1
|
Boldizar H, Friedman A, Stanley T, Padilla M, Galdieri J, Sclar A, Stawicki TM. The role of cilia in the development, survival, and regeneration of hair cells. Biol Open 2024; 13:bio061690. [PMID: 39263863 DOI: 10.1242/bio.061690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024] Open
Abstract
Mutations impacting cilia genes lead to a class of human diseases known as ciliopathies. This is due to the role of cilia in the development, survival, and regeneration of many cell types. We investigated the extent to which disrupting cilia impacted these processes in lateral line hair cells of zebrafish. We found that mutations in two intraflagellar transport (IFT) genes, ift88 and dync2h1, which lead to the loss of kinocilia, caused increased hair cell apoptosis. IFT gene mutants also have a decreased mitochondrial membrane potential, and blocking the mitochondrial uniporter causes a loss of hair cells in wild-type zebrafish but not mutants, suggesting mitochondria dysfunction may contribute to the apoptosis seen in these mutants. These mutants also showed decreased proliferation during hair cell regeneration but did not show consistent changes in support cell number or proliferation during hair cell development. These results show that the loss of hair cells seen following disruption of cilia through either mutations in anterograde or retrograde IFT genes appears to be due to impacts on hair cell survival but not necessarily development in the zebrafish lateral line.
Collapse
Affiliation(s)
- Hope Boldizar
- Neuroscience Program, Lafayette College, Easton, PA 18042, USA
| | - Amanda Friedman
- Neuroscience Program, Lafayette College, Easton, PA 18042, USA
| | - Tess Stanley
- Neuroscience Program, Lafayette College, Easton, PA 18042, USA
| | - María Padilla
- Biology Department, Lafayette College, Easton, PA 18042, USA
| | | | - Arielle Sclar
- Neuroscience Program, Lafayette College, Easton, PA 18042, USA
| | | |
Collapse
|
2
|
Auman HJ, Fernandes IH, Berríos-Otero CA, Colombo S, Yelon D. Zebrafish smarcc1a mutants reveal requirements for BAF chromatin remodeling complexes in distinguishing the atrioventricular canal from the cardiac chambers. Dev Dyn 2024; 253:157-172. [PMID: 37083132 PMCID: PMC10589389 DOI: 10.1002/dvdy.595] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/13/2023] [Accepted: 04/08/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Essential patterning processes transform the heart tube into a compartmentalized organ with distinct chambers separated by an atrioventricular canal (AVC). This transition involves the refinement of expression of genes that are first found broadly throughout the heart tube and then become restricted to the AVC. Despite the importance of cardiac patterning, we do not fully understand the mechanisms that limit gene expression to the AVC. RESULTS We show that the zebrafish gene smarcc1a, encoding a BAF chromatin remodeling complex subunit homologous to mammalian BAF155, is critical for cardiac patterning. In smarcc1a mutants, myocardial differentiation and heart tube assembly appear to proceed normally. Subsequently, the smarcc1a mutant heart fails to exhibit refinement of gene expression patterns to the AVC, and the persistence of broad gene expression is accompanied by failure of chamber expansion. In addition to their cardiac defects, smarcc1a mutants lack pectoral fins, indicating similarity to tbx5a mutants. However, comparison of smarcc1a and tbx5a mutants suggests that perturbation of tbx5a function is not sufficient to cause the smarcc1a mutant phenotype. CONCLUSIONS Our data indicate an important role for Smarcc1a-containing chromatin remodeling complexes in regulating the changes in gene expression and morphology that distinguish the AVC from the cardiac chambers.
Collapse
Affiliation(s)
- Heidi J. Auman
- Skirball Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Ivy H. Fernandes
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Sophie Colombo
- Skirball Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Deborah Yelon
- Skirball Institute, New York University School of Medicine, New York, NY, 10016, USA
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
3
|
Wang L. Zebrafish as a model for study of disorders in pyrimidine nucleotide metabolism. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023:1-12. [PMID: 38153103 DOI: 10.1080/15257770.2023.2298742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
Pyrimidine nucleotides are not only the building blocks of DNA and RNA but also participate in multiple cellular metabolic processes, including protein, lipid and polysaccharide biosynthesis. Pyrimidine nucleotides are synthesized by two distinct pathways-the de novo and salvage pathways. Disorders in pyrimidine nucleotide metabolism cause severe neurodegenerative disorders in human. For example, deficiency in thymidylate kinase, an essential enzyme in dTTP synthesis, causes severe microcephaly in human patients. Zebrafish mutants selected by insertion mutagenesis that results in inactive enzymes in pyrimidine metabolism showed also neurological and developmental disorders. In this work I have summarized current data on neurological and developmental disorders caused by defects in enzymes in pyrimidine nucleotide metabolism in zebrafish and compared to human. All these data suggest that zebrafish is a useful animal model to study pathogenic mechanism of neurological disorders due to defect in pyrimidine nucleotide metabolism.
Collapse
Affiliation(s)
- Liya Wang
- Department of Anatomy, Physiology and Biochemistry, The Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
4
|
He M, Zhou G, Lin Q, Zhou N. The role of mip in the development of lens in zebrafish. Gene Expr Patterns 2023; 49:119330. [PMID: 37369320 DOI: 10.1016/j.gep.2023.119330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/10/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
Major intrinsic protein (MIP) functions as a water channel and a cell-junction molecule in the vertebrate eye lens. The pathogenic mechanism behind the loss of MIP function in the lens, which leads to degraded optical quality and cataract formation, is still unclear. In this study, a zebrafish model with the mipb mutant was produced. The expression of mipb mRNA and protein was dramatically reduced in the mutant. Immunological analysis reveals that loss function of mip leads to the diffuse distribution of ZL-1 in the mutant lens. Furthermore, in situ hybridization reveals that mip knockout results in a decrease in the transcripts of beaded filament structural protein 2 (Bfsp2) in the lens. Histology study shows that lens fibers in the mutants are less uniform in shape and the fiber arrangement is disrupted. The presented data provides evidence for the essential role of mipb in the development of lens fibers. The absence of mipb during lens formation is likely to result in aberrant lens fiber formation and impaired lens function.
Collapse
Affiliation(s)
- Mingyan He
- Department of Ophthalmology, the Second Affiliated Hospital of Harbin Medical University, 150081, Harbin, China
| | - Guangkai Zhou
- The Third Affiliated Hospital of Harbin Medical University, 150081, Harbin, China
| | - Qinghong Lin
- Department of Ophthalmology, the Second Affiliated Hospital of Harbin Medical University, 150081, Harbin, China
| | - Nan Zhou
- Department of Ophthalmology, the Second Affiliated Hospital of Harbin Medical University, 150081, Harbin, China.
| |
Collapse
|
5
|
Seese SE, Muheisen S, Gath N, Gross JM, Semina EV. Identification of HSPA8 as an interacting partner of MAB21L2 and an important factor in eye development. Dev Dyn 2023; 252:510-526. [PMID: 36576422 PMCID: PMC10947772 DOI: 10.1002/dvdy.560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Pathogenic variants in human MAB21L2 result in microphthalmia, anophthalmia, and coloboma. The exact molecular function of MAB21L2 is currently unknown. We conducted a series of yeast two-hybrid (Y2H) experiments to determine protein interactomes of normal human and zebrafish MAB21L2/mab21l2 as well as human disease-associated variant MAB21L2-p.(Arg51Gly) using human adult retina and zebrafish embryo libraries. RESULTS These screens identified klhl31, tnpo1, TNPO2/tnpo2, KLC2/klc2, and SPTBN1/sptbn1 as co-factors of MAB21L2/mab21l2. Several factors, including hspa8 and hspa5, were found to interact with MAB21L2-p.Arg51Gly but not wild-type MAB21L2/mab21l2 in Y2H screens. Further analyses via 1-by-1 Y2H assays, co-immunoprecipitation, and mass spectrometry revealed that both normal and variant MAB21L2 interact with HSPA5 and HSPA8. In situ hybridization detected co-expression of hspa5 and hspa8 with mab21l2 during eye development in zebrafish. Examination of zebrafish mutant hspa8hi138Tg identified reduced hspa8 expression associated with severe ocular developmental defects, including small eye, coloboma, and anterior segment dysgenesis. To investigate the effects of hspa8 deficiency on the mab21l2Arg51_Phe52del allele, corresponding zebrafish double mutants were generated and found to be more severely affected than single mutant lines. CONCLUSION This study identifies heat shock proteins as interacting partners of MAB21L2/mab21l2 and suggests a role for this interaction in vertebrate eye development.
Collapse
Affiliation(s)
- Sarah E. Seese
- Department of Pediatrics The Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cell Biology, Neurobiology and Anatomy, The Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sanaa Muheisen
- Department of Pediatrics The Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Natalie Gath
- University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jeffrey M. Gross
- University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Elena V. Semina
- Department of Pediatrics The Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cell Biology, Neurobiology and Anatomy, The Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Children’s of Wisconsin, Milwaukee, WI 53226, USA
- Children’s Research Institute, Medical College of Wisconsin, Children’s of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
6
|
Angueyra JM, Kunze VP, Patak LK, Kim H, Kindt K, Li W. Transcription factors underlying photoreceptor diversity. eLife 2023; 12:e81579. [PMID: 36745553 PMCID: PMC9901936 DOI: 10.7554/elife.81579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/22/2023] [Indexed: 02/07/2023] Open
Abstract
During development, retinal progenitors navigate a complex landscape of fate decisions to generate the major cell classes necessary for proper vision. Transcriptional regulation is critical to generate diversity within these major cell classes. Here, we aim to provide the resources and techniques required to identify transcription factors necessary to generate and maintain diversity in photoreceptor subtypes, which are critical for vision. First, we generate a key resource: a high-quality and deep transcriptomic profile of each photoreceptor subtype in adult zebrafish. We make this resource openly accessible, easy to explore, and have integrated it with other currently available photoreceptor transcriptomic datasets. Second, using our transcriptomic profiles, we derive an in-depth map of expression of transcription factors in photoreceptors. Third, we use efficient CRISPR-Cas9 based mutagenesis to screen for null phenotypes in F0 larvae (F0 screening) as a fast, efficient, and versatile technique to assess the involvement of candidate transcription factors in the generation of photoreceptor subtypes. We first show that known phenotypes can be easily replicated using this method: loss of S cones in foxq2 mutants and loss of rods in nr2e3 mutants. We then identify novel functions for the transcription factor Tbx2, demonstrating that it plays distinct roles in controlling the generation of all photoreceptor subtypes within the retina. Our study provides a roadmap to discover additional factors involved in this process. Additionally, we explore four transcription factors of unknown function (Skor1a, Sall1a, Lrrfip1a, and Xbp1), and find no evidence for their involvement in the generation of photoreceptor subtypes. This dataset and screening method will be a valuable way to explore the genes involved in many other essential aspects of photoreceptor biology.
