1
|
Bridgers JB, Carlström A, Sherpa D, Couvillion MT, Rovšnik U, Gao J, Wan B, Shao S, Ott M, Churchman LS. Translational activators align mRNAs at the small mitoribosomal subunit for translation initiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.26.634913. [PMID: 39896557 PMCID: PMC11785255 DOI: 10.1101/2025.01.26.634913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Mitochondrial gene expression is essential for oxidative phosphorylation. Mitochondrial-encoded mRNAs are translated by dedicated mitochondrial ribosomes (mitoribosomes), whose regulation remains elusive. In the baker's yeast Saccharomyces cerevisiae , nuclear-encoded mitochondrial translational activators (TAs) facilitate transcript-specific translation by a yet unknown mechanism. Here, we investigated the function of TAs containing RNA-binding pentatricopeptide repeats (PPRs) using selective mitoribosome profiling and cryo-EM structural analysis. These analyses revealed that TAs exhibit strong selectivity for mitoribosomes initiating on their target transcripts. Moreover, TA-mitoribosome footprints indicated that TAs recruit mitoribosomes proximal to the start codon. Two cryo-EM structures of mRNA-TA complexes bound to post-initiation/pre-elongation-stalled mitoribosomes revealed the general mechanism of TA action. Specifically, the TAs bind to structural elements in the 5' UTR of the client mRNA as well as to the mRNA channel exit to align the mRNA in the small subunit during initiation. Our findings provide a mechanistic basis for understanding how mitochondria achieve transcript-specific translation initiation without relying on general sequence elements to position mitoribosomes at start codons.
Collapse
|
2
|
Meyer D, Ceballos SJ, Gore S, Liu J, Reginato G, Cano-Linares MI, Maslowska KH, Villafañez F, Ede C, Pagès V, Prado F, Cejka P, Heyer WD. Rad51 determines pathway usage in post-replication repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599120. [PMID: 38915629 PMCID: PMC11195247 DOI: 10.1101/2024.06.14.599120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Stalled replication forks can be processed by several distinct mechanisms collectively called post-replication repair which includes homologous recombination, fork regression, and translesion DNA synthesis. However, the regulation of the usage between these pathways is not fully understood. The Rad51 protein plays a pivotal role in maintaining genomic stability through its roles in HR and in protecting stalled replication forks from degradation. We report the isolation of separation-of-function mutations in Saccharomyces cerevisiae Rad51 that retain their recombination function but display a defect in fork protection leading to a shift in post-replication repair pathway usage from HR to alternate pathways including mutagenic translesion synthesis. Rad51-E135D and Rad51-K305N show normal in vivo and in vitro recombination despite changes in their DNA binding profiles, in particular to dsDNA, with a resulting effect on their ATPase activities. The mutants lead to a defect in Rad51 recruitment to stalled forks in vivo as well as a defect in the protection of dsDNA from degradation by Dna2-Sgs1 and Exo1 in vitro . A high-resolution cryo-electron microscopy structure of the Rad51-ssDNA filament at 2.4 Å resolution provides a structural basis for a mechanistic understanding of the mutant phenotypes. Together, the evidence suggests a model in which Rad51 binding to duplex DNA is critical to control pathway usage at stalled replication forks.
Collapse
|
3
|
Boehlein SK, Pfister B, Hennen-Bierwagen TA, Liu C, Ritter M, Hannah LC, Zeeman SC, Resende MFR, Myers AM. Soluble and insoluble α-glucan synthesis in yeast by enzyme suites derived exclusively from maize endosperm. PLANT PHYSIOLOGY 2023; 193:1456-1478. [PMID: 37339339 PMCID: PMC10517254 DOI: 10.1093/plphys/kiad358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/22/2023]
Abstract
Molecular mechanisms that distinguish the synthesis of semi-crystalline α-glucan polymers found in plant starch granules from the synthesis of water-soluble polymers by nonplant species are not well understood. To address this, starch biosynthetic enzymes from maize (Zea mays L.) endosperm were isolated in a reconstituted environment using yeast (Saccharomyces cerevisiae) as a test bed. Ninety strains were constructed containing unique combinations of 11 synthetic transcription units specifying maize starch synthase (SS), starch phosphorylase (PHO), starch branching enzyme (SBE), or isoamylase-type starch debranching enzyme (ISA). Soluble and insoluble branched α-glucans accumulated in varying proportions depending on the enzyme suite, with ISA function stimulating distribution into the insoluble form. Among the SS isoforms, SSIIa, SSIII, and SSIV individually supported the accumulation of glucan polymer. Neither SSI nor SSV alone produced polymers; however, synergistic effects demonstrated that both isoforms can stimulate α-glucan accumulation. PHO did not support α-glucan production by itself, but it had either positive or negative effects on polymer content depending on which SS or a combination thereof was present. The complete suite of maize enzymes generated insoluble particles resembling native starch granules in size, shape, and crystallinity. Ultrastructural analysis revealed a hierarchical assembly starting with subparticles of approximately 50 nm diameter that coalesce into discrete structures of approximately 200 nm diameter. These are assembled into semi-crystalline α-glucan superstructures up to 4 μm in length filling most of the yeast cytosol. ISA was not essential for the formation of such particles, but their abundance was increased dramatically by ISA presence.
Collapse
Affiliation(s)
- Susan K Boehlein
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32601, USA
| | - Barbara Pfister
- Institute of Molecular Plant Biology, ETH Zurich, Zurich 8092, Switzerland
| | - Tracie A Hennen-Bierwagen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Chun Liu
- Institute of Molecular Plant Biology, ETH Zurich, Zurich 8092, Switzerland
| | - Maximilian Ritter
- Institute for Building Materials, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich 8093, Switzerland
| | - L Curtis Hannah
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32601, USA
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, ETH Zurich, Zurich 8092, Switzerland
| | - Marcio F R Resende
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32601, USA
| | - Alan M Myers
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
4
|
Masłowska KH, Pagès V. Rad5 participates in lesion bypass through its Rev1-binding and ubiquitin ligase domains, but not through its helicase function. Front Mol Biosci 2022; 9:1062027. [DOI: 10.3389/fmolb.2022.1062027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
DNA Damage Tolerance (DDT) functions to bypass replication-blocking lesions and is divided into two distinct pathways: error-prone Translesion Synthesis (TLS) and error-free Damage Avoidance (DA). Rad5 is a multifunctional protein that is involved in these DDT processes. Saccharomyces cerevisiae Rad5 contains three well defined domains: a RING domain that promotes PCNA polyubiquitination, a ssDNA-dependent ATPase/helicase domain, and a Rev1-binding domain. Both the RING domain and the ATPase/helicase domain are conserved in human Rad5 ortholog HLTF. In this study we used domain-specific mutants to address the contribution of each of the Rad5 domains to the lesion tolerance. We demonstrate that the two critical functions of Rad5 during DNA damage tolerance are the activation of template switching through polyubiquitination of PCNA and the recruitment of TLS polymerases, and that loss of one of those functions can be compensated by increased usage of the other. We also show that, unlike previously suggested, the helicase activity does not play any role in lesion tolerance.
Collapse
|
5
|
Comparison of Genome and Plasmid-Based Engineering of Multigene Benzylglucosinolate Pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 2022; 88:e0097822. [PMID: 36326240 PMCID: PMC9680641 DOI: 10.1128/aem.00978-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intake of brassicaceous vegetables such as cabbage is associated with numerous health benefits. The major defense compounds in the Brassicales order are the amino acid-derived glucosinolates that have been associated with the health-promoting effects.
Collapse
|
6
|
Chain flexibility of medicinal lipids determines their selective partitioning into lipid droplets. Nat Commun 2022; 13:3612. [PMID: 35750680 PMCID: PMC9232528 DOI: 10.1038/s41467-022-31400-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 06/15/2022] [Indexed: 11/20/2022] Open
Abstract
In guiding lipid droplets (LDs) to serve as storage vessels that insulate high-value lipophilic compounds in cells, we demonstrate that chain flexibility of lipids determines their selective migration in intracellular LDs. Focusing on commercially important medicinal lipids with biogenetic similarity but structural dissimilarity, we computationally and experimentally validate that LD remodeling should be differentiated between overproduction of structurally flexible squalene and that of rigid zeaxanthin and β-carotene. In molecular dynamics simulations, worm-like flexible squalene is readily deformed to move through intertwined chains of triacylglycerols in the LD core, whereas rod-like rigid zeaxanthin is trapped on the LD surface due to a high free energy barrier in diffusion. By designing yeast cells with either much larger LDs or with a greater number of LDs, we observe that intracellular storage of squalene significantly increases with LD volume expansion, but that of zeaxanthin and β-carotene is enhanced through LD surface broadening; as visually evidenced, the outcomes represent internal penetration of squalene and surface localization of zeaxanthin and β-carotene. Our study shows the computational and experimental validation of selective lipid migration into a phase-separated organelle and reveals LD dynamics and functionalization. Lipid droplet (LD) is a highly dynamic organelle capable of regulating lipid metabolism, storage and transportation. Here, by combining molecular dynamics simulations and microbial LD engineering, the authors demonstrate that the structural flexibility of lipids is one of decisive factors in selective partitioning into LDs.
