1
|
Dowling R, Kolokotronis SO, Thompson AB. Zika Virus Infection Knowledge and Communication Preferences Among Women of Reproductive Age in Central Brooklyn, New York: A Thematic Analysis. J Community Health 2024; 49:1044-1053. [PMID: 38824473 DOI: 10.1007/s10900-024-01365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
The 2016 outbreak of Zika virus (ZIKV) infected millions and resulted in thousands of infants born with malformations. Though the clusters of severe birth defects resulting from this outbreak have subsided, ZIKV continues to be a concern throughout much of Latin America and the Caribbean. Travel and sexual intercourse remain the dominant transmission risk factors for women of reproductive age and their partners. This is particularly true for communities in Brooklyn, New York, that comprise large immigrant and foreign-born populations. Practitioners of public health understand little about how women at risk for ZIKV are most likely to receive information about the virus or who they trust most to provide that information. In the context of five focus group discussions, this study explored the knowledge and communication preferences of 20 women of reproductive age in Central Brooklyn. Results derived from a thematic analysis suggest that while most women are familiar with mosquitos as ZIKV vectors, knowledge of sexual transmission is considerably lower. Many respondents believe that only women who are pregnant or trying to become pregnant are at risk, and public health agencies, such as the U.S. Centers for Disease Control and Prevention, remain the most trusted sources of information. These findings can support more effective communication about the risks of ZIKV infection and other vector-borne diseases to women in New York City and similar urban communities.
Collapse
Affiliation(s)
- Russell Dowling
- Department of Community Health Sciences, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY, USA.
| | - Sergios-Orestis Kolokotronis
- Department of Epidemiology and Biostatistics, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- Division of Infectious Diseases, Department of Medicine, College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- Department of Cell Biology, College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- Institute for Genomics in Health, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Azure B Thompson
- Department of Community Health Sciences, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| |
Collapse
|
2
|
Tannis A, Newton S, Rico A, Gonzalez M, Benavides M, Ricaldi JN, Rodriguez H, Zambrano LD, Daza M, Godfred-Cato S, Thomas JD, Acosta J, Maniatis P, Daniels JB, Burkel V, Ailes EC, Valencia D, Gilboa SM, Jamieson DJ, Mercado M, Villanueva JM, Honein MA, Ospina ML, Tong VT. Birth Outcomes Related to Prenatal Zika, Dengue, and Other Flavivirus Infections in the Zika en Embarazadas y Niños Prospective Cohort Study in Colombia. Am J Trop Med Hyg 2024; 111:622-626. [PMID: 38981499 PMCID: PMC11376175 DOI: 10.4269/ajtmh.23-0873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/29/2024] [Indexed: 07/11/2024] Open
Abstract
Zika virus (ZIKV) infection in pregnancy is associated with severe abnormalities of the brain and eye and other adverse outcomes. Zika en Embarazadas y Niños was a prospective cohort study conducted in multiple Colombian cities that enrolled pregnant women in their first trimester. Specimens collected from pregnant women (n = 1,519) during February 2017-September 2018 and their infants (n = 1,080) during June 2017-March 2019 were tested for prenatal ZIKV infection by nucleic acid amplification tests or IgM antibody testing. Zika virus infection in pregnancy was present in 3.2% of pregnant women (incidence rate [IR] per 1,000 person-months = 5.9, 95% CI: 4.3-7.8). Presumptive ZIKV infection was present in 0.8% of infants (IR = 1.6, 95% CI: 0.7-2.9). Five percent of infants with prenatal ZIKV exposure or infection presented with Zika-associated abnormalities; 4.7% were small for gestational age. Understanding the risk of ZIKV infection during pregnancy and associated adverse outcomes can help inform counseling efforts.
Collapse
Affiliation(s)
- Ayzsa Tannis
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia
- Eagle Global Scientific, LLC, San Antonio, Texas
| | - Suzanne Newton
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Angelica Rico
- Division of Research in Public Health, National Institute of Health, Bogota, Colombia
| | - Maritza Gonzalez
- Division of Research in Public Health, National Institute of Health, Bogota, Colombia
| | - Monica Benavides
- Maternal and Perinatal Research Division, National Institute of Health, Bogota, Colombia
| | - Jessica N Ricaldi
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Helena Rodriguez
- Division of Research in Public Health, National Institute of Health, Bogota, Colombia
| | - Laura D Zambrano
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Marcela Daza
- Maternal and Perinatal Research Division, National Institute of Health, Bogota, Colombia
| | - Shana Godfred-Cato
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jennifer D Thomas
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Panagiotis Maniatis
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jonathan B Daniels
- Office of Readiness and Response, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Veronica Burkel
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia
- Eagle Global Scientific, LLC, San Antonio, Texas
| | - Elizabeth C Ailes
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Diana Valencia
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Suzanne M Gilboa
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Marcela Mercado
- Maternal and Perinatal Research Division, National Institute of Health, Bogota, Colombia
| | - Julie M Villanueva
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Margaret A Honein
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Martha L Ospina
- Global Health Department, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, Florida
- Department of Health Sciences, Simon Boliviar University, Bogota, Colombia
| | - Van T Tong
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
3
|
Liu Y, Wang M, Yu N, Zhao W, Wang P, Zhang H, Sun W, Jin N, Lu H. Trends and insights in dengue virus research globally: a bibliometric analysis (1995-2023). J Transl Med 2024; 22:818. [PMID: 39227968 PMCID: PMC11370300 DOI: 10.1186/s12967-024-05561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Dengue virus (DENV) is the most widespread arbovirus. The World Health Organization (WHO) declared dengue one of the top 10 global health threats in 2019. However, it has been underrepresented in bibliometric analyses. This study employs bibliometric analysis to identify research hotspots and trends, offering a comprehensive overview of the current research dynamics in this field. RESULTS We present a report spanning from 1995 to 2023 that provides a unique longitudinal analysis of Dengue virus (DENV) research, revealing significant trends and shifts not extensively covered in previous literature. A total of 10,767 DENV-related documents were considered, with a notable increase in publications, peaking at 747 articles in 2021. Plos Neglected Tropical Diseases has become the leading journal in Dengue virus research, publishing 791 articles in this field-the highest number recorded. Our bibliometric analysis provides a comprehensive mapping of DENV research across multiple dimensions, including vector ecology, virology, and emerging therapies. The study delineates a complex network of immune response genes, including IFNA1, DDX58, IFNB1, STAT1, IRF3, and NFKB1, highlighting significant trends and emerging themes, particularly the impacts of climate change and new outbreaks on disease transmission. Our findings detail the progress and current status of key vaccine candidates, including the licensed Dengvaxia, newer vaccines such as Qdenga and TV003, and updated clinical trials. The study underscores significant advancements in antiviral therapies and vector control strategies for dengue, highlighting innovative drug candidates such as AT-752 and JNJ-1802, and the potential of drug repurposing with agents like Ribavirin, Remdesivir, and Lopinavir. Additionally, it discusses biological control methods, including the introduction of Wolbachia-infected mosquitoes and gene-editing technologies. CONCLUSION This bibliometric study underscores the critical role of interdisciplinary collaboration in advancing DENV research, identifying key trends and areas needing further exploration, including host-virus dynamics, the development and application of antiviral drugs and vaccines, and the use of artificial intelligence. It advocates for strengthened partnerships across various disciplines to effectively tackle the challenges posed by DENV.
Collapse
Affiliation(s)
- Yumeng Liu
- College of Animal Science and Technology, Guangxi University, Nanning, China.
| | - MengMeng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ning Yu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wenxin Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Peng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - He Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wenchao Sun
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China.
| | - Ningyi Jin
- College of Animal Science and Technology, Guangxi University, Nanning, China.
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Huijun Lu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| |
Collapse
|
4
|
Oyadomari WY, Christoff RR, Nani JV, Rabello T, Oliveira V, Higa LM, Garcez PP, Hayashi MAF. Infection by zika virus increase angiotensin I-converting enzyme activity in mouse brain. Biochimie 2024:S0300-9084(24)00160-3. [PMID: 38960371 DOI: 10.1016/j.biochi.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/06/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Congenital zika virus syndrome (CZS) has become a significant worldwide concern since the sudden rise of microcephaly related to zika virus (ZIKV) in Brazil. Primarily transmitted by Aedes mosquitoes, ZIKV shares serologic similarities with dengue virus (DENV), complicating the diagnosis and/or clinical management. The Angiotensin I-Converting Enzyme (ACE) was associated with either neuroprotective or anti-inflammatory properties in the central nervous system (CNS). The possible role(s) of ACE in these two flaviviruses infection remain largely unexplored. In this study, we evaluate ACE activity in the brain of ZIKV- or DENV-infected mice, both compared to MOCK, showing about 30 % increased ACE activity only in ZIKV-infected mice (p = 0.024), while no change was noticed in brain from DENV-infected animals (p = 0.888). In addition, the treatment with interferon beta (IFNβ), under conditions previously demonstrated to rescue the normal size of microcephalic brains determined by ZIKV infection, also restored ACE activity in ZIKV-infected animals to levels close to that of the MOCK control group. Although inflammatory responses expected for either ZIKV or DENV infections, only ZIKV was associated with microcephaly, as well as with increased ACE activity and reversion by treatment with IFNβ. Furthermore, this increase in ACE activity was observed only after intracerebroventricular (ICV) injection (F (2, 16) = 7.907, p = 0.004), but not for intraperitoneal (IP) administration of ZIKV (F (2, 26) = 1.996, p = 0.156), suggesting that the observed central ACE activity modulation may be associated with the presence of this specific flavivirus in the brain.
Collapse
Affiliation(s)
- William Y Oyadomari
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil
| | - Raissa R Christoff
- Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro (UFRJ), RJ, Brazil
| | - João V Nani
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil
| | - Tailene Rabello
- Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro (UFRJ), RJ, Brazil
| | - Vitor Oliveira
- Department of Biophysics, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil
| | - Luiza M Higa
- Instituto de Biologia, Universidade Federal Do Rio de Janeiro (UFRJ), RJ, Brazil
| | - Patrícia P Garcez
- Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro (UFRJ), RJ, Brazil
| | - Mirian A F Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil.
| |
Collapse
|
5
|
Duarte G, Braga AR, Kreitchmann R, Menezes MLB, Miranda AEB, Travassos AGA, Melli PPDS, Nomura RMY, da Silva AL, Wender MCO. Prevention, diagnosis, and treatment protocol of dengue during pregnancy and the postpartum period. REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRÍCIA 2024; 46:e-rbgo73. [PMID: 38994458 PMCID: PMC11239217 DOI: 10.61622/rbgo/2024rbgo73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Affiliation(s)
- Geraldo Duarte
- Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo Ribeirão PretoSP Brazil Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Antonio Rodrigues Braga
- Faculdade de Medicina Universidade Federal do Rio de Janeiro Rio de JaneiroRJ Brazil Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Regis Kreitchmann
- Universidade Federal de Ciências da Saúde de Porto Alegre Porto AlegreRS Brazil Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Maria Luiza Bezerra Menezes
- Faculdade de Ciências Médicas Universidade de Pernambuco RecifePE Brazil Faculdade de Ciências Médicas, Universidade de Pernambuco, Recife, PE, Brazil
| | - Angélica Espinosa Barbosa Miranda
- Faculdade de Medicina Universidade Federal do Espírito Santo VitóriaES Brazil Faculdade de Medicina, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Ana Gabriela Alvares Travassos
- Faculdade de Medicina Universidade do Estado da Bahia SalvadorBA Brazil Faculdade de Medicina, Universidade do Estado da Bahia, Salvador, BA, Brazil
| | - Patrícia Pereira Dos Santos Melli
- Hospital das Clínicas Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo Ribeirão PretoSP Brazil Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Roseli Mieko Yamamoto Nomura
- Escola Paulista de Medicina Universidade Federal de São Paulo São PauloSP Brazil Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Faculdade de Medicina Universidade de São Paulo São PauloSP Brazil Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Agnaldo Lopes da Silva
- Universidade Federal de Minas Gerais Belo HorizonteMG Brazil Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria Celeste Osório Wender
- Universidade Federal do Rio Grande do Sul Porto AlegreRS Brazil Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Madewell ZJ, Hernandez-Romieu AC, Wong JM, Zambrano LD, Volkman HR, Perez-Padilla J, Rodriguez DM, Lorenzi O, Espinet C, Munoz-Jordan J, Frasqueri-Quintana VM, Rivera-Amill V, Alvarado-Domenech LI, Sainz D, Bertran J, Paz-Bailey G, Adams LE. Sentinel Enhanced Dengue Surveillance System - Puerto Rico, 2012-2022. MORBIDITY AND MORTALITY WEEKLY REPORT. SURVEILLANCE SUMMARIES (WASHINGTON, D.C. : 2002) 2024; 73:1-29. [PMID: 38805389 PMCID: PMC11152364 DOI: 10.15585/mmwr.ss7303a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Problem/Condition Dengue is the most prevalent mosquitoborne viral illness worldwide and is endemic in Puerto Rico. Dengue's clinical spectrum can range from mild, undifferentiated febrile illness to hemorrhagic manifestations, shock, multiorgan failure, and death in severe cases. The disease presentation is nonspecific; therefore, various other illnesses (e.g., arboviral and respiratory pathogens) can cause similar clinical symptoms. Enhanced surveillance is necessary to determine disease prevalence, to characterize the epidemiology of severe disease, and to evaluate diagnostic and treatment practices to improve patient outcomes. The Sentinel Enhanced Dengue Surveillance System (SEDSS) was established to monitor trends of dengue and dengue-like acute febrile illnesses (AFIs), characterize the clinical course of disease, and serve as an early warning system for viral infections with epidemic potential. Reporting Period May 2012-December 2022. Description of System SEDSS conducts enhanced surveillance for dengue and other relevant AFIs in Puerto Rico. This report includes aggregated data collected from May 2012 through December 2022. SEDSS was launched in May 2012 with patients with AFIs from five health care facilities enrolled. The facilities included two emergency departments in tertiary acute care hospitals in the San Juan-Caguas-Guaynabo metropolitan area and Ponce, two secondary acute care hospitals in Carolina and Guayama, and one outpatient acute care clinic in Ponce. Patients arriving at any SEDSS site were eligible for enrollment if they reported having fever within the past 7 days. During the Zika epidemic (June 2016-June 2018), patients were eligible for enrollment if they had either rash and conjunctivitis, rash and arthralgia, or fever. Eligibility was expanded in April 2020 to include reported cough or shortness of breath within the past 14 days. Blood, urine, nasopharyngeal, and oropharyngeal specimens were collected at enrollment from all participants who consented. Diagnostic testing for dengue virus (DENV) serotypes 1-4, chikungunya virus, Zika virus, influenza A and B viruses, SARS-CoV-2, and five other respiratory viruses was performed by the CDC laboratory in San Juan. Results During May 2012-December 2022, a total of 43,608 participants with diagnosed AFI were enrolled in SEDSS; a majority of participants (45.0%) were from Ponce. During the surveillance period, there were 1,432 confirmed or probable cases of dengue, 2,293 confirmed or probable cases of chikungunya, and 1,918 confirmed or probable cases of Zika. The epidemic curves of the three arboviruses indicate dengue is endemic; outbreaks of chikungunya and Zika were sporadic, with case counts peaking in late 2014 and 2016, respectively. The majority of commonly identified respiratory pathogens were influenza A virus (3,756), SARS-CoV-2 (1,586), human adenovirus (1,550), respiratory syncytial virus (1,489), influenza B virus (1,430), and human parainfluenza virus type 1 or 3 (1,401). A total of 5,502 participants had confirmed or probable arbovirus infection, 11,922 had confirmed respiratory virus infection, and 26,503 had AFI without any of the arboviruses or respiratory viruses examined. Interpretation Dengue is endemic in Puerto Rico; however, incidence rates varied widely during the reporting period, with the last notable outbreak occurring during 2012-2013. DENV-1 was the predominant virus during the surveillance period; sporadic cases of DENV-4 also were reported. Puerto Rico experienced large outbreaks of chikungunya that peaked in 2014 and of Zika that peaked in 2016; few cases of both viruses have been reported since. Influenza A and respiratory syncytial virus seasonality patterns are distinct, with respiratory syncytial virus incidence typically reaching its annual peak a few weeks before influenza A. The emergence of SARS-CoV-2 led to a reduction in the circulation of other acute respiratory viruses. Public Health Action SEDSS is the only site-based enhanced surveillance system designed to gather information on AFI cases in Puerto Rico. This report illustrates that SEDSS can be adapted to detect dengue, Zika, chikungunya, COVID-19, and influenza outbreaks, along with other seasonal acute respiratory viruses, underscoring the importance of recognizing signs and symptoms of relevant diseases and understanding transmission dynamics among these viruses. This report also describes fluctuations in disease incidence, highlighting the value of active surveillance, testing for a panel of acute respiratory viruses, and the importance of flexible and responsive surveillance systems in addressing evolving public health challenges. Various vector control strategies and vaccines are being considered or implemented in Puerto Rico, and data from ongoing trials and SEDSS might be integrated to better understand epidemiologic factors underlying transmission and risk mitigation approaches. Data from SEDSS might guide sampling strategies and implementation of future trials to prevent arbovirus transmission, particularly during the expansion of SEDSS throughout the island to improve geographic representation.