Collapse
Affiliation(s)
- Juan M Angueyra
- Unit of Retinal Neurophysiology, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Vincent P Kunze
- Unit of Retinal Neurophysiology, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Laura K Patak
- Unit of Retinal Neurophysiology, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Hailey Kim
- Unit of Retinal Neurophysiology, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Katie Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Wei Li
- Unit of Retinal Neurophysiology, National Eye Institute, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
7
|
Laminin-111 mutant studies reveal a hierarchy within laminin-111 genes in their requirement for basal epithelial tissue folding. Dev Biol 2022; 492:172-186. [DOI: 10.1016/j.ydbio.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/21/2022]
|
8
|
Zebrafish and inherited photoreceptor disease: Models and insights. Prog Retin Eye Res 2022; 91:101096. [PMID: 35811244 DOI: 10.1016/j.preteyeres.2022.101096] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 11/21/2022]
Abstract
Photoreceptor dysfunctions and degenerative diseases are significant causes of vision loss in patients, with few effective treatments available. Targeted interventions to prevent or reverse photoreceptor-related vision loss are not possible without a thorough understanding of the underlying mechanism leading to disease, which is exceedingly difficult to accomplish in the human system. Cone diseases are particularly challenging to model, as some popular genetically modifiable model animals are nocturnal with a rod-dominant visual system and cones that have dissimilarities to human cones. As a result, cone diseases, which affect visual acuity, colour perception, and central vision in patients, are generally poorly understood in terms of pathology and mechanism. Zebrafish (Danio rerio) provide the opportunity to model photoreceptor diseases in a diurnal vertebrate with a cone-rich retina which develops many macular degeneration-like pathologies. Zebrafish undergo external development, allowing early-onset retinal diseases to be detected and studied, and many ophthalmic tools are available for zebrafish visual assessment during development and adulthood. There are numerous zebrafish models of photoreceptor disease, spanning the various types of photoreceptor disease (developmental, rod, cone, and mixed photoreceptor diseases) and genetic/molecular cause. In this review, we explore the features of zebrafish that make them uniquely poised to model cone diseases, summarize the established zebrafish models of inherited photoreceptor disease, and discuss how disease in these models compares to the human presentation, where applicable. Further, we highlight the contributions of these zebrafish models to our understanding of photoreceptor biology and disease, and discuss future directions for utilising and investigating these diverse models.
Collapse
|
9
|
Rusterholz TDS, Hofmann C, Bachmann-Gagescu R. Insights Gained From Zebrafish Models for the Ciliopathy Joubert Syndrome. Front Genet 2022; 13:939527. [PMID: 35846153 PMCID: PMC9280682 DOI: 10.3389/fgene.2022.939527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022] Open
Abstract
Cilia are quasi-ubiquitous microtubule-based sensory organelles, which play vital roles in signal transduction during development and cell homeostasis. Dysfunction of cilia leads to a group of Mendelian disorders called ciliopathies, divided into different diagnoses according to clinical phenotype constellation and genetic causes. Joubert syndrome (JBTS) is a prototypical ciliopathy defined by a diagnostic cerebellar and brain stem malformation termed the “Molar Tooth Sign” (MTS), in addition to which patients display variable combinations of typical ciliopathy phenotypes such as retinal dystrophy, fibrocystic renal disease, polydactyly or skeletal dystrophy. Like most ciliopathies, JBTS is genetically highly heterogeneous with ∼40 associated genes. Zebrafish are widely used to model ciliopathies given the high conservation of ciliary genes and the variety of specialized cilia types similar to humans. In this review, we compare different existing JBTS zebrafish models with each other and describe their contributions to our understanding of JBTS pathomechanism. We find that retinal dystrophy, which is the most investigated ciliopathy phenotype in zebrafish ciliopathy models, is caused by distinct mechanisms according to the affected gene. Beyond this, differences in phenotypes in other organs observed between different JBTS-mutant models suggest tissue-specific roles for proteins implicated in JBTS. Unfortunately, the lack of systematic assessment of ciliopathy phenotypes in the mutants described in the literature currently limits the conclusions that can be drawn from these comparisons. In the future, the numerous existing JBTS zebrafish models represent a valuable resource that can be leveraged in order to gain further insights into ciliary function, pathomechanisms underlying ciliopathy phenotypes and to develop treatment strategies using small molecules.
Collapse
Affiliation(s)
- Tamara D. S. Rusterholz
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Claudia Hofmann
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Ruxandra Bachmann-Gagescu
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- *Correspondence: Ruxandra Bachmann-Gagescu,
| |
Collapse
|
10
|
Casey MA, Hill JT, Hoshijima K, Bryan CD, Gribble SL, Brown JT, Chien CB, Yost HJ, Kwan KM. Shutdown corner, a large deletion mutant isolated from a haploid mutagenesis screen in zebrafish. G3 (BETHESDA, MD.) 2022; 12:jkab442. [PMID: 35079792 PMCID: PMC9210284 DOI: 10.1093/g3journal/jkab442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022]
Abstract
Morphogenesis, the formation of three-dimensional organ structures, requires precise coupling of genetic regulation and complex cell behaviors. The genetic networks governing many morphogenetic systems, including that of the embryonic eye, are poorly understood. In zebrafish, several forward genetic screens have sought to identify factors regulating eye development. These screens often look for eye defects at stages after the optic cup is formed and when retinal neurogenesis is under way. This approach can make it difficult to identify mutants specific for morphogenesis, as opposed to neurogenesis. To this end, we carried out a forward genetic, small-scale haploid mutagenesis screen in zebrafish (Danio rerio) to identify factors that govern optic cup morphogenesis. We screened ∼100 genomes and isolated shutdown corner (sco), a mutant that exhibits multiple tissue defects and harbors a ∼10-Mb deletion that encompasses 89 annotated genes. Using a combination of live imaging and antibody staining, we found cell proliferation, cell death, and tissue patterning defects in the sco optic cup. We also observed other phenotypes, including paralysis, neuromuscular defects, and ocular vasculature defects. To date, the largest deletion mutants reported in zebrafish are engineered using CRISPR-Cas9 and are less than 300 kb. Because of the number of genes within the deletion interval, shutdown corner [Df(Chr05:sco)z207] could be a useful resource to the zebrafish community, as it may be helpful for gene mapping, understanding genetic interactions, or studying many genes lost in the mutant.
Collapse
Affiliation(s)
- Macaulie A Casey
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jonathon T Hill
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Kazuyuki Hoshijima
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Chase D Bryan
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
| | - Suzanna L Gribble
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - J Thomas Brown
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37203, USA
| | - Chi-Bin Chien
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - H Joseph Yost
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Kristen M Kwan
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
11
|
Perkins BD. Zebrafish models of inherited retinal dystrophies. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2022; 6:95-110. [PMID: 35693295 PMCID: PMC9186516 DOI: 10.20517/jtgg.2021.47] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Inherited retinal degenerations (IRDs) cause permanent vision impairment or vision loss due to the death of rod and cone photoreceptors. Animal models of IRDs have been instrumental in providing knowledge of the pathological mechanisms that cause photoreceptor death and in developing successful approaches that could slow or prevent vision loss. Zebrafish models of IRDs represent an ideal model system to study IRDs in a cone-rich retina and to test strategies that exploit the natural ability to regenerate damaged neurons. This review highlights those zebrafish mutants and transgenic lines that exhibit adult-onset retinal degeneration and serve as models of retinitis pigmentosa, cone-rod dystrophy, and ciliopathies.
Collapse
Affiliation(s)
- Brian D. Perkins
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, OH 44195, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
12
|
Zhang S, Liu Y, Huang Q, Yuan S, Liu H, Shi L, Yap YT, Li W, Zhen J, Zhang L, Hess RA, Zhang Z. Murine germ cell-specific disruption of Ift172 causes defects in spermiogenesis and male fertility. Reproduction 2021; 159:409-421. [PMID: 31958312 DOI: 10.1530/rep-17-0789] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 01/20/2020] [Indexed: 01/21/2023]
Abstract
Intraflagellar transport (IFT) is a conserved mechanism essential for the assembly and maintenance of most eukaryotic cilia and flagella. IFT172 is a component of the IFT complex. Global disruption of mouse Ift172 gene caused typical phenotypes of ciliopathy. Mouse Ift172 gene appears to translate two major proteins; the full-length protein is highly expressed in the tissues enriched in cilia and the smaller 130 kDa one is only abundant in the testis. In male germ cells, IFT172 is highly expressed in the manchette of elongating spermatids. A germ cell-specific Ift172 mutant mice were generated, and the mutant mice did not show gross abnormalities. There was no difference in testis/body weight between the control and mutant mice, but more than half of the adult homozygous mutant males were infertile and associated with abnormally developed germ cells in the spermiogenesis phase. The cauda epididymides in mutant mice contained less developed sperm that showed significantly reduced motility, and these sperm had multiple defects in ultrastructure and bent tails. In the mutant mice, testicular expression levels of some IFT components, including IFT20, IFT27, IFT74, IFT81 and IFT140, and a central apparatus protein SPAG16L were not changed. However, expression levels of ODF2, a component of the outer dense fiber, and AKAP4, a component of fibrous sheath, and two IFT components IFT25 and IFT57 were dramatically reduced. Our findings demonstrate that IFT172 is essential for normal male fertility and spermiogenesis in mice, probably by modulating specific IFT proteins and transporting/assembling unique accessory structural proteins into spermatozoa.
Collapse
Affiliation(s)
- Shiyang Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Yunhao Liu
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Qian Huang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Shuo Yuan
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Hong Liu
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Lin Shi
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Yi Tian Yap
- Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Wei Li
- Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Jingkai Zhen
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Ling Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
13
|
Zang J, Neuhauss SCF. Biochemistry and physiology of zebrafish photoreceptors. Pflugers Arch 2021; 473:1569-1585. [PMID: 33598728 PMCID: PMC8370914 DOI: 10.1007/s00424-021-02528-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
All vertebrates share a canonical retina with light-sensitive photoreceptors in the outer retina. These photoreceptors are of two kinds: rods and cones, adapted to low and bright light conditions, respectively. They both show a peculiar morphology, with long outer segments, comprised of ordered stacks of disc-shaped membranes. These discs host numerous proteins, many of which contribute to the visual transduction cascade. This pathway converts the light stimulus into a biological signal, ultimately modulating synaptic transmission. Recently, the zebrafish (Danio rerio) has gained popularity for studying the function of vertebrate photoreceptors. In this review, we introduce this model system and its contribution to our understanding of photoreception with a focus on the cone visual transduction cascade.
Collapse
Affiliation(s)
- Jingjing Zang
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrase 190, CH - 8057, Zürich, Switzerland
| | - Stephan C F Neuhauss
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrase 190, CH - 8057, Zürich, Switzerland.
| |
Collapse
|
14
|
Noel NCL, MacDonald IM, Allison WT. Zebrafish Models of Photoreceptor Dysfunction and Degeneration. Biomolecules 2021; 11:78. [PMID: 33435268 PMCID: PMC7828047 DOI: 10.3390/biom11010078] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Zebrafish are an instrumental system for the generation of photoreceptor degeneration models, which can be utilized to determine underlying causes of photoreceptor dysfunction and death, and for the analysis of potential therapeutic compounds, as well as the characterization of regenerative responses. We review the wealth of information from existing zebrafish models of photoreceptor disease, specifically as they relate to currently accepted taxonomic classes of human rod and cone disease. We also highlight that rich, detailed information can be derived from studying photoreceptor development, structure, and function, including behavioural assessments and in vivo imaging of zebrafish. Zebrafish models are available for a diversity of photoreceptor diseases, including cone dystrophies, which are challenging to recapitulate in nocturnal mammalian systems. Newly discovered models of photoreceptor disease and drusenoid deposit formation may not only provide important insights into pathogenesis of disease, but also potential therapeutic approaches. Zebrafish have already shown their use in providing pre-clinical data prior to testing genetic therapies in clinical trials, such as antisense oligonucleotide therapy for Usher syndrome.
Collapse
Affiliation(s)
- Nicole C. L. Noel
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada; (I.M.M.); (W.T.A.)
| | - Ian M. MacDonald
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada; (I.M.M.); (W.T.A.)
