administration of a GLP-1 receptor blocking peptide, Exendin-3 (9-39) amide (80 µg/kg), and the other feed by a sham treatment of peptide diluent only. Blood samples were taken before feeding and peptide administration, and then at 30-min intervals via a jugular catheter for 6 h for the measurement of insulin, glucose, and active GLP-1. The peptide and meal challenge caused no adverse effects, and the change in plasma glucose in response to the meal was not affected (P = 0.36) by treatment: peak concentration 9.24 ± 1.22 and 9.14 ± 1.08 mmol/L without and with the antagonist, respectively. Similarly, there was no effect (P = 0.35) on plasma active GLP-1 concentrations: peak concentration 14.3 ± 1.36 pM and 13.7 ± 1.97 pM without and with the antagonist, respectively. However, the antagonist caused a significant decrease in the area under the curve for insulin (P = 0.04), and weak evidence (P = 0.06) of a reduction in peak insulin concentration (456 ± 147 μIU/mL and 370 ± 146 μIU/mL without and with the antagonist, respectively). The lower overall insulin response to the maize meal after treatment with the antagonist demonstrates that blocking the GLP-1 receptor partially reduced insulin production in response to a high starch, high glycemic index, diet. Using a different methodological approach to published studies, this study also confirmed that GLP-1 does contribute to the excessive insulin production in ponies with ID.
Collapse
Affiliation(s)
- Melody A de Laat
- Faculty of Science, Queensland University of Technology, Brisbane, QLD, Australia
| | | | - Patricia A Harris
- Equine Studies Group, Waltham Petcare Science Institute, Melton Mowbray, UK
| | - Simon R Bailey
- Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
23
|
Rothlin‐Zachrisson N, Öhlund M, Röcklinsberg H, Ström Holst B. Survival, remission, and quality of life in diabetic cats. J Vet Intern Med 2023; 37:58-69. [PMID: 36637031 PMCID: PMC9889602 DOI: 10.1111/jvim.16625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/16/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Remission is documented in a substantial proportion of cats with diabetes. The effects of diabetes mellitus (DM) on the lives of cats and their owners should be considered when evaluating treatment success. OBJECTIVES To study outcome in cats with DM and the impact DM has on the life situation of cat and owner. ANIMALS Domestic and pedigree cats with a diagnosis of DM (n = 477) insured by a Swedish insurance company during 2009 to 2013. METHODS Retrospective cross-sectional study. A questionnaire was sent to 1369 owners of cats diagnosed with DM. The questions concerned the cat, treatment, owner perceptions of the disease and treatment and disease outcome. Data were analyzed using multiple linear and logistic regression, with outcomes set as survival for more than 4 weeks after diagnosis, survival time, achieving remission, remission without relapse and quality of life (QoL) for the cat. RESULTS The response rate was 35%, leaving 477 questionnaires for analysis. The remission rate among treated cats was 29% (118/405). Feeding a commercially available wet diet was associated with both remission (OR 3.16, 95% confidence interval 1.27-8.12) and remission without relapse (OR 14.8, 95% confidence interval 2.25-153.8). Remission was associated with a better QoL for the cat. CONCLUSIONS AND CLINICAL IMPORTANCE The association between feeding a commercially available wet diet and remission is important and strengthens the role of diet in treatment of DM in cats. Linking remission and a better QoL for the cat emphasizes remission as a goal in disease management.
Collapse
Affiliation(s)
| | | | - Helena Röcklinsberg
- Department of Animal Environment and HealthSwedish University of Agricultural SciencesUppsalaSweden
| | - Bodil Ström Holst
- Department of Clinical SciencesSwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
24
|
Proteomic Analysis of Tear Film in Canine Diabetic Patients with And Without Retinopathy. J Vet Res 2022; 66:629-635. [PMID: 36846040 PMCID: PMC9944995 DOI: 10.2478/jvetres-2022-0053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Introduction Diabetic retinopathy (DR) is the leading cause of blindness in human and animal patients. Early detection and treatment of the disease are important and can be facilitated by proteomic approaches providing biomarkers. Material and Methods Tear films were collected on Schirmer strips from 32 canine patients (12 diabetic dogs without changes in the retina, 8 diabetic dogs with signs of DR, and 12 control dogs). Two-dimensional electrophoresis was used to separate tear film proteins prior to their identification with matrix-assisted laser desorption/ionisation-tandem time-of-flight mass spectrometry and interrogation of protein function databases to find matches. Results Five significantly differentially expressed proteins were identified; of those, one was downregulated (2'-5'-oligoadenylate synthase 3) and four were upregulated in the tear film of two diabetic groups (Ras-related protein RAB-13; aldo-keto-reductase family 1 member C3; 28S ribosomal protein S31, mitochondrial; and 60S ribosomal protein L5). The differentially expressed proteins identified in the tear film were involved in signalling pathways associated with impaired protein clearance, persistent inflammation and oxidative stress. Conclusion The results of our study confirm that the pathological process in the retina in the course of diabetes mellitus causes changes in the tear film proteome.
Collapse
|
25
|
Bergomi V, Beck S, Dobromylskyj M, Davison LJ, Wills JW, Hughes K. Insulin expression in β cells is reduced within islets before islet loss in diabetic cats. J Small Anim Pract 2022; 63:809-815. [PMID: 35986507 DOI: 10.1111/jsap.13541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/02/2022] [Accepted: 07/07/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Diabetes mellitus is a common condition that requires intensive treatment and markedly impacts the welfare of affected cats. The aim of this study was to identify diabetes mellitus-associated perturbations in the feline pancreatic islet microenvironment. The utility of "clear, unobstructed brain/body imaging cocktails and computational analysis" (CUBIC) for three-dimensional pancreatic analysis was investigated. METHODS Formalin-fixed paraffin-embedded tissues from cats with diabetes mellitus, or control cats without pancreatic pathology, were retrospectively identified. Immunohistochemistry for synaptophysin and ionised calcium binding adaptor molecule 1, and immunofluorescence for insulin and synaptophysin, were used to assess changes in islets. An image analysis pipeline was developed to analyse images acquired from two-dimensional immunofluorescence. CUBIC was used to optically clear selected pancreas samples before immunofluorescence and deep three-dimensional confocal microscopy. RESULTS Diabetic cats have a significant reduction in synaptophysin-positive islet area. Whilst islets from diabetic patients have similar numbers of β cells to islets from control cats, significantly lower intensity of insulin expression can be observed in the former. CUBIC facilitates clear visualisation of pancreatic islets in three dimensions. CLINICAL SIGNIFICANCE The data presented support the theory that there is a decrease in function of β cells before their destruction, suggesting a potentially significant step in the pathogenesis of feline diabetes mellitus. In parallel, we demonstrate CUBIC as a valuable new tool to visualise the shape of feline pancreatic islets and to interrogate pathology occurring in the islets of diabetic pets.
Collapse
Affiliation(s)
- V Bergomi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK.,Mercer & Hughes Veterinary Surgeons, Saffron Walden, CB11 3JB, UK
| | - S Beck
- VPG Histology, Horner Court, Bristol, BS7 0BJ, UK.,Independent Anatomic Pathology Ltd, Bath, UK
| | | | - L J Davison
- Department of Clinical Sciences and Services, Royal Veterinary College, Hatfield, UK.,Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - J W Wills
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - K Hughes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| |
Collapse
|
26
|
Smith AA, Moore KBE, Ambs PM, Saraswati AP, Fortin JS. Recent Advances in the Discovery of Therapeutics to Curtail Islet Amyloid Polypeptide Aggregation for Type 2 Diabetes Treatment. Adv Biol (Weinh) 2022; 6:e2101301. [PMID: 35931462 DOI: 10.1002/adbi.202101301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 07/04/2022] [Indexed: 01/28/2023]
Abstract
In humans with type 2 diabetes, at least 70% of patients exhibit islet amyloid plaques formed by misfolding islet amyloid polypeptides (IAPP). The oligomeric conformation and accumulation of the IAPP plaques lead to a panoply of cytotoxic effects on the islet β-cells. Currently, no marketed therapies for the prevention or elimination of these amyloid deposits exist, and therefore significant efforts are required to address this gap. To date, most of the experimental treatments are limited to only in vitro stages of testing. In general, the proposed therapeutics use various targeting strategies, such as binding to the N-terminal region of islet amyloid polypeptide on residues 1-19 or the hydrophobic region of IAPP. Other strategies include targeting the peptide self-assembly through π-stacking. These methods are realized by using several different families of compounds, four of which are highlighted in this review: naturally occurring products, small molecules, organometallic compounds, and nanoparticles. Each of these categories holds immense potential to optimize and develop inhibitor(s) of pancreatic amyloidosis in the near future.