Collapse
|
7
|
Srichawla BS, Manan MR, Kipkorir V, Dhali A, Diebel S, Sawant T, Zia S, Carrion-Alvarez D, Suteja RC, Nurani K, Găman MA. Neuroinvasion of emerging and re-emerging arboviruses: A scoping review. SAGE Open Med 2024; 12:20503121241229847. [PMID: 38711470 PMCID: PMC11072077 DOI: 10.1177/20503121241229847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/16/2024] [Indexed: 05/08/2024] Open
Abstract
Background Arboviruses are RNA viruses and some have the potential to cause neuroinvasive disease and are a growing threat to global health. Objectives Our objective is to identify and map all aspects of arbovirus neuroinvasive disease, clarify key concepts, and identify gaps within our knowledge with appropriate future directions related to the improvement of global health. Methods Sources of Evidence: A scoping review of the literature was conducted using PubMed, Scopus, ScienceDirect, and Hinari. Eligibility Criteria: Original data including epidemiology, risk factors, neurological manifestations, neuro-diagnostics, management, and preventive measures related to neuroinvasive arbovirus infections was obtained. Sources of evidence not reporting on original data, non-English, and not in peer-reviewed journals were removed. Charting Methods: An initial pilot sample of 30 abstracts were reviewed by all authors and a Cohen's kappa of κ = 0.81 (near-perfect agreement) was obtained. Records were manually reviewed by two authors using the Rayyan QCRI software. Results A total of 171 records were included. A wide array of neurological manifestations can occur most frequently, including parkinsonism, encephalitis/encephalopathy, meningitis, flaccid myelitis, and Guillain-Barré syndrome. Magnetic resonance imaging of the brain often reveals subcortical lesions, sometimes with diffusion restriction consistent with acute ischemia. Vertical transmission of arbovirus is most often secondary to the Zika virus. Neurological manifestations of congenital Zika syndrome, include microcephaly, failure to thrive, intellectual disability, and seizures. Cerebrospinal fluid analysis often shows lymphocytic pleocytosis, elevated albumin, and protein consistent with blood-brain barrier dysfunction. Conclusions Arbovirus infection with neurological manifestations leads to increased morbidity and mortality. Risk factors for disease include living and traveling in an arbovirus endemic zone, age, pregnancy, and immunosuppressed status. The management of neuroinvasive arbovirus disease is largely supportive and focuses on specific neurological complications. There is a need for therapeutics and currently, management is based on disease prevention and limiting zoonosis.
Collapse
Affiliation(s)
- Bahadar S Srichawla
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Vincent Kipkorir
- Department of Human Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Arkadeep Dhali
- Department of Internal Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Sebastian Diebel
- Department of Family Medicine, Northern Ontario School of Medicine University, Sudbury, ON, Canada
| | - Tirtha Sawant
- Department of Neurology, Spartan Health Sciences University, Spartan Drive St, Saint Lucia
| | - Subtain Zia
- Department of Infectious Diseases, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Richard C Suteja
- Faculty of Medicine, Udayana University, Kampus Bukit, Jl, Raya Kampus Unud Jimbaran, Kec, Kuta Sel, Kabupaten Badung, Bukit Jimbaran, Bali, Indonesia
| | - Khulud Nurani
- Department of Human Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Mihnea-Alexandru Găman
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, București, Romania
- Bucharest, Romania and Department of Hematology, Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, București, Romania
| |
Collapse
|
8
|
Frazer JL, Norton R. Dengue: A review of laboratory diagnostics in the vaccine age. J Med Microbiol 2024; 73. [PMID: 38722305 DOI: 10.1099/jmm.0.001833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024] Open
Abstract
Background. Dengue is an important arboviral infection of considerable public health significance. It occurs in a wide global belt within a variety of tropical regions. The timely laboratory diagnosis of Dengue infection is critical to inform both clinical management and an appropriate public health response. Vaccination against Dengue virus is being introduced in some areas.Discussion. Appropriate diagnostic strategies will vary between laboratories depending on the available resources and skills. Diagnostic methods available include viral culture, the serological detection of Dengue-specific antibodies in using enzyme immunoassays (EIAs), microsphere immunoassays, haemagglutination inhibition or in lateral flow point of care tests. The results of antibody tests may be influenced by prior vaccination and exposure to other flaviviruses. The detection of non-structural protein 1 in serum (NS1) has improved the early diagnosis of Dengue and is available in point-of-care assays in addition to EIAs. Direct detection of viral RNA from blood by PCR is more sensitive than NS1 antigen detection but requires molecular skills and resources. An increasing variety of isothermal nucleic acid detection methods are in development. Timing of specimen collection and choice of test is critical to optimize diagnostic accuracy. Metagenomics and the direct detection by sequencing of viral RNA from blood offers the ability to rapidly type isolates for epidemiologic purposes.Conclusion. The impact of vaccination on immune response must be recognized as it will impact test interpretation and diagnostic algorithms.
Collapse
Affiliation(s)
| | - Robert Norton
- Pathology Queensland, Townsville QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Gonzales Y Tucker RD, Addepalli A. Fever and Rash. Emerg Med Clin North Am 2024; 42:303-334. [PMID: 38641393 DOI: 10.1016/j.emc.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Infectious causes of fever and rash pose a diagnostic challenge for the emergency provider. It is often difficult to discern rashes associated with rapidly progressive and life-threatening infections from benign exanthems, which comprise the majority of rashes seen in the emergency department. Physicians must also consider serious noninfectious causes of fever and rash. A correct diagnosis depends on an exhaustive history and head-to-toe skin examination as most emergent causes of fever and rash remain clinical diagnoses. A provisional diagnosis and immediate treatment with antimicrobials and supportive care are usually required prior to the return of confirmatory laboratory testing.
Collapse
Affiliation(s)
- Richard Diego Gonzales Y Tucker
- Department of Emergency Medicine, University of California San Francisco, Box 0209, 505 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Emergency Medicine, Alameda Health System - Wilma Chan Highland Hospital, 1411 E 31st Street, Oakland, CA 94602, USA.
| | - Aravind Addepalli
- Department of Emergency Medicine, University of California San Francisco, Box 0209, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
10
|
Wongsawat J, Thamthitiwat S, Hicks VJ, Uttayamakul S, Teepruksa P, Sawatwong P, Skaggs B, Mock PA, MacArthur JR, Suya I, Sapchookul P, Kitsutani P, Lo TQ, Vachiraphan A, Kovavisarach E, Rhee C, Darun P, Saepueng K, Waisaen C, Jampan D, Sriboonrat P, Palanuwong B, Sukbut P, Areechokchai D, Pittayawonganon C, Iamsirithaworn S, Bloss E, Rao CY. Characteristics, risk factors, and outcomes related to Zika virus infection during pregnancy in Northeastern Thailand: A prospective pregnancy cohort study, 2018-2020. PLoS Negl Trop Dis 2024; 18:e0012176. [PMID: 38758964 PMCID: PMC11139345 DOI: 10.1371/journal.pntd.0012176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/30/2024] [Accepted: 04/29/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND In response to the 2015-2016 Zika virus (ZIKV) outbreak and the causal relationship established between maternal ZIKV infection and adverse infant outcomes, we conducted a cohort study to estimate the incidence of ZIKV infection in pregnancy and assess its impacts in women and infants. METHODOLOGY/PRINCIPAL FINDINGS From May 2018-January 2020, we prospectively followed pregnant women recruited from 134 participating hospitals in two non-adjacent provinces in northeastern Thailand. We collected demographic, clinical, and epidemiologic data and blood and urine at routine antenatal care visits until delivery. ZIKV infections were confirmed by real-time reverse transcriptase polymerase chain reaction (rRT-PCR). Specimens with confirmed ZIKV underwent whole genome sequencing. Among 3,312 women enrolled, 12 (0.36%) had ZIKV infections, of which two (17%) were detected at enrollment. Ten (83%, 3 in 2nd and 7 in 3rd trimester) ZIKV infections were detected during study follow-up, resulting in an infection rate of 0.15 per 1,000 person-weeks (95% CI: 0.07-0.28). The majority (11/12, 91.7%) of infections occurred in one province. Persistent ZIKV viremia (42 days) was found in only one woman. Six women with confirmed ZIKV infections were asymptomatic until delivery. Sequencing of 8 ZIKV isolates revealed all were of Asian lineage. All 12 ZIKV infected women gave birth to live, full-term infants; the only observed adverse birth outcome was low birth weight in one (8%) infant. Pregnancies in 3,300 ZIKV-rRT-PCR-negative women were complicated by 101 (3%) fetal deaths, of which 67 (66%) had miscarriages and 34 (34%) had stillbirths. There were no differences between adverse fetal or birth outcomes of live infants born to ZIKV-rRT-PCR-positive mothers compared to live infants born to ZIKV-rRT-PCR-negative mothers. CONCLUSIONS/SIGNIFICANCE Confirmed ZIKV infections occurred infrequently in this large pregnancy cohort and observed adverse maternal and birth outcomes did not differ between mothers with and without confirmed infections.
Collapse
Affiliation(s)
- Jurai Wongsawat
- Thailand Ministry of Public Health, Department of Disease Control, Nonthaburi, Thailand
| | - Somsak Thamthitiwat
- Thailand Ministry of Public Health–US Centers for Disease Control and Prevention Collaboration, Nonthaburi, Thailand
| | - Victoria J. Hicks
- US Centers for Disease Control and Prevention, Division of Global Health Protection, Atlanta, Georgia, United States of America
| | - Sumonmal Uttayamakul
- Thailand Ministry of Public Health, Department of Disease Control, Nonthaburi, Thailand
| | - Phanthaneeya Teepruksa
- Thailand Ministry of Public Health–US Centers for Disease Control and Prevention Collaboration, Nonthaburi, Thailand
| | - Pongpun Sawatwong
- Thailand Ministry of Public Health–US Centers for Disease Control and Prevention Collaboration, Nonthaburi, Thailand
| | - Beth Skaggs
- Thailand Ministry of Public Health–US Centers for Disease Control and Prevention Collaboration, Nonthaburi, Thailand
- US Centers for Disease Control and Prevention, Division of Global Health Protection, Atlanta, Georgia, United States of America
| | - Philip A. Mock
- Thailand Ministry of Public Health–US Centers for Disease Control and Prevention Collaboration, Nonthaburi, Thailand
| | - John R. MacArthur
- Thailand Ministry of Public Health–US Centers for Disease Control and Prevention Collaboration, Nonthaburi, Thailand
- US Centers for Disease Control and Prevention, Division of Global Health Protection, Atlanta, Georgia, United States of America
| | - Inthira Suya
- Thailand Ministry of Public Health–US Centers for Disease Control and Prevention Collaboration, Nonthaburi, Thailand
| | - Patranuch Sapchookul
- Thailand Ministry of Public Health–US Centers for Disease Control and Prevention Collaboration, Nonthaburi, Thailand
| | - Paul Kitsutani
- Thailand Ministry of Public Health–US Centers for Disease Control and Prevention Collaboration, Nonthaburi, Thailand
- US Centers for Disease Control and Prevention, Division of Global Health Protection, Atlanta, Georgia, United States of America
| | - Terrence Q. Lo
- US Centers for Disease Control and Prevention, Division of Global Health Protection, Atlanta, Georgia, United States of America
| | - Apichart Vachiraphan
- Thailand Ministry of Public Health, Department of Disease Control, Nonthaburi, Thailand
| | - Ekachai Kovavisarach
- Thailand Ministry of Public Health, Department of Medical Services, Nonthaburi, Thailand
| | - Chulwoo Rhee
- US Centers for Disease Control and Prevention, Division of Global Health Protection, Atlanta, Georgia, United States of America
| | - Pamorn Darun
- Bueng Kan Provincial Public Health Office, Bueng Kan, Thailand
| | | | - Chamnan Waisaen
- Bueng Kan Provincial Public Health Office, Bueng Kan, Thailand
| | | | | | | | | | - Darin Areechokchai
- Thailand Ministry of Public Health, Department of Disease Control, Nonthaburi, Thailand
| | | | - Sopon Iamsirithaworn
- Thailand Ministry of Public Health, Department of Disease Control, Nonthaburi, Thailand
| | - Emily Bloss
- Thailand Ministry of Public Health–US Centers for Disease Control and Prevention Collaboration, Nonthaburi, Thailand
- US Centers for Disease Control and Prevention, Division of Global Health Protection, Atlanta, Georgia, United States of America
| | - Carol Y. Rao
- Thailand Ministry of Public Health–US Centers for Disease Control and Prevention Collaboration, Nonthaburi, Thailand
- US Centers for Disease Control and Prevention, Division of Global Health Protection, Atlanta, Georgia, United States of America
| |
Collapse
|
11
|
Lynn MK, Aquino MSR, Rivas PMC, Miranda X, Torres-Romero DF, Cowan H, Meyer MM, Godoy WDC, Kanyangarara M, Self SCW, Campbell BA, Nolan MS. Perinatal dengue and Zika virus cross-sectional seroprevalence and maternal-fetal outcomes among El Salvadoran women presenting for labor-and-delivery. Matern Health Neonatol Perinatol 2024; 10:7. [PMID: 38561854 PMCID: PMC10985905 DOI: 10.1186/s40748-024-00177-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/01/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Despite maternal flavivirus infections' linkage to severe maternal and fetal outcomes, surveillance during pregnancy remains limited globally. Further complicating maternal screening for these potentially teratogenic pathogens is the overwhelming subclinical nature of acute infection. This study aimed to understand perinatal and neonatal risk for poor health outcomes associated with flaviviral infection during pregnancy in El Salvador. METHODS Banked serologic samples and clinical results obtained from women presenting for labor and delivery at a national referent hospital in western El Salvador March to September 2022 were used for this study. 198 samples were screened for dengue and Zika virus IgM, and statistical analyses analyzed demographic and clinical outcome associations with IgM positivity. RESULTS This serosurvey revealed a high rate of maternal flavivirus infection-24.2% of women presenting for labor and delivery were dengue or Zika virus IgM positive, suggesting potential infection within pregnancy. Specifically, 20.2% were Zika virus IgM positive, 1.5% were dengue virus IgM positive, and 2.5% were both dengue and Zika virus IgM positive. Women whose home had received mosquito abatement assistance within the last year by the ministry of health were 70% less likely to test IgM positive (aOR = 0.30, 95%CI: 0.10, 0.83). Further, statistical geospatial clustering revealed transmission foci in six primary municipalities. Pregnancy complications and poor birth outcomes were noted among the dengue and/or Zika virus maternal infection group, although these outcomes were not statistically different than the seronegative group. None of the resulting neonates born during this study were diagnosed with congenital Zika syndrome. CONCLUSIONS The high rate of Zika virus detected among pregnant women and the lack of Zika-specific neonatal outcomes monitoring during a non-outbreak year highlights the need for continued surveillance in Central America and among immigrant mothers presenting for childbirth from these countries. As changing climatic conditions continue to expand the range of the disease vector, asymptomatic screening programs could be vital to early identification of outbreaks and clinical management of cases.
