1
|
Conover JL, Grover CE, Sharbrough J, Sloan DB, Peterson DG, Wendel JF. Little evidence for homoeologous gene conversion and homoeologous exchange events in Gossypium allopolyploids. AMERICAN JOURNAL OF BOTANY 2024; 111:e16386. [PMID: 39107998 DOI: 10.1002/ajb2.16386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024]
Abstract
PREMISE A complicating factor in analyzing allopolyploid genomes is the possibility of physical interactions between homoeologous chromosomes during meiosis, resulting in either crossover (homoeologous exchanges) or non-crossover products (homoeologous gene conversion). Homoeologous gene conversion was first described in cotton by comparing SNP patterns in sequences from two diploid progenitors with those from the allopolyploid subgenomes. These analyses, however, did not explicitly consider other evolutionary scenarios that may give rise to similar SNP patterns as homoeologous gene conversion, creating uncertainties about the reality of the inferred gene conversion events. METHODS Here, we use an expanded phylogenetic sampling of high-quality genome assemblies from seven allopolyploid Gossypium species (all derived from the same polyploidy event), four diploid species (two closely related to each subgenome), and a diploid outgroup to derive a robust method for identifying potential genomic regions of gene conversion and homoeologous exchange. RESULTS We found little evidence for homoeologous gene conversion in allopolyploid cottons, and that only two of the 40 best-supported events were shared by more than one species. We did, however, reveal a single, shared homoeologous exchange event at one end of chromosome 1, which occurred shortly after allopolyploidization but prior to divergence of the descendant species. CONCLUSIONS Overall, our analyses demonstrated that homoeologous gene conversion and homoeologous exchanges are uncommon in Gossypium, affecting between zero and 24 genes per subgenome (0.0-0.065%) across the seven species. More generally, we highlighted the potential problems of using simple four-taxon tests to investigate patterns of homoeologous gene conversion in established allopolyploids.
Collapse
Affiliation(s)
- Justin L Conover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, 50010, IA, USA
- Ecology and Evolutionary Biology Department, University of Arizona, Tucson, 85718, AZ, USA
- Molecular and Cellular Biology Department, University of Arizona, Tucson, 85718, AZ, USA
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, 50010, IA, USA
| | - Joel Sharbrough
- Biology Department, New Mexico Institute of Mining and Technology, Socorro, 87801, NM, USA
| | - Daniel B Sloan
- Biology Department, Colorado State University, Fort Collins, 80521, CO, USA
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, 39762, MS, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, 50010, IA, USA
| |
Collapse
|
2
|
Yoo MJ, Koh J, Boatwright JL, Soltis DE, Soltis PS, Barbazuk WB, Chen S. Investigation of regulatory divergence between homoeologs in the recently formed allopolyploids, Tragopogon mirus and T. miscellus (Asteraceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1191-1205. [PMID: 37997015 DOI: 10.1111/tpj.16553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/02/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
Polyploidy is an important evolutionary process throughout eukaryotes, particularly in flowering plants. Duplicated gene pairs (homoeologs) in allopolyploids provide additional genetic resources for changes in molecular, biochemical, and physiological mechanisms that result in evolutionary novelty. Therefore, understanding how divergent genomes and their regulatory networks reconcile is vital for unraveling the role of polyploidy in plant evolution. Here, we compared the leaf transcriptomes of recently formed natural allotetraploids (Tragopogon mirus and T. miscellus) and their diploid parents (T. porrifolius X T. dubius and T. pratensis X T. dubius, respectively). Analysis of 35 400 expressed loci showed a significantly higher level of transcriptomic additivity compared to old polyploids; only 22% were non-additively expressed in the polyploids, with 5.9% exhibiting transgressive expression (lower or higher expression in the polyploids than in the diploid parents). Among approximately 7400 common orthologous regions (COREs), most loci in both allopolyploids exhibited expression patterns that were vertically inherited from their diploid parents. However, 18% and 20.3% of the loci showed novel expression bias patterns in T. mirus and T. miscellus, respectively. The expression changes of 1500 COREs were explained by cis-regulatory divergence (the condition in which the two parental subgenomes do not interact) between the diploid parents, whereas only about 423 and 461 of the gene expression changes represent trans-effects (the two parental subgenomes interact) in T. mirus and T. miscellus, respectively. The low degree of both non-additivity and trans-effects on gene expression may present the ongoing evolutionary processes of the newly formed Tragopogon polyploids (~80-90 years).
Collapse
Affiliation(s)
- Mi-Jeong Yoo
- Department of Biology, Clarkson University, Potsdam, New York, 13699, USA
| | - Jin Koh
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, 32610, USA
| | - J Lucas Boatwright
- Plant and Environmental Science Department, Clemson University, Clemson, South Carolina, 29634, USA
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, Florida, 32611, USA
- Genetics Institute, University of Florida, Gainesville, Florida, 32610, USA
- Biodiversity Institute, University of Florida, Gainesville, Florida, 32611, USA
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611, USA
| | - Pamela S Soltis
- Genetics Institute, University of Florida, Gainesville, Florida, 32610, USA
- Biodiversity Institute, University of Florida, Gainesville, Florida, 32611, USA
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611, USA
| | - W Brad Barbazuk
- Department of Biology, University of Florida, Gainesville, Florida, 32611, USA
- Genetics Institute, University of Florida, Gainesville, Florida, 32610, USA
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, Mississippi, 38677, USA
| |
Collapse
|
3
|
Sari D, Sari H, Ikten C, Toker C. Genome-wide discovery of di-nucleotide SSR markers based on whole genome re-sequencing data of Cicer arietinum L. and Cicer reticulatum Ladiz. Sci Rep 2023; 13:10351. [PMID: 37365279 DOI: 10.1038/s41598-023-37268-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023] Open
Abstract
Simple sequence repeats (SSRs) are valuable genetic markers due to their co-dominant inheritance, multi-allelic and reproducible nature. They have been largely used for exploiting genetic architecture of plant germplasms, phylogenetic analysis, and mapping studies. Among the SSRs, di-nucleotide repeats are the most frequent of the simple repeats distributed throughout the plant genomes. In present study, we aimed to discover and develop di-nucleotide SSR markers by using the whole genome re-sequencing (WGRS) data from Cicer arietinum L. and C. reticulatum Ladiz. A total of 35,329 InDels were obtained in C. arietinum, whereas 44,331 InDels in C. reticulatum. 3387 InDels with 2 bp length were detected in C. arietinum, there were 4704 in C. reticulatum. Among 8091 InDels, 58 di-nucleotide regions that were polymorphic between two species were selected and used for validation. We tested primers for evaluation of genetic diversity in 30 chickpea genotypes including C. arietinum, C. reticulatum, C. echinospermum P.H. Davis, C. anatolicum Alef., C. canariense A. Santos & G.P. Lewis, C. microphyllum Benth., C. multijugum Maesen, C. oxyodon Boiss. & Hohen. and C. songaricum Steph ex DC. A total of 244 alleles were obtained for 58 SSR markers giving an average of 2.36 alleles per locus. The observed heterozygosity was 0.08 while the expected heterozygosity was 0.345. Polymorphism information content was found to be 0.73 across all loci. Phylogenetic tree and principal coordinate analysis clearly divided the accessions into four groups. The SSR markers were also evaluated in 30 genotypes of a RIL population obtained from an interspecific cross between C. arietinum and C. reticulatum. Chi-square (χ2) test revealed an expected 1:1 segregation ratio in the population. These results demonstrated the success of SSR identification and marker development for chickpea with the use of WGRS data. The newly developed 58 SSR markers are expected to be useful for chickpea breeders.
Collapse
Affiliation(s)
- Duygu Sari
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, 07070, Antalya, Turkey.
| | - Hatice Sari
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, 07070, Antalya, Turkey
| | - Cengiz Ikten
- Department of Plant Protection, Faculty of Agriculture, Akdeniz University, 07070, Antalya, Turkey
| | - Cengiz Toker
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, 07070, Antalya, Turkey
| |
Collapse
|
4
|
Grover CE, Arick MA, Thrash A, Sharbrough J, Hu G, Yuan D, Snodgrass S, Miller ER, Ramaraj T, Peterson DG, Udall JA, Wendel JF. Dual Domestication, Diversity, and Differential Introgression in Old World Cotton Diploids. Genome Biol Evol 2022; 14:evac170. [PMID: 36510772 PMCID: PMC9792962 DOI: 10.1093/gbe/evac170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/19/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Domestication in the cotton genus is remarkable in that it has occurred independently four different times at two different ploidy levels. Relatively little is known about genome evolution and domestication in the cultivated diploid species Gossypium herbaceum and Gossypium arboreum, due to the absence of wild representatives for the latter species, their ancient domestication, and their joint history of human-mediated dispersal and interspecific gene flow. Using in-depth resequencing of a broad sampling from both species, we provide support for their independent domestication, as opposed to a progenitor-derivative relationship, showing that diversity (mean π = 6 × 10-3) within species is similar, and that divergence between species is modest (FST = 0.413). Individual accessions were homozygous for ancestral single-nucleotide polymorphisms at over half of variable sites, while fixed, derived sites were at modest frequencies. Notably, two chromosomes with a paucity of fixed, derived sites (i.e., chromosomes 7 and 10) were also strongly implicated as having experienced high levels of introgression. Collectively, these data demonstrate variable permeability to introgression among chromosomes, which we propose is due to divergent selection under domestication and/or the phenomenon of F2 breakdown in interspecific crosses. Our analyses provide insight into the evolutionary forces that shape diversity and divergence in the diploid cultivated species and establish a foundation for understanding the contribution of introgression and/or strong parallel selection to the extensive morphological similarities shared between species.
Collapse
Affiliation(s)
- Corrinne E Grover
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, Iowa 5001, USA
| | - Mark A Arick
- Biocomputing & Biotechnology, Institute for Genomics, Mississippi State University, Mississippi, USA
| | - Adam Thrash
- Biocomputing & Biotechnology, Institute for Genomics, Mississippi State University, Mississippi, USA
| | - Joel Sharbrough
- Biology Department, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, USA
| | - Guanjing Hu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Daojun Yuan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan Hubei 430070, China
| | - Samantha Snodgrass
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, Iowa 5001, USA
| | - Emma R Miller
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, Iowa 5001, USA
| | - Thiruvarangan Ramaraj
- School of Computing, College of Computing and Digital Media, DePaul University, Chicago, Illinois 6060, USA
| | - Daniel G Peterson
- Biocomputing & Biotechnology, Institute for Genomics, Mississippi State University, Mississippi, USA
| | - Joshua A Udall
- Crop Germplasm Research Unit, USDA/Agricultural Research Service, 2881 F&B Road, College Station, Texas 77845, USA
| | - Jonathan F Wendel
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, Iowa 5001, USA
| |
Collapse
|
5
|
Sharbrough J, Conover JL, Fernandes Gyorfy M, Grover CE, Miller ER, Wendel JF, Sloan DB. Global Patterns of Subgenome Evolution in Organelle-Targeted Genes of Six Allotetraploid Angiosperms. Mol Biol Evol 2022; 39:msac074. [PMID: 35383845 PMCID: PMC9040051 DOI: 10.1093/molbev/msac074] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Whole-genome duplications (WGDs) are a prominent process of diversification in eukaryotes. The genetic and evolutionary forces that WGD imposes on cytoplasmic genomes are not well understood, despite the central role that cytonuclear interactions play in eukaryotic function and fitness. Cellular respiration and photosynthesis depend on successful interaction between the 3,000+ nuclear-encoded proteins destined for the mitochondria or plastids and the gene products of cytoplasmic genomes in multi-subunit complexes such as OXPHOS, organellar ribosomes, Photosystems I and II, and Rubisco. Allopolyploids are thus faced with the critical task of coordinating interactions between the nuclear and cytoplasmic genes that were inherited from different species. Because the cytoplasmic genomes share a more recent history of common descent with the maternal nuclear subgenome than the paternal subgenome, evolutionary "mismatches" between the paternal subgenome and the cytoplasmic genomes in allopolyploids might lead to the accelerated rates of evolution in the paternal homoeologs of allopolyploids, either through relaxed purifying selection or strong directional selection to rectify these mismatches. We report evidence from six independently formed allotetraploids that the subgenomes exhibit unequal rates of protein-sequence evolution, but we found no evidence that cytonuclear incompatibilities result in altered evolutionary trajectories of the paternal homoeologs of organelle-targeted genes. The analyses of gene content revealed mixed evidence for whether the organelle-targeted genes are lost more rapidly than the non-organelle-targeted genes. Together, these global analyses provide insights into the complex evolutionary dynamics of allopolyploids, showing that the allopolyploid subgenomes have separate evolutionary trajectories despite sharing the same nucleus, generation time, and ecological context.