Collapse
Affiliation(s)
- Alyssa A Smith
- Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Kendall B E Moore
- Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Akella Prasanth Saraswati
- Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Jessica S Fortin
- Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
27
|
Sierawska O, Niedźwiedzka-Rystwej P. Adipokines as potential biomarkers for type 2 diabetes mellitus in cats. Front Immunol 2022; 13:950049. [PMID: 36248900 PMCID: PMC9561307 DOI: 10.3389/fimmu.2022.950049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is no longer only a disease of humans, but also of domestic animals, and it particularly affects cats. It is increasingly thought that because of its unique characteristics, T2DM may belong not only to the group of metabolic diseases but also to the group of autoimmune diseases. This is due to the involvement of the immune system in the inflammation that occurs with T2DM. Various pro- and anti-inflammatory substances are secreted, especially cytokines in patients with T2DM. Cytokines secreted by adipose tissue are called adipokines, and leptin, adiponectin, resistin, omentin, TNF-α, and IL-6 have been implicated in T2DM. In cats, approximately 90% of diabetic cases are T2DM. Risk factors include older age, male sex, Burmese breed, presence of obesity, and insulin resistance. Diagnosis of a cat requires repeated testing and is complicated compared to human diagnosis. Based on similarities in the pathogenesis of T2DM between humans and cats, adipokines previously proposed as biomarkers for human T2DM may also serve in the diagnosis of this disease in cats.
Collapse
Affiliation(s)
- Olga Sierawska
- Doctoral School, University of Szczecin, Szczecin, Poland
- Institute of Biology, University of Szczecin, Szczecin, Poland
- *Correspondence: Olga Sierawska,
| | | |
Collapse
|
28
|
Dead or Alive? A Review of Perinatal Factors That Determine Canine Neonatal Viability. Animals (Basel) 2022; 12:ani12111402. [PMID: 35681866 PMCID: PMC9179255 DOI: 10.3390/ani12111402] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The article summarizes the current knowledge on factors related to pregnancy, parturition, and newborns that affect the health status of a puppy and determine its chances for survival and development. The detailed information is provided in terms of breed predispositions, objectives of pregnancy monitoring, potential sources of complications, and veterinary advances in care and treatment of perinatal conditions. Successful pregnancy outcomes still pose challenges in veterinary neonatology; thus, publications presenting the current state of knowledge in this field are in demand. Abstract The perinatal period has a critical impact on viability of the newborns. The variety of factors that can potentially affect the health of a litter during pregnancy, birth, and the first weeks of life requires proper attention from both the breeder and the veterinarian. The health status of puppies can be influenced by various maternal factors, including breed characteristics, anatomy, quality of nutrition, delivery assistance, neonatal care, and environmental or infectious agents encountered during pregnancy. Regular examinations and pregnancy monitoring are key tools for early detection of signals that can indicate disorders even before clinical signs occur. Early detection significantly increases the chances of puppies’ survival and proper development. The purpose of the review was to summarize and discuss the complex interactions between all elements that, throughout pregnancy and the first days of life, have a tangible impact on the subsequent fate of the offspring. Many of these components continue to pose challenges in veterinary neonatology; thus, publications presenting the current state of knowledge in this field are in demand.
Collapse
|
29
|
PEGDA microencapsulated allogeneic islets reverse canine diabetes without immunosuppression. PLoS One 2022; 17:e0267814. [PMID: 35613086 PMCID: PMC9132281 DOI: 10.1371/journal.pone.0267814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/17/2022] [Indexed: 11/21/2022] Open
Abstract
Background Protection of islets without systemic immunosuppression has been a long-sought goal in the islet transplant field. We conducted a pilot biocompatibility/safety study in healthy dogs followed by a dose-finding efficacy study in diabetic dogs using polyethylene glycol diacrylate (PEGDA) microencapsulated allogeneic canine islets. Methods Prior to the transplants, characterization of the canine islets included the calculations determining the average cell number/islet equivalent. Following measurements of purity, insulin secretion, and insulin, DNA and ATP content, the islets were encapsulated and transplanted interperitoneally into dogs via a catheter, which predominantly attached to the omentum. In the healthy dogs, half of the microspheres injected contained canine islets, the other half of the omentum received empty PEGDA microspheres. Results In the biocompatibility study, healthy dogs received increasing doses of cells up to 1.7 M cells/kg body weight, yet no hypoglycemic events were recorded and the dogs presented with no adverse events. At necropsy the microspheres were identified and described as clear with attachment to the omentum. Several of the blood chemistry values that were abnormal prior to the transplants normalized after the transplant. The same observation was made for the diabetic dogs that received higher doses of canine islets. In all diabetic dogs, the insulin required to attempt to control blood glucose was cut by 50–100% after the transplant, down to no required insulin for the course of the 60-day study. The dogs had no adverse events and behavioral monitoring suggested normal activity after recovery from the transplant. Conclusions and implications The study provides evidence that PEGDA microencapsulated canine islets reversed the signs of diabetes without immunosuppression and led to states of insulin-independence or significantly lowered insulin requirements in the recipients.
Collapse
|
30
|
Milczak A, Winiarczyk D, Winiarczyk S, Bochyńska D, Adaszek Ł, Winiarczyk M, Lechowski R. Procoagulant and anticoagulant plasma indicators in diabetic dogs showing increased antithrombin III levels in canine diabetes mellitus. BMC Vet Res 2022; 18:108. [PMID: 35305618 PMCID: PMC8933892 DOI: 10.1186/s12917-022-03179-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 02/07/2022] [Indexed: 11/19/2022] Open
Abstract
Background Diabetes mellitus (DM) often leads to dangerous thromboembolic complications in humans. DM is also a relatively common endocrinopathy of dogs. There is scarce information regarding procoagulant and anticoagulant plasma indicators in this disease. The aim of the study was to evaluate the levels of the selected plasma haemostatic parameters in dogs suffering from diabetes. The study group consisted of 20 dogs meeting all the inclusion criteria, with fasting glycaemia exceeding 11.1 mmol/l. The control group consisted of 15 healthy dogs presented for routine examination. An evaluation of the prothrombin time (PT); and fibrinogen, D-dimer and antithrombin III (ATIII) levels was performed. Results Except for ATIII activity, the haemostatic parameter differences were not statistically significant. High values of ATIII activity were observed in 90% of diabetic dogs. On average, the values amounted to 166.6% and were 31.4% higher than those in the control group. The ATIII activity in the diabetic group was significantly higher than that in the control group (p = 0.0004). Conclusions Here, we report elevated levels of ATIII in diabetic dogs. This finding may suggest the protective role of ATIII against potential thrombotic events. However, the exact role of ATIII in dog diabetes remains unclear.
Collapse
|
31
|
Leal KM, Rocha MB, Varela FV, Rodrigues L, Furtado PV, da Costa FVA, Pöppl ÁG. Is methylprednisolone acetate-related insulin resistance preventable in cats? Top Companion Anim Med 2022; 49:100648. [PMID: 35202848 DOI: 10.1016/j.tcam.2022.100648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022]
Abstract
Methylprednisolone acetate (MPA) is often prescribed to cats despite being recognized eventually as diabetogenic. To assess MPA-related insulin resistance and evaluate the efficacy of metformin or an obesity and diabetes mellitus (O&D) adjuvant diet as protective factors, a randomized clinical trial was conducted with 28 owned cats undergoing glucocorticoid therapy. A single MPA dose of 20 mg intramuscularly was administered to each cat. Controls (n=10) received only MPA. In the diet group (n=9), replacement of their habitual diet by ad-libitum feeding of a feline commercial O&D diet (Equilíbrio O&D, Total Alimentos ADM) was made. In the metformin group (n=9), metformin chlorhydrate 25mg/cat PO/q24h was administered for 30 days. All patients were clinically evaluated at baseline (T0), day 15 (T15), and day 30 (T30) and blood draw for complete blood count, serum biochemistry, and determination of insulin concentrations. Fasting Insulin Sensitivity Index (SI), Amended Insulin to Glucose Ratio (AIGR), Homeostatic Model Assessment of Insulin Resistance (HOMA-IR), and Homeostatic Model Assessment of beta-cell function (HOMA-B) were calculated based on fasting glycemia and insulinemia. All groups showed significantly higher levels (p < 0.05) of neutrophils, albumin, glucose, cholesterol, triglycerides, and serum insulin at T15. Patients in the metformin group showed also higher SI, AIGR, and HOMA-IR results at T15. Also, at T15, reduced levels (p < 0.05) of eosinophils, lymphocytes, and creatinine were documented in all groups. An MPA single dose induced changes in insulin sensitivity in cats; however, neither metformin nor O&D feeding used in this study was effective as protective factors against MPA-related insulin resistance.
