1
|
Liu H, Yang Q, Li G, Hung TC, Zuo J, Luan N, Liu X, Wu Q. Probiotic Lactobacillus rhamnosus modulates MCLR-induced oogenesis disorders in zebrafish: Evidence from the transcriptome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175532. [PMID: 39153614 DOI: 10.1016/j.scitotenv.2024.175532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Microcystin-LR (MCLR) produced by cyanobacterial blooms have received global attention. MCLR has been recognized as a reproductive toxin to fish and poses a threat to ecosystem stability. It has been proven that probiotic dietary management can improve reproductive performance of fish. It is worth paying attention to exploring whether probiotic management can alleviate the reproductive toxicity caused by MCLR. In this investigation, adult zebrafish were exposed to different doses of MCLR solution (0, 2.2, and 22 μg/L) with or without the Lactobacillus rhamnosus GG supplementation for a duration of 28 days. The results showed that female zebrafish spawning was reduced after exposure to MCLR, but this reduction was reversed when L. rhamnosus GG was added. To elucidate how L. rhamnosus GG mitigates reproductive toxicity caused by MCLR, we examined a series of indicators of MCLR accumulation, ovarian histology, hormones, and transcriptome levels. Our study showed that L. rhamnosus GG could alleviate oogenesis disorders and ultimately attenuate MCLR-induced reproductive toxicity by reducing MCLR accumulation in the gonads, modulating the expression of endocrine system and auto/paracrine factors. The transcriptome results revealed that single or combined exposure of MCLR and L. rhamnosus GG mainly affected the endocrine system, energy metabolism, and RNA degradation and translation. Overall, our results provide new insights for alleviating MCLR-induced reproductive toxicity and help promote healthy aquaculture.
Collapse
Affiliation(s)
- Haoling Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing Yang
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Tien-Chieh Hung
- Department of Biological and Agricultural Engineering, University of California-Davis, Davis, CA 95616, USA
| | - Junli Zuo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ning Luan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaolin Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Huangshi Key Laboratory of Lake Biodiversity and Environmental Conservation, Hubei Normal University, Huangshi, Hubei Province 435002, China
| |
Collapse
|
2
|
Eissa ESH, El-Sayed AFM, Hendam BM, Ghanem SF, Abd Elnabi HE, Abd El-Aziz YM, Abdelnour SA, Eissa MEH, Dighiesh HS. The regulatory effects of water probiotic supplementation on the blood physiology, reproductive performance, and its related genes in Red Tilapia (Oreochromis niloticus X O. mossambicus). BMC Vet Res 2024; 20:351. [PMID: 39113050 PMCID: PMC11305012 DOI: 10.1186/s12917-024-04190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/15/2024] [Indexed: 08/11/2024] Open
Abstract
Probiotics are becoming increasingly popular as eco-friendly alternatives in aquaculture. However, there is limited research on their impacts on the reproductive efficiency of Red Tilapia (Oreochromis niloticus x O. mossambicus) broodstock. Therefore, this experiment aimed to explore the combined effects of selective probiotics Bacillus subtilis and B. licheniformis (BSL; 1:1) added to water on blood hematology, serum metabolites, gonadal histology, reproductive performance, and reproductive associated genes in Red Tilapia broodstock. Tilapia broodfish weighing 140-160 g were stocked in four treatment groups: control (T0), and the other three groups were added different levels of BSL to the water as follows: T1 (0.01 g/m3), T2 (0.02 g/m3), and T3 (0.03 g/m3), respectively. Results indicate that BSL administration significantly improved RBCs, hemoglobin, hematocrit, MCH, and MCHC, with the highest improvement seen in the T3 group (P < 0.05). BSL added to the fish water significantly enhanced serum protein fractions (total protein, albumin, and globulins), while AST, ALT, ALP, creatinine, uric acid, and glucose were significantly diminished in a dose-dependent way (P < 0.05). Adding 0.02-0.03 g/ m3 of BSL resulted in higher antioxidant status (superoxide dismutase and catalase) compared to other groups (P < 0.05). Testosterone levels were higher in T3 than in other groups (P < 0.05). All female hormones (LH, FSH, estradiol, and progesterone) were substantially augmented by the addition of BSL. Additionally, the BSL groups exhibited higher GSI, HSI, VSI (male only), egg diameter (mm), mean number of fry/fish, and mean fry weight (g) compared to the control group (P < 0.05). Expression of reproductive-associated genes (vasa, nanos1a, nanos2, dnd1, pum1, AMH, and vtg) were significantly up-regulated in the gonads of fish in the 0.03 g/m3 treatment. The histological gonadal structure exhibited that BSL improved gonad maturation in both genders of Tilapia fish. Overall, adding a mixture of B. subtilis and B. licheniformis (0.03 g/m3 water) can accelerate reproductive performance in Red Tilapia through up-regulation of reproductive genes and enhance the health profile.
Collapse
Affiliation(s)
- El-Sayed Hemdan Eissa
- Fish Research Centre, Faculty of Agricultural Environmental Sciences, Arish University, El-Arish, 45511, Egypt
| | | | - Basma M Hendam
- Department of Husbandry and Development of Animal Wealth, Mansoura University, Mansoura, Egypt
| | - Sara F Ghanem
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Heba E Abd Elnabi
- Department of Fish Resources and Aquaculture, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Yasmin M Abd El-Aziz
- Zoology Department, Faculty of Science, Port-Said University, Port Fouad, 42526, Egypt
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Moaheda E H Eissa
- Biotechnology Department, Fish Farming and Technology Institute, Suez Canal University, Ismailia, 41522, Egypt
| | - Hagar Sedeek Dighiesh
- Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez, 43512, Egypt
| |
Collapse
|
3
|
Ponomareva EN, Sorokina MN, Grigoriev VA, Mazanko M, Chistyakov VA, Rudoy DV. Probiotic Bacillus amyloliquefaciens B-1895 Improved Growth of Juvenile Trout. Food Sci Anim Resour 2024; 44:805-816. [PMID: 38974727 PMCID: PMC11222697 DOI: 10.5851/kosfa.2023.e75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 07/09/2024] Open
Abstract
The aim of this study was to evaluate a new Bacillus amyloliquefaciens B-1895 probiotic as a feed additive for farmed trout. Final weight, absolute and average daily gain of fish, and average daily growth rate were higher in the group that received the probiotic than in the control group (p<0.05). Moreover, the probiotic-fed trout had more intense growth rates than the control group (higher by 15.7%; p<0.05). A decrease in feed ratio was also observed in the group that received probiotic (25% decrease; p<0.05), indicating more efficient digestion and assimilation of feed. In general, the introduction of probiotic in the feed did not adversely affect the functional status of the fish. In young trout of the control group, when assessing the general chemical composition of the organism in the muscle tissue revealed significantly (p≤0.001) higher level of moisture content by 5.1% and lower by 11.0% dry matter content. In muscle, the protein content was higher by 1.33% (p≤0.001) and fat content by 2.1% (p≤0.001) in experimental fish. Generally, Lactobacilli, Enterococcus, Vibrio, Bacillus, and coliform bacteria were found in the intestinal samples of rainbow trout. Significant reliable difference (p≤0.05) between the samples of experimental and control groups was noted in the content of Bacillus bacteria. In the control group, 5.0±0.4×103 CFU/g was detected, while in the experimental group 8.4±0.8×104 CFU/g. Overall, the data indicate that probiotic bacteria B. amyloliquefaciens B-1895 has no adverse effect on selected microorganisms in the study fish.