Collapse
Affiliation(s)
- Joel Sharbrough
- Department of Biology, Colorado State University, Fort Collins, CO, USA
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, NM, USA
| | - Justin L. Conover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | | | - Corrinne E. Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Emma R. Miller
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
6
|
Yu J, Jung S, Cheng CH, Lee T, Zheng P, Buble K, Crabb J, Humann J, Hough H, Jones D, Campbell JT, Udall J, Main D. CottonGen: The Community Database for Cotton Genomics, Genetics, and Breeding Research. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122805. [PMID: 34961276 PMCID: PMC8705096 DOI: 10.3390/plants10122805] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/11/2021] [Accepted: 12/12/2021] [Indexed: 05/12/2023]
Abstract
Over the last eight years, the volume of whole genome, gene expression, SNP genotyping, and phenotype data generated by the cotton research community has exponentially increased. The efficient utilization/re-utilization of these complex and large datasets for knowledge discovery, translation, and application in crop improvement requires them to be curated, integrated with other types of data, and made available for access and analysis through efficient online search tools. Initiated in 2012, CottonGen is an online community database providing access to integrated peer-reviewed cotton genomic, genetic, and breeding data, and analysis tools. Used by cotton researchers worldwide, and managed by experts with crop-specific knowledge, it continuous to be the logical choice to integrate new data and provide necessary interfaces for information retrieval. The repository in CottonGen contains colleague, gene, genome, genotype, germplasm, map, marker, metabolite, phenotype, publication, QTL, species, transcriptome, and trait data curated by the CottonGen team. The number of data entries housed in CottonGen has increased dramatically, for example, since 2014 there has been an 18-fold increase in genes/mRNAs, a 23-fold increase in whole genomes, and a 372-fold increase in genotype data. New tools include a genetic map viewer, a genome browser, a synteny viewer, a metabolite pathways browser, sequence retrieval, BLAST, and a breeding information management system (BIMS), as well as various search pages for new data types. CottonGen serves as the home to the International Cotton Genome Initiative, managing its elections and serving as a communication and coordination hub for the community. With its extensive curation and integration of data and online tools, CottonGen will continue to facilitate utilization of its critical resources to empower research for cotton crop improvement.
Collapse
Affiliation(s)
- Jing Yu
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA; (J.Y.); (S.J.); (C.-H.C.); (T.L.); (P.Z.); (K.B.); (J.C.); (J.H.); (H.H.)
| | - Sook Jung
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA; (J.Y.); (S.J.); (C.-H.C.); (T.L.); (P.Z.); (K.B.); (J.C.); (J.H.); (H.H.)
| | - Chun-Huai Cheng
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA; (J.Y.); (S.J.); (C.-H.C.); (T.L.); (P.Z.); (K.B.); (J.C.); (J.H.); (H.H.)
| | - Taein Lee
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA; (J.Y.); (S.J.); (C.-H.C.); (T.L.); (P.Z.); (K.B.); (J.C.); (J.H.); (H.H.)
| | - Ping Zheng
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA; (J.Y.); (S.J.); (C.-H.C.); (T.L.); (P.Z.); (K.B.); (J.C.); (J.H.); (H.H.)
| | - Katheryn Buble
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA; (J.Y.); (S.J.); (C.-H.C.); (T.L.); (P.Z.); (K.B.); (J.C.); (J.H.); (H.H.)
| | - James Crabb
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA; (J.Y.); (S.J.); (C.-H.C.); (T.L.); (P.Z.); (K.B.); (J.C.); (J.H.); (H.H.)
| | - Jodi Humann
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA; (J.Y.); (S.J.); (C.-H.C.); (T.L.); (P.Z.); (K.B.); (J.C.); (J.H.); (H.H.)
| | - Heidi Hough
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA; (J.Y.); (S.J.); (C.-H.C.); (T.L.); (P.Z.); (K.B.); (J.C.); (J.H.); (H.H.)
| | - Don Jones
- Cotton Incorporated, Cary, NC 27513, USA;
| | - J. Todd Campbell
- The Agricultural Research Service of U.S. Department of Agriculture, Florence, SC 29501, USA;
| | - Josh Udall
- The Agricultural Research Service of U.S. Department of Agriculture, College Station, TX 77845, USA;
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA; (J.Y.); (S.J.); (C.-H.C.); (T.L.); (P.Z.); (K.B.); (J.C.); (J.H.); (H.H.)
- Correspondence: ; Tel.: +1-509-335-2774
| |
Collapse
|
7
|
Kolahi M, Faghani E, Kazemian M, Goldson-Barnaby A, Dodangi S. Changes in secondary metabolites and fiber quality of cotton ( Gossypium hirsutum) seed under consecutive water stress and in silico analysis of cellulose synthase and xyloglucan endotransglucosylase. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1837-1857. [PMID: 34539119 PMCID: PMC8405814 DOI: 10.1007/s12298-021-01033-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/04/2021] [Accepted: 07/06/2021] [Indexed: 05/31/2023]
Abstract
Global warming has led to severe drought conditions. The selection of plant varieties that can withstand drought and produce increased yields are of utmost importance. In the current study, secondary metabolites, seed trait and fiber characteristic of cottonseeds (Gossypium hirsutum) exposed to double and third water stress exposure was investigated. Total phenol and tannin content in W1S33 increased significantly after third water stress exposure. Accumulation of wax was enhanced in seeds of W3S33 and W3S34 that were subjected to third water stress. Fiber quality parameters decreased when cottonseeds were rainfed. High irrigation resulted in fragile and delicate fiber. Seeds grown under 66% FC irrigation saved water and produced seeds that had the potential of producing high quality fibers. In silico analysis was performed on cellulose synthase A (CesA) and xyloglucan endotransglycosylase (XET) enzymes present in Gossypium hirsutum. The intracellular locations of the CesA and XET1 enzymes are the plasma membrane and cell wall, respectively. Proline is conserved in the C-terminal of the CesA enzyme and plays an important role in enzyme functionality. This study provides a better understanding as to the mechanisms by which the plant can tolerate and combat water stress conditions as well as reduce water consumption. In order to grow cotton seeds with desirable morphometric characteristics and optimal fibers under water stress exposure and in dry areas, it is better to use seeds that are irrigated under optimal irrigation conditions, ie 66% FC.
Collapse
Affiliation(s)
- Maryam Kolahi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, 61357-43169 Ahvaz, Iran
| | - Elham Faghani
- Agronomy Department, Agricultural Research, Education and Extension Organization (AREEO), Cotton Research Institute, Gorgan, Iran
| | - Mina Kazemian
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Sedighe Dodangi
- Expertise Lab, Agricultural Research, Education and Extension Organization (AREEO), Cotton Research Institute, Gorgan, Iran
| |
Collapse
|
8
|
Grover CE, Yuan D, Arick MA, Miller ER, Hu G, Peterson DG, Wendel JF, Udall JA. The Gossypium stocksii genome as a novel resource for cotton improvement. G3-GENES GENOMES GENETICS 2021; 11:6237488. [DOI: 10.1093/g3journal/jkab125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/07/2021] [Indexed: 12/17/2022]
Abstract
Abstract
Cotton is an important textile crop whose gains in production over the last century have been challenged by various diseases. Because many modern cultivars are susceptible to several pests and pathogens, breeding efforts have included attempts to introgress wild, naturally resistant germplasm into elite lines. Gossypium stocksii is a wild cotton species native to Africa, which is part of a clade of vastly understudied species. Most of what is known about this species comes from pest resistance surveys and/or breeding efforts, which suggests that G. stocksii could be a valuable reservoir of natural pest resistance. Here, we present a high-quality de novo genome sequence for G. stocksii. We compare the G. stocksii genome with resequencing data from a closely related, understudied species (Gossypium somalense) to generate insight into the relatedness of these cotton species. Finally, we discuss the utility of the G. stocksii genome for understanding pest resistance in cotton, particularly resistance to cotton leaf curl virus.
Collapse
Affiliation(s)
- Corrinne E Grover
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| | - Daojun Yuan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mark A Arick
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Emma R Miller
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| | - Guanjing Hu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Jonathan F Wendel
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| | - Joshua A Udall
- Crop Germplasm Research Unit, USDA/Agricultural Research Service, College Station, TX 77845, USA
| |
Collapse
|
9
|
Improved reconstruction and comparative analysis of chromosome 12 to rectify Mis-assemblies in Gossypium arboreum. BMC Genomics 2020; 21:470. [PMID: 32640982 PMCID: PMC7346634 DOI: 10.1186/s12864-020-06814-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genome sequencing technologies have been improved at an exponential pace but precise chromosome-scale genome assembly still remains a great challenge. The draft genome of cultivated G. arboreum was sequenced and assembled with shotgun sequencing approach, however, it contains several misassemblies. To address this issue, we generated an improved reassembly of G. arboreum chromosome 12 using genetic mapping and reference-assisted approaches and evaluated this reconstruction by comparing with homologous chromosomes of G. raimondii and G. hirsutum. RESULTS In this study, we generated a high quality assembly of the 94.64 Mb length of G. arboreum chromosome 12 (A_A12) which comprised of 144 scaffolds and contained 3361 protein coding genes. Evaluation of results using syntenic and collinear analysis of reconstructed G. arboreum chromosome A_A12 with its homologous chromosomes of G. raimondii (D_D08) and G. hirsutum (AD_A12 and AD_D12) confirmed the significant improved quality of current reassembly as compared to previous one. We found major misassemblies in previously assembled chromosome 12 (A_Ca9) of G. arboreum particularly in anchoring and orienting of scaffolds into a pseudo-chromosome. Further, homologous chromosomes 12 of G. raimondii (D_D08) and G. arboreum (A_A12) contained almost equal number of transcription factor (TF) related genes, and showed good collinear relationship with each other. As well, a higher rate of gene loss was found in corresponding homologous chromosomes of tetraploid (AD_A12 and AD_D12) than diploid (A_A12 and D_D08) cotton, signifying that gene loss is likely a continuing process in chromosomal evolution of tetraploid cotton. CONCLUSION This study offers a more accurate strategy to correct misassemblies in sequenced draft genomes of cotton which will provide further insights towards its genome organization.
Collapse
|
10
|
Hardigan MA, Feldmann MJ, Lorant A, Bird KA, Famula R, Acharya C, Cole G, Edger PP, Knapp SJ. Genome Synteny Has Been Conserved Among the Octoploid Progenitors of Cultivated Strawberry Over Millions of Years of Evolution. FRONTIERS IN PLANT SCIENCE 2020; 10:1789. [PMID: 32158449 PMCID: PMC7020885 DOI: 10.3389/fpls.2019.01789] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/20/2019] [Indexed: 05/18/2023]
Abstract
Allo-octoploid cultivated strawberry (Fragaria × ananassa) originated through a combination of polyploid and homoploid hybridization, domestication of an interspecific hybrid lineage, and continued admixture of wild species over the last 300 years. While genes appear to flow freely between the octoploid progenitors, the genome structures and diversity of the octoploid species remain poorly understood. The complexity and absence of an octoploid genome frustrated early efforts to study chromosome evolution, resolve subgenomic structure, and develop a single coherent linkage group nomenclature. Here, we show that octoploid Fragaria species harbor millions of subgenome-specific DNA variants. Their diversity was sufficient to distinguish duplicated (homoeologous and paralogous) DNA sequences and develop 50K and 850K SNP genotyping arrays populated with co-dominant, disomic SNP markers distributed throughout the octoploid genome. Whole-genome shotgun genotyping of an interspecific segregating population yielded 1.9M genetically mapped subgenome variants in 5,521 haploblocks spanning 3,394 cM in F. chiloensis subsp. lucida, and 1.6M genetically mapped subgenome variants in 3,179 haploblocks spanning 2,017 cM in F. × ananassa. These studies provide a dense genomic framework of subgenome-specific DNA markers for seamlessly cross-referencing genetic and physical mapping information and unifying existing chromosome nomenclatures. Using comparative genomics, we show that geographically diverse wild octoploids are effectively diploidized, nearly completely collinear, and retain strong macro-synteny with diploid progenitor species. The preservation of genome structure among allo-octoploid taxa is a critical factor in the unique history of garden strawberry, where unimpeded gene flow supported its origin and domestication through repeated cycles of interspecific hybridization.
Collapse
Affiliation(s)
- Michael A. Hardigan
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Mitchell J. Feldmann
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Anne Lorant
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Kevin A. Bird
- Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Randi Famula
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Charlotte Acharya
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Glenn Cole
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Patrick P. Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Steven J. Knapp
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
11
|
Conover JL, Karimi N, Stenz N, Ané C, Grover CE, Skema C, Tate JA, Wolff K, Logan SA, Wendel JF, Baum DA. A Malvaceae mystery: A mallow maelstrom of genome multiplications and maybe misleading methods? JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:12-31. [PMID: 30474311 DOI: 10.1111/jipb.12746] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
Abstract
Previous research suggests that Gossypium has undergone a 5- to 6-fold multiplication following its divergence from Theobroma. However, the number of events, or where they occurred in the Malvaceae phylogeny remains unknown. We analyzed transcriptomic and genomic data from representatives of eight of the nine Malvaceae subfamilies. Phylogenetic analysis of nuclear data placed Dombeya (Dombeyoideae) as sister to the rest of Malvadendrina clade, but the plastid DNA tree strongly supported Durio (Helicteroideae) in this position. Intraspecific Ks plots indicated that all sampled taxa, except Theobroma (Byttnerioideae), Corchorus (Grewioideae), and Dombeya (Dombeyoideae), have experienced whole genome multiplications (WGMs). Quartet analysis suggested WGMs were shared by Malvoideae-Bombacoideae and Sterculioideae-Tilioideae, but did not resolve whether these are shared with each other or Helicteroideae (Durio). Gene tree reconciliation and Bayesian concordance analysis suggested a complex history. Alternative hypotheses are suggested, each involving two independent autotetraploid and one allopolyploid event. They differ in that one entails an allopolyploid origin for the Durio lineage, whereas the other invokes an allopolyploid origin for Malvoideae-Bombacoideae. We highlight the need for more genomic information in the Malvaceae and improved methods to resolve complex evolutionary histories that may include allopolyploidy, incomplete lineage sorting, and variable rates of gene and genome evolution.