Collapse
|
7
|
Yip J, Wang S, Tan J, Lim TK, Lin Q, Yu Z, Karmon O, Pines O, Lehming N. Fumarase affects the deoxyribonucleic acid damage response by protecting the mitochondrial desulfurase Nfs1p from modification and inactivation. iScience 2021; 24:103354. [PMID: 34805801 PMCID: PMC8590083 DOI: 10.1016/j.isci.2021.103354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/16/2021] [Accepted: 10/22/2021] [Indexed: 10/31/2022] Open
Abstract
The Krebs cycle enzyme fumarase, which has been identified as a tumor suppressor, is involved in the deoxyribonucleic acid (DNA) damage response (DDR) in human, yeast, and bacterial cells. We have found that the overexpression of the cysteine desulfurase Nfs1p restores DNA repair in fumarase-deficient yeast cells. Nfs1p accumulates inactivating post-translational modifications in yeast cells lacking fumarase under conditions of DNA damage. Our model is that in addition to metabolic signaling of the DDR in the nucleus, fumarase affects the DDR by protecting the desulfurase Nfs1p in mitochondria from modification and inactivation. Fumarase performs this protection by directly binding to Nfs1p in mitochondria and enabling, the maintenance, via metabolism, of a non-oxidizing environment in mitochondria. Nfs1p is required for the formation of Fe-S clusters, which are essential cofactors for DNA repair enzymes. Thus, we propose that the overexpression of Nfs1p overcomes the lack of fumarase by enhancing the activity of DNA repair enzymes.
Collapse
Affiliation(s)
- Joyce Yip
- Department of Microbiology and Immunology, Cancer Programme at NUSMED, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Block MD4, Level 5, Singapore 117545, Singapore
| | - Suqing Wang
- Department of Microbiology and Immunology, Cancer Programme at NUSMED, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Block MD4, Level 5, Singapore 117545, Singapore
| | - Jasper Tan
- Department of Microbiology and Immunology, Cancer Programme at NUSMED, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Block MD4, Level 5, Singapore 117545, Singapore
| | - Teck Kwang Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Zhang Yu
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Israel; CREATE-NUS-HUJ Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ofri Karmon
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Israel; CREATE-NUS-HUJ Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ophry Pines
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Israel; CREATE-NUS-HUJ Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Norbert Lehming
- Department of Microbiology and Immunology, Cancer Programme at NUSMED, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Block MD4, Level 5, Singapore 117545, Singapore
| |
Collapse
|
8
|
Uthayakumar D, Sharma J, Wensing L, Shapiro RS. CRISPR-Based Genetic Manipulation of Candida Species: Historical Perspectives and Current Approaches. Front Genome Ed 2021; 2:606281. [PMID: 34713231 PMCID: PMC8525362 DOI: 10.3389/fgeed.2020.606281] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/09/2020] [Indexed: 12/26/2022] Open
Abstract
The Candida genus encompasses a diverse group of ascomycete fungi that have captured the attention of the scientific community, due to both their role in pathogenesis and emerging applications in biotechnology; the development of gene editing tools such as CRISPR, to analyze fungal genetics and perform functional genomic studies in these organisms, is essential to fully understand and exploit this genus, to further advance antifungal drug discovery and industrial value. However, genetic manipulation of Candida species has been met with several distinctive barriers to progress, such as unconventional codon usage in some species, as well as the absence of a complete sexual cycle in its diploid members. Despite these challenges, the last few decades have witnessed an expansion of the Candida genetic toolbox, allowing for diverse genome editing applications that range from introducing a single point mutation to generating large-scale mutant libraries for functional genomic studies. Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology is among the most recent of these advancements, bringing unparalleled versatility and precision to genetic manipulation of Candida species. Since its initial applications in Candida albicans, CRISPR-Cas9 platforms are rapidly evolving to permit efficient gene editing in other members of the genus. The technology has proven useful in elucidating the pathogenesis and host-pathogen interactions of medically relevant Candida species, and has led to novel insights on antifungal drug susceptibility and resistance, as well as innovative treatment strategies. CRISPR-Cas9 tools have also been exploited to uncover potential applications of Candida species in industrial contexts. This review is intended to provide a historical overview of genetic approaches used to study the Candida genus and to discuss the state of the art of CRISPR-based genetic manipulation of Candida species, highlighting its contributions to deciphering the biology of this genus, as well as providing perspectives for the future of Candida genetics.
Collapse
Affiliation(s)
- Deeva Uthayakumar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Jehoshua Sharma
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Lauren Wensing
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
9
|
Efficient breeding of industrial brewing yeast strains using CRISPR/Cas9-aided mating-type switching. Appl Microbiol Biotechnol 2021; 105:8359-8376. [PMID: 34643787 PMCID: PMC8557189 DOI: 10.1007/s00253-021-11626-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 11/01/2022]
Abstract
Yeast breeding is a powerful tool for developing and improving brewing yeast in a number of industry-relevant respects. However, breeding of industrial brewing yeast can be challenging, as strains are typically sterile and have large complex genomes. To facilitate breeding, we used the CRISPR/Cas9 system to generate double-stranded breaks in the MAT locus, generating transformants with a single specified mating type. The single mating type remained stable even after loss of the Cas9 plasmid, despite the strains being homothallic, and these strains could be readily mated with other brewing yeast transformants of opposite mating type. As a proof of concept, we applied this technology to generate yeast hybrids with an aim to increase β-lyase activity for fermentation of beer with enhanced hop flavour. First, a genetic and phenotypic pre-screening of 38 strains was carried out in order to identify potential parent strains with high β-lyase activity. Mating-competent transformants of eight parent strains were generated, and these were used to generate over 60 hybrids that were screened for β-lyase activity. Selected phenolic off-flavour positive (POF +) hybrids were further sporulated to generate meiotic segregants with high β-lyase activity, efficient wort fermentation, and lack of POF, all traits that are desirable in strains for the fermentation of modern hop-forward beers. Our study demonstrates the power of combining the CRISPR/Cas9 system with classic yeast breeding to facilitate development and diversification of brewing yeast. KEY POINTS: • CRISPR/Cas9-based mating-type switching was applied to industrial yeast strains. • Transformed strains could be readily mated to form intraspecific hybrids. • Hybrids exhibited heterosis for a number of brewing-relevant traits.
Collapse
|
10
|
Identification of a lichen depside polyketide synthase gene by heterologous expression in Saccharomyces cerevisiae. Metab Eng Commun 2021; 13:e00172. [PMID: 34430202 PMCID: PMC8365352 DOI: 10.1016/j.mec.2021.e00172] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/12/2021] [Accepted: 04/25/2021] [Indexed: 12/25/2022] Open
Abstract
Lichen-forming fungi produce a variety of secondary metabolites including bioactive polyketides. Advances in DNA and RNA sequencing have led to a growing database of new lichen gene clusters encoding polyketide synthases (PKS) and associated ancillary activities. Definitive assignment of a PKS gene to a metabolic product has been challenging in the lichen field due to a lack of established gene knockout or heterologous gene expression systems. Here, we report the reconstitution of a non-reducing PKS gene from the lichen Pseudevernia furfuracea and successful heterologous expression of the synthetic lichen PKS gene in engineered Saccharomyces cerevisiae. We show that P. furfuracea PFUR17_02294 produces lecanoric acid, the depside dimer of orsellinic acid, at 360 mg/L in small-scale yeast cultures. Our results unequivocally identify PFUR17_02294 as a lecanoric acid synthase and establish that a single lichen PKS synthesizes two phenolic rings and joins them by an ester linkage to form the depside product.
Collapse
|
11
|
Sun R, Xu H, Feng Y, Hou X, Zhu T, Che Q, Pfeifer B, Zhang G, Li D. An efficient marker recycling system for sequential gene deletion in a deep sea-derived fungus Acremonium sp. HDN16-126. Synth Syst Biotechnol 2021; 6:127-133. [PMID: 34141909 PMCID: PMC8187431 DOI: 10.1016/j.synbio.2021.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022] Open
Abstract
Acremonium species are prolific producers of therapeutic molecules which include the widely used beta-lactam antibiotic, cephalosporin. In light of their significant medical value, an efficient gene disruption method is required for the physiological and biochemical studies on this genus of fungi. However, the number of selection markers that can be used for gene targeting is limited, which constrain the genetic analysis of multiple functional genes. In this study, we established a uridine auxotrophy based marker recycling system which achieves scarless gene deletion, and allows the use of the same selection marker in successive transformations in a deep sea-derived fungus Acremonium sp. HDN16-126. We identified one homologue of Acremonium chrysogenum pyrG (also as a homologous gene of the yeast URA3) from HDN16-126, designated as pyrG-A1, which can be used as a selection marker on uridine free medium. We then removed pyrG-A1 from HDN16-126 genome via homologous recombination (HR) on MM medium with 5-fluoroortic acid (5-FOA), a chemical that can be converted into a toxin of 5-flurouracil by pyrG-A1 activity, thus generating the HDN16-126-△pyrG mutant strain which showed auxotrophy for uridine but insensitivity to 5-FOA and enabled the use of exogenous pyrG gene as both positive and negative selection marker to achieve the scarless deletion of target DNA fragments. We further applied this marker recycling system to successfully disrupt two target genes pepL (encodes a putative 2OG-Fe (II) dioxygenase) and pepM (encodes a putative aldolase) identified from HDN16-126 genome, which are proposed to be functional genes related to 2-aminoisobutyric acid metabolism in fungi. This work is the first application of uridine auxotrophy based scarless gene deletion method in Acremonium species and shows promising potential in assisting sequential genetic analysis of filamentous fungi.
Collapse
Affiliation(s)
- Ruonan Sun
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Hengyi Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Yanyan Feng
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Xuewen Hou
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Tianjiao Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Qian Che
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Blaine Pfeifer
- Department of Chemical and Biological Engineering, The State University of New York at Buffalo, Buffalo, NY, 14260, United States
| | - Guojian Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, People's Republic of China
- Corresponding author. School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China.
| | - Dehai Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, People's Republic of China
- Corresponding author. Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
12
|
Pomeroy AE, Peña MI, Houser JR, Dixit G, Dohlman HG, Elston TC, Errede B. A predictive model of gene expression reveals the role of network motifs in the mating response of yeast. Sci Signal 2021; 14:14/670/eabb5235. [PMID: 33593998 DOI: 10.1126/scisignal.abb5235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cells use signaling pathways to receive and process information about their environment. These nonlinear systems rely on feedback and feedforward regulation to respond appropriately to changing environmental conditions. Mathematical models describing signaling pathways often lack predictive power because they are not trained on data that encompass the diverse time scales on which these regulatory mechanisms operate. We addressed this limitation by measuring transcriptional changes induced by the mating response in Saccharomyces cerevisiae exposed to different dynamic patterns of pheromone. We found that pheromone-induced transcription persisted after pheromone removal and showed long-term adaptation upon sustained pheromone exposure. We developed a model of the regulatory network that captured both characteristics of the mating response. We fit this model to experimental data with an evolutionary algorithm and used the parameterized model to predict scenarios for which it was not trained, including different temporal stimulus profiles and genetic perturbations to pathway components. Our model allowed us to establish the role of four architectural elements of the network in regulating gene expression. These network motifs are incoherent feedforward, positive feedback, negative feedback, and repressor binding. Experimental and computational perturbations to these network motifs established a specific role for each in coordinating the mating response to persistent and dynamic stimulation.
