1
|
Nieminen P, Finnilä MAJ, Hämäläinen W, Lehtiniemi S, Jämsä T, Tuukkanen J, Kunnasranta M, Henttonen H, Mustonen AM. Osteological profiling of femoral diaphysis and neck in aquatic, semiaquatic, and terrestrial carnivores and rodents: effects of body size and locomotor habits. J Comp Physiol B 2024; 194:473-492. [PMID: 38678156 DOI: 10.1007/s00360-024-01551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/22/2024] [Accepted: 03/30/2024] [Indexed: 04/29/2024]
Abstract
The increased limb bone density documented previously for aquatic tetrapods has been proposed to be an adaptation to overcome buoyancy during swimming and diving. It can be achieved by increasing the amount of bone deposition or by reducing the amount of bone resorption, leading to cortical thickening, loss of medullary cavity, and compaction of trabecular bone. The present study examined the effects of locomotor habit, body size, and phylogeny on the densitometric, cross-sectional, and biomechanical traits of femoral diaphysis and neck in terrestrial, semiaquatic, and aquatic carnivores, and in terrestrial and semiaquatic rodents (12 species) by using peripheral quantitative computed tomography, three-point bending, and femoral neck loading tests. Groupwise differences were analyzed with the univariate generalized linear model and the multivariate linear discriminant analysis supplemented with hierarchical clustering. While none of the individual features could separate the lifestyles or species adequately, the combinations of multiple features produced very good or excellent classifications and clusterings. In the phocid seals, the aquatic niche allowed for lower femoral bone mineral densities than expected based on the body mass alone. The semiaquatic mammals mostly had high bone mineral densities compared to the terrestrial species, which could be considered an adaptation to overcome buoyancy during swimming and shallow diving. Generally, it seems that different osteological properties at the levels of mineral density and biomechanics could be compatible with the adaptation to aquatic, semiaquatic, or terrestrial niches.
Collapse
Affiliation(s)
- Petteri Nieminen
- Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, Joensuu, Finland
- School of Medicine, Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko A J Finnilä
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | - Saara Lehtiniemi
- Department of Computer Science, School of Science, Aalto University, Espoo, Finland
| | - Timo Jämsä
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Juha Tuukkanen
- Research Unit of Translational Medicine, Department of Anatomy and Cell Biology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Mervi Kunnasranta
- Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, Joensuu, Finland
- Natural Resources Institute Finland, Joensuu, Finland
| | | | - Anne-Mari Mustonen
- Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, Joensuu, Finland.
- School of Medicine, Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
2
|
Delsmann J, Schmidt B, Oheim R, Amling M, Rolvien T, Siebert U. Bone mineral density and microarchitecture change during skeletal growth in harbor seals (Phoca vitulina) from the German coast. Sci Rep 2023; 13:7196. [PMID: 37137898 PMCID: PMC10156659 DOI: 10.1038/s41598-023-33911-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/20/2023] [Indexed: 05/05/2023] Open
Abstract
Across species, the skeletal system shares mutual functions, including the protection of inner organs, structural basis for locomotion, and acting as an endocrine organ, thus being of pivotal importance for survival. However, insights into skeletal characteristics of marine mammals are limited, especially in the growing skeleton. Harbor seals (Phoca vitulina) are common marine mammals in the North and Baltic Seas and are suitable indicators of the condition of their ecosystem. Here, we analyzed whole-body areal bone mineral density (aBMD) by dual-energy X-ray absorptiometry (DXA) and lumbar vertebrae by high-resolution peripheral quantitative computed tomography (HR-pQCT) in neonate, juvenile, and adult harbor seals. Along skeletal growth, an increase in two-dimensional aBMD by DXA was paralleled by three-dimensional volumetric BMD by HR-pQCT, which could be attributed to an increasing trabecular thickness while trabecular number remained constant. Strong associations were observed between body dimensions (weight and length) and aBMD and trabecular microarchitecture (R2 = 0.71-0.92, all p < 0.001). To validate the results of the DXA measurement (i.e., the standard method used worldwide to diagnose osteoporosis in humans), we performed linear regression analyses with the three-dimensional measurements from the HR-pQCT method, which revealed strong associations between the two imaging techniques (e.g., aBMD and Tb.Th: R2 = 0.96, p < 0.0001). Taken together, our findings highlight the importance of systematic skeletal investigations in marine mammals during growth, illustrating the high accuracy of DXA in this context. Regardless of the limited sample size, the observed trabecular thickening is likely to represent a distinct pattern of vertebral bone maturation. As differences in nutritional status, among other factors, are likely to affect skeletal health, it appears essential to routinely perform skeletal assessments in marine mammals. Placing the results in the context of environmental exposures may allow effective measures to protect their populations.
Collapse
Affiliation(s)
- Julian Delsmann
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
- Division of Orthopedics, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Britta Schmidt
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstr. 6, 25746, Büsum, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| | - Tim Rolvien
- Division of Orthopedics, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstr. 6, 25746, Büsum, Germany.
| |
Collapse
|
3
|
Schmidt B, Sonne C, Nachtsheim D, Wohlsein P, Persson S, Dietz R, Siebert U. Liver histopathology of Baltic grey seals (Halichoerus grypus) over three decades. ENVIRONMENT INTERNATIONAL 2020; 145:106110. [PMID: 32937284 DOI: 10.1016/j.envint.2020.106110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
The liver plays an important role in the metabolism and elimination of endogenic and exogenic lipid-soluble compounds. Multiple studies have shown that polychlorinated biphenyls (PCB) and dichlorodiphenyl trichloroethane (DDT) lead to morphological changes in liver cells. The aim of the present study was therefore to analyse liver changes over time in Baltic grey seals (Halichoerus grypus) and to correlate these with historical PCB and DDT contaminations. A total of 191 liver samples were collected between 1981 and 2015 in the Gulf of Bothnia and northern Baltic Proper. Six histological features were evaluated, including portal mononuclear cell infiltration, random mononuclear cell infiltration, lipid granulomas, hepatocellular fat vacuoles, hepatic stellate cells and mild multifocal bile duct hyperplasia accompanied by portal fibrosis. Three of the six lesions showed a significant correlation with age. Furthermore, a positive correlation between portal mononuclear cell infiltration and mild multifocal bile duct hyperplasia was found. Additionally, lipid granulomas were significantly correlated with hepatic stellate cells. More importantly, hepatic stellate cells and mild multifocal bile duct hyperplasia were correlated with adipose tissue (blubber) concentrations of ƩPCB, measured in a subsample (n = 34) of all individuals. No correlation with lesions and ƩDDT concentrations were found. These results show that age is an important factor for the development of these liver lesions, but PCBs burden may be an influencing factor. This is in agreement with previous studies of marine mammals in the Baltic Sea as well as in the Arctic. We therefore conclude that not only age of the animals, but also exposure to PCBs should be taken into account when understanding and evaluating the current health status of Baltic grey seals.
Collapse
Affiliation(s)
- Britta Schmidt
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstraße 6, D-25761 Büsum, Germany
| | - Christian Sonne
- Marine Mammal Research, Department of Bioscience, Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Dominik Nachtsheim
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstraße 6, D-25761 Büsum, Germany
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine, Bünteweg 17, D-30559 Hannover, Germany
| | - Sara Persson
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden
| | - Rune Dietz
- Marine Mammal Research, Department of Bioscience, Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstraße 6, D-25761 Büsum, Germany; Marine Mammal Research, Department of Bioscience, Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark.
| |
Collapse
|
4
|
Schmidt B, Sonne C, Nachtsheim D, Dietz R, Oheim R, Rolvien T, Persson S, Amling M, Siebert U. Variation in skull bone mineral density of ringed seals (Phoca hispida) from the Gulf of Bothnia and West Greenland between 1829 and 2019. ENVIRONMENT INTERNATIONAL 2020; 143:105968. [PMID: 32702596 DOI: 10.1016/j.envint.2020.105968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 05/21/2023]
Abstract
Bone is remodelled constantly through a balance of bone formation and resorption. This process can be affected by various factors such as hormones, vitamins, nutrients and environmental factors, which can create an imbalance resulting in systemic or local bone alteration. The aim of the present study was to analyse the changes in bone mineral density (BMD) over time in skulls of ringed seals (Pusa hispida) from the Baltic and Greenland using museum samples. Overall, 303 skulls (102 Male, 89 Female, 112 unknown) were used for bone investigations and were divided into three periods according to collection year: before 1958 (n = 167), between 1958 and 1989 (n = 40) and after 1994 up to 2019 (n = 96). All skulls were examined by dual-energy X-ray absorptiometry to obtain the BMD. Skull BMD of the Baltic seals was positively correlated with the historical polychlorinated biphenyls (PCB) contamination having potential effects on the constitution of bones. BMD fluctuated between the three study periods (LM: p-value < 0.001, F-value = 47.5) with the lowest BMD found between 1897 and 1957, in the Gulf of Bothnia, where the highest peak of contaminant concentration was in the second period. BMD levels increased with increasing PCB concentration (LM: p < 0.001). The Greenland population showed significant lower BMD levels in the pollution and post-pollution period than the Baltic population (LM: p < 0.001). It also revealed a higher BMD in males than in females (LM: p = 0.03). In conclusion, the variations between 1829 and 2019 in the Baltic Sea and Greenland may to a certain extent reflect normal fluctuations; however, this study revealed several factors affecting BMD, including sex and PCB levels.
Collapse
Affiliation(s)
- Britta Schmidt
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstr. 6, 25761 Büsum, Germany
| | - Christian Sonne
- Marine Mammal Research, Department of Bioscience, Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Dominik Nachtsheim
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstr. 6, 25761 Büsum, Germany
| | - Rune Dietz
- Marine Mammal Research, Department of Bioscience, Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany; Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Sara Persson
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstr. 6, 25761 Büsum, Germany; Marine Mammal Research, Department of Bioscience, Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark.
| |
Collapse
|
5
|
Sonne C, Siebert U, Gonnsen K, Desforges JP, Eulaers I, Persson S, Roos A, Bäcklin BM, Kauhala K, Tange Olsen M, Harding KC, Treu G, Galatius A, Andersen-Ranberg E, Gross S, Lakemeyer J, Lehnert K, Lam SS, Peng W, Dietz R. Health effects from contaminant exposure in Baltic Sea birds and marine mammals: A review. ENVIRONMENT INTERNATIONAL 2020; 139:105725. [PMID: 32311628 DOI: 10.1016/j.envint.2020.105725] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/29/2020] [Accepted: 04/04/2020] [Indexed: 05/21/2023]
Abstract
Here we review contaminant exposure and related health effects in six selected Baltic key species. Sentinel species included are common eider, white-tailed eagle, harbour porpoise, harbour seal, ringed seal and grey seal. The review represents the first attempt of summarizing available information and baseline data for these biomonitoring key species exposed to industrial hazardous substances focusing on anthropogenic persistent organic pollutants (POPs). There was only limited information available for white-tailed eagles and common eider while extensive information exist on POP exposure and health effects in the four marine mammal species. Here we report organ-tissue endpoints (pathologies) and multiple biomarkers used to evaluate health and exposure of key species to POPs, respectively, over the past several decades during which episodes of significant population declines have been reported. Our review shows that POP exposure affects the reproductive system and survival through immune suppression and endocrine disruption, which have led to population-level effects on seals and white-tailed eagles in the Baltic. It is notable that many legacy contaminants, which have been banned for decades, still appear to affect Baltic wildlife. With respect to common eiders, changes in food composition, quality and contaminant exposure seem to have population effects which need to be investigated further, especially during the incubation period where the birds fast. Since new industrial contaminants continuously leak into the environment, we recommend continued monitoring of them in sentinel species in the Baltic, identifying possible effects linked to climate change, and modelling of population level effects of contaminants and climate change.
Collapse
Affiliation(s)
- Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou CN-450002, China.