Collapse
Affiliation(s)
- Mary K Lynn
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene Street #327, 29201, Columbia, SC, USA
| | | | | | - Xiomara Miranda
- Hospital Nacional "Dr Jorge Mazzini Villacorta", Ministerio de Salud, Sonsonate, El Salvador
| | - David F Torres-Romero
- Department of Chemistry and Pharmacy, University of El Salvador, Sonsonate, El Salvador
| | - Hanson Cowan
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene Street #327, 29201, Columbia, SC, USA
| | - Madeleine M Meyer
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene Street #327, 29201, Columbia, SC, USA
| | | | - Mufaro Kanyangarara
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene Street #327, 29201, Columbia, SC, USA
| | - Stella C W Self
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene Street #327, 29201, Columbia, SC, USA
| | - Berry A Campbell
- Department of Obstetrics and Gynecology, Prisma Health, Columbia, SC, USA
| | - Melissa S Nolan
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene Street #327, 29201, Columbia, SC, USA.
| |
Collapse
|
12
|
Saba Villarroel PM, Hamel R, Gumpangseth N, Yainoy S, Koomhin P, Missé D, Wichit S. Global seroprevalence of Zika virus in asymptomatic individuals: A systematic review. PLoS Negl Trop Dis 2024; 18:e0011842. [PMID: 38630843 PMCID: PMC11057727 DOI: 10.1371/journal.pntd.0011842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/29/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Zika virus (ZIKV) has spread to five of the six World Health Organization (WHO) regions. Given the substantial number of asymptomatic infections and clinical presentations resembling those of other arboviruses, estimating the true burden of ZIKV infections is both challenging and essential. Therefore, we conducted a systematic review and meta-analysis of seroprevalence studies of ZIKV IgG in asymptomatic population to estimate its global impact and distribution. METHODOLOGY/PRINCIPAL FINDINGS We conducted extensive searches and compiled a collection of articles published from Jan/01/2000, to Jul/31/2023, from Embase, Pubmed, SciELO, and Scopus databases. The random effects model was used to pool prevalences, reported with their 95% confidence interval (CI), a tool to assess the risk of study bias in prevalence studies, and the I2 method for heterogeneity (PROSPERO registration No. CRD42023442227). Eighty-four studies from 49 countries/territories, with a diversity of study designs and serological tests were included. The global seroprevalence of ZIKV was 21.0% (95%CI 16.1%-26.4%). Evidence of IgG antibodies was identified in all WHO regions, except for Europe. Seroprevalence correlated with the epidemics in the Americas (39.9%, 95%CI:30.0-49.9), and in some Western Pacific countries (15.6%, 95%CI:8.2-24.9), as well as with recent and past circulation in Southeast Asia (22.8%, 95%CI:16.5-29.7), particularly in Thailand. Additionally, sustained low circulation was observed in Africa (8.4%, 95%CI:4.8-12.9), except for Gabon (43.7%), and Burkina Faso (22.8%). Although no autochthonous transmission was identified in the Eastern Mediterranean, a seroprevalence of 16.0% was recorded. CONCLUSIONS/SIGNIFICANCE The study highlights the high heterogeneity and gaps in the distribution of seroprevalence. The implementation of standardized protocols and the development of tests with high specificity are essential for ensuring a valid comparison between studies. Equally crucial are vector surveillance and control methods to reduce the risk of emerging and re-emerging ZIKV outbreaks, whether caused by Ae. aegypti or Ae. albopictus or by the Asian or African ZIKV.
Collapse
Affiliation(s)
- Paola Mariela Saba Villarroel
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
- Viral Vector Joint unit and Joint Laboratory, Mahidol University, Nakhon Pathom, Thailand
| | - Rodolphe Hamel
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
- Viral Vector Joint unit and Joint Laboratory, Mahidol University, Nakhon Pathom, Thailand
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
| | - Nuttamonpat Gumpangseth
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
- Viral Vector Joint unit and Joint Laboratory, Mahidol University, Nakhon Pathom, Thailand
| | - Sakda Yainoy
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Phanit Koomhin
- Center of Excellence in Innovation on Essential Oil, Walailak University, Nakhonsithammarat, Thailand
| | - Dorothée Missé
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
| | - Sineewanlaya Wichit
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
- Viral Vector Joint unit and Joint Laboratory, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
13
|
Paz-Bailey G, Adams LE, Deen J, Anderson KB, Katzelnick LC. Dengue. Lancet 2024; 403:667-682. [PMID: 38280388 DOI: 10.1016/s0140-6736(23)02576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 11/01/2023] [Accepted: 11/15/2023] [Indexed: 01/29/2024]
Abstract
Dengue, caused by four closely related viruses, is a growing global public health concern, with outbreaks capable of overwhelming health-care systems and disrupting economies. Dengue is endemic in more than 100 countries across tropical and subtropical regions worldwide, and the expanding range of the mosquito vector, affected in part by climate change, increases risk in new areas such as Spain, Portugal, and the southern USA, while emerging evidence points to silent epidemics in Africa. Substantial advances in our understanding of the virus, immune responses, and disease progression have been made within the past decade. Novel interventions have emerged, including partially effective vaccines and innovative mosquito control strategies, although a reliable immune correlate of protection remains a challenge for the assessment of vaccines. These developments mark the beginning of a new era in dengue prevention and control, offering promise in addressing this pressing global health issue.
Collapse
Affiliation(s)
| | - Laura E Adams
- Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Jacqueline Deen
- Institute of Child Health and Human Development, National Institutes of Health, University of the Philippines, Manila, Philippines
| | - Kathryn B Anderson
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Leah C Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Castro-Trujillo S, Segura K, Bolívar-Marín S, Salgado DM, Bosch I, Vega R, Rojas MC, Narváez CF. NS1-Specific Antibody Response Facilitates the Identification of Children With Dengue and Zika in Hyperendemic Areas. Pediatr Infect Dis J 2024; 43:178-185. [PMID: 37963312 DOI: 10.1097/inf.0000000000004163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
BACKGROUND Infections by dengue virus (DENV) and Zika virus (ZIKV) have some similar symptoms and a cross-reactive immune response, although with different risk populations and outcomes. Here, we evaluated the virologic characteristics and the nonstructural protein 1 (NS1)-specific antibody responses to DENV and ZIKV in children suspected of dengue in different epidemiologic moments in Colombia. METHODS Viral RNA, circulating NS1 and IgM/IgG specific for DENV and ZIKV were performed by reverse transcription-quantitative polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA) in 301 children suspected of dengue enrolled in a hospital setting during the ZIKV epidemic and a primary healthcare setting during a DENV epidemic. For the detection of DENV and ZIKV-specific IgM, an NS1-based ELISA was validated using characterized pediatric samples. Clinical and laboratory parameters were also evaluated. RESULTS DENV RNA or NS1 antigen was detected in the plasma of 62% of children, and in none, the ZIKV RNA was found. NS1-based ELISA for DENV and ZIKV IgM showed a sensitivity/specificity of 90/84% and 73/98%, respectively. Of 114 children without detectable viremia or antigenemia, 30.7%, 17.5%, 22% and 30% were IgM-DENV + , IgM-ZIKV + , IgM-DENV + ZIKV + and IgM-DENV - ZIKV - , respectively. The ZIKV/DENV IgM-NS1 ratio allows the identification of the infecting orthoflavivirus in 88% of the children with IgM-DENV + ZIKV + , confirming a high predominance of DENV infections in the 2 pediatric settings. CONCLUSION Overall, 88% of the children with clinical suspicion of dengue had an identifiable orthoflaviviral infection, with 80% caused by DENV, 7% by ZIKV and 0.7% classified as recent infections or coinfection, demonstrating active viral cocirculation in the pediatric population of southern Colombia. The IgM-NS1 detection improved the identification of orthoflaviviral infections in children without viremia or antigenemia, suggesting it is a helpful complementary tool for medical personnel in tropical regions with high viral cocirculation and different clinical scenes.
Collapse
Affiliation(s)
- Sebastián Castro-Trujillo
- From the División de Inmunología, Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
| | - Katherine Segura
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
- Dirección Laboratorio de Salud Pública, Secretaría de Salud Departamental, Gobernación del Huila, Neiva, Huila, Colombia
| | - Sara Bolívar-Marín
- From the División de Inmunología, Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
| | - Doris M Salgado
- Área de Pediatría, Departamento de Ciencias Clínicas, Facultad de Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
| | - Irene Bosch
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - Rocío Vega
- Área de Pediatría, Departamento de Ciencias Clínicas, Facultad de Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
- Departamento de Pediatría, Hospital Universitario de Neiva, Neiva, Huila, Colombia
| | - María Clemencia Rojas
- Dirección Laboratorio de Salud Pública, Secretaría de Salud Departamental, Gobernación del Huila, Neiva, Huila, Colombia
| | - Carlos F Narváez
- Área de Pediatría, Departamento de Ciencias Clínicas, Facultad de Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
- Dirección Laboratorio de Salud Pública, Secretaría de Salud Departamental, Gobernación del Huila, Neiva, Huila, Colombia
| |
Collapse
|
15
|
Dowling R, Thompson AB, Kolokotronis SO. Knowledge, Attitudes and Practices About Zika Virus Infection Among Women of Reproductive Age in Central Brooklyn, New York City, USA. J Community Health 2024; 49:78-85. [PMID: 37507524 DOI: 10.1007/s10900-023-01258-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
Zika virus (ZIKV) is spread by mosquitos, sexual intercourse and vertically during pregnancy. The 2015-2016 ZIKV epidemic infected millions in the Americas and resulted in thousands of infants born with malformations. Though the clusters of severe birth defects have subsided since 2017, ZIKV transmission remains a concern throughout Latin America and the Caribbean. Travel-associated and sexually-transmitted Zika, therefore, remain potential routes of transmission for women of reproductive age and their partners. This is particularly true for communities with high immigrant and foreign-born populations in Central Brooklyn, New York. Limited information has been collected on the perception by this population of ZIKV and how high-risk women engage in preventive practices. Using a survey adapted from the WHO, we assessed engagement in mosquito-related preventive practices while traveling. Data from 483 respondents on knowledge and perceived ZIKV concern, along with demographics as correlates of engagement in preventive practices were collected using a convenience sample between September 2020 and January 2021. Data were collected via a multipronged approach using social media in REDCap. Our findings show that being white/not Hispanic, pregnant, knowledgeable and concerned about ZIKV, and having enough information about ZIKV were all significantly associated with an increased likelihood of engaging in preventive practices while traveling. Multivariable logistic modeling revealed that knowledge was significantly associated with an increased likelihood of engaging in preventive practices while traveling (AOR = 1.90, 95% CI [1.28-2.83]). These findings underscore the importance of directing tailored health education efforts to vulnerable populations.
Collapse
Affiliation(s)
- Russell Dowling
- Department of Community Health Sciences, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY, USA.
| | - Azure B Thompson
- Department of Community Health Sciences, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Sergios-Orestis Kolokotronis
- Department of Epidemiology and Biostatistics, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- Institute for Genomics in Health, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- Division of Infectious Diseases, Department of Medicine, College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- Department of Cell Biology, College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| |
Collapse
|
16
|
Marano JM, Weger-Lucarelli J. Preexisting inter-serotype immunity drives antigenic evolution of dengue virus serotype 2. Virology 2024; 590:109951. [PMID: 38096749 PMCID: PMC10855010 DOI: 10.1016/j.virol.2023.109951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024]
Abstract
Dengue virus (DENV) infects roughly 400 million people annually, causing febrile and hemorrhagic disease. While preexisting inter-serotype immunity (PISI) provides transient protection, it may drive severe disease over time. PISI's impact on virus evolution, however, is less understood. Retrospective epidemiological analyses suggest that PISI may drive DENV evolution. Using in vitro directed evolution, we explored how DENV2 evolves in the presence of DENV3/4 convalescent serum. Two post-passaging mutations (E-I6M and E-N203D) were then studied for fitness effects in mammalian and insect hosts and immune escape. E-I6M resisted neutralization, altered fitness in mammalian cell culture models, and had no effect in Aedes albopictus mosquitoes. E-N203D showed no change in neutralization sensitivity, reduced fitness in a DENV-naïve epithelial model, and no effects in the other models. These results align with surveillance data, where E-I6M emerged and disappeared, while E-203D and E-203 N cocirculate, thus suggesting that PISI can drive DENV evolution.
Collapse
Affiliation(s)
- Jeffrey M Marano
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Roanoke, VA, United States; Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, United States; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, United States; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States.
| |
Collapse
|
17
|
Tripathi MN, Jangir P, Aakriti, Rai S, Gangwar M, Nath G, Saxena PS, Srivastava A. A novel approach for rapid and sensitive detection of Zika virus utilizing silver nanoislands as SERS platform. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123045. [PMID: 37356391 DOI: 10.1016/j.saa.2023.123045] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
To control the spread of the disease, the Zika virus (ZIKV), a flavivirus infection spread by mosquitoes and common in across the world, needs to be accurately and promptly diagnosed. This endeavour gets challenging when early-stage illnesses have low viral loads. As a result, we have created a biosensor based on surface-enhanced Raman scattering (SERS) for the quick, accurate, and timely diagnosis of the Zika virus. In this study, a glass coverslip was coated with silver nanoislands, which were then utilized as the surface for creating the sensing platform. Silver nanoislands exhibit strong plasmonic activity and good conductive characteristics. It enhances the Raman signals as a result and gives the SERS platform an appropriate surface. The created platform has been applied to Zika virus detection. With a limit of detection (LOD) of 0.11 ng/mL, the constructed sensor exhibits a linear range from 5 ng/mL to 1000 ng/mL. Hence, even at the nanogram scale, this technique may be a major improvement over clinical diagnosis approaches for making proper, precise, and accurate Zika virus detection.
Collapse
Affiliation(s)
- Manish Nath Tripathi
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Poonam Jangir
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Aakriti
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Suyash Rai
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Mayank Gangwar
- Viral Research and Diagnostic Laboratory, Department of Microbiology, Institute of Medical Science, Banaras Hindu University, Varanasi 221005, India
| | - Gopal Nath
- Viral Research and Diagnostic Laboratory, Department of Microbiology, Institute of Medical Science, Banaras Hindu University, Varanasi 221005, India
| | - Preeti S Saxena
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Anchal Srivastava
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
18
|
Braun M, Andersen LK, Norton SA, Coates SJ. Dengue: updates for dermatologists on the world's fastest-growing vector-borne disease. Int J Dermatol 2023; 62:1110-1120. [PMID: 37306140 DOI: 10.1111/ijd.16739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/30/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023]
Abstract
Dengue is the world's fastest-growing vector borne disease and has significant epidemic potential in suitable climates. Recent disease models incorporating climate change scenarios predict geographic expansion across the globe, including parts of the United States and Europe. It will be increasingly important in the next decade for dermatologists to become familiar with dengue, as it commonly manifests with rashes, which can be used to aid diagnosis. In this review, we discuss dengue for general dermatologists, specifically focusing on its cutaneous manifestations, epidemiology, diagnosis, treatment, and prevention. As dengue continues to spread in both endemic and new locations, dermatologists may have a larger role in the timely diagnosis and management of this disease.
Collapse
Affiliation(s)
- Mitchell Braun
- Department of Dermatology, The University of California San Francisco, San Francisco, CA, USA
| | - Louise K Andersen
- Department of Dermatology, Aleris-Hamlet Private Hospital, Esbjerg, Denmark
| | - Scott A Norton
- Departments of Dermatology and Preventive Medicine & Biometrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sarah J Coates
- Department of Dermatology, The University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
19
|
Lin DCD, Weng SC, Tsao PN, Chu JJH, Shiao SH. Co-infection of dengue and Zika viruses mutually enhances viral replication in the mosquito Aedes aegypti. Parasit Vectors 2023; 16:160. [PMID: 37165438 PMCID: PMC10172068 DOI: 10.1186/s13071-023-05778-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/16/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND The mosquito Aedes aegypti transmits two of the most serious mosquito-borne viruses, dengue virus (DENV) and Zika virus (ZIKV), which results in significant human morbidity and mortality worldwide. The quickly shifting landscapes of DENV and ZIKV endemicity worldwide raise concerns that their co-circulation through the Ae. aegypti mosquito vector could greatly exacerbate the disease burden in humans. Recent reports have indicated an increase in the number of co-infection cases in expanding co-endemic regions; however, the impact of co-infection on viral infection and the detailed molecular mechanisms remain to be defined. METHODS C6/36 (Aedes albopictus) cells were cultured in Dulbecco's modified Eagle medium/Mitsuhashi and Maramorosch Insect Medium (DMEM/MM) (1:1) containing 2% heat-inactivated fetal bovine serum and 1× penicillin/streptomycin solution. For virus propagation, the cells were infected with either DENV serotype 2 (DENV2) strain 16681 or ZIKV isolate Thailand/1610acTw (MF692778.1). Mosquitoes (Ae. aegypti UGAL [University of Georgia Laboratory]/Rockefeller strain) were orally infected with DENV2 and ZIKV through infectious blood-feeding. RESULTS We first examined viral replication activity in cells infected simultaneously, or sequentially, with DENV and ZIKV, and found interspecies binding of viral genomic transcripts to the non-structural protein 5 (NS5). When we challenged Ae. aegypti mosquitos with both DENV2 and ZIKV sequentially to probe similar interactions, virus production and vector susceptibility to infection were significantly enhanced. CONCLUSIONS Our results suggest that DENV2 and ZIKV simultaneously establishing infection in the Ae. aegypti mosquito vector may augment one another during replication. The data also implicate the homologous NS5 protein as a key intersection between the flaviviruses in co-infection, highlighting it as a potential target for vector control.