Collapse
Affiliation(s)
- Amy E Pomeroy
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Matthew I Peña
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - John R Houser
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gauri Dixit
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Henrik G Dohlman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Timothy C Elston
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. .,Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Beverly Errede
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
13
|
Lu Z, Peng B, Ebert BE, Dumsday G, Vickers CE. Auxin-mediated protein depletion for metabolic engineering in terpene-producing yeast. Nat Commun 2021; 12:1051. [PMID: 33594068 PMCID: PMC7886869 DOI: 10.1038/s41467-021-21313-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
In metabolic engineering, loss-of-function experiments are used to understand and optimise metabolism. A conditional gene inactivation tool is required when gene deletion is lethal or detrimental to growth. Here, we exploit auxin-inducible protein degradation as a metabolic engineering approach in yeast. We demonstrate its effectiveness using terpenoid production. First, we target an essential prenyl-pyrophosphate metabolism protein, farnesyl pyrophosphate synthase (Erg20p). Degradation successfully redirects metabolic flux toward monoterpene (C10) production. Second, depleting hexokinase-2, a key protein in glucose signalling transduction, lifts glucose repression and boosts production of sesquiterpene (C15) nerolidol to 3.5 g L-1 in flask cultivation. Third, depleting acetyl-CoA carboxylase (Acc1p), another essential protein, delivers growth arrest without diminishing production capacity in nerolidol-producing yeast, providing a strategy to decouple growth and production. These studies demonstrate auxin-mediated protein degradation as an advanced tool for metabolic engineering. It also has potential for broader metabolic perturbation studies to better understand metabolism.
Collapse
Affiliation(s)
- Zeyu Lu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), the University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences (SCMB), the University of Queensland, Brisbane, QLD, Australia
| | - Bingyin Peng
- Australian Institute for Bioengineering and Nanotechnology (AIBN), the University of Queensland, Brisbane, QLD, Australia.
- CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, ACT, Australia.
| | - Birgitta E Ebert
- Australian Institute for Bioengineering and Nanotechnology (AIBN), the University of Queensland, Brisbane, QLD, Australia
- CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, ACT, Australia
| | | | - Claudia E Vickers
- Australian Institute for Bioengineering and Nanotechnology (AIBN), the University of Queensland, Brisbane, QLD, Australia.
- CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, ACT, Australia.
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
14
|
Menees TM. Saccharomyces cerevisiae RNA lariat debranching enzyme, Dbr1p, is required for completion of reverse transcription by the retrovirus-like element Ty1 and cleaves branched Ty1 RNAs. Mol Genet Genomics 2021; 296:409-422. [PMID: 33464395 DOI: 10.1007/s00438-020-01753-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022]
Abstract
RNA debranching enzymes are 2'-5' phosphodiesterases found in all eukaryotes. Their main role is cleavage of intron RNA lariat branch points, promoting RNA turnover via exonucleases. Consistent with this role, cells with reduced RNA debranching enzyme activity accumulate intron RNA lariats. The Saccharomyces cerevisiae RNA debranching enzyme Dbr1p is also a host factor for the yeast long terminal repeat (LTR) retrotransposon Ty1, a model for many aspects of retroviral replication. Fittingly, the human RNA debranching enzyme Dbr1 is a host factor for the human immunodeficiency virus, HIV-1. The yeast and human RNA debranching enzymes act at the reverse transcription stages for Ty1 and HIV-1, respectively. Although efficient production of full-length Ty1 cDNA requires Dbr1p, the findings reported here indicate that production of the earliest distinct cDNA product, minus strand strong stop DNA (-sssDNA), is equivalent in wild type and dbr1∆ mutant cells. Several branched Ty1 RNAs are shown to accumulate in dbr1∆ cells during retrotransposition. These data are consistent with creation of Ty1 RNA branches prior to Ty1 reverse transcription and their removal by Dbr1p to allow efficient extension of early cDNA products. The data support the possibility that RNA branch formation and cleavage play broadly shared, but unknown roles in retroviral and LTR retrotransposon reverse transcription.
Collapse
Affiliation(s)
- Thomas M Menees
- School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, MO, USA.
| |
Collapse
|
15
|
Scarless Genomic Protein Labeling in Saccharomyces cerevisiae. Methods Mol Biol 2021; 2196:63-75. [PMID: 32889713 DOI: 10.1007/978-1-0716-0868-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Labeling a protein of interest is widely used to examine its quantity, modification, localization, and dynamics in the budding yeast Saccharomyces cerevisiae. Fluorescent proteins and epitope tags are often used as protein fusion tags to study target proteins. One prevailing technique is to fuse these tags to a target gene at the precise chromosomal location via homologous recombination. Here we describe a protein labeling strategy based on the URA3 pop-in/pop-out and counterselection system to fuse a fluorescent protein or epitope tag scarlessly to a target protein at its native locus in S. cerevisiae.
Collapse
|
16
|
Maroc L, Zhou-Li Y, Boisnard S, Fairhead C. A single Ho-induced double-strand break at the MAT locus is lethal in Candida glabrata. PLoS Genet 2020; 16:e1008627. [PMID: 33057400 PMCID: PMC7591073 DOI: 10.1371/journal.pgen.1008627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 10/27/2020] [Accepted: 09/12/2020] [Indexed: 01/24/2023] Open
Abstract
Mating-type switching is a complex mechanism that promotes sexual reproduction in Saccharomycotina. In the model species Saccharomyces cerevisiae, mating-type switching is initiated by the Ho endonuclease that performs a site-specific double-strand break (DSB) at MAT, repaired by homologous recombination (HR) using one of the two silent mating-type loci, HMLalpha and HMRa. The reasons why all the elements of the mating-type switching system have been conserved in some Saccharomycotina, that do not show a sexual cycle nor mating-type switching, remain unknown. To gain insight on this phenomenon, we used the yeast Candida glabrata, phylogenetically close to S. cerevisiae, and for which no spontaneous and efficient mating-type switching has been observed. We have previously shown that expression of S. cerevisiae’s Ho (ScHo) gene triggers mating-type switching in C. glabrata, but this leads to massive cell death. In addition, we unexpectedly found, that not only MAT but also HML was cut in this species, suggesting the formation of multiple chromosomal DSBs upon HO induction. We now report that HMR is also cut by ScHo in wild-type strains of C. glabrata. To understand the link between mating-type switching and cell death in C. glabrata, we constructed strains mutated precisely at the Ho recognition sites. We find that even when HML and HMR are protected from the Ho-cut, introducing a DSB at MAT is sufficient to induce cell death, whereas one DSB at HML or HMR is not. We demonstrate that mating-type switching in C. glabrata can be triggered using CRISPR-Cas9, without high lethality. We also show that switching is Rad51-dependent, as in S. cerevisiae, but that donor preference is not conserved in C. glabrata. Altogether, these results suggest that a DSB at MAT can be repaired by HR in C. glabrata, but that repair is prevented by ScHo. Mating-type switching is one of the strategies developed by fungi to promote sexual reproduction and propagation. This mechanism enables one haploid cell to give rise to a cell of the opposite mating-type so that they can mate. It has been extensively studied in the yeast S. cerevisiae in which it relies on a programmed double-strand break performed by the Ho endonuclease at the MAT locus which determines sexual identity. Little is known about why the mating-type switching components have been conserved in species like C. glabrata, in which neither sexual reproduction nor mating-type switching is observed. We have previously shown that mating-type switching can be triggered, in C. glabrata, by expression of the HO gene from S. cerevisiae but this leads to massive cell death. In this work, we show that mating-type switching in C. glabrata can be triggered by CRISPR-Cas9 and without any high lethality. We demonstrate that the cut at MAT is only lethal when the Ho endonuclease performs the break, a situation unique to C. glabrata. Our work points to a degeneration of the mating-type switching system in C. glabrata. Further studies of this phenomenon should shed light on the evolution of mating systems in asexual yeasts.
Collapse
Affiliation(s)
- Laetitia Maroc
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE—Le Moulon, Gif-sur-Yvette, France
| | - Youfang Zhou-Li
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE—Le Moulon, Gif-sur-Yvette, France
| | - Stéphanie Boisnard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Cécile Fairhead
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE—Le Moulon, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
17
|
Recombinational Repair of Nuclease-Generated Mitotic Double-Strand Breaks with Different End Structures in Yeast. G3-GENES GENOMES GENETICS 2020; 10:3821-3829. [PMID: 32826304 PMCID: PMC7534431 DOI: 10.1534/g3.120.401603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mitotic recombination is the predominant mechanism for repairing double-strand breaks in Saccharomyces cerevisiae. Current recombination models are largely based on studies utilizing the enzyme I-SceI or HO to create a site-specific break, each of which generates broken ends with 3′ overhangs. In this study sequence-diverged ectopic substrates were used to assess whether the frequent Pol δ-mediated removal of a mismatch 8 nucleotides from a 3′ end affects recombination outcomes and whether the presence of a 3′ vs. 5′ overhang at the break site alters outcomes. Recombination outcomes monitored were the distributions of recombination products into crossovers vs. noncrossovers, and the position/length of transferred sequence (heteroduplex DNA) in noncrossover products. A terminal mismatch that was 22 nucleotides from the 3′ end was rarely removed and the greater distance from the end did not affect recombination outcomes. To determine whether the recombinational repair of breaks with 3′ vs. 5′ overhangs differs, we compared the well-studied 3′ overhang created by I-SceI to a 5′ overhang created by a ZFN (Zinc Finger Nuclease). Initiation with the ZFN yielded more recombinants, consistent with more efficient cleavage and potentially faster repair rate relative to I-SceI. While there were proportionally more COs among ZFN- than I-SceI-initiated events, NCOs in the two systems were indistinguishable in terms of the extent of strand transfer. These data demonstrate that the method of DSB induction and the resulting differences in end polarity have little effect on mitotic recombination outcomes despite potential differences in repair rate.