Collapse
Affiliation(s)
- Justin L Conover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Nisa Karimi
- Department of Botany, University of Wisconsin Madison, WI, 53706, USA
| | - Noah Stenz
- Department of Botany, University of Wisconsin Madison, WI, 53706, USA
| | - Cécile Ané
- Department of Botany, University of Wisconsin Madison, WI, 53706, USA
- Department of Statistics, University of Wisconsin Madison, WI, 53706, USA
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Cynthia Skema
- Morris Arboretum of the University of Pennsylvania, 100 E. Northwestern Avenue, Philadelphia, PA, 19118, USA
| | - Jennifer A Tate
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Kirsten Wolff
- School of Natural and Environmental Sciences, Newcastle University, NE1 7RU, UK
| | - Samuel A Logan
- School of Natural and Environmental Sciences, Newcastle University, NE1 7RU, UK
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - David A Baum
- Department of Botany, University of Wisconsin Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, 330 N Orchard St, Madison, WI 53715, USA
| |
Collapse
|
12
|
Wang C, He X, Li Y, Wang L, Guo X, Guo X. The cotton MAPK kinase GhMPK20 negatively regulates resistance to Fusarium oxysporum by mediating the MKK4-MPK20-WRKY40 cascade. MOLECULAR PLANT PATHOLOGY 2018; 19:1624-1638. [PMID: 29098751 PMCID: PMC6637994 DOI: 10.1111/mpp.12635] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/01/2017] [Accepted: 10/27/2017] [Indexed: 05/04/2023]
Abstract
Fusarium wilt is one of the most serious diseases affecting cotton. However, the pathogenesis and mechanism by which Fusarium oxysporum overcomes plant defence responses are unclear. Here, a new group D mitogen-activated protein kinase (MAPK) gene, GhMPK20, was identified and functionally analysed in cotton. GhMPK20 expression was significantly induced by F. oxysporum. Virus-induced gene silencing (VIGS) of GhMPK20 in cotton increased the tolerance to F. oxysporum, whereas ectopic GhMPK20 overexpression in Nicotiana benthamiana reduced F. oxysporum resistance via disruption of the salicylic acid (SA)-mediated defence pathway. More importantly, an F. oxysporum-induced MAPK cascade pathway composed of GhMKK4, GhMPK20 and GhWRKY40 was identified. VIGS of GhMKK4 and GhWRKY40 also enhanced F. oxysporum resistance in cotton, and the function of GhMKK4-GhMPK20 was shown to be essential for F. oxysporum-induced GhWRKY40 expression. Together, our results indicate that the GhMKK4-GhMPK20-GhWRKY40 cascade in cotton plays an important role in the pathogenesis of F. oxysporum. This research broadens our knowledge of the negative role of the MAPK cascade in disease resistance in cotton and provides an important scientific basis for the formulation of Fusarium wilt prevention strategies.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTaianShandong 271018China
| | - Xiaowen He
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianShandong 271018China
| | - Yuzhen Li
- State Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTaianShandong 271018China
| | - Lijun Wang
- State Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTaianShandong 271018China
| | - Xulei Guo
- State Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTaianShandong 271018China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTaianShandong 271018China
| |
Collapse
|
13
|
SSR-based association mapping of fiber quality in upland cotton using an eight-way MAGIC population. Mol Genet Genomics 2018; 293:793-805. [PMID: 29392407 DOI: 10.1007/s00438-018-1419-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/13/2018] [Indexed: 10/18/2022]
Abstract
The quality of fiber is significant in the upland cotton industry. As complex quantitative traits, fiber quality traits are worth studying at a genetic level. To investigate the genetic architecture of fiber quality traits, we conducted an association analysis using a multi-parent advanced generation inter-cross (MAGIC) population developed from eight parents and comprised of 960 lines. The reliable phenotypic data for six major fiber traits of the MAGIC population were collected from five environments in three locations. Phenotypic analysis showed that the MAGIC lines have a wider variation amplitude and coefficient than the founders. A total of 284 polymorphic SSR markers among eight parents screened from a high-density genetic map were used to genotype the MAGIC population. The MAGIC population showed abundant genetic variation and fast linkage disequilibrium (LD) decay (0.76 cM, r2 > 0.1), which revealed the advantages of high efficiency and power in QTL exploration. Association mapping via a mixed linear model identified 52 significant loci associated with six fiber quality traits; 14 of them were mapped in reported QTL regions with fiber-related or other agronomic traits. Nine markers demonstrated the pleiotropism that controls more than two fiber traits. Furthermore, two SSR markers, BNL1231 and BNL3452, were authenticated as hotspots that were mapped with multi-traits. In addition, we provided candidate regions and screened six candidate genes for identified loci according to the LD decay distance. Our results provide valuable QTL for further genetic mapping and will facilitate marker-based breeding for fiber quality in cotton.
Collapse
|
14
|
Deng F, Zhang X, Wang W, Yuan R, Shen F. Identification of Gossypium hirsutum long non-coding RNAs (lncRNAs) under salt stress. BMC PLANT BIOLOGY 2018; 18:23. [PMID: 29370759 PMCID: PMC5785843 DOI: 10.1186/s12870-018-1238-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 01/17/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) represent a class of riboregulators that either directly act in long form or are processed into shorter microRNAs (miRNAs) and small interfering RNAs. Long noncoding RNAs (lncRNAs) are arbitrarily defined as RNA genes larger than 200 nt in length that have no apparent coding potential. lncRNAs have emerged as playing important roles in various biological regulatory processes and are expressed in a more tissue-specific manner than mRNA. Emerging evidence shows that lncRNAs participate in stress-responsive regulation. RESULTS In this study, in order to develop a comprehensive catalogue of lncRNAs in upland cotton under salt stress, we performed whole-transcriptome strand-specific RNA sequencing for three-leaf stage cotton seedlings treated with salt stress (S_NaCl) and controls (S_CK). In total we identified 1117 unique lncRNAs in this study and 44 differentially expressed RNAs were identified as potential non-coding RNAs. For the differentially expressed lncRNAs that were identified as intergenic lncRNAs (lincRNA), we analysed the gene ontology enrichment of cis targets and found that cis target protein-coding genes were mainly enriched in stress-related categories. Real-time quantitative PCR confirmed that all selected lincRNAs responsive to salt stress. We found lnc_388 was likely as regulator of Gh_A09G1182. And lnc_883 may participate in regulating tolerance to salt stress by modulating the expression of Gh_D03G0339 MS_channel. We then predicted the target mimics for miRNA in Gossypium. six miRNAs were identified, and the result of RT-qPCR with lncRNA and miRNA suggested that lnc_973 and lnc_253 may regulate the expression of ghr-miR399 and ghr-156e as a target mimic under salt stress. CONCLUSIONS We identified 44 lincRNAs that were differentially expressed under salt stress. These lincRNAs may target protein-coding genes via cis-acting regulation. We also discovered that specifically-expressed lincRNAs under salt stress may act as endogenous target mimics for conserved miRNAs. These findings extend the current view on lincRNAs as ubiquitous regulators under stress stress.
Collapse
Affiliation(s)
- Fenni Deng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 Shandong People’s Republic of China
| | - Xiaopei Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 Shandong People’s Republic of China
| | - Wei Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 Shandong People’s Republic of China
| | - Rui Yuan
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 Shandong People’s Republic of China
| | - Fafu Shen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 Shandong People’s Republic of China
| |
Collapse
|
15
|
Li F, Li M, Wang P, Cox KL, Duan L, Dever JK, Shan L, Li Z, He P. Regulation of cotton (Gossypium hirsutum) drought responses by mitogen-activated protein (MAP) kinase cascade-mediated phosphorylation of GhWRKY59. THE NEW PHYTOLOGIST 2017; 215:1462-1475. [PMID: 28700082 DOI: 10.1111/nph.14680] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/30/2017] [Indexed: 05/06/2023]
Abstract
Drought is a key limiting factor for cotton (Gossypium spp.) production, as more than half of the global cotton supply is grown in regions with high water shortage. However, the underlying mechanism of the response of cotton to drought stress remains elusive. By combining genome-wide transcriptome profiling and a loss-of-function screen using virus-induced gene silencing, we identified Gossypium hirsutum GhWRKY59 as an important transcription factor that regulates the drought stress response in cotton. Biochemical and genetic analyses revealed a drought stress-activated mitogen-activated protein (MAP) kinase cascade consisting of GhMAP3K15-Mitogen-activated Protein Kinase Kinase 4 (GhMKK4)-Mitogen-activated Protein Kinase 6 (GhMPK6) that directly phosphorylates GhWRKY59 at residue serine 221. Interestingly, GhWRKY59 is required for dehydration-induced expression of GhMAPK3K15, constituting a positive feedback loop of GhWRKY59-regulated MAP kinase activation in response to drought stress. Moreover, GhWRKY59 directly binds to the W-boxes of DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN 2 (GhDREB2), which encodes a dehydration-inducible transcription factor regulating the plant hormone abscisic acid (ABA)-independent drought response. Our study identified a complete MAP kinase cascade that phosphorylates and activates a key WRKY transcription factor, and elucidated a regulatory module, consisting of GhMAP3K15-GhMKK4-GhMPK6-GhWRKY59-GhDREB2, that is involved in controlling the cotton drought response.
Collapse
Affiliation(s)
- Fangjun Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Maoying Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Department of Biochemistry and Biophysics, Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Ping Wang
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA
- College of Science, China Agricultural University, Beijing, 100193, China
| | - Kevin L Cox
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Liusheng Duan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jane K Dever
- Texas A&M AgriLife Research and Extension Center, 1102 East FM 1294, Lubbock, TX, 79403, USA
| | - Libo Shan
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Ping He
- Department of Biochemistry and Biophysics, Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
16
|
Liu X, Teng Z, Wang J, Wu T, Zhang Z, Deng X, Fang X, Tan Z, Ali I, Liu D, Zhang J, Liu D, Liu F, Zhang Z. Enriching an intraspecific genetic map and identifying QTL for fiber quality and yield component traits across multiple environments in Upland cotton (Gossypium hirsutum L.). Mol Genet Genomics 2017; 292:1281-1306. [PMID: 28733817 DOI: 10.1007/s00438-017-1347-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 06/29/2017] [Indexed: 10/19/2022]
Abstract
Cotton is a significant commercial crop that plays an indispensable role in many domains. Constructing high-density genetic maps and identifying stable quantitative trait locus (QTL) controlling agronomic traits are necessary prerequisites for marker-assisted selection (MAS). A total of 14,899 SSR primer pairs designed from the genome sequence of G. raimondii were screened for polymorphic markers between mapping parents CCRI 35 and Yumian 1, and 712 SSR markers showing polymorphism were used to genotype 180 lines from a (CCRI 35 × Yumian 1) recombinant inbred line (RIL) population. Genetic linkage analysis was conducted on 726 loci obtained from the 712 polymorphic SSR markers, along with 1379 SSR loci obtained in our previous study, and a high-density genetic map with 2051 loci was constructed, which spanned 3508.29 cM with an average distance of 1.71 cM between adjacent markers. Marker orders on the linkage map are highly consistent with the corresponding physical orders on a G. hirsutum genome sequence. Based on fiber quality and yield component trait data collected from six environments, 113 QTLs were identified through two analytical methods. Among these 113 QTLs, 50 were considered stable (detected in multiple environments or for which phenotypic variance explained by additive effect was greater than environment effect), and 18 of these 50 were identified with stability by both methods. These 18 QTLs, including eleven for fiber quality and seven for yield component traits, could be priorities for MAS.
Collapse
Affiliation(s)
- Xueying Liu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
| | - Zhonghua Teng
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
| | - Jinxia Wang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
| | - Tiantian Wu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
| | - Zhiqin Zhang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
| | - Xianping Deng
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
| | - Xiaomei Fang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
| | - Zhaoyun Tan
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
| | - Iftikhar Ali
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
| | - Dexin Liu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
| | - Jian Zhang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
| | - Dajun Liu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology/Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Zhengsheng Zhang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
17
|
Homoeologous chromosome pairing across the eukaryote phylogeny. Mol Phylogenet Evol 2017; 117:83-94. [PMID: 28602622 DOI: 10.1016/j.ympev.2017.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 11/21/2022]
Abstract
During the past quarter century, molecular phylogenetic inferences have significantly resolved evolutionary relationships spanning the eukaryotic tree of life. With improved phylogenies in hand, the focus of systematics will continue to expand from estimating species relationships toward examining the evolution of specific, fundamental traits across the eukaryotic tree. Undoubtedly, this will expose knowledge gaps in the evolution of key traits, particularly with respect to non-model lineages. Here, we examine one such trait across eukaryotes-the regulation of homologous chromosome pairing during meiosis-as an illustrative example. Specifically, we present an overview of the breakdown of homologous chromosome pairing in model eukaryotes and provide a discussion of various meiotic aberrations that result in the failure of homolog recognition, with a particular focus on lineages with a history of hybridization and polyploidization, across major eukaryotic clades. We then explore what is known about these processes in natural and non-model eukaryotic taxa, thereby exposing disparities in our understanding of this key trait among non-model groups.
