1
|
Benner L, Muron S, Gomez JG, Oliver B. OVO positively regulates essential maternal pathways by binding near the transcriptional start sites in the Drosophila female germline. eLife 2024; 13:RP94631. [PMID: 39291827 PMCID: PMC11410370 DOI: 10.7554/elife.94631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Differentiation of female germline stem cells into a mature oocyte includes the expression of RNAs and proteins that drive early embryonic development in Drosophila. We have little insight into what activates the expression of these maternal factors. One candidate is the zinc-finger protein OVO. OVO is required for female germline viability and has been shown to positively regulate its own expression, as well as a downstream target, ovarian tumor, by binding to the transcriptional start site (TSS). To find additional OVO targets in the female germline and further elucidate OVO's role in oocyte development, we performed ChIP-seq to determine genome-wide OVO occupancy, as well as RNA-seq comparing hypomorphic and wild type rescue ovo alleles. OVO preferentially binds in close proximity to target TSSs genome-wide, is associated with open chromatin, transcriptionally active histone marks, and OVO-dependent expression. Motif enrichment analysis on OVO ChIP peaks identified a 5'-TAACNGT-3' OVO DNA binding motif spatially enriched near TSSs. However, the OVO DNA binding motif does not exhibit precise motif spacing relative to the TSS characteristic of RNA polymerase II complex binding core promoter elements. Integrated genomics analysis showed that 525 genes that are bound and increase in expression downstream of OVO are known to be essential maternally expressed genes. These include genes involved in anterior/posterior/germ plasm specification (bcd, exu, swa, osk, nos, aub, pgc, gcl), egg activation (png, plu, gnu, wisp, C(3)g, mtrm), translational regulation (cup, orb, bru1, me31B), and vitelline membrane formation (fs(1)N, fs(1)M3, clos). This suggests that OVO is a master transcriptional regulator of oocyte development and is responsible for the expression of structural components of the egg as well as maternally provided RNAs that are required for early embryonic development.
Collapse
Affiliation(s)
- Leif Benner
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Savannah Muron
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Jillian G Gomez
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Brian Oliver
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
2
|
Fisher MJ, Luse DS. Defining a chromatin architecture that supports transcription at RNA polymerase II promoters. J Biol Chem 2024; 300:107515. [PMID: 38945447 PMCID: PMC11298586 DOI: 10.1016/j.jbc.2024.107515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024] Open
Abstract
Mammalian RNA polymerase II preinitiation complexes assemble adjacent to a nucleosome whose proximal edge (NPE) is typically 40 to 50 bp downstream of the transcription start site. At active promoters, that +1 nucleosome is universally modified by trimethylation on lysine 4 of histone H3 (H3K4me3). The Pol II preinitiation complex only extends 35 bp beyond the transcription start site, but nucleosomal templates with an NPE at +51 are nearly inactive in vitro with promoters that lack a TATA element and thus depend on TFIID for promoter recognition. Significantly, this inhibition is relieved when the +1 nucleosome contains H3K4me3, which can interact with TFIID subunits. Here, we show that H3K4me3 templates with both TATA and TATA-less promoters are active with +35 NPEs when transcription is driven by TFIID. Templates with +20 NPE are also active but at reduced levels compared to +35 and +51 NPEs, consistent with a general inhibition of promoter function when the proximal nucleosome encroaches on the preinitiation complex. Remarkably, dinucleosome templates support transcription when H3K4me3 is only present in the distal nucleosome, suggesting that TFIID-H3K4me3 interaction does not require modification of the +1 nucleosome. Transcription reactions performed with an alternative protocol retaining most nuclear factors results primarily in early termination, with a minority of complexes successfully traversing the first nucleosome. In such reactions, the +1 nucleosome does not substantially affect the level of termination even with an NPE of +20, indicating that a nucleosome barrier is not a major driver of early termination by Pol II.
Collapse
Affiliation(s)
- Michael J Fisher
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Donal S Luse
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
3
|
Sloutskin A, Itzhak D, Vogler G, Pozeilov H, Ideses D, Alter H, Adato O, Shachar H, Doniger T, Shohat-Ophir G, Frasch M, Bodmer R, Duttke SH, Juven-Gershon T. From promoter motif to cardiac function: a single DPE motif affects transcription regulation and organ function in vivo. Development 2024; 151:dev202355. [PMID: 38958007 DOI: 10.1242/dev.202355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Transcription initiates at the core promoter, which contains distinct core promoter elements. Here, we highlight the complexity of transcriptional regulation by outlining the effect of core promoter-dependent regulation on embryonic development and the proper function of an organism. We demonstrate in vivo the importance of the downstream core promoter element (DPE) in complex heart formation in Drosophila. Pioneering a novel approach using both CRISPR and nascent transcriptomics, we show the effects of mutating a single core promoter element within the natural context. Specifically, we targeted the downstream core promoter element (DPE) of the endogenous tin gene, encoding the Tinman transcription factor, a homologue of human NKX2-5 associated with congenital heart diseases. The 7 bp substitution mutation results in massive perturbation of the Tinman regulatory network that orchestrates dorsal musculature, which is manifested as physiological and anatomical changes in the cardiac system, impaired specific activity features, and significantly compromised viability of adult flies. Thus, a single motif can have a critical impact on embryogenesis and, in the case of DPE, functional heart formation.
Collapse
Affiliation(s)
- Anna Sloutskin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Dekel Itzhak
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Georg Vogler
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Hadar Pozeilov
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Diana Ideses
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Hadar Alter
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Orit Adato
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Hadar Shachar
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Galit Shohat-Ophir
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Manfred Frasch
- Division of Developmental Biology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Sascha H Duttke
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Tamar Juven-Gershon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
4
|
Sokolov V, Kyrchanova O, Klimenko N, Fedotova A, Ibragimov A, Maksimenko O, Georgiev P. New Drosophila promoter-associated architectural protein Mzfp1 interacts with CP190 and is required for housekeeping gene expression and insulator activity. Nucleic Acids Res 2024; 52:6886-6905. [PMID: 38769058 PMCID: PMC11229372 DOI: 10.1093/nar/gkae393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 04/20/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
In Drosophila, a group of zinc finger architectural proteins recruits the CP190 protein to the chromatin, an interaction that is essential for the functional activity of promoters and insulators. In this study, we describe a new architectural C2H2 protein called Madf and Zinc-Finger Protein 1 (Mzfp1) that interacts with CP190. Mzfp1 has an unusual structure that includes six C2H2 domains organized in a C-terminal cluster and two tandem MADF domains. Mzfp1 predominantly binds to housekeeping gene promoters located in both euchromatin and heterochromatin genome regions. In vivo mutagenesis studies showed that Mzfp1 is an essential protein, and both MADF domains and the CP190 interaction region are required for its functional activity. The C2H2 cluster is sufficient for the specific binding of Mzfp1 to regulatory elements, while the second MADF domain is required for Mzfp1 recruitment to heterochromatin. Mzfp1 binds to the proximal part of the Fub boundary that separates regulatory domains of the Ubx and abd-A genes in the Bithorax complex. Mzfp1 participates in Fub functions in cooperation with the architectural proteins Pita and Su(Hw). Thus, Mzfp1 is a new architectural C2H2 protein involved in the organization of active promoters and insulators in Drosophila.
Collapse
Affiliation(s)
- Vladimir Sokolov
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Natalia Klimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Anna Fedotova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Airat Ibragimov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
5
|
Benner L, Muron S, Gomez JG, Oliver B. OVO Positively Regulates Essential Maternal Pathways by Binding Near the Transcriptional Start Sites in the Drosophila Female Germline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.01.565184. [PMID: 38076814 PMCID: PMC10705541 DOI: 10.1101/2023.11.01.565184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2023]
Abstract
Differentiation of female germline stem cells into a mature oocyte includes the expression of RNAs and proteins that drive early embryonic development in Drosophila. We have little insight into what activates the expression of these maternal factors. One candidate is the zinc-finger protein OVO. OVO is required for female germline viability and has been shown to positively regulate its own expression, as well as a downstream target, ovarian tumor, by binding to the transcriptional start site (TSS). To find additional OVO targets in the female germline and further elucidate OVO's role in oocyte development, we performed ChIP-seq to determine genome-wide OVO occupancy, as well as RNA-seq comparing hypomorphic and wild type rescue ovo alleles. OVO preferentially binds in close proximity to target TSSs genome-wide, is associated with open chromatin, transcriptionally active histone marks, and OVO-dependent expression. Motif enrichment analysis on OVO ChIP peaks identified a 5'-TAACNGT-3' OVO DNA binding motif spatially enriched near TSSs. However, the OVO DNA binding motif does not exhibit precise motif spacing relative to the TSS characteristic of RNA Polymerase II complex binding core promoter elements. Integrated genomics analysis showed that 525 genes that are bound and increase in expression downstream of OVO are known to be essential maternally expressed genes. These include genes involved in anterior/posterior/germ plasm specification (bcd, exu, swa, osk, nos, aub, pgc, gcl), egg activation (png, plu, gnu, wisp, C(3)g, mtrm), translational regulation (cup, orb, bru1, me31B), and vitelline membrane formation (fs(1)N, fs(1)M3, clos). This suggests that OVO is a master transcriptional regulator of oocyte development and is responsible for the expression of structural components of the egg as well as maternally provided RNAs that are required for early embryonic development.
Collapse
Affiliation(s)
- Leif Benner
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Savannah Muron
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jillian G Gomez
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brian Oliver
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Adato O, Sloutskin A, Komemi H, Brabb I, Duttke S, Bucher P, Unger R, Juven-Gershon T. ElemeNT 2023: an enhanced tool for detection and curation of core promoter elements. Bioinformatics 2024; 40:btae110. [PMID: 38407414 PMCID: PMC10950481 DOI: 10.1093/bioinformatics/btae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/04/2024] [Accepted: 02/23/2024] [Indexed: 02/27/2024] Open
Abstract
MOTIVATION Prediction and identification of core promoter elements and transcription factor binding sites is essential for understanding the mechanism of transcription initiation and deciphering the biological activity of a specific locus. Thus, there is a need for an up-to-date tool to detect and curate core promoter elements/motifs in any provided nucleotide sequences. RESULTS Here, we introduce ElemeNT 2023-a new and enhanced version of the Elements Navigation Tool, which provides novel capabilities for assessing evolutionary conservation and for readily evaluating the quality of high-throughput transcription start site (TSS) datasets, leveraging preferential motif positioning. ElemeNT 2023 is accessible both as a fast web-based tool and via command line (no coding skills are required to run the tool). While this tool is focused on core promoter elements, it can also be used for searching any user-defined motif, including sequence-specific DNA binding sites. Furthermore, ElemeNT's CORE database, which contains predicted core promoter elements around annotated TSSs, is now expanded to cover 10 species, ranging from worms to human. In this applications note, we describe the new workflow and demonstrate a case study using ElemeNT 2023 for core promoter composition analysis of diverse species, revealing motif prevalence and highlighting evolutionary insights. We discuss how this tool facilitates the exploration of uncharted transcriptomic data, appraises TSS quality, and aids in designing synthetic promoters for gene expression optimization. Taken together, ElemeNT 2023 empowers researchers with comprehensive tools for meticulous analysis of sequence elements and gene expression strategies. AVAILABILITY AND IMPLEMENTATION ElemeNT 2023 is freely available at https://www.juven-gershonlab.org/resources/element-v2023/. The source code and command line version of ElemeNT 2023 are available at https://github.com/OritAdato/ElemeNT. No coding skills are required to run the tool.