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - W. Ted Allison
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada; (I.M.M.); (W.T.A.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada
| |
Collapse
|
15
|
Santhanam A, Shihabeddin E, Atkinson JA, Nguyen D, Lin YP, O’Brien J. A Zebrafish Model of Retinitis Pigmentosa Shows Continuous Degeneration and Regeneration of Rod Photoreceptors. Cells 2020; 9:E2242. [PMID: 33036185 PMCID: PMC7599532 DOI: 10.3390/cells9102242] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 01/17/2023] Open
Abstract
More than 1.5 million people suffer from Retinitis Pigmentosa, with many experiencing partial to complete vision loss. Regenerative therapies offer some hope, but their development is challenged by the limited regenerative capacity of mammalian model systems. As a step toward investigating regenerative therapies, we developed a zebrafish model of Retinitis Pigmentosa that displays ongoing regeneration. We used Tol2 transgenesis to express mouse rhodopsin carrying the P23H mutation and an epitope tag in zebrafish rod photoreceptors. Adult and juvenile fish were examined by immunofluorescence, TUNEL and BrdU incorporation assays. P23H transgenic fish expressed the transgene in rods from 3 days post fertilization onward. Rods expressing the mutant rhodopsin formed very small or no outer segments and the mutant protein was delocalized over the entire cell. Adult fish displayed thinning of the outer nuclear layer (ONL) and loss of rod outer segments, but retained a single, sparse row of rods. Adult fish displayed ongoing apoptotic cell death in the ONL and an abundance of proliferating cells, predominantly in the ONL. There was a modest remodeling of bipolar and Müller glial cells. This transgenic fish will provide a useful model system to study rod photoreceptor regeneration and integration.
Collapse
Affiliation(s)
- Abirami Santhanam
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
| | - Eyad Shihabeddin
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
- The MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Joshua A. Atkinson
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
| | - Duc Nguyen
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
| | - Ya-Ping Lin
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
| | - John O’Brien
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
- The MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
16
|
Nadolski NJ, Balay SD, Wong CXL, Waskiewicz AJ, Hocking JC. Abnormal Cone and Rod Photoreceptor Morphogenesis in gdf6a Mutant Zebrafish. Invest Ophthalmol Vis Sci 2020; 61:9. [PMID: 32293666 PMCID: PMC7401959 DOI: 10.1167/iovs.61.4.9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purpose Analysis of photoreceptor morphology and gene expression in mispatterned eyes of zebrafish growth differentiation factor 6a (gdf6a) mutants. Methods Rod and cone photoreceptors were compared between gdf6a mutant and control zebrafish from larval to late adult stages using transgenic labels, immunofluorescence, and confocal microscopy, as well as by transmission electron microscopy. To compare transcriptomes between larval gdf6a mutant and control zebrafish, RNA-Seq was performed on isolated eyes. Results Although rod and cone photoreceptors differentiate in gdf6a mutant zebrafish, the cells display aberrant growth and morphology. The cone outer segments, the light-detecting sensory endings, are reduced in size in the mutant larvae and fail to recover to control size at subsequent stages. In contrast, rods form temporarily expanded outer segments. The inner segments, which generate the required energy and proteins for the outer segments, are shortened in both rods and cones at all stages. RNA-Seq analysis provides a set of misregulated genes associated with the observed abnormal photoreceptor morphogenesis. Conclusions GDF6 mutations were previously identified in patients with Leber congenital amaurosis. Here, we reveal a unique photoreceptor phenotype in the gdf6a mutant zebrafish whereby rods and cones undergo abnormal maturation distinct for each cell type. Further, subsequent development shows partial recovery of cell morphology and maintenance of the photoreceptor layer. By conducting a transcriptomic analysis of the gdf6a larval eyes, we identified a collection of genes that are candidate regulators of photoreceptor size and morphology.
Collapse
|
17
|
Sun L, Song F, Liu H, Wang C, Tang X, Li Z, Ge H, Liu P. The novel mutation P36R in LRP5L contributes to congenital membranous cataract via inhibition of laminin γ1 and c-MAF. Graefes Arch Clin Exp Ophthalmol 2020; 258:2737-2751. [PMID: 32789677 DOI: 10.1007/s00417-020-04846-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/01/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
PURPOSE The present study investigated a pathogenic mutation and its mechanism on membranous cataract in a congenital membranous cataract family. METHODS An autosomal dominant four-generation Chinese congenital membranous cataract family was recruited and whole-exome sequencing was performed to screen for sequence variants. Candidate variants were validated using polymerase chain reaction and Sanger sequencing. Wild-type and mutant low-density lipoprotein receptor-related protein 5-like (LRP5L) plasmids were constructed and transfected into human lens epithelial cells (HLE B-3) and human anterior lens capsules. The cell lysates, nuclear and cytoplasmic proteins, and basement membrane components of HLE B-3 cells were harvested. LRP5L and laminin γ1 were knocked down in HLE B-3 cells using specific small-interfering RNA. The protein expression levels of LRP5L, laminin γ1, and c-MAF were detected using immunoblotting and immunofluorescence. RESULTS We identified a novel suspected pathogenic mutation in LRP5L (c.107C > G, p.P36R) in the congenital membranous cataract family. This mutation was absent in 300 normal controls and 300 age-related cataract patients. Bioinformatics analysis with PolyPhen-2 and SIFT suggested that LRP5L-P36R was pathogenic. LRP5L upregulated laminin γ1 expression in the cytoplasmic proteins of HLE B-3 cells and human anterior lens capsules, and LRP5L-P36R inhibited the effects of LRP5L. LRP5L upregulated c-MAF expression in the nucleus and cytoplasm of HLE B-3 cells, and LRP5L-P36R inhibited c-MAF expression via inhibition of laminin γ1. CONCLUSION Our study identified a novel gene, LRP5L, associated with congenital membranous cataract, and its mutant LRP5L-P36R contributed to membranous cataract development via inhibition of laminin γ1 and c-MAF.
Collapse
Affiliation(s)
- Liyao Sun
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, China
| | - Fanqian Song
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, China
| | - Hanruo Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Beijing Ophthalmology & Visual Science Key Laboratory, Capital Medical University, Beijing, 100000, China
| | - Chao Wang
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, China
| | - Xianling Tang
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, China
| | - Zhijian Li
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, China
| | - Hongyan Ge
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, China.
| | - Ping Liu
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, China.
| |
Collapse
|
18
|
Covello G, Rossello FJ, Filosi M, Gajardo F, Duchemin A, Tremonti BF, Eichenlaub M, Polo JM, Powell D, Ngai J, Allende ML, Domenici E, Ramialison M, Poggi L. Transcriptome analysis of the zebrafish atoh7-/- Mutant, lakritz, highlights Atoh7-dependent genetic networks with potential implications for human eye diseases. FASEB Bioadv 2020; 2:434-448. [PMID: 32676583 PMCID: PMC7354691 DOI: 10.1096/fba.2020-00030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/02/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022] Open
Abstract
Expression of the bHLH transcription protein Atoh7 is a crucial factor conferring competence to retinal progenitor cells for the development of retinal ganglion cells. Several studies have emerged establishing ATOH7 as a retinal disease gene. Remarkably, such studies uncovered ATOH7 variants associated with global eye defects including optic nerve hypoplasia, microphthalmia, retinal vascular disorders, and glaucoma. The complex genetic networks and cellular decisions arising downstream of atoh7 expression, and how their dysregulation cause development of such disease traits remains unknown. To begin to understand such Atoh7-dependent events in vivo, we performed transcriptome analysis of wild-type and atoh7 mutant (lakritz) zebrafish embryos at the onset of retinal ganglion cell differentiation. We investigated in silico interplays of atoh7 and other disease-related genes and pathways. By network reconstruction analysis of differentially expressed genes, we identified gene clusters enriched in retinal development, cell cycle, chromatin remodeling, stress response, and Wnt pathways. By weighted gene coexpression network, we identified coexpression modules affected by the mutation and enriched in retina development genes tightly connected to atoh7. We established the groundwork whereby Atoh7-linked cellular and molecular processes can be investigated in the dynamic multi-tissue environment of the developing normal and diseased vertebrate eye.
Collapse
Affiliation(s)
- Giuseppina Covello
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
- Present address:
Department of BiologyUniversity of PadovaPadovaItaly
| | - Fernando J. Rossello
- Australian Regenerative Medicine InstituteMonash University Clayton VICClaytonAustralia
- Present address:
University of Melbourne Centre for Cancer ResearchUniversity of MelbourneMelbourneVictoriaAustralia
| | - Michele Filosi
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
| | - Felipe Gajardo
- Center for Genome RegulationFacultad de Ciencias, SantiagoUniversidad de ChileSantiagoChile
| | | | - Beatrice F. Tremonti
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
| | - Michael Eichenlaub
- Australian Regenerative Medicine InstituteMonash University Clayton VICClaytonAustralia
| | - Jose M. Polo
- Australian Regenerative Medicine InstituteMonash University Clayton VICClaytonAustralia
- BDIMonash University Clayton VICClaytonAustralia
| | - David Powell
- Monash Bioinformatics PlatformMonash University Clayton VICClaytonAustralia
| | - John Ngai
- Department of Molecular and Cell Biology & Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyCAUSA
| | - Miguel L. Allende
- Center for Genome RegulationFacultad de Ciencias, SantiagoUniversidad de ChileSantiagoChile
| | - Enrico Domenici
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
- Fondazione The Microsoft Research ‐ University of Trento Centre for Computational and Systems BiologyTrentoItaly
| | - Mirana Ramialison
- Australian Regenerative Medicine InstituteMonash University Clayton VICClaytonAustralia
| | - Lucia Poggi
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
- Centre for Organismal StudyHeidelberg UniversityHeidelbergGermany
- Department of PhysiologyDevelopment and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
19
|
Xu B, Tang X, Jin M, Zhang H, Du L, Yu S, He J. Unifying developmental programs for embryonic and postembryonic neurogenesis in the zebrafish retina. Development 2020; 147:dev.185660. [PMID: 32467236 DOI: 10.1242/dev.185660] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 05/13/2020] [Indexed: 01/14/2023]
Abstract
The zebrafish retina grows for a lifetime. Whether embryonic and postembryonic retinogenesis conform to the same developmental program is an outstanding question that remains under debate. Using single-cell RNA sequencing of ∼20,000 cells of the developing zebrafish retina at four different stages, we identified seven distinct developmental states. Each state explicitly expresses a gene set. Disruption of individual state-specific marker genes results in various defects ranging from small eyes to the loss of distinct retinal cell types. Using a similar approach, we further characterized the developmental states of postembryonic retinal stem cells (RSCs) and their progeny in the ciliary marginal zone. Expression pattern analysis of state-specific marker genes showed that the developmental states of postembryonic RSCs largely recapitulated those of their embryonic counterparts, except for some differences in rod photoreceptor genesis. Thus, our findings reveal the unifying developmental program used by the embryonic and postembryonic retinogenesis in zebrafish.
Collapse
Affiliation(s)
- Baijie Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| | - Xia Tang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China .,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| | - Mengmeng Jin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| | - Hui Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| | - Lei Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| | - Shuguang Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| | - Jie He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China .,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| |
Collapse
|
20
|
Ma L, Ng M, van der Weele CM, Yoshizawa M, Jeffery WR. Dual roles of the retinal pigment epithelium and lens in cavefish eye degeneration. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:438-449. [PMID: 31930686 DOI: 10.1002/jez.b.22923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/04/2019] [Accepted: 12/21/2019] [Indexed: 01/03/2023]
Abstract
Astyanax mexicanus consists of two forms, a sighted surface dwelling form (surface fish) and a blind cave-dwelling form (cavefish). Embryonic eyes are initially formed in cavefish but they are subsequently arrested in growth and degenerate during larval development. Previous lens transplantation studies have shown that the lens plays a central role in cavefish eye loss. However, several lines of evidence suggest that additional factors, such as the retinal pigment epithelium (RPE), which is morphologically altered in cavefish, could also be involved in the eye regression process. To explore the role of the RPE in cavefish eye degeneration, we generated an albino eyed (AE) strain by artificial selection for hybrid individuals with large eyes and a depigmented RPE. The AE strain exhibited an RPE lacking pigment granules and showed reduced expression of the RPE specific enzyme retinol isomerase, allowing eye development to be studied by lens ablation in an RPE background resembling cavefish. We found that lens ablation in the AE strain had stronger negative effects on eye growth than in surface fish, suggesting that an intact RPE is required for normal eye development. We also found that the AE strain develops a cartilaginous sclera lacking boney ossicles, a trait similar to cavefish. Extrapolation of the results to cavefish suggests that the RPE and lens have dual roles in eye degeneration, and that deficiencies in the RPE may be associated with evolutionary changes in scleral ossification.