Collapse
Key Words
- AAFP, American Association of Feline Practitioners
- AIGR, amended insulin to glucose ratio
- CV, coefficient of variation
- ESVE, European Society of Veterinary Endocrinology
- FDM, feline diabetes mellitus
- GLP-1, glucagon-like peptide-1
- HOMA-B, homeostatic model assessment of beta-cell function
- HOMA-IR, homeostatic model assessment of insulin resistance
- LOD, limit of detection
- MPA, methylprednisolone acetate
- O&D, obesity and diabetes
- RIA, radioimmunoassay
- SI, Fasting insulin sensitivity index
- adjuvant feeding
- diabetes mellitus
- glucocorticoid therapy
- insulinaemia
- metformin
Collapse
Affiliation(s)
- Karine Marchioro Leal
- Veterinary Sciences Post-Graduating Program, Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul (UFRGS), 9090 Bento Gonçalves Av., Agronomia, Porto Alegre, RS, 91540-000, Brazil; Veterinary Hospital UniRitter, Laureate International Universities, 2001 Manoel Elias Av., Mário Quintana, Porto Alegre, RS, 91240-260, Brazil
| | - Mariana Barcelos Rocha
- Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul (UFRGS), 9090 Bento Gonçalves Av., Agronomia, Porto Alegre, RS, 91540-000, Brazil
| | - Fernanda Venzon Varela
- Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul (UFRGS), 9090 Bento Gonçalves Av., Agronomia, Porto Alegre, RS, 91540-000, Brazil
| | - Luana Rodrigues
- Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul (UFRGS), 9090 Bento Gonçalves Av., Agronomia, Porto Alegre, RS, 91540-000, Brazil
| | - Priscila Viau Furtado
- Hormonal Laboratory, Faculty of Veterinary Medicine and Zootecny, University of São Paulo (USP), 87 Orlando Marques de Paiva Av., Butantã, São Paulo, SP, 05508-270, Brazil
| | - Fernanda Vieira Amorim da Costa
- Veterinary Sciences Post-Graduating Program, Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul (UFRGS), 9090 Bento Gonçalves Av., Agronomia, Porto Alegre, RS, 91540-000, Brazil; Department of Animal Medicine, Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul, 9090 Bento Gonçalves Av., Agronomia, Porto Alegre, RS, 91540-000, Brazil
| | - Álan Gomes Pöppl
- Veterinary Sciences Post-Graduating Program, Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul (UFRGS), 9090 Bento Gonçalves Av., Agronomia, Porto Alegre, RS, 91540-000, Brazil; Department of Animal Medicine, Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul, 9090 Bento Gonçalves Av., Agronomia, Porto Alegre, RS, 91540-000, Brazil.
| |
Collapse
|
32
|
Exploration of autoantibody responses in canine diabetes using protein arrays. Sci Rep 2022; 12:2490. [PMID: 35169238 PMCID: PMC8847587 DOI: 10.1038/s41598-022-06599-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/02/2022] [Indexed: 11/08/2022] Open
Abstract
Canine diabetes has been considered a potential model of human type 1 diabetes (T1D), however the detection of autoantibodies common in humans with T1D in affected dogs is inconsistent. The aim of this study was to compare autoantibody responses in diabetic and healthy control dogs using a novel nucleic acid programmable protein array (NAPPA) platform. We performed a cross-sectional study of autoantibody profiles of 30 diabetic and 30 healthy control dogs of various breeds. Seventeen hundred human proteins related to the pancreas or diabetes were displayed on NAPPA arrays and interrogated with canine sera. The median normalized intensity (MNI) for each protein was calculated, and results were compared between groups to identify candidate autoantibodies. At a specificity of 90%, six autoantibodies had sensitivity greater than 10% (range 13-20%) for distinguishing diabetic and control groups. A combination of three antibodies (anti-KANK2, anti-GLI1, anti-SUMO2) resulted in a sensitivity of 37% (95% confidence interval (CI) 0.17-0.67%) at 90% specificity and an area under the receiver operating characteristics curve of 0.66 (95% CI 0.52-0.80). While this study does not provide conclusive support for autoimmunity as an underlying cause of diabetes in dogs, future studies should consider the use of canine specific proteins in larger numbers of dogs of breeds at high risk for diabetes.
Collapse
|
33
|
Gao Y, Guan W, Bai C. Pancreatic Duct Cells Isolated From Canines Differentiate Into Beta-Like Pancreatic Islet Cells. Front Vet Sci 2022; 8:771196. [PMID: 35071380 PMCID: PMC8769286 DOI: 10.3389/fvets.2021.771196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, we isolated and cultured pancreatic ductal cells from canines and revealed the possibility for using them to differentiate into functional pancreatic beta cells in vitro. Passaged pancreatic ductal cells were induced to differentiate into beta-like pancreatic islet cells using a mixture of induced factors. Differentiated pancreatic ductal cells were analyzed based on intracellular insulin granules using transmission electron microscopy, the expression of insulin and glucagon using immunofluorescence, and glucose-stimulated insulin secretion using ELISA. Our data revealed that differentiated pancreatic ductal cells not only expressed insulin and glucagon but also synthesized insulin granules and secreted insulin at different glucose concentrations. Our study might assist in the development of effective cell therapies for the treatment of type 1 diabetes mellitus in dogs.
Collapse
Affiliation(s)
- Yuhua Gao
- Institute of Precision Medicine, Jining Medical University, Jining, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weijun Guan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunyu Bai
- Institute of Precision Medicine, Jining Medical University, Jining, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
34
|
Gao D, Dai P, Fan Z, Wang J, Zhang Y. The Roles of Different Multigene Combinations of Pdx1, Ngn3, Sox9, Pax4, and Nkx2.2 in the Reprogramming of Canine ADSCs Into IPCs. Cell Transplant 2022; 31:9636897221081483. [PMID: 35236160 PMCID: PMC8902191 DOI: 10.1177/09636897221081483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Adipose-derived mesenchymal stem cells (ADSCs) are ideal sources for the treatment of diabetes, and the differentiation of ADSCs into insulin-producing cells (IPCs) through transfection of exogenous regulatory genes in vitro has been studied in depth. The differentiation of ADSCs is strictly regulated by a variety of transcription factors such as Pdx1, Ngn3, Pax4, Nkx2.2, and Sox9. However, whether these genes can coordinately regulate the differentiation of ADSCs into IPCs is still unknown. In this study, five multigene coexpressing adenovirus vectors (pAdTrack-Pdx1-Ngn3-AdEasy, pAdTrack-Pdx1-Ngn3-Sox9-AdEasy, pAdTrack-Pdx1-Ngn3-Pax4-Sox9-AdEasy, pAdTrack-Pdx1-Ngn3-Nkx2.2-Sox9-AdEasy, and pAdTrack-Pdx1-Ngn3-Nkx2.2-Pax4-AdEasy) were constructed, and then the stocks of the packaged adenoviruses were used to infect the canine ADSCs (cADSCs). Based on results of morphological observation, dithizone staining, sugar-stimulated insulin secretion test, cellular insulin immunofluorescence assays, and the detection of pancreatic β-cell development-related genes in the induced cells, the best induction combination (pAdTrack-Pdx1-Ngn3-Nkx2.2-Pax4-AdEasy) was identified after comparative screening. This study provides a theoretical reference and an experimental basis for further research on stem cell replacement therapy for diabetes.