Collapse
Affiliation(s)
- Orit Adato
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Anna Sloutskin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Hodaya Komemi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Ian Brabb
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, United States
| | - Sascha Duttke
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, United States
| | - Philipp Bucher
- Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Tamar Juven-Gershon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| |
Collapse
|
7
|
Rosales-Vega M, Reséndez-Pérez D, Vázquez M. Antennapedia: The complexity of a master developmental transcription factor. Genesis 2024; 62:e23561. [PMID: 37830148 DOI: 10.1002/dvg.23561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Hox genes encode transcription factors that play an important role in establishing the basic body plan of animals. In Drosophila, Antennapedia is one of the five genes that make up the Antennapedia complex (ANT-C). Antennapedia determines the identity of the second thoracic segment, known as the mesothorax. Misexpression of Antennapedia at different developmental stages changes the identity of the mesothorax, including the muscles, nervous system, and cuticle. In Drosophila, Antennapedia has two distinct promoters highly regulated throughout development by several transcription factors. Antennapedia proteins are found with other transcription factors in different ANTENNAPEDIA transcriptional complexes to regulate multiple subsets of target genes. In this review, we describe the different mechanisms that regulate the expression and function of Antennapedia and the role of this Hox gene in the development of Drosophila.
Collapse
Affiliation(s)
- Marco Rosales-Vega
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Diana Reséndez-Pérez
- Facultad de Ciencias Biológicas, Departamento de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Martha Vázquez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
8
|
Liu X, Chen M, Qu X, Liu W, Dou Y, Liu Q, Shi D, Jiang M, Li H. Cis-Regulatory Elements in Mammals. Int J Mol Sci 2023; 25:343. [PMID: 38203513 PMCID: PMC10779164 DOI: 10.3390/ijms25010343] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
In cis-regulatory elements, enhancers and promoters with complex molecular interactions are used to coordinate gene transcription through physical proximity and chemical modifications. These processes subsequently influence the phenotypic characteristics of an organism. An in-depth exploration of enhancers and promoters can substantially enhance our understanding of gene regulatory networks, shedding new light on mammalian development, evolution and disease pathways. In this review, we provide a comprehensive overview of the intrinsic structural attributes, detection methodologies as well as the operational mechanisms of enhancers and promoters, coupled with the relevant novel and innovative investigative techniques used to explore their actions. We further elucidated the state-of-the-art research on the roles of enhancers and promoters in the realms of mammalian development, evolution and disease, and we conclude with forward-looking insights into prospective research avenues.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingsheng Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| |
Collapse
|
9
|
Pekina YV, Babosha VA, Georgiev PG, Fedotova AA. Study of the Association of Ouib and Nom with Heterochromatin in Drosophila melanogaster. DOKL BIOCHEM BIOPHYS 2023; 513:S26-S29. [PMID: 38472665 DOI: 10.1134/s1607672924700741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 03/14/2024]
Abstract
In Drosophila, a large group of actively transcribed genes is located in pericentromeric heterochromatin. It is assumed that heterochromatic proteins recruit transcription factors to gene promoters. Two proteins, Ouib and Nom, were previously shown to bind to the promoters of the heterochromatic genes nvd and spok. Interestingly, Ouib and Nom are paralogs of the M1BP protein, which binds to the promoters of euchromatic genes. We have shown that, like M1BP, the Quib and Nom proteins bind to CP190, which is involved in the recruitment of transcription complexes to promoters. Unlike heterochromatic proteins, Ouib and Nom do not interact with the major heterochromatic protein HP1a and bind to euchromatic promoters on polytene chromosomes from the larval salivary glands. The results suggest a new mechanism for the recruitment of transcription factors into the heterochromatic compartment of the nucleus.
Collapse
Affiliation(s)
- Y V Pekina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - V A Babosha
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| | - P G Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A A Fedotova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
10
|
Kim TL, Lim H, Denison MIJ, Natarajan S, Oh C. Genome-wide identification of the PFK gene family and their expression analysis in Quercus rubra. Front Genet 2023; 14:1289557. [PMID: 38028631 PMCID: PMC10665885 DOI: 10.3389/fgene.2023.1289557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
The glycolytic pathway involves phosphofructokinase (PFK), a rate-limiting enzyme that catalyzes the phosphorylation of fructose-6-phosphate. In plants, the two PFK members are ATP-dependent phosphofructokinase (PFK) and pyrophosphate-fructose-6-phosphate phosphotransferase (PFP). However, the functions of the PFK family members in Quercus rubra are not well understood. The purpose of this study was to investigate the genome-wide distribution of the PFK family members and their roles in Q. rubra by performing a systematic study of the phylogenetic relationships, molecular characteristics, motifs, chromosomal and subcellular locations, and cis-elements of QrPFKs. We identified 14 QrPFK genes in the genome of Q. rubra, followed by examining their expression in different tissues, including the roots, stems, and leaves. The phylogenetic tree divided the 14 QrPFK genes into two groups: 11 belonging to PFK and three belonging to PFP. The expression profiles of all 14 proteins were relatively the same in leaves but differed between stems and roots. Four genes (Qurub.02G189400.1, Qurub.02G189400.2, Qurub.09G134300.1, and Qurub.09G134300.2) were expressed at very low levels in both stems and roots, while two (Qurub.05G235500.1 and Qurub.05G235500.1) were expressed at low levels and the others showed relatively high expression in all tissues.
Collapse
Affiliation(s)
- Tae-Lim Kim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, Republic of Korea
| | - Hyemin Lim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, Republic of Korea
| | | | | | - Changyoung Oh
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, Republic of Korea
| |
Collapse
|
11
|
Coker JA. 'All About' Extremophiles. Fac Rev 2023; 12:27. [PMID: 38027090 PMCID: PMC10630985 DOI: 10.12703/r/12-27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Despite common perception, most of Earth is what is often referred to as an 'extreme environment.' Yet to the organisms that call these places home, it is simply that (home). They have adapted to thrive in these environments and, in the process, have evolved many unique adaptations at the molecular- and 'omic-level. Scientists' interest in these organisms has typically been in how they and their products can be harnessed for biotechnological applications and the environments where they are found, while the general public's veers more toward a fascination with their deviation from the 'norm'. However, these organisms have so much more to tell us about Life and the myriad ways there are to perform 'simple' biological processes.
Collapse
Affiliation(s)
- James A Coker
- Center for Biotechnology Education, Advanced Academic Programs, Krieger School of Arts and Sciences, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| |
Collapse
|
12
|
Golovnin A, Melnikova L, Babosha V, Pokholkova GV, Slovohotov I, Umnova A, Maksimenko O, Zhimulev IF, Georgiev P. The N-Terminal Part of Drosophila CP190 Is a Platform for Interaction with Multiple Architectural Proteins. Int J Mol Sci 2023; 24:15917. [PMID: 37958900 PMCID: PMC10648081 DOI: 10.3390/ijms242115917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
CP190 is a co-factor in many Drosophila architectural proteins, being involved in the formation of active promoters and insulators. CP190 contains the N-terminal BTB/POZ (Broad-Complex, Tramtrack and Bric a brac/POxvirus and Zinc finger) domain and adjacent conserved regions involved in protein interactions. Here, we examined the functional roles of these domains of CP190 in vivo. The best-characterized architectural proteins with insulator functions, Pita, Su(Hw), and dCTCF, interacted predominantly with the BTB domain of CP190. Due to the difficulty of mutating the BTB domain, we obtained a transgenic line expressing a chimeric CP190 with the BTB domain of the human protein Kaiso. Another group of architectural proteins, M1BP, Opbp, and ZIPIC, interacted with one or both of the highly conserved regions in the N-terminal part of CP190. Transgenic lines of D. melanogaster expressing CP190 mutants with a deletion of each of these domains were obtained. The results showed that these mutant proteins only partially compensated for the functions of CP190, weakly binding to selective chromatin sites. Further analysis confirmed the essential role of these domains in recruitment to regulatory regions associated with architectural proteins. We also found that the N-terminal of CP190 was sufficient for recruiting Z4 and Chromator proteins and successfully achieving chromatin opening. Taken together, our results and the results of previous studies showed that the N-terminal region of CP190 is a platform for simultaneous interaction with various DNA-binding architectural proteins and transcription complexes.
Collapse
Affiliation(s)
- Anton Golovnin
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Larisa Melnikova
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Valentin Babosha
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Galina V. Pokholkova
- Laboratory of Molecular Cytogenetics, Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia (I.F.Z.)
| | - Ivan Slovohotov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Anastasia Umnova
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Igor F. Zhimulev
- Laboratory of Molecular Cytogenetics, Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia (I.F.Z.)
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| |
Collapse
|
13
|
Bernardini A, Hollinger C, Willgenss D, Müller F, Devys D, Tora L. Transcription factor IID parks and drives preinitiation complexes at sharp or broad promoters. Trends Biochem Sci 2023; 48:839-848. [PMID: 37574371 PMCID: PMC10529448 DOI: 10.1016/j.tibs.2023.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023]
Abstract
Core promoters are sites where transcriptional regulatory inputs of a gene are integrated to direct the assembly of the preinitiation complex (PIC) and RNA polymerase II (Pol II) transcription output. Until now, core promoter functions have been investigated by distinct methods, including Pol II transcription initiation site mappings and structural characterization of PICs on distinct promoters. Here, we bring together these previously unconnected observations and hypothesize how, on metazoan TATA promoters, the precisely structured building up of transcription factor (TF) IID-based PICs results in sharp transcription start site (TSS) selection; or, in contrast, how the less strictly controlled positioning of the TATA-less promoter DNA relative to TFIID-core PIC components results in alternative broad TSS selections by Pol II.
Collapse
Affiliation(s)
- Andrea Bernardini
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | | | | | - Ferenc Müller
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Didier Devys
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France.