Collapse
|
18
|
de Souza CP, Ribeiro BD, Zarur Coelho MA, Almeida RV, Nicaud JM. Construction of wild-type Yarrowia lipolytica IMUFRJ 50682 auxotrophic mutants using dual CRISPR/Cas9 strategy for novel biotechnological approaches. Enzyme Microb Technol 2020; 140:109621. [PMID: 32912681 DOI: 10.1016/j.enzmictec.2020.109621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/23/2020] [Accepted: 06/07/2020] [Indexed: 12/26/2022]
Abstract
Yarrowia lipolytica IMUFRJ 50682 is a Brazilian wild-type strain with potential application in bioconversion processes which can be improved through synthetic biology. In this study, we focused on a combinatorial dual cleavage CRISPR/Cas9-mediated for construction of irreversible auxotrophic mutants IMUFRJ 50682, which genomic information is not available, thought paired sgRNAs targeting upstream and downstream sites of URA3 gene. The disruption efficiency ranged from 5 to 28 % for sgRNAs combinations closer to URA3's start and stop codon and the auxotrophic mutants lost about 970 bp containing all coding sequence, validating this method for genomic edition of wild-type strains. In addition, we introduced a fluorescent phenotype and achieved cloning rates varying from 80 to 100 %. The ura3Δ strains IMUFRJ 50682 were also engineered for β-carotene synthesis as proof of concept. Carotenoid-producing strains exhibited a similar growth profile compared to the wild-type strain and were able to synthesized 30.54-50.06 mg/L (up to 4.8 mg/g DCW) of β-carotene in YPD and YNB flask cultures, indicating a promisor future of the auxotrophic mutants IMUFRJ 50682 as a chassis for production of novel value-added chemicals.
Collapse
Affiliation(s)
- Camilla Pires de Souza
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, RJ, Brazil; Biochemical Engineering Department, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, RJ, Brazil
| | - Bernardo Dias Ribeiro
- Biochemical Engineering Department, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, RJ, Brazil
| | - Maria Alice Zarur Coelho
- Biochemical Engineering Department, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, RJ, Brazil.
| | - Rodrigo Volcan Almeida
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, RJ, Brazil.
| | - Jean-Marc Nicaud
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| |
Collapse
|
19
|
Lehner KM, Stella NA, Calvario RC, Shanks RMQ. mCloverBlaster: A tool to make markerless deletions and fusions using lambda red and I-SceI in Gram-negative bacterial genomes. J Microbiol Methods 2020; 178:106058. [PMID: 32931841 PMCID: PMC7952467 DOI: 10.1016/j.mimet.2020.106058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 11/17/2022]
Abstract
This study introduces mCloverBlaster as a genetic tool to create deletions and transcriptional and translational fusions in bacterial genomes using recombineering. The major advantage of this system is that it can be used to make deletions and fusions without leaving a selectable marker on the chromosome. mCloverBlaster has a kanamycin resistance cassette with an I-SceI restriction site flanked by fragments of the gene for the mClover3 fluorescent protein including direct repeats of mClover3 sequence on both sides of the kanamycin resistance gene. The mCloverBlaster sequence is introduced into the chromosome using lambda red recombineering, expression of I-SceI creates a double stranded break in the kanamycin resistance cassette that initiates a recombination event that can occur in the mClover3 repeats. This recombination results in the simultaneous removal of the kanamycin resistance gene and the restoration of a functional mClover3 gene that can be used as a reporter. Here, this system was used to replace the rcsB stress response gene in Serratia marcescens. The resulting strain was tested for mClover3 fluorescence as a reporter for rcsB gene expression and evaluated for pigment biosynthesis. In summary, mCloverBlaster is a molecular genetic tool to make markerless mClover3 fusions and gene deletions.
Collapse
Affiliation(s)
- Kara M Lehner
- Department of Ophthalmology, Charles T. Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Nicholas A Stella
- Department of Ophthalmology, Charles T. Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Rachel C Calvario
- Department of Ophthalmology, Charles T. Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Robert M Q Shanks
- Department of Ophthalmology, Charles T. Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
20
|
Genomic Promoter Shuffling by Using Recyclable Cassettes. Methods Mol Biol 2020. [PMID: 32889711 DOI: 10.1007/978-1-0716-0868-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Genetic elements of interest can be introduced into the Saccharomyces cerevisiae genome via homologous recombination. A common method is to link such an element to a selectable marker gene to be integrated into the target locus. However, the marker gene in this method cannot be reused, which limits repeated manipulation of the yeast genome. More importantly, it cannot be conveniently used to integrate a promoter element. An alternative method is to utilize a counterselectable gene, such as URA3, with flanking tandem repeats. After integration, URA3 along with one copy of the repeat can be popped out via internal recombination, leaving behind one copy of the unwanted repeat. Here we describe a method of genetic element shuffling in which the tandem repeats are made of a set of promoters, so that after integration and popping out, only one copy of the promoter remains at the desired locus to function.
Collapse
|
21
|
Zou S, Sun S, Zhang X, Li J, Guo J, Hong J, Ma Y, Zhang M. Repetitive δ-integration of a cellulase-encoding gene into the chromosome of an industrial Angel Yeast-derived strain by URA3 recycling. Biotechnol Appl Biochem 2020; 68:953-963. [PMID: 32658331 DOI: 10.1002/bab.1984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/25/2020] [Indexed: 11/07/2022]
Abstract
Genetic modification of industrial yeast strains often faces more difficulties than that of laboratory strains. Thus, new approaches are still required. In this research, the Angel Yeast-derived haploid strain Kα was genetically modified by multiple rounds of δ-integration, which was achieved via URA3 recycling. Three δ-integrative plasmids, pGδRU, pGδRU-BGL, and pGδRU-EG, were first constructed with two 167 bp δ sequences and a repeat-URA3-repeat fragment. Then, the δ-integrative strains containing the bgl1 or egl2 gene were successfully obtained by one-time transformation of the linearized pGδRU-BGL or pGδRU-EG fragment, respectively. Their counterparts in which the URA3 gene was looped out were also easily isolated by selection for growth on 5´-fluoroorotic acid plates, although the ratio of colonies lacking URA3 to the total number of colonies decreased with increasing copy number of the corresponding integrated cellulase-encoding gene. Similar results were observed during the second round of δ-integration, in which the δ-integration strain Kα(δ::bgl1-repeat) obtained from the first round was transformed with a linearized pGδRU-EG fragment. After 10 rounds of cell growth and transfer to fresh medium, the doubling times and enzyme activities of Kα(δ::bgl1-repeat), Kα(δ::egl2-repeat), and Kα(δ::bgl1-repeat)(δ::egl2-repeat) showed no significant change and were stable. Further, their maximum ethanol concentrations during simultaneous saccharification and fermentation of pretreated corncob over a 7-day period were 46.35, 33.13, and 51.77 g/L, respectively, which were all substantially higher than the parent Kα strain. Thus, repetitive δ-integration with URA3 recycling can be a feasible and valuable method for genetic engineering of Angel Yeast. These results also provide clues about some important issues related to δ-integration, such as the structural stability of δ-integrated genes and the effects of individual integration-site locations on gene expression. Further be elucidation of these issues should help to fully realize the potential of δ-integration-based methods in industrial yeast breeding.
Collapse
Affiliation(s)
- Shaolan Zou
- Tianjin R&D Center for Petrochemical Technology, Tianjin University, Tianjin, People's Republic of China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Sifan Sun
- Tianjin R&D Center for Petrochemical Technology, Tianjin University, Tianjin, People's Republic of China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Xiaomao Zhang
- Tianjin R&D Center for Petrochemical Technology, Tianjin University, Tianjin, People's Republic of China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Jiaman Li
- Tianjin R&D Center for Petrochemical Technology, Tianjin University, Tianjin, People's Republic of China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Jinghan Guo
- Tianjin R&D Center for Petrochemical Technology, Tianjin University, Tianjin, People's Republic of China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Jiefang Hong
- Tianjin R&D Center for Petrochemical Technology, Tianjin University, Tianjin, People's Republic of China
| | - Yuanyuan Ma
- Tianjin R&D Center for Petrochemical Technology, Tianjin University, Tianjin, People's Republic of China
| | - Minhua Zhang
- Tianjin R&D Center for Petrochemical Technology, Tianjin University, Tianjin, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People's Republic of China
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin, People's Republic of China
- State Key Laboratory of Engine, Tianjin University, Tianjin, People's Republic of China
| |
Collapse
|
22
|
Son SH, Kim JE, Oh SS, Lee JY. Engineering Cell Wall Integrity Enables Enhanced Squalene Production in Yeast. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4922-4929. [PMID: 32266810 DOI: 10.1021/acs.jafc.0c00967] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microbial production of many lipophilic compounds is often limited by product toxicity to host cells. Engineering cell walls can help mitigate the damage caused by lipophilic compounds by increasing tolerance to those compounds. To determine if the cell wall engineering would be effective in enhancing lipophilic compound production, we used a previously constructed squalene-overproducing yeast strain (SQ) that produces over 600 mg/L of squalene, a model membrane-damaging lipophilic compound. This SQ strain had significantly decreased membrane rigidity, leading to increased cell lysis during fermentation. The SQ strain was engineered to restore membrane rigidity by activating the cell wall integrity (CWI) pathway, thereby further enhancing its squalene production efficiency. Maintenance of CWI was associated with improved squalene production, as shown by cell wall remodeling through regulation of Ecm33, a key regulator of the CWI pathway. Deletion of ECM33 in the SQ strain helped restore membrane rigidity and improve stress tolerance. Moreover, ECM33 deletion suppressed cell lysis and increased squalene production by approximately 12% compared to that by the parent SQ strain. Thus, this study shows that engineering of the yeast cell wall is a promising strategy for enhancing the physiological functions of industrial strains for production of lipophilic compounds.