Collapse
Affiliation(s)
- Li Ma
- Department of Biology, University of Maryland, College Park, Maryland
| | - Mandy Ng
- Department of Biology, University of Maryland, College Park, Maryland
| | | | - Masato Yoshizawa
- Department of Biology, University of Maryland, College Park, Maryland
| | - William R Jeffery
- Department of Biology, University of Maryland, College Park, Maryland
| |
Collapse
|
21
|
Collery RF, Link BA. Precise Short Sequence Insertion in Zebrafish Using a CRISPR/Cas9 Approach to Generate a Constitutively Soluble Lrp2 Protein. Front Cell Dev Biol 2019; 7:167. [PMID: 31457013 PMCID: PMC6700241 DOI: 10.3389/fcell.2019.00167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 07/31/2019] [Indexed: 11/13/2022] Open
Abstract
LRP2 is a large transmembrane receptor expressed on absorptive epithelia where it binds many extracellular ligands to control several signaling pathways. Mutations in LRP2 are associated with buphthalmic eye enlargement, myopia and other non-ocular symptoms. Though studies have clearly shown that absence of LRP2 causes these phenotypes, and that overexpression of individual LRP2 domains can exacerbate eye enlargement caused by the absence of Lrp2, the relationship between soluble LRP2 fragments and full-length membrane-bound LRP2 is not completely understood. Here we use a CRISPR/Cas9 approach to insert a stop codon cassette into zebrafish lrp2 to prematurely truncate the protein before its transmembrane domain while leaving the entire extracellular domain intact. The resulting mutant line will be a useful tool for examining Lrp2 function in the eye, and testing hypotheses regarding its extracellular processing.
Collapse
Affiliation(s)
- Ross F Collery
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin Eye Institute, Milwaukee, WI, United States
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
22
|
Abstract
I was drawn into research in George Wald's laboratory at Harvard, where as an undergraduate and graduate student, I studied vitamin A deficiency and dark adaptation. A chance observation while an assistant professor at Harvard led to the major research of my career-to understand the functional organization of vertebrate retinas. I started with a retinal circuit analysis of the primate retina with Brian Boycott and intracellular retinal cell recordings in mudpuppies with Frank Werblin. Subsequent pharmacology studies with Berndt Ehinger primarily with fish focused on dopamine and neuromodulation. Using zebrafish, we studied retinal development, neuronal connectivity, and the effects of genetic mutations on retinal structure and function. Now semi-retired, I have returned to primate retinal circuitry, undertaking a connectomic analysis of the human fovea in Jeffrey Lichtman's laboratory.
Collapse
Affiliation(s)
- John E Dowling
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA;
| |
Collapse
|
23
|
Wu N, Liu B, Du H, Zhao S, Li Y, Cheng X, Wang S, Lin J, Zhou J, Qiu G, Wu Z, Zhang J. The Progress of CRISPR/Cas9-Mediated Gene Editing in Generating Mouse/Zebrafish Models of Human Skeletal Diseases. Comput Struct Biotechnol J 2019; 17:954-962. [PMID: 31360334 PMCID: PMC6639410 DOI: 10.1016/j.csbj.2019.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/28/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022] Open
Abstract
Genetic factors play a substantial role in the etiology of skeletal diseases, which involve 1) defects in skeletal development, including intramembranous ossification and endochondral ossification; 2) defects in skeletal metabolism, including late bone growth and bone remodeling; 3) defects in early developmental processes related to skeletal diseases, such as neural crest cell (NCC) and cilia functions; 4) disturbance of the cellular signaling pathways which potentially affect bone growth. Efficient and high-throughput genetic methods have enabled the exploration and verification of disease-causing genes and variants. Animal models including mouse and zebrafish have been extensively used in functional mechanism studies of causal genes and variants. The conventional approaches of generating mutant animal models include spontaneous mutagenesis, random integration, and targeted integration via mouse embryonic stem cells. These approaches are costly and time-consuming. Recent development and application of gene-editing tools, especially the CRISPR/Cas9 system, has significantly accelerated the process of gene-editing in diverse organisms. Here we review both mice and zebrafish models of human skeletal diseases generated by CRISPR/Cas9 system, and their contributions to deciphering the underpins of disease mechanisms.
Collapse
Affiliation(s)
- Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
- Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Bowen Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Huakang Du
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Sen Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Yaqi Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Xi Cheng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Shengru Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Jiachen Lin
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Junde Zhou
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | | | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
- Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing 100730, China
- Central Laboratory & Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
- Central Laboratory & Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianguo Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
- Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
24
|
Dasgupta S, Cheng V, Vliet SMF, Mitchell CA, Volz DC. Tris(1,3-dichloro-2-propyl) Phosphate Exposure During the Early-Blastula Stage Alters the Normal Trajectory of Zebrafish Embryogenesis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10820-10828. [PMID: 30157643 PMCID: PMC6169527 DOI: 10.1021/acs.est.8b03730] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is an organophosphate flame retardant used around the world. Within zebrafish, we previously showed that initiation of TDCIPP exposure during cleavage (0.75 h post-fertilization, hpf) results in epiboly disruption at 6 hpf, leading to dorsalized embryos by 24 hpf, a phenotype that mimics the effects of dorsomorphin (DMP), a bone morphogenetic protein (BMP) antagonist that dorsalizes embryos in the absence of epiboly defects. The objective of this study was to (1) investigate the role of BMP signaling in TDCIPP-induced toxicity during early embryogenesis, (2) identify other pathways and processes targeted by TDCIPP, and (3) characterize the downstream impacts of early developmental defects. Using zebrafish as a model, we first identified a sensitive window for TDCIPP-induced effects following exposure initiation at 0.75 hpf. We then investigated the effects of TDCIPP on the transcriptome during the first 24 h of development using mRNA sequencing and amplicon sequencing. Finally, we relied on whole-mount immunohistochemistry, dye-based labeling, and morphological assessments to study abnormalities later in embryonic development. Overall, our data suggest that the initiation of TDCIPP exposure during early blastula alters the normal trajectory of early embryogenesis by inducing gastrulation defects and aberrant germ-layer formation, leading to abnormal tissue and organ development within the embryo.
Collapse
Affiliation(s)
- Subham Dasgupta
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Vanessa Cheng
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| | - Sara M. F. Vliet
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| | - Constance A. Mitchell
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| | - David C. Volz
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
- Phone: (951) 827-4450; Fax: (951) 827 3993;
| |
Collapse
|
25
|
Radhakrishnan U, Alsrhani A, Sundaramoorthi H, Khandekar G, Kashyap M, Fuchs JL, Perkins BD, Omori Y, Jagadeeswaran P. Intraflagellar transport proteins are involved in thrombocyte filopodia formation and secretion. Platelets 2017; 29:811-820. [PMID: 29125377 DOI: 10.1080/09537104.2017.1361524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Intraflagellar transport (IFT) proteins are vital for the genesis and maintenance of cilia. Our identification of ift122 transcripts in zebrafish thrombocytes that lack primary cilia was unexpected. IFT proteins serve transport in cilia, whose narrow dimensions may have necessitated the evolution of IFT from vesicular transport in ancestral eukaryotes. We hypothesized that IFTs might also facilitate transport within the filopodia that form when thrombocytes are activated. To test this possibility, we knocked down ift122 expression by injecting antisense Morpholino oligonucleotides (MOs) into zebrafish embryos. Laser-induced arterial thrombosis showed prolonged time to occlusion (TTO) of the vessel, as would be expected with defective thrombocyte function. Acute effects in adult zebrafish were evaluated by Vivo-Morpholino (Vivo-MO) knockdown of ift122. Vivo-MO morphants showed a prolonged time to thrombocyte aggregation (TTA) in the plate tilt assay after thrombocyte activation by the following agonists: ADP, collagen, PAR1 peptide, and epinephrine. A luminescence assay for ATP revealed that ATP secretion by thrombocytes was reduced in collagen-activated blood of Vivo-MO ift122 morphants. Moreover, DiI-C18 labeled morphant thrombocytes exposed to collagen showed reductions in filopodia number and length. Analysis of ift mutants, in which cilia defects have been noted, also showed prolongation of TTO in our arterial laser thrombosis assay. Additionally, collagen activation of wild-type thrombocytes led to a concentration of IFT122 both within and at the base of filopodia. Taken together these results, suggest that IFT proteins are involved in both the extension of filopodia and secretion of ATP, which are critical in thrombocyte function.
Collapse
Affiliation(s)
- Uvaraj Radhakrishnan
- a Department of Biological Sciences , University of North Texas , Denton , TX, USA
| | - Abdullah Alsrhani
- a Department of Biological Sciences , University of North Texas , Denton , TX, USA
| | | | - Gauri Khandekar
- a Department of Biological Sciences , University of North Texas , Denton , TX, USA
| | - Meghana Kashyap
- a Department of Biological Sciences , University of North Texas , Denton , TX, USA
| | - Jannon L Fuchs
- a Department of Biological Sciences , University of North Texas , Denton , TX, USA
| | - Brian D Perkins
- b Department of Ophthalmic Research , Cole Eye Institute, Cleveland Clinic , Cleveland , OH, USA
| | - Yoshihiro Omori
- c Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University , Osaka , Japan
| | - Pudur Jagadeeswaran
- a Department of Biological Sciences , University of North Texas , Denton , TX, USA
| |
Collapse
|
26
|
Samuelsson AR, Belvindrah R, Wu C, Müller U, Halfter W. β1-Integrin Signaling is Essential for Lens Fiber Survival. GENE REGULATION AND SYSTEMS BIOLOGY 2017. [DOI: 10.1177/117762500700100016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Integrins have been proposed to play a major role in lens morphogenesis. To determine the role of β1-integrin and its down-stream signaling partner, integrin linked kinase (ILK), in lens morphogenesis, eyes of WT mice and mice with a nestin-linked conditional knockout of β1-integrin or ILK were analyzed for defects in lens development. Mice, lacking the genes encoding the p1-integrin subunit ( Itgb1) or ILK ( Ilk), showed a perinatal degeneration of the lens. Early signs of lens degeneration included vacuolization, random distribution of lens cell nuclei, disrupted fiber morphology and attenuation and separation of the lens capsule. The phenotype became progressively more severe during the first postnatal week eventually leading to the complete loss of the lens. A more severe phenotype was observed in ILK mutants at similar stages. Eyes from embryonic day 13 β1-integrin-mutant embryos showed no obvious signs of lens degeneration, indicating that mutant lens develops normally until peri-recombination. Our findings suggest that β1-integrins and ILK cooperate to control lens cell survival and link lens fibers to the surrounding extracellular matrix. The assembly and integrity of the lens capsule also appears to be reliant on integrin signaling within lens fibers. Extrapolation of these results indicates a novel role of integrins in lens cell-cell adhesions as well as a potential role in the pathogenesis of congenital cataracts.