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France.
| |
Collapse
|
14
|
Guzman C, Duttke S, Zhu Y, De Arruda Saldanha C, Downes N, Benner C, Heinz S. Combining TSS-MPRA and sensitive TSS profile dissimilarity scoring to study the sequence determinants of transcription initiation. Nucleic Acids Res 2023; 51:e80. [PMID: 37403796 PMCID: PMC10450201 DOI: 10.1093/nar/gkad562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023] Open
Abstract
Cis-regulatory elements (CREs) can be classified by the shapes of their transcription start site (TSS) profiles, which are indicative of distinct regulatory mechanisms. Massively parallel reporter assays (MPRAs) are increasingly being used to study CRE regulatory mechanisms, yet the degree to which MPRAs replicate individual endogenous TSS profiles has not been determined. Here, we present a new low-input MPRA protocol (TSS-MPRA) that enables measuring TSS profiles of episomal reporters as well as after lentiviral reporter chromatinization. To sensitively compare MPRA and endogenous TSS profiles, we developed a novel dissimilarity scoring algorithm (WIP score) that outperforms the frequently used earth mover's distance on experimental data. Using TSS-MPRA and WIP scoring on 500 unique reporter inserts, we found that short (153 bp) MPRA promoter inserts replicate the endogenous TSS patterns of ∼60% of promoters. Lentiviral reporter chromatinization did not improve fidelity of TSS-MPRA initiation patterns, and increasing insert size frequently led to activation of extraneous TSS in the MPRA that are not active in vivo. We discuss the implications of our findings, which highlight important caveats when using MPRAs to study transcription mechanisms. Finally, we illustrate how TSS-MPRA and WIP scoring can provide novel insights into the impact of transcription factor motif mutations and genetic variants on TSS patterns and transcription levels.
Collapse
Affiliation(s)
- Carlos Guzman
- Department of Medicine, Division of Endocrinology, U.C. San Diego School of Medicine, La Jolla, CA 92093, USA
- Department of Bioengineering, Graduate Program in Bioinformatics & Systems Biology, U.C. San Diego, La Jolla, CA 92093, USA
| | - Sascha Duttke
- Department of Medicine, Division of Endocrinology, U.C. San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Yixin Zhu
- Department of Medicine, Division of Endocrinology, U.C. San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Camila De Arruda Saldanha
- Department of Medicine, Division of Endocrinology, U.C. San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Nicholas L Downes
- Department of Medicine, Division of Endocrinology, U.C. San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Christopher Benner
- Department of Medicine, Division of Endocrinology, U.C. San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Sven Heinz
- Department of Medicine, Division of Endocrinology, U.C. San Diego School of Medicine, La Jolla, CA 92093, USA
| |
Collapse
|
15
|
Weidemann DE, Holehouse J, Singh A, Grima R, Hauf S. The minimal intrinsic stochasticity of constitutively expressed eukaryotic genes is sub-Poissonian. SCIENCE ADVANCES 2023; 9:eadh5138. [PMID: 37556551 PMCID: PMC10411910 DOI: 10.1126/sciadv.adh5138] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023]
Abstract
Gene expression inherently gives rise to stochastic variation ("noise") in the production of gene products. Minimizing noise is crucial for ensuring reliable cellular functions. However, noise cannot be suppressed below a certain intrinsic limit. For constitutively expressed genes, this limit is typically assumed to be Poissonian noise, wherein the variance in mRNA numbers is equal to their mean. Here, we demonstrate that several cell division genes in fission yeast exhibit mRNA variances significantly below this limit. The reduced variance can be explained by a gene expression model incorporating multiple transcription and mRNA degradation steps. Notably, in this sub-Poissonian regime, distinct from Poissonian or super-Poissonian regimes, cytoplasmic noise is effectively suppressed through a higher mRNA export rate. Our findings redefine the lower limit of eukaryotic gene expression noise and uncover molecular requirements for achieving ultralow noise, which is expected to be important for vital cellular functions.
Collapse
Affiliation(s)
- Douglas E. Weidemann
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - James Holehouse
- The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87510, USA
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Ramon Grima
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Silke Hauf
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
16
|
Xue J, Zhang H, Zhao Q, Cui S, Yu K, Sun R, Yu Y. Construction of Yeast One-Hybrid Library of Alternaria oxytropis and Screening of Transcription Factors Regulating swnK Gene Expression. J Fungi (Basel) 2023; 9:822. [PMID: 37623593 PMCID: PMC10455089 DOI: 10.3390/jof9080822] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
The indolizidine alkaloid-swainsonine (SW) is the main toxic component of locoweeds and the main cause of locoweed poisoning in grazing animals. The endophytic fungi, Alternaria Section Undifilum spp., are responsible for the biosynthesis of SW in locoweeds. The swnK gene is a multifunctional complex enzyme encoding gene in fungal SW biosynthesis, and its encoding product plays a key role in the multistep catalytic synthesis of SW by fungi using pipecolic acid as a precursor. However, the transcriptional regulation mechanism of the swnK gene is still unclear. To identify the transcriptional regulators involved in the swnK gene in endophytic fungi of locoweeds, we first analyzed the upstream non-coding region of the swnK gene in the A. oxytropis UA003 strain and predicted its high transcriptional activity region combined with dual-luciferase reporter assay. Then, a yeast one-hybrid library of A. oxytropis UA003 strain was constructed, and the transcriptional regulatory factors that may bind to the high-transcriptional activity region of the upstream non-coding region of the swnK gene were screened by this system. The results showed that the high transcriptional activity region was located at -656 bp and -392 bp of the upstream regulatory region of the swnK gene. A total of nine candidate transcriptional regulator molecules, including a C2H2 type transcription factor, seven annotated proteins, and an unannotated protein, were screened out through the Y1H system, which were bound to the upstream high transcriptional activity region of the swnK gene. This study provides new insight into the transcriptional regulation of the swnK gene and lays the foundation for further exploration of the regulatory mechanisms of SW biosynthesis in fungal endophytic locoweeds.
Collapse
Affiliation(s)
- Jiaqi Xue
- School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Haodong Zhang
- School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Qingmei Zhao
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Shengwei Cui
- School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Kun Yu
- School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Ruohan Sun
- School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yongtao Yu
- School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
17
|
Dresch JM, Conrad RD, Klonaros D, Drewell RA. Investigating the sequence landscape in the Drosophila initiator core promoter element using an enhanced MARZ algorithm. PeerJ 2023; 11:e15597. [PMID: 37366427 PMCID: PMC10290830 DOI: 10.7717/peerj.15597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
The core promoter elements are important DNA sequences for the regulation of RNA polymerase II transcription in eukaryotic cells. Despite the broad evolutionary conservation of these elements, there is extensive variation in the nucleotide composition of the actual sequences. In this study, we aim to improve our understanding of the complexity of this sequence variation in the TATA box and initiator core promoter elements in Drosophila melanogaster. Using computational approaches, including an enhanced version of our previously developed MARZ algorithm that utilizes gapped nucleotide matrices, several sequence landscape features are uncovered, including an interdependency between the nucleotides in position 2 and 5 in the initiator. Incorporating this information in an expanded MARZ algorithm improves predictive performance for the identification of the initiator element. Overall our results demonstrate the need to carefully consider detailed sequence composition features in core promoter elements in order to make more robust and accurate bioinformatic predictions.
Collapse
|
18
|
Sloutskin A, Itzhak D, Vogler G, Ideses D, Alter H, Shachar H, Doniger T, Frasch M, Bodmer R, Duttke SH, Juven-Gershon T. A single DPE core promoter motif contributes to in vivo transcriptional regulation and affects cardiac function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.11.544490. [PMID: 37398300 PMCID: PMC10312617 DOI: 10.1101/2023.06.11.544490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Transcription is initiated at the core promoter, which confers specific functions depending on the unique combination of core promoter elements. The downstream core promoter element (DPE) is found in many genes related to heart and mesodermal development. However, the function of these core promoter elements has thus far been studied primarily in isolated, in vitro or reporter gene settings. tinman (tin) encodes a key transcription factor that regulates the formation of the dorsal musculature and heart. Pioneering a novel approach utilizing both CRISPR and nascent transcriptomics, we show that a substitution mutation of the functional tin DPE motif within the natural context of the core promoter results in a massive perturbation of Tinman's regulatory network orchestrating dorsal musculature and heart formation. Mutation of endogenous tin DPE reduced the expression of tin and distinct target genes, resulting in significantly reduced viability and an overall decrease in adult heart function. We demonstrate the feasibility and importance of characterizing DNA sequence elements in vivo in their natural context, and accentuate the critical impact a single DPE motif has during Drosophila embryogenesis and functional heart formation.
Collapse
Affiliation(s)
- Anna Sloutskin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Dekel Itzhak
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Georg Vogler
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Diana Ideses
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Hadar Alter
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Hadar Shachar
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Manfred Frasch
- Division of Developmental Biology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sascha H Duttke
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Tamar Juven-Gershon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
19
|
McQuarrie DWJ, Read AM, Stephens FHS, Civetta A, Soller M. Indel driven rapid evolution of core nuclear pore protein gene promoters. Sci Rep 2023; 13:8035. [PMID: 37198214 DOI: 10.1038/s41598-023-34985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023] Open
Abstract
Nuclear pore proteins (Nups) prominently are among the few genes linked to speciation from hybrid incompatibility in Drosophila. These studies have focused on coding sequence evolution of Nup96 and Nup160 and shown evidence of positive selection driving nucleoporin evolution. Intriguingly, channel Nup54 functionality is required for neuronal wiring underlying the female post-mating response induced by male-derived sex-peptide. A region of rapid evolution in the core promoter of Nup54 suggests a critical role for general transcriptional regulatory elements at the onset of speciation, but whether this is a general feature of Nup genes has not been determined. Consistent with findings for Nup54, additional channel Nup58 and Nup62 promoters also rapidly accumulate insertions/deletions (indels). Comprehensive examination of Nup upstream regions reveals that core Nup complex gene promoters accumulate indels rapidly. Since changes in promoters can drive changes in expression, these results indicate an evolutionary mechanism driven by indel accumulation in core Nup promoters. Compensation of such gene expression changes could lead to altered neuronal wiring, rapid fixation of traits caused by promoter changes and subsequently the rise of new species. Hence, the nuclear pore complex may act as a nexus for species-specific changes via nucleo-cytoplasmic transport regulated gene expression.
Collapse
Affiliation(s)
- David W J McQuarrie
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Birmingham Centre for Genome Biology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Adam M Read
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Frannie H S Stephens
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Alberto Civetta
- Department of Biology, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada.
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Birmingham Centre for Genome Biology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
20
|
Vo Ngoc L, Rhyne TE, Kadonaga JT. Analysis of the Drosophila and human DPR elements reveals a distinct human variant whose specificity can be enhanced by machine learning. Genes Dev 2023; 37:377-382. [PMID: 37163335 PMCID: PMC10270198 DOI: 10.1101/gad.350572.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/06/2023] [Indexed: 05/11/2023]
Abstract
The RNA polymerase II core promoter is the site of convergence of the signals that lead to the initiation of transcription. Here, we performed a comparative analysis of the downstream core promoter region (DPR) in Drosophila and humans by using machine learning. These studies revealed a distinct human-specific version of the DPR and led to the use of machine learning models for the identification of synthetic extreme DPR motifs with specificity for human transcription factors relative to Drosophila factors and vice versa. More generally, machine learning models could similarly be used to design synthetic DNA elements with customized functional properties.