Collapse
Affiliation(s)
- Elena N Ponomareva
- Federal Research Center, Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don 344006, Russia
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don 344002, Russia
| | - Marina N Sorokina
- Federal Research Center, Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don 344006, Russia
| | - Vadim A Grigoriev
- Federal Research Center, Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don 344006, Russia
| | - Mariya Mazanko
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don 344002, Russia
| | - Vladimir A Chistyakov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don 344002, Russia
- Southern Federal University, Rostov-on-Don 344006, Russia
| | - Dmitry V Rudoy
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don 344002, Russia
| |
Collapse
|
4
|
Ismail MF, Lim SM, Lim FT, Ramasamy K. In Vitro and In Vivo Characterisation of Lactiplantibacillus plantarum LAB12 in Pea Protein-Alginate Microcapsules. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10171-6. [PMID: 37816988 DOI: 10.1007/s12602-023-10171-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 10/12/2023]
Abstract
The susceptibility of probiotics to high temperature and low pH remains a major challenge in food industries. Numerous commercially available probiotic products were reportedly presented with lower probiotic viability than claimed. To confer health benefits to the host, it is essential that probiotic strain remains viable at optimal amount during food processing procedures, storage and passage through the gastrointestinal tract. This study addressed these issues by immobilising Lactiplantibacillus plantarum LAB12 isolated from tempeh (fermented soybean) in a polymeric matrix made up of alginate (Alg, 0.5% w/v) and denatured pea protein isolate (PPi, 1-10% w/v) using the emulsion/acidification technique. Alg supplemented with 10% PPi (Alg-PPi10) appeared to be optimally small (< 350 µm), substantiated by the improved surface smoothness and uniform dispersion of probiotics in the Alg-PPi core. The findings indicated that microencapsulation enhanced thermal stability of L. plantarum LAB12. The microencapsulated L. plantarum LAB12 remained highly viable (80%) despite exposure to 100 °C for 5 min. The microencapsulated cell number during storage at 4 and 25 °C for 8 weeks was greater than 7 log CFU g-1. L. plantarum LAB12 encapsulated in Alg-PPi10 exhibited high viability (96%) in simulated gastric juice (at pH 1.8 for 120 min) and facilitated maximum release of probiotics (> 9 log CFU g-1) in simulated intestinal fluid (at pH 6.8 for 240 min). Whilst retaining their intrinsic cholesterol lowering effect, microencapsulation conferred additional advantages to L. plantarum LAB12 in terms of lowering serum triglyceride and increasing HDL cholesterol in zebrafish fed with high-cholesterol diet (HCD). Overall, our findings strongly imply the potential use of Alg-PPi10 as an effective medium that confers thermal protection and facilitates pH-sensitive release of cholesterol-reducing L. plantarum LAB12. This will allow the diverse applications L. plantarum LAB12 across health, food and agro-feed industries amongst others.
Collapse
Affiliation(s)
- Muhamad Fareez Ismail
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam Campus, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Siong Meng Lim
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Fei Tieng Lim
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Kalavathy Ramasamy
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
5
|
Mohammadian T, Momeni H, Kazemi M, Mesbah M, Abedini M, Zare M, Khosravi M, Osroosh E. Eubiotic Effect of a Dietary Bio-Aqua ® and Sodium Diformate (NaDF) on Salmo trutta caspius: Innate Immune System, Biochemical Indices, Antioxidant Defense, and Expression of Immunological and Growth-Related Genes. Probiotics Antimicrob Proteins 2023; 15:1342-1354. [PMID: 36074297 DOI: 10.1007/s12602-022-09965-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 10/14/2022]
Abstract
The present study investigated the effects of combined and singular oral administration of Bio-Aqua® with different dosages of sodium diformate (NaDF) on biochemical indices, innate immune responses, antioxidant effects, and expressions of immunological related genes of Caspian brown trout (Salmo trutta caspius). Fingerlings Salmo trutta caspius (n = 1800; initial weight 15 ± 3 g) were randomly allocated into five groups (120 fish group-1 in triplicates). Control diet: without any addition, G1, G2, G3, and G4 received diets containing 0.2 g kg-1 commercial probiotic Bio-Aqua® combined with 0, 0.5, 1.0, and 1.5% NaDF to the basal diet for 60 days according to recommended dosages reported in previous studies. Results indicated that serum bactericidal activity (G3 on day 60 and G1 on day 30) and classic complement in all groups (on day 60) (G1 and G2 on day 30) were significantly elevated (P < 0.05). The serum lysozyme, glucose, globulin, and albumin levels showed no significant differences between all groups compared to the control group (P > 0.05). On days 30 and 60 of the sampling, no significant difference was observed in the amount of superoxide disotase (SOD) and catalase (CAT) between the treatments (P > 0.05) but activity of malondialdehyde (MDA) was lower in G1 than the control (P < 0.05). The expression of the immune-regulating genes IL-10, IL-1β, GTP, FATP, and IGF was significantly improved in all probiotic + acidifier-treated groups (P < 0.05). The current findings showed that mixture of Bio-Aqua® and NaDF (1.5% + pro) is beneficial, as it effectively improves some immune parameters and expression of immunological and growth-related genes in Caspian brown trout.
Collapse
Affiliation(s)
- Takavar Mohammadian
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
- Member of Excellence Center of Warm Water Fish Health, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Hossien Momeni
- Department of Clinical Sciences, Faculty of Veterinary Medicine Shahid, Ph.D Student Aquatic Health, Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Kazemi
- Department of Clinical Sciences, Faculty of Veterinary Medicine Shahid, Ph.D Student Aquatic Health, Chamran University of Ahvaz, Ahvaz, Iran
| | - Mehrzad Mesbah
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Member of Excellence Center of Warm Water Fish Health, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Melika Abedini
- DVM, Graduated, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mojtaba Zare
- Department of Clinical Sciences, Faculty of Veterinary Medicine Shahid, Ph.D Student Aquatic Health, Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Khosravi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Elham Osroosh
- Department of Clinical Sciences, Faculty of Veterinary Medicine Shahid, Ph.D Student Aquatic Health, Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
6
|
Bu LK, Jia PP, Li WG, Li YZ, Li TY, Pei DS. Probiotics mitigate kidney damage after exposure to Sri Lanka's local groundwater from chronic kidney disease with uncertain etiology (CKDu) prevalent area in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 262:106671. [PMID: 37657145 DOI: 10.1016/j.aquatox.2023.106671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Groundwater in Sri Lanka, contaminated with environmental toxins, is suspected to potentially induce chronic kidney disease of uncertain etiology (CKDu) in humans. This study aims to elucidate the potential mitigating effects of probiotics on kidney damage induced by exposure to this local groundwater (LW) in zebrafish. We used zebrafish as a model organism and exposed them to local groundwater to evaluate the risk of CKDu. Probiotics were then added at a concentration of 108 colony-forming units per milliliter (CFU/mL). Our findings revealed that exposure to local groundwater resulted in abnormalities, such as tail deletion and spinal curvature in zebrafish larvae. However, the addition of probiotics mitigated these effects, improving the hatching rate, heart rate, length, weight, deformity rate, survival rate, and abnormal behavior of zebrafish. It also positively influenced the differential expression levels of kidney development and immunity-related genes (dync2h1, foxj1, pkd2, gata3, slc20a1, il1β, and lyso). Furthermore, exposure to LW decreased both the diversity and abundance of microbiota in zebrafish larvae. However, treatment with probiotics, such as L. plantarum and L. rhamnosus partially restored the disrupted gut microbiota and significantly impacted the cellular process pathways of the microbial community, as determined by KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. In conclusion, this study highlights the risks associated with Sri Lanka's local groundwater from a CKDu prevalent area and confirms the beneficial effects of different probiotics. These findings may provide new insights into bacterial function in host kidney health.