Collapse
|
18
|
Shen C, Jin X, Zhu D, Lin Z. Uncovering SNP and indel variations of tetraploid cottons by SLAF-seq. BMC Genomics 2017; 18:247. [PMID: 28330454 PMCID: PMC5363057 DOI: 10.1186/s12864-017-3643-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 03/18/2017] [Indexed: 11/10/2022] Open
Abstract
Background Cotton (Gossypium spp.), as the world’s most utilized textile fibre source, is an important, economically valuable crop worldwide. Understanding the genomic variation of tetraploid cotton species is important for exploitation of the excellent characteristics of wild cotton and for improving the diversity of cotton in breeding. However, the discovery of DNA polymorphisms in tetraploid cotton genomes has lagged behind other important crops. Results A total of 111,795,823 reads, 467,735 specific length amplified fragment (SLAF) tags and 139,176 high-quality DNA polymorphisms were identified using specific length amplified fragment sequencing (SLAF-seq), including 132,880 SNPs and 6,296 InDels between the reference genome (TM-1) and the five tetraploid cotton species. Intriguingly, gene ontology (GO) enrichment analysis revealed that a number of significant terms were related to reproduction in G. barbadense acc. 3–79. Based on the new data sets, we reconstructed phylogenetic trees that showed a high concordance to the phylogeny of diploid and polyploid cottons. A large amount of interspecific genetic variations were identified, and some of them were validated by the single-strand conformation polymorphism (SSCP) method, which will be applied in introgression genetics and breeding with G. hirsutum cv. Emian22 as the receptor and the other species as donors. Conclusions Using SLAF-seq, a large number of DNA polymorphisms were identified. The comprehensive analysis of DNA polymorphisms provided invaluable insights into the different tetraploid cotton species. More importantly, the identification of numerous interspecific genetic variations provides the basis and is very practical for future introgression breeding. The results presented herein provide a valuable genomic resource for new insights into the genetics and breeding of cotton. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3643-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chao Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xin Jin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - De Zhu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
19
|
Sturtevant D, Horn P, Kennedy C, Hinze L, Percy R, Chapman K. Lipid metabolites in seeds of diverse Gossypium accessions: molecular identification of a high oleic mutant allele. PLANTA 2017; 245:595-610. [PMID: 27988885 DOI: 10.1007/s00425-016-2630-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/30/2016] [Indexed: 05/12/2023]
Abstract
Genetically diverse cottonseeds show altered compositions and spatial distributions of phosphatidylcholines and triacylglycerols. Lipidomics profiling led to the discovery of a novel FAD2 - 1 allele, fad2 - 1D - 1 , resulting in a high oleic phenotype. The domestication and breeding of cotton for elite, high-fiber cultivars have led to reduced variation of seed constituents within currently cultivated upland cotton genotypes. However, a recent screen of the genetically diverse U.S. National Cotton Germplasm Collection identified Gossypium accessions with marked differences in seed oil and protein content. Here, several of these accessions representing substantial variation in seed oil content were analyzed for quantitative and spatial differences in lipid compositions by mass spectrometric approaches. Results indicate considerable variation in amount and spatial distribution of pathway metabolites for triacylglycerol biosynthesis in embryos across Gossypium accessions, suggesting that this variation might be exploited by breeders for seed composition traits. By way of example, these lipid metabolite differences led to the identification of a mutant allele of the D-subgenome homolog of the delta-12 desaturase (fad2-1D-1) in a wild accession of G. barbadense that has a high oil and high oleic seed phenotype. This mutation is a 90-bp insertion in the 3' end of the FAD2-1D coding sequence and a modification of the 3' end of the gene beyond the coding sequence leading to the introduction of a premature stop codon. Given the large amounts of cottonseed produced around the world that is currently not processed into higher value products, these efforts might be one avenue to raise the overall value of the cotton crop for producers.
Collapse
Affiliation(s)
- Drew Sturtevant
- Department of Biological Sciences, Center for Plant Lipid Research, BioDiscovery Institute, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203-5217, USA
| | - Patrick Horn
- Department of Biological Sciences, Center for Plant Lipid Research, BioDiscovery Institute, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203-5217, USA
- U.S. Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Christopher Kennedy
- Department of Biological Sciences, Center for Plant Lipid Research, BioDiscovery Institute, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203-5217, USA
| | - Lori Hinze
- USDA/ARS, Southern Plains Agricultural Research Center, College Station, TX, 77845, USA
| | - Richard Percy
- USDA/ARS, Southern Plains Agricultural Research Center, College Station, TX, 77845, USA
| | - Kent Chapman
- Department of Biological Sciences, Center for Plant Lipid Research, BioDiscovery Institute, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203-5217, USA.
| |
Collapse
|
20
|
Yan R, Liang C, Meng Z, Malik W, Zhu T, Zong X, Guo S, Zhang R. Progress in genome sequencing will accelerate molecular breeding in cotton (Gossypium spp.). 3 Biotech 2016; 6:217. [PMID: 28330289 PMCID: PMC5055485 DOI: 10.1007/s13205-016-0534-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022] Open
Abstract
Cotton (Gossypium spp.) is the single most important spinning fiber that has economic significance worldwide. Cotton is one of the most value-added crops and an excellent model system for the analysis of polyploidization and cell development. Thus, the Cotton Genome Consortium has made rapid and significant progress in whole genome sequencing studies in the last decade. Developments in cotton genome sequencing and assembly provide powerful tools for dissecting the genetic and molecular bases of agronomically important traits and establishing regulatory networks on these processes, which leads to molecular breeding. Here, we briefly review these advances, emphasizing their implications in the genetic improvement of cotton with a particular focus on fiber quality and yield. Moreover, major progresses in chloroplast and mitochondrial genomes have also been summarized.
Collapse
Affiliation(s)
- Rong Yan
- College of Agronomy and Biotechnology, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400715, China
- Biotechnology Research Institute, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chengzhen Liang
- Biotechnology Research Institute, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhigang Meng
- Biotechnology Research Institute, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Waqas Malik
- Biotechnology Research Institute, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Tao Zhu
- Biotechnology Research Institute, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuefeng Zong
- College of Agronomy and Biotechnology, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400715, China.
| | - Sandui Guo
- Biotechnology Research Institute, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Rui Zhang
- Biotechnology Research Institute, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
21
|
Boutte J, Ferreira de Carvalho J, Rousseau-Gueutin M, Poulain J, Da Silva C, Wincker P, Ainouche M, Salmon A. Reference Transcriptomes and Detection of Duplicated Copies in Hexaploid and Allododecaploid Spartina Species (Poaceae). Genome Biol Evol 2016; 8:3030-3044. [PMID: 27614235 PMCID: PMC5633685 DOI: 10.1093/gbe/evw209] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2016] [Indexed: 01/19/2023] Open
Abstract
In this study, we report the assembly and annotation of five reference transcriptomes for the European hexaploid Spartina species (S. maritima, S. alterniflora and their homoploid hybrids S. x townsendii and S. x neyrautii) and the allododecaploid invasive species S. anglica These transcriptomes were constructed from various leaf and root cDNA libraries that were sequenced using both Roche-454 and Illumina technologies. Considering the high ploidy levels of the Spartina genomes under study, and considering the absence of diploid reference genome and the need of an appropriate analytical strategy, we developed generic bioinformatics tools to (1) detect different haplotypes of each gene within each species and (2) assign a parental origin to haplotypes detected in the hexaploid hybrids and the neo-allopolyploid. The approach described here allows the detection of putative homeologs from sets of short reads. Synonymous substitution rate (KS) comparisons between haplotypes from the hexaploid species revealed the presence of one KS peak (likely resulting from the tetraploid duplication event). The procedure developed in this study can be applied for future differential gene expression or genomics experiments to study the fate of duplicated genes in the invasive allododecaploid S. anglica.
Collapse
Affiliation(s)
- Julien Boutte
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), University of Rennes 1, Rennes Cedex, France
| | - Julie Ferreira de Carvalho
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), University of Rennes 1, Rennes Cedex, France
| | - Mathieu Rousseau-Gueutin
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), University of Rennes 1, Rennes Cedex, France UMR Institut de Génétique, Environnement et Protection des Plantes, Institut National de la Recherche Agronomique, Le Rheu Cedex, France
| | | | | | | | - Malika Ainouche
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), University of Rennes 1, Rennes Cedex, France
| | - Armel Salmon
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), University of Rennes 1, Rennes Cedex, France
| |
Collapse
|
22
|
Kottapalli P, Ulloa M, Kottapalli KR, Payton P, Burke J. SNP Marker Discovery in Pima Cotton ( Gossypium barbadense L.) Leaf Transcriptomes. GENOMICS INSIGHTS 2016; 9:51-60. [PMID: 27721653 PMCID: PMC5049682 DOI: 10.4137/gei.s40377] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 11/17/2022]
Abstract
The objective of this study was to explore the known narrow genetic diversity and discover single-nucleotide polymorphic (SNP) markers for marker-assisted breeding within Pima cotton (Gossypium barbadense L.) leaf transcriptomes. cDNA from 25-day plants of three diverse cotton genotypes [Pima S6 (PS6), Pima S7 (PS7), and Pima 3-79 (P3-79)] was sequenced on Illumina sequencing platform. A total of 28.9 million reads (average read length of 138 bp) were generated by sequencing cDNA libraries of these three genotypes. The de novo assembly of reads generated transcriptome sets of 26,369 contigs for PS6, 25,870 contigs for PS7, and 24,796 contigs for P3-79. A Pima leaf reference transcriptome was generated consisting of 42,695 contigs. More than 10,000 single-nucleotide polymorphisms (SNPs) were identified between the genotypes, with 100% SNP frequency and a minimum of eight sequencing reads. The most prevalent SNP substitutions were C-T and A-G in these cotton genotypes. The putative SNPs identified can be utilized for characterizing genetic diversity, genotyping, and eventually in Pima cotton breeding through marker-assisted selection.
Collapse
Affiliation(s)
- Pratibha Kottapalli
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, USA
| | - Mauricio Ulloa
- USDA-ARS, PA, CSRL, Plant Stress and Germplasm Development Research, Lubbock, TX, USA
| | | | - Paxton Payton
- USDA-ARS, PA, CSRL, Plant Stress and Germplasm Development Research, Lubbock, TX, USA
| | - John Burke
- USDA-ARS, PA, CSRL, Plant Stress and Germplasm Development Research, Lubbock, TX, USA
| |
Collapse
|
23
|
Zhang SW, Zhu XF, Feng LC, Gao X, Yang B, Zhang TZ, Zhou BL. Mapping of fiber quality QTLs reveals useful variation and footprints of cotton domestication using introgression lines. Sci Rep 2016; 6:31954. [PMID: 27549323 PMCID: PMC4994025 DOI: 10.1038/srep31954] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/01/2016] [Indexed: 11/22/2022] Open
Abstract
Fiber quality improvement is a driving force for further cotton domestication and breeding. Here, QTLs for fiber quality were mapped in 115 introgression lines (ILs) first developed from two intraspecific populations of cultivated and feral cotton landraces. A total of 60 QTLs were found, which explained 2.03–16.85% of the phenotypic variance found in fiber quality traits. A total of 36 markers were associated with five fiber traits, 33 of which were found to be associated with QTLs in multiple environments. In addition, nine pairs of common QTLs were identified; namely, one pair of QTLs for fiber elongation, three pairs for fiber length, three pairs for fiber strength and two pairs for micronaire (qMICs). All common QTLs had additive effects in the same direction in both IL populations. We also found five QTL clusters, allowing cotton breeders to focus their efforts on regions of QTLs with the highest percentages of phenotypic variance. Our results also reveal footprints of domestication; for example, fourteen QTLs with positive effects were found to have remained in modern cultivars during domestication, and two negative qMICs that had never been reported before were found, suggesting that the qMICs regions may be eliminated during artificial selection.
Collapse
Affiliation(s)
- Shu-Wen Zhang
- State Key Laboratory of Crop Genetics &Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xie-Fei Zhu
- State Key Laboratory of Crop Genetics &Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Liu-Chun Feng
- State Key Laboratory of Crop Genetics &Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang Gao
- State Key Laboratory of Crop Genetics &Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Biao Yang
- State Key Laboratory of Crop Genetics &Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Tian-Zhen Zhang
- State Key Laboratory of Crop Genetics &Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Bao-Liang Zhou
- State Key Laboratory of Crop Genetics &Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
24
|
Renny-Byfield S, Page JT, Udall JA, Sanders WS, Peterson DG, Arick MA, Grover CE, Wendel JF. Independent Domestication of Two Old World Cotton Species. Genome Biol Evol 2016; 8:1940-7. [PMID: 27289095 PMCID: PMC4943200 DOI: 10.1093/gbe/evw129] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2016] [Indexed: 11/16/2022] Open
Abstract
Domesticated cotton species provide raw material for the majority of the world's textile industry. Two independent domestication events have been identified in allopolyploid cotton, one in Upland cotton (Gossypium hirsutum L.) and the other to Egyptian cotton (Gossypium barbadense L.). However, two diploid cotton species, Gossypium arboreum L. and Gossypium herbaceum L., have been cultivated for several millennia, but their status as independent domesticates has long been in question. Using genome resequencing data, we estimated the global abundance of various repetitive DNAs. We demonstrate that, despite negligible divergence in genome size, the two domesticated diploid cotton species contain different, but compensatory, repeat content and have thus experienced cryptic alterations in repeat abundance despite equivalence in genome size. Evidence of independent origin is bolstered by estimates of divergence times based on molecular evolutionary analysis of f7,000 orthologous genes, for which synonymous substitution rates suggest that G. arboreum and G. herbaceum last shared a common ancestor approximately 0.4-2.5 Ma. These data are incompatible with a shared domestication history during the emergence of agriculture and lead to the conclusion that G. arboreum and G. herbaceum were each domesticated independently.