Collapse
Affiliation(s)
- Long Vo Ngoc
- Department of Molecular Biology, University of California, San Diego, La Jolla, California 92093, USA
| | - Torrey E Rhyne
- Department of Molecular Biology, University of California, San Diego, La Jolla, California 92093, USA
| | - James T Kadonaga
- Department of Molecular Biology, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
21
|
Ciabrelli F, Rabbani L, Cardamone F, Zenk F, Löser E, Schächtle MA, Mazina M, Loubiere V, Iovino N. CBP and Gcn5 drive zygotic genome activation independently of their catalytic activity. SCIENCE ADVANCES 2023; 9:eadf2687. [PMID: 37083536 PMCID: PMC10121174 DOI: 10.1126/sciadv.adf2687] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Zygotic genome activation (ZGA) is a crucial step of embryonic development. So far, little is known about the role of chromatin factors during this process. Here, we used an in vivo RNA interference reverse genetic screen to identify chromatin factors necessary for embryonic development in Drosophila melanogaster. Our screen reveals that histone acetyltransferases (HATs) and histone deacetylases are crucial ZGA regulators. We demonstrate that Nejire (CBP/EP300 ortholog) is essential for the acetylation of histone H3 lysine-18 and lysine-27, whereas Gcn5 (GCN5/PCAF ortholog) for lysine-9 of H3 at ZGA, with these marks being enriched at all actively transcribed genes. Nonetheless, these HATs activate distinct sets of genes. Unexpectedly, individual catalytic dead mutants of either Nejire or Gcn5 can activate zygotic transcription (ZGA) and transactivate a reporter gene in vitro. Together, our data identify Nejire and Gcn5 as key regulators of ZGA.
Collapse
Affiliation(s)
- Filippo Ciabrelli
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Leily Rabbani
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Francesco Cardamone
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
- University of Freiburg, Faculty of Biology, Freiburg im Breisgau, Germany
| | - Fides Zenk
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Eva Löser
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Melanie A. Schächtle
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Marina Mazina
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | | | - Nicola Iovino
- Department of Chromatin Regulation, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| |
Collapse
|
22
|
Born G, Bieli D, Metzler M, Gohl DM, Affolter M, Müller M. No apparent role for the Wari insulator in transcriptional regulation of the endogenous white gene of Drosophila melanogaster. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000702. [PMID: 37090157 PMCID: PMC10116347 DOI: 10.17912/micropub.biology.000702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023]
Abstract
Chromatin insulators have been proposed to play an important role in chromosome organization and local regulatory interactions. In Drosophila , one of these insulators is known as Wari. It is located immediately downstream of the 3' end of the white transcription unit. Wari has been proposed to interact with the white promoter region, thereby facilitating recycling of the RNA polymerase machinery. We have tested this model by deleting the Wari insulator at the endogenous white locus and could not detect a significant effect on eye pigmentation.
Collapse
Affiliation(s)
- Gordian Born
- Biozentrum der Universität Basel, Basel, Switzerland
- Arcondis, Reinach, Switzerland
| | - Dimi Bieli
- Biozentrum der Universität Basel, Basel, Switzerland
- Mabylon AG, Schlieren, Switzerland
| | - Mario Metzler
- Biozentrum der Universität Basel, Basel, Switzerland
- Oliver Wyman AG, Zürich, Switzerland
| | - Daryl M Gohl
- University of Minnesota Genomics Center, Minneapolis, MN, USA
| | | | - Martin Müller
- Biozentrum der Universität Basel, Basel, Switzerland
- Correspondence to: Martin Müller (
)
| |
Collapse
|
23
|
Kyrchanova OV, Bylino OV, Georgiev PG. Mechanisms of enhancer-promoter communication and chromosomal architecture in mammals and Drosophila. Front Genet 2022; 13:1081088. [PMID: 36531247 PMCID: PMC9751008 DOI: 10.3389/fgene.2022.1081088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
The spatial organization of chromosomes is involved in regulating the majority of intranuclear processes in higher eukaryotes, including gene expression. Drosophila was used as a model to discover many transcription factors whose homologs play a key role in regulation of gene expression in mammals. According to modern views, a cohesin complex mostly determines the architecture of mammalian chromosomes by forming chromatin loops on anchors created by the CTCF DNA-binding architectural protein. The role of the cohesin complex in chromosome architecture is poorly understood in Drosophila, and CTCF is merely one of many Drosophila architectural proteins with a proven potential to organize specific long-range interactions between regulatory elements in the genome. The review compares the mechanisms responsible for long-range interactions and chromosome architecture between mammals and Drosophila.
Collapse
|
24
|
McKowen JK, Avva SVSP, Maharjan M, Duarte FM, Tome JM, Judd J, Wood JL, Negedu S, Dong Y, Lis JT, Hart CM. The Drosophila BEAF insulator protein interacts with the polybromo subunit of the PBAP chromatin remodeling complex. G3 (BETHESDA, MD.) 2022; 12:jkac223. [PMID: 36029240 PMCID: PMC9635645 DOI: 10.1093/g3journal/jkac223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/22/2022] [Indexed: 11/12/2022]
Abstract
The Drosophila Boundary Element-Associated Factor of 32 kDa (BEAF) binds in promoter regions of a few thousand mostly housekeeping genes. BEAF is implicated in both chromatin domain boundary activity and promoter function, although molecular mechanisms remain elusive. Here, we show that BEAF physically interacts with the polybromo subunit (Pbro) of PBAP, a SWI/SNF-class chromatin remodeling complex. BEAF also shows genetic interactions with Pbro and other PBAP subunits. We examine the effect of this interaction on gene expression and chromatin structure using precision run-on sequencing and micrococcal nuclease sequencing after RNAi-mediated knockdown in cultured S2 cells. Our results are consistent with the interaction playing a subtle role in gene activation. Fewer than 5% of BEAF-associated genes were significantly affected after BEAF knockdown. Most were downregulated, accompanied by fill-in of the promoter nucleosome-depleted region and a slight upstream shift of the +1 nucleosome. Pbro knockdown caused downregulation of several hundred genes and showed a correlation with BEAF knockdown but a better correlation with promoter-proximal GAGA factor binding. Micrococcal nuclease sequencing supports that BEAF binds near housekeeping gene promoters while Pbro is more important at regulated genes. Yet there is a similar general but slight reduction of promoter-proximal pausing by RNA polymerase II and increase in nucleosome-depleted region nucleosome occupancy after knockdown of either protein. We discuss the possibility of redundant factors keeping BEAF-associated promoters active and masking the role of interactions between BEAF and the Pbro subunit of PBAP in S2 cells. We identify Facilitates Chromatin Transcription (FACT) and Nucleosome Remodeling Factor (NURF) as candidate redundant factors.
Collapse
Affiliation(s)
- J Keller McKowen
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Satya V S P Avva
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Mukesh Maharjan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Fabiana M Duarte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14835, USA
| | - Jacob M Tome
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14835, USA
| | - Julius Judd
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14835, USA
| | - Jamie L Wood
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Sunday Negedu
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Yunkai Dong
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14835, USA
| | - Craig M Hart
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
25
|
Herman N, Kadener S, Shifman S. The chromatin factor ROW cooperates with BEAF-32 in regulating long-range inducible genes. EMBO Rep 2022; 23:e54720. [PMID: 36245419 PMCID: PMC9724677 DOI: 10.15252/embr.202254720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Insulator proteins located at the boundaries of topological associated domains (TAD) are involved in higher-order chromatin organization and transcription regulation. However, it is still not clear how long-range contacts contribute to transcriptional regulation. Here, we show that relative-of-WOC (ROW) is essential for the long-range transcription regulation mediated by the boundary element-associated factor of 32kD (BEAF-32). We find that ROW physically interacts with heterochromatin proteins (HP1b and HP1c) and the insulator protein (BEAF-32). These proteins interact at TAD boundaries where ROW, through its AT-hook motifs, binds AT-rich sequences flanked by BEAF-32-binding sites and motifs. Knockdown of row downregulates genes that are long-range targets of BEAF-32 and bound indirectly by ROW (without binding motif). Analyses of high-throughput chromosome conformation capture (Hi-C) data reveal long-range interactions between promoters of housekeeping genes bound directly by ROW and promoters of developmental genes bound indirectly by ROW. Thus, our results show cooperation between BEAF-32 and the ROW complex, including HP1 proteins, to regulate the transcription of developmental and inducible genes through long-range interactions.
Collapse
Affiliation(s)
- Neta Herman
- Department of Genetics, The Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | | | - Sagiv Shifman
- Department of Genetics, The Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
26
|
Bu L, Cripps RM. Promoter architecture of Drosophila genes regulated by Myocyte enhancer factor-2. PLoS One 2022; 17:e0271554. [PMID: 35862472 PMCID: PMC9302807 DOI: 10.1371/journal.pone.0271554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 07/01/2022] [Indexed: 11/18/2022] Open
Abstract
To gain understanding into the mechanisms of transcriptional activation of muscle genes, we sought to determine if genes targeted by the myogenic transcription factor Myocyte enhancer factor-2 (MEF2) were enriched for specific core promoter elements. We identified 330 known MEF2 target promoters in Drosophila, and analyzed them for for the presence and location of 17 known consensus promoter sequences. As a control, we also searched all Drosophila RNA polymerase II-dependent promoters for the same sequences. We found that promoter motifs were readily detected in the MEF2 target dataset, and that many of them were slightly enriched in frequency compared to the control dataset. A prominent sequence over-represented in the MEF2 target genes was NDM2, that appeared in over 50% of MEF2 target genes and was 2.5-fold over-represented in MEF2 targets compared to background. To test the functional significance of NDM2, we identified two promoters containing a single copy of NDM2 plus an upstream MEF2 site, and tested the activity of these promoters in vivo. Both the sticks and stones and Kahuli fragments showed strong skeletal myoblast-specific expression of a lacZ reporter in embryos. However, the timing and level of reporter expression was unaffected when the NDM2 site in either element was mutated. These studies identify variations in promoter architecture for a set of regulated genes compared to all RNA polymerase II-dependent genes, and underline the potential redundancy in the activities of some core promoter elements.