Collapse
Affiliation(s)
- Ling-Kang Bu
- College of Life Science, Henan Normal University, Xinxiang 453007, China; School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Wei-Guo Li
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Yong-Zhi Li
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, CAS, Chongqing 400714, China
| | - Tian-Yun Li
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, CAS, Chongqing 400714, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
7
|
Hoseinifar SH, Maradonna F, Faheem M, Harikrishnan R, Devi G, Ringø E, Van Doan H, Ashouri G, Gioacchini G, Carnevali O. Sustainable Ornamental Fish Aquaculture: The Implication of Microbial Feed Additives. Animals (Basel) 2023; 13:ani13101583. [PMID: 37238012 DOI: 10.3390/ani13101583] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Ornamental fish trade represents an important economic sector with an export turnover that reached approximately 5 billion US dollars in 2018. Despite its high economic importance, this sector does not receive much attention. Ornamental fish husbandry still faces many challenges and losses caused by transport stress and handling and outbreak of diseases are still to be improved. This review will provide insights on ornamental fish diseases along with the measures used to avoid or limit their onset. Moreover, this review will discuss the role of different natural and sustainable microbial feed additives, particularly probiotics, prebiotics, and synbiotics on the health, reduction in transport stress, growth, and reproduction of farmed ornamental fish. Most importantly, this review aims to fill the informational gaps existing in advanced and sustainable practices in the ornamental fish production.
Collapse
Affiliation(s)
- Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-43464, Iran
| | - Francesca Maradonna
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Mehwish Faheem
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram 631501, Tamil Nadu, India
| | - Gunapathy Devi
- Department of Zoology, Nehru Memorial College, Puthanampatti 621007, Tamil Nadu, India
| | - Einar Ringø
- Norwegian College of Fishery Science, Faculty of Bioscience, Fisheries and Economics, UiT The Arctic University of Norway, N9019 Tromsø, Norway
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ghasem Ashouri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Giorgia Gioacchini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| |
Collapse
|
8
|
Akbari Nargesi E, Falahatkar B. Dietary supplementation of multi-strain probiotic in male rainbow trout (Oncorhynchus mykiss) broodstock: Effects on feed efficiency, hemato-biochemical parameters, immune response, and semen quality. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:371-384. [PMID: 37002469 DOI: 10.1007/s10695-023-01181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 03/10/2023] [Indexed: 05/04/2023]
Abstract
The present study aimed to determine the effects of dietary probiotic supplementation on feed efficiency, physiological parameters, and semen quality of male rainbow trout (Oncorhynchus mykiss) broodstock. For this purpose, a total of 48 breeders with an average initial weight of 1366.1 ± 33.8 g were divided into 4 groups and 3 replicates. Fish were fed with diets containing 0 (control), 1 × 109 (P1), 2 × 109 (P2), and 4 × 109 (P3) CFU multi-strain probiotic kg-1 diet for 8 weeks. According to the results, P2 treatment significantly enhanced body weight increase, specific growth rate, and protein efficiency ratio and decreased feed conversion ratio. Moreover, the highest values of red blood cells count, hemoglobin, and hematocrit values were observed in P2 treatment (P < 0.05). The lowest levels of glucose, cholesterol, and triglyceride were found in P1, P2, and P3 treatments, respectively. Also, the highest levels of total protein and albumin were obtained in P2 and P1 treatments (P < 0.05). Based on the results, plasma enzymes contents were significantly decreased in P2 and P3 treatments. In terms of immune parameters, the complement component 3, complement component 4, and immunoglobulin M levels were increased in all probiotic-fed treatments (P < 0.05). For spermatological features, the highest spermatocrit value, sperm concentration, and motility time were observed in the P2 treatment (P < 0.05). Consequently, we conclude that multi-strain probiotics can be used as functional feed additives in male rainbow trout broodstock to enhance semen quality, improve physiological responses, and better feed efficiency.
Collapse
Affiliation(s)
- Erfan Akbari Nargesi
- Fisheries Department, Faculty of Natural Resources, University of Guilan, P. O. Box 1144, Sowmeh Sara, Guilan, Iran
| | - Bahram Falahatkar
- Fisheries Department, Faculty of Natural Resources, University of Guilan, P. O. Box 1144, Sowmeh Sara, Guilan, Iran.
- Department of Marine Sciences, The Caspian Sea Basin Research Center, University of Guilan, Rasht, Guilan, Iran.
| |
Collapse
|
9
|
Akbari Nargesi E, Falahatkar B. Effects of dietary supplementation of multi-strain probiotics on semen quality, seminal plasma compositions, and fertilization ability of rainbow trout (Oncorhynchus mykiss) broodstock spermatozoa. Theriogenology 2023; 202:1-9. [PMID: 36878033 DOI: 10.1016/j.theriogenology.2023.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 02/16/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023]
Abstract
The present experiment aims to study the effects of dietary multi-strain probiotics on semen quality, seminal plasma compositions, and fertilization ability of male rainbow trout. For this purpose, a total of 48 broodstocks with an average initial weight of 1366.1 ± 33.8 g were divided into 4 groups and 3 replicates. Fish were fed with diets containing 0 (control), 1 × 109 (P1), 2 × 109 (P2), and 4 × 109 (P3) CFU probiotic kg-1 diet for 12 weeks. Results showed that dietary supplementation of probiotics significantly increased plasma testosterone level, motility time of spermatozoa, sperm density, and spermatocrit value in P2 and P3 treatments and Na+ level in P2 treatment compared to the control group (P < 0.05). The activities of aspartate aminotransferase and lactate dehydrogenase had significantly decreased in the P2 treatment compared to the control group (P < 0.05). No considerable variations were observed between control fish and treatment groups (P > 0.05) in semen biochemical parameters, percentage of motile spermatozoa, osmolality, and pH of seminal plasma. Based on the results, the highest fertilization rate (97.2 ± 0.9%) and eyed egg survival (95.7 ± 1.6%) were observed in the P2 treatment, and those values showed remarkable differences with the control group (P < 0.05). The results indicated that multi-strain probiotics have potential efficacy on semen quality and fertilization ability of rainbow trout broodstock spermatozoa.
Collapse
Affiliation(s)
- Erfan Akbari Nargesi
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, P. O. Box 1144, Guilan, Iran
| | - Bahram Falahatkar
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, P. O. Box 1144, Guilan, Iran; Department of Marine Sciences, The Caspian Sea Basin Research Center, University of Guilan, Rasht, Guilan, Iran.