Collapse
Affiliation(s)
- So-Hee Son
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan 44429, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jae-Eung Kim
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan 44429, Republic of Korea
| | - Seung Soo Oh
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Ju Young Lee
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan 44429, Republic of Korea
| |
Collapse
|
23
|
Evolution of Ty1 copy number control in yeast by horizontal transfer and recombination. PLoS Genet 2020; 16:e1008632. [PMID: 32084126 PMCID: PMC7055915 DOI: 10.1371/journal.pgen.1008632] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/04/2020] [Accepted: 01/27/2020] [Indexed: 01/04/2023] Open
Abstract
Transposable elements constitute a large fraction of most eukaryotic genomes. Insertion of mobile DNA sequences typically has deleterious effects on host fitness, and thus diverse mechanisms have evolved to control mobile element proliferation. Mobility of the Ty1 retrotransposon in Saccharomyces yeasts is regulated by copy number control (CNC) mediated by a self-encoded restriction factor derived from the Ty1 gag capsid gene that inhibits virus-like particle function. Here, we survey a panel of wild and human-associated strains of S. cerevisiae and S. paradoxus to investigate how genomic Ty1 content influences variation in Ty1 mobility. We observe high levels of mobility for a tester element with a gag sequence from the canonical Ty1 subfamily in permissive strains that either lack full-length Ty1 elements or only contain full-length copies of the Ty1' subfamily that have a divergent gag sequence. In contrast, low levels of canonical Ty1 mobility are observed in restrictive strains carrying full-length Ty1 elements containing a canonical gag sequence. Phylogenomic analysis of full-length Ty1 elements revealed that Ty1' is the ancestral subfamily present in wild strains of S. cerevisiae, and that canonical Ty1 in S. cerevisiae is a derived subfamily that acquired gag from S. paradoxus by horizontal transfer and recombination. Our results provide evidence that variation in the ability of S. cerevisiae and S. paradoxus strains to repress canonical Ty1 transposition via CNC is regulated by the genomic content of different Ty1 subfamilies, and that self-encoded forms of transposon control can spread across species boundaries by horizontal transfer.
Collapse
|
24
|
Kim JE, Jang IS, Son SH, Ko YJ, Cho BK, Kim SC, Lee JY. Tailoring the Saccharomyces cerevisiae endoplasmic reticulum for functional assembly of terpene synthesis pathway. Metab Eng 2019; 56:50-59. [DOI: 10.1016/j.ymben.2019.08.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/17/2019] [Accepted: 08/17/2019] [Indexed: 10/26/2022]
|
25
|
Hum YF, Jinks-Robertson S. Mismatch recognition and subsequent processing have distinct effects on mitotic recombination intermediates and outcomes in yeast. Nucleic Acids Res 2019; 47:4554-4568. [PMID: 30809658 PMCID: PMC6511840 DOI: 10.1093/nar/gkz126] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/12/2019] [Accepted: 02/23/2019] [Indexed: 01/25/2023] Open
Abstract
The post-replicative mismatch repair (MMR) system has anti-recombination activity that limits interactions between diverged sequences by recognizing mismatches in strand-exchange intermediates. In contrast to their equivalent roles during replication-error repair, mismatch recognition is more important for anti-recombination than subsequent mismatch processing. To obtain insight into this difference, ectopic substrates with 2% sequence divergence were used to examine mitotic recombination outcome (crossover or noncrossover; CO and NCO, respectively) and to infer molecular intermediates formed during double-strand break repair in Saccharomyces cerevisiae. Experiments were performed in an MMR-proficient strain, a strain with compromised mismatch-recognition activity (msh6Δ) and a strain that retained mismatch-recognition activity but was unable to process mismatches (mlh1Δ). While the loss of either mismatch binding or processing elevated the NCO frequency to a similar extent, CO events increased only when mismatch binding was compromised. The molecular features of NCOs, however, were altered in fundamentally different ways depending on whether mismatch binding or processing was eliminated. These data suggest a model in which mismatch recognition reverses strand-exchange intermediates prior to the initiation of end extension, while subsequent mismatch processing that is linked to end extension specifically destroys NCO intermediates that contain conflicting strand-discrimination signals for mismatch removal.
Collapse
Affiliation(s)
- Yee Fang Hum
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
26
|
Partner Choice in Spontaneous Mitotic Recombination in Wild Type and Homologous Recombination Mutants of Candida albicans. G3-GENES GENOMES GENETICS 2019; 9:3631-3644. [PMID: 31690596 PMCID: PMC6829120 DOI: 10.1534/g3.119.400516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Candida albicans, the most common fungal pathogen, is a diploid with a genome that is rich in repeats and has high levels of heterozygosity. To study the role of different recombination pathways on direct-repeat recombination, we replaced either allele of the RAD52 gene (Chr6) with the URA-blaster cassette (hisG-URA3-hisG), measured rates of URA3 loss as resistance to 5-fluoroorotic acid (5FOAR) and used CHEF Southern hybridization and SNP-RFLP analysis to identify recombination mechanisms and their frequency in wildtype and recombination mutants. FOAR rates varied little across different strain backgrounds. In contrast, the type and frequency of mechanisms underlying direct repeat recombination varied greatly. For example, wildtype, rad59 and lig4 strains all displayed a bias for URA3 loss via pop-out/deletion vs. inter-homolog recombination and this bias was reduced in rad51 mutants. In addition, in rad51-derived 5FOAR strains direct repeat recombination was associated with ectopic translocation (5%), chromosome loss/truncation (14%) and inter-homolog recombination (6%). In the absence of RAD52, URA3 loss was mostly due to chromosome loss and truncation (80–90%), and the bias of retained allele frequency points to the presence of a recessive lethal allele on Chr6B. However, a few single-strand annealing (SSA)-like events were identified and these were independent of either Rad59 or Lig4. Finally, the specific sizes of Chr6 truncations suggest that the inserted URA-blaster could represent a fragile site.
Collapse
|
27
|
CRISPR/Cas9-Mediated Gene Replacement in the Fungal Keratitis Pathogen Fusarium solani var. petroliphilum. Microorganisms 2019; 7:microorganisms7100457. [PMID: 31623147 PMCID: PMC6843433 DOI: 10.3390/microorganisms7100457] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/04/2019] [Accepted: 10/12/2019] [Indexed: 12/26/2022] Open
Abstract
Fungal keratitis (FK) is a site-threatening infection of the cornea associated with ocular trauma and contact lens wear. Members of the Fusarium solani species complex (FSSC) are predominant agents of FK worldwide, but genes that support their corneal virulence are poorly understood. As a means to bolster genetic analysis in FSSC pathogens, we sought to employ a CRISPR/Cas9 system in an FK isolate identified as Fusarium petroliphilum. Briefly, this approach involves the introduction of two components into fungal protoplasts: (1) A purified Cas9 protein complexed with guide RNAs that will direct the ribonuclease to cut on either side of the gene of interest, and (2) a “repair template” comprised of a hygromycin resistance cassette flanked by 40 bp of homology outside of the Cas9 cuts. In this way, Cas9-induced double strand breaks should potentiate double homologous replacement of the repair template at the desired locus. We targeted a putative ura3 ortholog since its deletion would result in an easily discernable uracil auxotrophy. Indeed, 10% of hygromycin-resistant transformants displayed the auxotrophic phenotype, all of which harbored the expected ura3 gene deletion. By contrast, none of the transformants from the repair template control (i.e., no Cas9) displayed the auxotrophic phenotype, indicating that Cas9 cutting was indeed required to promote homologous integration. Taken together, these data demonstrate that the in vitro Cas9 system is an easy and efficient approach for reverse genetics in FSSC organisms, including clinical isolates, which should enhance virulence research in these important but understudied ocular pathogens.
Collapse
|
28
|
amdS as a dominant recyclable marker in Cryptococcus neoformans. Fungal Genet Biol 2019; 131:103241. [PMID: 31220607 DOI: 10.1016/j.fgb.2019.103241] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 02/04/2023]
Abstract
While the fungal pathogen Cryptoccocus neoformans is a leading cause of death in immunocompromised individuals, the molecular toolkit currently available to study this important pathogen is extremely limited. To enable an unprecedented level of control over manipulation of the genome, we have developed a dominant recyclable marker by expanding on the classic studies of the amdS gene by Michael J. Hynes and John Pateman. The ascomycete Aspergillus nidulans employs the acetamidase AmdS to hydrolyse acetamide to ammonium and acetate, which serve as a nitrogen and carbon source, respectively. Acetamidase activity has never been reported in the Basidiomycota. Here we have successfully demonstrated that acetamide can be utilized as a good nitrogen source in C. neoformans heterologously expressing amdS and that this activity does not influence virulence, enabling it to be used as a basic dominant selectable marker. The expression of this gene in C. neoformans also causes sensitivity to fluoroacetamide, permitting counterselection. Taking advantage of this toxicity we have modified our basic marker to create a comprehensive series of powerful and reliable tools to successfully delete multiple genes in the one strain, generate markerless strains with modifications such as fluorescent protein fusions at native genomic loci, and establish whether a gene is essential in C. neoformans.