Collapse
Affiliation(s)
- Simon Renny-Byfield
- Department of Ecology, Evolution and Organismal Biology, Iowa State University DuPont Pioneer, Johnston, IA
| | - Justin T Page
- Plant and Wildlife Science Department, Brigham Young University
| | - Joshua A Udall
- Plant and Wildlife Science Department, Brigham Young University
| | - William S Sanders
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University Department of Computer Science and Engineering, Mississippi State University
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University Department of Plant and Soil Sciences, Mississippi State University
| | - Mark A Arick
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University
| | - Corrinne E Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University
| |
Collapse
|
25
|
Gallagher JP, Grover CE, Hu G, Wendel JF. Insights into the Ecology and Evolution of Polyploid Plants through Network Analysis. Mol Ecol 2016; 25:2644-60. [PMID: 27027619 DOI: 10.1111/mec.13626] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/09/2016] [Accepted: 03/22/2016] [Indexed: 12/18/2022]
Abstract
Polyploidy is a widespread phenomenon throughout eukaryotes, with important ecological and evolutionary consequences. Although genes operate as components of complex pathways and networks, polyploid changes in genes and gene expression have typically been evaluated as either individual genes or as a part of broad-scale analyses. Network analysis has been fruitful in associating genomic and other 'omic'-based changes with phenotype for many systems. In polyploid species, network analysis has the potential not only to facilitate a better understanding of the complex 'omic' underpinnings of phenotypic and ecological traits common to polyploidy, but also to provide novel insight into the interaction among duplicated genes and genomes. This adds perspective to the global patterns of expression (and other 'omic') change that accompany polyploidy and to the patterns of recruitment and/or loss of genes following polyploidization. While network analysis in polyploid species faces challenges common to other analyses of duplicated genomes, present technologies combined with thoughtful experimental design provide a powerful system to explore polyploid evolution. Here, we demonstrate the utility and potential of network analysis to questions pertaining to polyploidy with an example involving evolution of the transgressively superior cotton fibres found in polyploid Gossypium hirsutum. By combining network analysis with prior knowledge, we provide further insights into the role of profilins in fibre domestication and exemplify the potential for network analysis in polyploid species.
Collapse
Affiliation(s)
- Joseph P Gallagher
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Guanjing Hu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
26
|
Page JT, Liechty ZS, Alexander RH, Clemons K, Hulse-Kemp AM, Ashrafi H, Van Deynze A, Stelly DM, Udall JA. DNA Sequence Evolution and Rare Homoeologous Conversion in Tetraploid Cotton. PLoS Genet 2016; 12:e1006012. [PMID: 27168520 PMCID: PMC4864293 DOI: 10.1371/journal.pgen.1006012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/06/2016] [Indexed: 01/08/2023] Open
Abstract
Allotetraploid cotton species are a vital source of spinnable fiber for textiles. The polyploid nature of the cotton genome raises many evolutionary questions as to the relationships between duplicated genomes. We describe the evolution of the cotton genome (SNPs and structural variants) with the greatly improved resolution of 34 deeply re-sequenced genomes. We also explore the evolution of homoeologous regions in the AT- and DT-genomes and especially the phenomenon of conversion between genomes. We did not find any compelling evidence for homoeologous conversion between genomes. These findings are very different from other recent reports of frequent conversion events between genomes. We also identified several distinct regions of the genome that have been introgressed between G. hirsutum and G. barbadense, which presumably resulted from breeding efforts targeting associated beneficial alleles. Finally, the genotypic data resulting from this study provides access to a wealth of diversity sorely needed in the narrow germplasm of cotton cultivars.
Collapse
Affiliation(s)
- Justin T. Page
- Biology Department, Brigham Young University, Provo, Utah, United States of America
| | - Zach S. Liechty
- Plant and Wildlife Science Department, Brigham Young University, Provo, Utah, United States of America
| | - Rich H. Alexander
- Plant and Wildlife Science Department, Brigham Young University, Provo, Utah, United States of America
| | - Kimberly Clemons
- Plant and Wildlife Science Department, Brigham Young University, Provo, Utah, United States of America
| | - Amanda M. Hulse-Kemp
- Department of Soil & Crop Sciences, Texas A&M University and Texas A&M AgriLife Research, College Station, Texas, United States of America
| | - Hamid Ashrafi
- Seed Biotechnology Center, University of California-Davis, Davis, California, United States of America
| | - Allen Van Deynze
- Seed Biotechnology Center, University of California-Davis, Davis, California, United States of America
| | - David M. Stelly
- Department of Soil & Crop Sciences, Texas A&M University and Texas A&M AgriLife Research, College Station, Texas, United States of America
| | - Joshua A. Udall
- Plant and Wildlife Science Department, Brigham Young University, Provo, Utah, United States of America
| |
Collapse
|
27
|
Liu Y, Peng R, Liu F, Wang X, Cui X, Zhou Z, Wang C, Cai X, Wang Y, Lin Z, Wang K. A Gossypium BAC clone contains key repeat components distinguishing sub-genome of allotetraploidy cottons. Mol Cytogenet 2016; 9:27. [PMID: 27006694 PMCID: PMC4802715 DOI: 10.1186/s13039-016-0235-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/14/2016] [Indexed: 11/23/2022] Open
Abstract
Background Dissecting genome organization is indispensable for further functional and applied studies. As genome sequences data shown, cotton genomes contain more than 60 % repetitive sequences, so study on repetitive sequences composition, structure, and distribution is the key step to dissect cotton genome. Results In this study, a bacterial artificial chromosome (BAC) clone enriched in repetitive sequences, was discovered initiatively by fluorescence in situ hybridization (FISH). FISHing with allotetraploidy cotton as target DNA, dispersed signals on most regions of all A sub-genome chromosomes, and only middle regions of all D sub-genome chromosomes were detected. Further FISHing with other cotton species bearing A or D genome as target DNA, specific signals were viewed. After BAC sequencing and bioinformational analysis, 129 repeat elements, size about 57,172 bp were found, accounting for more than 62 % of the BAC sequence (91,238 bp). Among them, a type of long terminal repeat-retrotransposon (LTR-RT), LTR/Gypsy was the key element causing the specific FISH results. Using the fragments of BAC matching with the identified Gypsy-like LTR as probes, the BAC-57I23-like FISH signals were reappeared. Running BLASTN, the fragments had good match with all chromosomes of G. arboreum (A2) genome and A sub-genome of G. hirsutum (AD1), and had relatively inferior match with all chromosomes of D sub-genome of AD1, but had little match with the chromosomes of G. raimondii (D5) genome, which was consistent with the FISH results. Conclusion A repeats-enriched cytogenetic marker to identify A and D sub-genomes of Gossypium was discovered by FISH. Combined sequences analysis with FISH verification, the assembly quality of repetitive sequences in the allotetraploidy cotton draft genome was assessed, and better chromosome belonging was verified. We also found the genomic distribution of the identified Gypsy-LTR-RT was similar to the distribution of heterochromatin. The expansion of this type of Gypsy-LTR-RT in heterochromatic regions may be one of the major reasons for the size gap between A and D genome. The findings showed here will help to understand the composition, structure, and evolution of cotton genome, and contribute to the further perfection of the draft genomes of cotton.
Collapse
Affiliation(s)
- Yuling Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000 China ; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Renhai Peng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000 China ; Anyang Institute of Technology, Anyang, Henan 455000 China
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000 China
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000 China
| | - Xinglei Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000 China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000 China
| | - Chunying Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000 China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000 China
| | - Yuhong Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000 China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, Henan 455000 China
| |
Collapse
|
28
|
Jamshed M, Jia F, Gong J, Palanga KK, Shi Y, Li J, Shang H, Liu A, Chen T, Zhang Z, Cai J, Ge Q, Liu Z, Lu Q, Deng X, Tan Y, Or Rashid H, Sarfraz Z, Hassan M, Gong W, Yuan Y. Identification of stable quantitative trait loci (QTLs) for fiber quality traits across multiple environments in Gossypium hirsutum recombinant inbred line population. BMC Genomics 2016. [PMID: 26951621 DOI: 10.1186/s12864‐016‐2560‐2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The identification of quantitative trait loci (QTLs) that are stable and consistent across multiple environments and populations plays an essential role in marker-assisted selection (MAS). In the present study, we used 28,861 simple sequence repeat (SSR) markers, which included 12,560 Gossypium raimondii (D genome) sequence-based SSR markers to identify polymorphism between two upland cotton strains 0-153 and sGK9708. A total of 851 polymorphic primers were finally selected and used to genotype 196 recombinant inbred lines (RIL) derived from a cross between 0 and 153 and sGK9708 and used to construct a linkage map. The RIL population was evaluated for fiber quality traits in six locations in China for five years. Stable QTLs identified in this intraspecific cross could be used in future cotton breeding program and with fewer obstacles. RESULTS The map covered a distance of 4,110 cM, which represents about 93.2 % of the upland cotton genome, and with an average distance of 5.2 cM between adjacent markers. We identified 165 QTLs for fiber quality traits, of which 47 QTLs were determined to be stable across multiple environments. Most of these QTLs aggregated into clusters with two or more traits. A total of 30 QTL clusters were identified which consisted of 103 QTLs. Sixteen clusters in the At sub-genome comprised 44 QTLs, whereas 14 clusters in the Dt sub-genome that included 59 QTLs for fiber quality were identified. Four chromosomes, including chromosome 4 (c4), c7, c14, and c25 were rich in clusters harboring 5, 4, 5, and 6 clusters respectively. A meta-analysis was performed using Biomercator V4.2 to integrate QTLs from 11 environmental datasets on the RIL populations of the above mentioned parents and previous QTL reports. Among the 165 identified QTLs, 90 were identified as common QTLs, whereas the remaining 75 QTLs were determined to be novel QTLs. The broad sense heritability estimates of fiber quality traits were high for fiber length (0.93), fiber strength (0.92), fiber micronaire (0.85), and fiber uniformity (0.80), but low for fiber elongation (0.27). Meta-clusters on c4, c7, c14 and c25 were identified as stable QTL clusters and were considered more valuable in MAS for the improvement of fiber quality of upland cotton. CONCLUSION Multiple environmental evaluations of an intraspecific RIL population were conducted to identify stable QTLs. Meta-QTL analyses identified a common chromosomal region that plays an important role in fiber development. Therefore, QTLs identified in the present study are an ideal candidate for MAS in cotton breeding programs to improve fiber quality.
Collapse
Affiliation(s)
- Muhammad Jamshed
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Fei Jia
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Juwu Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China. .,College of Agronomy, Xinjiang Agricultural University, Key Laboratory of Agro-Biotechnology, Urumqi, 830052, Xinjiang, China.
| | - Koffi Kibalou Palanga
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Junwen Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Aiying Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Tingting Chen
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Zhen Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Juan Cai
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Zhi Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Quanwei Lu
- Anyang College of Technology, Anyang, 455000, Henan, China.
| | - Xiaoying Deng
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Yunna Tan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Harun Or Rashid
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Zareen Sarfraz
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Murtaza Hassan
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China.
| | - Wankui Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
29
|
Jamshed M, Jia F, Gong J, Palanga KK, Shi Y, Li J, Shang H, Liu A, Chen T, Zhang Z, Cai J, Ge Q, Liu Z, Lu Q, Deng X, Tan Y, Or Rashid H, Sarfraz Z, Hassan M, Gong W, Yuan Y. Identification of stable quantitative trait loci (QTLs) for fiber quality traits across multiple environments in Gossypium hirsutum recombinant inbred line population. BMC Genomics 2016; 17:197. [PMID: 26951621 PMCID: PMC4782318 DOI: 10.1186/s12864-016-2560-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 02/29/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The identification of quantitative trait loci (QTLs) that are stable and consistent across multiple environments and populations plays an essential role in marker-assisted selection (MAS). In the present study, we used 28,861 simple sequence repeat (SSR) markers, which included 12,560 Gossypium raimondii (D genome) sequence-based SSR markers to identify polymorphism between two upland cotton strains 0-153 and sGK9708. A total of 851 polymorphic primers were finally selected and used to genotype 196 recombinant inbred lines (RIL) derived from a cross between 0 and 153 and sGK9708 and used to construct a linkage map. The RIL population was evaluated for fiber quality traits in six locations in China for five years. Stable QTLs identified in this intraspecific cross could be used in future cotton breeding program and with fewer obstacles. RESULTS The map covered a distance of 4,110 cM, which represents about 93.2 % of the upland cotton genome, and with an average distance of 5.2 cM between adjacent markers. We identified 165 QTLs for fiber quality traits, of which 47 QTLs were determined to be stable across multiple environments. Most of these QTLs aggregated into clusters with two or more traits. A total of 30 QTL clusters were identified which consisted of 103 QTLs. Sixteen clusters in the At sub-genome comprised 44 QTLs, whereas 14 clusters in the Dt sub-genome that included 59 QTLs for fiber quality were identified. Four chromosomes, including chromosome 4 (c4), c7, c14, and c25 were rich in clusters harboring 5, 4, 5, and 6 clusters respectively. A meta-analysis was performed using Biomercator V4.2 to integrate QTLs from 11 environmental datasets on the RIL populations of the above mentioned parents and previous QTL reports. Among the 165 identified QTLs, 90 were identified as common QTLs, whereas the remaining 75 QTLs were determined to be novel QTLs. The broad sense heritability estimates of fiber quality traits were high for fiber length (0.93), fiber strength (0.92), fiber micronaire (0.85), and fiber uniformity (0.80), but low for fiber elongation (0.27). Meta-clusters on c4, c7, c14 and c25 were identified as stable QTL clusters and were considered more valuable in MAS for the improvement of fiber quality of upland cotton. CONCLUSION Multiple environmental evaluations of an intraspecific RIL population were conducted to identify stable QTLs. Meta-QTL analyses identified a common chromosomal region that plays an important role in fiber development. Therefore, QTLs identified in the present study are an ideal candidate for MAS in cotton breeding programs to improve fiber quality.