| |
Collapse
|
10
|
Du Y, Li H, Xu W, Hu X, Wu T, Chen J. Cell surface-associated elongation factor Tu interacts with fibronectin mediating the adhesion of Lactobacillus plantarum HC-2 to Penaeus vannamei intestinal cells and inhibiting the apoptosis induced by LPS and pathogen in Caco-2 cells. Int J Biol Macromol 2022; 224:32-47. [DOI: 10.1016/j.ijbiomac.2022.11.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
|
11
|
Yuan Z, Song H, Huang Q, Liu J, Sun H, Meng X, Qian A, Sun W, Shan X. Immune enhancement effects of inactivated vaccine against extracellular products of Aeromonas caviae AC-CY on crucian carp. FISH & SHELLFISH IMMUNOLOGY 2022; 127:1001-1011. [PMID: 35870745 DOI: 10.1016/j.fsi.2022.07.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/06/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Aeromonas caviae is a zoonotic pathogen that can cause disease in aquatic organisms and mammals, including humans, and it is widespread in nature, especially in freshwater environments. Previous research has reported that extracellular products (ECPs) secreted by pathogens during growth are effective protective antigens that can induce the host immune response and protect the host from pathogens. However, little is known about how ECPs enhance immunity. Here, we prepared extracellular products by the cellophane plate method, determined the total protein concentration, and analysed the protein composition of the extracellular products by SDS-PAGE. Subsequently, their enzyme activity and pathogenicity were evaluated separately. Crucian carp were randomly divided into four groups to receive formalin-inactivated A. caviae vaccine (FKC), ECPs mixed with the same amount of Freund's complete adjuvant, the same amount of ECPs mixed with an equal volume of A. caviae inactivated vaccine (FKC + ECPs), sterile PBS alone via intraperitoneal injection. On Days 7, 14, 21, and 28 after immunization, the expression levels of IgM, SOD, and CAT and the lysozyme (LYS) activity in the serum were detected by ELISA, and the relative expression levels of the TNF-α, IFN-γ, IL-1β, and IL-10 genes in the liver, kidney, spleen, intestine, and gills were measured by qPCR. The extracellular products generated five clearly visible protein bands and exhibited lipase, protease, amylase, DNase and lysozyme but no urease or lecithinase activities. In addition, the median lethal doses of A. caviae and ECPs to crucian carp were 411.64 μg/fish and 1.6 × 105 CFU/mL, respectively. Compared with those of the control group, the IgM, SOD, and CAT contents and serum LYS activity were significantly increased in the experimental groups, and the qRT-PCR results showed that the relative expression levels of TNF-α, IFN-γ, IL-1β, and IL-10 genes in the liver, kidney, spleen, and intestine were significantly increased after injection immunization. In addition, the relative immune protection rates of the three experimental groups were 60%, 65%, and 45%, all of which were significantly higher than those of the control group. Collectively, our findings show that the extracellular products of A. caviae can be used as a vaccine to significantly improve the immune level of crucian carp and have obvious anti-infection ability. This may represent a promising approach to prevent and control infection by A. caviae and provides strong theoretical support for the development of new inactivated vaccines.
Collapse
Affiliation(s)
- Zhonghua Yuan
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Haichao Song
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Qian Huang
- School of Medicine, Changchun Sci-Tech University, Changchun, 130118, China
| | - Juntong Liu
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Haifei Sun
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xin Meng
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Aidong Qian
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Wuwen Sun
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Xiaofeng Shan
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
12
|
Rohani MF, Islam SM, Hossain MK, Ferdous Z, Siddik MA, Nuruzzaman M, Padeniya U, Brown C, Shahjahan M. Probiotics, prebiotics and synbiotics improved the functionality of aquafeed: Upgrading growth, reproduction, immunity and disease resistance in fish. FISH & SHELLFISH IMMUNOLOGY 2022; 120:569-589. [PMID: 34963656 DOI: 10.1016/j.fsi.2021.12.037] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Aquaculture plays an increasingly significant role in improving the sustainability of global fish production. This sector has been intensified with the advent of new husbandry practices and the development of new technology. However, the increasing intensification and indiscriminate commercialized farming has enhanced the vulnerability of cultivated aquatic species to damage from pathogens. In efforts to confront these various diseases, frequent use of drugs, antibiotics, chemotherapeutics, and agents for sterilization have unintentionally added to the risk of transmission of pathogens and harmful chemical compounds to consumers. Some natural dietary supplements are believed to have the potential to offset this setback in aquaculture. Application of bio-friendly feed additives such as probiotics, prebiotics and synbiotics are becoming popular dietary supplements with the potential to not only improve growth performance, but in some cases can also enhance immune competence and the overall well-being of fish and crustaceans. The present review discusses and summarizes the effects of probiotics, prebiotics and synbiotics application on growth, stress mitigation, microbial composition of intestine, immune system and health condition of aquatic animals in association with existing constraints and future perspectives in aquaculture.
Collapse
Affiliation(s)
- Md Fazle Rohani
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh; Department of Aquaculture, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Sm Majharul Islam
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Kabir Hossain
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Zannatul Ferdous
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh; Department of Aquaculture, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Muhammad Ab Siddik
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Mohammad Nuruzzaman
- Krishi Gobeshona Foundation, BARC Complex, Farmgate, Dhaka, 1215, Bangladesh
| | - Uthpala Padeniya
- FAO-World Fisheries University Pilot Programme, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, South Korea
| | - Christopher Brown
- FAO-World Fisheries University Pilot Programme, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, South Korea
| | - Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| |
Collapse
|
13
|
Zhang H, Mu X, Wang H, Wang H, Wang H, Li Y, Mu Y, Song J, Xia L. Lacticaseibacillus casei ATCC 393 Cannot Colonize the Gastrointestinal Tract of Crucian Carp. Microorganisms 2021; 9:microorganisms9122547. [PMID: 34946147 PMCID: PMC8708626 DOI: 10.3390/microorganisms9122547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 11/25/2022] Open
Abstract
Lactic acid bacteria (LAB) are commonly applied to fish as a means of growth promotion and disease prevention. However, evidence regarding whether LAB colonize the gastrointestinal (GI) tract of fish remains sparse and controversial. Here, we investigated whether Lacticaseibacillus casei ATCC 393 (Lc) can colonize the GI tract of crucian carp. Sterile feed irradiated with 60Co was used to eliminate the influence of microbes, and 100% rearing water was renewed at 5-day intervals to reduce the fecal–oral circulation of microbes. The experiment lasted 47 days and was divided into three stages: the baseline period (21 days), the administration period (7 days: day −6 to 0) and the post-administration period (day 1 to 19). Control groups were fed a sterile basal diet during the whole experimental period, whereas treatment groups were fed with a mixed diet containing Lc (1 × 107 cfu/g) and spore of Geobacillus stearothermophilus (Gs, 1 × 107 cfu/g) during the administration period and a sterile basal diet during the baseline and post-administration periods. An improved and highly sensitive selective culture method (SCM) was employed in combination with a transit marker (a Gs spore) to monitor the elimination of Lc in the GI tract. The results showed that Lc (<2 cfu/gastrointestine) could not be detected in any of the fish sampled from the treatment group 7 days after the cessation of the mixed diet, whereas Gs could still be detected in seven out of nine fish at day 11 and could not be detected at all at day 15. Therefore, the elimination speed of Lc was faster than that of the transit marker. Furthermore, high-throughput sequencing analysis combined with SCM was used to reconfirm the elimination kinetics of Lc in the GI tract. The results show that the Lc in the crucian carp GI tract, despite being retained at low relative abundance from day 7 (0.11% ± 0.03%) to 21, was not viable. The experiments indicate that Lc ATCC 393 cannot colonize the GI tract of crucian carp, and the improved selective culture in combination with a transit marker represents a good method for studying LAB colonization of fish.
Collapse
Affiliation(s)
- Hongyu Zhang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing 100141, China; (H.Z.); (X.M.); (H.W.); (H.W.); (Y.L.)
- Chinese Academy of Fishery Sciences, Beijing 100141, China;
| | - Xiyan Mu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing 100141, China; (H.Z.); (X.M.); (H.W.); (H.W.); (Y.L.)
- Chinese Academy of Fishery Sciences, Beijing 100141, China;
| | - Hongwei Wang
- Chinese Academy of Fishery Sciences, Beijing 100141, China;
| | - Haibo Wang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing 100141, China; (H.Z.); (X.M.); (H.W.); (H.W.); (Y.L.)