Collapse
Affiliation(s)
- Dengke Gao
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Pengxiu Dai
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Zhixin Fan
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Jinglu Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yihua Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| |
Collapse
|
35
|
O'Kell AL, Wasserfall C, Guingab-Cagmat J, Webb-Roberston BJM, Atkinson MA, Garrett TJ. Targeted metabolomic analysis identifies increased serum levels of GABA and branched chain amino acids in canine diabetes. Metabolomics 2021; 17:100. [PMID: 34775536 PMCID: PMC8693811 DOI: 10.1007/s11306-021-01850-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Dogs with naturally occurring diabetes mellitus represent a potential model for human type 1 diabetes, yet significant knowledge voids exist in terms of the pathogenic mechanisms underlying the canine disorder. Untargeted metabolomic studies from a limited number of diabetic dogs identified similarities to humans with the disease. OBJECTIVE To expand and validate earlier metabolomic studies, identify metabolites that differ consistently between diabetic and healthy dogs, and address whether certain metabolites might serve as disease biomarkers. METHODS Untargeted metabolomic analysis via liquid chromatography-mass spectrometry was performed on serum from diabetic (n = 15) and control (n = 15) dogs. Results were combined with those of our previously published studies using identical methods (12 diabetic and 12 control dogs) to identify metabolites consistently different between the groups in all 54 dogs. Thirty-two candidate biomarkers were quantified using targeted metabolomics. Biomarker concentrations were compared between the groups using multiple linear regression (corrected P < 0.0051 considered significant). RESULTS Untargeted metabolomics identified multiple persistent differences in serum metabolites in diabetic dogs compared with previous studies. Targeted metabolomics showed increases in gamma amino butyric acid, valine, leucine, isoleucine, citramalate, and 2-hydroxyisobutyric acid in diabetic versus control dogs while indoxyl sulfate, N-acetyl-L-aspartic acid, kynurenine, anthranilic acid, tyrosine, glutamine, and tauroursodeoxycholic acid were decreased. CONCLUSION Several of these findings parallel metabolomic studies in both human diabetes and other animal models of this disease. Given recent studies on the role of GABA and branched chain amino acids in human diabetes, the increase in serum concentrations in canine diabetes warrants further study of these metabolites as potential biomarkers, and to identify similarity in mechanisms underlying this disease in humans and dogs.
Collapse
Affiliation(s)
- Allison L O'Kell
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Florida, 2015 SW 16th Ave, Box 100116, Gainesville, FL, 32608, USA.
| | - Clive Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida, Gainesville, FL, USA
| | - Joy Guingab-Cagmat
- Southeast Center for Integrated Metabolomics, Clinical and Translational Science Institute, The University of Florida, Gainesville, FL, USA
| | - Bobbie-Jo M Webb-Roberston
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida, Gainesville, FL, USA
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida, Gainesville, FL, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida, Gainesville, FL, USA
| |
Collapse
|
36
|
Chae Y, Yun T, Koo Y, Lee D, Kim H, Yang MP, Kang BT. Characteristics of Physiological 18F-Fluoro-2-Deoxy-D-Glucose Uptake and Comparison Between Cats and Dogs With Positron Emission Tomography. Front Vet Sci 2021; 8:708237. [PMID: 34722693 PMCID: PMC8548631 DOI: 10.3389/fvets.2021.708237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/15/2021] [Indexed: 11/23/2022] Open
Abstract
This study aimed to identify the physiological 18F-fluoro-2-deoxy-D-glucose (FDG) uptake in cats using positron emission tomography/computed tomography (PET/CT) and determine its characteristics by comparing physiological differences with dogs. Seven healthy cats and six healthy beagle dogs were examined using FDG-PET/CT. Regions of interest (ROIs) were manually drawn over 41 detailed structures of 5 gross structures (brain, head and neck, musculoskeleton, thorax, and abdomen). The mean and maximum standard uptake values (SUVmean and SUVmax) were calculated for each ROI. Physiological variation was classified as having increased radiopharmaceutical activity with no evidence of abnormal clinical or radiological findings. The brain had the highest SUV, which was observed in the cerebellum of both cats (SUVmean: 4.90 ± 1.04, SUVmax: 6.04 ± 1.24) and dogs (SUVmean: 3.15 ± 0.57, SUVmax: 3.90 ± 0.74). Cats had a significantly higher intracranial uptake than dogs did (P < 0.01). In the digestive system, the SUVs of the duodenum and jejunum were significantly higher in dogs than in cats (P < 0.05). FDG uptake of the submandibular tip, tonsils, neck of the gallbladder, and caudal colliculus were physiologically increased in cats. This study demonstrates physiological FDG uptake in normal tissues, and the differences between cats and dogs were interpreted based on species-specificity. This information contributes to improving the accurate diagnosis of cancer in cats and will aid in understanding glucose metabolism in both cats and dogs.
Collapse
Affiliation(s)
- Yeon Chae
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - Taesik Yun
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - Yoonhoi Koo
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - Dohee Lee
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - Hakhyun Kim
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - Mhan-Pyo Yang
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - Byeong-Teck Kang
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, South Korea
| |
Collapse
|
37
|
Rudd JM, Tamil Selvan M, Cowan S, Kao YF, Midkiff CC, Narayanan S, Ramachandran A, Ritchey JW, Miller CA. Clinical and Histopathologic Features of a Feline SARS-CoV-2 Infection Model Are Analogous to Acute COVID-19 in Humans. Viruses 2021; 13:v13081550. [PMID: 34452415 PMCID: PMC8402899 DOI: 10.3390/v13081550] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
The emergence and ensuing dominance of COVID-19 on the world stage has emphasized the urgency of efficient animal models for the development of therapeutics for and assessment of immune responses to SARS-CoV-2 infection. Shortcomings of current animal models for SARS-CoV-2 include limited lower respiratory disease, divergence from clinical COVID-19 disease, and requirements for host genetic modifications to permit infection. In this study, n = 12 specific-pathogen-free domestic cats were infected intratracheally with SARS-CoV-2 to evaluate clinical disease, histopathologic lesions, and viral infection kinetics at 4 and 8 days post-inoculation; n = 6 sham-inoculated cats served as controls. Intratracheal inoculation of SARS-CoV-2 produced a significant degree of clinical disease (lethargy, fever, dyspnea, and dry cough) consistent with that observed in the early exudative phase of COVID-19. Pulmonary lesions such as diffuse alveolar damage, hyaline membrane formation, fibrin deposition, and proteinaceous exudates were also observed with SARS-CoV-2 infection, replicating lesions identified in people hospitalized with ARDS from COVID-19. A significant correlation was observed between the degree of clinical disease identified in infected cats and pulmonary lesions. Viral loads and ACE2 expression were also quantified in nasal turbinates, distal trachea, lungs, and other organs. Results of this study validate a feline model for SARS-CoV-2 infection that results in clinical disease and histopathologic lesions consistent with acute COVID-19 in humans, thus encouraging its use for future translational studies.
Collapse
Affiliation(s)
- Jennifer M. Rudd
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (J.M.R.); (M.T.S.); (S.C.); (Y.-F.K.); (J.W.R.)
| | - Miruthula Tamil Selvan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (J.M.R.); (M.T.S.); (S.C.); (Y.-F.K.); (J.W.R.)
| | - Shannon Cowan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (J.M.R.); (M.T.S.); (S.C.); (Y.-F.K.); (J.W.R.)
| | - Yun-Fan Kao
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (J.M.R.); (M.T.S.); (S.C.); (Y.-F.K.); (J.W.R.)
| | - Cecily C. Midkiff
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA;
| | - Sai Narayanan
- Oklahoma Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (S.N.); (A.R.)
| | - Akhilesh Ramachandran
- Oklahoma Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (S.N.); (A.R.)
| | - Jerry W. Ritchey
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (J.M.R.); (M.T.S.); (S.C.); (Y.-F.K.); (J.W.R.)
| | - Craig A. Miller
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (J.M.R.); (M.T.S.); (S.C.); (Y.-F.K.); (J.W.R.)