Collapse
Affiliation(s)
- Daniel Chieh-Ding Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shih-Che Weng
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Nien Tsao
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
- Research Center for Developmental Biology & Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shin-Hong Shiao
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
20
|
Allgoewer K, Wu S, Choi H, Vogel C. Re-mining serum proteomics data reveals extensive post-translational modifications upon Zika and dengue infection. Mol Omics 2023; 19:308-320. [PMID: 36810580 PMCID: PMC10175154 DOI: 10.1039/d2mo00258b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Zika virus (ZIKV) and dengue virus (DENV) are two closely related flaviviruses with similar symptoms. However, due to the implications of ZIKV infections for pregnancy outcomes, understanding differences in their molecular impact on the host is of high interest. Viral infections change the host proteome, including post-translational modifications. As modifications are diverse and of low abundance, they typically require additional sample processing which is not feasible for large cohort studies. Therefore, we tested the potential of next-generation proteomics data in its ability to prioritize specific modifications for later analysis. We re-mined published mass spectra from 122 serum samples from ZIKV and DENV patients for the presence of phosphorylated, methylated, oxidized, glycosylated/glycated, sulfated, and carboxylated peptides. We identified 246 modified peptides with significantly differential abundance in ZIKV and DENV patients. Amongst these, methionine-oxidized peptides from apolipoproteins and glycosylated peptides from immunoglobulin proteins were more abundant in ZIKV patient serum and generate hypotheses on the potential roles of the modification in the infection. The results demonstrate how data-independent acquisition techniques can help prioritize future analyses of peptide modifications.
Collapse
Affiliation(s)
- Kristina Allgoewer
- New York University, Department of Biology, Center for Genomics and Systems Biology, New York, NY, USA.
- Humboldt University, Department of Biology, Berlin, Germany
| | - Shaohuan Wu
- New York University, Department of Biology, Center for Genomics and Systems Biology, New York, NY, USA.
| | - Hyungwon Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University, Singapore, Singapore
| | - Christine Vogel
- New York University, Department of Biology, Center for Genomics and Systems Biology, New York, NY, USA.
| |
Collapse
|
21
|
Standardized evaluation of Zika nucleic acid tests used in clinical settings and blood screening. PLoS Negl Trop Dis 2023; 17:e0011157. [PMID: 36930653 PMCID: PMC10072466 DOI: 10.1371/journal.pntd.0011157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 04/04/2023] [Accepted: 02/09/2023] [Indexed: 03/18/2023] Open
Abstract
Early detection of Zika virus (ZIKV) transmission within geographic regions informs implementation of community mitigation measures such as vector reduction strategies, travel advisories, enhanced surveillance among pregnant women, and possible implementation of blood and organ donor screening or deferral. Standardized, comparative assessments of ZIKV assay and testing lab performance are important to develop optimal approaches to ZIKV diagnostic testing and surveillance. We conducted an expanded blinded panel study to characterize and compare the analytical performance of fifteen diagnostic and blood screening ZIKV NAT assays, including detection among single- and multiplex assays detecting ZIKV, dengue virus (DENV) and chikungunya virus (CHIKV). A 300 member blinded panel was constructed, consisting of 11 serial half-log dilutions ranging from ~104 to 10-1 genome equivalents/mL in 25 replicates each of the Tahitian Asian ZIKV isolate in ZIKV-negative human serum. Additionally, clinical samples from individuals with DENV-like syndrome or suspected ZIKV infection in Brazil were evaluated. The majority of assays demonstrated good specificity. Analytical sensitivities varied 1-2 logs, with a substantially higher limit of detection (LOD) in one outlier. Similar analytical sensitivity for ZIKV RNA detection in singleplex and multiplex assays of the Grifols and ThermoFisher tests were observed. Coefficient of Assay Efficiency (CE), calculated to characterize assays' RNA extraction and amplification efficiency, ranged from 0.13 for the Certest VIASURE multiplex and 0.75 for the Grifols multiplex assays. In general, assays using transcription mediated amplification (TMA) technology had greater CE compared to assays using conventional PCR technology. Donor screening NAT assays were significantly more sensitive than diagnostic RT-qPCR assays, primarily attributable to higher sample input volumes. However, ideal assays to maximize sensitivity and throughput may not be a viable option in all contexts, with other factors such as cost, instrumentation, and regulatory approval status influencing assay availability and selection, particularly in resource constrained settings.
Collapse
|
22
|
Marano JM, Weger-Lucarelli J. Replication in the presence of dengue convalescent serum impacts Zika virus neutralization sensitivity and fitness. Front Cell Infect Microbiol 2023; 13:1130749. [PMID: 36968111 PMCID: PMC10034770 DOI: 10.3389/fcimb.2023.1130749] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
Introduction Flaviviruses like dengue virus (DENV) and Zika virus (ZIKV) are mosquito-borne viruses that cause febrile, hemorrhagic, and neurological diseases in humans, resulting in 400 million infections annually. Due to their co-circulation in many parts of the world, flaviviruses must replicate in the presence of pre-existing adaptive immune responses targeted at serologically closely related pathogens, which can provide protection or enhance disease. However, the impact of pre-existing cross-reactive immunity as a driver of flavivirus evolution, and subsequently the implications on the emergence of immune escape variants, is poorly understood. Therefore, we investigated how replication in the presence of convalescent dengue serum drives ZIKV evolution. Methods We used an in vitro directed evolution system, passaging ZIKV in the presence of serum from humans previously infected with DENV (anti-DENV) or serum from DENV-naïve patients (control serum). Following five passages in the presence of serum, we performed next-generation sequencing to identify mutations that arose during passaging. We studied two non-synonymous mutations found in the anti-DENV passaged population (E-V355I and NS1-T139A) by generating individual ZIKV mutants and assessing fitness in mammalian cells and live mosquitoes, as well as their sensitivity to antibody neutralization. Results and discussion Both viruses had increased fitness in Vero cells with and without the addition of anti-DENV serum and in human lung epithelial and monocyte cells. In Aedes aegypti mosquitoes-using blood meals with and without anti-DENV serum-the mutant viruses had significantly reduced fitness compared to wild-type ZIKV. These results align with the trade-off hypothesis of constrained mosquito-borne virus evolution. Notably, only the NS1-T139A mutation escaped neutralization, while E-V335I demonstrated enhanced neutralization sensitivity to neutralization by anti-DENV serum, indicating that neutralization escape is not necessary for viruses passaged under cross-reactive immune pressures. Future studies are needed to assess cross-reactive immune selection in humans and relevant animal models or with different flaviviruses.
Collapse
Affiliation(s)
- Jeffrey M. Marano
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Roanoke, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
23
|
Delafiori J, Faria AVDS, de Oliveira AN, Sales GM, Dias-Audibert FL, Catharino RR. Unraveling the Metabolic Alterations Induced by Zika Infection in Prostate Epithelial (PNT1a) and Adenocarcinoma (PC-3) Cell Lines. J Proteome Res 2023; 22:193-203. [PMID: 36469742 DOI: 10.1021/acs.jproteome.2c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The outbreak of Zika virus infection in 2016 led to the identification of its presence in several types of biofluids, including semen. Later discoveries associated Zika infection with sexual transmission and persistent replication in cells of the male reproductive tract. Prostate epithelial and carcinoma cells are favorable to virus replication, with studies pointing to transcriptomics alterations of immune and inflammation genes upon persistence. However, metabolome alterations promoted by the Zika virus in prostate cells are unknown. Given its chronic effects and oncolytic potential, we aim to investigate the metabolic alterations induced by the Zika virus in prostate epithelial (PNT1a) and adenocarcinoma (PC-3) cells using an untargeted metabolomics approach and high-resolution mass spectrometry. PNT1a cells were viable up to 15 days post ZIKV infection, in contrast to its antiproliferative effect in the PC-3 cell lineage. Remarkable alterations in the PNT1a cell metabolism were observed upon infection, especially regarding glycerolipids, fatty acids, and acylcarnitines, which could be related to viral cellular resource exploitation, in addition to the over-time increase in oxidative stress metabolites associated with carcinogenesis. The upregulation of FA20:5 at 5 dpi in PC-3 cells corroborates the antiproliferative effect observed since this metabolite was previously reported to induce PC-3 cell death. Overall, Zika virus promotes extensive lipid alterations on both PNT1a and PC-3 cells, promoting different outcomes based on the cellular metabolic state.
Collapse
Affiliation(s)
- Jeany Delafiori
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP 13083-970, Brazil
| | - Alessandra V de S Faria
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Arthur N de Oliveira
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP 13083-970, Brazil
| | - Geovana M Sales
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP 13083-970, Brazil
| | - Flávia Luísa Dias-Audibert
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP 13083-970, Brazil
| | - Rodrigo R Catharino
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP 13083-970, Brazil
| |
Collapse
|
24
|
Chauhan L, Matthews E, Piquet AL, Henao-Martinez A, Franco-Paredes C, Tyler KL, Beckham D, Pastula DM. Nervous System Manifestations of Arboviral Infections. CURRENT TROPICAL MEDICINE REPORTS 2022; 9:107-118. [PMID: 36124288 PMCID: PMC9476420 DOI: 10.1007/s40475-022-00262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2022] [Indexed: 01/11/2023]
Abstract
Purpose of Review Complex environmental factors and human intervention influence the spread of arthropod vectors and the cycle of transmission of arboviruses. The spectrum of clinical manifestations is diverse, ranging from serious presentations like viral hemorrhagic fever (e.g., dengue, yellow fever, rift valley fever) or shock syndromes (e.g., dengue virus) to organ-specific illness like meningoencephalitis. Recent Findings A spectrum of clinical neurologic syndromes with potential acute devastating consequences or long-term sequelae may result from some arboviral infections. Summary In this review, we describe some of the most frequent and emerging neuro-invasive arboviral infections, spectrum of neurologic disorders including encephalitis, meningitis, myelitis or poliomyelitis, acute demyelinating encephalomyelitis, Guillain-Barré syndrome, and ocular syndromes.
Collapse
Affiliation(s)
- Lakshmi Chauhan
- Division of Infectious Diseases, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045 USA
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado, Anschutz Medical Center, Aurora, CO USA
| | - Elizabeth Matthews
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado, Anschutz Medical Center, Aurora, CO USA
| | - Amanda L. Piquet
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado, Anschutz Medical Center, Aurora, CO USA
| | - Andrés Henao-Martinez
- Division of Infectious Diseases, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Carlos Franco-Paredes
- Division of Infectious Diseases, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045 USA
- Hospital Infantil de México, Federico Gómez, México City, México
| | - Kenneth L. Tyler
- Division of Infectious Diseases, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045 USA
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado, Anschutz Medical Center, Aurora, CO USA
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Center, Aurora, CO USA
| | - David Beckham
- Division of Infectious Diseases, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045 USA
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado, Anschutz Medical Center, Aurora, CO USA
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Center, Aurora, CO USA
| | - Daniel M. Pastula
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado, Anschutz Medical Center, Aurora, CO USA
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO USA
| |
Collapse
|
25
|
Alvarado-Domenech LI, Rivera-Amill V, Appleton AA, Rosario-Villafañe V, Repollet-Carrer I, Borges-Rodríguez M, Pérez-Rodríguez NM, Olivieri-Ramos O, González M, González-Montalvo C, Muñiz-Forestier W, Vargas-Lasalle L, Pérez-Padilla J, Paz-Bailey G, Rodríguez-Rabassa M. Early Childhood Neurodevelopmental Outcomes in Children with Prenatal Zika Virus Exposure: A Cohort Study in Puerto Rico. J Pediatr 2022; 247:38-45.e5. [PMID: 35577118 PMCID: PMC10188121 DOI: 10.1016/j.jpeds.2022.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To describe anthropometric, sensory, and neurodevelopmental outcomes of children who were Zika virus-exposed from birth to 36 months. STUDY DESIGN The study cohort included 114 children born to mothers with confirmed and probable Zika virus pregnancy infection in 2016-2017. Children attending study visits from May 2017 through February 2020 underwent physical/neurologic, sensory examinations, and neurodevelopmental assessments with the Bayley Scales of Infant and Toddler Development, Third Edition (BSID-III) and Ages and Stages Questionnaires, Third Edition (ASQ-3). RESULTS Three of the 114 children (2.6%) had microcephaly (z-score for head circumference ≤-2) at birth, 19 of 35 (54.3%) had posterior eye abnormalities in retinal images, and 11 of 109 (10.1%) had nonspecific findings on brain ultrasound. Three of 107 children (2.8%) failed hearing screening at birth. Of those children with follow-up data, 17 of 97 (17.5%) failed age-appropriate vision screening. The BSID-III identified developmental delay in at least 1 domain in at least one-third of children, with higher prevalence in the language domain. ASQ-3 screen positive delay peaked at around 24 or 36 months, with some domains showing a decrease at older ages. Correlations among BSID-III and ASQ-3 scores were observed, representing professional and parental perspectives at 24 and 36 months (r = 0.32-0.78; P < .05). CONCLUSIONS The presence of neurodevelopmental sequelae in early childhood suggests that identification of long-term impairment remains critical to attaining optimal child development. Long-term follow-up highlights vulnerability in the language domain, which likely could be influenced by early intervention, promoting cognitive development and school readiness in exposed children.
Collapse
Affiliation(s)
| | | | - Allison A Appleton
- Department of Epidemiology and Biostatistics, University at Albany School of Public Health, State University of New York, Rensselaer, NY
| | | | | | | | | | | | - Marielly González
- Clinical Psychology Program, Ponce Health Sciences University, Ponce, PR
| | | | | | | | - Janice Pérez-Padilla
- Dengue Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, PR
| | - Gabriela Paz-Bailey
- Dengue Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, PR
| | - Mary Rodríguez-Rabassa
- RCMI Center for Research Resources, Ponce Health Sciences University, Ponce, PR; Clinical Psychology Program, Ponce Health Sciences University, Ponce, PR
| |
Collapse
|
26
|
Ward D, Gomes AR, Tetteh KKA, Sepúlveda N, Gomez LF, Campino S, Clark TG. Sero-epidemiological study of arbovirus infection following the 2015-2016 Zika virus outbreak in Cabo Verde. Sci Rep 2022; 12:11719. [PMID: 35810191 PMCID: PMC9271056 DOI: 10.1038/s41598-022-16115-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022] Open
Abstract
In November 2015, cases of Zika virus infection were recorded in Cabo Verde (Africa), originating from Brazil. The outbreak subsided after seven months with 7580 suspected cases. We performed a serological survey (n = 431) in Praia, the capital city, 3 months after transmission ceased. Serum samples were screened for arbovirus antibodies using ELISA techniques and revealed seroconverted individuals with Zika (10.9%), dengue (1-4) (12.5%), yellow fever (0.2%) and chikungunya (2.6%) infections. Zika seropositivity was predominantly observed amongst females (70%). Using a logistic model, risk factors for increased odds of Zika seropositivity included age, self-reported Zika infection, and dengue seropositivity. Serological data from Zika and dengue virus assays were strongly correlated (Spearman's rs = 0.80), which reduced when using a double antigen binding ELISA (Spearman's rs = 0.54). Overall, our work improves an understanding of how Zika and other arboviruses have spread throughout the Cabo Verde population. It also demonstrates the utility of serological assay formats for outbreak investigations.
Collapse
Affiliation(s)
- Daniel Ward
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | | | - Kevin K A Tetteh
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Nuno Sepúlveda
- Warsaw University of Technology, Warsaw, Poland
- Universidade de Lisboa, Lisbon, Portugal
| | | | - Susana Campino
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Taane G Clark
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| |
Collapse
|
27
|
Adams LE, Sánchez-González L, Rodriguez DM, Ryff K, Major C, Lorenzi O, Delorey M, Medina FA, Muñoz-Jordán JL, Brown G, Ortiz M, Waterman SH, Rivera-Amill V, Paz-Bailey G. Risk factors for infection with chikungunya and Zika viruses in southern Puerto Rico: A community-based cross-sectional seroprevalence survey. PLoS Negl Trop Dis 2022; 16:e0010416. [PMID: 35696355 PMCID: PMC9191703 DOI: 10.1371/journal.pntd.0010416] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
Chikungunya virus (CHIKV) caused a large outbreak in Puerto Rico in 2014, followed by a Zika virus (ZIKV) outbreak in 2016. Communities Organized for the Prevention of Arboviruses (COPA) is a cohort study in southern Puerto Rico, initiated in 2018 to measure arboviral disease risk and provide a platform to evaluate interventions. To identify risk factors for infection, we assessed prevalence of previous CHIKV infection and recent ZIKV and DENV infection in a cross-sectional study among COPA participants. Participants aged 1-50 years (y) were recruited from randomly selected households in study clusters. Each participant completed an interview and provided a blood specimen, which was tested by anti-CHIKV IgG ELISA assay and anti-ZIKV and anti-DENV IgM MAC-ELISA assays. We assessed individual, household, and community factors associated with a positive result for CHIKV or ZIKV after adjusting for confounders. During 2018-2019, 4,090 participants were enrolled; 61% were female and median age was 28y (interquartile range [IQR]: 16-41). Among 4,035 participants tested for CHIKV, 1,268 (31.4%) had evidence of previous infection. CHIKV infection prevalence was lower among children 1-10 years old compared to people 11 and older (adjusted odds ratio [aOR] 2.30; 95% CI 1.71-3.08). Lower CHIKV infection prevalence was associated with home screens (aOR 0.51; 95% CI 0.42-0.61) and air conditioning (aOR 0.64; 95% CI 0.54-0.77). CHIKV infection prevalence also varied by study cluster of residence and insurance type. Few participants (16; 0.4%) had evidence of recent DENV infection by IgM. Among 4,035 participants tested for ZIKV, 651 (16%) had evidence of recent infection. Infection prevalence increased with older age, from 7% among 1-10y olds up to 19% among 41-50y olds (aOR 3.23; 95% CI 2.16-4.84). Males had an increased risk of Zika infection prevalence compared with females (aOR 1.31; 95% CI 1.09-1.57). ZIKV infection prevalence also decreased with the presence of home screens (aOR 0.66; 95% CI 0.54-0.82) and air conditioning (aOR 0.69; 95% CI 0.57-0.84). Similar infection patterns were observed for recent ZIKV infection prevalence and previous CHIKV infection prevalence by age, and the presence of screens and air conditioners in the home decreased infection risk from both viruses by as much as 50%.