- Chinese Academy of Fishery Sciences, Beijing 100141, China;
| | - Hui Wang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing 100141, China; (H.Z.); (X.M.); (H.W.); (H.W.); (Y.L.)
- Chinese Academy of Fishery Sciences, Beijing 100141, China;
| | - Yingren Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing 100141, China; (H.Z.); (X.M.); (H.W.); (H.W.); (Y.L.)
- Chinese Academy of Fishery Sciences, Beijing 100141, China;
| | - Yingchun Mu
- Chinese Academy of Fishery Sciences, Beijing 100141, China;
- Key Laboratory of Control of Quality and Safety for Aquatic Products (Ministry of Agriculture and Rural Affairs), Chinese Academy of Fishery Sciences, Beijing 100141, China
- Correspondence: (Y.M.); (J.S.); (L.X.)
| | - Jinlong Song
- Chinese Academy of Fishery Sciences, Beijing 100141, China;
- Key Laboratory of Control of Quality and Safety for Aquatic Products (Ministry of Agriculture and Rural Affairs), Chinese Academy of Fishery Sciences, Beijing 100141, China
- Correspondence: (Y.M.); (J.S.); (L.X.)
| | - Lei Xia
- Chinese Academy of Fishery Sciences, Beijing 100141, China;
- Correspondence: (Y.M.); (J.S.); (L.X.)
| |
Collapse
|
14
|
Arani MM, Salati AP, Keyvanshokooh S, Safari O. The effect of Pediococcus acidilactici on mucosal immune responses, growth, and reproductive performance in zebrafish (Danio rerio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:153-162. [PMID: 33242190 DOI: 10.1007/s10695-020-00903-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
A completely randomized experimental design carried out to investigate the effects of different levels of Pediococcus acidilactici (PA) including 0 (basal diet as a control diet), 1 × 106, 2 × 106, 4 × 106, and 8 × 106 colony-forming unit (CFU) per gram of the diet for 60 days on the mucosal immunity responses, growth, and reproductive performance, in zebrafish, Danio rerio (with mean weigh ± SE: 120 ± 10 mg). The obtained results revealed that the best growth and reproduction indices were related to the concentration of 4 × 106 CFU PA g-1 diet (P < 0.05). The maximum activities of mucosal immune responses including total protein, alternative complement system, IgM, and lysozyme were observed in the fish fed with 4 × 106 CFU PA g-1 diet (P < 0.05). Furthermore, the maximum alkaline phosphatase activity of skin mucus was recorded in the fish fed with 8 × 106 CFU PA g-1 diet (P < 0.05). Fish fed with 4 × 106 CFU PA g-1 diet had the highest villus length and width of the intestine (P < 0.05). Supplementing the diet with 4 × 106 CFU PA g-1 diet more significantly enhanced Cyp19a gene expression in comparison with this in other groups. Hence, PA with a concentration of 4 × 106 CFU g-1 diet can be considered as a proper level of probiotic for improving the health, growth, and reproductive performance of the D. rerio.
Collapse
Affiliation(s)
- Mojtaba Mohammadi Arani
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
- Agricultural Research, Educating and Extension Organization, Isfahan Agricultural and Natural Resources Research and Training Center, Isfahan, Iran
| | - Amir Parviz Salati
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran.
| | - Saeed Keyvanshokooh
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Omid Safari
- Department of Fisheries, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
15
|
López-Moreno A, Aguilera M. Probiotics Dietary Supplementation for Modulating Endocrine and Fertility Microbiota Dysbiosis. Nutrients 2020; 12:E757. [PMID: 32182980 PMCID: PMC7146451 DOI: 10.3390/nu12030757] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Human microbiota seems to play a key role in endocrine and reproductive systems. Fortunately, microbiota reproductive dysbiosis start to be treated by probiotics using typical species from genus Lactobacillus. This work presents the compiled and analysed results from the most up-to-date information from clinical trials regarding microbiota, fertility, probiotics and oral route administration, reviewing open access scientific documents. These studies analyse the clinical impact of probiotics administered on several endocrine disorders' manifestations in women: mastitis; vaginal dysbiosis; pregnancy complication disorders; and polycystic ovary syndrome. In all cases, the clinical modulation achieved by probiotics was evaluated positively through the improvement of specific disease outcomes with the exception of the pregnancy disorders studies, where the sample sizes results were statistically insufficient. High amounts of studies were discarded because no data were provided on specific probiotic strains, doses, impact on the individual autochthon microbiota, or data regarding specific hormonal values modifications and endocrine regulation effects. However, most of the selected studies with probiotics contained no protocolised administration. Therefore, we consider that intervention studies with probiotics might allocate the focus, not only in obtaining a final outcome, but in how to personalise the administration according to the disorder to be palliated.
Collapse
Affiliation(s)
- Ana López-Moreno
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, 18016 Armilla, Granada, Spain
| | - Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, 18016 Armilla, Granada, Spain
- IBS: Instituto de Investigación Biosanitaria ibs., 18012 Granada, Spain
| |
Collapse
|
16
|
Abstract
In recent years, tremendous advances have been made in our ability to characterize complex microbial communities such as the gut microbiota, and numerous surveys of the human gut microbiota have identified countless associations between different compositional attributes of the gut microbiota and adverse health conditions. However, most of these findings in humans are purely correlative and animal models are required for prospective evaluation of such changes as causative factors in disease initiation or progression. As in most fields of biomedical research, microbiota-focused studies are predominantly performed in mouse or rat models. Depending on the field of research and experimental question or objective, non-rodent models may be preferable due to better translatability or an inability to use rodents for various reasons. The following review describes the utility and limitations of several non-rodent model species for research on the microbiota and its influence on host physiology and disease. In an effort to balance the breadth of potential model species with the amount of detail provided, four model species are discussed: zebrafish, dogs, pigs, and rabbits.
Collapse
Affiliation(s)
- Aaron C Ericsson
- Department of Veterinary Pathobiology, University of Missouri, United States of America
| |
Collapse
|
17
|
Zang L, Ma Y, Huang W, Ling Y, Sun L, Wang X, Zeng A, Dahlgren RA, Wang C, Wang H. Dietary Lactobacillus plantarum ST-III alleviates the toxic effects of triclosan on zebrafish (Danio rerio) via gut microbiota modulation. FISH & SHELLFISH IMMUNOLOGY 2019; 84:1157-1169. [PMID: 30423455 DOI: 10.1016/j.fsi.2018.11.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
The probiotics, Lactobacillus plantarum ST-III, plays an important role in modulating microbiota and alleviating intestinal metabolic disorders. Herein, we reported that Lactobacillus increases biodiversity of zebrafish gut flora, and attenuates toxic effects from chronic triclosan (TCS) exposure. Lactobacillus-feeding recovered the species and amount of microorganisms in the intestines of zebrafish, and inhibited toxin production by saprophytic bacterial growth. Abnormal physiological indexes and malonaldeyhde content resulting from TCS exposure were effectively alleviated. Additionally, lipid-metabolism disorders, such as increased triglyceride and total cholesterol levels, were attenuated by a probiotics diet. The number of CD4+ T cell lymphocytes in the lamina propria of the duodenal mucosa was decreased in zebrafish receiving a Lactobacillus diet compared to the TCS-exposed group, showing a consistent expression trend for six immune genes (NF-κB, IL-1β, TNF-α, lysozyme, TLR4α, IL-10) in the intestinal mucosa. Histopathological observations of intestines, spleen and kidney showed that TCS exposure produced severe damage to the morphology and structure of immune and metabolism-related organs. Lactobacillus was capable of mitigating this damage, but bile salt hydrolase, an active extract of Lactobacillus, was not an effective mitigation strategy. The Lactobacillus-induced decrease in the number of inflammatory cells confirmed its role in preventing inflammatory injury. Three behavioral tests (T-maze, bottom dwelling and social interaction) indicated that a probiotics diet improved zebrafish movement and learning/memory capacity, effectively alleviating anxiety behavior due to TCS exposure. These findings inform development of beneficial strategies to alleviate intestinal metabolic syndromes and neurodegenerative diseases resulting from exposure to environmental contaminants through modifying gut flora with a probiotics diet.