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstr. 6, 25761 Büsum, Germany.
| | - Katharina Gonnsen
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstr. 6, 25761 Büsum, Germany.
| | - Jean-Pierre Desforges
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Igor Eulaers
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Sara Persson
- Swedish Museum of Natural History, Department of Environmental Research and Monitoring, Frescativägen 40, SE-104 05 Stockholm, Sweden.
| | - Anna Roos
- Swedish Museum of Natural History, Department of Environmental Research and Monitoring, Frescativägen 40, SE-104 05 Stockholm, Sweden.
| | - Britt-Marie Bäcklin
- Swedish Museum of Natural History, Department of Environmental Research and Monitoring, Frescativägen 40, SE-104 05 Stockholm, Sweden.
| | - Kaarina Kauhala
- Natural Resources Institute Finland, Luke. Itäinen Pitkäkatu 4 A, FI-20520 Turku, Finland.
| | - Morten Tange Olsen
- Evolutionary Genomics, Natural History Museum of Denmark, Department of Biology, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K, Denmark.
| | - Karin C Harding
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 25 SE-405 30 Gothenburg, Sweden.
| | - Gabriele Treu
- German Environment Agency, Section Chemicals, Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany.
| | - Anders Galatius
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Emilie Andersen-Ranberg
- Department of Veterinary Clinical Sciences, University of Copenhagen, Faculty of Health, Dyrlægevej 16, 1870 Frederiksberg C, Denmark.
| | - Stephanie Gross
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstr. 6, 25761 Büsum, Germany.
| | - Jan Lakemeyer
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstr. 6, 25761 Büsum, Germany.
| | - Kristina Lehnert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstr. 6, 25761 Büsum, Germany.
| | - Su Shiung Lam
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou CN-450002, China; Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (Akuatrop) & Institute of Tropical Biodiversity and Sustainable Development (Bio-D Tropika), Universiti Malaysia Terengganu, MY-21030 Kuala Terengganu, Terengganu, Malaysia.
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou CN-450002, China
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| |
Collapse
|
6
|
Kahle P, Rolvien T, Kierdorf H, Roos A, Siebert U, Kierdorf U. Age-related changes in size, bone microarchitecture and volumetric bone mineral density of the mandible in the harbor seal (Phoca vitulina). PLoS One 2019; 14:e0224480. [PMID: 31648278 PMCID: PMC6812799 DOI: 10.1371/journal.pone.0224480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/15/2019] [Indexed: 12/05/2022] Open
Abstract
Detailed knowledge of age-related changes in the structure and mineralization of bones is important for interpreting osseous changes in wild mammals caused by exposure to environmental contaminants. This study analyzed mandibular size, microarchitecture and volumetric bone mineral density (vBMD) in harbor seals (n = 93, age range 0.5 months to 25 years) from the German North Sea. Bone microarchitecture and vBMD were assessed using high-resolution peripheral quantitative computed tomography (HR-pQCT). Significant differences were observed between the analyzed age classes (i) young juveniles (0.5–10 months), (ii) yearlings (12–23 months), and (iii) adults (12–25 years) for several of the variables, indicating an overall increase in cortical and trabecular area, cortical thickness and total and cortical vBMD with age. Furthermore, for juvenile animals (≤ 23 months), significant positive correlations with age were observed for mandible length and perimeter, cortical area, cortical thickness, trabecular separation, and total and cortical vBMD. The findings demonstrate a rapid increase in overall size, cortical dimensions and the degree of mineralization of the harbor seal mandible during the first two years after birth. Negative correlations with age existed for trabecular number and thickness as well as for trabecular bone volume fraction in the juveniles. The findings suggest a reduction in trabecular bone volume fraction with age, due to the bone trabeculae becoming thinner, less numerous and more widely spaced. Given the strong age dependence of most analyzed parameters, it is recommended to standardize samples with respect to age in future studies comparing microarchitecture and mineralization of harbor seal mandibles from different populations or different collection periods.
Collapse
Affiliation(s)
- Patricia Kahle
- Department of Biology, University of Hildesheim, Hildesheim, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Horst Kierdorf
- Department of Biology, University of Hildesheim, Hildesheim, Germany
| | - Anna Roos
- Department of Contaminant Research, Swedish Museum of Natural History, Stockholm, Sweden
| | - Ursula Siebert
- Institute of Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Uwe Kierdorf
- Department of Biology, University of Hildesheim, Hildesheim, Germany
- * E-mail:
| |
Collapse
|
7
|
Brankovič J, Fazarinc G, Antanasova M, Jevnikar P, Jan J, Anders I, Pavšič Vrtač K, Jakovac Strajn B, Antolinc D, Vrecl M. Lactational exposure to dioxin-like polychlorinated biphenyl 169 and nondioxin-like polychlorinated biphenyl 155: Effects on rat femur growth, biomechanics and mineral composition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:106-113. [PMID: 31078017 DOI: 10.1016/j.ecoenv.2019.04.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 03/22/2019] [Accepted: 04/25/2019] [Indexed: 05/20/2023]
Abstract
Exposure to polychlorinated biphenyls (PCBs), which are persistent lipophilic environmental pollutants, has a variety of adverse effects on wildlife and human health, including bone mineralization, growth and mechanical strength. The present study evaluated the effects of lactational exposure to nondioxin-like PCB-155 and dioxin-like PCB-169, individually and in combination, on pubertal rat femur development and its biomechanics. After offspring delivery, Wistar rat mothers were divided into four groups, i.e., PCB-169, PCB-155, PCB-155+169 and control, and were administered PCBs intraperitoneally. Data on bone geometry, biomechanics and mineral composition were obtained by analysis of femurs from 42-day-old offspring by microCT scanning, three-point bending test and inductively coupled plasma mass spectrometry. Decreased somatic mass and femur size, i.e., mass, periosteal circumference and cross sectional area, were observed in the PCB-169 and PCB-155 groups. Additionally, lactational exposure to planar PCB-169 resulted in harder and more brittle bones containing higher amounts of minerals. Combined exposure to structurally and functionally different PCBs demonstrated only mild alterations in bone width and mineralization. To conclude, our results demonstrated that alterations, observed on postnatal day 42, were primarily induced by PCB-169, while toxicity from both of the individual congeners may have been reduced in the combined group.
Collapse
Affiliation(s)
- Jana Brankovič
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, Ljubljana, Slovenia.
| | - Gregor Fazarinc
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, Ljubljana, Slovenia
| | - Maja Antanasova
- Department of Prosthodontics and Normal Dental Morphology, Faculty of Medicine, University of Ljubljana, Hrvatski Trg 6, Ljubljana, Slovenia
| | - Peter Jevnikar
- Department of Prosthodontics and Normal Dental Morphology, Faculty of Medicine, University of Ljubljana, Hrvatski Trg 6, Ljubljana, Slovenia
| | - Janja Jan
- Department of Dental Diseases and Normal Dental Morphology, Faculty of Medicine, University of Ljubljana, Hrvatski Trg 6, Ljubljana, Slovenia
| | - Ines Anders
- CF Alternative Biomodels and Preclinical Imaging, Department for Biomedical Research, Medical University of Graz, Roseggerweg 48, Graz, Austria
| | - Katarina Pavšič Vrtač
- Institute of Food Safety, Feed and Environment, Department of Environment, Animal Nutrition, Welfare and Hygiene, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, Ljubljana, Slovenia
| | - Breda Jakovac Strajn
- Institute of Food Safety, Feed and Environment, Department of Environment, Animal Nutrition, Welfare and Hygiene, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, Ljubljana, Slovenia
| | - David Antolinc
- Chair for Testing in Materials and Structures, Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova 2, Ljubljana, Slovenia
| | - Milka Vrecl
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, Ljubljana, Slovenia
| |
Collapse
|
8
|
Routti H, Atwood TC, Bechshoft T, Boltunov A, Ciesielski TM, Desforges JP, Dietz R, Gabrielsen GW, Jenssen BM, Letcher RJ, McKinney MA, Morris AD, Rigét FF, Sonne C, Styrishave B, Tartu S. State of knowledge on current exposure, fate and potential health effects of contaminants in polar bears from the circumpolar Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:1063-1083. [PMID: 30901781 DOI: 10.1016/j.scitotenv.2019.02.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 05/03/2023]
Abstract
The polar bear (Ursus maritimus) is among the Arctic species exposed to the highest concentrations of long-range transported bioaccumulative contaminants, such as halogenated organic compounds and mercury. Contaminant exposure is considered to be one of the largest threats to polar bears after the loss of their Arctic sea ice habitat due to climate change. The aim of this review is to provide a comprehensive summary of current exposure, fate, and potential health effects of contaminants in polar bears from the circumpolar Arctic required by the Circumpolar Action Plan for polar bear conservation. Overall results suggest that legacy persistent organic pollutants (POPs) including polychlorinated biphenyls, chlordanes and perfluorooctane sulfonic acid (PFOS), followed by other perfluoroalkyl compounds (e.g. carboxylic acids, PFCAs) and brominated flame retardants, are still the main compounds in polar bears. Concentrations of several legacy POPs that have been banned for decades in most parts of the world have generally declined in polar bears. Current spatial trends of contaminants vary widely between compounds and recent studies suggest increased concentrations of both POPs and PFCAs in certain subpopulations. Correlative field studies, supported by in vitro studies, suggest that contaminant exposure disrupts circulating levels of thyroid hormones and lipid metabolism, and alters neurochemistry in polar bears. Additionally, field and in vitro studies and risk assessments indicate the potential for adverse impacts to polar bear immune functions from exposure to certain contaminants.
Collapse
Affiliation(s)
- Heli Routti
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway.
| | - Todd C Atwood
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK 99508, USA
| | - Thea Bechshoft
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Andrei Boltunov
- Marine Mammal Research and Expedition Center, 36 Nahimovskiy pr., Moscow 117997, Russia
| | - Tomasz M Ciesielski
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Jean-Pierre Desforges
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | | | - Bjørn M Jenssen
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Department of Arctic Technology, University Centre in Svalbard, PO Box 156, NO-9171 Longyearbyen, Norway
| | - Robert J Letcher
- Ecotoxicology and Wildlife Heath Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario K1A 0H3, Canada
| | - Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, Ste.-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Adam D Morris
- Ecotoxicology and Wildlife Heath Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario K1A 0H3, Canada
| | - Frank F Rigét
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Bjarne Styrishave
- Toxicology and Drug Metabolism Group, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen OE, Denmark
| | - Sabrina Tartu
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway
| |
Collapse
|
9
|
Kierdorf U, Olsen MT, Kahle P, Ludolphy C, Kierdorf H. Dental pulp exposure, periapical inflammation and suppurative osteomyelitis of the jaws in juvenile Baltic grey seals (Halichoerus grypus grypus) from the late 19th century. PLoS One 2019; 14:e0215401. [PMID: 30978237 PMCID: PMC6461278 DOI: 10.1371/journal.pone.0215401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 04/01/2019] [Indexed: 11/19/2022] Open
Abstract
The systematic analysis of museum collections can provide important insights into the dental and skeletal pathology of wild mammals. Here we present a previously unreported type of dental defect and related skull pathology in five juvenile Baltic grey seals that had been collected in the course of a seal culling program along the Danish coast in 1889 and 1890. All five skulls exhibited openings into the pulp cavities at the crown tips of all (four animals) or two (one animal) canines as well as several incisors and (in one animal) also some anterior premolars. The affected teeth showed wide pulp cavities and thin dentin. Pulp exposure had caused infection, inflammation, and finally necrosis of the pulp. As was evidenced by the extensive radiolucency around the roots of the affected teeth, the inflammation had extended from the pulp into the periapical space, leading to apical periodontitis with extensive bone resorption. Further spreading of the inflammation into the surrounding bone regions had then caused suppurative osteomyelitis of the jaws. The postcanine teeth of the pathological individuals typically had dentin of normal thickness and, except for one specimen, did not exhibit pulp exposure. The condition may have been caused by a late onset of secondary and tertiary dentin formation that led to pulp exposure in anterior teeth exposed to intense wear. Future investigations could address a possible genetic causation of the condition in the studied grey seals.