Collapse
Affiliation(s)
- Andrew R. Samuelsson
- Department of Neurobiology, University of Pittsburgh, 1402 E Biological Science Tower, Pittsburgh PA 15261
| | - Richard Belvindrah
- Department of Cell Biology and Institute for Childhood and Neglected Disease, Scripps Research Institute, La Jolla, CA 92037
| | - Chuanyue Wu
- Department of Pathology, 707 Scaife Hall, University of Pittsburgh, Pittsburgh PA 15261
| | - Uli Müller
- Department of Cell Biology and Institute for Childhood and Neglected Disease, Scripps Research Institute, La Jolla, CA 92037
| | - Willi Halfter
- Department of Neurobiology, University of Pittsburgh, 1402 E Biological Science Tower, Pittsburgh PA 15261
| |
Collapse
|
27
|
Aose M, Linbo TH, Lawrence O, Senoo T, Raible DW, Clark JI. The occhiolino (occ) mutant Zebrafish, a model for development of the optical function in the biological lens. Dev Dyn 2017; 246:915-924. [PMID: 28422363 PMCID: PMC6800130 DOI: 10.1002/dvdy.24511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/16/2017] [Accepted: 04/03/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Zebrafish visual function depends on quality optics. An F3 screen for developmental mutations in the Zebrafish nervous system was conducted in wild-type (wt) AB Zebrafish exposed to 3 mM of N-ethyl-N-nitrosourea (ENU). RESULTS Mutant offspring, identified in an F3 screen, were characterized by a small pupil, resulting from retinal hypertrophy or hyperplasia and a small lens. Deficits in visual function made feeding difficult after hatching at approximately 5-6 days postfertilization (dpf). Special feeding conditions were necessary for survival of the occhiolino (occ) mutants after 6 dpf. Optokinetic response (OKR) tests measured defects in visual function in the occ mutant, although electroretinograms (ERGs) were normal in the mutant and wt. Consistent with the ERGs, histology found normal retinal structure in the occ mutant and wt Zebrafish. However, lens development was abnormal. Multiphoton imaging of the developmental stages of live embryos confirmed the formation of a secondary mass of lens cells in the developing eye of the mutant Zebrafish at 3-4 dpf, and laminin immunohistochemistry indicated the lens capsule was thin and disorganized in the mutant Zebrafish. CONCLUSIONS The occ Zebrafish is a novel disease model for visual defects associated with abnormal lens development. Developmental Dynamics 246:915-924, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Masamoto Aose
- Department of Ophthalmology, Dokkyo Medical University, Tochigi, Japan
| | - Tor H Linbo
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Owen Lawrence
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Tadashi Senoo
- Department of Ophthalmology, Dokkyo Medical University, Tochigi, Japan
| | - David W Raible
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - John I Clark
- Department of Biological Structure, University of Washington, Seattle, Washington
- Department of Ophthalmology, University of Washington, Seattle, Washington
| |
Collapse
|
28
|
Wold M, Beckmann M, Poitra S, Espinoza A, Longie R, Mersereau E, Darland DC, Darland T. The longitudinal effects of early developmental cadmium exposure on conditioned place preference and cardiovascular physiology in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:73-84. [PMID: 28804037 PMCID: PMC5764186 DOI: 10.1016/j.aquatox.2017.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 05/05/2023]
Abstract
Cadmium (Cd) is a naturally occurring trace metal that is widely considered to be highly toxic to aquatic organisms and a significant health hazard to humans (Amzal et al., 2009; Bernhoft 2013; Burger, 2008; Satarug et al., 2009). The zebrafish (Danio rerio) has been used as a model organism for toxicological studies with Cd (Banni et al., 2011; Blechinger et al., 2007; Chow et al., 2009; Chow et al., 2008; Favorito et al., 2011; Kusch et al., 2007; Matz et al., 2007; Wang and Gallagher, 2013). We asked what the lasting longitudinal effects would be from short early developmental Cd exposure (between 24 and 96h post-fertilization) in a range that larvae might experience living atop typical Cd-containing surface sediments (0, 0.01, 0.1, 1.0 and 10μM CdCl2: 1.124, 11.24, 112.4 and 1124μg Cd/L). The goal of this exposure window was to specifically target secondary neurogenesis, monoaminergic differentiation and cardiovascular development, without affecting earlier patterning processes. Developmental abnormalities in body size and CNS morphology increased with concentration, but were statistically significant only at the highest concentration used (10μM). Heart rate for Cd-treated larvae increased with concentration, and was significant even at the lowest concentration used (0.01μM). Longitudinal survival was significantly lower for fish developmentally exposed to the highest concentration. Except for brain weight, overall morphology was not affected by developmental Cd exposure. However, developmental exposure to lower concentrations of Cd (0.01, 0.1, and 1.0μM) progressively lowered cocaine-induced conditioned place preference (CPP), used to measure function of the reward pathways in the brain. Baseline heart rate was significantly lower in longitudinal fish developmentally exposed to 1.0μM Cd. Cardiovascular response to isoproterenol, a potent ß-adrenergic agonist, in longitudinal adults was also significantly affected by developmental exposure to Cd at low doses (0.01, 0.1 and 1.0μM). Surviving longitudinal adult fish exposed to the highest concentration of Cd showed normal CPP and cardiovascular physiology. The data imply that even lower exposure concentrations can potentially result in fitness-affecting parameters without affecting survival in a laboratory setting.
Collapse
Affiliation(s)
- Marissa Wold
- University of North Dakota Biology Department, 10 Cornell Street, Grand Forks, ND, 58202-9019, USA
| | - Myranda Beckmann
- University of North Dakota Biology Department, 10 Cornell Street, Grand Forks, ND, 58202-9019, USA
| | - Shelby Poitra
- University of North Dakota Biology Department, 10 Cornell Street, Grand Forks, ND, 58202-9019, USA
| | - Ana Espinoza
- University of Arizona, Department of Ecology and Evolutionary Biology, Tucson, AZ 85721, USA
| | - Robert Longie
- University of North Dakota Biology Department, 10 Cornell Street, Grand Forks, ND, 58202-9019, USA
| | - Erik Mersereau
- University of North Dakota Biology Department, 10 Cornell Street, Grand Forks, ND, 58202-9019, USA
| | - Diane C Darland
- University of North Dakota Biology Department, 10 Cornell Street, Grand Forks, ND, 58202-9019, USA
| | - Tristan Darland
- University of North Dakota Biology Department, 10 Cornell Street, Grand Forks, ND, 58202-9019, USA.
| |
Collapse
|
29
|
Iribarne M, Masai I. Neurotoxicity of cGMP in the vertebrate retina: from the initial research on rd mutant mice to zebrafish genetic approaches. J Neurogenet 2017; 31:88-101. [PMID: 28812418 DOI: 10.1080/01677063.2017.1358268] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Zebrafish are an excellent animal model for research on vertebrate development and human diseases. Sophisticated genetic tools including large-scale mutagenesis methodology make zebrafish useful for studying neuronal degenerative diseases. Here, we review zebrafish models of inherited ophthalmic diseases, focusing on cGMP metabolism in photoreceptors. cGMP is the second messenger of phototransduction, and abnormal cGMP levels are associated with photoreceptor death. cGMP concentration represents a balance between cGMP phosphodiesterase 6 (PDE6) and guanylate cyclase (GC) activities in photoreceptors. Various zebrafish cGMP metabolism mutants were used to clarify molecular mechanisms by which dysfunctions in this pathway trigger photoreceptor degeneration. Here, we review the history of research on the retinal degeneration (rd) mutant mouse, which carries a genetic mutation of PDE6b, and we also highlight recent research in photoreceptor degeneration using zebrafish models. Several recent discoveries that provide insight into cGMP toxicity in photoreceptors are discussed.
Collapse
Affiliation(s)
- Maria Iribarne
- a Okinawa Institute of Science and Technology Graduate University , Onna, Okinawa , Japan
| | - Ichiro Masai
- a Okinawa Institute of Science and Technology Graduate University , Onna, Okinawa , Japan
| |
Collapse
|
30
|
Abstract
The zebrafish (Danio rerio) possesses a vertebrate-type retina that is extraordinarily conserved in evolution. This well-organized and anatomically easily accessible part of the central nervous system has been widely investigated in zebrafish, promoting general understanding of retinal development, morphology, function and associated diseases. Over the recent years, genome and protein engineering as well as imaging techniques have experienced revolutionary advances and innovations, creating new possibilities and methods to study zebrafish development and function. In this review, we focus on some of these emerging technologies and how they may impact retinal research in the future. We place an emphasis on genetic techniques, such as transgenic approaches and the revolutionizing new possibilities in genome editing.
Collapse
Affiliation(s)
- Stephanie Niklaus
- a Institute of Molecular Life Sciences , University of Zurich , Zurich , Switzerland.,b Life Science Zurich Graduate Program - Neuroscience , Zurich , Switzerland
| | - Stephan C F Neuhauss
- a Institute of Molecular Life Sciences , University of Zurich , Zurich , Switzerland
| |
Collapse
|
31
|
Daniele LL, Emran F, Lobo GP, Gaivin RJ, Perkins BD. Mutation of wrb, a Component of the Guided Entry of Tail-Anchored Protein Pathway, Disrupts Photoreceptor Synapse Structure and Function. Invest Ophthalmol Vis Sci 2017; 57:2942-54. [PMID: 27273592 PMCID: PMC4898200 DOI: 10.1167/iovs.15-18996] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Tail-anchored (TA) proteins contain a single hydrophobic domain at the C-terminus and are posttranslationally inserted into the ER membrane via the GET (guided entry of tail-anchored proteins) pathway. The role of the GET pathway in photoreceptors is unexplored. The goal of this study was to characterize the zebrafish pinball wizard mutant, which disrupts Wrb, a core component of the GET pathway. METHODS Electroretinography, optokinetic response measurements (OKR), immunohistochemistry, and electron microscopy analyses were employed to assess ribbon synapse function, protein expression, and ultrastructure in 5-day-old zebrafish larvae. Expression of wrb was investigated with real-time qRT-PCR and in situ hybridization. RESULTS Mutation of wrb abolished the OKR and greatly diminished the ERG b-wave, but not the a-wave. Ribeye and SV2 were partially mislocalized in both photoreceptors and hair cells of wrb mutants. Fewer contacts were seen between photoreceptors and bipolar cells in wrb-/- mutants. Expression of wrb was observed throughout the nervous system and Wrb localized to the ER and synaptic region of photoreceptors. Morpholino knockdown of the cytosolic ATPase trc40, which targets TA proteins to the ER, also diminished the OKR. Overexpression of wrb fully restored contrast sensitivity in mutants, while overexpression of mutant wrbR73A, which cannot bind Trc40, did not. CONCLUSIONS Proteins Wrb and Trc40 are required for synaptic transmission between photoreceptors and bipolar cells, indicating that TA protein insertion by the TRC pathway is a critical step in ribbon synapse assembly and function.
Collapse
Affiliation(s)
- Lauren L Daniele
- Department of Ophthalmic Research Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Farida Emran
- Centre for Research in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Glenn P Lobo
- Department of Ophthalmic Research Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Robert J Gaivin
- Department of Ophthalmic Research Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Brian D Perkins
- Department of Ophthalmic Research Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| |
Collapse
|
32
|
Utilizing Zebrafish Visual Behaviors in Drug Screening for Retinal Degeneration. Int J Mol Sci 2017; 18:ijms18061185. [PMID: 28574477 PMCID: PMC5486008 DOI: 10.3390/ijms18061185] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/14/2017] [Accepted: 05/16/2017] [Indexed: 12/15/2022] Open
Abstract
Zebrafish are a popular vertebrate model in drug discovery. They produce a large number of small and rapidly-developing embryos. These embryos display rich visual-behaviors that can be used to screen drugs for treating retinal degeneration (RD). RD comprises blinding diseases such as Retinitis Pigmentosa, which affects 1 in 4000 people. This disease has no definitive cure, emphasizing an urgency to identify new drugs. In this review, we will discuss advantages, challenges, and research developments in using zebrafish behaviors to screen drugs in vivo. We will specifically discuss a visual-motor response that can potentially expedite discovery of new RD drugs.