Collapse
Affiliation(s)
- Laura E. Adams
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
- * E-mail:
| | - Liliana Sánchez-González
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Dania M. Rodriguez
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Kyle Ryff
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Chelsea Major
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Olga Lorenzi
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Mark Delorey
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Freddy A. Medina
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Jorge L. Muñoz-Jordán
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Grayson Brown
- Puerto Rico Vector Control Unit, San Juan, Puerto Rico
| | | | - Stephen H. Waterman
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | | | - Gabriela Paz-Bailey
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| |
Collapse
|
28
|
Wong JM, Adams LE, Durbin AP, Muñoz-Jordán JL, Poehling KA, Sánchez-González LM, Volkman HR, Paz-Bailey G. Dengue: A Growing Problem With New Interventions. Pediatrics 2022; 149:187012. [PMID: 35543085 DOI: 10.1542/peds.2021-055522] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Dengue is the disease caused by 1 of 4 distinct, but closely related dengue viruses (DENV-1-4) that are transmitted by Aedes spp. mosquito vectors. It is the most common arboviral disease worldwide, with the greatest burden in tropical and sub-tropical regions. In the absence of effective prevention and control measures, dengue is projected to increase in both disease burden and geographic range. Given its increasing importance as an etiology of fever in the returning traveler or the possibility of local transmission in regions in the United States with competent vectors, as well as the risk for large outbreaks in endemic US territories and associated states, clinicians should understand its clinical presentation and be familiar with appropriate testing, triage, and management of patients with dengue. Control and prevention efforts reached a milestone in June 2021 when the Advisory Committee on Immunization Practices (ACIP) recommended Dengvaxia for routine use in children aged 9 to 16 years living in endemic areas with laboratory confirmation of previous dengue virus infection. Dengvaxia is the first vaccine against dengue to be recommended for use in the United States and one of the first to require laboratory testing of potential recipients to be eligible for vaccination. In this review, we outline dengue pathogenesis, epidemiology, and key clinical features for front-line clinicians evaluating patients presenting with dengue. We also provide a summary of Dengvaxia efficacy, safety, and considerations for use as well as an overview of other potential new tools to control and prevent the growing threat of dengue .
Collapse
Affiliation(s)
- Joshua M Wong
- Epidemic Intelligence Service, Center for Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention, Atlanta, Georgia.,Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Laura E Adams
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Anna P Durbin
- Center for Immunization Research, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Jorge L Muñoz-Jordán
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | | | - Liliana M Sánchez-González
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Hannah R Volkman
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Gabriela Paz-Bailey
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| |
Collapse
|
29
|
Costa CBDC, Freitas D. Ocular findings of congenital Zika virus infection with microcephaly. Int Ophthalmol 2022; 42:3117-3127. [DOI: 10.1007/s10792-022-02311-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
|
30
|
Matos LMD, Borges AT, Palmeira AB, Lima VM, Maciel EP, Fernandez RNM, Mendes JPL, Romero GAS. Frequency of exposure to arboviruses and characterization of Guillain Barré syndrome in a clinical cohort of patients treated at a tertiary referral center in Brasília, Federal District. Rev Soc Bras Med Trop 2022; 55:e03062021. [PMID: 35416870 PMCID: PMC9009888 DOI: 10.1590/0037-8682-0306-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 01/26/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Guillian Barré syndrome (GBS) is an acute autoimmune polyradiculoneuropathy
often associated with previous exposure to infectious agents. Methods: A clinical cohort of 41 patients with GBS admitted to the Base Hospital
Institute of the Federal District between May 2017 and April 2019 was
followed up for 1 year. Serological tests for arbovirus detection and
amplification of nucleic acids using polymerase chain reaction for zika
virus (ZIKV), dengue virus (DENV), and chikungunya virus (CHIKV) were
performed. Results: The cohort consisted of 61% men with a median age of 40 years, and 83% had
GBS-triggering events. A total of 54% had Grade 4 disability, 17% had Grade
3, 12% had Grade 2, 10% had Grade 5, and 7% had Grade 1. The classic form
occurred in 83% of patients. Nerve conduction evaluations revealed acute
demyelinating inflammatory polyneuropathy (51%), acute motor axonal
neuropathy (17%), acute sensory-motor neuropathy (15%), and indeterminate
forms (17%). Four patients were seropositive for DENV. There was no
laboratory detection of ZIKV or CHIKV infection. Ninety percent of patients
received human immunoglobulin. Intensive care unit admission occurred in
17.1% of the patients, and mechanical ventilation was used in 14.6%. One
patient died of Bickerstaff’s encephalitis. Most patients showed an
improvement in disability at 10 weeks of follow-up. Conclusions: GBS in the Federal District showed a variable clinical spectrum, and it was
possible to detect recent exposure to DENV.
Collapse
Affiliation(s)
- Luíza Morais de Matos
- Universidade de Brasília, Faculdade de Medicina, Núcleo de Medicina Tropical, Brasília, DF, Brasil.,Instituto Hospital de Base do Distrito Federal, Unidade de Infectologia, Brasília, DF, Brasil
| | - Ariely Teotonio Borges
- Instituto Hospital de Base do Distrito Federal, Unidade de Neurologia, Brasília, DF, Brasil
| | - Aline Barbosa Palmeira
- Instituto Hospital de Base do Distrito Federal, Unidade de Neurologia, Brasília, DF, Brasil
| | - Vinicius Moreira Lima
- Instituto Hospital de Base do Distrito Federal, Unidade de Neurologia, Brasília, DF, Brasil
| | - Ernane Pires Maciel
- Instituto Hospital de Base do Distrito Federal, Unidade de Neurologia, Brasília, DF, Brasil
| | | | - João Pedro Lima Mendes
- Universidade de Brasília, Faculdade de Medicina, Núcleo de Medicina Tropical, Brasília, DF, Brasil
| | | |
Collapse
|
31
|
Sharp TM, Anderson KB, Katzelnick LC, Clapham H, Johansson MA, Morrison AC, Harris E, Paz-Bailey G, Waterman SH. Knowledge gaps in the epidemiology of severe dengue impede vaccine evaluation. THE LANCET. INFECTIOUS DISEASES 2022; 22:e42-e51. [PMID: 34265259 PMCID: PMC11379041 DOI: 10.1016/s1473-3099(20)30871-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/21/2020] [Accepted: 11/03/2020] [Indexed: 10/20/2022]
Abstract
The most severe consequences of dengue virus infection include shock, haemorrhage, and major organ failure; however, the frequency of these manifestations varies, and the relative contribution of pre-existing anti-dengue virus antibodies, virus characteristics, and host factors (including age and comorbidities) are not well understood. Reliable characterisation of the epidemiology of severe dengue first depends on the use of consistent definitions of disease severity. As vaccine trials have shown, severe dengue is a crucial interventional endpoint, yet the infrequency of its occurrence necessitates the inclusion of thousands of study participants to appropriately compare its frequency among participants who have and have not been vaccinated. Hospital admission is frequently used as a proxy for severe dengue; however, lack of specificity and variability in clinical practices limit the reliability of this approach. Although previous infection with a dengue virus is the best characterised risk factor for developing severe dengue, the influence of the timing between dengue virus infections and the sequence of dengue virus infections on disease severity is only beginning to be elucidated. To improve our understanding of the diverse factors that shape the clinical spectrum of disease resulting from dengue virus infection, prospective, community-based and clinic-based immunological, virological, genetic, and clinical studies across a range of ages and geographical regions are needed.
Collapse
Affiliation(s)
- Tyler M Sharp
- Dengue Branch, Centers for Disease Control and Prevention, San Juan, PR, USA; United States Public Health Service, Silver Springs, MD, USA.
| | - Kathryn B Anderson
- Institute for Global Health and Translational Sciences and Department of Medicine, and Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Virology, Armed Forces Research Institute for Medical Sciences, Bangkok, Thailand
| | - Leah C Katzelnick
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA; Department of Biology, University of Florida, Gainesville, FL, USA
| | - Hannah Clapham
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Michael A Johansson
- Dengue Branch, Centers for Disease Control and Prevention, San Juan, PR, USA
| | - Amy C Morrison
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Gabriela Paz-Bailey
- Dengue Branch, Centers for Disease Control and Prevention, San Juan, PR, USA
| | - Stephen H Waterman
- Dengue Branch, Centers for Disease Control and Prevention, San Juan, PR, USA; United States Public Health Service, Silver Springs, MD, USA
| |
Collapse
|
32
|
Paz-Bailey G, Adams L, Wong JM, Poehling KA, Chen WH, McNally V, Atmar RL, Waterman SH. Dengue Vaccine: Recommendations of the Advisory Committee on Immunization Practices, United States, 2021. MMWR Recomm Rep 2021; 70:1-16. [PMID: 34978547 PMCID: PMC8694708 DOI: 10.15585/mmwr.rr7006a1] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dengue is a vectorborne infectious disease caused by dengue viruses (DENVs), which are predominantly transmitted by Aedes aegypti and Aedes albopictus mosquitos. Dengue is caused by four closely related viruses (DENV-1–4), and a person can be infected with each serotype for a total of four infections during their lifetime. Areas where dengue is endemic in the United States and its territories and freely associated states include Puerto Rico, American Samoa, the U.S. Virgin Islands, the Federated States of Micronesia, the Republic of Marshall Islands, and the Republic of Palau. This report summarizes the recommendations of the Advisory Committee on Immunization Practices (ACIP) for use of the Dengvaxia vaccine in the United States. The vaccine is a live-attenuated, chimeric tetravalent dengue vaccine built on a yellow fever 17D backbone. Dengvaxia is safe and effective in reducing dengue-related hospitalizations and severe dengue among persons who have had dengue infection in the past. Previous natural infection is important because Dengvaxia is associated with an increased risk for severe dengue in those who experience their first natural infection (i.e., primary infection) after vaccination. Dengvaxia was licensed by the Food and Drug Administration for use among children and adolescents aged 9–16 years (referred to in this report as children). ACIP recommends vaccination with Dengvaxia for children aged 9–16 having evidence of a previous dengue infection and living in areas where dengue is endemic. Evidence of previous dengue infection, such as detection of anti-DENV immunoglobulin G with a highly specific serodiagnostic test, will be required for eligible children before vaccination.
Collapse
|
33
|
Lee LJ, Komarasamy TV, Adnan NAA, James W, Rmt Balasubramaniam V. Hide and Seek: The Interplay Between Zika Virus and the Host Immune Response. Front Immunol 2021; 12:750365. [PMID: 34745123 PMCID: PMC8566937 DOI: 10.3389/fimmu.2021.750365] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/04/2021] [Indexed: 12/30/2022] Open
Abstract
Zika virus (ZIKV) received worldwide attention over the past decade when outbreaks of the disease were found to be associated with severe neurological syndromes and congenital abnormalities. Unlike most other flaviviruses, ZIKV can spread through sexual and transplacental transmission, adding to the complexity of Zika pathogenesis and clinical outcomes. In addition, the spread of ZIKV in flavivirus-endemic regions, and the high degree of structural and sequence homology between Zika and its close cousin Dengue have raised questions on the interplay between ZIKV and the pre-existing immunity to other flaviviruses and the potential immunopathogenesis. The Zika epidemic peaked in 2016 and has affected over 80 countries worldwide. The re-emergence of large-scale outbreaks in the future is certainly a possibility. To date, there has been no approved antiviral or vaccine against the ZIKV. Therefore, continuing Zika research and developing an effective antiviral and vaccine is essential to prepare the world for a future Zika epidemic. For this purpose, an in-depth understanding of ZIKV interaction with many different pathways in the human host and how it exploits the host immune response is required. For successful infection, the virus has developed elaborate mechanisms to escape the host response, including blocking host interferon response and shutdown of certain host cell translation. This review provides a summary on the key host factors that facilitate ZIKV entry and replication and the mechanisms by which ZIKV antagonizes antiviral innate immune response and involvement of adaptive immune response leading to immunopathology. We also discuss how ZIKV modulates the host immune response during sexual transmission and pregnancy to induce infection, how the cross-reactive immunity from other flaviviruses impacts ZIKV infection, and provide an update on the current status of ZIKV vaccine development.