Collapse
Affiliation(s)
- Lijing Bu
- Department of Biology and Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, United States of America
| | - Richard M. Cripps
- Department of Biology, San Diego State University, San Diego, CA, United States of America
| |
Collapse
|
27
|
Waring AL, Hill J, Allen BM, Bretz NM, Le N, Kr P, Fuss D, Mortimer NT. Meta-Analysis of Immune Induced Gene Expression Changes in Diverse Drosophila melanogaster Innate Immune Responses. INSECTS 2022; 13:insects13050490. [PMID: 35621824 PMCID: PMC9147463 DOI: 10.3390/insects13050490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/05/2022]
Abstract
Simple Summary Organisms can be infected by a wide range of pathogens, including bacteria, viruses, and parasites. Following infection, the host mounts an immune response to attempt to eliminate the pathogen. These responses are often specific to the type of pathogen and mediated by the expression of specialized genes. We have characterized the expression changes induced in host Drosophila fruit flies following infection by multiple types of pathogens, and identified a small number of genes that show expression changes in each infection. This includes genes that are known to be involved in pathogen resistance, and others that have not been previously studied as immune response genes. These findings provide new insight into transcriptional changes that accompany Drosophila immunity. They may suggest possible roles for the differentially expressed genes in innate immune responses to diverse classes of pathogens, and serve to identify candidate genes for further empirical study of these processes. Abstract Organisms are commonly infected by a diverse array of pathogens and mount functionally distinct responses to each of these varied immune challenges. Host immune responses are characterized by the induction of gene expression, however, the extent to which expression changes are shared among responses to distinct pathogens is largely unknown. To examine this, we performed meta-analysis of gene expression data collected from Drosophila melanogaster following infection with a wide array of pathogens. We identified 62 genes that are significantly induced by infection. While many of these infection-induced genes encode known immune response factors, we also identified 21 genes that have not been previously associated with host immunity. Examination of the upstream flanking sequences of the infection-induced genes lead to the identification of two conserved enhancer sites. These sites correspond to conserved binding sites for GATA and nuclear factor κB (NFκB) family transcription factors and are associated with higher levels of transcript induction. We further identified 31 genes with predicted functions in metabolism and organismal development that are significantly downregulated following infection by diverse pathogens. Our study identifies conserved gene expression changes in Drosophila melanogaster following infection with varied pathogens, and transcription factor families that may regulate this immune induction.
Collapse
|
28
|
Expanding the promoter toolbox for metabolic engineering of methylotrophic yeasts. Appl Microbiol Biotechnol 2022; 106:3449-3464. [PMID: 35538374 DOI: 10.1007/s00253-022-11948-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/31/2023]
Abstract
Methylotrophic yeasts have been widely recognized as a promising host for production of recombinant proteins and value-added chemicals. Promoters for controlled gene expression are critical for construction of efficient methylotrophic yeasts cell factories. Here, we summarized recent advances in characterizing and engineering promoters in methylotrophic yeasts, such as Komagataella phaffii and Ogataea polymorpha. Constitutive and inducible promoters controlled by methanol or other inducers/repressors were introduced to demonstrate their applications in production of proteins and chemicals. Furthermore, efforts of promoter engineering, including site-directed mutagenesis, hybrid promoter, and transcription factor regulation to expand the promoter toolbox were also summarized. This mini-review also provides useful information on promoters for the application of metabolic engineering in methylotrophic yeasts. KEY POINTS: • The characteristics of six methylotrophic yeasts and their promoters are described. • The applications of Komagataella phaffii and Ogataea polymorpha in metabolic engineeringare expounded. • Three promoter engineering strategies are introduced in order to expand the promoter toolbox.
Collapse
|
29
|
Dean DM, Deitcher DL, Paster CO, Xu M, Loehlin DW. "A fly appeared": sable, a classic Drosophila mutation, maps to Yippee, a gene affecting body color, wings, and bristles. G3 (BETHESDA, MD.) 2022; 12:jkac058. [PMID: 35266526 PMCID: PMC9073688 DOI: 10.1093/g3journal/jkac058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/04/2022] [Indexed: 11/12/2022]
Abstract
Insect body color is an easily assessed and visually engaging trait that is informative on a broad range of topics including speciation, biomaterial science, and ecdysis. Mutants of the fruit fly Drosophila melanogaster have been an integral part of body color research for more than a century. As a result of this long tenure, backlogs of body color mutations have remained unmapped to their genes, all while their strains have been dutifully maintained, used for recombination mapping, and part of genetics education. Stemming from a lesson plan in our undergraduate genetics class, we have mapped sable1, a dark body mutation originally described by Morgan and Bridges, to Yippee, a gene encoding a predicted member of the E3 ubiquitin ligase complex. Deficiency/duplication mapping, genetic rescue, DNA and cDNA sequencing, RT-qPCR, and 2 new CRISPR alleles indicated that sable1 is a hypomorphic Yippee mutation due to an mdg4 element insertion in the Yippee 5'-UTR. Further analysis revealed additional Yippee mutant phenotypes including curved wings, ectopic/missing bristles, delayed development, and failed adult emergence. RNAi of Yippee in the ectoderm phenocopied sable body color and most other Yippee phenotypes. Although Yippee remains functionally uncharacterized, the results presented here suggest possible connections between melanin biosynthesis, copper homeostasis, and Notch/Delta signaling; in addition, they provide insight into past studies of sable cell nonautonomy and of the genetic modifier suppressor of sable.
Collapse
Affiliation(s)
- Derek M Dean
- Department of Biology, Williams College, Williamstown, MA 01267, USA
| | - David L Deitcher
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Caleigh O Paster
- Department of Biology, Williams College, Williamstown, MA 01267, USA
| | - Manting Xu
- Department of Biology, Williams College, Williamstown, MA 01267, USA
| | - David W Loehlin
- Department of Biology, Williams College, Williamstown, MA 01267, USA
| |
Collapse
|
30
|
Structural insights into nuclear transcription by eukaryotic DNA-dependent RNA polymerases. Nat Rev Mol Cell Biol 2022; 23:603-622. [PMID: 35505252 DOI: 10.1038/s41580-022-00476-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
The eukaryotic transcription apparatus synthesizes a staggering diversity of RNA molecules. The labour of nuclear gene transcription is, therefore, divided among multiple DNA-dependent RNA polymerases. RNA polymerase I (Pol I) transcribes ribosomal RNA, Pol II synthesizes messenger RNAs and various non-coding RNAs (including long non-coding RNAs, microRNAs and small nuclear RNAs) and Pol III produces transfer RNAs and other short RNA molecules. Pol I, Pol II and Pol III are large, multisubunit protein complexes that associate with a multitude of additional factors to synthesize transcripts that largely differ in size, structure and abundance. The three transcription machineries share common characteristics, but differ widely in various aspects, such as numbers of RNA polymerase subunits, regulatory elements and accessory factors, which allows them to specialize in transcribing their specific RNAs. Common to the three RNA polymerases is that the transcription process consists of three major steps: transcription initiation, transcript elongation and transcription termination. In this Review, we outline the common principles and differences between the Pol I, Pol II and Pol III transcription machineries and discuss key structural and functional insights obtained into the three stages of their transcription processes.
Collapse
|
31
|
Vanaja A, Yella VR. Delineation of the DNA Structural Features of Eukaryotic Core Promoter Classes. ACS OMEGA 2022; 7:5657-5669. [PMID: 35224327 PMCID: PMC8867553 DOI: 10.1021/acsomega.1c04603] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/27/2022] [Indexed: 05/02/2023]
Abstract
The eukaryotic transcription is orchestrated from a chunk of the DNA region stated as the core promoter. Multifarious and punctilious core promoter signals, viz., TATA-box, Inr, BREs, and Pause Button, are associated with a subset of genes and regulate their spatiotemporal expression. However, the core promoter architecture linked with these signals has not been investigated exhaustively for several species. In this study, we attempted to envisage the adaptive binding landscape of the transcription initiation machinery as a function of DNA structure. To this end, we deployed a set of k-mer based DNA structural estimates and regular expression models derived from experiments, molecular dynamic simulations, and theoretical frameworks, and high-throughout promoter data sets retrieved from the eukaryotic promoter database. We categorized protein-coding gene core promoters based on characteristic motifs at precise locations and analyzed the B-DNA structural properties and non-B-DNA structural motifs for 15 different eukaryotic genomes. We observed that Inr, BREd, and no-motif classes display common patterns of DNA sequence and structural environment. TATA-containing, BREu, and Pause Button classes show a deviant behavior with the TATA class displaying varied axial and twisting flexibility while BREu and Pause Button leaned toward G-quadruplex motif enrichment. Intriguingly, DNA meltability and shape signals are conserved irrespective of the presence or absence of distinct core promoter motifs in the majority of species. Altogether, here we delineated the conserved DNA structural signals associated with several promoter classes that may contribute to the chromatin configuration, orchestration of transcription machinery, and DNA duplex melting during the transcription process.
Collapse
Affiliation(s)
- Akkinepally Vanaja
- Department
of Biotechnology, Koneru Lakshmaiah Education
Foundation, Vaddeswaram, Guntur 522502, Andhra
Pradesh, India
- KL
College of Pharmacy, Koneru Lakshmaiah Education
Foundation, Vaddeswaram, Guntur 522502, Andhra
Pradesh, India
| | - Venkata Rajesh Yella
- Department
of Biotechnology, Koneru Lakshmaiah Education
Foundation, Vaddeswaram, Guntur 522502, Andhra
Pradesh, India
| |
Collapse
|
32
|
Schmitz RJ, Grotewold E, Stam M. Cis-regulatory sequences in plants: Their importance, discovery, and future challenges. THE PLANT CELL 2022; 34:718-741. [PMID: 34918159 PMCID: PMC8824567 DOI: 10.1093/plcell/koab281] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/20/2021] [Indexed: 05/19/2023]
Abstract
The identification and characterization of cis-regulatory DNA sequences and how they function to coordinate responses to developmental and environmental cues is of paramount importance to plant biology. Key to these regulatory processes are cis-regulatory modules (CRMs), which include enhancers and silencers. Despite the extraordinary advances in high-quality sequence assemblies and genome annotations, the identification and understanding of CRMs, and how they regulate gene expression, lag significantly behind. This is especially true for their distinguishing characteristics and activity states. Here, we review the current knowledge on CRMs and breakthrough technologies enabling identification, characterization, and validation of CRMs; we compare the genomic distributions of CRMs with respect to their target genes between different plant species, and discuss the role of transposable elements harboring CRMs in the evolution of gene expression. This is an exciting time to study cis-regulomes in plants; however, significant existing challenges need to be overcome to fully understand and appreciate the role of CRMs in plant biology and in crop improvement.
Collapse
Affiliation(s)
- Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
33
|
Chekunova AI, Sorokina SY, Sivoplyas EA, Bakhtoyarov GN, Proshakov PA, Fokin AV, Melnikov AI, Kulikov AM. Episodes of Rapid Recovery of the Functional Activity of the ras85D Gene in the Evolutionary History of Phylogenetically Distant Drosophila Species. Front Genet 2022; 12:807234. [PMID: 35096018 PMCID: PMC8790561 DOI: 10.3389/fgene.2021.807234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
As assemblies of genomes of new species with varying degrees of relationship appear, it becomes obvious that structural rearrangements of the genome, such as inversions, translocations, and transposon movements, are an essential and often the main source of evolutionary variation. In this regard, the following questions arise. How conserved are the regulatory regions of genes? Do they have a common evolutionary origin? And how and at what rate is the functional activity of genes restored during structural changes in the promoter region? In this article, we analyze the evolutionary history of the formation of the regulatory region of the ras85D gene in different lineages of the genus Drosophila, as well as the participation of mobile elements in structural rearrangements and in the replacement of specific areas of the promoter region with those of independent evolutionary origin. In the process, we substantiate hypotheses about the selection of promoter elements from a number of frequently repeated motifs with different degrees of degeneracy in the ancestral sequence, as well as about the restoration of the minimum required set of regulatory sequences using a conversion mechanism or similar.