Collapse
|
33
|
Abstract
In the last 30 years, the zebrafish has become a widely used model organism for research on vertebrate development and disease. Through a powerful combination of genetics and experimental embryology, significant inroads have been made into the regulation of embryonic axis formation, organogenesis, and the development of neural networks. Research with this model has also expanded into other areas, including the genetic regulation of aging, regeneration, and animal behavior. Zebrafish are a popular model because of the ease with which they can be maintained, their small size and low cost, the ability to obtain hundreds of embryos on a daily basis, and the accessibility, translucency, and rapidity of early developmental stages. This primer describes the swift progress of genetic approaches in zebrafish and highlights recent advances that have led to new insights into vertebrate biology.
Collapse
|
34
|
Hunt NC, Hallam D, Karimi A, Mellough CB, Chen J, Steel DHW, Lako M. 3D culture of human pluripotent stem cells in RGD-alginate hydrogel improves retinal tissue development. Acta Biomater 2017; 49:329-343. [PMID: 27826002 DOI: 10.1016/j.actbio.2016.11.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 12/22/2022]
Abstract
No treatments exist to effectively treat many retinal diseases. Retinal pigmented epithelium (RPE) and neural retina can be generated from human embryonic stem cells/induced pluripotent stem cells (hESCs/hiPSCs). The efficacy of current protocols is, however, limited. It was hypothesised that generation of laminated neural retina and/or RPE from hiPSCs/hESCs could be enhanced by three dimensional (3D) culture in hydrogels. hiPSC- and hESC-derived embryoid bodies (EBs) were encapsulated in 0.5% RGD-alginate; 1% RGD-alginate; hyaluronic acid (HA) or HA/gelatin hydrogels and maintained until day 45. Compared with controls (no gel), 0.5% RGD-alginate increased: the percentage of EBs with pigmented RPE foci; the percentage EBs with optic vesicles (OVs) and pigmented RPE simultaneously; the area covered by RPE; frequency of RPE cells (CRALBP+); expression of RPE markers (TYR and RPE65) and the retinal ganglion cell marker, MATH5. Furthermore, 0.5% RGD-alginate hydrogel encapsulation did not adversely affect the expression of other neural retina markers (PROX1, CRX, RCVRN, AP2α or VSX2) as determined by qRT-PCR, or the percentage of VSX2 positive cells as determined by flow cytometry. 1% RGD-alginate increased the percentage of EBs with OVs and/or RPE, but did not significantly influence any other measures of retinal differentiation. HA-based hydrogels had no significant effect on retinal tissue development. The results indicated that derivation of retinal tissue from hESCs/hiPSCs can be enhanced by culture in 0.5% RGD-alginate hydrogel. This RGD-alginate scaffold may be useful for derivation, transport and transplantation of neural retina and RPE, and may also enhance formation of other pigmented, neural or epithelial tissue. STATEMENT OF SIGNIFICANCE The burden of retinal disease is ever growing with the increasing age of the world-wide population. Transplantation of retinal tissue derived from human pluripotent stem cells (PSCs) is considered a promising treatment. However, derivation of retinal tissue from PSCs using defined media is a lengthy process and often variable between different cell lines. This study indicated that alginate hydrogels enhanced retinal tissue development from PSCs, whereas hyaluronic acid-based hydrogels did not. This is the first study to show that 3D culture with a biomaterial scaffold can improve retinal tissue derivation from PSCs. These findings indicate potential for the clinical application of alginate hydrogels for the derivation and subsequent transplantation retinal tissue. This work may also have implications for the derivation of other pigmented, neural or epithelial tissue.
Collapse
Affiliation(s)
- Nicola C Hunt
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle NE1 3BZ, UK.
| | - Dean Hallam
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle NE1 3BZ, UK.
| | - Ayesha Karimi
- Cumberland Infirmary, North Cumbria University Hospitals NHS Trust, Carlisle CA2 7HY, UK
| | - Carla B Mellough
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle NE1 3BZ, UK.
| | - Jinju Chen
- School of Mechanical & Systems Engineering, Stephenson Building, Newcastle University, Newcastle upon Tyne, UK.
| | - David H W Steel
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle NE1 3BZ, UK; Sunderland Eye Infirmary, Queen Alexandra Road, Sunderland SR2 9HP, UK.
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle NE1 3BZ, UK.
| |
Collapse
|
35
|
Toms M, Tracey-White D, Muhundhakumar D, Sprogyte L, Dubis AM, Moosajee M. Spectral Domain Optical Coherence Tomography: An In Vivo Imaging Protocol for Assessing Retinal Morphology in Adult Zebrafish. Zebrafish 2017; 14:118-125. [PMID: 28051361 DOI: 10.1089/zeb.2016.1376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The present study outlines a protocol for examining retinal structure in zebrafish, a popular model organism for ocular studies, using spectral domain optical coherence tomography (SD-OCT). We demonstrate how this live imaging modality can be used to obtain high quality images of several retinal features, including the optic nerve, retinal vasculature, and the cone photoreceptor mosaic. Retinal histology sections were obtained from imaged fish for comparison with SD-OCT cross-sectional B-scans. Voronoi domain analysis was used to assess cone photoreceptor packing regularity at 3, 6, and 12 months. SD-OCT is an effective in vivo technique for studying the adult zebrafish retina and can be applied to disease models for longitudinal serial monitoring.
Collapse
Affiliation(s)
- Maria Toms
- 1 Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology , London, United Kingdom
| | - Dhani Tracey-White
- 1 Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology , London, United Kingdom
| | - Dhakshi Muhundhakumar
- 1 Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology , London, United Kingdom
| | - Lina Sprogyte
- 1 Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology , London, United Kingdom
| | - Adam M Dubis
- 1 Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology , London, United Kingdom .,2 Moorfields Eye Hospital NHS Foundation Trust , London, United Kingdom
| | - Mariya Moosajee
- 1 Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology , London, United Kingdom .,2 Moorfields Eye Hospital NHS Foundation Trust , London, United Kingdom
| |
Collapse
|
36
|
Yu M, Liu Y, Li J, Natale BN, Cao S, Wang D, Amack JD, Hu H. Eyes shut homolog is required for maintaining the ciliary pocket and survival of photoreceptors in zebrafish. Biol Open 2016; 5:1662-1673. [PMID: 27737822 PMCID: PMC5155541 DOI: 10.1242/bio.021584] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mutations in the extracellular matrix protein eyes shut homolog (EYS) cause photoreceptor degeneration in patients with retinitis pigmentosa 25 (RP25). Functions of EYS remain poorly understood, due in part to the lack of an EYS gene in mouse. We investigated the localization of vertebrate EYS proteins and engineered loss-of-function alleles in zebrafish. Immunostaining indicated that EYS localized near the connecting cilium/transition zone in photoreceptors. EYS also strongly localized to the cone outer segments and weakly to the rod outer segments and cone terminals in primate retinas. Analysis of mutant EYS zebrafish revealed disruption of the ciliary pocket in cone photoreceptors, indicating that EYS is required for maintaining the integrity of the ciliary pocket lumen. Mutant zebrafish exhibited progressive loss of cone and rod photoreceptors. Our results indicate that EYS protein localization is species-dependent and that EYS is required for maintaining ciliary pocket morphology and survival of photoreceptors in zebrafish. Summary: The extracellular matrix protein Eyes shut homolog is required for maintaining the integrity of the ciliary pocket and survival of photoreceptors in zebrafish.
Collapse
Affiliation(s)
- Miao Yu
- Center for Vision Research, Departments of Ophthalmology and Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Yu Liu
- Center for Vision Research, Departments of Ophthalmology and Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jing Li
- Center for Vision Research, Departments of Ophthalmology and Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Brianna N Natale
- Center for Vision Research, Departments of Ophthalmology and Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Shuqin Cao
- Center for Vision Research, Departments of Ophthalmology and Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Dongliang Wang
- Department of Public Health and Preventive Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jeffrey D Amack
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Huaiyu Hu
- Center for Vision Research, Departments of Ophthalmology and Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
37
|
Richardson R, Tracey-White D, Webster A, Moosajee M. The zebrafish eye-a paradigm for investigating human ocular genetics. Eye (Lond) 2016; 31:68-86. [PMID: 27612182 DOI: 10.1038/eye.2016.198] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/17/2016] [Indexed: 01/13/2023] Open
Abstract
Although human epidemiological and genetic studies are essential to elucidate the aetiology of normal and aberrant ocular development, animal models have provided us with an understanding of the pathogenesis of multiple developmental ocular malformations. Zebrafish eye development displays in depth molecular complexity and stringent spatiotemporal regulation that incorporates developmental contributions of the surface ectoderm, neuroectoderm and head mesenchyme, similar to that seen in humans. For this reason, and due to its genetic tractability, external fertilisation, and early optical clarity, the zebrafish has become an invaluable vertebrate system to investigate human ocular development and disease. Recently, zebrafish have been at the leading edge of preclinical therapy development, with their amenability to genetic manipulation facilitating the generation of robust ocular disease models required for large-scale genetic and drug screening programmes. This review presents an overview of human and zebrafish ocular development, genetic methodologies employed for zebrafish mutagenesis, relevant models of ocular disease, and finally therapeutic approaches, which may have translational leads in the future.
Collapse
Affiliation(s)
- R Richardson
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - D Tracey-White
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - A Webster
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK.,NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - M Moosajee
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK.,NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
38
|
Vogl C, Panou I, Yamanbaeva G, Wichmann C, Mangosing SJ, Vilardi F, Indzhykulian AA, Pangršič T, Santarelli R, Rodriguez-Ballesteros M, Weber T, Jung S, Cardenas E, Wu X, Wojcik SM, Kwan KY, Del Castillo I, Schwappach B, Strenzke N, Corey DP, Lin SY, Moser T. Tryptophan-rich basic protein (WRB) mediates insertion of the tail-anchored protein otoferlin and is required for hair cell exocytosis and hearing. EMBO J 2016; 35:2536-2552. [PMID: 27458190 DOI: 10.15252/embj.201593565] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 05/29/2016] [Accepted: 06/10/2016] [Indexed: 12/21/2022] Open
Abstract
The transmembrane recognition complex (TRC40) pathway mediates the insertion of tail-anchored (TA) proteins into membranes. Here, we demonstrate that otoferlin, a TA protein essential for hair cell exocytosis, is inserted into the endoplasmic reticulum (ER) via the TRC40 pathway. We mutated the TRC40 receptor tryptophan-rich basic protein (Wrb) in hair cells of zebrafish and mice and studied the impact of defective TA protein insertion. Wrb disruption reduced otoferlin levels in hair cells and impaired hearing, which could be restored in zebrafish by transgenic Wrb rescue and otoferlin overexpression. Wrb-deficient mouse inner hair cells (IHCs) displayed normal numbers of afferent synapses, Ca2+ channels, and membrane-proximal vesicles, but contained fewer ribbon-associated vesicles. Patch-clamp of IHCs revealed impaired synaptic vesicle replenishment. In vivo recordings from postsynaptic spiral ganglion neurons showed a use-dependent reduction in sound-evoked spiking, corroborating the notion of impaired IHC vesicle replenishment. A human mutation affecting the transmembrane domain of otoferlin impaired its ER targeting and caused an auditory synaptopathy. We conclude that the TRC40 pathway is critical for hearing and propose that otoferlin is an essential substrate of this pathway in hair cells.