- Correspondence:
| |
Collapse
|
38
|
Pöppl ÁG, Valle SC, Mottin TS, Leal JS, González FHD, Kucharski LC, Da Silva RSM. Pyometra-associated insulin resistance assessment by insulin binding assay and tyrosine kinase activity evaluation in canine muscle tissue. Domest Anim Endocrinol 2021; 76:106626. [PMID: 33866106 DOI: 10.1016/j.domaniend.2021.106626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 11/18/2022]
Abstract
Diestrus is associated with insulin resistance in bitches and pyometra can further impair insulin sensitivity. This study aimed to compare insulin sensitivity, insulin binding, and tyrosine kinase activity in bitches in anestrus, diestrus, or with pyometra. Patients submitted to elective ovariohysterectomy were divided into anestrus (n = 11) or diestrus (n = 13) according to reproductive history, vaginal cytology, and uterine histology. The group pyometra (n = 8) included bitches diagnosed with the disease based on clinical presentation and abdominal ultrasound findings and further confirmed by uterine histopathology. All patients were submitted to an intravenous glucose tolerance test (IVGTT) before ovariohysterectomy, and rectus abdominis muscle samples were collected during surgery for plasmatic membrane suspension preparation. Muscle-membranes were submitted to cold saturation insulin binding assay for dissociation constant (Kd) and maximum binding capacity (Bmax) determination, as well as exogenous substrate Poly (Glu: Tyr 4:1) phosphorylation assay for basal tyrosine kinase evaluation. Bitches with pyometra showed higher basal insulin (P < 0.001) and higher area under the curve (AUC) for insulin (P = 0.01) and glucose (P < 0.001) response during the IVGTT in comparison with bitches in anestrus or diestrus. Diestrus (P < 0.0001) and pyometra (P = 0.001) were associated with reduced tyrosine kinase activity in comparison with anestrus. No differences were documented in Kd and Bmax results for the low-affinity/high-capacity insulin receptors; however, high-affinity/low-capacity insulin receptors showed higher Kd and Bmax results in bitches in diestrus or with pyometra (P < 0.05) in comparison with anestrus. Despite the pyometra group showed the highest Kd values (P < 0.01), its Bmax results did not differ from the diestrus group (P > 0.05). Diestrus' higher Kd values and reduced tyrosine kinase activity in muscle tissue were compensated by increased total insulin binding capacity. Absent differences in IVGTT results between diestrus and anestrus bitches corroborate this finding. However, in bitches with pyometra, the highest Kd values were not compensated by increased total insulin binding capacity. This finding was associated with insulin resistance and glucose intolerance in IVGTT results. Moreover, pyometra resolution restored insulin sensitivity and glucose tolerance. These features can play a key role in pyometra-associated CDM, as well as in diabetic remission after pyometra resolution.
Collapse
Affiliation(s)
- Á G Pöppl
- Laboratório de Metabolismo e Endocrinologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite 500, Porto Alegre - RS, Brazil. CEP: 90050-170; Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9090, Porto Alegre - RS, Brazil. CEP: 91540-000; Hospital de Clínicas Veterinárias, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9090, Porto Alegre - RS, Brazil. CEP: 91540-000.
| | - S C Valle
- Laboratório de Metabolismo e Endocrinologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite 500, Porto Alegre - RS, Brazil. CEP: 90050-170
| | - T S Mottin
- Hospital de Clínicas Veterinárias, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9090, Porto Alegre - RS, Brazil. CEP: 91540-000
| | - J S Leal
- Setor de Patologia Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9090, Porto Alegre - RS, Brazil. CEP: 91540-000
| | - F H D González
- Departamento de Patologia Clínica Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9090, Porto Alegre - RS, Brazil. CEP: 91540-000
| | - L C Kucharski
- Laboratório de Metabolismo e Endocrinologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite 500, Porto Alegre - RS, Brazil. CEP: 90050-170
| | - R S M Da Silva
- Laboratório de Metabolismo e Endocrinologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite 500, Porto Alegre - RS, Brazil. CEP: 90050-170
| |
Collapse
|
39
|
Hamilton K, O'Kell AL, Gilor C. Serum trypsin-like immunoreactivity in dogs with diabetes mellitus. J Vet Intern Med 2021; 35:1713-1719. [PMID: 34196025 PMCID: PMC8295701 DOI: 10.1111/jvim.16208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022] Open
Abstract
Background Concurrent exocrine pancreatic dysfunction and decreased pancreatic organ size are common findings in various stages of human type 1 diabetes mellitus (DM). Exocrine pancreatic insufficiency (EPI) is incompletely described in diabetic dogs. Objective To compare canine trypsin‐like immunoreactivity (cTLI) of diabetic dogs with that of healthy controls. A secondary aim was to evaluate the correlation between duration of DM and cTLI. Animals Thirty client‐owned diabetic dogs and thirty client‐owned control dogs. Methods Cross‐sectional study. Diabetic and healthy control dogs were included if they had no clinical evidence of pancreatitis and if serum samples obtained after food was withheld were available. Serum cTLI was measured at a reference laboratory and compared between groups. Canine pancreatic lipase immunoreactivity (cPLI) was analyzed concurrently as an indicator of pancreatitis. Results The median cTLI concentration in all diabetic dogs (36.4 μg/L [range, 7.0‐288 μg/L]) did not differ from control dogs (28.7 μg/L [range, 12.8‐58.6 μg/L]) (P = .07; difference −7.8 μg/L [95% Confidence Interval (CI), −23.5 to 0.6 μg/L]). There was still no difference in cTLI between groups after exclusion of dogs with cPLI consistent with pancreatitis (n = 8 diabetic dogs). There was no correlation between cTLI and DM duration in all diabetic dogs (r = −0.07, [95% CI, −0.43 to 0.3], P = .7). Conclusions and Clinical Importance There was no evidence of EPI as evaluated using cTLI in this cohort of diabetic dogs, but concurrent increases in cPLI suggest cTLI might not be the optimal indicator of exocrine pancreatic dysfunction in dogs with DM.
Collapse
Affiliation(s)
- Kristen Hamilton
- Small Animal Hospital, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Allison L O'Kell
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Chen Gilor
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
40
|
Klotsman M, Adin CA, Anderson WH, Gilor C. Safety, Tolerability, and Proof-Of-Concept Study of OKV-119, a Novel Exenatide Long-Term Drug Delivery System, in Healthy Cats. Front Vet Sci 2021; 8:661546. [PMID: 34046446 PMCID: PMC8144329 DOI: 10.3389/fvets.2021.661546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/08/2021] [Indexed: 12/04/2022] Open
Abstract
Background: Glucagon-like peptide-1 (GLP-1) is an incretin hormone that plays an important role in glucose homeostasis and food intake. In people, GLP-1 receptor agonists (GLP-1RAs) are commonly used for the treatment of type 2 diabetes mellitus (DM) and obesity; however, non-adherence to injectable medications is common. OKV-119 is an investigational drug delivery system intended for subdermal implantation and delivery of the GLP-1RA exenatide for up to 6 months. Hypothesis/Objectives: Develop protocols for the subcutaneous (SC) insertion and removal of OKV-119 and to evaluate its tolerability, in vivo drug-releasing characteristics, and weight-loss effects in cats. Animals: Two cadaveric and 19 purpose-bred cats. Methods: In cadavers, OKV-119 insertion protocol and imaging were performed at three SC locations. The safety and tolerability of OKV-119 implants were assessed in a small (n = 4 cats) 62-day study. Weekly plasma exenatide concentrations and body weight were measured in a 42-day proof-of-concept study designed to evaluate OKV-119 prototypes implanted in cats (n = 15). Results: In anesthetized cats, the duration of insertion and removal procedures was 1–2 min. OKV-119 was easily identified on radiographs, and well-tolerated without any apparent implant site reactions. Following implantation, exanatide plasma concentrations were observed for up to 35 days. Plasma exenatide concentrations were correlated to weight loss. Conclusion and clinical importance: Our findings suggest that OKV-119 could be easily inserted and removed during a routine clinic visit and can be used to safely and effectively deliver exenatide. Future studies of OKV-119, configured to release exenatide for a longer extended months-long duration, are warranted to determine whether the combination of metabolic improvements and beneficial weight-loss, coupled with minimal impact on pet-owner's lifestyle, lead to improved outcomes for obese cats and feline DM patients.