Collapse
Affiliation(s)
- A I Chekunova
- Evolutionary Genetics of Development, N.K. Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - S Yu Sorokina
- Evolutionary Genetics of Development, N.K. Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - E A Sivoplyas
- Department of Biochemistry, Molecular Biology and Genetics, Institute of Biology and Chemistry of Moscow Pedagogical State University (MPGU), Moscow, Russia
| | - G N Bakhtoyarov
- Laboratory of Genetics of DNA Containing Viruses, Federal State Budgetary Scientific Institution «I. Mechnikov Research Institute of Vaccines and Sera», Moscow, Russia
| | - P A Proshakov
- Evolutionary Genetics of Development, N.K. Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - A V Fokin
- Evolutionary Genetics of Development, N.K. Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - A I Melnikov
- Evolutionary Genetics of Development, N.K. Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - A M Kulikov
- Evolutionary Genetics of Development, N.K. Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
34
|
Cordon-Obras C, Gomez-Liñan C, Torres-Rusillo S, Vidal-Cobo I, Lopez-Farfan D, Barroso-Del Jesus A, Rojas-Barros D, Carrington M, Navarro M. Identification of sequence-specific promoters driving polycistronic transcription initiation by RNA polymerase II in trypanosomes. Cell Rep 2022; 38:110221. [PMID: 35021094 DOI: 10.1016/j.celrep.2021.110221] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 11/20/2022] Open
Abstract
Protein-coding genes in trypanosomes occur in polycistronic transcription units (PTUs). How RNA polymerase II (Pol II) initiates transcription of PTUs has not been resolved; the current model favors chromatin modifications inducing transcription rather than sequence-specific promoters. Here, we uncover core promoters by functional characterization of Pol II peaks identified by chromatin immunoprecipitation sequencing (ChIP-seq). Two distinct promoters are located between divergent PTUs, each driving unidirectional transcription. Detailed analysis identifies a 75-bp promoter that is necessary and sufficient to drive full reporter expression and contains functional motifs. Analysis of further promoters suggests transcription initiation is regulated and promoters are either focused or dispersed. In contrast to the previous model of unregulated and promoter-independent transcription initiation, we find that sequence-specific promoters determine the initiation of Pol II transcription of protein-coding genes PTUs. These findings in Trypanosoma brucei suggest that in addition of chromatin modifications, promoter motifs-based regulation of gene expression is deeply conserved among eukaryotes.
Collapse
Affiliation(s)
- Carlos Cordon-Obras
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, IPBLN-CSIC, 18016 Granada, Spain
| | - Claudia Gomez-Liñan
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, IPBLN-CSIC, 18016 Granada, Spain
| | - Sara Torres-Rusillo
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, IPBLN-CSIC, 18016 Granada, Spain
| | - Isabel Vidal-Cobo
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, IPBLN-CSIC, 18016 Granada, Spain
| | - Diana Lopez-Farfan
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, IPBLN-CSIC, 18016 Granada, Spain
| | - Alicia Barroso-Del Jesus
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, IPBLN-CSIC, 18016 Granada, Spain
| | - Domingo Rojas-Barros
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, IPBLN-CSIC, 18016 Granada, Spain
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, IPBLN-CSIC, 18016 Granada, Spain.
| |
Collapse
|
35
|
Hermann A, Kosman D, McGinnis W, Tour E. The expression of Drosophila melanogaster Hox gene Ultrabithorax is not overtly regulated by the intronic long noncoding RNA lncRNA:PS4 in a wild-type genetic background. G3 (BETHESDA, MD.) 2022; 12:jkab374. [PMID: 34791185 PMCID: PMC8727962 DOI: 10.1093/g3journal/jkab374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been implicated in a variety of processes in development, differentiation, and disease. In Drosophila melanogaster, the bithorax Hox cluster contains three Hox genes [Ultrabithorax (Ubx), abdominal-A, and Abdominal-B], along with a number of lncRNAs, most with unknown functions. Here, we investigated the function of a lncRNA, lncRNA:PS4 that originates in the second intron of Ubx and is transcribed in the antisense orientation to Ubx. The expression pattern of lncRNA:PS4 is complementary to Ubx in the thoracic primordia, and the lncRNA:PS4 coding region overlaps the location of the large insertion that causes the dominant homeotic mutation Contrabithorax-1 (UbxCbx-1), which partially transforms Drosophila wings into halteres via ectopic activation of Ubx. This led us to investigate the potential role of this lncRNA in regulation of Ubx expression. The UbxCbx-1 mutation dramatically changes the pattern of lncRNA:PS4, eliminating the expression of most lncRNA:PS4 sequences from parasegment 4 (where Ubx protein is normally absent) and ectopically activating lncRNA:PS4 at high levels in the abdomen (where Ubx is normally expressed). These changes, however, did not lead to changes in the Ubx embryonic transcription pattern. Targeted deletion of the two promoters of lncRNA:PS4 did not result in the change of Ubx expression in the embryos. In the genetic background of a UbxCbx-1 mutation, the lncRNA:PS4 mutation does slightly enhance the ectopic activation of Ubx protein expression in wing discs and also slightly enhances the wing phenotype seen in UbxCbx-1 heterozygotes.
Collapse
Affiliation(s)
- Anita Hermann
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0355, USA
| | - Dave Kosman
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0355, USA
| | - William McGinnis
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0355, USA
| | - Ella Tour
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0355, USA
| |
Collapse
|
36
|
Yokoshi M, Kawasaki K, Cambón M, Fukaya T. Dynamic modulation of enhancer responsiveness by core promoter elements in living Drosophila embryos. Nucleic Acids Res 2021; 50:92-107. [PMID: 34897508 PMCID: PMC8754644 DOI: 10.1093/nar/gkab1177] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 11/12/2022] Open
Abstract
Regulatory interactions between enhancers and core promoters are fundamental for the temporal and spatial specificity of gene expression in development. The central role of core promoters is to initiate productive transcription in response to enhancer's activation cues. However, it has not been systematically assessed how individual core promoter elements affect the induction of transcriptional bursting by enhancers. Here, we provide evidence that each core promoter element differentially modulates functional parameters of transcriptional bursting in developing Drosophila embryos. Quantitative live imaging analysis revealed that the timing and the continuity of burst induction are common regulatory steps on which core promoter elements impact. We further show that the upstream TATA also affects the burst amplitude. On the other hand, Inr, MTE and DPE mainly contribute to the regulation of the burst frequency. Genome editing analysis of the pair-rule gene fushi tarazu revealed that the endogenous TATA and DPE are both essential for its correct expression and function during the establishment of body segments in early embryos. We suggest that core promoter elements serve as a key regulatory module in converting enhancer activity into transcription dynamics during animal development.
Collapse
Affiliation(s)
- Moe Yokoshi
- Laboratory of Transcription Dynamics, Research Center for Biological Visualization, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Koji Kawasaki
- Laboratory of Transcription Dynamics, Research Center for Biological Visualization, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Manuel Cambón
- Applied Mathematics Department, University of Granada, Granada, Spain
| | - Takashi Fukaya
- Laboratory of Transcription Dynamics, Research Center for Biological Visualization, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
37
|
Histone variant H2A.Z regulates zygotic genome activation. Nat Commun 2021; 12:7002. [PMID: 34853314 PMCID: PMC8636486 DOI: 10.1038/s41467-021-27125-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
During embryogenesis, the genome shifts from transcriptionally quiescent to extensively active in a process known as Zygotic Genome Activation (ZGA). In Drosophila, the pioneer factor Zelda is known to be essential for the progression of development; still, it regulates the activation of only a small subset of genes at ZGA. However, thousands of genes do not require Zelda, suggesting that other mechanisms exist. By conducting GRO-seq, HiC and ChIP-seq in Drosophila embryos, we demonstrate that up to 65% of zygotically activated genes are enriched for the histone variant H2A.Z. H2A.Z enrichment precedes ZGA and RNA Polymerase II loading onto chromatin. In vivo knockdown of maternally contributed Domino, a histone chaperone and ATPase, reduces H2A.Z deposition at transcription start sites, causes global downregulation of housekeeping genes at ZGA, and compromises the establishment of the 3D chromatin structure. We infer that H2A.Z is essential for the de novo establishment of transcriptional programs during ZGA via chromatin reorganization. During embryogenesis, the genome becomes transcriptionally active in a process known as zygotic genome activation (ZGA); how ZGA is initiated is still an open question. Here the authors show histone variant H2A.Z deposition precedes RNA polymerase II binding on chromatin, before ZGA. H2A.Z loss causes transcriptional downregulation of ZGA genes and leads to changes in the 3D genome organization.
Collapse
|
38
|
Pagni S, Mills JD, Frankish A, Mudge JM, Sisodiya SM. Non-coding regulatory elements: Potential roles in disease and the case of epilepsy. Neuropathol Appl Neurobiol 2021; 48:e12775. [PMID: 34820881 DOI: 10.1111/nan.12775] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/04/2021] [Accepted: 11/16/2021] [Indexed: 12/27/2022]
Abstract
Non-coding DNA (ncDNA) refers to the portion of the genome that does not code for proteins and accounts for the greatest physical proportion of the human genome. ncDNA includes sequences that are transcribed into RNA molecules, such as ribosomal RNAs (rRNAs), microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and un-transcribed sequences that have regulatory functions, including gene promoters and enhancers. Variation in non-coding regions of the genome have an established role in human disease, with growing evidence from many areas, including several cancers, Parkinson's disease and autism. Here, we review the features and functions of the regulatory elements that are present in the non-coding genome and the role that these regions have in human disease. We then review the existing research in epilepsy and emphasise the potential value of further exploring non-coding regulatory elements in epilepsy. In addition, we outline the most widely used techniques for recognising regulatory elements throughout the genome, current methodologies for investigating variation and the main challenges associated with research in the field of non-coding DNA.