Collapse
|
29
|
Dong J, Hong KQ, Zhang CY, Dong SS, Li X, Chen YF, Xiao DG. Increased Acetate Ester Production of Polyploid Industrial Brewer's Yeast Strains via Precise and Seamless "Self-cloning" Integration Strategy. IRANIAN JOURNAL OF BIOTECHNOLOGY 2019; 17:e1990. [PMID: 31457054 PMCID: PMC6697848 DOI: 10.21859/ijb.1990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Background Enhancing the industrial yeast strains ethyl acetate yield through a precise and seamless genetic manipulation strategy without any extraneous DNA sequences is an essential requisite and significant demand. Objectives For increasing the ethyl acetate yield of industrial brewer’s yeast strain, all the ATF1 alleles were overexpressed through “self-cloning” integration strategy. Material and Methods Escherichia coli strain DH5α was utilized for plasmid construction. ATF1 alleles were overexpressed through a precise and seamless insertion of the PGK1 promoter in industrial brewer’s yeast strain S6. In addition, growth rates, ATF1 mRNA levels, AATase activity, the fermentation performance of the engineered strains, and gas chromatography (GC) analysis was conducted. Results The two engineered strains (S6-P-12 and S6-P-30) overexpressed all ATF1 alleles but unaffected normal growth. The ATF1 mRNA levels of the S6-P-12 and S6-P-30 were all 4-fold higher than that of S6. The AATase (Alcohol acetyl transferases, encoded by ATF1 gene) activity of the two engineered strains was all 3-fold higher than that of the parent strain. In the beer fermentation at 10 ℃, the concentrations of ethyl acetate produced by the engineered strains S6-P-12 and S6-P-30 was increased to 23.98 and 24.00 mg L-1, respectively, about 20.44% and 20.54% higher than that of S6. Conclusions These results verify that the ethyl acetate yield could be enhanced by the overexpressed of ATF1 in the polyploid industrial brewer’s yeast strains via “self-cloning” integration strategy. The present study provides a reference for target gene modification in the diploid or polyploid industrial yeast strains.
Collapse
Affiliation(s)
- Jian Dong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Kun-Qiang Hong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Cui-Ying Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Sheng-Sheng Dong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xiao Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Ye-Fu Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Dong-Guang Xiao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
30
|
Adames NR, Gallegos JE, Peccoud J. Yeast genetic interaction screens in the age of CRISPR/Cas. Curr Genet 2019; 65:307-327. [PMID: 30255296 PMCID: PMC6420903 DOI: 10.1007/s00294-018-0887-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022]
Abstract
The ease of performing both forward and reverse genetics in Saccharomyces cerevisiae, along with its stable haploid state and short generation times, has made this budding yeast the consummate model eukaryote for genetics. The major advantage of using budding yeast for reverse genetics is this organism's highly efficient homology-directed repair, allowing for precise genome editing simply by introducing DNA with homology to the chromosomal target. Although plasmid- and PCR-based genome editing tools are quite efficient, they depend on rare spontaneous DNA breaks near the target sequence. Consequently, they can generate only one genomic edit at a time, and the edit must be associated with a selectable marker. However, CRISPR/Cas technology is efficient enough to permit markerless and multiplexed edits in a single step. These features have made CRISPR/Cas popular for yeast strain engineering in synthetic biology and metabolic engineering applications, but it has not been widely employed for genetic screens. In this review, we critically examine different methods to generate multi-mutant strains in systematic genetic interaction screens and discuss the potential of CRISPR/Cas to supplement or improve on these methods.
Collapse
Affiliation(s)
- Neil R Adames
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jenna E Gallegos
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jean Peccoud
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
31
|
Abstract
Microbial production of biofuels and bioproducts offers a sustainable and economic alternative to petroleum-based fuels and chemicals. The basidiomycete yeast Rhodosporidium toruloides is a promising platform organism for generating bioproducts due to its ability to consume a broad spectrum of carbon sources (including those derived from lignocellulosic biomass) and to naturally accumulate high levels of lipids and carotenoids, two biosynthetic pathways that can be leveraged to produce a wide range of bioproducts. While R. toruloides has great potential, it has a more limited set of tools for genetic engineering relative to more advanced yeast platform organisms such as Yarrowia lipolytica and Saccharomyces cerevisiae Significant advancements in the past few years have bolstered R. toruloides' engineering capacity. Here we expand this capacity by demonstrating the first use of CRISPR-Cas9-based gene disruption in R. toruloides Transforming a Cas9 expression cassette harboring nourseothricin resistance and selecting transformants on this antibiotic resulted in strains of R. toruloides exhibiting successful targeted disruption of the native URA3 gene. While editing efficiencies were initially low (0.002%), optimization of the cassette increased efficiencies 364-fold (to 0.6%). Applying these optimized design conditions enabled disruption of another native gene involved in carotenoid biosynthesis, CAR2, with much greater success; editing efficiencies of CAR2 deletion reached roughly 50%. Finally, we demonstrated efficient multiplexed genome editing by disrupting both CAR2 and URA3 in a single transformation. Together, our results provide a framework for applying CRISPR-Cas9 to R. toruloides that will facilitate rapid and high-throughput genome engineering in this industrially relevant organism.IMPORTANCE Microbial biofuel and bioproduct platforms provide access to clean and renewable carbon sources that are more sustainable and environmentally friendly than petroleum-based carbon sources. Furthermore, they can serve as useful conduits for the synthesis of advanced molecules that are difficult to produce through strictly chemical means. R. toruloides has emerged as a promising potential host for converting renewable lignocellulosic material into valuable fuels and chemicals. However, engineering efforts to improve the yeast's production capabilities have been impeded by a lack of advanced tools for genome engineering. While this is rapidly changing, one key tool remains unexplored in R. toruloides: CRISPR-Cas9. The results outlined here demonstrate for the first time how effective multiplexed CRISPR-Cas9 gene disruption provides a framework for other researchers to utilize this revolutionary genome-editing tool effectively in R. toruloides.
Collapse
|
32
|
Kumakura N, Ueno A, Shirasu K. Establishment of a selection marker recycling system for sequential transformation of the plant-pathogenic fungus Colletotrichum orbiculare. MOLECULAR PLANT PATHOLOGY 2019; 20:447-459. [PMID: 30390402 PMCID: PMC6637883 DOI: 10.1111/mpp.12766] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Genome sequencing of pathogenic fungi has revealed the presence of various effectors that aid pathogen invasion by the manipulation of plant immunity. Effectors are often individually dispensable because of duplication and functional redundancy as a result of the arms race between host plants and pathogens. To study effectors that have functional redundancy, multiple gene disruption is often required. However, the number of selection markers that can be used for gene targeting is limited. Here, we established a marker recycling system that allows the use of the same selection marker in successive transformations in the model fungal pathogen Colletotrichum orbiculare, a causal agent of anthracnose disease in plants belonging to the Cucurbitaceae. We identified two C. orbiculare homologues of yeast URA3/pyrG, designated as URA3A and URA3B, which can be used as selection markers on medium with no uridine. The gene can then be removed from the genome via homologous recombination when the fungus is grown in the presence of 5-fluoroorotic acid (5-FOA), a chemical that is converted into a toxin by URA3 activity. The ura3a/b double mutants showed auxotrophy for uridine and insensitivity to 5-FOA. Using the ura3a/b mutants, transformation with the URA3B marker and its removal were successfully applied to disrupt the virulence-related gene, PKS1. The pks1 mutants showed a reduction in virulence, demonstrating that the method can be used to study virulence-related genes in C. orbiculare. The establishment of a URA3-based marker recycling system in plant-pathogenic fungi enables the genetic analysis of multiple genes that have redundant functions, including effector genes.
Collapse
Affiliation(s)
- Naoyoshi Kumakura
- RIKEN Center for Sustainable Resource Science1‐7‐22 Suehiro‐cho, Tsurumi‐kuYokohama230‐0045Japan
| | - Akiko Ueno
- RIKEN Center for Sustainable Resource Science1‐7‐22 Suehiro‐cho, Tsurumi‐kuYokohama230‐0045Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science1‐7‐22 Suehiro‐cho, Tsurumi‐kuYokohama230‐0045Japan
- Graduate School of ScienceThe University of Tokyo7‐3‐1, Hongo, Bunkyo‐kuTokyo113‐8654Japan
| |
Collapse
|
33
|
Kim JE, Jang IS, Sung BH, Kim SC, Lee JY. Rerouting of NADPH synthetic pathways for increased protopanaxadiol production in Saccharomyces cerevisiae. Sci Rep 2018; 8:15820. [PMID: 30361526 PMCID: PMC6202386 DOI: 10.1038/s41598-018-34210-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/11/2018] [Indexed: 11/17/2022] Open
Abstract
Ginseng (Panax ginseng) and its bioactive components, ginsenosides, are popular medicinal herbal products, exhibiting various pharmacological effects. Despite their advocated use for medication, the long cultivation periods of ginseng roots and their low ginsenoside content prevent mass production of this compound. Yeast Saccharomyces cerevisiae was engineered for production of protopanaxadiol (PPD), a type of aglycone characterizing ginsenoside. PPD-producing yeast cell factory was further engineered by obtaining a balance between enzyme expressions and altering cofactor availability. Different combinations of promoters (PGPD, PCCW12, and PADH2) were utilized to construct the PPD biosynthetic pathway. Rerouting the redox metabolism to improve NADPH availability in the engineered S. cerevisiae also increased PPD production. Combining these approaches resulted in more than an 11-fold increase in PPD titer over the initially constructed strain. The series of metabolic engineering strategies of this study provides a feasible approach for the microbial production of PPD and development of microbial platforms producing other industrially-relevant terpenoids.