Collapse
Affiliation(s)
- Uwe Kierdorf
- Department of Biology, University of Hildesheim, Hildesheim, Germany
- * E-mail:
| | - Morten T. Olsen
- Natural History Museum of Denmark, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Patricia Kahle
- Department of Biology, University of Hildesheim, Hildesheim, Germany
| | | | - Horst Kierdorf
- Department of Biology, University of Hildesheim, Hildesheim, Germany
| |
Collapse
|
10
|
Bradley MM, Perra M, Ahlstrøm Ø, Jenssen BM, Jørgensen EH, Fuglei E, Muir DCG, Sonne C. Mandibular shape in farmed Arctic foxes (Vulpes lagopus) exposed to persistent organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:1063-1068. [PMID: 30235592 DOI: 10.1016/j.scitotenv.2018.07.367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
We investigated if dietary exposure to persistent organic pollutants (POPs) affect mandibular asymmetry and periodontal disease in paired male-siblings of Arctic foxes (Vulpes lagopus). During ontogeny, one group of siblings was exposed to the complexed POP mixture in naturally contaminated minke whale (Balaenoptere acutorostarta) blubber (n = 10), while another group was given wet feed based on pig (Sus scrofa) fat as a control (n = 11). The ∑POP concentrations were 802 ng/g ww in the whale-based feed compared to 24 ng/g ww in the control diet. We conducted a two-dimensional geometric morphometric (GM) analysis of mandibular shape and asymmetry in the foxes and compared the two groups. The analyses showed that directional asymmetry was higher than fluctuating asymmetry in both groups and that mandibular shape differed significantly between the exposed and control group based on discriminant function analysis (T2 = 58.52, p = 0.04, 1000 permutations). We also found a non-significantly higher incidence of periodontal disease (two-way ANOVA: p = 0.43) and greater severity of sub-canine alveolar bone deterioration similar to periodontitis (two-way ANOVA: p = 0.3) in the POP-exposed group. Based on these results, it is possible that dietary exposure to a complexed POP mixture lead to changes in jaw morphology in Arctic foxes. This study suggests that extrinsic factors, such as dietary exposure to POPs, may affect mandibular shape and health in a way that could be harmful to wild Arctic populations. Therefore, further studies using GM analysis as an alternative to traditional morphometric methods should be conducted for wild Arctic fox populations exposed to environmental contaminants.
Collapse
Affiliation(s)
- Madison M Bradley
- Department of Archaeology and Anthropology, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada.
| | - Megan Perra
- Independent Researcher, 97231 Portland, OR, USA
| | - Øystein Ahlstrøm
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1433 Ås, Norway.
| | - Bjørn M Jenssen
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; Department of Arctic Technology, The University Centre in Svalbard, PO Box 156, NO-9171 Longyearbyen, Norway; Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre, P.O. Box 358, DK-4000 Roskilde, Denmark.
| | - Even H Jørgensen
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, N, NO-9037 Tromsø, Norway.
| | - Eva Fuglei
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway.
| | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington L7S 1A1, ON, Canada.
| | - Christian Sonne
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre, P.O. Box 358, DK-4000 Roskilde, Denmark.
| |
Collapse
|
11
|
Daugaard-Petersen T, Langebæk R, Rigét FF, Dyck M, Letcher RJ, Hyldstrup L, Jensen JEB, Dietz R, Sonne C. Persistent organic pollutants and penile bone mineral density in East Greenland and Canadian polar bears (Ursus maritimus) during 1996-2015. ENVIRONMENT INTERNATIONAL 2018; 114:212-218. [PMID: 29522985 DOI: 10.1016/j.envint.2018.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/11/2018] [Accepted: 02/11/2018] [Indexed: 05/20/2023]
Abstract
Persistent organic pollutants (POPs) are long-range transported to the Arctic via atmospheric and oceanic currents, where they biomagnify to high concentrations in the tissues of apex predators such as polar bears (Ursus maritimus). A major concern of POP exposure is their physiological effects on vital organ-tissues posing a threat to the health and survival of polar bears. Here we examined the relationship between selected POPs and baculum bone mineral density (BMD) in the East Greenland and seven Canadian subpopulations of polar bears. BMD was examined in 471 bacula collected between years 1996-2015 while POP concentrations in adipose tissue were determined in 67-192 of these individuals collected from 1999 to -2015. A geographical comparison showed that baculum BMD was significantly lowest in polar bears from East Greenland (EG) when compared to Gulf of Boothia (GB), Southern Hudson (SH) and Western Hudson (WH) Bay subpopulations (all p < 0.05). The calculation of a T-score osteoporosis index for the EG subpopulation using WH bears as a reference group gave a T-score of -1.44 which indicate risk of osteopenia. Concentrations of ΣPCB74 (polychlorinated biphenyls), ΣDDT3 (dichlorodiphenyltrichloroethanes), p,p'-DDE (dichlorodiphenyldichloroethylene), ΣHCH3 (hexachlorohexane) and α-HCH was significantly highest in EG bears while ΣPBDE (polybrominated diphenyl ethers), BDE-47 and BDE-153 was significantly highest in SH bears (all p < 0.04). Statistical analyses of individual baculum BMD vs. POP concentrations showed that BMD was positively correlated with ΣPCB74, CB-153, HCB (hexachlorobenzene), ΣHCH, β-HCH, ClBz (chlorobenzene), ΣPBDE and BDE-153 (all p < 0.03). In conclusion, baculum density was significantly lowest in East Greenland polar bears despite the positive statistical correlations of BMD vs. POPs. Other important factors such as nutritional status, body mass and body condition was not available for the statistical modelling. Since on-going environmental changes are known to affect these, future studies need to incorporate nutritional, endocrine and genetic parameters to further understand how POP exposure may disrupt bone homeostasis and affect baculum BMD across polar bear subpopulations.
Collapse
Affiliation(s)
- Tobias Daugaard-Petersen
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Rikke Langebæk
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary Clinical and Animal Sciences, Dyrlægevej 16, 1-72, DK-1870 Frederiksberg C, Denmark.
| | - Frank F Rigét
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Markus Dyck
- Wildlife Management Division, Department of Environment, Government of Nunavut, PO Box 209, Igloolik, NU X0A 0L0, Canada.
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada.
| | - Lars Hyldstrup
- University Hospital of Hvidovre, Kettegaards Allé 30, DK-2650 Hvidovre, Denmark.
| | | | - Rune Dietz
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Christian Sonne
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| |
Collapse
|
12
|
Daugaard-Petersen T, Langebæk R, Rigét FF, Letcher RJ, Hyldstrup L, Jensen JEB, Bechshoft T, Wiig Ø, Jenssen BM, Pertoldi C, Lorenzen ED, Dietz R, Sonne C. Persistent organic pollutants, skull size and bone density of polar bears (Ursus maritimus) from East Greenland 1892-2015 and Svalbard 1964-2004. ENVIRONMENTAL RESEARCH 2018; 162:74-80. [PMID: 29287182 DOI: 10.1016/j.envres.2017.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/10/2017] [Accepted: 12/12/2017] [Indexed: 05/20/2023]
Abstract
We investigated skull size (condylobasal length; CBL) and bone mineral density (BMD) in polar bears (Ursus maritimus) from East Greenland (n = 307) and Svalbard (n = 173) sampled during the period 1892-2015 in East Greenland and 1964-2004 at Svalbard. Adult males from East Greenland showed a continuous decrease in BMD from 1892 to 2015 (linear regression: p < 0.01) indicating that adult male skulls collected in the early pre-pollution period had the highest BMD. A similar decrease in BMD over time was not found for the East Greenland adult females. However, there was a non-significant trend that the skull size of adult East Greenland females was negatively correlated with collection year 1892-2015 (linear regression: p = 0.06). No temporal change was found for BMD or skull size in Svalbard polar bears (ANOVA: all p > 0.05) nor was there any significant difference in BMD between Svalbard and East Greenland subpopulations. Skull size was larger in polar bears from Svalbard than from East Greenland (two-way ANOVA: p = 0.003). T-scores reflecting risk of osteoporosis showed that adult males from both East Greenland and Svalbard are at risk of developing osteopenia. Finally, when correcting for age and sex, BMD in East Greenland polar bears increased with increasing concentrations of persistent organic pollutants (POPs) i.e. ΣPCB (polychlorinated biphenyls), ΣHCH (hexachlorohexane), HCB (hexachlorobenzene) and ΣPBDE (polybrominated diphenyl ethers) while skull size increased with ΣHCH concentrations all in the period 1999-2014 (multiple linear regression: all p < 0.05, n = 175). The results suggest that environmental changes over time, including exposure to POPs, may affect bone density and size of polar bears.
Collapse
Affiliation(s)
- Tobias Daugaard-Petersen
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Rikke Langebæk
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary Clinical and Animal Sciences, Dyrlægevej 16, 1-72, DK-1870 Frederiksberg C, Denmark.
| | - Frank F Rigét
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Canada.
| | - Lars Hyldstrup
- University Hospital of Hvidovre, Kettegaards Allé 30, DK-2650 Hvidovre, Denmark.
| | | | - Thea Bechshoft
- University of Alberta, CW 405, Department of Biological Sciences, Edmonton, Alberta, Canada T6G 2E9.
| | - Øystein Wiig
- Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, N-0318 Oslo, Norway.
| | - Bjørn Munro Jenssen
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Norwegian University of Science and Technology, Department of Biology, Høgskoleringen 5, 7491 Trondheim, Norway; Department of Arctic Technology, The University Centre in Svalbard, PO Box 156, NO-9171 Longyearbyen, Norway.
| | - Cino Pertoldi
- Department of Chemistry and Bioscience, Section for Environmental technology, Fredrik Bajers Vej 7, DK-9220 Aalborg, Denmark; Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K, Denmark.
| | | | - Rune Dietz
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Christian Sonne
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| |
Collapse
|
13
|
Sonne C, Letcher RJ, Jenssen BM, Desforges JP, Eulaers I, Andersen-Ranberg E, Gustavson K, Styrishave B, Dietz R. A veterinary perspective on One Health in the Arctic. Acta Vet Scand 2017; 59:84. [PMID: 29246165 PMCID: PMC5732494 DOI: 10.1186/s13028-017-0353-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/08/2017] [Indexed: 11/22/2022] Open
Abstract
Exposure to long-range transported industrial chemicals, climate change and diseases is posing a risk to the overall health and populations of Arctic wildlife. Since local communities are relying on the same marine food web as marine mammals in the Arctic, it requires a One Health approach to understand the holistic ecosystem health including that of humans. Here we collect and identify gaps in the current knowledge of health in the Arctic and present the veterinary perspective of One Health and ecosystem dynamics. The review shows that exposure to persistent organic pollutants (POPs) is having multiple organ-system effects across taxa, including impacts on neuroendocrine disruption, immune suppression and decreased bone density among others. Furthermore, the warming Arctic climate is suspected to influence abiotic and biotic long-range transport and exposure pathways of contaminants to the Arctic resulting in increases in POP exposure of both wildlife and human populations. Exposure to vector-borne diseases and zoonoses may increase as well through range expansion and introduction of invasive species. It will be important in the future to investigate the effects of these multiple stressors on wildlife and local people to better predict the individual-level health risks. It is within this framework that One Health approaches offer promising opportunities to survey and pinpoint environmental changes that have effects on wildlife and human health.