Collapse
Affiliation(s)
- Lim Jack Lee
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Thamil Vaani Komarasamy
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Nur Amelia Azreen Adnan
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - William James
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Vinod Rmt Balasubramaniam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
34
|
Ha B, Jadhao S, Hussaini L, Gibson T, Stephens K, Salazar L, Ciric C, Taylor M, Rouphael N, Edupuganti S, Rostad CA, Tompkins SM, Anderson EJ, Anderson LJ. Evaluation of a SARS-CoV-2 Capture IgM Antibody Assay in Convalescent Sera. Microbiol Spectr 2021; 9:e0045821. [PMID: 34494855 PMCID: PMC8557898 DOI: 10.1128/spectrum.00458-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/08/2021] [Indexed: 01/19/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for a global pandemic with over 152 million cases and 3.19 million deaths reported by early May 2021. Understanding the serological response to SARS-CoV-2 is critical to determining the burden of infection and disease (coronavirus disease 2019 [COVID-19]) and transmission dynamics. We developed a capture IgM assay because it should have better sensitivity and specificity than the commonly used indirect assay. Here, we report the development and performance of a capture IgM enzyme-linked immunosorbent assay (ELISA) and a companion indirect IgG ELISA for the spike (S) and nucleocapsid (N) proteins and the receptor-binding domain (RBD) of S. We found that among the IgM ELISAs, the S ELISA was positive in 76% of 55 serum samples from SARS-CoV-2 PCR-positive patients, the RBD ELISA was positive in 55% of samples, and the N ELISA was positive in 15% of samples. The companion indirect IgG ELISAs were positive for S in 89% of the 55 serum samples, RBD in 78%, and N in 85%. While the specificities for IgM RBD, S, and N ELISAs and IgG S and RBD ELISAs were 97% to 100%, the specificity of the N IgG ELISA was lower (89%). RBD-specific IgM antibodies became undetectable by 3 to 6 months, and S IgM reached low levels at 6 months. The corresponding IgG S, RBD, and N antibodies persisted with some decreases in levels over this time period. These capture IgM ELISAs and the companion indirect IgG ELISAs should enhance serologic studies of SARS-CoV-2 infections. IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has inflicted tremendous loss of lives, overwhelmed health care systems, and disrupted all aspects of life worldwide since its emergence in Wuhan, China, in December 2019. Detecting current and past infection by PCR or serology is important to understanding and controlling SARS-CoV-2. With increasing prevalence of past infection or vaccination, IgG antibodies are less helpful in diagnosing a current infection. IgM antibodies indicate a more recent infection and can supplement PCR diagnosis. We report an alternative method, capture IgM, to detect serum IgM antibodies, which should be more sensitive and specific than most currently used methods. We describe this capture IgM assay and a companion indirect IgG assay for the SARS-CoV-2 spike (S), nucleocapsid (N), and receptor-binding domain (RBD) proteins. These assays can add value to diagnostic and serologic studies of coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Binh Ha
- Division of Pediatric Infectious Diseases, Emory University School of Medicine and Children’s Health Care of Atlanta, Atlanta, Georgia, USA
| | - Samadhan Jadhao
- Division of Pediatric Infectious Diseases, Emory University School of Medicine and Children’s Health Care of Atlanta, Atlanta, Georgia, USA
| | - Laila Hussaini
- Division of Pediatric Infectious Diseases, Emory University School of Medicine and Children’s Health Care of Atlanta, Atlanta, Georgia, USA
| | - Theda Gibson
- Division of Pediatric Infectious Diseases, Emory University School of Medicine and Children’s Health Care of Atlanta, Atlanta, Georgia, USA
| | - Kathy Stephens
- Division of Pediatric Infectious Diseases, Emory University School of Medicine and Children’s Health Care of Atlanta, Atlanta, Georgia, USA
| | - Luis Salazar
- Division of Pediatric Infectious Diseases, Emory University School of Medicine and Children’s Health Care of Atlanta, Atlanta, Georgia, USA
| | - Caroline Ciric
- Division of Pediatric Infectious Diseases, Emory University School of Medicine and Children’s Health Care of Atlanta, Atlanta, Georgia, USA
| | - Meg Taylor
- Division of Pediatric Infectious Diseases, Emory University School of Medicine and Children’s Health Care of Atlanta, Atlanta, Georgia, USA
| | - Nadine Rouphael
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Srilatha Edupuganti
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Christina A. Rostad
- Division of Pediatric Infectious Diseases, Emory University School of Medicine and Children’s Health Care of Atlanta, Atlanta, Georgia, USA
| | - S. Mark Tompkins
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, Georgia, USA
| | - Evan J. Anderson
- Division of Pediatric Infectious Diseases, Emory University School of Medicine and Children’s Health Care of Atlanta, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Larry J. Anderson
- Division of Pediatric Infectious Diseases, Emory University School of Medicine and Children’s Health Care of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
35
|
Mercado-Reyes M, Gilboa SM, Valencia D, Daza M, Tong VT, Galang RR, Winfield CM, Godfred-Cato S, Benavides M, Villanueva JM, Thomas JD, Daniels J, Zaki S, Reagan-Steiner S, Bhatnagar J, Schiffer J, Steward-Clark E, Ricaldi JN, Osorio J, Sancken CL, Pardo L, Tinker SC, Anderson KN, Rico A, Burkel VK, Hojnacki J, Delahoy MJ, González M, Osorio MB, Moore CA, Honein MA, Ospina Martinez ML. Pregnancy, Birth, Infant, and Early Childhood Neurodevelopmental Outcomes among a Cohort of Women with Symptoms of Zika Virus Disease during Pregnancy in Three Surveillance Sites, Project Vigilancia de Embarazadas con Zika (VEZ), Colombia, 2016-2018. Trop Med Infect Dis 2021; 6:183. [PMID: 34698287 PMCID: PMC8544689 DOI: 10.3390/tropicalmed6040183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/18/2021] [Accepted: 10/07/2021] [Indexed: 01/16/2023] Open
Abstract
Project Vigilancia de Embarazadas con Zika (VEZ), an intensified surveillance of pregnant women with symptoms of the Zika virus disease (ZVD) in Colombia, aimed to evaluate the relationship between symptoms of ZVD during pregnancy and adverse pregnancy, birth, and infant outcomes and early childhood neurodevelopmental outcomes. During May-November 2016, pregnant women in three Colombian cities who were reported with symptoms of ZVD to the national surveillance system, or with symptoms of ZVD visiting participating clinics, were enrolled in Project VEZ. Data from maternal and pediatric (up to two years of age) medical records were abstracted. Available maternal specimens were tested for the presence of the Zika virus ribonucleic acid and/or anti-Zika virus immunoglobulin antibodies. Of 1213 enrolled pregnant women with symptoms of ZVD, 1180 had a known pregnancy outcome. Results of the Zika virus laboratory testing were available for 569 (48.2%) pregnancies with a known pregnancy outcome though testing timing varied and was often distal to the timing of symptoms; 254 (21.5% of the whole cohort; 44.6% of those with testing results) were confirmed or presumptive positive for the Zika virus infection. Of pregnancies with a known outcome, 50 (4.2%) fetuses/infants had Zika-associated brain or eye defects, which included microcephaly at birth. Early childhood adverse neurodevelopmental outcomes were more common among those with Zika-associated birth defects than among those without and more common among those with laboratory evidence of a Zika virus infection compared with the full cohort. The proportion of fetuses/infants with any Zika-associated brain or eye defect was consistent with the proportion seen in other studies. Enhancements to Colombia's existing national surveillance enabled the assessment of adverse outcomes associated with ZVD in pregnancy.
Collapse
Affiliation(s)
- Marcela Mercado-Reyes
- Instituto Nacional de Salud, Bogotá 111321, Colombia; (M.M.-R.); (M.D.); (M.B.); (L.P.); (A.R.); (M.G.); (M.B.O.); (M.L.O.M.)
| | - Suzanne M. Gilboa
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (D.V.); (V.T.T.); (C.M.W.); (S.G.-C.); (C.L.S.); (S.C.T.); (K.N.A.); (C.A.M.); (M.A.H.)
| | - Diana Valencia
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (D.V.); (V.T.T.); (C.M.W.); (S.G.-C.); (C.L.S.); (S.C.T.); (K.N.A.); (C.A.M.); (M.A.H.)
| | - Marcela Daza
- Instituto Nacional de Salud, Bogotá 111321, Colombia; (M.M.-R.); (M.D.); (M.B.); (L.P.); (A.R.); (M.G.); (M.B.O.); (M.L.O.M.)
- Research Division, Vysnova Partners, Landover, MD 20785, USA;
| | - Van T. Tong
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (D.V.); (V.T.T.); (C.M.W.); (S.G.-C.); (C.L.S.); (S.C.T.); (K.N.A.); (C.A.M.); (M.A.H.)
| | - Romeo R. Galang
- National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA;
| | - Christina M. Winfield
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (D.V.); (V.T.T.); (C.M.W.); (S.G.-C.); (C.L.S.); (S.C.T.); (K.N.A.); (C.A.M.); (M.A.H.)
| | - Shana Godfred-Cato
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (D.V.); (V.T.T.); (C.M.W.); (S.G.-C.); (C.L.S.); (S.C.T.); (K.N.A.); (C.A.M.); (M.A.H.)
| | - Mónica Benavides
- Instituto Nacional de Salud, Bogotá 111321, Colombia; (M.M.-R.); (M.D.); (M.B.); (L.P.); (A.R.); (M.G.); (M.B.O.); (M.L.O.M.)
- Research Division, Vysnova Partners, Landover, MD 20785, USA;
| | - Julie M. Villanueva
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (J.M.V.); (J.D.T.); (J.D.); (S.Z.); (S.R.-S.); (J.B.)
| | - Jennifer D. Thomas
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (J.M.V.); (J.D.T.); (J.D.); (S.Z.); (S.R.-S.); (J.B.)
| | - Jonathan Daniels
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (J.M.V.); (J.D.T.); (J.D.); (S.Z.); (S.R.-S.); (J.B.)
| | - Sherif Zaki
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (J.M.V.); (J.D.T.); (J.D.); (S.Z.); (S.R.-S.); (J.B.)
| | - Sarah Reagan-Steiner
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (J.M.V.); (J.D.T.); (J.D.); (S.Z.); (S.R.-S.); (J.B.)
| | - Julu Bhatnagar
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (J.M.V.); (J.D.T.); (J.D.); (S.Z.); (S.R.-S.); (J.B.)
| | - Jarad Schiffer
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (J.S.); (E.S.-C.)
| | - Evelene Steward-Clark
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (J.S.); (E.S.-C.)
| | - Jessica N. Ricaldi
- National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA;
| | - Johana Osorio
- Research Division, Vysnova Partners, Landover, MD 20785, USA;
| | - Christina L. Sancken
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (D.V.); (V.T.T.); (C.M.W.); (S.G.-C.); (C.L.S.); (S.C.T.); (K.N.A.); (C.A.M.); (M.A.H.)
| | - Lissethe Pardo
- Instituto Nacional de Salud, Bogotá 111321, Colombia; (M.M.-R.); (M.D.); (M.B.); (L.P.); (A.R.); (M.G.); (M.B.O.); (M.L.O.M.)
| | - Sarah C. Tinker
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (D.V.); (V.T.T.); (C.M.W.); (S.G.-C.); (C.L.S.); (S.C.T.); (K.N.A.); (C.A.M.); (M.A.H.)
| | - Kayla N. Anderson
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (D.V.); (V.T.T.); (C.M.W.); (S.G.-C.); (C.L.S.); (S.C.T.); (K.N.A.); (C.A.M.); (M.A.H.)
| | - Angelica Rico
- Instituto Nacional de Salud, Bogotá 111321, Colombia; (M.M.-R.); (M.D.); (M.B.); (L.P.); (A.R.); (M.G.); (M.B.O.); (M.L.O.M.)
| | | | - Jacob Hojnacki
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA;
| | | | - Maritza González
- Instituto Nacional de Salud, Bogotá 111321, Colombia; (M.M.-R.); (M.D.); (M.B.); (L.P.); (A.R.); (M.G.); (M.B.O.); (M.L.O.M.)
| | - May B. Osorio
- Instituto Nacional de Salud, Bogotá 111321, Colombia; (M.M.-R.); (M.D.); (M.B.); (L.P.); (A.R.); (M.G.); (M.B.O.); (M.L.O.M.)
| | - Cynthia A. Moore
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (D.V.); (V.T.T.); (C.M.W.); (S.G.-C.); (C.L.S.); (S.C.T.); (K.N.A.); (C.A.M.); (M.A.H.)
| | - Margaret A. Honein
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (D.V.); (V.T.T.); (C.M.W.); (S.G.-C.); (C.L.S.); (S.C.T.); (K.N.A.); (C.A.M.); (M.A.H.)
| | - Martha Lucia Ospina Martinez
- Instituto Nacional de Salud, Bogotá 111321, Colombia; (M.M.-R.); (M.D.); (M.B.); (L.P.); (A.R.); (M.G.); (M.B.O.); (M.L.O.M.)
| |
Collapse
|
36
|
Belaunzarán-Zamudio PF, Rincón León HA, Caballero Sosa S, Ruiz E, Nájera Cancino JG, de La Rosa PR, Guerrero Almeida MDL, Powers JH, Beigel JH, Hunsberger S, Trujillo K, Ramos P, Arteaga-Cabello FJ, López-Roblero A, Valdés-Salgado R, Arroyo-Figueroa H, Becerril E, Ruiz-Palacios G. Different epidemiological profiles in patients with Zika and dengue infection in Tapachula, Chiapas in Mexico (2016-2018): an observational, prospective cohort study. BMC Infect Dis 2021; 21:881. [PMID: 34454432 PMCID: PMC8397877 DOI: 10.1186/s12879-021-06520-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The introduction of Zika and chikungunya to dengue hyperendemic regions increased interest in better understanding characteristics of these infections. We conducted a cohort study in Mexico to evaluate the natural history of Zika infection. We describe here the frequency of Zika, chikungunya and dengue virus infections immediately after Zika introduction in Mexico, and baseline characteristics of participants for each type of infection. METHODS Prospective, observational cohort evaluating the natural history of Zika virus infection in the Mexico-Guatemala border area. Patients with fever, rash or both, meeting the modified criteria of PAHO for probable Zika cases were enrolled (June 2016-July 2018) and followed-up for 6 months. We collected data on sociodemographic, environmental exposure, clinical and laboratory characteristics. Diagnosis was established based on viral RNA identification in serum and urine samples using RT-PCR for Zika, chikungunya, and dengue. We describe the baseline sociodemographic and environmental exposure characteristics of participants according to diagnosis, and the frequency of these infections over a two-year period immediately after Zika introduction in Mexico. RESULTS We enrolled 427 participants. Most patients (n = 307, 65.7%) had an acute illness episode with no identified pathogen (UIE), 37 (8%) Zika, 82 (17.6%) dengue, and 1 (0.2%) chikungunya. In 2016 Zika predominated, declined in 2017 and disappeared in 2018; while dengue increased after 2017. Patients with dengue were more likely to be men, younger, and with lower education than those with Zika and UIE. They also reported closer contact with water sources, and with other people diagnosed with dengue. Participants with Zika reported sexual exposure more frequently than people with dengue and UIE. Zika was more likely to be identified in urine while dengue was more likely found in blood in the first seven days of symptoms; but PCR results for both were similar at day 7-14 after symptom onset. CONCLUSIONS During the first 2 years of Zika introduction to this dengue hyper-endemic region, frequency of Zika peaked and fell over a two-year period; while dengue progressively increased with a predominance in 2018. Different epidemiologic patterns between Zika, dengue and UIE were observed. Trial registration Clinical.Trials.gov (NCT02831699).
Collapse
Affiliation(s)
- Pablo F Belaunzarán-Zamudio
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA.
| | | | - Sandra Caballero Sosa
- Clínica Hospital Dr. Roberto Nettel Flores, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Tapachula, Chiapas, Mexico
| | - Emilia Ruiz
- Hospital General de Tapachula, Tapachula, Chiapas, Mexico
| | | | | | | | - John H Powers
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - John H Beigel
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Sally Hunsberger
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Karina Trujillo
- Hospital Regional de Alta Especialidad Ciudad Salud, Tapachula, Chiapas, Mexico
| | - Pilar Ramos
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Fernando J Arteaga-Cabello
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | | | - Hugo Arroyo-Figueroa
- Mexican Emerging Infectious Diseases Clinical Research Network (La Red), Mexico City, Mexico
| | - Eli Becerril
- Mexican Emerging Infectious Diseases Clinical Research Network (La Red), Mexico City, Mexico
| | - Guillermo Ruiz-Palacios
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
37
|
Comtois J, Camara-Lemarroy CR, Mah JK, Kuhn S, Curtis C, Braun MH, Tellier R, Burton JM. Longitudinally extensive transverse myelitis with positive aquaporin-4 IgG associated with dengue infection: a case report and systematic review of cases. Mult Scler Relat Disord 2021; 55:103206. [PMID: 34418736 DOI: 10.1016/j.msard.2021.103206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/03/2021] [Accepted: 08/06/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Neuromyelitis Optica Spectrum Disorder can be associated with parainfectious and post-infectious triggers. Dengue virus infection is one of the most common arbovirus infections in the world, and may present with neurological manifestations. OBJECTIVES We present a case of DENV-associated with LETM and positive aquaporin-4 IgG, and a systematic review of published cases. METHODS Medline (Ovid) and PubMed were search through June 2021, for case reports, series and observational studies that described patients with DENV-associated LETM and/or NMOSD. RESULTS An adolescent girl who had recently immigrated from a Dengue-endemic region presented with a LETM with high positive AQP4-IgG titer and seropositive DENV IgM/IgG antibodies. She responded well to steroids and subsequently started maintenance rituximab for her NMOSD diagnosis. LITERATURE REVIEW 22 publications describing 27 patients met inclusion criteria. In addition to this case, three published cases met current criteria for NMOSD with serological evidence of acute DENV infection. CONCLUSIONS It is unknown whether there is a pathophysiological association between DENV infection and NMOSD. Regardless, if an immune-mediated event is suspected, particularly NMOSD, appropriate immunotherapy should be considered early. Decision regarding long term immunotherapy may depend on index of suspicion of true NMOSD, and this is where AQP4-IgG status and follow-up is helpful.
Collapse
Affiliation(s)
- Jacynthe Comtois
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Medicine, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada; Department of neurosciences, Faculty of medicine, University of Montreal, Montreal, Quebec, Canada
| | - Carlos R Camara-Lemarroy
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Jean K Mah
- Division of Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Susan Kuhn
- Division of Infectious Diseases, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Colleen Curtis
- Division of Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Marvin H Braun
- Division of Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Raymond Tellier
- Division of Infectious diseases, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jodie M Burton
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Clinical Neurosciences and Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
38
|
Abstract
Highlights (1) Blood culture is the gold standard for the diagnosis of bacterial infections. (2) Bone marrow culture is more sensitive than blood culture even in patients with enteric fever receiving antibiotics. (3) Microscopic agglutination test is considered the gold standard for diagnosing leptospirosis; however, now IgM ELISA and polymerase chain reaction (PCR) are more frequently used for diagnosis. (4) Tuberculosis is diagnosed with the help of nucleic acid amplification tests like Xpert MTB/RIF Ultra which also detects rifampicin resistance. Other tests include microscopy, Lowenstein-Jensen and mycobacteria growth indicator tube culture, line probe assay. (5) Tropical rickettsial infections are diagnosed by serological reactions (Weil-Felix, ELISA for antibodies) and PCR. (6) For Brucellosis culture from blood, bone marrow or tissue specimens remain the mainstay in diagnosis. (7) Dengue, Zika, Crimean-Congo hemorrhagic fever, Ebola, hantavirus, rabies are diagnosed with reverse transcriptase-polymerase chain reaction. Serological tests like IgM ELISA or paired sera samples for IgG are also used for diagnosis. How to cite this article Basu S, Shetty A. Laboratory Diagnosis of Tropical Infections. Indian J Crit Care Med 2021;25(Suppl 2):S122-S126.