Collapse
Affiliation(s)
- Muhammad Jamshed
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Fei Jia
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Juwu Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
- College of Agronomy, Xinjiang Agricultural University, Key Laboratory of Agro-Biotechnology, Urumqi, 830052, Xinjiang, China.
| | - Koffi Kibalou Palanga
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Junwen Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Aiying Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Tingting Chen
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Zhen Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Juan Cai
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Zhi Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Quanwei Lu
- Anyang College of Technology, Anyang, 455000, Henan, China.
| | - Xiaoying Deng
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Yunna Tan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Harun Or Rashid
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Zareen Sarfraz
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Murtaza Hassan
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China.
| | - Wankui Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
30
|
Wu H, Ma Z, Wang MM, Qin AL, Ran JH, Wang XQ. A high frequency of allopolyploid speciation in the gymnospermous genus Ephedra and its possible association with some biological and ecological features. Mol Ecol 2016; 25:1192-210. [PMID: 26800145 PMCID: PMC7168403 DOI: 10.1111/mec.13538] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 11/30/2022]
Abstract
The origin and evolution of polyploids have been studied extensively in angiosperms and ferns but very rarely in gymnosperms. With the exception of three species of conifers, all natural polyploid species of gymnosperms belong to Ephedra, in which more than half of the species show polyploid cytotypes. Here, we investigated the origin and evolution of polyploids of Ephedra distributed in the Qinghai–Tibetan Plateau (QTP) and neighbouring areas. Flow cytometry (FCM) was used to measure the ploidy levels of the sampled species that are represented by multiple individuals from different populations, and then, two single‐copy nuclear genes (LFY and DDB2) and two chloroplast DNA fragments were used to unravel the possible origins and maternal donors of the polyploids. The results indicate that the studied polyploid species are allopolyploids, and suggest that allotetraploidy is a dominant mode of speciation in Ephedra. The high percentage of polyploids in the genus could be related to some of its biological attributes such as vegetative propagation, a relatively high rate of unreduced gamete formation, and a small genome size relative to most other gymnosperms. Significant ecological divergences between allotetraploids and their putative progenitors were detected by PCAs and anova and Tukey's tests, with the exception of E. saxatilis. The overlap of geographical distributions and ecological niches of some diploid species could have provided opportunities for interspecific hybridization and allopolyploid speciation.
Collapse
Affiliation(s)
- Hui Wu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Zhen Ma
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Ming-Ming Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Ai-Li Qin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jin-Hua Ran
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiao-Quan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
31
|
The genome sequence of Sea-Island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres. Sci Rep 2015; 5:17662. [PMID: 26634818 PMCID: PMC4669482 DOI: 10.1038/srep17662] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 10/30/2015] [Indexed: 01/24/2023] Open
Abstract
Gossypium hirsutum contributes the most production of cotton fibre, but G. barbadense is valued for its better comprehensive resistance and superior fibre properties. However, the allotetraploid genome of G. barbadense has not been comprehensively analysed. Here we present a high-quality assembly of the 2.57 gigabase genome of G. barbadense, including 80,876 protein-coding genes. The double-sized genome of the A (or At) (1.50 Gb) against D (or Dt) (853 Mb) primarily resulted from the expansion of Gypsy elements, including Peabody and Retrosat2 subclades in the Del clade, and the Athila subclade in the Athila/Tat clade. Substantial gene expansion and contraction were observed and rich homoeologous gene pairs with biased expression patterns were identified, suggesting abundant gene sub-functionalization occurred by allopolyploidization. More specifically, the CesA gene family has adapted differentially temporal expression patterns, suggesting an integrated regulatory mechanism of CesA genes from At and Dt subgenomes for the primary and secondary cellulose biosynthesis of cotton fibre in a “relay race”-like fashion. We anticipate that the G. barbadense genome sequence will advance our understanding the mechanism of genome polyploidization and underpin genome-wide comparison research in this genus.
Collapse
|
32
|
Haplotype Detection from Next-Generation Sequencing in High-Ploidy-Level Species: 45S rDNA Gene Copies in the Hexaploid Spartina maritima. G3-GENES GENOMES GENETICS 2015; 6:29-40. [PMID: 26530424 PMCID: PMC4704722 DOI: 10.1534/g3.115.023242] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Gene and whole-genome duplications are widespread in plant nuclear genomes, resulting in sequence heterogeneity. Identification of duplicated genes may be particularly challenging in highly redundant genomes, especially when there are no diploid parents as a reference. Here, we developed a pipeline to detect the different copies in the ribosomal RNA gene family in the hexaploid grass Spartina maritima from next-generation sequencing (Roche-454) reads. The heterogeneity of the different domains of the highly repeated 45S unit was explored by identifying single nucleotide polymorphisms (SNPs) and assembling reads based on shared polymorphisms. SNPs were validated using comparisons with Illumina sequence data sets and by cloning and Sanger (re)sequencing. Using this approach, 29 validated polymorphisms and 11 validated haplotypes were reported (out of 34 and 20, respectively, that were initially predicted by our program). The rDNA domains of S. maritima have similar lengths as those found in other Poaceae, apart from the 5′-ETS, which is approximately two-times longer in S. maritima. Sequence homogeneity was encountered in coding regions and both internal transcribed spacers (ITS), whereas high intragenomic variability was detected in the intergenic spacer (IGS) and the external transcribed spacer (ETS). Molecular cytogenetic analysis by fluorescent in situ hybridization (FISH) revealed the presence of one pair of 45S rDNA signals on the chromosomes of S. maritima instead of three expected pairs for a hexaploid genome, indicating loss of duplicated homeologous loci through the diploidization process. The procedure developed here may be used at any ploidy level and using different sequencing technologies.
Collapse
|
33
|
Re-evaluating the phylogeny of allopolyploid Gossypium L. Mol Phylogenet Evol 2015; 92:45-52. [DOI: 10.1016/j.ympev.2015.05.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/19/2015] [Accepted: 05/29/2015] [Indexed: 01/06/2023]
|
34
|
Liu X, Zhao B, Zheng HJ, Hu Y, Lu G, Yang CQ, Chen JD, Chen JJ, Chen DY, Zhang L, Zhou Y, Wang LJ, Guo WZ, Bai YL, Ruan JX, Shangguan XX, Mao YB, Shan CM, Jiang JP, Zhu YQ, Jin L, Kang H, Chen ST, He XL, Wang R, Wang YZ, Chen J, Wang LJ, Yu ST, Wang BY, Wei J, Song SC, Lu XY, Gao ZC, Gu WY, Deng X, Ma D, Wang S, Liang WH, Fang L, Cai CP, Zhu XF, Zhou BL, Jeffrey Chen Z, Xu SH, Zhang YG, Wang SY, Zhang TZ, Zhao GP, Chen XY. Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites. Sci Rep 2015; 5:14139. [PMID: 26420475 PMCID: PMC4588572 DOI: 10.1038/srep14139] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/18/2015] [Indexed: 01/24/2023] Open
Abstract
Of the two cultivated species of allopolyploid cotton, Gossypium barbadense produces extra-long fibers for the production of superior textiles. We sequenced its genome (AD)2 and performed a comparative analysis. We identified three bursts of retrotransposons from 20 million years ago (Mya) and a genome-wide uneven pseudogenization peak at 11–20 Mya, which likely contributed to genomic divergences. Among the 2,483 genes preferentially expressed in fiber, a cell elongation regulator, PRE1, is strikingly At biased and fiber specific, echoing the A-genome origin of spinnable fiber. The expansion of the PRE members implies a genetic factor that underlies fiber elongation. Mature cotton fiber consists of nearly pure cellulose. G. barbadense and G. hirsutum contain 29 and 30 cellulose synthase (CesA) genes, respectively; whereas most of these genes (>25) are expressed in fiber, genes for secondary cell wall biosynthesis exhibited a delayed and higher degree of up-regulation in G. barbadense compared with G. hirsutum, conferring an extended elongation stage and highly active secondary wall deposition during extra-long fiber development. The rapid diversification of sesquiterpene synthase genes in the gossypol pathway exemplifies the chemical diversity of lineage-specific secondary metabolites. The G. barbadense genome advances our understanding of allopolyploidy, which will help improve cotton fiber quality.
Collapse
Affiliation(s)
- Xia Liu
- Esquel Group, 25/F Eastern Cenrtal Plaza, 3 Yin Hing Road, Shau Kei Wan, Hongkong, China
| | - Bo Zhao
- National Key Laboratory of Plant Molecular Genetics, National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hua-Jun Zheng
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China
| | - Yan Hu
- Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Gang Lu
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China
| | - Chang-Qing Yang
- National Key Laboratory of Plant Molecular Genetics, National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jie-Dan Chen
- Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jun-Jian Chen
- Esquel Group, 25/F Eastern Cenrtal Plaza, 3 Yin Hing Road, Shau Kei Wan, Hongkong, China
| | - Dian-Yang Chen
- National Key Laboratory of Plant Molecular Genetics, National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Liang Zhang
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China
| | - Yan Zhou
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Ling-Jian Wang
- National Key Laboratory of Plant Molecular Genetics, National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wang-Zhen Guo
- Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yu-Lin Bai
- Esquel Group, 25/F Eastern Cenrtal Plaza, 3 Yin Hing Road, Shau Kei Wan, Hongkong, China
| | - Ju-Xin Ruan
- National Key Laboratory of Plant Molecular Genetics, National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiao-Xia Shangguan
- National Key Laboratory of Plant Molecular Genetics, National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ying-Bo Mao
- National Key Laboratory of Plant Molecular Genetics, National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chun-Min Shan
- National Key Laboratory of Plant Molecular Genetics, National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jian-Ping Jiang
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China
| | - Yong-Qiang Zhu
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China
| | - Lei Jin
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China
| | - Hui Kang
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China
| | - Shu-Ting Chen
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China
| | - Xu-Lin He
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China
| | - Rui Wang
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China
| | - Yue-Zhu Wang
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China
| | - Jie Chen
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China
| | - Li-Jun Wang
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China
| | - Shu-Ting Yu
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China
| | - Bi-Yun Wang
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China
| | - Jia Wei
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China
| | - Si-Chao Song
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China
| | - Xin-Yan Lu
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China
| | - Zheng-Chao Gao
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China
| | - Wen-Yi Gu
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China
| | - Xiao Deng
- The Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu 214123, China
| | - Dan Ma
- Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Sen Wang
- Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wen-Hua Liang
- Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lei Fang
- Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Cai-Ping Cai
- Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xie-Fei Zhu
- Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Bao-Liang Zhou
- Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Z Jeffrey Chen
- Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.,Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Shu-Hua Xu
- Max Planck Independent Research Group on Population Genomics, Chinese Academy of Sciences and Max Planck Society (CAS-MPG) Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu-Gao Zhang
- Esquel Group, 25/F Eastern Cenrtal Plaza, 3 Yin Hing Road, Shau Kei Wan, Hongkong, China
| | - Sheng-Yue Wang
- Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China
| | - Tian-Zhen Zhang
- Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guo-Ping Zhao
- National Key Laboratory of Plant Molecular Genetics, National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.,Shanghai-Ministry of Science and Technology Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Xiao-Ya Chen
- National Key Laboratory of Plant Molecular Genetics, National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
35
|
Zivy M, Wienkoop S, Renaut J, Pinheiro C, Goulas E, Carpentier S. The quest for tolerant varieties: the importance of integrating "omics" techniques to phenotyping. FRONTIERS IN PLANT SCIENCE 2015; 6:448. [PMID: 26217344 PMCID: PMC4496562 DOI: 10.3389/fpls.2015.00448] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/31/2015] [Indexed: 05/19/2023]
Abstract
The primary objective of crop breeding is to improve yield and/or harvest quality while minimizing inputs. Global climate change and the increase in world population are significant challenges for agriculture and call for further improvements to crops and the development of new tools for research. Significant progress has been made in the molecular and genetic analysis of model plants. However, is science generating false expectations? Are 'omic techniques generating valuable information that can be translated into the field? The exploration of crop biodiversity and the correlation of cellular responses to stress tolerance at the plant level is currently a challenge. This viewpoint reviews concisely the problems one encounters when working on a crop and provides an outline of possible workflows when initiating cellular phenotyping via "-omic" techniques (transcriptomics, proteomics, metabolomics).