Collapse
Affiliation(s)
- Luxiu Zang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yan Ma
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wenhao Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yuhang Ling
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Limei Sun
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xuedong Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Aibing Zeng
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, CA, 95616, USA
| | - Caihong Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Huili Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
18
|
Song MF, Kang YH, Zhang DX, Chen L, Bi JF, Zhang HP, Zhang L, Qian AD, Shan XF. Immunogenicity of extracellular products from an inactivated vaccine against Aeromonas veronii TH0426 in koi, Cyprinus carpio. FISH & SHELLFISH IMMUNOLOGY 2018; 81:176-181. [PMID: 30026173 DOI: 10.1016/j.fsi.2018.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 06/26/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
Aeromonas veronii is a type of human-livestock-aquatic animal pathogen; it is widely found in nature and causes many deaths among aquatic animals. Extracellular products (ECPs) are secreted by the pathogen during growth and reproduction. These products are considered effective protective antigens that can induce the host to produce an immune response. In this study, the ECPs of A.veronii TH0426 were prepared by ultrafiltration, and then the pathogenicity and enzymatic activity of the ECPs were determined. All the groups were injected intraperitoneally, as follows: group one: ECP protein with an equal volume of Freund's adjuvant; group two: ECPs and formalin-killed cells (FKC) of A.veronii combined with an equal volume of Freund's adjuvant (FKC + ECPs); group three: formalin-killed cells (FKC) of A.veronii combined with an equal volume of Freund's adjuvant (FKC); and, group four: sterile PBS as the control group. The expression levels of IgM, IL-1β, and TNF-α and the lysozyme activity in blood were examined at 7, 14, and 21 days after the immunizations. The results show that the ECPs can produce protease, lipase, amylase and hemolyase, and there was no lecithinase, urease, or gelatinase activity. The results indicate that the ECPs were clearly pathogenic to koi fish, and the LD50 dose was 391.6 μg/fish. Throughout this study, the RPS of the three experimental groups were 75%, 50%, and 70%. This study indicates that the ECPs of A.veronii can effectively enhance the ability of kio fish to resist bacterial invasion.
Collapse
Affiliation(s)
- Ming-Fang Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yuan-Huan Kang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Dong-Xing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Long Chen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jian-Fei Bi
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hai-Peng Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Lei Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ai-Dong Qian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Xiao-Feng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
19
|
Qin C, Xie Y, Wang Y, Li S, Ran C, He S, Zhou Z. Impact of Lactobacillus casei BL23 on the Host Transcriptome, Growth and Disease Resistance in Larval Zebrafish. Front Physiol 2018; 9:1245. [PMID: 30233415 PMCID: PMC6131626 DOI: 10.3389/fphys.2018.01245] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 08/17/2018] [Indexed: 11/25/2022] Open
Abstract
In this study, zebrafish were treated with Lactobacillus strains as probiotics from hatching to puberty, and the effect of treatment with L. casei BL23 on the development and immunity response of the host was investigated. Genes that were differentially expressed (DEGs) in the overall body and intestine were detected at 14 days post fertilization (dpf) and 35 dpf, respectively, using whole transcriptome sequencing (mRNAseq). We showed that zebrafish raised by continuous immersion with L. casei BL23 showed a higher final body weight at 14 dpf (P < 0.05), and 35 dpf (P < 0.01). DEGs between L. casei BL23 treatment and control group at 14 dpf were involved in myogenesis, cell adhesion, transcription regulation and DNA-binding and activator. At 35 dpf, 369 genes were DEGs in the intestine after treatment with L. casei BL23, which were involved in such categories as signaling, secretion, motor proteins, oxidoreductase and iron, tight junctions, lipid metabolism, growth regulation, proteases, and humoral and cellular effectors. KEGG analysis showed DEGs to be involved in such pathways as those associated with tight junctions and the PPAR signal pathway. RT-qPCR analysis showed that expression of insulin-like growth factors-I (igf1), peroxisome proliferator activated receptors-α (ppar-α) and -β (ppar-β), Vitamin D receptor-α (vdr-α), and retinoic acid receptor-γ (rar-γ) was up-regulated in fish treated with L. casei BL23 at 35 dpf. After 35 days of treatment, the mortality rate in L. casei BL23 treated group was lower than the control after challenge with A. hydrophila (P < 0.05), and the pro-inflammatory cytokine il-1β, anti-inflammatory cytokine il-10 and complement component 3a (c3a) showed more expression in L. casei BL23 group at 8h after challenge, 24 h after challenge, or both.. Together, these data suggest that specific Lactobacillus probiotic strains can accelerate the development profile and enhance immunity in zebrafish, which supports the rationale of early administration of probiotics in aquaculture.
Collapse
Affiliation(s)
- Chubin Qin
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yadong Xie
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yibing Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuning Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Suxu He
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhigang Zhou
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
20
|
Ringø E, Hoseinifar SH, Ghosh K, Doan HV, Beck BR, Song SK. Lactic Acid Bacteria in Finfish-An Update. Front Microbiol 2018; 9:1818. [PMID: 30147679 PMCID: PMC6096003 DOI: 10.3389/fmicb.2018.01818] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/19/2018] [Indexed: 12/17/2022] Open
Abstract
A complex and dynamic community of microorganisms, play important roles within the fish gastrointestinal (GI) tract. Of the bacteria colonizing the GI tract, are lactic acid bacteria (LAB) generally considered as favorable microorganism due to their abilities to stimulating host GI development, digestive function, mucosal tolerance, stimulating immune response, and improved disease resistance. In early finfish studies, were culture-dependent methods used to enumerate bacterial population levels within the GI tract. However, due to limitations by using culture methods, culture-independent techniques have been used during the last decade. These investigations have revealed the presence of Lactobacillus, Lactococcus, Leuconostoc, Enterococcus, Streptococcus, Carnobacterium, Weissella, and Pediococcus as indigenous species. Numerous strains of LAB isolated from finfish are able to produce antibacterial substances toward different potential fish pathogenic bacteria as well as human pathogens. LAB are revealed be the most promising bacterial genera as probiotic in aquaculture. During the decade numerous investigations are performed on evaluation of probiotic properties of different genus and species of LAB. Except limited contradictory reports, most of administered strains displayed beneficial effects on both, growth-and reproductive performance, immune responses and disease resistance of finfish. This eventually led to industrial scale up and introduction LAB-based commercial probiotics. Pathogenic LAB belonging to the genera Streptococcus, Enterococcus, Lactobacillus, Carnobacterium, and Lactococcus have been detected from ascites, kidney, liver, heart, and spleen of several finfish species. These pathogenic bacteria will be addressed in present review which includes their impacts on finfish aquaculture, possible routes for treatment. Finfish share many common structures and functions of the immune system with warm-blooded animals, although apparent differences exist. This similarity in the immune system may result in many shared LAB effects between finfish and land animals. LAB-fed fish show an increase in innate immune activities leading to disease resistances: neutrophil activity, lysozyme secretion, phagocytosis, and production of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α). However, some LAB strains preferentially induces IL-10 instead, a potent anti-inflammatory cytokine. These results indicate that LAB may vary in their immunological effects depending on the species and hosts. So far, the immunological studies using LAB have been focused on their effects on innate immunity. However, these studies need to be further extended by investigating their involvement in the modulation of adaptive immunity. The present review paper focuses on recent findings in the field of isolation and detection of LAB, their administration as probiotic in aquaculture and their interaction with fish immune responses. Furthermore, the mode of action of probiotics on finfish are discussed.