Collapse
Affiliation(s)
- Shaoli Basu
- Department of Microbiology, PD Hinduja Hospital, Mumbai, Maharashtra, India
| | - Anjali Shetty
- Department of Microbiology, PD Hinduja Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
39
|
Godfred-Cato S, Newton S, Adams L, Valencia-Prado M, Lake-Burger H, Morrison A, Jones AM, Olson SM, Roth NM, Tong VT, Gilboa SM, Meaney Delman D, Honein MA, Staples JE, Moore CA. Clinical phenotype in infants with negative Zika virus immunoglobulin M testing born to mothers with confirmed Zika virus infection during pregnancy. Birth Defects Res 2021; 113:1267-1274. [PMID: 34327866 DOI: 10.1002/bdr2.1945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Recommended testing for both infants with Zika-associated birth defects (i.e., microcephaly and selected brain or eye anomalies) and infants without birth defects whose mothers had laboratory evidence of possible Zika virus (ZIKV) infection during pregnancy includes nucleic acid amplification testing (NAAT) and immunoglobulin M (IgM) testing within days after birth. Brain and eye defects highly specific for congenital ZIKV infection have been described; sporadic reports have documented negative ZIKV testing in such infants. METHODS Infants from the U.S. Zika Pregnancy and Infant Registry and Zika Birth Defects Surveillance with Zika-associated birth defects and maternal and infant laboratory testing for ZIKV and two congenital infections (i.e., cytomegalovirus [CMV] and toxoplasmosis) were reviewed for phenotype and laboratory results. Infants with at least one defect considered highly specific for congenital ZIKV infection were designated as having congenital Zika syndrome (CZS) clinical phenotype for this study. RESULTS Of 325 liveborn infants with Zika-associated birth defects and laboratory evidence of maternal ZIKV infection, 33 (10%) had CZS clinical phenotype; 172 (53%) had ZIKV IgM testing with negative or no ZIKV NAAT. ZIKV IgM was negative in the remaining 121 infants, and for 90%, testing for CMV and toxoplasmosis was missing/incomplete. Among 11 infants testing negative for ZIKV IgM, CMV, and toxoplasmosis, 2 infants had CZS clinical phenotype. CONCLUSIONS These data add support to previous reports of negative ZIKV IgM testing in infants with clear maternal and phenotypic evidence of congenital ZIKV infection. Follow-up care consistent with the diagnosis is recommended regardless of infant ZIKV test results.
Collapse
Affiliation(s)
- Shana Godfred-Cato
- Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, CDC, Atlanta, Georgia, USA
| | | | - Laura Adams
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, CDC, Atlanta, Georgia, USA
| | - Miguel Valencia-Prado
- Children with Special Medical Needs Division, Puerto Rico Department of Health, San Juan, Puerto Rico
| | - Heather Lake-Burger
- Division of Community Health Promotion, Florida Department of Health, Tallahassee, Florida, USA
| | - Andrea Morrison
- Division of Disease Control and Health Protection, Florida Department of Health, Tallahassee, Florida, USA
| | - Abbey M Jones
- Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, CDC, Atlanta, Georgia, USA
| | - Samantha M Olson
- Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, CDC, Atlanta, Georgia, USA
| | - Nicole M Roth
- Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, CDC, Atlanta, Georgia, USA
| | - Van T Tong
- Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, CDC, Atlanta, Georgia, USA
| | - Suzanne M Gilboa
- Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, CDC, Atlanta, Georgia, USA
| | - Dana Meaney Delman
- Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, CDC, Atlanta, Georgia, USA
| | - Margaret A Honein
- Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, CDC, Atlanta, Georgia, USA
| | - Jennifer Erin Staples
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, CDC, Atlanta, Georgia, USA
| | - Cynthia A Moore
- Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, CDC, Atlanta, Georgia, USA
| |
Collapse
|
40
|
Hills SL, Laven J, Biggerstaff BJ, Kosoy O, Staples JE, Panella A. Frequency of Zika Virus Immunoglobulin M Antibody in Persons with West Nile Virus Infection. Vector Borne Zoonotic Dis 2021; 21:817-821. [PMID: 34292777 DOI: 10.1089/vbz.2021.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
West Nile virus (WNV) and Zika virus (ZIKV) are mosquito-borne viruses in the family Flaviviridae. Residents in, and travelers to, areas where the viruses are circulating are at risk for infection, and both viruses can cause an acute febrile illness. Given known cross-reactivity in flavivirus serologic assays, it is possible a patient with acute WNV infection could be misdiagnosed as having ZIKV infection if appropriate testing is not conducted. To understand how frequently persons with WNV infection have detectable cross-reactive ZIKV immunoglobulin M (IgM) antibody, we used archived serum samples from patients in the United States with recent WNV infection confirmed by a microsphere-based immunoassay test for IgM antibody and neutralizing antibody testing. Samples were tested for ZIKV IgM antibody with the Centers for Disease Control and Prevention (CDC) ZIKV IgM antibody capture enzyme-linked immunosorbent assay. Among 153 sera from patients with acute WNV infection, the ZIKV IgM antibody result was positive in 56 (37%; 95% confidence interval [CI] 29-44%) and equivocal in 28 (18%; 95% CI 13-25%). With 55% of samples having cross-reactive antibodies, it is important for health care providers to request appropriate testing based on the most likely cause of a patient's possible arboviral infection considering their clinical symptoms and signs, travel history, and place of residence. For cases where the epidemiology does not support the preliminary IgM findings, confirmatory neutralizing antibody testing should be performed. These measures will avoid an incorrect diagnosis of ZIKV infection, based on cross-reactive antibodies, in a person truly infected with WNV.
Collapse
Affiliation(s)
- Susan L Hills
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Janeen Laven
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Brad J Biggerstaff
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Olga Kosoy
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - J Erin Staples
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Amanda Panella
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| |
Collapse
|
41
|
Rosinger AY, Olson SM, Ellington SR, Perez-Padilla J, Simeone RM, Pedati CS, Schroeder BA, Santiago GA, Medina FA, Muñoz-Jordán JL, Adams LE, Galang RR, Valencia-Prado M, Bakkour S, Colón C, Goodwin M, Meaney-Delman D, Read JS, Petersen LR, Jamieson DJ, Deseda CC, Honein MA, Rivera-García B, Shapiro-Mendoza CK. Evaluating Differences in Whole Blood, Serum, and Urine Screening Tests for Zika Virus, Puerto Rico, USA, 2016. Emerg Infect Dis 2021; 27:1505-1508. [PMID: 33900183 PMCID: PMC8084515 DOI: 10.3201/eid2705.203960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We evaluated nucleic acid amplification testing (NAAT) for Zika virus on whole-blood specimens compared with NAAT on serum and urine specimens among asymptomatic pregnant women during the 2015–2016 Puerto Rico Zika outbreak. Using NAAT, more infections were detected in serum and urine than in whole blood specimens.
Collapse
|
42
|
Nunes JGC, Nunes BTD, Shan C, Moraes AF, Silva TR, de Mendonça MHR, das Chagas LL, Silva FAE, Azevedo RSS, da Silva EVP, Martins LC, Chiang JO, Casseb LMN, Henriques DF, Vasconcelos PFC, Burbano RMR, Shi PY, Medeiros DBA. Reporter Virus Neutralization Test Evaluation for Dengue and Zika Virus Diagnosis in Flavivirus Endemic Area. Pathogens 2021; 10:840. [PMID: 34357990 PMCID: PMC8308650 DOI: 10.3390/pathogens10070840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/15/2021] [Accepted: 06/30/2021] [Indexed: 11/25/2022] Open
Abstract
Reporter virus neutralization test (RVNT) has been used as an alternative to the more laborious and time-demanding conventional PRNT assay for both DENV and ZIKV. However, few studies have investigated how these techniques would perform in epidemic areas with the circulation of multiple flavivirus. Here, we evaluate the performance of ZIKV and DENV Rluc RVNT and ZIKV mCh RVNT assays in comparison to the conventional PRNT assay against patient sera collected before and during ZIKV outbreak in Brazil. These samples were categorized into groups based on (1) acute and convalescent samples according to the time of disease, and (2) laboratorial diagnostic results (DENV and ZIKV RT-PCR and IgM-capture ELISA). Our results showed that DENV Rluc assay presented 100% and 78.3% sensitivity and specificity, respectively, with 93.3% accuracy, a similar performance to the traditional PRNT. ZIKV RVNT90, on the other hand, showed much better ZIKV antibody detection performance (around nine-fold higher) when compared to PRNT, with 88% clinical sensitivity. Specificity values were on average 76.8%. Even with these results, however, ZIKV RVNT90 alone was not able to reach a final diagnostic conclusion for secondary infection in human samples due to flavivirus cross reaction. As such, in regions where the flavivirus differential diagnosis represents a challenge, we suggest the establishment of a RVNT panel including other flaviviruses circulating in the region, associated with the other serological techniques such as IgM ELISA and the investigation of seroconversion, in order to help define an accurate diagnostic conclusion using serology.
Collapse
Affiliation(s)
- Jannyce G. C. Nunes
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77550, USA; (J.G.C.N.); (B.T.D.N.); (C.S.); (P.-Y.S.)
- Post Graduation Program in Parasitary Biology in the Amazon, Belém 66050-540, PA, Brazil
| | - Bruno T. D. Nunes
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77550, USA; (J.G.C.N.); (B.T.D.N.); (C.S.); (P.-Y.S.)
- Department of Arbovirology & Hemorrhagic Fever, Evandro Chagas Institute, Ananindeua 67015-120, PA, Brazil; (A.F.M.); (T.R.S.); (M.H.R.d.M.); (L.L.d.C.); (F.A.e.S.); (R.S.S.A.); (E.V.P.d.S.); (L.C.M.); (J.O.C.); (L.M.N.C.); (D.F.H.); (P.F.C.V.)
| | - Chao Shan
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77550, USA; (J.G.C.N.); (B.T.D.N.); (C.S.); (P.-Y.S.)
| | - Adriana F. Moraes
- Department of Arbovirology & Hemorrhagic Fever, Evandro Chagas Institute, Ananindeua 67015-120, PA, Brazil; (A.F.M.); (T.R.S.); (M.H.R.d.M.); (L.L.d.C.); (F.A.e.S.); (R.S.S.A.); (E.V.P.d.S.); (L.C.M.); (J.O.C.); (L.M.N.C.); (D.F.H.); (P.F.C.V.)
| | - Tais R. Silva
- Department of Arbovirology & Hemorrhagic Fever, Evandro Chagas Institute, Ananindeua 67015-120, PA, Brazil; (A.F.M.); (T.R.S.); (M.H.R.d.M.); (L.L.d.C.); (F.A.e.S.); (R.S.S.A.); (E.V.P.d.S.); (L.C.M.); (J.O.C.); (L.M.N.C.); (D.F.H.); (P.F.C.V.)
| | - Maria H. R. de Mendonça
- Department of Arbovirology & Hemorrhagic Fever, Evandro Chagas Institute, Ananindeua 67015-120, PA, Brazil; (A.F.M.); (T.R.S.); (M.H.R.d.M.); (L.L.d.C.); (F.A.e.S.); (R.S.S.A.); (E.V.P.d.S.); (L.C.M.); (J.O.C.); (L.M.N.C.); (D.F.H.); (P.F.C.V.)
| | - Liliane L. das Chagas
- Department of Arbovirology & Hemorrhagic Fever, Evandro Chagas Institute, Ananindeua 67015-120, PA, Brazil; (A.F.M.); (T.R.S.); (M.H.R.d.M.); (L.L.d.C.); (F.A.e.S.); (R.S.S.A.); (E.V.P.d.S.); (L.C.M.); (J.O.C.); (L.M.N.C.); (D.F.H.); (P.F.C.V.)
| | - Franco A. e Silva
- Department of Arbovirology & Hemorrhagic Fever, Evandro Chagas Institute, Ananindeua 67015-120, PA, Brazil; (A.F.M.); (T.R.S.); (M.H.R.d.M.); (L.L.d.C.); (F.A.e.S.); (R.S.S.A.); (E.V.P.d.S.); (L.C.M.); (J.O.C.); (L.M.N.C.); (D.F.H.); (P.F.C.V.)
| | - Raimunda S. S. Azevedo
- Department of Arbovirology & Hemorrhagic Fever, Evandro Chagas Institute, Ananindeua 67015-120, PA, Brazil; (A.F.M.); (T.R.S.); (M.H.R.d.M.); (L.L.d.C.); (F.A.e.S.); (R.S.S.A.); (E.V.P.d.S.); (L.C.M.); (J.O.C.); (L.M.N.C.); (D.F.H.); (P.F.C.V.)
| | - Eliana V. P. da Silva
- Department of Arbovirology & Hemorrhagic Fever, Evandro Chagas Institute, Ananindeua 67015-120, PA, Brazil; (A.F.M.); (T.R.S.); (M.H.R.d.M.); (L.L.d.C.); (F.A.e.S.); (R.S.S.A.); (E.V.P.d.S.); (L.C.M.); (J.O.C.); (L.M.N.C.); (D.F.H.); (P.F.C.V.)
| | - Livia C. Martins
- Department of Arbovirology & Hemorrhagic Fever, Evandro Chagas Institute, Ananindeua 67015-120, PA, Brazil; (A.F.M.); (T.R.S.); (M.H.R.d.M.); (L.L.d.C.); (F.A.e.S.); (R.S.S.A.); (E.V.P.d.S.); (L.C.M.); (J.O.C.); (L.M.N.C.); (D.F.H.); (P.F.C.V.)
| | - Jannifer O. Chiang
- Department of Arbovirology & Hemorrhagic Fever, Evandro Chagas Institute, Ananindeua 67015-120, PA, Brazil; (A.F.M.); (T.R.S.); (M.H.R.d.M.); (L.L.d.C.); (F.A.e.S.); (R.S.S.A.); (E.V.P.d.S.); (L.C.M.); (J.O.C.); (L.M.N.C.); (D.F.H.); (P.F.C.V.)
| | - Livia M. N. Casseb
- Department of Arbovirology & Hemorrhagic Fever, Evandro Chagas Institute, Ananindeua 67015-120, PA, Brazil; (A.F.M.); (T.R.S.); (M.H.R.d.M.); (L.L.d.C.); (F.A.e.S.); (R.S.S.A.); (E.V.P.d.S.); (L.C.M.); (J.O.C.); (L.M.N.C.); (D.F.H.); (P.F.C.V.)
| | - Daniele F. Henriques
- Department of Arbovirology & Hemorrhagic Fever, Evandro Chagas Institute, Ananindeua 67015-120, PA, Brazil; (A.F.M.); (T.R.S.); (M.H.R.d.M.); (L.L.d.C.); (F.A.e.S.); (R.S.S.A.); (E.V.P.d.S.); (L.C.M.); (J.O.C.); (L.M.N.C.); (D.F.H.); (P.F.C.V.)
| | - Pedro F. C. Vasconcelos
- Department of Arbovirology & Hemorrhagic Fever, Evandro Chagas Institute, Ananindeua 67015-120, PA, Brazil; (A.F.M.); (T.R.S.); (M.H.R.d.M.); (L.L.d.C.); (F.A.e.S.); (R.S.S.A.); (E.V.P.d.S.); (L.C.M.); (J.O.C.); (L.M.N.C.); (D.F.H.); (P.F.C.V.)
- Science and Health Institute, Pará State University, Belém 66113-010, PA, Brazil
| | - Rommel M. R. Burbano
- Biological Sciences Institute, ICS, Federal University of Pará, Belém 66050-000, PA, Brazil;
| | - Pei-Yong Shi
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77550, USA; (J.G.C.N.); (B.T.D.N.); (C.S.); (P.-Y.S.)
| | - Daniele B. A. Medeiros
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77550, USA; (J.G.C.N.); (B.T.D.N.); (C.S.); (P.-Y.S.)
- Post Graduation Program in Parasitary Biology in the Amazon, Belém 66050-540, PA, Brazil
- Department of Arbovirology & Hemorrhagic Fever, Evandro Chagas Institute, Ananindeua 67015-120, PA, Brazil; (A.F.M.); (T.R.S.); (M.H.R.d.M.); (L.L.d.C.); (F.A.e.S.); (R.S.S.A.); (E.V.P.d.S.); (L.C.M.); (J.O.C.); (L.M.N.C.); (D.F.H.); (P.F.C.V.)
| |
Collapse
|
43
|
Duarte G, Miranda AE, Bermudez XPD, Saraceni V, Martinez-Espinosa FE. Brazilian Protocol for Sexually Transmitted Infections 2020: Zika virus infection. Rev Soc Bras Med Trop 2021; 54:e2020609. [PMID: 34008724 PMCID: PMC8210481 DOI: 10.1590/0037-8682-609-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/10/2021] [Indexed: 11/22/2022] Open
Abstract
This article addresses the vector, sexual and vertical transmissions of the Zika virus, a topic covered in the Clinical Protocol and Therapeutic Guidelines for Comprehensive Care for People with Sexually Transmitted Infections, published by the Brazilian Ministry of Health in 2020. Although in Brazil Zika virus is transmitted more predominantly by Aedes aegypti, the vertical and sexual transmission routes are of significant importance for reproductive health. Sexual transmission demands specific prophylactic interventions, including the use of male or female condoms, especially among couples in a risk situation and planning pregnancy. Vertical transmission is linked to severe structural abnormalities of the central nervous system, and there is still no vaccine or known pharmacological resources that can prevent it. As the disease is predominantly asymptomatic, failure to comply with the basic principles of care and guidelines associated with the spread of the infection transcends the severity of the disease's symptoms. Although in Brazil Zika virus is predominantly transmitted by the Aedes aegypti mosquito, vertical and sexual transmission routes are important for reproductive health. Vertical transmission causes severe central nervous system structural abnormalities.