Collapse
Affiliation(s)
- Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| | - Robert James Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3 Canada
| | - Bjørn Munro Jenssen
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Arctic Technology, The University Centre in Svalbard, PO Box 156, 9171 Longyearbyen, Norway
| | - Jean-Pierre Desforges
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| | - Igor Eulaers
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| | - Emilie Andersen-Ranberg
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| | - Kim Gustavson
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| | - Bjarne Styrishave
- Toxicology Laboratory, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| |
Collapse
|
14
|
Pertoldi C, Jensen LF, Alstrup AKO, Munk OL, Pedersen TB, Sonne C, Dietz R, Daugaard-Petersen T, Kortegaard HE, Olsen MT, Hårding KC, Jensen TH. Prevalence of skull pathologies in European harbor seals (Phoca vitulina) during 1981–2014. MAMMAL RES 2017. [DOI: 10.1007/s13364-017-0340-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Brankovič J, Jovanovski S, Jevnikar P, Hofmeister A, Reininger-Gutmann B, Jan J, Grošelj M, Osredkar J, Uršič M, Fazarinc G, Pogačnik A, Vrecl M. Alterations in geometry, biomechanics, and mineral composition of juvenile rat femur induced by nonplanar PCB-155 and/or planar PCB-169. ENVIRONMENTAL TOXICOLOGY 2017; 32:1135-1146. [PMID: 27393578 DOI: 10.1002/tox.22309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 06/02/2016] [Accepted: 06/11/2016] [Indexed: 05/20/2023]
Abstract
Exposure to widespread lipophilic and bioaccumulative polychlorinated biphenyls (PCBs) induces diverse biochemical and toxicological responses in various organs, including the bone. The aim of this study was to evaluate the changes in growth rate, geometry, serum, and bone biochemical parameters and biomechanics of juvenile rat femur induced by lactational exposure to nonplanar PCB-155 and planar PCB-169 individually and in combination. Fifteen lactating Wistar rats were divided into four groups (PCB-169, PCB-155, PCB-155+169, and control), and PCBs were administered intraperitoneally at different time points after delivery. Femurs from 22-day-old offspring were analyzed by microCT, three-point bending test and inductively coupled plasma-mass spectrometry (ICP-MS) to obtain data on bone geometry, biomechanics and mineral composition. The serum levels of calcium, phosphate and alkaline phosphatase were also determined. Lactational exposure to planar PCB-169 resulted in shorter and thinner femurs, reduced endosteal and periosteal perimeters, smaller total cross-sectional and medullary areas, and lowered serum bone marker levels and calcium levels in the bone, while femur mechanical properties were not significantly altered. The changes observed in the combination exposure (PCB-155+169) group were similar to those observed in the PCB-169 group but were less pronounced. In summary, our results demonstrate that alterations in lactationally exposed offspring were primarily induced by planar PCB-169. The milder outcome in the combined group suggested that the PCB-169-mediated toxic effects on the bone might be reduced by a nonplanar PCB-155 congener. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1135-1146, 2017.
Collapse
Affiliation(s)
- Jana Brankovič
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbiceva 60, Ljubljana, 1000, Slovenia
| | - Sašo Jovanovski
- Department of Prosthodontics, Faculty of Medicine, University of Ljubljana, Hrvatski Trg 6, Ljubljana, 1000, Slovenia
- Department of Prosthodontics, Faculty of Dental Medicine, University of St. Cyril and Methodius, Vodnjanska 17, Skopje, 1000, Macedonia
| | - Peter Jevnikar
- Department of Prosthodontics, Faculty of Medicine, University of Ljubljana, Hrvatski Trg 6, Ljubljana, 1000, Slovenia
| | - Alexander Hofmeister
- Division of Biomedical Research, Medical University of Graz, Roseggerweg 48, Graz, 8036, Austria
| | - Birgit Reininger-Gutmann
- Division of Biomedical Research, Medical University of Graz, Roseggerweg 48, Graz, 8036, Austria
| | - Janja Jan
- Department of Dental Diseases and Normal Dental Morphology, Faculty of Medicine, University of Ljubljana, Hrvatski Trg 6, Ljubljana, 1000, Slovenia
| | - Maja Grošelj
- Department of Dental Diseases and Normal Dental Morphology, Faculty of Medicine, University of Ljubljana, Hrvatski Trg 6, Ljubljana, 1000, Slovenia
| | - Joško Osredkar
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000 Ljubljana, Slovenia
| | - Matjaž Uršič
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbiceva 60, Ljubljana, 1000, Slovenia
| | - Gregor Fazarinc
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbiceva 60, Ljubljana, 1000, Slovenia
| | - Azra Pogačnik
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbiceva 60, Ljubljana, 1000, Slovenia
| | - Milka Vrecl
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbiceva 60, Ljubljana, 1000, Slovenia
| |
Collapse
|
16
|
Lejonklou MH, Christiansen S, Örberg J, Shen L, Larsson S, Boberg J, Hass U, Lind PM. Low-dose developmental exposure to bisphenol A alters the femoral bone geometry in wistar rats. CHEMOSPHERE 2016; 164:339-346. [PMID: 27592323 DOI: 10.1016/j.chemosphere.2016.08.114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is a chemical produced in large volumes for use in manufacturing of consumer products and industrial applications, and an endocrine disruptor known to affect several hormonal systems. Bone produces hormones and is additionally a sensitive hormone target tissue, and is thus potentially sensitive to low doses of endocrine disruptors such as BPA, especially during development. METHODS 110 pregnant Wistar rats were gavaged with 0; 25 μg; 250 μg; 5000 μg or 50,000 μg BPA/kg bodyweight (bw)/day from gestational day 7 until weaning at postnatal day 22. The three-month-old offspring were sacrificed and right femurs collected for length measurements, geometrical measurements by peripheral quantitative computed tomography (pQCT), as well as for analyses of biomechanical properties using the three-point-bending method. RESULTS The femur was elongated in female offspring of dams exposed to 25 or 5000 μg BPA/kg bw/day (1.8% and 2.1%, respectively), and increased cortical thickness (4.7%) was observed in male offspring of dams exposed to 25 μg BPA/kg bw/day, compared to controls (p < 0.005). The biomechanical properties of the bone were not significantly altered. CONCLUSIONS In utero and lactational exposure to the lowest BPA dose used in this study altered femoral geometry in both male and female offspring. This was observed at 25 μg BPA/kg bw/day, a dose lower than the Human Equivalent Dose (HED) applied by EFSA to set a temporary TDI (609 μg BPA/kg bw/day), and far lower than the No-Observed-Adverse-Effect-Level (NOAEL) (5000 μg BPA/kg bw/day) on which the US FDA TDI is based.
Collapse
Affiliation(s)
- M H Lejonklou
- Department of Medical Sciences, Occupational and Environmental Medicine, Box 256, Uppsala University, SE-751 85 Uppsala, Sweden.
| | - S Christiansen
- Division of Diet, Disease Prevention and Toxicology, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark
| | - J Örberg
- Department of Environmental Toxicology, Evolutionary Biology Centre, Box 256, Uppsala University, SE-75105 Uppsala, Sweden
| | - L Shen
- Department of Medical Sciences, Occupational and Environmental Medicine, Box 256, Uppsala University, SE-751 85 Uppsala, Sweden
| | - S Larsson
- Department of Surgical Sciences, Section of Orthopedics, Box 256, Uppsala University, SE-75185 Uppsala, Sweden
| | - J Boberg
- Division of Diet, Disease Prevention and Toxicology, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark
| | - U Hass
- Division of Diet, Disease Prevention and Toxicology, Technical University of Denmark, Mørkhøj Bygade 19, DK-2860 Søborg, Denmark
| | - P M Lind
- Department of Medical Sciences, Occupational and Environmental Medicine, Box 256, Uppsala University, SE-751 85 Uppsala, Sweden
| |
Collapse
|
17
|
Azevedo CT, Lima JY, de Azevedo RM, Santos Neto EB, Tamy WP, Barbosa LDA, Brito JL, Boere V, da Silveira LS. Thoracic limb bone development inSotalia guianensis(Van Beneden 1864) along the coastline of Espírito Santo, Brazil. J Mammal 2015. [DOI: 10.1093/jmammal/gyv059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Sonne C, Dyck M, Rigét FF, Beck Jensen JE, Hyldstrup L, Letcher RJ, Gustavson K, Gilbert MTP, Dietz R. Penile density and globally used chemicals in Canadian and Greenland polar bears. ENVIRONMENTAL RESEARCH 2015; 137:287-291. [PMID: 25601730 DOI: 10.1016/j.envres.2014.12.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/25/2014] [Accepted: 12/30/2014] [Indexed: 06/04/2023]
Abstract
Industrially produced chemicals have been a major environmental concern across our entire Globe since the onset of rapid industrial development around the early 1900. Many of the substances being used are known to be endocrine disrupting chemicals (EDCs) and are also known to be long-range dispersed and to biomagnify to very high concentrations in the tissues of Arctic apex predators such as polar bears (Ursus maritimus). A major concern relating to EDCs is their effects on vital organ-tissues such as bone and it is possible that EDCs represent a more serious challenge to the species' survival than the more conventionally proposed prey reductions linked to climate change. We therefore analyzed penile bone mineral density (BMD) as a key phenotype for reproductive success in 279 polar bear samples born 1990-2000 representing eight polar bear subpopulations. Since EDC concentrations were not available from the same specimens, we compared BMD with published literature information on EDC concentrations. Latitudinal and longitudinal BMD and EDC gradients were clearly observed, with Western Hudson bears having the highest BMD and lowest EDCs, and North East Greenland polar bears carrying the lowest BMD and highest EDCs. A BMD vs. polychlorinated biphenyls (PCB) regression analysis showed that BMD decreased as a function of the eight subpopulations' PCB concentrations and this relationship was close to being significant (p=0.10, R(2)=0.39). Risk quotient (RQ) estimation demonstrated that PCBs could be in a range that may lead to disruption of normal reproduction and development. It is therefore likely that EDCs directly affect development and bone density in polar bears. Canadian bears had in general the best health and the North East Greenland subpopulation being at the highest risk of having negative health effects. While reductions in BMD is in general unhealthy, reductions in penile BMD could lead to increased risk of species extinction because of mating and subsequent fertilization failure as a result of weak penile bones and risk of fractures. Based on this, future studies should assess how polar bear subpopulations respond upon EDC exposure since information and understanding about their circumpolar reproductive health is vital for future conservation.
Collapse
Affiliation(s)
- Christian Sonne
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Markus Dyck
- Wildlife Management Division, Department of Environment, Government of Nunavut, PO Box 209, Igloolik NU X0A 0L0, Canada.
| | - Frank F Rigét
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | | | - Lars Hyldstrup
- University Hospital of Hvidovre, Kettegaards Allé 30, DK-2650 Hvidovre, Denmark.
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Department of Chemistry, Carleton University, Ottawa, Canada.
| | - Kim Gustavson
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - M Thomas P Gilbert
- Center for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K, Denmark.
| | - Rune Dietz
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| |
Collapse
|
19
|
Pedersen KE, Styrishave B, Sonne C, Dietz R, Jenssen BM. Accumulation and potential health effects of organohalogenated compounds in the arctic fox (Vulpes lagopus)--a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 502:510-516. [PMID: 25300015 DOI: 10.1016/j.scitotenv.2014.09.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/17/2014] [Accepted: 09/17/2014] [Indexed: 06/04/2023]
Abstract
This review addresses biological effects of anthropogenic organohalogenated compounds in the arctic fox (Vulpes lagopus). When considering the current levels, spatial and tissue distributions of selected organic pollutants in arctic fox subpopulations, especially the Svalbard based populations accumulate high levels. The dominating contaminant groups are the polychlorinated biphenyls (PCBs) and chlordanes (CHLs), which reach high levels in adipose tissues, adrenals and liver. Recent controlled exposure studies on domesticated arctic fox and Greenland sledge dogs, show adverse health effects associated with OC concentrations lower than those measured in free-ranging populations. This indicates that especially populations at Svalbard may be at risk of experiencing OC related effects. The arctic fox as such may be an overlooked species in the Arctic Monitoring and Assessment Programs and it would add further information about pollution in the Arctic to include this species in the monitoring program.