Collapse
Affiliation(s)
- Einar Ringø
- Faculty of Bioscience, Fisheries and Economics, Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Koushik Ghosh
- Aquaculture Laboratory, Department of Zoology, The University of Burdwan, Bardhaman, India
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Bo Ram Beck
- School of Life Science, Handong University, Pohang, South Korea
| | - Seong Kyu Song
- School of Life Science, Handong University, Pohang, South Korea
| |
Collapse
|
21
|
Qin C, Zhang Z, Wang Y, Li S, Ran C, Hu J, Xie Y, Li W, Zhou Z. EPSP of L. casei BL23 Protected against the Infection Caused by Aeromonas veronii via Enhancement of Immune Response in Zebrafish. Front Microbiol 2017; 8:2406. [PMID: 29375485 PMCID: PMC5770644 DOI: 10.3389/fmicb.2017.02406] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 11/20/2017] [Indexed: 01/04/2023] Open
Abstract
Aquaculture is the fastest-growing food production sector in the world, and it supplies nearly 50% of the global food fish supply. However, disease outbreaks have become a major problem in the fish farming industry. The beneficial contribution of probiotic bacteria to aquatic animals' health has been widely described, and they have been widely used in aquaculture for disease control and growth promotion. However, the action of probiotic bacterial components and mechanisms underlying protection against pathogens afforded by probiotic bacteria remain poorly understood. In the present study, we pre-colonized zebrafish larvae (before hatching) with 17 potential probiotic bacterial strains and screened for those possessing anti-infective effects against Aeromonas veronii. We found that Lactobacillus casei BL23 significantly increased the survival of zebrafish larvae upon A. veronii infection. Using a germ-free (GF) zebrafish model and gut microbiota transplant experiment, we showed that L. casei BL23 per se has anti-infective effects in zebrafish larvae, which does not involve microbiota. Furthermore, we identified an exopolysaccharide-protein complex (EPSP) extracted from L. casei BL23 cells, which consisted of a 40-45 KD size protein and an exopolysaccharide composed of α-Rha, α-Glc, β-GlcNAc, and β-GalNAc. EPSP significantly increased the survival rate of GF zebrafish at a dose of 10-20 μg/ml after A. veronii infection (P < 0.01). In addition, the EPSP induced a higher expression of TLR1 and TLR2, and modulated the expression profile of pro-inflammatory and anti-inflammatory cytokines in zebrafish liver (ZFL) cells. Our data indicated that the anti-infective effect of EPSP from L. casei BL23 was mediated by enhancement of immune responses in zebrafish, which might involve the TLR1/TLR2 signal pathway.
Collapse
Affiliation(s)
- Chubin Qin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, China
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yibing Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, China
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuning Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Hu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yadong Xie
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Zhigang Zhou
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
22
|
Lim FT, Lim SM, Ramasamy K. Cholesterol lowering by Pediococcus acidilactici LAB4 and Lactobacillus plantarum LAB12 in adult zebrafish is associated with improved memory and involves an interplay between npc1l1 and abca1. Food Funct 2017; 8:2817-2828. [PMID: 28725889 DOI: 10.1039/c7fo00764g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study assessed the cholesterol lowering effect of Pediococcus acidilactici LAB4 and Lactobacillus plantarum LAB12 using adult zebrafish. Animals were fed with a high cholesterol diet (HCD) with/without LAB for seven weeks. Serum and liver cholesterol was quantified using colorimetric and dye staining methods. Expressions of npc1l1 and abca1 in the liver and intestine and appa in the brain were quantified using RT-PCR. Serum and liver cholesterol was significantly lowered in LAB4- and LAB12-fed zebrafish (≤64% and ≤71%, respectively), with reduced liver cholesterol deposition. The cholesterol lowering effect was accompanied by down-regulation of npc1l1 in intestines (≤28.7%), up-regulation of abca1 in the liver (≥30.5%) and down-regulation of appa in the brain (≤24.5%). A moderately strong positive Pearson correlation (r = 0.617, p < 0.01) was found between appa and serum cholesterol. LAB-fed zebrafish exhibited improved spatial learning and memory. LAB4 and LAB12 can be potentially used in preventing hypercholesterolaemia and Alzheimer's diseases.
Collapse
Affiliation(s)
- Fei Tieng Lim
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, University Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.
| | - Siong Meng Lim
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, University Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.
| | - Kalavathy Ramasamy
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, University Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
23
|
Banerjee G, Ray AK. The advancement of probiotics research and its application in fish farming industries. Res Vet Sci 2017; 115:66-77. [PMID: 28157611 DOI: 10.1016/j.rvsc.2017.01.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 01/16/2017] [Accepted: 01/20/2017] [Indexed: 12/11/2022]
Abstract
Fish are always susceptible to a variety of lethal diseases caused by different types of bacterial, fungal, viral and parasitic agents. The unscientific management practises such as, over feeding, high stock densities and destructive fishing techniques increase the probability of disease symptoms in aquaculture industries. According to Food and Agriculture Association (FAO), each and every year several countries such as China, India, Norway, Indonesia, etc. face a huge loss in aquaculture production due to mainly bacterial and viral diseases. The use of antibiotics is a common practise in fish farming sectors to control the disease outbreak. However, the antibiotics are not long term friend because it creates selective pressure for emergence of drug resistant bacteria. Probiotics are live microorganisms that confer several beneficial effects to host (enhances immunity, helps in digestion, protects from pathogens, improves water quality, promotes growth and reproduction) and can be used as an alternative of antibiotics. In recent year, a wide range of bacteria have reported as potential probiotics candidates in fish farming sectors, however, Lactobacillus sp. and Bacillus sp. gain special attention due to their high antagonistic activities, extracellular enzyme production and availability. In this present review, we have summarized the recent advancement in aquaculture probiotics research and its impact on fish health, nutrition, immunity, reproduction and water quality.
Collapse
Affiliation(s)
- Goutam Banerjee
- Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal 731235, India; Center for Nature Conservation and Biosafety (CNCB Pvt. Ltd.; cncb.co.in), Cuttack, Odisha 754132, India.
| | - Arun Kumar Ray
- Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal 731235, India
| |
Collapse
|
24
|
Dawood MAO, Koshio S, Ishikawa M, El-Sabagh M, Esteban MA, Zaineldin AI. Probiotics as an environment-friendly approach to enhance red sea bream, Pagrus major growth, immune response and oxidative status. FISH & SHELLFISH IMMUNOLOGY 2016; 57:170-178. [PMID: 27542618 DOI: 10.1016/j.fsi.2016.08.038] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/11/2016] [Accepted: 08/14/2016] [Indexed: 05/25/2023]
Abstract
A usual strategy in modern aquaculture to combat production bottlenecks associated with intensification is preventive health care through the use of consumer and environment-friendly alternatives including probiotics. The current study evaluates the influence of Lactobacillus rhamnosus (LR), a lyophilized probiotic bacterium, on health status and performance of red sea bream (Pagrus major). Probiotics were incorporated in the diets at four different concentrations: 0 (control diet, LR0), 10(2) (LR1), 10(4) (LR2) and 10(6) (LR3) cells g(-1) and diets were administered to the fish for a period of 8 weeks. After the feeding trial, final body weight, body weight gain, specific growth rate, protease activity, protein digestibility, Lactobacillus sp. intestinal count, and superoxide dismutase were significantly higher in all probiotic-fed groups (P < 0.05). In addition, lipid and dry matter digestibility, reactive oxygen metabolites, biological antioxidant potential, and humoral and mucosal immune parameters including (total serum protein, alternative complement pathway, bactericidal and peroxidase activities) were also significantly elevated in fish fed probiotic supplementations being the effects dose-dependent. All growth, feed utilization, immune and oxidative parameters were significantly improved following probiotic administration. Present results revealed that L. rhamnosus is a promising probiotic candidate employed to help red sea bream protect themselves, thus promoting safe farming that would be less dependent on chemotherapy against infectious diseases.