Collapse
Affiliation(s)
- Jae-Eung Kim
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan, 44429, Republic of Korea
| | - In-Seung Jang
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan, 44429, Republic of Korea
| | - Bong Hyun Sung
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Ju Young Lee
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan, 44429, Republic of Korea.
| |
Collapse
|
34
|
Hu Y, Jia Y, Zhao X, Yang Z, Hao Z, Dong J, Zeng F. A new strategy for seamless gene editing and marker recycling in Saccharomyces cerevisiae using lethal effect of Cwp1. Microbiologyopen 2018; 8:e00750. [PMID: 30311449 PMCID: PMC6562115 DOI: 10.1002/mbo3.750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 01/16/2023] Open
Abstract
Technologies development for seamless gene editing and marker recycling has allowed frequent genomic engineering in Saccharomyces cerevisiae for desired laboratory strains and cell factory. Alternative new approaches are still required for complicated scenarios. In this study, we report that inducible overexpression of cell wall protein 1 (Cwp1) by galactose addition confers yeast cells a robust growth inhibition. Direct repeats flanking the Gal‐CWP1:selectable marker cassette allow for its homology recombination excision and counter selection upon galactose addition, therefore enable seamless gene editing and marker recycling. We used this strategy and efficiently generated scarless Ade8 deletion mutants. Our results highlight the utility of lethal effect of Cwp1 overexpression a new counter selection strategy and a simple and efficient method for seamless gene editing and marker recycling in S. cerevisiae and potentially other fungi.
Collapse
Affiliation(s)
- Yuxiao Hu
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Yanrong Jia
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Xiangdong Zhao
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zihao Yang
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zhimin Hao
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Jingao Dong
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Fanli Zeng
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| |
Collapse
|
35
|
Schwer B, Shuman S. Multicopy suppressors of temperature-sensitive mutations of yeast mRNA capping enzyme. Gene Expr 2018; 5:331-44. [PMID: 8836740 PMCID: PMC6138019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have isolated three Saccharomyces cerevisiae genes-CES1, CES2, and CES3-- that, when present in high copy, suppress the ts growth defect caused by mutations in the CEG1 gene encoding mRNA guanylyltransferase (capping enzyme). Molecular characterization of the capping enzyme suppressor genes reveals the following. CES2 is identical to ESP1, a gene required for proper nuclear division. We show by deletion analysis that the 1573-amino acid ESP1 polypeptide is composed of distinct functional domains. The C-terminal portion of ESP1 is essential for cell growth, but dispensable for CES2 activity. The N-terminal half of ESP1, which is sufficient for CES2 function, displays local sequence similarity to the small subunit of the vaccinia virus RNA capping enzyme. This suggests a basis for suppression by physical or functional interaction between the CES2 domain of ESP1 and the yeast guanylyltransferase. CES1 encodes a novel hydrophilic 915-amino acid protein. The amino acid sequence of CES1 is uninformative, except for its extensive similarity to another yeast gene product of unknown function. The CES1 homologue (designated CES4) is also a multicopy suppressor of capping enzyme ts mutations. Neither CES1 nor CES4 is essential for cell growth, and a double deletion mutant is viable. CES3 corresponds to BUD5, which encodes a putative guanine nucleotide exchange factor. We hypothesize that CES1, CES4, and BUD5 may impact on RNA transactions downstream of cap synthesis that are cap dependent in vivo.
Collapse
Affiliation(s)
- B Schwer
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | |
Collapse
|
36
|
Nonaka M, Kishi T. Marker-free insertion of a series of C-terminal epitopes based on the 50:50 method in Saccharomyces cerevisiae. J GEN APPL MICROBIOL 2018; 64:99-102. [PMID: 29491249 DOI: 10.2323/jgam.2017.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Poyedinok NL, Blume YB. Advances, Problems, and Prospects of Genetic Transformation of Fungi. CYTOL GENET+ 2018. [DOI: 10.3103/s009545271802007x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Jang IS, Yu BJ, Jang JY, Jegal J, Lee JY. Improving the efficiency of homologous recombination by chemical and biological approaches in Yarrowia lipolytica. PLoS One 2018; 13:e0194954. [PMID: 29566071 PMCID: PMC5864075 DOI: 10.1371/journal.pone.0194954] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/13/2018] [Indexed: 11/18/2022] Open
Abstract
Gene targeting is a challenge in Yarrowia lipolytica (Y. lipolytica) where non-homologous end-joining (NHEJ) is predominant over homologous recombination (HR). To improve the frequency and efficiency of HR in Y. lipolytica, the ku70 gene responsible for a double stand break (DSB) repair in the NHEJ pathway was disrupted, and the cell cycle was synchronized to the S-phase with hydroxyurea, respectively. Consequently, the HR frequency was over 46% with very short homology regions (50 bp): the pex10 gene was accurately deleted at a frequency of 60% and the β-carotene biosynthetic genes were integrated at the correct locus at an average frequency of 53%. For repeated use, the URA3 marker gene was also excised and deleted at a frequency of 100% by HR between the 100 bp homology regions flanking the URA3 gene. It was shown that appropriate combination of these chemical and biological approaches was very effective to promote HR and construct genetically modified Y. lipolytica strains for biotechnological applications.
Collapse
Affiliation(s)
- In-Seung Jang
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Jongga-ro, Jung-gu, Ulsan, Republic of Korea
- Intelligent Sustainable Materials R&D Group, Research Institute of Sustainable Manufacturing System, Korea Institute of Industrial Technology (KITECH), Yandaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan-si, Chungcheongnam-do, Republic of Korea
| | - Byung Jo Yu
- Intelligent Sustainable Materials R&D Group, Research Institute of Sustainable Manufacturing System, Korea Institute of Industrial Technology (KITECH), Yandaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan-si, Chungcheongnam-do, Republic of Korea
| | - Ji Yeon Jang
- Intelligent Sustainable Materials R&D Group, Research Institute of Sustainable Manufacturing System, Korea Institute of Industrial Technology (KITECH), Yandaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan-si, Chungcheongnam-do, Republic of Korea
| | - Jonggeon Jegal
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Jongga-ro, Jung-gu, Ulsan, Republic of Korea
| | - Ju Young Lee
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Jongga-ro, Jung-gu, Ulsan, Republic of Korea
- * E-mail:
| |
Collapse
|
39
|
Han J, van Hoof A. The RNA Exosome Channeling and Direct Access Conformations Have Distinct In Vivo Functions. Cell Rep 2018; 16:3348-3358. [PMID: 27653695 DOI: 10.1016/j.celrep.2016.08.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 06/06/2016] [Accepted: 08/18/2016] [Indexed: 10/21/2022] Open
Abstract
The RNA exosome is a 3'-5' ribonuclease complex that is composed of nine core subunits and an essential catalytic subunit, Rrp44. Two distinct conformations of Rrp44 were revealed in previous structural studies, suggesting that Rrp44 may change its conformation to exert its function. In the channeling conformation, (Rrp44(ch)), RNA accesses the active site after traversing the central channel of the RNA exosome, whereas in the other conformation, (Rrp44(da)), RNA gains direct access to the active site. Here, we show that the Rrp44(da) exosome is important for nuclear function of the RNA exosome. Defects caused by disrupting the direct access conformation are distinct from those caused by channel-occluding mutations, indicating specific functions for each conformation. Our genetic analyses provide in vivo evidence that the RNA exosome employs a direct-access route to recruit specific substrates, indicating that the RNA exosome uses alternative conformations to act on different RNA substrates.
Collapse
Affiliation(s)
- Jaeil Han
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 1.212, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 1.212, Houston, TX 77030, USA
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 1.212, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 1.212, Houston, TX 77030, USA.
| |
Collapse
|
40
|
Bianchi F, Syga Ł, Moiset G, Spakman D, Schavemaker PE, Punter CM, Seinen AB, van Oijen AM, Robinson A, Poolman B. Steric exclusion and protein conformation determine the localization of plasma membrane transporters. Nat Commun 2018; 9:501. [PMID: 29402931 PMCID: PMC5799302 DOI: 10.1038/s41467-018-02864-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 01/04/2018] [Indexed: 11/09/2022] Open
Abstract
The plasma membrane (PM) of Saccharomyces cerevisiae contains membrane compartments, MCC/eisosomes and MCPs, named after the protein residents Can1 and Pma1, respectively. Using high-resolution fluorescence microscopy techniques we show that Can1 and the homologous transporter Lyp1 are able to diffuse into the MCC/eisosomes, where a limited number of proteins are conditionally trapped at the (outer) edge of the compartment. Upon addition of substrate, the immobilized proteins diffuse away from the MCC/eisosomes, presumably after taking a different conformation in the substrate-bound state. Our data indicate that the mobile fraction of all integral plasma membrane proteins tested shows extremely slow Brownian diffusion through most of the PM. We also show that proteins with large cytoplasmic domains, such as Pma1 and synthetic chimera of Can1 and Lyp1, are excluded from the MCC/eisosomes. We hypothesize that the distinct localization patterns found for these integral membrane proteins in S. cerevisiae arises from a combination of slow lateral diffusion, steric exclusion, and conditional trapping in membrane compartments.