Collapse
Affiliation(s)
| | - Christopher A Adin
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Wayne H Anderson
- Okava Pharmaceuticals, San Francisco, CA, United States.,Pulmonary and Critical Care Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Chen Gilor
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
41
|
Rudd JM, Selvan MT, Cowan S, Kao YF, Midkiff CC, Ritchey JW, Miller CA. Clinicopathologic features of a feline SARS-CoV-2 infection model parallel acute COVID-19 in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.04.14.439863. [PMID: 33880467 PMCID: PMC8057232 DOI: 10.1101/2021.04.14.439863] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The emergence and ensuing dominance of COVID-19 on the world stage has emphasized the urgency of efficient animal models for the development of therapeutics and assessment of immune responses to SARS-CoV-2 infection. Shortcomings of current animal models for SARS-CoV-2 include limited lower respiratory disease, divergence from clinical COVID-19 disease, and requirements for host genetic modifications to permit infection. This study validates a feline model for SARS-CoV-2 infection that results in clinical disease and histopathologic lesions consistent with severe COVID-19 in humans. Intra-tracheal inoculation of concentrated SARS-CoV-2 caused infected cats to develop clinical disease consistent with that observed in the early exudative phase of COVID-19. A novel clinical scoring system for feline respiratory disease was developed and utilized, documenting a significant degree of lethargy, fever, dyspnea, and dry cough in infected cats. In addition, histopathologic pulmonary lesions such as diffuse alveolar damage, hyaline membrane formation, fibrin deposition, and proteinaceous exudates were observed due to SARS-CoV-2 infection, imitating lesions identified in people hospitalized with ARDS from COVID-19. A significant correlation exists between the degree of clinical disease identified in infected cats and pulmonary lesions. Viral loads and ACE2 expression were quantified in nasal turbinates, distal trachea, lung, and various other organs. Natural ACE2 expression, paired with clinicopathologic correlates between this feline model and human COVID-19, encourage use of this model for future translational studies.
Collapse
Affiliation(s)
- Jennifer M. Rudd
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University; Stillwater, OK, USA
| | - Miruthula Tamil Selvan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University; Stillwater, OK, USA
| | - Shannon Cowan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University; Stillwater, OK, USA
| | - Yun-Fan Kao
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University; Stillwater, OK, USA
| | - Cecily C. Midkiff
- Division of Comparative Pathology, National Primate Research Center, Tulane University; Covington, LA, USA
| | - Jerry W. Ritchey
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University; Stillwater, OK, USA
| | - Craig A. Miller
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University; Stillwater, OK, USA
| |
Collapse
|
42
|
Pérez-López L, Boronat M, Melián C, Brito-Casillas Y, Wägner AM. Kidney function and glucose metabolism in overweight and obese cats. Vet Q 2021; 40:132-139. [PMID: 32315583 PMCID: PMC7241541 DOI: 10.1080/01652176.2020.1759844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: In people, obesity and prediabetes mellitus might predispose to chronic kidney disease (CKD).Aims: To assess the association of overweight [Body condition score (BCS) >5] and glucose metabolism alterations, with established or potential markers of CKD. In addition, fructosamine and fasted blood glucose were compared as predictors of early abnormal glucose metabolism.Methods: 54 clinically healthy cats were included in a cross-sectional study comprising 25 neutered males and 29 (28 neutered) females aged 7.2 (5.5-9.4) years. Two potential markers of CKD, namely urinary free active transforming growth factor-β1-creatinine ratio and urinary retinol binding protein-creatinine ratio were measured along with other parameters to assess CKD. A receiver operating curve was used to identify the best sensitivity and specificity of fructosamine to identify cats with fasting glucose >6.5 mmol/L.Results: No association was found between BCS and markers of CKD. Fructosamine was greater in cats with fasting glucose >6.5 mmol/L compared to those with fasting glucose ≤6.5 mmol/L. A fructosamine concentration ≥250 µmol/L was able to detect cats with hyperglycemia with a sensitivity of 77% and a specificity of 65%. Furthermore, fructosamine was more strongly correlated with fasting glucose than albumin-corrected fructosamine (r = 0.43, p = 0.002 vs r = 0.32, p = 0.026). Cats with higher fructosamine had lower serum symmetric dimethylarginine concentrations.Conclusion: The present study does not suggest an effect of obesity on renal function in domestic cats.Clinical relevance: Fructosamine might be of value for the diagnosis of prediabetes mellitus in cats.
Collapse
Affiliation(s)
- L Pérez-López
- Institute of Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas, Spain
| | - M Boronat
- Institute of Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas, Spain.,Department of Endocrinology and Nutrition, Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain
| | - C Melián
- Institute of Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas, Spain.,Veterinary Faculty, Department of Animal Pathology, University of Las Palmas de Gran Canaria, Arucas, Las Palmas, Spain
| | - Y Brito-Casillas
- Institute of Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas, Spain
| | - A M Wägner
- Institute of Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas, Spain.,Department of Endocrinology and Nutrition, Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
43
|
Furukawa S, Meguri N, Koura K, Koura H, Matsuda A. A Case of Canine Polyglandular Deficiency Syndrome with Diabetes Mellitus and Hypoadrenocorticism. Vet Sci 2021; 8:vetsci8030043. [PMID: 33800028 PMCID: PMC8000634 DOI: 10.3390/vetsci8030043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 11/29/2022] Open
Abstract
This report describes the first clinical case, to our knowledge, of a dog with polyglandular deficiency syndrome with diabetes mellitus and hypoadrenocorticism. A six-year-old female Cavalier King Charles Spaniel presented with a history of lethargy and appetite loss. The dog was diagnosed with diabetic ketoacidosis based on hyperglycemia and renal glucose and ketone body loss. The dog’s condition improved on intensive treatment of diabetes mellitus; daily subcutaneous insulin detemir injection maintained an appropriate blood glucose level over half a year. However, the dog’s body weight gradually decreased from day 207, and on day 501, it presented with a decreased appetite; the precise cause could not be determined. Based on mild hyponatremia and hyperkalemia, hypoadrenocorticism was suggested; the diagnosis was made using an adrenocorticotropic hormone stimulation test. Daily fludrocortisone with low-dose prednisolone oral administration resulted in poor recovery of the blood chemistry abnormalities; however, monthly desoxycorticosterone pivalate (DOCP) subcutaneous injection with daily low-dose prednisolone oral administration helped in the significant recovery of the abnormalities. Therefore, clinicians should consider the possibility of coexistence of hypoadrenocorticism in dogs with diabetes mellitus presenting with undifferentiated weight loss. Additionally, DOCP (not fludrocortisone) may be useful in treating dogs with diabetes mellitus complicated with hypoadrenocorticism.
Collapse
Affiliation(s)
- Sho Furukawa
- Earth Animal Hospital, 4-3-43 Hokushin-cho, Kitami, Hokkaido 090-0052, Japan; (S.F.); (N.M.); (H.K.)
| | - Natsuko Meguri
- Earth Animal Hospital, 4-3-43 Hokushin-cho, Kitami, Hokkaido 090-0052, Japan; (S.F.); (N.M.); (H.K.)
| | - Kazue Koura
- Bihoro Animal Hospital, 51-8 Aoyamakita, Bihoro, Hokkaido 092-0066, Japan;
| | - Hiroyuki Koura
- Earth Animal Hospital, 4-3-43 Hokushin-cho, Kitami, Hokkaido 090-0052, Japan; (S.F.); (N.M.); (H.K.)
| | - Akira Matsuda
- Earth Animal Hospital, 4-3-43 Hokushin-cho, Kitami, Hokkaido 090-0052, Japan; (S.F.); (N.M.); (H.K.)