Collapse
Affiliation(s)
- Susanna Pagni
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - James D Mills
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Chalfont St Peter, UK.,Amsterdam UMC, Department of (Neuro)Pathology, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| | - Adam Frankish
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Jonathan M Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| |
Collapse
|
39
|
Soffers JHM, Alcantara SGM, Li X, Shao W, Seidel CW, Li H, Zeitlinger J, Abmayr SM, Workman JL. The SAGA core module is critical during Drosophila oogenesis and is broadly recruited to promoters. PLoS Genet 2021; 17:e1009668. [PMID: 34807910 PMCID: PMC8648115 DOI: 10.1371/journal.pgen.1009668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 12/06/2021] [Accepted: 10/22/2021] [Indexed: 11/19/2022] Open
Abstract
The Spt/Ada-Gcn5 Acetyltransferase (SAGA) coactivator complex has multiple modules with different enzymatic and non-enzymatic functions. How each module contributes to gene expression is not well understood. During Drosophila oogenesis, the enzymatic functions are not equally required, which may indicate that different genes require different enzymatic functions. An analogy for this phenomenon is the handyman principle: while a handyman has many tools, which tool he uses depends on what requires maintenance. Here we analyzed the role of the non-enzymatic core module during Drosophila oogenesis, which interacts with TBP. We show that depletion of SAGA-specific core subunits blocked egg chamber development at earlier stages than depletion of enzymatic subunits. These results, as well as additional genetic analyses, point to an interaction with TBP and suggest a differential role of SAGA modules at different promoter types. However, SAGA subunits co-occupied all promoter types of active genes in ChIP-seq and ChIP-nexus experiments, and the complex was not specifically associated with distinct promoter types in the ovary. The high-resolution genomic binding profiles were congruent with SAGA recruitment by activators upstream of the start site, and retention on chromatin by interactions with modified histones downstream of the start site. Our data illustrate that a distinct genetic requirement for specific components may conceal the fact that the entire complex is physically present and suggests that the biological context defines which module functions are critical. Embryonic development critically relies on the differential expression of genes in different tissues. This involves the dynamic interplay between DNA, sequence-specific transcription factors, coactivators and chromatin remodelers, which guide the transcription machinery to the appropriate promoters for productive transcription. To understand how this happens at the molecular level, we need to understand when and how coactivator complexes such as SAGA function. SAGA consists of multiple modules with well characterized enzymatic functions. This study shows that the non-enzymatic core module of SAGA is required for Drosophila oogenesis, while the enzymatic functions are largely dispensable. Despite this differential requirement, SAGA subunits appear to be broadly recruited to all promoter types, consistent with the biochemical integrity of the complex. These results suggest that genetic requirements for different modules depend on the developmental demands.
Collapse
Affiliation(s)
- Jelly H. M. Soffers
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Sergio G-M Alcantara
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Xuanying Li
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Wanqing Shao
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Christopher W. Seidel
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Hua Li
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Pathology and Laboratory Medicine, University of Kansas School of Medicine, Kansas City, Kansas, United States of America
| | - Susan M. Abmayr
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, United States of America
| | - Jerry L. Workman
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- * E-mail:
| |
Collapse
|
40
|
Barela Hudgell MA, Smith LC. Sequence Diversity, Locus Structure, and Evolutionary History of the SpTransformer Genes in the Sea Urchin Genome. Front Immunol 2021; 12:744783. [PMID: 34867968 PMCID: PMC8634487 DOI: 10.3389/fimmu.2021.744783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
The generation of large immune gene families is often driven by evolutionary pressure exerted on host genomes by their pathogens, which has been described as the immunological arms race. The SpTransformer (SpTrf) gene family from the California purple sea urchin, Strongylocentrotus purpuratus, is upregulated upon immune challenge and encodes the SpTrf proteins that interact with pathogens during an immune response. Native SpTrf proteins bind both bacteria and yeast, and augment phagocytosis of a marine Vibrio, while a recombinant SpTrf protein (rSpTrf-E1) binds a subset of pathogens and a range of pathogen associated molecular patterns. In the sequenced sea urchin genome, there are four SpTrf gene clusters for a total of 17 genes. Here, we report an in-depth analysis of these genes to understand the sequence complexities of this family, its genomic structure, and to derive a putative evolutionary history for the formation of the gene clusters. We report a detailed characterization of gene structure including the intron type and UTRs with conserved transcriptional start sites, the start codon and multiple stop codons, and locations of polyadenylation signals. Phylogenetic and percent mismatch analyses of the genes and the intergenic regions allowed us to predict the last common ancestral SpTrf gene and a theoretical evolutionary history of the gene family. The appearance of the gene clusters from the theoretical ancestral gene may have been driven by multiple duplication and deletion events of regions containing SpTrf genes. Duplications and ectopic insertion events, indels, and point mutations in the exons likely resulted in the extant genes and family structure. This theoretical evolutionary history is consistent with the involvement of these genes in the arms race in responses to pathogens and suggests that the diversification of these genes and their encoded proteins have been selected for based on the survival benefits of pathogen binding and host protection.
Collapse
Affiliation(s)
| | - L. Courtney Smith
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
41
|
Petrenko N, Struhl K. Comparison of transcriptional initiation by RNA polymerase II across eukaryotic species. eLife 2021; 10:e67964. [PMID: 34515029 PMCID: PMC8463073 DOI: 10.7554/elife.67964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/10/2021] [Indexed: 01/17/2023] Open
Abstract
The preinitiation complex (PIC) for transcriptional initiation by RNA polymerase (Pol) II is composed of general transcription factors that are highly conserved. However, analysis of ChIP-seq datasets reveals kinetic and compositional differences in the transcriptional initiation process among eukaryotic species. In yeast, Mediator associates strongly with activator proteins bound to enhancers, but it transiently associates with promoters in a form that lacks the kinase module. In contrast, in human, mouse, and fly cells, Mediator with its kinase module stably associates with promoters, but not with activator-binding sites. This suggests that yeast and metazoans differ in the nature of the dynamic bridge of Mediator between activators and Pol II and the composition of a stable inactive PIC-like entity. As in yeast, occupancies of TATA-binding protein (TBP) and TBP-associated factors (Tafs) at mammalian promoters are not strictly correlated. This suggests that within PICs, TFIID is not a monolithic entity, and multiple forms of TBP affect initiation at different classes of genes. TFIID in flies, but not yeast and mammals, interacts strongly at regions downstream of the initiation site, consistent with the importance of downstream promoter elements in that species. Lastly, Taf7 and the mammalian-specific Med26 subunit of Mediator also interact near the Pol II pause region downstream of the PIC, but only in subsets of genes and often not together. Species-specific differences in PIC structure and function are likely to affect how activators and repressors affect transcriptional activity.
Collapse
Affiliation(s)
- Natalia Petrenko
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical SchoolBostonUnited States
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
42
|
Sloutskin A, Shir-Shapira H, Freiman RN, Juven-Gershon T. The Core Promoter Is a Regulatory Hub for Developmental Gene Expression. Front Cell Dev Biol 2021; 9:666508. [PMID: 34568311 PMCID: PMC8461331 DOI: 10.3389/fcell.2021.666508] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
The development of multicellular organisms and the uniqueness of each cell are achieved by distinct transcriptional programs. Multiple processes that regulate gene expression converge at the core promoter region, an 80 bp region that directs accurate transcription initiation by RNA polymerase II (Pol II). In recent years, it has become apparent that the core promoter region is not a passive DNA component, but rather an active regulatory module of transcriptional programs. Distinct core promoter compositions were demonstrated to result in different transcriptional outputs. In this mini-review, we focus on the role of the core promoter, particularly its downstream region, as the regulatory hub for developmental genes. The downstream core promoter element (DPE) was implicated in the control of evolutionarily conserved developmental gene regulatory networks (GRNs) governing body plan in both the anterior-posterior and dorsal-ventral axes. Notably, the composition of the basal transcription machinery is not universal, but rather promoter-dependent, highlighting the importance of specialized transcription complexes and their core promoter target sequences as key hubs that drive embryonic development, differentiation and morphogenesis across metazoan species. The extent of transcriptional activation by a specific enhancer is dependent on its compatibility with the relevant core promoter. The core promoter content also regulates transcription burst size. Overall, while for many years it was thought that the specificity of gene expression is primarily determined by enhancers, it is now clear that the core promoter region comprises an important regulatory module in the intricate networks of developmental gene expression.
Collapse
Affiliation(s)
- Anna Sloutskin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Hila Shir-Shapira
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Richard N. Freiman
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| | - Tamar Juven-Gershon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
43
|
Neville MC, Eastwood A, Allen AM, de Haan A, Nojima T, Goodwin SF. Generation and characterization of fruitless P1 promoter mutant in Drosophila melanogaster. J Neurogenet 2021; 35:285-294. [PMID: 34338589 PMCID: PMC8477730 DOI: 10.1080/01677063.2021.1931179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The identification of mutations in the gene fruitless (fru) paved the way for understanding the genetic basis of male sexual behavior in the vinegar fly Drosophila melanogaster. D. melanogaster males perform an elaborate courtship display to the female, ultimately leading to copulation. Mutations in fru have been shown to disrupt most aspects of the male's behavioral display, rendering males behaviorally sterile. The fru genomic locus encodes for multiple transcription factor isoforms from several promoters; only those under the regulation of the most distal P1 promoter are under the control of the sex determination hierarchy and play a role in male-specific behaviors. In this study, we used CRISPR/Cas9-based targeted genome editing of the fru gene, to remove the P1 promoter region. We have shown that removal of the P1 promoter leads to a dramatic decrease in male courtship displays towards females and male-specific sterility. We have expanded the analysis of fru P1-dependent behaviors, examining male's response to courtship song and general activity levels during12-hour light: dark cycles. Our novel allele expands the mutant repertoire available for future studies of fru P1-derived function in D. melanogaster. Our fruΔP1 mutant will be useful for future studies of fru P1-derived function, as it can be homozygosed without disrupting additional downstream promoter function and can be utilized in heterozygous combinations with other extant fru alleles.
Collapse
Affiliation(s)
- Megan C. Neville
- University of Oxford, Centre for Neural Circuits & Behaviour, Oxford, UK,CONTACT Megan C. Neville University of Oxford, Centre for Neural Circuits & Behaviour, Oxford, UK
| | - Alexander Eastwood
- University of Oxford, Centre for Neural Circuits & Behaviour, Oxford, UK
| | - Aaron M. Allen
- University of Oxford, Centre for Neural Circuits & Behaviour, Oxford, UK
| | - Ammerins de Haan
- University of Oxford, Centre for Neural Circuits & Behaviour, Oxford, UK
| | - Tetsuya Nojima
- University of Oxford, Centre for Neural Circuits & Behaviour, Oxford, UK
| | - Stephen F. Goodwin
- University of Oxford, Centre for Neural Circuits & Behaviour, Oxford, UK
| |
Collapse
|
44
|
Dreos R, Sloutskin A, Malachi N, Ideses D, Bucher P, Juven-Gershon T. Computational identification and experimental characterization of preferred downstream positions in human core promoters. PLoS Comput Biol 2021; 17:e1009256. [PMID: 34383743 PMCID: PMC8384218 DOI: 10.1371/journal.pcbi.1009256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 08/24/2021] [Accepted: 07/07/2021] [Indexed: 12/02/2022] Open
Abstract
Metazoan core promoters, which direct the initiation of transcription by RNA polymerase II (Pol II), may contain short sequence motifs termed core promoter elements/motifs (e.g. the TATA box, initiator (Inr) and downstream core promoter element (DPE)), which recruit Pol II via the general transcription machinery. The DPE was discovered and extensively characterized in Drosophila, where it is strictly dependent on both the presence of an Inr and the precise spacing from it. Since the Drosophila DPE is recognized by the human transcription machinery, it is most likely that some human promoters contain a downstream element that is similar, though not necessarily identical, to the Drosophila DPE. However, only a couple of human promoters were shown to contain a functional DPE, and attempts to computationally detect human DPE-containing promoters have mostly been unsuccessful. Using a newly-designed motif discovery strategy based on Expectation-Maximization probabilistic partitioning algorithms, we discovered preferred downstream positions (PDP) in human promoters that resemble the Drosophila DPE. Available chromatin accessibility footprints revealed that Drosophila and human Inr+DPE promoter classes are not only highly structured, but also similar to each other, particularly in the proximal downstream region. Clustering of the corresponding sequence motifs using a neighbor-joining algorithm strongly suggests that canonical Inr+DPE promoters could be common to metazoan species. Using reporter assays we demonstrate the contribution of the identified downstream positions to the function of multiple human promoters. Furthermore, we show that alteration of the spacing between the Inr and PDP by two nucleotides results in reduced promoter activity, suggesting a spacing dependency of the newly discovered human PDP on the Inr. Taken together, our strategy identified novel functional downstream positions within human core promoters, supporting the existence of DPE-like motifs in human promoters. Transcription of genes by the RNA polymerase II enzyme initiates at a genomic region termed the core promoter. The core promoter is a regulatory region that may contain diverse short DNA sequence motifs/elements that confer specific properties to it. Interestingly, core promoter motifs can be located both upstream and downstream of the transcription start site. Variable compositions of core promoter elements were identified. The initiator (Inr) motif and the downstream core promoter element (DPE) is a combination of elements that has been identified and extensively characterized in fruit flies. Although a few Inr+DPE -containing human promoters were identified, the presence of transcriptionally important downstream core promoter positions within human promoters has been a matter of controversy in the literature. Here, using a newly-designed motif discovery strategy, we discovered preferred downstream positions in human promoters that resemble fruit fly DPE. Clustering of the corresponding sequence motifs in eight additional species indicated that such promoters could be common to multicellular non-plant organisms. Importantly, functional characterization of the newly discovered preferred downstream positions supports the existence of Inr+DPE-containing promoters in human genes.