Collapse
Affiliation(s)
- Frans Bianchi
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700AB, Groningen, The Netherlands
| | - Łukasz Syga
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700AB, Groningen, The Netherlands
| | - Gemma Moiset
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700AB, Groningen, The Netherlands.,Zernike Institute for Advanced Materials, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Dian Spakman
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700AB, Groningen, The Netherlands
| | - Paul E Schavemaker
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700AB, Groningen, The Netherlands
| | - Christiaan M Punter
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700AB, Groningen, The Netherlands.,Zernike Institute for Advanced Materials, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Anne-Bart Seinen
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700AB, Groningen, The Netherlands.,Zernike Institute for Advanced Materials, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Antoine M van Oijen
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Andrew Robinson
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Bert Poolman
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700AB, Groningen, The Netherlands. .,Zernike Institute for Advanced Materials, Nijenborgh 4, 9747AG, Groningen, The Netherlands.
| |
Collapse
|
41
|
Abstract
In the present chapter, we present the protocols and guidelines to facilitate implementation of CRISPR-Cas9 technology in fungi where few or no genetic tools are in place. Hence, we firstly explain how to identify dominant markers for genetic transformation. Secondly, we provide a guide for construction of Cas9/sgRNA episomal expression vectors. Thirdly, we present how to mutagenize reporter genes to explore the efficiency of CRISPR-Cas9 in the relevant fungus and to ease subsequent CRISPR-mediated genetic engineering. Lastly, we describe how to make CRISPR-mediated marker-dependent and marker-free gene targeting.
Collapse
Affiliation(s)
- Jakob B Hoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs.Lyngby, Denmark
| | - Christina S Nødvig
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs.Lyngby, Denmark
| | - Uffe H Mortensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs.Lyngby, Denmark.
| |
Collapse
|
42
|
Shibui T, Hara H. A new type of gene-disruption cassette with a rescue gene for Pichia pastoris. Biotechnol Prog 2017; 33:1201-1208. [DOI: 10.1002/btpr.2541] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/07/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Tatsuro Shibui
- Food Biotechnology Laboratory, School of Food Sciences; Nippon Veterinary and Life Science University, 1-7-1 Kyounamcho; Musashinoshi Tokyo 180-8602 Japan
| | - Hiroyoshi Hara
- Food Biotechnology Laboratory, School of Food Sciences; Nippon Veterinary and Life Science University, 1-7-1 Kyounamcho; Musashinoshi Tokyo 180-8602 Japan
| |
Collapse
|
43
|
Löbs AK, Schwartz C, Wheeldon I. Genome and metabolic engineering in non-conventional yeasts: Current advances and applications. Synth Syst Biotechnol 2017; 2:198-207. [PMID: 29318200 PMCID: PMC5655347 DOI: 10.1016/j.synbio.2017.08.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 12/26/2022] Open
Abstract
Microbial production of chemicals and proteins from biomass-derived and waste sugar streams is a rapidly growing area of research and development. While the model yeast Saccharomyces cerevisiae is an excellent host for the conversion of glucose to ethanol, production of other chemicals from alternative substrates often requires extensive strain engineering. To avoid complex and intensive engineering of S. cerevisiae, other yeasts are often selected as hosts for bioprocessing based on their natural capacity to produce a desired product: for example, the efficient production and secretion of proteins, lipids, and primary metabolites that have value as commodity chemicals. Even when using yeasts with beneficial native phenotypes, metabolic engineering to increase yield, titer, and production rate is essential. The non-conventional yeasts Kluyveromyces lactis, K. marxianus, Scheffersomyces stipitis, Yarrowia lipolytica, Hansenula polymorpha and Pichia pastoris have been developed as eukaryotic hosts because of their desirable phenotypes, including thermotolerance, assimilation of diverse carbon sources, and high protein secretion. However, advanced metabolic engineering in these yeasts has been limited. This review outlines the challenges of using non-conventional yeasts for strain and pathway engineering, and discusses the developed solutions to these problems and the resulting applications in industrial biotechnology.
Collapse
Affiliation(s)
- Ann-Kathrin Löbs
- Department of Chemical and Environmental Engineering, UC Riverside, Riverside, USA
| | - Cory Schwartz
- Department of Chemical and Environmental Engineering, UC Riverside, Riverside, USA
| | - Ian Wheeldon
- Department of Chemical and Environmental Engineering, UC Riverside, Riverside, USA
| |
Collapse
|
44
|
Nihei K, Kishi T. New plasmids for the disruption and repeated use of selection markers in Saccharomyces cerevisiae. J GEN APPL MICROBIOL 2017; 63:199-202. [PMID: 28392542 DOI: 10.2323/jgam.2016.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
45
|
Wang Q, Xue H, Li S, Chen Y, Tian X, Xu X, Xiao W, Fu YV. A method for labeling proteins with tags at the native genomic loci in budding yeast. PLoS One 2017; 12:e0176184. [PMID: 28459859 PMCID: PMC5411076 DOI: 10.1371/journal.pone.0176184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/06/2017] [Indexed: 11/19/2022] Open
Abstract
Fluorescent proteins and epitope tags are often used as protein fusion tags to study target proteins. One prevailing technique in the budding yeast Saccharomyces cerevisiae is to fuse these tags to a target gene at the precise chromosomal location via homologous recombination. However, several limitations hamper the application of this technique, such as the selectable markers not being reusable, tagging of only the C-terminal being possible, and a "scar" sequence being left in the genome. Here, we describe a strategy to solve these problems by tagging target genes based on a pop-in/pop-out and counter-selection system. Three fluorescent protein tag (mCherry, sfGFP, and mKikGR) and two epitope tag (HA and 3×FLAG) constructs were developed and utilized to tag HHT1, UBC13 or RAD5 at the chromosomal locus as proof-of-concept.
Collapse
Affiliation(s)
- Qian Wang
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Huijun Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Siqi Li
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Ying Chen
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xuelei Tian
- College of Life Sciences, Capital Normal University, Beijing, China
- National Institute for Radiological Protection, China CDC, Beijing, China
| | - Xin Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wei Xiao
- College of Life Sciences, Capital Normal University, Beijing, China
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK Canada
| | - Yu Vincent Fu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
46
|
Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production. Metab Eng 2017; 41:192-201. [PMID: 28414174 DOI: 10.1016/j.ymben.2017.04.004] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 11/24/2022]
Abstract
β-Carotene is a terpenoid molecule with high hydrophobicity that is often used as an additive in foods and feed. Previous work has demonstrated the heterologous biosynthesis of β-carotene from an intrinsic high flux of acetyl-CoA in 12 steps through 11 genes in Yarrowia lipolytica. Here, an efficient biosynthetic pathway capable of producing 100-fold more β-carotene than the baseline construct was generated using strong promoters and multiple gene copies for each of the 12 steps. Using fed-batch fermentation with an optimized medium, the engineered pathway could produce 4g/L β-carotene, which was stored in lipid droplets within engineered Y. lipolytica cells. Expansion of these cells for squalene production also demonstrated that Y. lipolytica could be an industrially relevant platform for hydrophobic terpenoid production.
Collapse
|
47
|
Marker Recycling in Candida albicans through CRISPR-Cas9-Induced Marker Excision. mSphere 2017; 2:mSphere00050-17. [PMID: 28317025 PMCID: PMC5352831 DOI: 10.1128/msphere.00050-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 02/24/2017] [Indexed: 01/30/2023] Open
Abstract
It is critical to be able to alter genes in order to elucidate their functions. These alterations often rely upon markers that allow selection for a rare cell in a population that has incorporated a piece of DNA. The number of alterations that can be accomplished is thus limited by the number of selection markers that are available. This limitation is circumvented by marker recycling strategies, in which a marker is eliminated after its initial use. Then, the marker can be used again. In this report, we describe a new marker recycling strategy that is enabled by recently developed CRISPR-Cas9 technology. We describe here a new approach to marker recycling, a controlled sequence of steps in which a genetic marker is selected and then lost. Marker recycling is important for genetic manipulation, because it allows a single selection marker to be used repeatedly. Our approach relies upon the ability of the CRISPR-Cas9 system to make a targeted double-strand break in DNA and the expectation that a double-strand break within a selection marker may promote recombination between directly repeated sequences that flank the marker. We call the approach CRISPR-Cas9-induced marker excision (CRIME). We tested the utility of this approach with the fungal pathogen Candida albicans, which is typically diploid. We used two selection markers, modified to include flanking direct repeats. In a proof-of-principle study, we created successive homozygous deletions in three genes through use of the two markers and had one of the markers available in the final strain for further selection and recycling. This strategy will accelerate the creation of multiple-mutant strains in C. albicans. CRISPR-Cas9 systems have been applied to many organisms, so the genetic design principles described here may be broadly applicable. IMPORTANCE It is critical to be able to alter genes in order to elucidate their functions. These alterations often rely upon markers that allow selection for a rare cell in a population that has incorporated a piece of DNA. The number of alterations that can be accomplished is thus limited by the number of selection markers that are available. This limitation is circumvented by marker recycling strategies, in which a marker is eliminated after its initial use. Then, the marker can be used again. In this report, we describe a new marker recycling strategy that is enabled by recently developed CRISPR-Cas9 technology.
Collapse
|
48
|
Gnügge R, Rudolf F. Saccharomyces cerevisiaeShuttle vectors. Yeast 2017; 34:205-221. [DOI: 10.1002/yea.3228] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 01/25/2023] Open
Affiliation(s)
- Robert Gnügge
- D-BSSE; ETH Zurich and Swiss Institute of Bioinformatics; Zurich Switzerland
- Life Science Zurich PhD Program on Molecular and Translational Biomedicine; Zurich Switzerland
- Competence Centre for Personalized Medicine; Zurich Switzerland
| | - Fabian Rudolf
- D-BSSE; ETH Zurich and Swiss Institute of Bioinformatics; Zurich Switzerland
| |
Collapse
|
49
|
Oguro Y, Yamazaki H, Ara S, Shida Y, Ogasawara W, Takagi M, Takaku H. Efficient gene targeting in non-homologous end-joining-deficient Lipomyces starkeyi strains. Curr Genet 2017; 63:751-763. [DOI: 10.1007/s00294-017-0679-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/21/2017] [Accepted: 01/24/2017] [Indexed: 10/20/2022]
|
50
|
Chen L, Li Y, Zhang Q, Akhberdi O, Wei D, Pan J, Zhu X. Seamless deletion of a large DNA fragment in the taxol-producing fungus Pestalotiopsis microspora. MYCOSCIENCE 2017. [DOI: 10.1016/j.myc.2016.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|