Collapse
Affiliation(s)
- Kathrine Eggers Pedersen
- Toxicology Laboratory, Section of Advanced Drug Analysis, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| | - Bjarne Styrishave
- Toxicology Laboratory, Section of Advanced Drug Analysis, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Christian Sonne
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Rune Dietz
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Bjørn Munro Jenssen
- Norwegian University of Science and Technology, Department of Biology, NO 7491 Trondheim, Norway; University Centre in Svalbard, Department of Arctic Technology, NO 9171 Longyearbyen, Norway
| |
Collapse
|
20
|
Lamb JC, Boffetta P, Foster WG, Goodman JE, Hentz KL, Rhomberg LR, Staveley J, Swaen G, Van Der Kraak G, Williams AL. Critical comments on the WHO-UNEP State of the Science of Endocrine Disrupting Chemicals – 2012. Regul Toxicol Pharmacol 2014; 69:22-40. [DOI: 10.1016/j.yrtph.2014.02.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/31/2014] [Accepted: 02/01/2014] [Indexed: 12/20/2022]
|
21
|
Plourde SP, Moreau R, Letcher RJ, Verreault J. Is the bone tissue of ring-billed gulls breeding in a pollution hotspot in the St. Lawrence River, Canada, impacted by halogenated flame retardant exposure? CHEMOSPHERE 2013; 93:2333-2340. [PMID: 24016627 DOI: 10.1016/j.chemosphere.2013.08.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 08/07/2013] [Accepted: 08/10/2013] [Indexed: 06/02/2023]
Abstract
Bone metabolism is a tightly regulated process that controls bone remodeling and repair in addition to maintaining circulating calcium and phosphate levels. It has been shown that certain organohalogen contaminants may adversely impact bone tissue metabolism and structure in wildlife species. However, exceedingly few studies have addressed the bone-related effects of organohalogen exposure in birds. The objective of the present study was to investigate the associations between markers of bone metabolism and structural integrity, and concentrations of established and current-use halogenated flame retardants (FRs) in ring-billed gulls (Larus delawarensis) nesting in a known FR hotspot area in the St. Lawrence River (Montreal, Canada). Bone metabolism was assessed using plasma calcium and inorganic phosphate levels, and alkaline phophatase activity, while bone (tarsus; trabecular and cortical sections) structure quality was examined using the percentage of bone tissue comprised in the total bone volume (Bv/Tv) and bone mineral density (BMD). Bv/Tv and BMD of the tarsus tended (not significant) to be positively associated with circulating calcium levels in male ring-billed gulls. Moreover, concentrations of FRs in male bird liver (brominated diphenyl ether (BDE)-154, -183, -201, and -209) and plasma (BDE-209) were negatively correlated with trabecular and cortical BMD of the tarsus. These correlative associations may suggest light demineralization of bone tissue associated with FR exposure in male ring-billed gulls. Present findings provide some evidence that bone (tarsus) metabolism and mineral composition may be impacted in high FR-exposed (mainly to PBDEs) ring-billed gulls breeding in the highly urbanized Montreal region.
Collapse
Affiliation(s)
- Stéphanie Pellerin Plourde
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, Montreal, QC, Canada
| | | | | | | |
Collapse
|
22
|
Herlin M, Finnilä MAJ, Zioupos P, Aula A, Risteli J, Miettinen HM, Jämsä T, Tuukkanen J, Korkalainen M, Håkansson H, Viluksela M. New insights to the role of aryl hydrocarbon receptor in bone phenotype and in dioxin-induced modulation of bone microarchitecture and material properties. Toxicol Appl Pharmacol 2013; 273:219-26. [PMID: 24035824 DOI: 10.1016/j.taap.2013.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/21/2013] [Accepted: 09/03/2013] [Indexed: 12/12/2022]
Abstract
Bone is a target for high affinity aryl hydrocarbon receptor (AHR) ligands, such as dioxins. Although bone morphology, mineral density and strength are sensitive endpoints of dioxin toxicity, less is known about effects on bone microarchitecture and material properties. This study characterizes TCDD-induced modulations of bone tissue, and the role of AHR in dioxin-induced bone toxicity and for normal bone phenotype. Six AHR-knockout (Ahr(-/-)) and wild-type (Ahr(+/+)) mice of both genders were exposed to TCDD weekly for 10 weeks, at a total dose of 200μg/kgbw. Bones were examined with micro-computed tomography, nanoindentation and biomechanical testing. Serum levels of bone remodeling markers were analyzed, and the expression of genes related to osteogenic differentiation was profiled using PCR array. In Ahr(+/+) mice, TCDD-exposure resulted in harder bone matrix, thinner and more porous cortical bone, and a more compact trabecular bone compartment. Bone remodeling markers and altered expression of a number of osteogenesis related genes indicated imbalanced bone remodeling. Untreated Ahr(-/-) mice displayed a slightly modified bone phenotype as compared with untreated Ahr(+/+) mice, while TCDD exposure caused only a few changes in bones of Ahr(-/-) mice. Part of the effects of both TCDD-exposure and AHR-deficiency were gender dependent. In conclusion, exposure of adult mice to TCDD resulted in harder bone matrix, thinner cortical bone, mechanically weaker bones and most notably, increased trabecular bone volume fraction in Ahr(+/+) mice. AHR is involved in bone development of a normal bone phenotype, and is crucial for manifestation of TCDD-induced bone alterations.
Collapse
Affiliation(s)
- Maria Herlin
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Luque PL, Pierce GJ, Learmonth JA, Ieno E, Santos B, López A, Reid RJ, Rogan E, Boon J, Lockyer CH. Are mineralization anomalies in common dolphin teeth associated with life‐history events and/or the exposure to anthropogenic pollutants? J Zool (1987) 2013. [DOI: 10.1111/jzo.12062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- P. L. Luque
- Santander Oceanographic Centre Spanish Institute of Oceanography Santander Spain
- School of Biological Sciences (Zoology) University of Aberdeen Aberdeen UK
| | - G. J. Pierce
- School of Biological Sciences (Zoology) University of Aberdeen Aberdeen UK
| | - J. A. Learmonth
- School of Biological Sciences (Zoology) University of Aberdeen Aberdeen UK
| | - E. Ieno
- Highland Statistics Ltd Aberdeenshire UK
| | - B. Santos
- Vigo Oceanographic Centre Spanish Institute of Oceanography Vigo Spain
| | - A. López
- C.E.M.M.A Coordinadora para o studio dos Mamíferos mariños Nigrán Pontevedra Spain
| | - R. J. Reid
- SAC Veterinary Science Division Inverness UK
| | - E. Rogan
- ADC Department of Zoology, Ecology and Plant Science University College National University of Ireland Cork Ireland
| | - J. Boon
- Royal Netherlands Institute for Sea Research (NIOZ) Texel The Netherlands
| | | |
Collapse
|
24
|
Elabbas LE, Herlin M, Finnilä MA, Rendel F, Stern N, Trossvik C, Bowers WJ, Nakai J, Tuukkanen J, Viluksela M, Heimeier RA, Åkesson A, Håkansson H. In utero and lactational exposure to Aroclor 1254 affects bone geometry, mineral density and biomechanical properties of rat offspring. Toxicol Lett 2011; 207:82-8. [DOI: 10.1016/j.toxlet.2011.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/21/2011] [Accepted: 08/05/2011] [Indexed: 02/07/2023]
|
25
|
Elabbas LE, Finnilä MA, Herlin M, Stern N, Trossvik C, Bowers WJ, Nakai J, Tuukkanen J, Heimeier RA, Åkesson A, Håkansson H. Perinatal exposure to environmental contaminants detected in Canadian Arctic human populations changes bone geometry and biomechanical properties in rat offspring. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2011; 74:1304-1318. [PMID: 21830859 DOI: 10.1080/15287394.2011.590103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Arctic inhabitants consume large proportions of fish and marine mammals, and are therefore continuously exposed to levels of environmental toxicants, which may produce adverse health effects. Fetuses and newborns are the most vulnerable groups. The aim of this study was to evaluate changes in bone geometry, mineral density, and biomechanical properties during development following perinatal exposure to a mixture of environmental contaminants corresponding to maternal blood levels in Canadian Arctic human populations. Sprague-Dawley rat dams were dosed with a Northern Contaminant Mixture (NCM) from gestational day 1 to postnatal day (PND) 23. NCM contains 27 contaminants comprising polychlorinated biphenyls, organochlorine pesticides, and methylmercury. Femurs were collected on PND 35, 77 and 350, and diaphysis was analyzed by peripheral quantitative computed tomography and three-point bending test, while femoral neck was assessed in an axial loading experiment. Dose-response modeling was performed to establish the benchmark dose (BMD) for the analyzed bone parameters. Exposure to the high dose of NMC resulted in short and thin femur with reduced mechanical strength in offspring at PND35. BMD of femur length, cortical area, and stiffness were 3.2, 1.6, and 0.8 mg/kg bw/d, respectively. At PND77 femur was still thin, but at PND350 no treatment-related bone differences were detected. This study provides new insights on environmental contaminants present in the maternal blood of Canadian Arctic populations, showing that perinatal exposure induces bone alterations in the young offspring. These findings could be significant from a health risk assessment point of view.
Collapse
Affiliation(s)
- Lubna E Elabbas
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Letcher RJ, Bustnes JO, Dietz R, Jenssen BM, Jørgensen EH, Sonne C, Verreault J, Vijayan MM, Gabrielsen GW. Exposure and effects assessment of persistent organohalogen contaminants in arctic wildlife and fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:2995-3043. [PMID: 19910021 DOI: 10.1016/j.scitotenv.2009.10.038] [Citation(s) in RCA: 501] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 10/08/2009] [Accepted: 10/14/2009] [Indexed: 05/26/2023]
Abstract
Persistent organic pollutants (POPs) encompass an array of anthropogenic organic and elemental substances and their degradation and metabolic byproducts that have been found in the tissues of exposed animals, especially POPs categorized as organohalogen contaminants (OHCs). OHCs have been of concern in the circumpolar arctic for decades. For example, as a consequence of bioaccumulation and in some cases biomagnification of legacy (e.g., chlorinated PCBs, DDTs and CHLs) and emerging (e.g., brominated flame retardants (BFRs) and in particular polybrominated diphenyl ethers (PBDEs) and perfluorinated compounds (PFCs) including perfluorooctane sulfonate (PFOS) and perfluorooctanic acid (PFOA) found in Arctic biota and humans. Of high concern are the potential biological effects of these contaminants in exposed Arctic wildlife and fish. As concluded in the last review in 2004 for the Arctic Monitoring and Assessment Program (AMAP) on the effects of POPs in Arctic wildlife, prior to 1997, biological effects data were minimal and insufficient at any level of biological organization. The present review summarizes recent studies on biological effects in relation to OHC exposure, and attempts to assess known tissue/body compartment concentration data in the context of possible threshold levels of effects to evaluate the risks. This review concentrates mainly on post-2002, new OHC effects data in Arctic wildlife and fish, and is largely based on recently available effects data for populations of several top trophic level species, including seabirds (e.g., glaucous gull (Larus hyperboreus)), polar bears (Ursus maritimus), polar (Arctic) fox (Vulpes lagopus), and Arctic charr (Salvelinus alpinus), as well as semi-captive studies on sled dogs (Canis familiaris). Regardless, there remains a dearth of data on true contaminant exposure, cause-effect relationships with respect to these contaminant exposures in Arctic wildlife and fish. Indications of exposure effects are largely based on correlations between biomarker endpoints (e.g., biochemical processes related to the immune and endocrine system, pathological changes in tissues and reproduction and development) and tissue residue levels of OHCs (e.g., PCBs, DDTs, CHLs, PBDEs and in a few cases perfluorinated carboxylic acids (PFCAs) and perfluorinated sulfonates (PFSAs)). Some exceptions include semi-field studies on comparative contaminant effects of control and exposed cohorts of captive Greenland sled dogs, and performance studies mimicking environmentally relevant PCB concentrations in Arctic charr. Recent tissue concentrations in several arctic marine mammal species and populations exceed a general threshold level of concern of 1 part-per-million (ppm), but a clear evidence of a POP/OHC-related stress in these populations remains to be confirmed. There remains minimal evidence that OHCs are having widespread effects on the health of Arctic organisms, with the possible exception of East Greenland and Svalbard polar bears and Svalbard glaucous gulls. However, the true (if any real) effects of POPs in Arctic wildlife have to be put into the context of other environmental, ecological and physiological stressors (both anthropogenic and natural) that render an overall complex picture. For instance, seasonal changes in food intake and corresponding cycles of fattening and emaciation seen in Arctic animals can modify contaminant tissue distribution and toxicokinetics (contaminant deposition, metabolism and depuration). Also, other factors, including impact of climate change (seasonal ice and temperature changes, and connection to food web changes, nutrition, etc. in exposed biota), disease, species invasion and the connection to disease resistance will impact toxicant exposure. Overall, further research and better understanding of POP/OHC impact on animal performance in Arctic biota are recommended. Regardless, it could be argued that Arctic wildlife and fish at the highest potential risk of POP/OHC exposure and mediated effects are East Greenland, Svalbard and (West and South) Hudson Bay polar bears, Alaskan and Northern Norway killer whales, several species of gulls and other seabirds from the Svalbard area, Northern Norway, East Greenland, the Kara Sea and/or the Canadian central high Arctic, East Greenland ringed seal and a few populations of Arctic charr and Greenland shark.