Collapse
Affiliation(s)
- Christian Vogl
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| | - Iliana Panou
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Gulnara Yamanbaeva
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Auditory Systems Physiology Group and InnerEarLab, Department of Otolaryngology, University of Göttingen Medical Center, Göttingen, Germany
| | - Carolin Wichmann
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Sara J Mangosing
- Otolaryngology Division, Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Fabio Vilardi
- Institute of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Artur A Indzhykulian
- Howard Hughes Medical Institute and Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Tina Pangršič
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Synaptic Physiology of Mammalian Vestibular Hair Cells Junior Research Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Rosamaria Santarelli
- Department of Neurosciences, University of Padova, Padova, Italy.,Audiology and Phoniatrics Service, Treviso Regional Hospital, Treviso, Italy
| | | | - Thomas Weber
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Sangyong Jung
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Elena Cardenas
- Otolaryngology Division, Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Xudong Wu
- Howard Hughes Medical Institute and Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Sonja M Wojcik
- Department of Molecular Neurobiology, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| | - Kelvin Y Kwan
- W. M. Keck Center for Collaborative Neuroscience, Nelson Lab-D250, Rutgers University, Piscataway, NJ, USA
| | - Ignacio Del Castillo
- Servicio de Genetica, Hospital Universitario Ramon y Cajal, IRYCIS, Madrid, Spain.,Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Blanche Schwappach
- Institute of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Nicola Strenzke
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Auditory Systems Physiology Group and InnerEarLab, Department of Otolaryngology, University of Göttingen Medical Center, Göttingen, Germany
| | - David P Corey
- Howard Hughes Medical Institute and Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Shuh-Yow Lin
- Otolaryngology Division, Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany .,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
39
|
Mersereau EJ, Boyle CA, Poitra S, Espinoza A, Seiler J, Longie R, Delvo L, Szarkowski M, Maliske J, Chalmers S, Darland DC, Darland T. Longitudinal Effects of Embryonic Exposure to Cocaine on Morphology, Cardiovascular Physiology, and Behavior in Zebrafish. Int J Mol Sci 2016; 17:ijms17060847. [PMID: 27258254 PMCID: PMC4926381 DOI: 10.3390/ijms17060847] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/30/2016] [Accepted: 05/25/2016] [Indexed: 01/05/2023] Open
Abstract
A sizeable portion of the societal drain from cocaine abuse results from the complications of in utero drug exposure. Because of challenges in using humans and mammalian model organisms as test subjects, much debate remains about the impact of in utero cocaine exposure. Zebrafish offer a number of advantages as a model in longitudinal toxicology studies and are quite sensitive physiologically and behaviorally to cocaine. In this study, we have used zebrafish to model the effects of embryonic pre-exposure to cocaine on development and on subsequent cardiovascular physiology and cocaine-induced conditioned place preference (CPP) in longitudinal adults. Larval fish showed a progressive decrease in telencephalic size with increased doses of cocaine. These treated larvae also showed a dose dependent response in heart rate that persisted 24 h after drug cessation. Embryonic cocaine exposure had little effect on overall health of longitudinal adults, but subtle changes in cardiovascular physiology were seen including decreased sensitivity to isoproterenol and increased sensitivity to cocaine. These longitudinal adult fish also showed an embryonic dose-dependent change in CPP behavior, suggesting an increased sensitivity. These studies clearly show that pre-exposure during embryonic development affects subsequent cocaine sensitivity in longitudinal adults.
Collapse
Affiliation(s)
- Eric J Mersereau
- Biology Department, University of North Dakota, 10 Cornell Street, Grand Forks, ND 58202, USA.
| | - Cody A Boyle
- Biology Department, University of North Dakota, 10 Cornell Street, Grand Forks, ND 58202, USA.
| | - Shelby Poitra
- Biology Department, University of North Dakota, 10 Cornell Street, Grand Forks, ND 58202, USA.
| | - Ana Espinoza
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA.
| | - Joclyn Seiler
- Biology Department, University of North Dakota, 10 Cornell Street, Grand Forks, ND 58202, USA.
| | - Robert Longie
- Biology Department, University of North Dakota, 10 Cornell Street, Grand Forks, ND 58202, USA.
| | - Lisa Delvo
- Biology Department, University of North Dakota, 10 Cornell Street, Grand Forks, ND 58202, USA.
| | - Megan Szarkowski
- Biology Department, University of North Dakota, 10 Cornell Street, Grand Forks, ND 58202, USA.
| | - Joshua Maliske
- Biology Department, University of North Dakota, 10 Cornell Street, Grand Forks, ND 58202, USA.
| | - Sarah Chalmers
- Biology Department, University of North Dakota, 10 Cornell Street, Grand Forks, ND 58202, USA.
| | - Diane C Darland
- Biology Department, University of North Dakota, 10 Cornell Street, Grand Forks, ND 58202, USA.
| | - Tristan Darland
- Biology Department, University of North Dakota, 10 Cornell Street, Grand Forks, ND 58202, USA.
| |
Collapse
|
40
|
Leventea E, Hazime K, Zhao C, Malicki J. Analysis of cilia structure and function in zebrafish. Methods Cell Biol 2016; 133:179-227. [PMID: 27263414 DOI: 10.1016/bs.mcb.2016.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cilia are microtubule-based protrusions on the surface of most eukaryotic cells. They are found in most, if not all, vertebrate organs. Prominent cilia form in sensory structures, the eye, the ear, and the nose, where they are crucial for the detection of environmental stimuli, such as light and odors. Cilia are also involved in developmental processes, including left-right asymmetry formation, limb morphogenesis, and the patterning of neurons in the neural tube. Some cilia, such as those found in nephric ducts, are thought to have mechanosensory roles. Zebrafish proved very useful in genetic analysis and imaging of cilia-related processes, and in the modeling of mechanisms behind human cilia abnormalities, known as ciliopathies. A number of zebrafish defects resemble those seen in human ciliopathies. Forward and reverse genetic strategies generated a wide range of cilia mutants in zebrafish, which can be studied using sophisticated genetic and imaging approaches. In this chapter, we provide a set of protocols to examine cilia morphology, motility, and cilia-related defects in a variety of organs, focusing on the embryo and early postembryonic development.
Collapse
Affiliation(s)
- E Leventea
- The University of Sheffield, Sheffield, United Kingdom
| | - K Hazime
- The University of Sheffield, Sheffield, United Kingdom
| | - C Zhao
- The University of Sheffield, Sheffield, United Kingdom; Ocean University of China, Qingdao, China
| | - J Malicki
- The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
41
|
Houbrechts AM, Vergauwen L, Bagci E, Van Houcke J, Heijlen M, Kulemeka B, Hyde DR, Knapen D, Darras VM. Deiodinase knockdown affects zebrafish eye development at the level of gene expression, morphology and function. Mol Cell Endocrinol 2016; 424:81-93. [PMID: 26802877 DOI: 10.1016/j.mce.2016.01.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
Abstract
Retinal development in vertebrates relies extensively on thyroid hormones. Their local availability is tightly controlled by several regulators, including deiodinases (Ds). Here we used morpholino technology to explore the roles of Ds during eye development in zebrafish. Transcriptome analysis at 3 days post fertilization (dpf) revealed a pronounced effect of knockdown of both T4-activating Ds (D1D2MO) or knockdown of T3-inactivating D3 (D3bMO) on phototransduction and retinoid recycling. This was accompanied by morphological defects (studied from 1 to 7 dpf) including reduced eye size, disturbed retinal lamination and strong reduction in rods and all four cone types. Defects were more prominent and persistent in D3-deficient fish. Finally, D3-deficient zebrafish larvae had disrupted visual function at 4 dpf and were less sensitive to a light stimulus at 5 dpf. These data demonstrate the importance of TH-activating and -inactivating Ds for correct zebrafish eye development, and point to D3b as a central player.
Collapse
Affiliation(s)
- Anne M Houbrechts
- Laboratory of Comparative Endocrinology, Department of Biology, Division of Animal Physiology and Neurobiology, KU Leuven, B-3000, Leuven, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Enise Bagci
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium; Systemic Physiological & Ecotoxicological Research, Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Jolien Van Houcke
- Laboratory of Comparative Endocrinology, Department of Biology, Division of Animal Physiology and Neurobiology, KU Leuven, B-3000, Leuven, Belgium
| | - Marjolein Heijlen
- Laboratory of Comparative Endocrinology, Department of Biology, Division of Animal Physiology and Neurobiology, KU Leuven, B-3000, Leuven, Belgium
| | - Bernard Kulemeka
- Department of Biological Sciences and Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, USA
| | - David R Hyde
- Department of Biological Sciences and Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, USA
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology, Department of Biology, Division of Animal Physiology and Neurobiology, KU Leuven, B-3000, Leuven, Belgium.
| |
Collapse
|
42
|
|
43
|
Lin SY, Vollrath MA, Mangosing S, Shen J, Cardenas E, Corey DP. The zebrafish pinball wizard gene encodes WRB, a tail-anchored-protein receptor essential for inner-ear hair cells and retinal photoreceptors. J Physiol 2015; 594:895-914. [PMID: 26593130 DOI: 10.1113/jp271437] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/17/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The zebrafish pinball wizard (pwi) mutant is deaf and blind. The pwi phenotype includes a reduced auditory startle response and reduced visual evoked potentials, suggesting fatigue of synaptic release at ribbon synapses in hair cells and photoreceptors. The gene defective in the pwi mutant is WRB, a protein homologous to the yeast protein Get1, which is involved in the insertion of 'tail-anchored' membrane proteins. Many tail-anchored proteins are associated with synaptic vesicles, and both vesicles and synaptic ribbons are reduced in synaptic regions of hair cells in pwi. Abnormal processing of synaptic vesicle proteins important for ribbon synapses can explain the pwi phenotype. ABSTRACT In a large-scale zebrafish insertional mutagenesis screen, we identified the pinball wizard (pwi) line, which displays a deafness and blindness phenotype. Although the gross morphology and structure of the pwi larval inner ear was near normal, acoustic startle stimuli evoked smaller postsynaptic responses in afferent neurons, which rapidly fatigued. In the retina, similarly, an abnormal electroretinogram suggested reduced transmission at the photoreceptor ribbon synapse. A functional deficit in these specialized synapses was further supported by a reduction of synaptic marker proteins Rab3 and cysteine-string protein (CSP/Dnajc5) in hair cells and photoreceptors, as well as by a reduction of the number of both ribbons and vesicles surrounding the ribbons in hair cells. The pwi gene encodes a homologue of the yeast Get1 and human tryptophan-rich basic (WRB) proteins, which are receptors for membrane insertion of tail-anchored (TA) proteins. We identified more than 100 TA proteins expressed in hair cells, including many synaptic proteins. The expression of synaptobrevin and syntaxin 3, TA proteins essential for vesicle fusion, was reduced in the synaptic layers of mutant retina, consistent with a role for the pwi/WRB protein in TA-protein processing. The WRB protein was located near the apical domain and the ribbons in hair cells, and in the inner segment and the axon of the photoreceptor, consistent with a role in vesicle biogenesis or trafficking. Taken together, our results suggest that WRB plays a critical role in synaptic functions in these two sensory cells, and that disrupted processing of synaptic vesicle TA proteins explains much of the mutant phenotype.