Collapse
Affiliation(s)
- Mahmoud A O Dawood
- The United Graduate School of Agriculture Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056, Japan; Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt.
| | - Shunsuke Koshio
- Laboratory of Aquatic Animal Nutrition, Faculty of Fisheries, Kagoshima University, 4-50-20, Kagoshima, 890-0056, Japan
| | - Manabu Ishikawa
- Laboratory of Aquatic Animal Nutrition, Faculty of Fisheries, Kagoshima University, 4-50-20, Kagoshima, 890-0056, Japan
| | - Mabrouk El-Sabagh
- Department of Nutrition and clinical nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt
| | - M Angeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | | |
Collapse
|
25
|
Ran C, Huang L, Hu J, Tacon P, He S, Li Z, Wang Y, Liu Z, Xu L, Yang Y, Zhou Z. Effects of dietary live and heat-inactive baker's yeast on growth, gut health, and disease resistance of Nile tilapia under high rearing density. FISH & SHELLFISH IMMUNOLOGY 2016; 56:263-271. [PMID: 27393237 DOI: 10.1016/j.fsi.2016.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/19/2016] [Accepted: 07/04/2016] [Indexed: 05/20/2023]
Abstract
In this study, the effects of baker's yeast as probiotics was evaluated in Nile tilapia reared at high density. Juvenile tilapia were distributed to tanks at high density (436 fish/m(3)) and fed with basal diet (CK) or diets supplemented with live (LY) or heat-inactivated yeast (HIY). Another group of fish reared at low density (218 fish/m(3)) and fed with basal diet was also included (LowCK). After 8 weeks of feeding, growth, feed utilization, gut microvilli morphology, digestive enzymes, and expressions of hsp70 and inflammation-related cytokines in the intestine were assessed. Intestinal microbiota was investigated using 16S rRNA gene pyrosequencing. Fish were challenged with Aeromonas hydrophila to evaluate disease resistance. High rearing density significantly decreased the growth, feed utilization, microvilli length, and disease resistance of fish (CK versus LowCK). Moreover, the intestinal hsp70 expression was increased in fish reared at high density, supporting a stress condition. Compared to CK group, supplementation of live yeast significantly increased gut microvilli length and trypsin activity, decreased intestinal hsp70 expression, and enhanced resistance of fish against A. hydrophila (reflected by reduced intestinal alkaline phosphatase activity 24 h post infection). The gut microbiota was not markedly influenced by either rearing density or yeast supplementation. Heat-inactivated yeast (HIY) didn't display the beneficial effects observed in LY except an increase in gut trypsin activity, suggesting the importance of yeast viability and thus secretory metabolites of yeast. In conclusion, live baker's yeast may alleviate the negative effects induced by crowding stress, and has the potential to be used as probiotics for tilapia reared at high density.
Collapse
Affiliation(s)
- Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Lu Huang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Jun Hu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Philippe Tacon
- Société Industrielle Lesaffre, Phileo Lesaffre Animal Care, Marcq-en-Baroeul, France
| | - Suxu He
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Zhimin Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yibing Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Zhi Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Li Xu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Zhigang Zhou
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
| |
Collapse
|
26
|
Wang Y, Ren Z, Fu L, Su X. Two highly adhesive lactic acid bacteria strains are protective in zebrafish infected with Aeromonas hydrophila
by evocation of gut mucosal immunity. J Appl Microbiol 2016; 120:441-51. [DOI: 10.1111/jam.13002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/02/2015] [Accepted: 11/05/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Y. Wang
- School of Food Science and Biotechnology; Zhejiang Gongshang University; Hangzhou China
| | - Z. Ren
- School of Food Science and Biotechnology; Zhejiang Gongshang University; Hangzhou China
| | - L. Fu
- School of Food Science and Biotechnology; Zhejiang Gongshang University; Hangzhou China
| | - X. Su
- School of Marine Sciences; Ningbo University; Ningbo China
| |
Collapse
|
27
|
Ran C, Huang L, Liu Z, Xu L, Yang Y, Tacon P, Auclair E, Zhou Z. A Comparison of the Beneficial Effects of Live and Heat-Inactivated Baker's Yeast on Nile Tilapia: Suggestions on the Role and Function of the Secretory Metabolites Released from the Yeast. PLoS One 2015; 10:e0145448. [PMID: 26696403 PMCID: PMC4690590 DOI: 10.1371/journal.pone.0145448] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/03/2015] [Indexed: 11/19/2022] Open
Abstract
Yeast is frequently used as a probiotic in aquaculture with the potential to substitute for antibiotics. In this study, the involvement and extent to which the viability of yeast cells and thus the secretory metabolites released from the yeast contribute to effects of baker's yeast was investigated in Nile tilapia. No yeast, live yeast or heat-inactivated baker's yeast were added to basal diets high in fishmeal and low in soybean (diet A) or low in fishmeal and high in soybean (diet B), which were fed to fish for 8 weeks. Growth, feed utilization, gut microvilli morphology, and expressions of hsp70 and inflammation-related cytokines in the intestine and head kidney were assessed. Intestinal microbiota was investigated using 16S rRNA gene pyrosequencing. Gut alkaline phosphatase (AKP) activity was measured after challenging the fish with Aeromonas hydrophila. Results showed that live yeast significantly improved FBW and WG (P < 0.05), and tended to improve FCR (P = 0.06) of fish compared to the control (no yeast). No significant differences were observed between inactivated yeast and control. Live yeast improved gut microvilli length (P < 0.001) and density (P < 0.05) while inactivated yeast did not. The hsp70 expression level in both the intestine and head kidney of fish was significantly reduced by live yeast (P < 0.05) but not inactivated yeast. Live yeast but not inactivated yeast reduced intestinal expression of tnfα (P < 0.05), tgfβ (P < 0.05 under diet A) and il1β (P = 0.08). Intestinal Lactococcus spp. numbers were enriched by both live and inactivated yeast. Lastly, both live and inactivated yeast reduced the gut AKP activity compared to the control (P < 0.001), indicating protection of the host against infection by A. hydrophila. In conclusion, secretory metabolites did not play major roles in the growth promotion and disease protection effects of yeast. Nevertheless, secretory metabolites were the major contributing factor towards improved gut microvilli morphology, relieved stress status, and reduced intestinal inflammation of Nile tilapia fed diets supplemented with baker's yeast.
Collapse
Affiliation(s)
- Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Lu Huang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Zhi Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Li Xu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Philippe Tacon
- Société Industrielle Lesaffre, Phileo Lesaffre Animal Care, Marcq-en-Baroeul, France
| | - Eric Auclair
- Société Industrielle Lesaffre, Phileo Lesaffre Animal Care, Marcq-en-Baroeul, France
| | - Zhigang Zhou
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| |
Collapse
|
28
|
Patel S, Shukla R, Goyal A. Probiotics in valorization of innate immunity across various animal models. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.02.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|