Collapse
Affiliation(s)
- Robert J Letcher
- Wildlife and Landscape Science Directorate, Science and Technology, Branch, Environment Canada, Carleton University, Ottawa, ON, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Roos A, Rigét F, Orberg J. Bone mineral density in Swedish otters (Lutra lutra) in relation to PCB and DDE concentrations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:1063-1070. [PMID: 20188416 DOI: 10.1016/j.ecoenv.2010.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 02/03/2010] [Accepted: 02/06/2010] [Indexed: 05/28/2023]
Abstract
The aim of this study is to elucidate if DDE (dichlorodiphenyldichloroethylene) or PCB (polybrominated diphenyls), are responsible for the pathological alterations observed in Swedish otter bone tissues. Femurs from 86 male otters collected between 1832 and 2004 were measured using peripheral quantitative computed tomography (pQCT). Some otters had very high and others fairly low concentrations of OCs (ranging between 1.4-970 mg SigmaPCB/kg l.w. and 0.0-24 mg DDE/kg l.w. in muscle tissue). Positive relationships were found between three of the four cortical bone variables analysed (area, content and thickness) and SigmaPCB concentration, while no significant relationships with DDE concentration were found. None of the trabecular variables were significantly related to PCB or DDE concentration. Three of the four trabecular bone variables showed decreasing values in the beginning and increasing values at the end of period 1974-2004. No temporal trends were found for cortical bone variables. OC concentrations decreased between 1974 and 2004.
Collapse
Affiliation(s)
- Anna Roos
- Department of Contaminant Research, Swedish Museum of Natural History, PO Box 50007, SE-104 05 Stockholm, Sweden.
| | | | | |
Collapse
|
28
|
Sonne C. Health effects from long-range transported contaminants in Arctic top predators: An integrated review based on studies of polar bears and relevant model species. ENVIRONMENT INTERNATIONAL 2010; 36:461-491. [PMID: 20398940 DOI: 10.1016/j.envint.2010.03.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 03/06/2010] [Accepted: 03/10/2010] [Indexed: 05/29/2023]
Abstract
The aim of this review is to provide a thorough overview of the health effects from the complexed biomagnified mixture of long-range transported industrial organochlorines (OCs), polybrominated diphenyl ethers (PBDEs), perfluorinated compounds (PFCs) and mercury (Hg) on polar bear (Ursus maritimus) health. Multiple scientific studies of polar bears indicate negative relationships between exposure to these contaminants and health parameters; however, these are all of a correlative nature and do not represent true cause-and-effects. Therefore, information from controlled studies of farmed Norwegian Arctic foxes (Vulpes lagopus) and housed East and West Greenland sledge dogs (Canis familiaris) were included as supportive weight of evidence in the clarification of contaminant exposure and health effects in polar bears. The review showed that hormone and vitamin concentrations, liver, kidney and thyroid gland morphology as well as reproductive and immune systems of polar bears are likely to be influenced by contaminant exposure. Furthermore, exclusively based on polar bear contaminant studies, bone density reduction and neurochemical disruption and DNA hypomethylation of the brain stem seemed to occur. The range of tissue concentration, at which these alterations were observed in polar bears, were ca. 1-70,000 ng/g lw for OCs (blood plasma concentrations of some PCB metabolites even higher), ca. 1-1000 ng/g lw for PBDEs and for PFCs and Hg 114-3052 ng/g ww and 0.1-50 microg/g ww, respectively. Similar concentrations were found in farmed foxes and housed sledge dogs while the lack of dose response designs did not allow an estimation of threshold levels for oral exposure and accumulated tissue concentrations. Nor was it possible to pinpoint a specific group of contaminants being more important than others nor analyze their interactions. For East Greenland polar bears the corresponding daily SigmaOC and SigmaPBDE oral exposure was estimated to be 35 and 0.34 microg/kg body weight, respectively. Furthermore, PFC concentrations, at which population effect levels could occur, are likely to be reached around year 2012 for the East Greenland polar bear subpopulation if current increasing temporal trends continue. Such proposed reproductive population effects were supported by physiological based pharmacokinetic (PBPK) modelling of critical body residues (CBR) with risk quotients >or=1 for SigmaPCB, dieldrin, SigmaPFC and SigmaOHC (organohalogen contaminant). The estimated daily TEQ for East Greenland polar bears and East Greenland sledge dogs were 32-281-folds above WHO SigmaTEQ guidelines for humans. Compared to human tolerable daily intake (TDI), these were exceeded for PCBs, dieldrin, chlordanes and SigmaHCH in East Greenland polar bears. Comparisons like these should be done with caution, but together with the CBR modelling and T-score estimations, these were the only available tools for polar bear risk evaluation. In conclusion, polar bears seem to be susceptible to contaminant induced stress that may have an overall sub-clinical impact on their health and population status via impacts on their immune and reproductive systems.
Collapse
Affiliation(s)
- Christian Sonne
- Section for Contaminants, Effects and Marine Mammals, Department of Arctic Environment, National Environmental Research Institute, University of Aarhus, DK-4000 Roskilde, Denmark.
| |
Collapse
|
29
|
Lind PM, Oberg D, Larsson S, Kyle CE, Orberg J, Rhind SM. Pregnant ewes exposed to multiple endocrine disrupting pollutants through sewage sludge-fertilized pasture show an anti-estrogenic effect in their trabecular bone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:2340-2346. [PMID: 20202673 DOI: 10.1016/j.scitotenv.2010.01.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 01/22/2010] [Accepted: 01/26/2010] [Indexed: 05/28/2023]
Abstract
Pregnant ewes were maintained on pastures fertilized, twice yearly, with either sewage sludge (2.25tonnes dry matter/ha; Treated; T) or inorganic fertilizer containing equivalent amounts of nitrogen (Control; C), to determine effects on maternal and fetal bone structures, density and mechanical properties of exposure to environmental concentrations of multiple endocrine disrupting compounds (EDCs) and heavy metal pollutants. The ewes were maintained on the respective pastures from the age of about 8months until they were 4-6years of age and they were slaughtered at 110d gestation. Metaphyseal parts of adult ewe femurs exhibited a significantly reduced mean, total cross sectional area (CSA, -4%; p<0.05), lower trabecular bone mineral content (BMC, mg/mm; -18%; p<0.05), trabecular bone mineral density (BMD, mg/cm(3), -8.0%; p<0.05) and trabecular CSA, mm(2), -11.1%; p<0.05) in T compared with C animals. Femurs of T ewes were stronger than those of C ewes but this may reflect greater body weights. At the mid-diaphyseal part of the fetal bones, there was a reduction in endosteal circumference (-6.7%, p<0.05) and marrow cavity area (-13.8%, p<0.05) in the female T fetuses compared with female C fetuses. In the male fetuses the mid-diaphyseal part total bone mineral content was higher (+3.0%, p<0.05) in T than in C animals. No treatment difference in biomechanical bending was detected in the fetuses. It is concluded that ewes grazing pasture fertilized with sewage sludge exhibited an anti-estrogenic effect on their trabecular bone in the form of reduced mineral content and density, despite increased body weight. It is suggested that human exposure to low levels of multiple EDCs may have implications for bone structure and human health.
Collapse
Affiliation(s)
- P Monica Lind
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Ulleråkersvägen 40, 751 85 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
30
|
Effects on bone tissue in ewes (Ovies aries) and their foetuses exposed to PCB 118 and PCB 153. Toxicol Lett 2010; 192:126-33. [DOI: 10.1016/j.toxlet.2009.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 10/08/2009] [Accepted: 10/12/2009] [Indexed: 12/28/2022]
|
31
|
Rhind SM. Anthropogenic pollutants: a threat to ecosystem sustainability? Philos Trans R Soc Lond B Biol Sci 2010; 364:3391-401. [PMID: 19833650 DOI: 10.1098/rstb.2009.0122] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Pollutants, including synthetic organic materials and heavy metals, are known to adversely affect physiological systems in all animal species studied to date. While many individual chemicals can perturb normal functions, the combined actions of multiple pollutants are of particular concern because they can exert effects even when each individual chemical is present at concentrations too low to be individually effective. The biological effects of pollutants differ greatly between species reflecting differences in the pattern of exposure, routes of uptake, metabolism following uptake, rates of accumulation and sensitivity of the target organs. Thus, understanding of the effects of pollutants on wildlife and ecosystems will require detailed study of many different species, representing a wide range of taxa. However, such studies can be informed by knowledge obtained in more controlled conditions which may indicate likely mechanisms of action and suitable endpoint measurements. Responses may be exacerbated by interactions between the effects of pollutants and environmental stressors, such as under-nutrition or osmotic stresses and so changes in such variables associated with climatic changes may exacerbate physiological responses to pollutant burdens.
Collapse
Affiliation(s)
- S M Rhind
- Macaulay Institute, Craigiebuckler, Aberdeen AB15 8QH, UK.
| |
Collapse
|
32
|
Jenssen BM, Aarnes JB, Murvoll KM, Herzke D, Nygård T. Fluctuating wing asymmetry and hepatic concentrations of persistent organic pollutants are associated in European shag (Phalacrocorax aristotelis) chicks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:578-585. [PMID: 19896702 DOI: 10.1016/j.scitotenv.2009.10.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 10/09/2009] [Accepted: 10/14/2009] [Indexed: 05/28/2023]
Abstract
In aquatic birds, high body burdens of persistent organic pollutants (POPs) have been associated with developmental effects related to growth, increased fluctuating wing asymmetry, and disruption of the thyroid hormone, vitamin A (retinol) and vitamin E (tocopherol) homeostasis. The aim of the present study was to examine if morphological variables (body mass, liver mass, wing length, tarsus length and head length), fluctuating asymmetry of the wings and tarsus, growth rates and endocrine variables (thyroid hormones, retinol and tocopherol) were associated with hepatic levels of POPs (PCBs, OCPs and PBDEs) in 21 day old chicks of European shag (Phalacrocorax aristotelis). Partial Least Squares (PLS) analysis showed that fluctuating asymmetry of wing bone length (FA(WBL)) was affected by PCB-105, -118, -138, -153, and -180 (r(2)x=0.88, r(2)y=0.35, q(2)=0.29). Bivariate correlation confirmed significant positive relationships between FA(WBL) and each of these PCB congeners. In the PLS model no other biological variables were significantly affected by any of the POPs. Levels of POPs were much lower in the shag chicks than in eggs and in hatchlings from the same breeding colony, most likely due to growth dilution of the compounds. We suggest that the effects of the PCBs on FA(WBL) may be due to effects of these compounds on bone growth and bone structure. FA(WBL) may have functional effects on the fitness if it persists after fledging.
Collapse
Affiliation(s)
- Bjørn Munro Jenssen
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | | | | | | | | |
Collapse
|
33
|
Johnson KE, Knopper LD, Schneider DC, Ollson CA, Reimer KJ. Effects of local point source polychlorinated biphenyl (PCB) contamination on bone mineral density in deer mice (Peromyscus maniculatus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:5050-5055. [PMID: 19580994 DOI: 10.1016/j.scitotenv.2009.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 06/06/2009] [Accepted: 06/09/2009] [Indexed: 05/28/2023]
Abstract
A former local source of PCBs has contaminated soil and the terrestrial food web at Saglek, Labrador. The relationship between PCB exposure and bone mineral density as an osteoporosis biomarker in deer mice (Peromyscus maniculatus) was investigated at two sites at Saglek: a contaminated Beach and a reference area. Bone mineral density was measured on the femur of twenty-six deer mice using dual-energy X-ray absorptiometry (DXA) technology. Bone mineral density was significantly lower in deer mice from the high exposure site (average whole body summation operatorPCB=5769 ng/g wet weight, n=20) than at the reference site (average whole body summation operatorPCB=79.8 ng/g wet weight, n=7). We used T-scores from the World Health Organization to determine the degree of decreased bone mineral density in exposed mice. Assuming the same biomechanical forces apply as for humans, and using a conservative factor of 1.5 (fracture risk increases 1.5 to 3 fold for every standard deviation decrease in bone mineral density), mice from the contaminated Beach are up to five folds more susceptible to fracture risk than mice from the reference area. Therefore, the PCB concentrations found locally at contaminated military sites such as Saglek are high enough to affect local wildlife.