Collapse
Affiliation(s)
- René Dreos
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Anna Sloutskin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Nati Malachi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Diana Ideses
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Philipp Bucher
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
- * E-mail: (PB); (TJG)
| | - Tamar Juven-Gershon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- * E-mail: (PB); (TJG)
| |
Collapse
|
45
|
Pimmett VL, Dejean M, Fernandez C, Trullo A, Bertrand E, Radulescu O, Lagha M. Quantitative imaging of transcription in living Drosophila embryos reveals the impact of core promoter motifs on promoter state dynamics. Nat Commun 2021; 12:4504. [PMID: 34301936 PMCID: PMC8302612 DOI: 10.1038/s41467-021-24461-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/31/2021] [Indexed: 11/09/2022] Open
Abstract
Genes are expressed in stochastic transcriptional bursts linked to alternating active and inactive promoter states. A major challenge in transcription is understanding how promoter composition dictates bursting, particularly in multicellular organisms. We investigate two key Drosophila developmental promoter motifs, the TATA box (TATA) and the Initiator (INR). Using live imaging in Drosophila embryos and new computational methods, we demonstrate that bursting occurs on multiple timescales ranging from seconds to minutes. TATA-containing promoters and INR-containing promoters exhibit distinct dynamics, with one or two separate rate-limiting steps respectively. A TATA box is associated with long active states, high rates of polymerase initiation, and short-lived, infrequent inactive states. In contrast, the INR motif leads to two inactive states, one of which relates to promoter-proximal polymerase pausing. Surprisingly, the model suggests pausing is not obligatory, but occurs stochastically for a subset of polymerases. Overall, our results provide a rationale for promoter switching during zygotic genome activation.
Collapse
Affiliation(s)
- Virginia L Pimmett
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Matthieu Dejean
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Carola Fernandez
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Antonio Trullo
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
- Institut de Génétique Humaine, Univ Montpellier, CNRS, Montpellier, France
| | - Ovidiu Radulescu
- Laboratory of Pathogen Host Interactions, Univ Montpellier, CNRS, Montpellier, France
| | - Mounia Lagha
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
46
|
Maróti Z, Tombácz D, Prazsák I, Moldován N, Csabai Z, Torma G, Balázs Z, Kalmár T, Dénes B, Snyder M, Boldogkői Z. Time-course transcriptome analysis of host cell response to poxvirus infection using a dual long-read sequencing approach. BMC Res Notes 2021; 14:239. [PMID: 34167576 PMCID: PMC8223271 DOI: 10.1186/s13104-021-05657-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/15/2021] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE In this study, we applied two long-read sequencing (LRS) approaches, including single-molecule real-time and nanopore-based sequencing methods to investigate the time-lapse transcriptome patterns of host gene expression as a response to Vaccinia virus infection. Transcriptomes determined using short-read sequencing approaches are incomplete because these platforms are inefficient or fail to distinguish between polycistronic RNAs, transcript isoforms, transcriptional start sites, as well as transcriptional readthroughs and overlaps. Long-read sequencing is able to read full-length nucleic acids and can therefore be used to assemble complete transcriptome atlases. RESULTS In this work, we identified a number of novel transcripts and transcript isoforms of Chlorocebus sabaeus. Additionally, analysis of the most abundant 768 host transcripts revealed a significant overrepresentation of the class of genes in the "regulation of signaling receptor activity" Gene Ontology annotation as a result of viral infection.
Collapse
Affiliation(s)
- Zoltán Maróti
- Department of Pediatrics, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Dóra Tombácz
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - István Prazsák
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Norbert Moldován
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsolt Csabai
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gábor Torma
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsolt Balázs
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Tibor Kalmár
- Department of Pediatrics, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Béla Dénes
- Veterinary Diagnostic Directorate of the National Food Chain Safety Office, Budapest, Hungary
| | - Michael Snyder
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Zsolt Boldogkői
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| |
Collapse
|
47
|
Brázda V, Bartas M, Bowater RP. Evolution of Diverse Strategies for Promoter Regulation. Trends Genet 2021; 37:730-744. [PMID: 33931265 DOI: 10.1016/j.tig.2021.04.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/15/2022]
Abstract
DNA is fundamentally important for all cellular organisms due to its role as a store of hereditary genetic information. The precise and accurate regulation of gene transcription depends primarily on promoters, which vary significantly within and between genomes. Some promoters are rich in specific types of bases, while others have more varied, complex sequence characteristics. However, it is not only base sequence but also epigenetic modifications and altered DNA structure that regulate promoter activity. Significantly, many promoters across all organisms contain sequences that can form intrastrand hairpins (cruciforms) or four-stranded structures (G-quadruplex or i-motif). In this review we integrate recent studies on promoter regulation that highlight the importance of DNA structure in the evolutionary adaptation of promoter sequences.
Collapse
Affiliation(s)
- Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Martin Bartas
- Department of Biology and Ecology/Institute of Environmental Technologies, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Richard P Bowater
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| |
Collapse
|
48
|
What do Transcription Factors Interact With? J Mol Biol 2021; 433:166883. [PMID: 33621520 DOI: 10.1016/j.jmb.2021.166883] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/11/2022]
Abstract
Although we have made significant progress, we still possess a limited understanding of how genomic and epigenomic information directs gene expression programs through sequence-specific transcription factors (TFs). Extensive research has settled on three general classes of TF targets in metazoans: promoter accessibility via chromatin regulation (e.g., SAGA), assembly of the general transcription factors on promoter DNA (e.g., TFIID), and recruitment of RNA polymerase (Pol) II (e.g., Mediator) to establish a transcription pre-initiation complex (PIC). Here we discuss TFs and their targets. We also place this in the context of our current work with Saccharomyces (yeast), where we find that promoters typically lack an architecture that supports TF function. Moreover, yeast promoters that support TF binding also display interactions with cofactors like SAGA and Mediator, but not TFIID. It is unknown to what extent all genes in metazoans require TFs and their cofactors.
Collapse
|
49
|
Yang Q, Lyu X, Zhao F, Liu Y. Effects of codon usage on gene expression are promoter context dependent. Nucleic Acids Res 2021; 49:818-831. [PMID: 33410890 PMCID: PMC7826287 DOI: 10.1093/nar/gkaa1253] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022] Open
Abstract
Codon usage bias is a universal feature of all genomes. Although codon usage has been shown to regulate mRNA and protein levels by influencing mRNA decay and transcription in eukaryotes, little or no genome-wide correlations between codon usage and mRNA levels are detected in mammalian cells, raising doubt on the significance of codon usage effect on gene expression. Here we show that gene-specific regulation reduces the genome-wide codon usage and mRNA correlations: Constitutively expressed genes exhibit much higher genome-wide correlations than differentially expressed genes from fungi to human cells. Using Drosophila S2 cells as a model system, we showed that the effect of codon usage on mRNA expression level is promoter-dependent. Regions downstream of the core promoters of differentially expressed genes can repress the codon usage effects on mRNA expression. An element in the Hsp70 promoter was identified to be necessary and sufficient for this inhibitory effect. The promoter-dependent codon usage effects on mRNA levels are regulated at the transcriptional level through modulation of histone modifications, nucleosome densities and premature termination. Together, our results demonstrate that promoters play a major role in determining whether codon usage influences gene expression and further establish the transcription-dependent codon usage effects on gene expression.
Collapse
Affiliation(s)
- Qian Yang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA
| | - Xueliang Lyu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA.,State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Fangzhou Zhao
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA
| | - Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA
| |
Collapse
|
50
|
Lin YJ, Chen AN, Yin XJ, Li C, Lin CC. Human Microfibrillar-Associated Protein 4 (MFAP4) Gene Promoter: A TATA-Less Promoter That Is Regulated by Retinol and Coenzyme Q10 in Human Fibroblast Cells. Int J Mol Sci 2020; 21:ijms21218392. [PMID: 33182307 PMCID: PMC7664931 DOI: 10.3390/ijms21218392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/31/2022] Open
Abstract
Elastic fibers are one of the major structural components of the extracellular matrix (ECM) in human connective tissues. Among these fibers, microfibrillar-associated protein 4 (MFAP4) is one of the most important microfibril-associated glycoproteins. MFAP4 has been found to bind with elastin microfibrils and interact directly with fibrillin-1, and then aid in elastic fiber formation. However, the regulations of the human MFAP4 gene are not so clear. Therefore, in this study, we firstly aimed to analyze and identify the promoter region of the human MFAP4 gene. The results indicate that the human MFAP4 promoter is a TATA-less promoter with tissue- and species-specific properties. Moreover, the promoter can be up-regulated by retinol and coenzyme Q10 (coQ10) in Detroit 551 cells.
Collapse
Affiliation(s)
- Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung 40447, Taiwan;
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - An-Ni Chen
- Department of Cosmetic Science, Providence University, Taichung 43301, Taiwan;
| | - Xi Jiang Yin
- Advanced Materials Technology Centre, Singapore Polytechnic, Singapore 139651, Singapore; (X.J.Y.); (C.L.)
| | - Chunxiang Li
- Advanced Materials Technology Centre, Singapore Polytechnic, Singapore 139651, Singapore; (X.J.Y.); (C.L.)
| | - Chih-Chien Lin
- Department of Cosmetic Science, Providence University, Taichung 43301, Taiwan;
- Correspondence: ; Tel.: +886-4-26328001; Fax: +886-4-26311167
| |
Collapse
|