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime 794-8555, Japan
- Correspondence: ; Tel.: +81-898-52-9240
| |
Collapse
|
44
|
Wang J, Dai P, Zou T, Lv Y, Zhao W, Zhang X, Zhang Y. Transcriptome analysis of the transdifferentiation of canine BMSCs into insulin producing cells. BMC Genomics 2021; 22:134. [PMID: 33632121 PMCID: PMC7905582 DOI: 10.1186/s12864-021-07426-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/05/2021] [Indexed: 12/31/2022] Open
Abstract
Background Bone marrow mesenchymal stem cells are a potential resource for the clinical therapy of certain diseases. Canine, as a companion animal, living in the same space with human, is an ideal new model for human diseases research. Because of the high prevalence of diabetes, alternative transplantation islets resource (i.e. insulin producing cells) for diabetes treatment will be in urgent need, which makes our research on the transdifferentiation of Bone marrow mesenchymal stem cells into insulin producing cells become more important. Result In this study, we completed the transdifferentiation process and achieved the transcriptome profiling of five samples with two biological duplicates, namely, “BMSCs”, “islets”, “stage 1”, “stage 2” and “stage 3”, and the latter three samples were achieved on the second, fifth and eighth day of induction. A total of 11,530 differentially expressed transcripts were revealed in the profiling data. The enrichment analysis of differentially expressed genes revealed several signaling pathways that are essential for regulating proliferation and transdifferentiation, including focal adhesion, ECM-receptor interaction, tight junction, protein digestion and absorption, and the Rap1 signaling pathway. Meanwhile, the obtained protein–protein interaction network and functional identification indicating involvement of three genes, SSTR2, RPS6KA6, and VIP could act as a foundation for further research. Conclusion In conclusion, to the best of our knowledge, this is the first survey of the transdifferentiation of canine BMSCs into insulin-producing cells according with the timeline using next-generation sequencing technology. The three key genes we pick out may regulate decisive genes during the development of transdifferentiation of insulin producing cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07426-3.
Collapse
Affiliation(s)
- Jinglu Wang
- The College of Veterinary Medicine of the Northwest Agriculture and Forestry University, No.3 Taicheng Road, Yangling, 712100, Shaanxi, P. R. China
| | - Pengxiu Dai
- The College of Veterinary Medicine of the Northwest Agriculture and Forestry University, No.3 Taicheng Road, Yangling, 712100, Shaanxi, P. R. China
| | - Tong Zou
- The College of Veterinary Medicine of the Northwest Agriculture and Forestry University, No.3 Taicheng Road, Yangling, 712100, Shaanxi, P. R. China
| | - Yangou Lv
- The College of Veterinary Medicine of the Northwest Agriculture and Forestry University, No.3 Taicheng Road, Yangling, 712100, Shaanxi, P. R. China
| | - Wen Zhao
- The College of Veterinary Medicine of the Northwest Agriculture and Forestry University, No.3 Taicheng Road, Yangling, 712100, Shaanxi, P. R. China
| | - Xinke Zhang
- The College of Veterinary Medicine of the Northwest Agriculture and Forestry University, No.3 Taicheng Road, Yangling, 712100, Shaanxi, P. R. China
| | - Yihua Zhang
- The College of Veterinary Medicine of the Northwest Agriculture and Forestry University, No.3 Taicheng Road, Yangling, 712100, Shaanxi, P. R. China.
| |
Collapse
|
45
|
Jewell DE, Panickar KS. Botanicals Reduce Circulating Concentrations of Cholesterol and Triglycerides and Work Synergistically With Arachidonic Acid to Reduce Inflammatory Cytokines in Cats. Front Vet Sci 2021; 8:620447. [PMID: 33614765 PMCID: PMC7889966 DOI: 10.3389/fvets.2021.620447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/12/2021] [Indexed: 12/27/2022] Open
Abstract
Forty Eight cats were used to measure the effects of feeding a traditional adult cat food supplemented with either arachidonic acid (ARA), a botanical mix (botanicals) or both on circulating biochemical parameters and inflammatory cytokines. The cats were healthy adults (mean age, 3.0; range, 1.3-6.4 years). The adult cats were fed one of four foods (n = 12 per group) for 84 days (dietary changes reported as fed): a traditional adult cat food (control, 0.05% ARA no added botanicals), or control food supplemented with arachidonic acid from chicken liver (0.13% ARA when supplemented), control food supplemented with botanicals (green tea 0.5%, fenugreek 0.05%, and tulsi 0.003%), and control plus ARA (0.13% as fed) with botanicals (green tea 0.5%, fenugreek 0.05%, and tulsi 0.003%). Response variables were compared between treatments: initially, and at 84 days (end of study). The measurements were standard complete blood counts and chemistries as well as circulating cytokines. Botanical inclusion reduced (P < 0.05) circulating cholesterol and triglycerides while arachidonic acid increased (P < 0.05) their concentrations. The pro-inflammatory cytokines MCP-1, TNFα, SDF-1, Flt3L, IL-8, IL-12p40, IL-13, and IL-18 were all reduced (P < 0.05) in cats after consuming the ARA + botanicals food for 84 days with little change after consuming the other foods. Therefore, this combination of ARA and botanicals may be of value in reducing inflammation.
Collapse
Affiliation(s)
- Dennis E Jewell
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States
| | | |
Collapse
|
46
|
Strage EM, Ley CJ, Forkman J, Öhlund M, Stadig S, Bergh A, Ley C. Homeostasis model assessment, serum insulin and their relation to body fat in cats. BMC Vet Res 2021; 17:34. [PMID: 33461546 PMCID: PMC7814573 DOI: 10.1186/s12917-020-02729-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 12/22/2020] [Indexed: 11/30/2022] Open
Abstract
Background Obesity is associated with insulin resistance (IR) and considered a risk factor for diabetes mellitus (DM) in cats. It has been proposed that homeostasis model assessment (HOMA-IR), which is the product of fasting serum insulin (mU/L) and glucose (mmol/L) divided by 22.5, can be used to indicate IR. The objectives of this study were threefold: (i) to evaluate associations between body fat, fasting insulin, and HOMA-IR, (ii) to determine population-based reference interval of HOMA-IR in healthy lean cats, and (iii) to evaluate biological variation of HOMA-IR and fasting insulin in cats. Results 150 cats were grouped as lean or overweight based on body condition score and in 68 of the cats body fat percentage (BF%) was estimated by computed tomography. Fasting serum insulin and glucose concentrations were analysed. Statistical differences in HOMA-IR and insulin between overweight or lean cats were evaluated using Wilcoxon rank-sum test. Robust method with Box-Cox transformation was used for calculating HOMA-IR reference interval in healthy lean cats. Relations between BF% and HOMA-IR and insulin were evaluated by regression analysis. Restricted maximum likelihood ratio was used to calculate indices of biological variation of HOMA-IR and insulin in seven cats. There were significant differences between groups with overweight cats (n = 77) having higher HOMA-IR (p < 0.0001) and insulin (p = 0.0002) than lean cats (n = 73). Reference interval for HOMA-IR in lean cats was 0.1–3.0. HOMA-IR and fasting insulin concentrations showed similar significant positive association with BF% (p = 0.0010 and p = 0.0017, respectively). Within-animal coefficient of variation of HOMA-IR and insulin was 51% and 49%, respectively. Conclusions HOMA-IR and fasting insulin higher in overweight than lean cats and correlate to BF%. The established population-based reference interval for HOMA-IR as well as the indices of biological variation for HOMA-IR and fasting insulin may be used when interpreting HOMA-IR and fasting insulin in cats. Further studies are needed to evaluate if HOMA-IR or fasting insulin is useful for identifying cats at risk of developing DM.
Collapse
Affiliation(s)
- Emma M Strage
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, 750 07, Uppsala, Sweden. .,University Animal Hospital, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Charles J Ley
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, 750 07, Uppsala, Sweden
| | - Johannes Forkman
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Malin Öhlund
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, 750 07, Uppsala, Sweden
| | - Sarah Stadig
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, 750 07, Uppsala, Sweden
| | - Anna Bergh
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, 750 07, Uppsala, Sweden
| | - Cecilia Ley
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| |
Collapse
|
47
|
Genetics of canine diabetes mellitus part 1: Phenotypes of disease. Vet J 2021; 270:105611. [PMID: 33641807 DOI: 10.1016/j.tvjl.2021.105611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 01/09/2023]
Abstract
This two-part article discusses the mechanisms by which genetic variation can influence the risk of complex diseases, with a focus on canine diabetes mellitus. In Part 1, presented here, the importance of accurate methods for classifying different types of diabetes will be discussed, since this underpins the selection of cases and controls for genetic studies. Part 2 will focus on our current understanding of the genes involved in diabetes risk, and the way in which new genome sequencing technologies are poised to reveal new diabetes genes in veterinary species.