Collapse
Affiliation(s)
- Shuh-Yow Lin
- Department of Surgery, UC San Diego School of Medicine, La Jolla, CA, USA
| | - Melissa A Vollrath
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Sara Mangosing
- Department of Surgery, UC San Diego School of Medicine, La Jolla, CA, USA
| | - Jun Shen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Elena Cardenas
- Department of Surgery, UC San Diego School of Medicine, La Jolla, CA, USA
| | - David P Corey
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
44
|
The pros and cons of vertebrate animal models for functional and therapeutic research on inherited retinal dystrophies. Prog Retin Eye Res 2015; 48:137-59. [DOI: 10.1016/j.preteyeres.2015.04.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/12/2015] [Accepted: 04/16/2015] [Indexed: 01/19/2023]
|
45
|
Liang WC, Zhu W, Mitsuhashi S, Noguchi S, Sacher M, Ogawa M, Shih HH, Jong YJ, Nishino I. Congenital muscular dystrophy with fatty liver and infantile-onset cataract caused by TRAPPC11 mutations: broadening of the phenotype. Skelet Muscle 2015; 5:29. [PMID: 26322222 PMCID: PMC4551700 DOI: 10.1186/s13395-015-0056-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/07/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transport protein particle (TRAPP) is a multiprotein complex involved in endoplasmic reticulum-to-Golgi trafficking. Zebrafish with a mutation in the TRAPPC11 orthologue showed hepatomegaly with steatosis and defects in visual system development. In humans, TRAPPC11 mutations have been reported in only three families showing limb-girdle muscular dystrophy (LGMD) or myopathy with movement disorders and intellectual disability. METHODS We screened muscular dystrophy genes using next-generation sequencing and performed associated molecular and biochemical analyses in a patient with fatty liver and cataract in addition to infantile-onset muscle weakness. RESULTS We identified the first Asian patient with TRAPPC11 mutations. Muscle pathology demonstrated typical dystrophic changes and liver biopsy revealed steatosis. The patient carried compound heterozygous mutations of a previously reported missense and a novel splice-site mutation. The splice-site change produced two aberrantly-spliced transcripts that were both predicted to result in translational frameshift and truncated proteins. Full-length TRAPPC11 protein was undetectable on immunoblotting. CONCLUSION This report widens the phenotype of TRAPPC11-opathy as the patient showed the following: (1) congenital muscular dystrophy phenotype rather than LGMD; (2) steatosis and infantile-onset cataract, both not observed in previously reported patients; but (3) no ataxia or abnormal movement, clearly indicating that TRAPPC11 plays a physiological role in multiple tissues in human.
Collapse
Affiliation(s)
- Wen-Chen Liang
- Departments of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wenhua Zhu
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Satomi Mitsuhashi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Satoru Noguchi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Michael Sacher
- Department of Biology, Concordia University, Montreal, QC H4B 1R6 Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B2 Canada
| | - Megumu Ogawa
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hsiang-Hung Shih
- Departments of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuh-Jyh Jong
- Departments of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
46
|
Epigenetic control of intestinal barrier function and inflammation in zebrafish. Proc Natl Acad Sci U S A 2015; 112:2770-5. [PMID: 25730872 DOI: 10.1073/pnas.1424089112] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The intestinal epithelium forms a barrier protecting the organism from microbes and other proinflammatory stimuli. The integrity of this barrier and the proper response to infection requires precise regulation of powerful immune homing signals such as tumor necrosis factor (TNF). Dysregulation of TNF leads to inflammatory bowel diseases (IBD), but the mechanism controlling the expression of this potent cytokine and the events that trigger the onset of chronic inflammation are unknown. Here, we show that loss of function of the epigenetic regulator ubiquitin-like protein containing PHD and RING finger domains 1 (uhrf1) in zebrafish leads to a reduction in tnfa promoter methylation and the induction of tnfa expression in intestinal epithelial cells (IECs). The increase in IEC tnfa levels is microbe-dependent and results in IEC shedding and apoptosis, immune cell recruitment, and barrier dysfunction, consistent with chronic inflammation. Importantly, tnfa knockdown in uhrf1 mutants restores IEC morphology, reduces cell shedding, and improves barrier function. We propose that loss of epigenetic repression and TNF induction in the intestinal epithelium can lead to IBD onset.
Collapse
|
47
|
Bujakowska KM, Zhang Q, Siemiatkowska AM, Liu Q, Place E, Falk MJ, Consugar M, Lancelot ME, Antonio A, Lonjou C, Carpentier W, Mohand-Saïd S, den Hollander AI, Cremers FPM, Leroy BP, Gai X, Sahel JA, van den Born LI, Collin RWJ, Zeitz C, Audo I, Pierce EA. Mutations in IFT172 cause isolated retinal degeneration and Bardet-Biedl syndrome. Hum Mol Genet 2014; 24:230-42. [PMID: 25168386 DOI: 10.1093/hmg/ddu441] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Primary cilia are sensory organelles present on most mammalian cells. The assembly and maintenance of primary cilia are facilitated by intraflagellar transport (IFT), a bidirectional protein trafficking along the cilium. Mutations in genes coding for IFT components have been associated with a group of diseases called ciliopathies. These genetic disorders can affect a variety of organs including the retina. Using whole exome sequencing in three families, we identified mutations in Intraflagellar Transport 172 Homolog [IFT172 (Chlamydomonas)] that underlie an isolated retinal degeneration and Bardet-Biedl syndrome. Extensive functional analyses of the identified mutations in cell culture, rat retina and in zebrafish demonstrated their hypomorphic or null nature. It has recently been reported that mutations in IFT172 cause a severe ciliopathy syndrome involving skeletal, renal, hepatic and retinal abnormalities (Jeune and Mainzer-Saldino syndromes). Here, we report for the first time that mutations in this gene can also lead to an isolated form of retinal degeneration. The functional data for the mutations can partially explain milder phenotypes; however, the involvement of modifying alleles in the IFT172-associated phenotypes cannot be excluded. These findings expand the spectrum of disease associated with mutations in IFT172 and suggest that mutations in genes originally reported to be associated with syndromic ciliopathies should also be considered in subjects with non-syndromic retinal dystrophy.
Collapse
Affiliation(s)
- Kinga M Bujakowska
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA Institut National de la Santé et de la Recherche Médicale U968, Paris 75012, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris 75012, France Centre National de la Recherche Scientifique, UMR_7210, Paris 75012, France
| | - Qi Zhang
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | | | - Qin Liu
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Emily Place
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Marni J Falk
- Department of Pediatrics, Division of Human Genetics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mark Consugar
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Marie-Elise Lancelot
- Institut National de la Santé et de la Recherche Médicale U968, Paris 75012, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris 75012, France Centre National de la Recherche Scientifique, UMR_7210, Paris 75012, France
| | - Aline Antonio
- Institut National de la Santé et de la Recherche Médicale U968, Paris 75012, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris 75012, France Centre National de la Recherche Scientifique, UMR_7210, Paris 75012, France
| | - Christine Lonjou
- Plateforme Post-génomique P3S, Hôpital Pitié Salpêtrière, Paris 75013, France
| | - Wassila Carpentier
- Plateforme Post-génomique P3S, Hôpital Pitié Salpêtrière, Paris 75013, France
| | - Saddek Mohand-Saïd
- Institut National de la Santé et de la Recherche Médicale U968, Paris 75012, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris 75012, France Centre National de la Recherche Scientifique, UMR_7210, Paris 75012, France Institut National de la Santé et de la Recherche Médicale and Direction de L'Hospitalisation et de L'Organisation des Soins Centre D'Investigation Clinique 1423, Centre Hospitalier National D'Ophtalmologie des Quinze-Vingts, Paris 75012, France
| | - Anneke I den Hollander
- Department of Human Genetics Radboud Institute for Molecular Life Sciences, and Department of Ophthalmology, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics Radboud Institute for Molecular Life Sciences, and
| | - Bart P Leroy
- Department of Ophthalmology and Center for Medical Genetics, Ghent University Hospital and Ghent University, Ghent 9000, Belgium Ophthalmic Genetics and Visual Electrophysiology, Division of Ophthalmology, The Children's Hospital of Philadelphia, PA 19104, USA
| | - Xiaowu Gai
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - José-Alain Sahel
- Institut National de la Santé et de la Recherche Médicale U968, Paris 75012, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris 75012, France Centre National de la Recherche Scientifique, UMR_7210, Paris 75012, France Institut National de la Santé et de la Recherche Médicale and Direction de L'Hospitalisation et de L'Organisation des Soins Centre D'Investigation Clinique 1423, Centre Hospitalier National D'Ophtalmologie des Quinze-Vingts, Paris 75012, France Fondation Ophtalmologique Adolphe de Rothschild, Paris 75019, France Academie des Sciences, Institut de France, Paris 75006, France University College London, Institute of Ophthalmology, London EC1V 9EL, UK and
| | | | - Rob W J Collin
- Department of Human Genetics Radboud Institute for Molecular Life Sciences, and
| | - Christina Zeitz
- Institut National de la Santé et de la Recherche Médicale U968, Paris 75012, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris 75012, France Centre National de la Recherche Scientifique, UMR_7210, Paris 75012, France
| | - Isabelle Audo
- Institut National de la Santé et de la Recherche Médicale U968, Paris 75012, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris 75012, France Centre National de la Recherche Scientifique, UMR_7210, Paris 75012, France Institut National de la Santé et de la Recherche Médicale and Direction de L'Hospitalisation et de L'Organisation des Soins Centre D'Investigation Clinique 1423, Centre Hospitalier National D'Ophtalmologie des Quinze-Vingts, Paris 75012, France University College London, Institute of Ophthalmology, London EC1V 9EL, UK and
| | - Eric A Pierce
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
48
|
The phenotype of the good effort mutant zebrafish is retinal degeneration by cell death and is linked to the chromosome assembly factor 1b gene. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:535-41. [PMID: 24664741 DOI: 10.1007/978-1-4614-3209-8_68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
In a screen to identify zebrafish eye mutants, we isolated the good effort (gef) mutant. The retina of gef embryos is characterized by the successful initiation of the optic primordium and normal retinal development over the first 2 days post fertilization (dpf). The mutant retina, however, fails to continue to grow. Embryos from gef heterozygous incrosses were analyzed for cell death by acridine orange and by TUNEL labeling at 2 dpf. Significantly more TUNEL-positive and acridine orange-labeled dying cells were found in gef mutant embryos at 2 dpf relative to wild-type embryos. Because this time was earlier than any observable gross morphological differences, this cell death was likely the cause of the gross morphological defects. Meiotic mapping localized the mutation interval to a one-megabase interval on zebrafish chromosome 9.
Collapse
|
49
|
Abstract
A decade ago, the (P)RR [(pro)renin receptor] was discovered and depicted as a potential activator of the tissue renin-angiotensin system. For this reason, the role of the (P)RR in cardiovascular diseases and diabetes has been particularly studied. However, the discovery of embryonic lethality after (P)RR gene deletion in mouse and zebrafish paved the way for additional roles of (P)RR in cell homoeostasis. Indeed, the (P)RR has been shown to associate with vacuolar H+-ATPase, hence its other name ATP6ap2. Developmental studies in Xenopus and Drosophila have revealed an essential role of this association to promote the canonical and non-canonical Wnt signalling pathways, whereas studies with tissue-specific gene deletion have pointed out a role in autophagy. The present review aims to summarize recent findings on the cellular functions of (P)RR emerging from various mutated and transgenic animal models.
Collapse
|
50
|
Lens extrusion from Laminin alpha 1 mutant zebrafish. ScientificWorldJournal 2014; 2014:524929. [PMID: 24526906 PMCID: PMC3914655 DOI: 10.1155/2014/524929] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/26/2013] [Indexed: 01/07/2023] Open
Abstract
We report analysis of the ocular lens phenotype of the recessive, larval lethal zebrafish mutant, lama1a69/a69. Previous work revealed that this mutant has a shortened body axis and eye defects including a defective hyaloid vasculature, focal corneal dysplasia, and loss of the crystalline lens. While these studies highlight the importance of laminin α1 in lens development, a detailed analysis of the lens defects seen in these mutants was not reported. In the present study, we analyze the lenticular anomalies seen in the lama1a69/a69 mutants and show that the lens defects result from the anterior extrusion of lens material from the eye secondary to structural defects in the lens capsule and developing corneal epithelium associated with basement membrane loss. Our analysis provides further insights into the role of the lens capsule and corneal basement membrane in the structural integrity of the developing eye.
Collapse
|