Collapse
Affiliation(s)
- Michel Zivy
- Department Génétique Quantitative et Évolution, Le Moulon INRA, CNRS, AgroParisTech, Plateforme PAPPSO, Université Paris-Sud, Gif-sur-Yvette, France
| | - Stefanie Wienkoop
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Jenny Renaut
- Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Carla Pinheiro
- Instituto de Tecnologia Química e Biológica, New University of Lisbon, Oeiras, Portugal
- Faculdade de Ciências e Tecnologia, New University of Lisbon, Caparica, Portugal
| | - Estelle Goulas
- Department of Sciences et Technologies, CNRS/Université Lille, Villeneuve d’Ascq, France
| | - Sebastien Carpentier
- Department of Biosystems, University of Leuven, Leuven, Belgium
- SYBIOMA, University of Leuven, Leuven, Belgium
| |
Collapse
|
36
|
Hovav R, Faigenboim-Doron A, Kadmon N, Hu G, Zhang X, Gallagher JP, Wendel JF. A Transcriptome Profile for Developing Seed of Polyploid Cotton. THE PLANT GENOME 2015; 8:eplantgenome2014.08.0041. [PMID: 33228286 DOI: 10.3835/plantgenome2014.08.0041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Indexed: 05/14/2023]
Abstract
Cotton ranks among the world's important oilseed crops, yet relative to other oilseeds there are few studies of oil-related biosynthetic and regulatory pathways. We present global transcriptome analyses of cotton seed development using RNA-seq and four developmental time-points. Because Upland cotton (Gossypium hirsutum L.) is an allopolyploid containing two genomes (A/D), we partitioned expression into the individual contributions of each homeologous gene copy. Data were explored with respect to genic and subgenomic patterns of expression, globally and with respect to seed pathways and networks. The most dynamic period of transcriptome change is from 20-30 d postanthesis (DPA), with about 20% of genes showing homeolog expression bias. Co-expression analysis shows largely congruent homeolog networks, but also homeolog-specific divergence. Functional enrichment tests show that flavonoid biosynthesis and lipid related genes were significantly represented early and later in seed development, respectively. An involvement of new features in oil biosynthesis was found, like the contribution of DGAT3 (diacylglycerol acyltransferase) to the total triglyceride expression pool. Also, catechin-based and epicatechin-based proanthocyanidin expression are reciprocally biased with respect to homeolog usage. This study provides the first temporal analysis of duplicated gene expression in cotton seed and a resource for understanding new aspects of oil and flavonoid biosynthetic processes.
Collapse
Affiliation(s)
- Ran Hovav
- ARO (Volcani Center), Bet Dagan, Israel
| | | | | | | | | | | | | |
Collapse
|
37
|
Ferretti L, Ramos-Onsins SE. A generalized Watterson estimator for next-generation sequencing: From trios to autopolyploids. Theor Popul Biol 2015; 100C:79-87. [PMID: 25595553 DOI: 10.1016/j.tpb.2015.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 01/02/2015] [Accepted: 01/05/2015] [Indexed: 10/24/2022]
Abstract
Several variations of the Watterson estimator of variability for Next Generation Sequencing (NGS) data have been proposed in the literature. We present a unified framework for generalized Watterson estimators based on Maximum Composite Likelihood, which encompasses most of the existing estimators. We propose this class of unbiased estimators as generalized Watterson estimators for a large class of NGS data, including pools and trios. We also discuss the relation with the estimators proposed in the literature and show that they admit two equivalent but seemingly different forms, deriving a set of combinatorial identities as a byproduct. Finally, we give a detailed treatment of Watterson estimators for single or multiple autopolyploid individuals.
Collapse
Affiliation(s)
- Luca Ferretti
- Systématique, Adaptation et Evolution (UMR 7138), UPMC Univ Paris 06, CNRS, MNHN, IRD, Paris, France; CIRB, Collège de France, Paris, France.
| | - Sebástian E Ramos-Onsins
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus Universitat Autònoma, Bellaterra 08193, Spain
| |
Collapse
|
38
|
Tennessen JA, Govindarajulu R, Ashman TL, Liston A. Evolutionary origins and dynamics of octoploid strawberry subgenomes revealed by dense targeted capture linkage maps. Genome Biol Evol 2014; 6:3295-313. [PMID: 25477420 PMCID: PMC4986458 DOI: 10.1093/gbe/evu261] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Whole-genome duplications are radical evolutionary events that have driven speciation and adaptation in many taxa. Higher-order polyploids have complex histories often including interspecific hybridization and dynamic genomic changes. This chromosomal reshuffling is poorly understood for most polyploid species, despite their evolutionary and agricultural importance, due to the challenge of distinguishing homologous sequences from each other. Here, we use dense linkage maps generated with targeted sequence capture to improve the diploid strawberry (Fragaria vesca) reference genome and to disentangle the subgenomes of the wild octoploid progenitors of cultivated strawberry, Fragaria virginiana and Fragaria chiloensis. Our novel approach, POLiMAPS (Phylogenetics Of Linkage-Map-Anchored Polyploid Subgenomes), leverages sequence reads to associate informative interhomeolog phylogenetic markers with linkage groups and reference genome positions. In contrast to a widely accepted model, we find that one of the four subgenomes originates with the diploid cytoplasm donor F. vesca, one with the diploid Fragaria iinumae, and two with an unknown ancestor close to F. iinumae. Extensive unidirectional introgression has converted F. iinumae-like subgenomes to be more F. vesca-like, but never the reverse, due either to homoploid hybridization in the F. iinumae-like diploid ancestors or else strong selection spreading F. vesca-like sequence among subgenomes through homeologous exchange. In addition, divergence between homeologous chromosomes has been substantially augmented by interchromosomal rearrangements. Our phylogenetic approach reveals novel aspects of the complicated web of genetic exchanges that occur during polyploid evolution and suggests a path forward for unraveling other agriculturally and ecologically important polyploid genomes.
Collapse
Affiliation(s)
| | | | | | - Aaron Liston
- Department of Botany and Plant Pathology, Oregon State University
| |
Collapse
|
39
|
Hulse-Kemp AM, Ashrafi H, Zheng X, Wang F, Hoegenauer KA, Maeda ABV, Yang SS, Stoffel K, Matvienko M, Clemons K, Udall JA, Van Deynze A, Jones DC, Stelly DM. Development and bin mapping of gene-associated interspecific SNPs for cotton (Gossypium hirsutum L.) introgression breeding efforts. BMC Genomics 2014. [PMID: 25359292 DOI: 10.1186/1471‐2164‐15‐945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cotton (Gossypium spp.) is the largest producer of natural fibers for textile and is an important crop worldwide. Crop production is comprised primarily of G. hirsutum L., an allotetraploid. However, elite cultivars express very small amounts of variation due to the species monophyletic origin, domestication and further bottlenecks due to selection. Conversely, wild cotton species harbor extensive genetic diversity of prospective utility to improve many beneficial agronomic traits, fiber characteristics, and resistance to disease and drought. Introgression of traits from wild species can provide a natural way to incorporate advantageous traits through breeding to generate higher-producing cotton cultivars and more sustainable production systems. Interspecific introgression efforts by conventional methods are very time-consuming and costly, but can be expedited using marker-assisted selection. RESULTS Using transcriptome sequencing we have developed the first gene-associated single nucleotide polymorphism (SNP) markers for wild cotton species G. tomentosum, G. mustelinum, G. armourianum and G. longicalyx. Markers were also developed for a secondary cultivated species G. barbadense cv. 3-79. A total of 62,832 non-redundant SNP markers were developed from the five wild species which can be utilized for interspecific germplasm introgression into cultivated G. hirsutum and are directly associated with genes. Over 500 of the G. barbadense markers have been validated by whole-genome radiation hybrid mapping. Overall 1,060 SNPs from the five different species have been screened and shown to produce acceptable genotyping assays. CONCLUSIONS This large set of 62,832 SNPs relative to cultivated G. hirsutum will allow for the first high-density mapping of genes from five wild species that affect traits of interest, including beneficial agronomic and fiber characteristics. Upon mapping, the markers can be utilized for marker-assisted introgression of new germplasm into cultivated cotton and in subsequent breeding of agronomically adapted types, including cultivar development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - David M Stelly
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
40
|
Hulse-Kemp AM, Ashrafi H, Zheng X, Wang F, Hoegenauer KA, Maeda ABV, Yang SS, Stoffel K, Matvienko M, Clemons K, Udall JA, Van Deynze A, Jones DC, Stelly DM. Development and bin mapping of gene-associated interspecific SNPs for cotton (Gossypium hirsutum L.) introgression breeding efforts. BMC Genomics 2014; 15:945. [PMID: 25359292 PMCID: PMC4298081 DOI: 10.1186/1471-2164-15-945] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 10/03/2014] [Indexed: 11/18/2022] Open
Abstract
Background Cotton (Gossypium spp.) is the largest producer of natural fibers for textile and is an important crop worldwide. Crop production is comprised primarily of G. hirsutum L., an allotetraploid. However, elite cultivars express very small amounts of variation due to the species monophyletic origin, domestication and further bottlenecks due to selection. Conversely, wild cotton species harbor extensive genetic diversity of prospective utility to improve many beneficial agronomic traits, fiber characteristics, and resistance to disease and drought. Introgression of traits from wild species can provide a natural way to incorporate advantageous traits through breeding to generate higher-producing cotton cultivars and more sustainable production systems. Interspecific introgression efforts by conventional methods are very time-consuming and costly, but can be expedited using marker-assisted selection. Results Using transcriptome sequencing we have developed the first gene-associated single nucleotide polymorphism (SNP) markers for wild cotton species G. tomentosum, G. mustelinum, G. armourianum and G. longicalyx. Markers were also developed for a secondary cultivated species G. barbadense cv. 3–79. A total of 62,832 non-redundant SNP markers were developed from the five wild species which can be utilized for interspecific germplasm introgression into cultivated G. hirsutum and are directly associated with genes. Over 500 of the G. barbadense markers have been validated by whole-genome radiation hybrid mapping. Overall 1,060 SNPs from the five different species have been screened and shown to produce acceptable genotyping assays. Conclusions This large set of 62,832 SNPs relative to cultivated G. hirsutum will allow for the first high-density mapping of genes from five wild species that affect traits of interest, including beneficial agronomic and fiber characteristics. Upon mapping, the markers can be utilized for marker-assisted introgression of new germplasm into cultivated cotton and in subsequent breeding of agronomically adapted types, including cultivar development. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-945) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - David M Stelly
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
41
|
Chalhoub B, Denoeud F, Liu S, Parkin IAP, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh CS, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier MC, Fan G, Renault V, Bayer PE, Golicz AA, Manoli S, Lee TH, Thi VHD, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom CHD, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim YP, Lyons E, Town CD, Bancroft I, Wang X, Meng J, Ma J, Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury JM, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou Y, Hua W, Sharpe AG, Paterson AH, Guan C, Wincker P. Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 2014; 345:950-3. [PMID: 25146293 DOI: 10.1126/science.1253435] [Citation(s) in RCA: 1408] [Impact Index Per Article: 140.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oilseed rape (Brassica napus L.) was formed ~7500 years ago by hybridization between B. rapa and B. oleracea, followed by chromosome doubling, a process known as allopolyploidy. Together with more ancient polyploidizations, this conferred an aggregate 72× genome multiplication since the origin of angiosperms and high gene content. We examined the B. napus genome and the consequences of its recent duplication. The constituent An and Cn subgenomes are engaged in subtle structural, functional, and epigenetic cross-talk, with abundant homeologous exchanges. Incipient gene loss and expression divergence have begun. Selection in B. napus oilseed types has accelerated the loss of glucosinolate genes, while preserving expansion of oil biosynthesis genes. These processes provide insights into allopolyploid evolution and its relationship with crop domestication and improvement.