Collapse
Affiliation(s)
- Kelly E Johnson
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3X9.
| | | | | | | | | |
Collapse
|
34
|
Effects of 3,3′,4,4′,5-pentachlorobiphenyl (PCB126) on vertebral bone mineralization and on thyroxin and vitamin D levels in Sprague–Dawley rats. Toxicol Lett 2009; 187:63-8. [DOI: 10.1016/j.toxlet.2009.01.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2008] [Revised: 01/16/2009] [Accepted: 01/20/2009] [Indexed: 01/23/2023]
|
35
|
Lind PM, Gustafsson M, Hermsen SAB, Larsson S, Kyle CE, Orberg J, Rhind SM. Exposure to pastures fertilised with sewage sludge disrupts bone tissue homeostasis in sheep. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:2200-2208. [PMID: 19162300 DOI: 10.1016/j.scitotenv.2008.12.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 12/12/2008] [Accepted: 12/14/2008] [Indexed: 05/27/2023]
Abstract
The femurs of male and female sheep (Ovis aries), aged 18 months, bred on pastures fertilized twice annually with sewage sludge (2.25 tonnes dry matter/ha; Treated; T)) or on pastures treated with inorganic fertilizer (Control; C) were studied, using peripheral Quantitative Computed Tomography (pQCT) and the three-point bending test. Males were maintained on the respective treatments from conception to weaning and then maintained on control pastures while the females were maintained on the respective treatments until slaughter. T rams exhibited increased total bone mineral density (BMD) at the metaphyseal part of femur (+10.5%, p<0.01) compared with C rams but had a reduced total cross sectional area (CSA, -11.5%, p<0.001), trabecular CSA (-17.1%, p<0.01) and periosteal circumference (-5.7%, p<0.001). In the mid-diaphyseal part, T rams had an increased total BMD (+13.8%, p<0.0001) and stiffness (+6.4%, p<0.01) but reduced total CSA (-12.1%, p<0.0001) and marrow cavity (-25.8%, p<0.0001), relative to C rams. In ewes although pQCT analysis of neither the metaphyseal nor the mid-diaphyseal part of the female femur bones showed any significant differences with treatment, the biomechanical method revealed a reduction in load at failure (-17.3%, p<0.01) and stiffness (-10.7%, p<0.05) amongst T ewes. It is concluded that exposure to pollutants present in sewage sludge can perturb bone tissue homeostasis in sheep, but particularly in males.
Collapse
Affiliation(s)
- P Monica Lind
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
36
|
Lavery TJ, Kemper CM, Sanderson K, Schultz CG, Coyle P, Mitchell JG, Seuront L. Heavy metal toxicity of kidney and bone tissues in South Australian adult bottlenose dolphins (Tursiops aduncus). MARINE ENVIRONMENTAL RESEARCH 2009; 67:1-7. [PMID: 19012959 DOI: 10.1016/j.marenvres.2008.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 08/28/2008] [Accepted: 09/25/2008] [Indexed: 05/27/2023]
Abstract
Metallothioneins (MT) concentration, renal damage, and bone malformations were investigated in 38 adult Tursiops aduncus carcasses to determine any associations with cadmium, copper, zinc, mercury, lead and selenium. Significantly higher concentrations of cadmium, copper, and zinc in the liver were observed in dolphins showing evidence of more advanced renal damage. No significant differences in metal or selenium concentrations in the liver were observed between groups differing in level of bone malformations. Some dolphins displayed evidence of toxicity and knowledge of metal toxicity pathways were used to elucidate the cause of these abnormalities. Two dolphins had high metal burdens, high MT concentrations, renal damage, and evidence of bone malformations, indicating possible severe and prolonged metal toxicity. One dolphin showed evidence of renal damage, but the lack of any other symptoms suggests that this was unlikely to be caused by metal toxicity. We recommend examining a range of metal toxicity symptoms simultaneously to aid in distinguishing metal toxicity from unrelated aetiologies.
Collapse
Affiliation(s)
- Trish J Lavery
- School of Biological Sciences, Flinders University of South Australia, Adelaide, SA 5001, Australia.
| | | | | | | | | | | | | |
Collapse
|
37
|
Sonne C, Wolkers H, Rigét FF, Jensen JEB, Teilmann J, Jenssen BM, Fuglei E, Ahlstrøm Ø, Dietz R, Muir DCG, Jørgensen EH. Mineral density and biomechanical properties of bone tissue from male Arctic foxes (Vulpes lagopus) exposed to organochlorine contaminants and emaciation. Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:97-103. [PMID: 18761108 DOI: 10.1016/j.cbpc.2008.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 07/20/2008] [Accepted: 07/22/2008] [Indexed: 01/22/2023]
Abstract
We investigated the impact from dietary OC (organochlorine) exposure and restricted feeding (emaciation) on bone mineral density (BMD; g hydroxy-apatite cm(-2)) in femoral, vertebrate, skull and baculum osteoid tissue from farmed Arctic blue foxes (Vulpes lagopus). For femur, also biomechanical properties during bending (displacement [mm], load [N], energy absorption [J] and stiffness [N/mm]) were measured. Sixteen foxes (EXP) were fed a wet food containing 7.7% OC-polluted minke whale (Balaenoptera acutorostrata) blubber in two periods of body fat deposition (Aug-Dec) and two periods of body fat mobilisation (Jan-July) in which the food contained less energy and only 2% blubber. SigmaOC food concentration in the food containing 7.7% whale blubber was 309 ng/g wet mass. This corresponded to a SigmaOC exposure of ca. 17 microg/kg body mass/d and a responding SigmaOC residue in subcutaneous adipose tissue of ca. 1700 ng/g live mass in the 8 EXP fat foxes euthanized after 16 months. A control group (CON) composed of 15 foxes were fed equal daily caloric amounts of clean pork (Sus scrofa) fat. After 16 months, 8 EXP and 7 CON foxes were euthanized (mean body mass=9.25 kg) while the remaining 8 EXP and 8 CON foxes were given restricted food rations for 6 months resulting in a body weight reduction (mean body mass=5.46 kg). The results showed that only BMD(skull) vs. BMD(vertebrae) were significantly correlated (R=0.68; p=0.03; n=10) probably due to a similar composition of trabecular and cortical osteoid tissue. No difference in any of the BMD measurements or femoral biomechanical properties was found between EXP and CON foxes although BMD baculum was 1.6-folds lower in the EXP group. However, lean summer foxes had significantly lower femoral biomechanical properties measured as displacement (mm), energy absorption (J) and time (s) biomechanical properties than fat winter foxes (all p<0.004). This indicates lower stiffness and softer bones from fasting which is in agreement with previous studies. Further, it should be kept in mind when studying bone tissues in Arctic mammals also in order to avoid confounding effects from body condition.
Collapse
Affiliation(s)
- Christian Sonne
- Department of Arctic Environment, National Environmental Research Institute, University of Aarhus, Roskilde, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sonne C, Rigét FF, Beck Jensen JE, Hyldstrup L, Teilmann J, Dietz R, Kirkegaard M, Andersen S, Letcher RJ, Jakobsen J. Does the nutrition profile of vitamins, fatty acids and microelements counteract the negative impact from organohalogen pollutants on bone mineral density in Greenland sledge dogs (Canis familiaris)? ENVIRONMENT INTERNATIONAL 2008; 34:811-820. [PMID: 18342937 DOI: 10.1016/j.envint.2008.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 01/22/2008] [Accepted: 01/30/2008] [Indexed: 05/26/2023]
Abstract
There is a great need for understanding the impact from dietary OHCs (organohalogen compounds) on bone mineral composition - and thereby osteoporosis - in especially arctic wildlife such as polar bears (Ursus maritimus) as well as humans. For that purpose, we measured BMD (bone mineral density) by DXA scanning (g/cm(-2)) in 15 age and weight normalized sledge dog (Canis familiaris) bitches and their 26 pups divided into a control group (n=26) given 50-200 g/day clean pork (Suis scrofa) fat and a treated group (n=15) given 50-200 g/day OHC polluted minke whale (Balaenoptera acutorostrata) blubber as main lipid sources. The results showed that BMD increased significantly with age (linear regression: p<0.0001, r(2)=0.83, n=41) while no sex difference was found in the F-generation (two-way ANOVA: all p>0.3). No differences in BMD(femur) or BMD(vertebrae) between exposed and control individuals in the bitch generation were found (linear mixed effect model: both p>0.38). Likewise, no difference between exposed and control subadults and juveniles in the F-generation was found (two-way ANOVA: all p>0.33). Correlation analyses between BMD(femur), BMD(vertebrae) and groups of OHCs, respectively, did not show any statistically significant relationships nor a clear or decreasing trend (Pearson's: p: 0.07-0.78; r: -0.2-0.59; n: 10-18). As the groups were similar regarding genetics, age and sex are the only factors that can explain this observation. Either the pollutants did not have an impact on BMD using the present time frame and OHC concentrations (threshold levels not reached), or the difference in food composition (mainly vitamins and n3 fatty acids) conceal the potential OHC impact on BMD. Such information is important when evaluating the positive and negative health consequences from eating polluted marine species.
Collapse
Affiliation(s)
- Christian Sonne
- Section for Contaminants, Effects and Marine Mammals, Department of Arctic Environment, National Environmental Research Institute, University of Aarhus, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fox GA, Lundberg R, Wejheden C, Lind L, Larsson S, Orberg J, Lind PM. Health of herring gulls (Larus argentatus) in relation to breeding location in the early 1990s. III. Effects on the bone tissue. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2008; 71:1448-1456. [PMID: 18800294 DOI: 10.1080/15287390802328788] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Health effects associated with the Great Lakes environment were assessed in adult herring gulls (Larus argentatus) in the early 1990s, including the size and quality of their bones. Femurs were excised from 140 individuals from 10 colonies distributed throughout the Great Lakes and 2 reference colonies in Lake Winnipeg (freshwater) and the Bay of Fundy (marine). Femurs of gulls from the Great Lakes differed from the freshwater or marine reference for 9 of 12 variables of size, composition, and strength assessed using peripheral quantitative computed tomography (pQCT) and biomechanical testing. Femurs of Great Lakes gulls were significantly smaller in length (-2.9%), periosteal circumference (-2.4%), and cross-sectional area (-5.4%) than freshwater reference birds. Femurs of the Great Lakes gulls had a lower significant cortical bone mineral content (-8.1%) and density (-2%) than the marine reference. A significant increase in the amount the bone could bend before it broke (+34%) and the energy required to break it (+44%) and a significant decrease (-16.3%) in stiffness during three-point biomechanical bending test were also detected in Great Lakes versus the freshwater gulls. These differences are indicative of impaired mineralization. When divided into high and low 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity equivalent (TCDD-TEQ) colonies, the amount the bone could bend before it broke and the energy required to break it were significantly higher in the high TEQ colonies, but not high polychlorinated biphenyl (PCB) colonies. Breeding location and dietary choices of Great Lakes herring gulls in the early 1990s resulted in modulations of physiological processes that affected the size, mineralization, and biomechanical properties of bone.
Collapse
Affiliation(s)
- Glen A Fox
- Canadian Wildlife Service, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
40
|
Lundberg R, Jenssen BM, Leiva-Presa A, Rönn M, Hernhag C, Wejheden C, Larsson S, Orberg J, Lind PM. Effects of short-term exposure to the DDT metabolite p,p'-DDE on bone tissue in male common frog (Rana temporaria). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:614-9. [PMID: 17365615 DOI: 10.1080/15287390600974486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Experimental studies as well as studies in free-ranging animals have shown that endocrine-disrupting chemicals (EDCs) impair bone tissue composition and strength. The aim of the present study was to expand our studies on bone tissue in a new group of animals by investigating whether bone tissue in frogs is an additional potential target of EDCs. Adult male European common frogs (Rana temporaria) were divided into 5 groups (n = 20) and injected (sc, single injection) with p,p'-DDE, a total dose of 0.01, 0.1, 1, or 10 mg of p,p'-DDE/kg body weight, respectively. A control group was treated with the vehicle (corn oil). Two weeks after injection the frogs were euthanized and samples taken. The diaphysis of the excised left femur was scanned using peripheral quantitative computed tomography (pQCT) and cortical variables, such as cortical bone mineral density (BMD), cortical cross-sectional area (CSA), and periosteal circumference, were determined. In addition, biomechanical three-point bending of the bones was conducted, with the load being applied to the same point as where the pQCT measurement was performed. The results from the pQCT measurements show that bone tissue in male frogs exposed to p,p'-DDE is negatively affected. A significant decrease in cortical BMD at the diaphysis was observed in frogs exposed to 1 mg p,p'-DDE. However, the biomechanical testing of the bones showed no significant differences between exposed and control group. Although this is the only study performed to date examining the possible relationships between EDCs and negative effects on frog bones, it supports both previous experimental findings in rodents and findings in free-ranging animals.