Collapse
Affiliation(s)
- Geraldo Duarte
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, Brasil
| | | | | | | | | |
Collapse
|
44
|
Sasmono RT, Johar E, Yohan B, Ma’roef CN, Pronyk P, Hadinegoro SR, Soepardi EJ, Bouckenooghe A, Hawley WA, Rosenberg R, Powers AM, Soebandrio A, Myint KSA. Spatiotemporal Heterogeneity of Zika Virus Transmission in Indonesia: Serosurveillance Data from a Pediatric Population. Am J Trop Med Hyg 2021; 104:2220-2223. [PMID: 33939632 PMCID: PMC8176489 DOI: 10.4269/ajtmh.21-0010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/08/2021] [Indexed: 11/23/2022] Open
Abstract
The presence of Zika virus (ZIKV) in Indonesia has been recognized since the 1970s, but its transmission dynamics there have been poorly understood. To understand more fully the geographic distribution and burden of ZIKV infection, we performed retrospective serological tests on specimens collected from asymptomatic children age 5 to 9 years old living at 30 sites in 14 provinces. Of 870 serum samples tested, 9.2% were found to be positive for anti-ZIKV antibodies, as confirmed by plaque reduction neutralization assays. This was the same overall prevalence reported previously for 1- to 4-year-old children collected at the same sites at the same time. Together with geographic differences in seroprevalence between the age groups, these data suggest that, although ZIKV might be endemic in Indonesia, its occurrence has been focal and episodic.
Collapse
Affiliation(s)
| | - Edison Johar
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | | | | | | | - Sri Rezeki Hadinegoro
- Faculty of Medicine and Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia
| | | | | | | | - Ronald Rosenberg
- Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Ann M. Powers
- Centers for Disease Control and Prevention, Fort Collins, Colorado
| | | | | |
Collapse
|
45
|
Sánchez-González L, Venuto M, Poe S, Major CG, Baskara L, Abdiyeva S, Murphy D, Munoz-Jordan JL, Medina FA, Paz-Bailey G, Petersen K, Becker K, Sharp TM. Dengue Virus Infections among Peace Corps Volunteers in Timor-Leste, 2018-2019. Am J Trop Med Hyg 2021; 104:2202-2209. [PMID: 33901000 PMCID: PMC8176509 DOI: 10.4269/ajtmh.21-0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/08/2021] [Indexed: 11/30/2022] Open
Abstract
Dengue is an ongoing health risk for Peace Corps Volunteers (PCVs) working in the tropics. On May 2019, the Peace Corps Office of Health Services notified the Centers for Disease Control and Prevention (CDC) of a dengue outbreak among PCVs in Timor-Leste. The purpose of this investigation was to identify the clinical, demographic, and epidemiological characteristics of PCVs with dengue and recommend dengue preventive measures. To identify PCVs with dengue and describe disease severity, the medical records of PCVs reporting fever during September 2018–June 2019 were reviewed. To identify factors associated with dengue virus (DENV) infection, we administered a questionnaire on demographics, travel history, and mosquito avoidance behaviors and collected blood specimens to detect the anti-DENV IgM antibody to diagnose recent infection. Of 35 PCVs in-country, 11 (31%) tested positive for dengue (NS1, IgM, PCR), eight requiring hospitalization and medical evacuation. Among 27 (77%) PCVs who participated in the investigation, all reported having been recently bitten by mosquitoes and 56% reported being bitten most often at home; only 16 (59%) reported having screens on bedroom windows. Nearly all (93%) PCVs reported using a bed net every night; fewer (70%) reported using mosquito repellent at least once a day. No behaviors were significantly associated with DENV infection. Raising awareness of dengue risk among PCVs and continuing to encourage mosquito avoidance behavior to prevent dengue is critical. Access to and use of measures to avoid mosquito bites should be improved or implemented. Peace Corps medical officers should continue to receive an annual refresher training on dengue clinical management.
Collapse
Affiliation(s)
| | - Margaret Venuto
- 2Epidemiology and Surveillance Unit, Office of Health Services, United States Peace Corps, Washington, District of Columbia
| | - Scott Poe
- 2Epidemiology and Surveillance Unit, Office of Health Services, United States Peace Corps, Washington, District of Columbia
| | - Chelsea G Major
- 1Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Leonardus Baskara
- 3Timor-Leste Country Office, Office of Health Services, U.S. Peace Corps, Washington, District of Columbia
| | - Sevinj Abdiyeva
- 3Timor-Leste Country Office, Office of Health Services, U.S. Peace Corps, Washington, District of Columbia
| | - Daniel Murphy
- 2Epidemiology and Surveillance Unit, Office of Health Services, United States Peace Corps, Washington, District of Columbia
| | - Jorge L Munoz-Jordan
- 1Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Freddy A Medina
- 1Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Gabriela Paz-Bailey
- 1Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Kyle Petersen
- 2Epidemiology and Surveillance Unit, Office of Health Services, United States Peace Corps, Washington, District of Columbia
| | - Karen Becker
- 2Epidemiology and Surveillance Unit, Office of Health Services, United States Peace Corps, Washington, District of Columbia
| | - Tyler M Sharp
- 1Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico.,4U.S. Public Health Service, Rockville, Maryland
| |
Collapse
|
46
|
Mulkey SB, Ansusinha E, Cristante C, Russo SM, Biddle C, Kousa YA, Pesacreta L, Jantausch B, Hanisch B, Harik N, Hamdy RF, Hahn A, Chang T, Jaafar M, Ambrose T, Vezina G, Bulas DI, Wessel D, du Plessis AJ, DeBiasi RL. Complexities of Zika Diagnosis and Evaluation in a U.S. Congenital Zika Program. Am J Trop Med Hyg 2021; 104:2210-2219. [PMID: 33872214 DOI: 10.4269/ajtmh.20-1256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/23/2020] [Indexed: 12/31/2022] Open
Abstract
The objective of the study was to describe the complexity of diagnosis and evaluation of Zika-exposed pregnant women/fetuses and infants in a U.S. Congenital Zika Program. Pregnant women/fetuses and/or infants referred for clinical evaluation to the Congenital Zika Program at Children's National (Washington, DC) from January 2016 to June 2018 were included. We recorded the timing of maternal Zika-virus (ZIKV) exposure and ZIKV laboratory testing results. Based on laboratory testing, cases were either confirmed, possible, or unlikely ZIKV infection. Prenatal and postnatal imaging by ultrasound and/or magnetic resonance imaging (MRI) were categorized as normal, nonspecific, or as findings of congenital Zika syndrome (CZS). Of 81 women-fetus/infant pairs evaluated, 72 (89%) had confirmed ZIKV exposure; 18% of women were symptomatic; only a minority presented for evaluation within the time frame for laboratory detection. Zika virus could only be confirmed in 29 (40%) cases, was possible in 26 (36%) cases, and was excluded in 17 (24%) cases. Five cases (7%) had prenatal ultrasound and MRI findings of CZS, but in only three was ZIKV confirmed by laboratory testing. Because of timing of exposure to presentation, ZIKV infection could not be excluded in many cases. Neuroimaging found CZS in 7% of cases, and in many patients, there were nonspecific imaging findings that warrant long-term follow-up. Overall, adherence to postnatal recommended follow-up evaluations was modest, representing a barrier to care. These challenges may be instructive to future pediatric multidisciplinary clinics for congenital infectious/noninfectious threats to pregnant women and their infants.
Collapse
Affiliation(s)
- Sarah B Mulkey
- 1Division of Fetal and Transitional Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,2Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,3Department of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Emily Ansusinha
- 4Division of Pediatric Infectious Diseases, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Caitlin Cristante
- 1Division of Fetal and Transitional Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Stephanie M Russo
- 1Division of Fetal and Transitional Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Cara Biddle
- 2Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,5Division of General and Community Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Youssef A Kousa
- 2Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,6Division of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Lindsay Pesacreta
- 1Division of Fetal and Transitional Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Barbara Jantausch
- 2Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,4Division of Pediatric Infectious Diseases, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Benjamin Hanisch
- 2Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,4Division of Pediatric Infectious Diseases, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Nada Harik
- 2Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,4Division of Pediatric Infectious Diseases, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Rana F Hamdy
- 2Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,4Division of Pediatric Infectious Diseases, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Andrea Hahn
- 2Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,4Division of Pediatric Infectious Diseases, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Taeun Chang
- 2Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,3Department of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,6Division of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Mohamad Jaafar
- 2Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,7Division of Ophthalmology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Tracey Ambrose
- 8Division of Audiology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Gilbert Vezina
- 2Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,9Division of Radiology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Dorothy I Bulas
- 2Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,9Division of Radiology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - David Wessel
- 2Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,10Division of Chief Medical Officer, Children's National Hospital, Washington, District of Columbia
| | - Adre J du Plessis
- 1Division of Fetal and Transitional Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,2Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,3Department of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,6Division of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Roberta L DeBiasi
- 2Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,4Division of Pediatric Infectious Diseases, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,11Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| |
Collapse
|
47
|
Quandelacy TM, Healy JM, Greening B, Rodriguez DM, Chung KW, Kuehnert MJ, Biggerstaff BJ, Dirlikov E, Mier-y-Teran-Romero L, Sharp TM, Waterman S, Johansson MA. Estimating incidence of infection from diverse data sources: Zika virus in Puerto Rico, 2016. PLoS Comput Biol 2021; 17:e1008812. [PMID: 33784311 PMCID: PMC8034731 DOI: 10.1371/journal.pcbi.1008812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/09/2021] [Accepted: 02/17/2021] [Indexed: 01/25/2023] Open
Abstract
Emerging epidemics are challenging to track. Only a subset of cases is recognized and reported, as seen with the Zika virus (ZIKV) epidemic where large proportions of infection were asymptomatic. However, multiple imperfect indicators of infection provide an opportunity to estimate the underlying incidence of infection. We developed a modeling approach that integrates a generic Time-series Susceptible-Infected-Recovered epidemic model with assumptions about reporting biases in a Bayesian framework and applied it to the 2016 Zika epidemic in Puerto Rico using three indicators: suspected arboviral cases, suspected Zika-associated Guillain-Barré Syndrome cases, and blood bank data. Using this combination of surveillance data, we estimated the peak of the epidemic occurred during the week of August 15, 2016 (the 33rd week of year), and 120 to 140 (50% credible interval [CrI], 95% CrI: 97 to 170) weekly infections per 10,000 population occurred at the peak. By the end of 2016, we estimated that approximately 890,000 (95% CrI: 660,000 to 1,100,000) individuals were infected in 2016 (26%, 95% CrI: 19% to 33%, of the population infected). Utilizing multiple indicators offers the opportunity for real-time and retrospective situational awareness to support epidemic preparedness and response. Zika virus (ZIKV) infections, like many infections, are generally underreported due to asymptomatic, mild, or unrecognized cases. Using available surveillance indicators reflecting imperfect proxies of infection, we developed a modeling approach to estimate the weekly incidence of infection by combining independent surveillance indicators and assumptions about system-specific reporting biases in a Bayesian framework. Using our approach, we estimated that approximately 890,000 people in the population were infected with Zika in Puerto Rico in 2016, much higher than the 36,316 reported confirmed infections. Our framework has broad application to other diseases where cases may be underreported through traditional disease surveillance and can provide near real-time changes in incidences.
Collapse
Affiliation(s)
- Talia M. Quandelacy
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico, United States of America
- * E-mail:
| | - Jessica M. Healy
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Bradford Greening
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Dania M. Rodriguez
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico, United States of America
| | - Koo-Whang Chung
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Matthew J. Kuehnert
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Brad J. Biggerstaff
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Emilio Dirlikov
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Luis Mier-y-Teran-Romero
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico, United States of America
| | - Tyler M. Sharp
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico, United States of America
- United States Public Health Service, Silver Springs, Maryland, United States of America
| | - Stephen Waterman
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico, United States of America
- United States Public Health Service, Silver Springs, Maryland, United States of America
| | - Michael A. Johansson
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico, United States of America
- Harvard TH Chan School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
48
|
Moura LM, Ferreira VLDR, Loureiro RM, de Paiva JPQ, Rosa-Ribeiro R, Amaro E, Soares MBP, Machado BS. The Neurobiology of Zika Virus: New Models, New Challenges. Front Neurosci 2021; 15:654078. [PMID: 33897363 PMCID: PMC8059436 DOI: 10.3389/fnins.2021.654078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
The Zika virus (ZIKV) attracted attention due to one striking characteristic: the ability to cross the placental barrier and infect the fetus, possibly causing severe neurodevelopmental disruptions included in the Congenital Zika Syndrome (CZS). Few years after the epidemic, the CZS incidence has begun to decline. However, how ZIKV causes a diversity of outcomes is far from being understood. This is probably driven by a chain of complex events that relies on the interaction between ZIKV and environmental and physiological variables. In this review, we address open questions that might lead to an ill-defined diagnosis of CZS. This inaccuracy underestimates a large spectrum of apparent normocephalic cases that remain underdiagnosed, comprising several subtle brain abnormalities frequently masked by a normal head circumference. Therefore, new models using neuroimaging and artificial intelligence are needed to improve our understanding of the neurobiology of ZIKV and its true impact in neurodevelopment.
Collapse
Affiliation(s)
| | | | | | | | | | - Edson Amaro
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ), Bahia, Brazil.,University Center SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Advanced Health Systems (CIMATEC ISI SAS), National Service of Industrial Learning - SENAI, Bahia, Brazil
| | | |
Collapse
|
49
|
Diagnostic Value of IgM and IgG Detection in COVID-19 Diagnosis by the Mobile Laboratory B-LiFE: A Massive Testing Strategy in the Piedmont Region. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073372. [PMID: 33805139 PMCID: PMC8036500 DOI: 10.3390/ijerph18073372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/23/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is an acute infectious disease caused by the novel coronavirus (SARS-CoV-2) identified in 2019. The COVID-19 outbreak continues to have devastating consequences for human lives and the global economy. The B-LiFe mobile laboratory in Piedmont, Italy, was deployed for the surveillance of COVID-19 cases by large-scale testing of first responders. The objective was to assess the seroconversion among the regional civil protection (CP), police, health care professionals, and volunteers. The secondary objective was to detect asymptomatic individuals within this cohort in the light of age, sex, and residence. In this paper, we report the results of serological testing performed by the B-LiFe mobile laboratory deployed from 10 June to 23 July 2020. The tests included whole blood finger-prick and serum sampling for detection of SARS-CoV-2 spike receptor-binding domain (S-RBD) antibodies. The prevalence of SARS-CoV-2 antibodies was approximately 5% (294/6013). The results of the finger-prick tests and serum sample analyses showed moderate agreement (kappa = 0.77). Furthermore, the detection rates of serum antibodies to the SARS-CoV-2 nucleocapsid protein (NP) and S-RBD among the seroconverted individuals were positively correlated (kappa = 0.60), at least at the IgG level. Seroprevalence studies based on serological testing for the S-RBD protein or SARS-CoV-2 NP antibodies are not sufficient for diagnosis but might help in screening the population to be vaccinated and in determining the duration of seroconversion.
Collapse
|
50
|
Duarte G, Miranda AE, Bermúdez XPD, Saraceni V, Martínez-Espinosa FE. [Brazilian Protocol for Sexually Transmitted Infections 2020: Zika virus infection]. ACTA ACUST UNITED AC 2021; 30:e2020609. [PMID: 33729407 DOI: 10.1590/s1679-4974202100017.esp1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
This article addresses vector, sexual and vertical transmission of Zika virus, a topic covered in the Clinical Protocol and Therapeutic Guidelines for Comprehensive Care for People with Sexually Transmitted Infections, published by the Brazilian Ministry of Health in 2020. Although in Brazil Zika virus is transmitted most predominantly by Aedes aegypti, the vertical and sexual transmission routes are of significant importance for reproductive health. Sexual transmission demands the use of specific prophylactic interventions, including the use of male or female condoms, especially among couples planning pregnancy. Vertical transmission is linked to severe structural abnormalities of the central nervous system and there is still no vaccine or known pharmacological resources that can prevent it. As the disease is predominantly asymptomatic, failure to comply with basic principles of care and guidelines related to the spread of infection transcends the severity of the symptoms of the disease.
Collapse
Affiliation(s)
- Geraldo Duarte
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | | | | | - Valeria Saraceni
- Secretaria Municipal de Saúde do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | |
Collapse
|