Collapse
|
48
|
Winiarczyk D, Winiarczyk M, Winiarczyk S, Michalak K, Adaszek Ł. Proteomic Analysis of Tear Film Obtained from Diabetic Dogs. Animals (Basel) 2020; 10:ani10122416. [PMID: 33348610 PMCID: PMC7766195 DOI: 10.3390/ani10122416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Canine diabetes is a serious disease, which can lead to severe complications, eventually even death. Currently, all the diagnostic procedures are the invasive ones, with blood collection remaining as a golden standard for both initial diagnosis, and later follow-up. Tears can be obtained in a non-invasive manner, which makes them a perfect candidate for a screening tool in canine diabetes. In this study we aimed to analyze the protein composition of the tears collected from the healthy animals and compared it to the diabetic group. There are significant differences between these two groups, and we believe that the identified proteins hold promise as a potential diagnostic tool, which can be later on used both in clinical practice, and for better understanding of the disease. Abstract Canine diabetes mellitus is a significant health burden, followed with numerous systemic complications, including diabetic cataracts and retinopathy, leading to blindness. Diabetes should be considered as a disease damaging all the body organs, including gastrointestinal tract, through a complex combination of vascular and metabolic pathologies, leading to impaired gut function. Tear film can be obtained in a non-invasive way, which makes it a feasible biomarker source. In this study we compared proteomic changes ongoing in tear film of diabetic dogs. The study group consisted of 15 diabetic dogs, and 13 dogs served as a control group. After obtaining tear film with Schirmer strips, we performed 2-dimensional electrophoresis, followed by Delta2D software analysis, which allowed to select statistically significant differentially expressed proteins. After their identification with MALDI-TOF (matrix assisted laser desorption and ionisation time of flight) spectrometry we found one up-regulated protein in tear film of diabetic dogs—SRC kinase signaling inhibitor 1 (SRCIN1). Eight proteins were down-regulated: phosphatidylinositol-4 kinase type 2 alpha (PI4KIIα), Pro-melanin concentrating hormone (Pro-MCH), Flotillin-1, Protein mono-ADP ribosyltransferase, GRIP and coiled coil domain containing protein 2, tetratricopeptide repeat protein 36, serpin, and Prelamin A/C. Identified proteins were analyzed by Panther Gene Ontology software, and their possible connections with diabetic etiopathology were discussed. We believe that this is the first study to target tear film proteome in canine diabetes. We believe that combined with traditional examination, the tear film proteomic analysis can be a new source of biomarkers both for clinical practice, and experimental research.
Collapse
Affiliation(s)
- Dagmara Winiarczyk
- Department of Internal Diseases of Small Animals, University of Life Sciences of Lublin, 20-950 Lublin, Poland;
| | - Mateusz Winiarczyk
- Department of Vitreoretinal Surgery, Medical University of Lublin, 20-950 Lublin, Poland;
| | - Stanisław Winiarczyk
- Department of Epizootiology, University of Life Sciences of Lublin, 20-950 Lublin, Poland; (S.W.); (K.M.)
| | - Katarzyna Michalak
- Department of Epizootiology, University of Life Sciences of Lublin, 20-950 Lublin, Poland; (S.W.); (K.M.)
| | - Łukasz Adaszek
- Department of Epizootiology, University of Life Sciences of Lublin, 20-950 Lublin, Poland; (S.W.); (K.M.)
- Correspondence:
| |
Collapse
|
49
|
O'Kell AL, Wasserfall CH, Henthorn PS, Atkinson MA, Hess RS. Evaluation for type 1 diabetes associated autoantibodies in diabetic and non-diabetic Australian terriers and Samoyeds. Canine Med Genet 2020; 7:10. [PMID: 33323126 PMCID: PMC7491469 DOI: 10.1186/s40575-020-00089-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Background Evidence for an autoimmune etiology in canine diabetes is inconsistent and could vary based on breed. Previous studies demonstrated that small percentages of diabetic dogs possess autoantibodies to antigens known to be important in human type 1 diabetes, but most efforts involved analysis of a wide variety of breeds. The objective of this study was to evaluate the presence of glutamic acid decarboxylase 65 (GAD65), insulinoma-associated protein 2 (IA-2), and zinc transporter 8 (ZnT8) autoantibodies in diabetic and non-diabetic Australian Terriers and Samoyeds, two breeds with comparatively high prevalence of diabetes, in the United States. Results There was no significant difference in the proportion of samples considered positive for GAD65 or ZnT8 autoantibodies in either breed evaluated, or for IA-2 autoantibodies in Australian Terriers (p > 0.05). The proportion of IA-2 autoantibody positive samples was significantly higher in diabetic versus non-diabetic Samoyeds (p = 0.003), but substantial overlap was present between diabetic and non-diabetic groups. Conclusions The present study does not support GAD65, IA-2, or ZnT8 autoantibodies as markers of autoimmunity in canine diabetes in Samoyeds or Australian Terriers as measured using human antigen sandwich enzyme-linked immunosorbent (ELISA) assays. Future studies using canine specific assays as well as investigation for alternative markers of autoimmunity in these and other canine breeds are warranted.
Collapse
Affiliation(s)
- Allison L O'Kell
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Florida, 2015 SW Archer Rd, Gainesville, FL, 32608, USA.
| | - Clive H Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, The University of Florida Diabetes Institute, 1275 Center Dr., Gainesville, FL, 32610, USA
| | - Paula S Henthorn
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey St., Philadelphia, PA, 19104, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, The University of Florida Diabetes Institute, 1275 Center Dr., Gainesville, FL, 32610, USA.,Department of Pediatrics, College of Medicine, The University of Florida Diabetes Institute, 1275 Center Dr., Gainesville, FL, 32610, USA
| | - Rebecka S Hess
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey St., Philadelphia, PA, 19104, USA
| |
Collapse
|
50
|
Heeley AM, O’Neill DG, Davison LJ, Church DB, Corless EK, Brodbelt DC. Diabetes mellitus in dogs attending UK primary-care practices: frequency, risk factors and survival. Canine Med Genet 2020. [PMCID: PMC7288514 DOI: 10.1186/s40575-020-00087-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background Diabetes mellitus (DM) is an important endocrine disorder of dogs. The objectives of this study were to estimate prevalence and incidence of DM in dogs, and to explore risk factors for DM and the survival of DM cases in primary-care clinics in the UK. Results A case-control study nested in the cohort of dogs (n = 480,469) aged ≥3 years presenting at 430 VetCompass clinics was used to identify risk factors for DM, using multivariable logistic regression. Overall 409 new and 863 pre-existing DM cases (total 1272) were identified in 2016, giving an apparent annual prevalence of 0.26% (95% confidence interval (CI): 0.25–0.28%), and an annual incidence risk of 0.09% (95%CI: 0.08–0.09%) in dogs aged ≥3 years. Factors associated with increased odds for DM diagnosis were all age categories > 8 years, female entire dogs (odds ratio (OR): 3.03, 95% CI 1.69–5.44, p < 0.001) and male neutered dogs (OR: 1.99, 95% CI 1.18–3.34, p = 0.010) compared to male entire dogs, Border Terriers (OR: 3.37, 95% CI 1.04–10.98, p = 0.043) and West Highland White Terriers (WHWT) (OR: 2.88, 95% CI 1.49–5.56, p = 0.002) compared to crossbreeds. Dogs that had received previous glucocorticoid treatment (OR: 2.19, 95% CI 1.02–4.70, p = 0.044) and those with concurrent conditions (documented obese, pancreatitis, hyperadrenocorticism) also had increased odds for DM diagnosis. Cox regression modelling was used to evaluate factors associated with survival in the 409 incident DM cases in 2016. Increased hazard of death following diagnosis of DM was shown in dogs that were ≥ 10 years age, Cocker Spaniels (HR: 2.06, 95% CI 1.06–4.01, p = 0.034) compared to crossbreeds, had a blood glucose (BG) level at diagnosis > 40 mmol/L (HR: 2.73, 95% CI 1.35–5.55, p = 0.005) compared to < 20 mmol/L at diagnosis, or had received previous glucocorticoid treatment (HR: 1.86, 95% CI 1.21–2.86, p = 0.005). Dogs at reduced hazard of death included neutered dogs (HR: 0.58, 95% CI 0.42–0.79, p = 0.001), Border Collies (HR: 0.39, 95% CI 0.17–0.87, p = 0.022) and those starting insulin treatment (HR: 0.08 95% CI 0.05–0.12, p < 0.001). Conclusions Certain breeds and concurrent health conditions are associated with an increased risk of DM. In addition to certain signalment factors, a high BG level at diagnosis and prior glucocorticoid treatment were adversely associated with survival of dogs with DM.
Collapse
|