Collapse
Affiliation(s)
- Rebecca Lundberg
- Division of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Labrada-Martagón V, Aurioles-Gamboa D, Castro-González MI. Relation of dental wear to the concentrations of essential minerals in teeth of the California sea lion Zalophus californianus californianus. Biol Trace Elem Res 2007; 115:107-26. [PMID: 17435255 DOI: 10.1007/bf02686023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 06/05/2006] [Accepted: 06/10/2006] [Indexed: 10/22/2022]
Abstract
Tooth wear in marine mammals has been attributed to age, feeding habits, behavior, and contaminants. Advanced tooth wear in some California sea lions, including some of very young age (<5 yr), in the Gulf of California, suggests that there are variations in chemical composition of tooth parts, wherein the concentrations of certain trace minerals might be anomalous, making them more susceptible to erosion. The concentrations of the essential minerals Ca, P, K, Na, Fe, Mg, and Zn in the dentition of Zalophus c. californianus are documented for the first time and are compared for sea lion teeth with different degrees of wear. Canine teeth and molars from 45 skulls collected at 15 localities since 1978 were digested in perchloric acid and analyzed using atomic adsorption spectrometry, the results being expressed in milligrams per 100 g. An index of tooth wear (Id) was established, involving the average wear on the teeth and the age of the organism. No significant difference was detected in the variables, but there was one between ages (p = 0.02). A higher degree of wear was observed up to 7 yr of age than from this age onward. Mineral concentrations did not explain the excessive wear observed (correlation, p > 0.09; ANOVA, p > 0.15); however, the Ca concentration of the teeth was inversely proportional to the age of the animal (sexes combined, p = 0.026) and particularly significant for the females (r2 = 0.112, r = -0.335, p = 0.039). Females could be more prone to decalcification because of their annual bone investment in their offspring. Animals of both sexes were susceptible to tooth wear as their age increased, but the higher frequency of animals between 4 and 7 yr suggests an impact on survival at early stages probably linked to deficient feeding and chronic malnutrition.
Collapse
Affiliation(s)
- Vanessa Labrada-Martagón
- Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, Av IPN s/n, Colonia Playa de Santa Rita, La Paz, Baja California Sur, México
| | | | | |
Collapse
|
42
|
Lundberg R, Lyche JL, Ropstad E, Aleksandersen M, Rönn M, Skaare JU, Larsson S, Orberg J, Lind PM. Perinatal exposure to PCB 153, but not PCB 126, alters bone tissue composition in female goat offspring. Toxicology 2006; 228:33-40. [PMID: 17007988 DOI: 10.1016/j.tox.2006.08.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 08/07/2006] [Accepted: 08/08/2006] [Indexed: 10/24/2022]
Abstract
The aim of this study was to investigate if environmentally relevant doses of the putative estrogenic non dioxin-like PCB 153 and the dioxin-like PCB 126 caused changes in bone tissue in female goat offspring following perinatal exposure. Goat dams were orally dosed with PCB 153 in corn oil (98 microg/kg body wt/day) or PCB 126 (49 ng/kg body wt/day) from day 60 of gestation until delivery. The offspring were exposed to PCB in utero and through mother's milk. The suckling period lasted for 6 weeks. Offspring metacarpal bones were analysed using peripheral quantitative computed tomography (pQCT) after euthanisation at 9 months of age. The diaphyseal bone was analysed at a distance of 18% and 50% of the total bone length, and the metaphyseal bone at a distance of 9%. Also, biomechanical three-point bending of the bones was conducted, with the load being applied to the mid-diaphyseal pQCT measure point (50%). PCB 153 exposure significantly decreased the total cross-sectional area (125 mm(2)+/-4) versus non-exposed (142 mm(2)+/-5), decreased the marrow cavity (38 mm(2)+/-4) versus non-exposed (50 mm(2)+/-3) and decreased the moment of resistance (318 mm(3)+/-10) versus non-exposed (371 mm(3)+/-20) at the diaphyseal 18% measure point. At the metaphyseal measure point, the trabecular bone mineral density (121 mg/cm(3)+/-5) was increased versus non-exposed (111 mg/cm(3)+/-3). PCB 126 exposure did not produce any observable changes in bone tissue. The biomechanical testing of the bones did not show any significant changes in bone strength after PCB 153 or PCB 126 exposure. In conclusion, perinatal exposure to PCB 153, but not PCB 126, resulted in altered bone composition in female goat offspring.
Collapse
Affiliation(s)
- Rebecca Lundberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wallin E, Rylander L, Jönssson BAG, Lundh T, Isaksson A, Hagmar L. Exposure to CB-153 and p,p'-DDE and bone mineral density and bone metabolism markers in middle-aged and elderly men and women. Osteoporos Int 2005; 16:2085-94. [PMID: 16234998 DOI: 10.1007/s00198-005-2004-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 08/02/2005] [Indexed: 12/21/2022]
Abstract
The incidence of osteoporotic fractures is rising in western societies, partly due to unknown reasons. Persistent organochlorine compounds (POC) have in animal studies impaired the normal bone metabolism and resulted in increased bone fragility, which might have health implications for POC-exposed human populations. The aim of the present study was to assess whether a high dietary intake of POC through fatty fish from the Baltic may result in decreased bone mineral density (BMD) or disturbances in biochemical markers of bone metabolism. From a study base of fishermen and fishermen's wives from the Swedish east coast who are considerably more POC-exposed than the general Swedish population, 196 men (median age 59 years) and 184 women (median age 62 years) participated in an examination of their forearm BMD, using dual energy x-ray absorptiometry (DXA). Further, POC exposure was assessed by analysis of lipid-adjusted serum levels of 2,2',4,4',5,5'-hexachlorobiphenyl (CB-153) and 1,1-dichloro-2,2-bis(p-chlorophenyl)-ethylene (p,p'-DDE). Cadmium in urine (U-Cd) was also analyzed. Biochemical markers in serum of osteoblastic (osteocalcin) and osteoclastic (CrossLaps) functions were measured. Adjustment for potential confounders was made by employing multiple regression analyses. Univariate analyses showed significant negative associations between CB-153 concentrations and BMD, but after adjustment for age and body mass index, these associations did not remain. None of the POC exposure variables were associated with CrossLaps or osteocalcin. There were no significant associations between U-Cd and BMD or any of the biochemical biomarkers. In conclusion, the results did not provide any support for the hypothesis that the current exposure levels to POC constitute a hazard for impaired bone metabolism in the general Swedish population.
Collapse
Affiliation(s)
- Ewa Wallin
- Department of Occupational and Environmental Medicine, Institute of Laboratory Medicine, Lund University Hospital, 221 85, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
44
|
Stern N, Korotkova M, Strandvik B, Oxlund H, Oberg M, Hakansson H, Lind PM. Subchronic Toxicity of Baltic Herring Oil and its Fractions in the Rat (III) Bone Tissue Composition and Dimension, and Ratio of n-6/n-3 Fatty Acids in Serum Phospholipids. Basic Clin Pharmacol Toxicol 2005. [DOI: 10.1111/j.1742-7843.2005.pto_96608.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
Sonne C, Leifsson PS, Dietz R, Born EW, Letcher RJ, Kirkegaard M, Muir DCG, Andersen LW, Riget FF, Hyldstrup L. Enlarged clitoris in wild polar bears (Ursus maritimus) can be misdiagnosed as pseudohermaphroditism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2005; 337:45-58. [PMID: 15626378 DOI: 10.1016/j.scitotenv.2004.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Revised: 06/07/2004] [Accepted: 06/12/2004] [Indexed: 05/24/2023]
Abstract
A 23-year-old female polar bear (Ursus maritimus) killed in an Inuit hunt in East Greenland on July 9, 1999 had a significantly enlarged clitoris resembling, in size, form and colour, those of previously reported 'pseudohermaphroditic' polar bears from Svalbard. It has been suggested that an enzyme defect (21-hydroxylase deficiency), androgen producing tumour or high exposure to organochlorines during the foetal stage or early development could be the reason for the supposed pseudohermaphroditism observed for Svalbard bears. Except for the enlarged clitoris, all dimensions of the external and internal reproductive organs of the present were similar to a reference group of 23 normal adult female polar bears from East Greenland collected in 1999-2002. The aberrant bear was a female genotype, and macroscopic examination of her internal reproductive organs indicated that she was reproductively functional. A histological examination of the clitoral enlargement in the present East Greenland specimen allows a first-time histological evaluation of the earlier macroscopic field diagnosis from Svalbard. This examination revealed intense chronic ulcerative and perivascular clitoriditis similar to "acral lick dermatitis" frequently seen in domestic dogs (i.e., we did not find any signs of pseudohermaphroditic hyperplasia of clitoral tissue due to androgenic or antiestrogenic endocrine disruption). The levels of organohalogens and TEQ values were lower than concentration thresholds of toxicological risk. It is hence possible that the previously reported adult female polar bear pseudohermaphrodites from Svalbard are in fact misdiagnoses. Therefore, future studies examining pseudohermaphroditism in wildlife should consider that certain occurrences are natural events, e.g., enlarged clitoris in the present East Greenland polar bear. Furthermore, caution should be exercised in suggesting linkages of such inflammatory abnormalities with correlations to anthropogenic pollutant exposures.
Collapse
Affiliation(s)
- C Sonne
- Department of Arctic Environment, National Environmental Research Institute, Frederiksborgvej 399, Box 358, DK-4000 Roskilde, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sonne C, Dietz R, Born EW, Riget FF, Kirkegaard M, Hyldstrup L, Letcher RJ, Muir DCG. Is bone mineral composition disrupted by organochlorines in east Greenland polar bears (Ursus maritimus)? ENVIRONMENTAL HEALTH PERSPECTIVES 2004; 112:1711-6. [PMID: 15579418 PMCID: PMC1253664 DOI: 10.1289/ehp.7293] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We analyzed bone mineral density (BMD) in skulls of polar bears (Ursus maritimus) (n = 139) from East Greenland sampled during 1892-2002. Our primary goal was to detect possible changes in bone mineral content (osteopenia) due to elevated exposure to organochlorine [polychlorinated biphenyls (PCBs), dichlorodiphenyl trichloroethane (DDT) and its metabolites, chlordanes (CHLs), dieldrin, hexacyclohexanes, hexachlorobenzene] and polybrominated diphenyl ether (PBDE) compounds. To ensure that the BMD value in skull represented the mineral status of the skeletal system in general, we compared BMD values in femur and three lumbar vertebrae with skull in a subsample. We detected highly significant correlations between BMD in skull and femur (r = 0.99; p < 0.001; n = 13) and skull and vertebrae (r = 0.97; p < 0.001; n = 8). BMD in skulls sampled in the supposed pre-organochlorine/PBDE period (1892-1932) was significantly higher than that in skulls sampled in the supposed pollution period (1966-2002) for subadult females, subadult males, and adult males (all, p < 0.05) but not adult females (p = 0.94). We found a negative correlation between organochlorines and skull BMD for the sum of PCBs (SigmaPCB; p < 0.04) and SigmaCHL (p < 0.03) in subadults and for dieldrin (p < 0.002) and SigmaDDT (p < 0.02) in adult males; indications for SigmaPBDE in subadults were also found (p = 0.06). In conclusion, the strong correlative relationships suggest that disruption of the bone mineral composition in East Greenland polar bears may have been caused by organochlorine exposure.
Collapse
Affiliation(s)
- Christian Sonne
- National Environmental Research Institute, Department of Arctic Environment, Roskilde, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|