Collapse
Affiliation(s)
- Boulos Chalhoub
- Institut National de Recherche Agronomique (INRA)/Université d'Evry Val d'Essone, Unité de Recherche en Génomique Végétale, UMR1165, Organization and Evolution of Plant Genomes, 2 rue Gaston Crémieux, 91057 Evry, France.
| | - France Denoeud
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, BP5706, 91057 Evry, France. Université d'Evry Val d'Essone, UMR 8030, CP5706, Evry, France. Centre National de Recherche Scientifique (CNRS), UMR 8030, CP5706, Evry, France
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Isobel A P Parkin
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada.
| | - Haibao Tang
- J. Craig Venter Institute, Rockville, MD 20850, USA. Center for Genomics and Biotechnology, Fujian Agriculture and Forestry, University, Fuzhou 350002, Fujian Province, China
| | - Xiyin Wang
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA. Center of Genomics and Computational Biology, School of Life Sciences, Hebei United University, Tangshan, Hebei 063000, China
| | - Julien Chiquet
- Laboratoire de Mathématiques et Modélisation d'Evry-UMR 8071 CNRS/Université d'Evry val d'Essonne-USC INRA, Evry, France
| | - Harry Belcram
- Institut National de Recherche Agronomique (INRA)/Université d'Evry Val d'Essone, Unité de Recherche en Génomique Végétale, UMR1165, Organization and Evolution of Plant Genomes, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Chaobo Tong
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Birgit Samans
- Department of Plant Breeding, Research Center for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Margot Corréa
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, BP5706, 91057 Evry, France
| | - Corinne Da Silva
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, BP5706, 91057 Evry, France
| | - Jérémy Just
- Institut National de Recherche Agronomique (INRA)/Université d'Evry Val d'Essone, Unité de Recherche en Génomique Végétale, UMR1165, Organization and Evolution of Plant Genomes, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Cyril Falentin
- INRA, Institut de Génétique, Environnement et Protection des Plantes (IGEPP) UMR1349, BP35327, 35653 Le Rheu Cedex, France
| | - Chu Shin Koh
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Isabelle Le Clainche
- Institut National de Recherche Agronomique (INRA)/Université d'Evry Val d'Essone, Unité de Recherche en Génomique Végétale, UMR1165, Organization and Evolution of Plant Genomes, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Maria Bernard
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, BP5706, 91057 Evry, France
| | - Pascal Bento
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, BP5706, 91057 Evry, France
| | - Benjamin Noel
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, BP5706, 91057 Evry, France
| | - Karine Labadie
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, BP5706, 91057 Evry, France
| | - Adriana Alberti
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, BP5706, 91057 Evry, France
| | - Mathieu Charles
- INRA, Etude du Polymorphisme des Génomes Végétaux, US1279, Centre National de Génotypage, CEA-IG, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Dominique Arnaud
- Institut National de Recherche Agronomique (INRA)/Université d'Evry Val d'Essone, Unité de Recherche en Génomique Végétale, UMR1165, Organization and Evolution of Plant Genomes, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Hui Guo
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | - Christian Daviaud
- Laboratory for Epigenetics and Environment, Centre National de Génotypage, CEA-IG, 2 rue Gaston Crémieux, 91000 Evry, France
| | - Salman Alamery
- Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Kamel Jabbari
- Institut National de Recherche Agronomique (INRA)/Université d'Evry Val d'Essone, Unité de Recherche en Génomique Végétale, UMR1165, Organization and Evolution of Plant Genomes, 2 rue Gaston Crémieux, 91057 Evry, France. Cologne Center for Genomics, University of Cologne, Weyertal 115b, 50931 Köln, Germany
| | - Meixia Zhao
- Department of Agronomy, Purdue University, WSLR Building B018, West Lafayette, IN 47907, USA
| | - Patrick P Edger
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Houda Chelaifa
- Institut National de Recherche Agronomique (INRA)/Université d'Evry Val d'Essone, Unité de Recherche en Génomique Végétale, UMR1165, Organization and Evolution of Plant Genomes, 2 rue Gaston Crémieux, 91057 Evry, France
| | - David Tack
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Gilles Lassalle
- INRA, Institut de Génétique, Environnement et Protection des Plantes (IGEPP) UMR1349, BP35327, 35653 Le Rheu Cedex, France
| | - Imen Mestiri
- Institut National de Recherche Agronomique (INRA)/Université d'Evry Val d'Essone, Unité de Recherche en Génomique Végétale, UMR1165, Organization and Evolution of Plant Genomes, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Nicolas Schnel
- INRA, Institut de Génétique, Environnement et Protection des Plantes (IGEPP) UMR1349, BP35327, 35653 Le Rheu Cedex, France
| | - Marie-Christine Le Paslier
- INRA, Etude du Polymorphisme des Génomes Végétaux, US1279, Centre National de Génotypage, CEA-IG, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Guangyi Fan
- Beijing Genome Institute-Shenzhen, Shenzhen 518083, China
| | - Victor Renault
- Fondation Jean Dausset-Centre d'Étude du Polymorphisme Humain, 27 rue Juliette Dodu, 75010 Paris, France
| | - Philippe E Bayer
- Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Agnieszka A Golicz
- Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Sahana Manoli
- Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Tae-Ho Lee
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | - Vinh Ha Dinh Thi
- Institut National de Recherche Agronomique (INRA)/Université d'Evry Val d'Essone, Unité de Recherche en Génomique Végétale, UMR1165, Organization and Evolution of Plant Genomes, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Smahane Chalabi
- Institut National de Recherche Agronomique (INRA)/Université d'Evry Val d'Essone, Unité de Recherche en Génomique Végétale, UMR1165, Organization and Evolution of Plant Genomes, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Qiong Hu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Reece Tollenaere
- Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Yunhai Lu
- Institut National de Recherche Agronomique (INRA)/Université d'Evry Val d'Essone, Unité de Recherche en Génomique Végétale, UMR1165, Organization and Evolution of Plant Genomes, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Christophe Battail
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, BP5706, 91057 Evry, France
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | | | - Xinfa Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Aurélie Canaguier
- Institut National de Recherche Agronomique (INRA)/Université d'Evry Val d'Essone, Unité de Recherche en Génomique Végétale, UMR1165, Organization and Evolution of Plant Genomes, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Aurélie Chauveau
- INRA, Etude du Polymorphisme des Génomes Végétaux, US1279, Centre National de Génotypage, CEA-IG, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Aurélie Bérard
- INRA, Etude du Polymorphisme des Génomes Végétaux, US1279, Centre National de Génotypage, CEA-IG, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Gwenaëlle Deniot
- INRA, Institut de Génétique, Environnement et Protection des Plantes (IGEPP) UMR1349, BP35327, 35653 Le Rheu Cedex, France
| | - Mei Guan
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Zhongsong Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Fengming Sun
- Beijing Genome Institute-Shenzhen, Shenzhen 518083, China
| | - Yong Pyo Lim
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon-305764, South Korea
| | - Eric Lyons
- School of Plant Sciences, iPlant Collaborative, University of Arizona, Tucson, AZ, USA
| | | | - Ian Bancroft
- Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinling Meng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianxin Ma
- Department of Agronomy, Purdue University, WSLR Building B018, West Lafayette, IN 47907, USA
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| | - Dominique Brunel
- INRA, Etude du Polymorphisme des Génomes Végétaux, US1279, Centre National de Génotypage, CEA-IG, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Régine Delourme
- INRA, Institut de Génétique, Environnement et Protection des Plantes (IGEPP) UMR1349, BP35327, 35653 Le Rheu Cedex, France
| | - Michel Renard
- INRA, Institut de Génétique, Environnement et Protection des Plantes (IGEPP) UMR1349, BP35327, 35653 Le Rheu Cedex, France
| | - Jean-Marc Aury
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, BP5706, 91057 Evry, France
| | - Keith L Adams
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Jacqueline Batley
- Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland, St. Lucia, QLD 4072, Australia. School of Plant Biology, University of Western Australia, WA 6009, Australia
| | - Rod J Snowdon
- Department of Plant Breeding, Research Center for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Jorg Tost
- Laboratory for Epigenetics and Environment, Centre National de Génotypage, CEA-IG, 2 rue Gaston Crémieux, 91000 Evry, France
| | - David Edwards
- Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland, St. Lucia, QLD 4072, Australia. School of Plant Biology, University of Western Australia, WA 6009, Australia.
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wei Hua
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Andrew G Sharpe
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada.
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA.
| | - Chunyun Guan
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China.
| | - Patrick Wincker
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, BP5706, 91057 Evry, France. Université d'Evry Val d'Essone, UMR 8030, CP5706, Evry, France. Centre National de Recherche Scientifique (CNRS), UMR 8030, CP5706, Evry, France.
| |
Collapse
|
42
|
Transcriptome and complexity-reduced, DNA-based identification of intraspecies single-nucleotide polymorphisms in the polyploid Gossypium hirsutum L. G3-GENES GENOMES GENETICS 2014; 4:1893-905. [PMID: 25106949 PMCID: PMC4199696 DOI: 10.1534/g3.114.012542] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Varietal single nucleotide polymorphisms (SNPs) are the differences within one of the two subgenomes between different tetraploid cotton varieties and have not been practically used in cotton genetics and breeding because they are difficult to identify due to low genetic diversity and very high sequence identity between homeologous genes in cotton. We have used transcriptome and restriction site-associated DNA sequencing to identify varietal SNPs among 18 G. hirsutum varieties based on the rationale that varietal SNPs can be more confidently called when flanked by subgenome-specific SNPs. Using transcriptome data, we successfully identified 37,413 varietal SNPs and, of these, 22,121 did not have an additional varietal SNP within their 20-bp flanking regions so can be used in most SNP genotyping assays. From restriction site-associated DNA sequencing data, we identified an additional 3090 varietal SNPs between two of the varieties. Of the 1583 successful SNP assays achieved using different genotyping platforms, 1363 were verified. Many of the SNPs behaved as dominant markers because of coamplification from homeologous loci, but the number of SNPs acting as codominant markers increased when one or more subgenome-specific SNP(s) were incorporated in their assay primers, giving them greater utility for breeding applications. A G. hirsutum genetic map with 1244 SNP markers was constructed covering 5557.42 centiMorgan and used to map qualitative and quantitative traits. This collection of G. hirsutum varietal SNPs complements existing intra-specific SNPs and provides the cotton community with a valuable marker resource applicable to genetic analyses and breeding programs.
Collapse
|
43
|
Rambani A, Page JT, Udall JA. Polyploidy and the petal transcriptome of Gossypium. BMC PLANT BIOLOGY 2014; 14:3. [PMID: 24393201 PMCID: PMC3890615 DOI: 10.1186/1471-2229-14-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/08/2013] [Indexed: 05/02/2023]
Abstract
Background Genes duplicated by polyploidy (homoeologs) may be differentially expressed in plant tissues. Recent research using DNA microarrays and RNAseq data have described a cacophony of complex expression patterns during development of cotton fibers, petals, and leaves. Because of its highly canalized development, petal tissue has been used as a model tissue for gene expression in cotton. Recent advances in cotton genome annotation and assembly now permit an enhanced analysis of duplicate gene deployment in petals from allopolyploid cotton. Results Homoeologous gene expression levels were quantified in diploid and tetraploid flower petals of Gossypium using the Gossypium raimondii genome sequence as a reference. In the polyploid, most homoeologous genes were expressed at equal levels, though a subset had an expression bias of AT and DT copies. The direction of gene expression bias was conserved in natural and recent polyploids of cotton. Conservation of direction of bias and additional comparisons between the diploids and tetraploids suggested different regulation mechanisms of gene expression. We described three phases in the evolution of cotton genomes that contribute to gene expression in the polyploid nucleus. Conclusions Compared to previous studies, a surprising level of expression homeostasis was observed in the expression patterns of polyploid genomes. Conserved expression bias in polyploid petals may have resulted from cis-acting modifications that occurred prior to polyploidization. Some duplicated genes were intriguing exceptions to general trends. Mechanisms of gene regulation for these and other genes in the cotton genome warrants further investigation.
Collapse
Affiliation(s)
- Aditi Rambani
- Plant and Wildlife Science Department, Brigham Young University, Provo, UT 84602, USA
| | - Justin T Page
- Plant and Wildlife Science Department, Brigham Young University, Provo, UT 84602, USA
| | - Joshua A Udall
- Plant and Wildlife Science Department, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
44
|
Yu J, Jung S, Cheng CH, Ficklin SP, Lee T, Zheng P, Jones D, Percy RG, Main D. CottonGen: a genomics, genetics and breeding database for cotton research. Nucleic Acids Res 2013; 42:D1229-36. [PMID: 24203703 PMCID: PMC3964939 DOI: 10.1093/nar/gkt1064] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
CottonGen (http://www.cottongen.org) is a curated and integrated web-based relational database providing access to publicly available genomic, genetic and breeding data for cotton. CottonGen supercedes CottonDB and the Cotton Marker Database, with enhanced tools for easier data sharing, mining, visualization and data retrieval of cotton research data. CottonGen contains annotated whole genome sequences, unigenes from expressed sequence tags (ESTs), markers, trait loci, genetic maps, genes, taxonomy, germplasm, publications and communication resources for the cotton community. Annotated whole genome sequences of Gossypium raimondii are available with aligned genetic markers and transcripts. These whole genome data can be accessed through genome pages, search tools and GBrowse, a popular genome browser. Most of the published cotton genetic maps can be viewed and compared using CMap, a comparative map viewer, and are searchable via map search tools. Search tools also exist for markers, quantitative trait loci (QTLs), germplasm, publications and trait evaluation data. CottonGen also provides online analysis tools such as NCBI BLAST and Batch BLAST.
Collapse
Affiliation(s)
- Jing Yu
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA, Cotton Incorporated, Cary, NC 27513, USA and Crop Germplasm Research Unit, USDA-ARS-SPARC, College Station, TX 77845, USA
| | | | | | | | | | | | | | | | | |
Collapse
|