1
|
Luna E, Ruiz S, Garinot M, Chavagnac C, Agrawal P, Escobar J, Revet L, Asensio MJ, Piras F, Fang FG, Drake DR, Rokbi B, Larocque D, Haensler J. SPA14 liposomes combining saponin with fully synthetic TLR4 agonist provide adjuvanticity to hCMV vaccine candidate. NPJ Vaccines 2024; 9:253. [PMID: 39702373 DOI: 10.1038/s41541-024-01046-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024] Open
Abstract
In the aim of designing and developing a novel saponin-based adjuvant system, we combined the QS21 saponin with low microgram amounts of the fully synthetic TLR4 agonist, E6020, in cholesterol-containing liposomes. The resulting adjuvant system, termed SPA14, appeared as a long-term stable and homogeneous suspension of mostly unilamellar and a few multilamellar vesicles, with an average hydrodynamic diameter of 93 nm, when formulated in citrate buffer at pH 6.0-6.5. When compared in an in vitro human innate immunity construct to AS01B, the QS21/MPL® liposomal adjuvant system of GSK, and with QS21-Liposomes used as benchmarks, SPA14 displayed the strongest immunostimulatory potential based on antigen-presenting cell (APC) activation and cytokine secretion, which was essentially driven by the highly active E6020 agonist in this assay. When tested as an adjuvant in vivo with human cytomegalovirus glycoprotein B (gB) and pentamer complex (PC) as test antigens, SPA14 was generally well tolerated and as active as AS01B for the induction of long-lasting CMV-neutralizing antibodies in mice and non-human primates (NHPs). Both adjuvants promoted the induction of Th-1 responses based on IgG2c production in mice and IFN-γ production in mice and NHPs, but in mice, a higher level of Th-2 cytokines (IL-5) and higher IgG1 over IgG2c secreting cells ratios were obtained with SPA14 indicating that the adjuvant profile of SPA14 could be less Th-1 biased than that of AS01B. From a developability standpoint, SPA14 could be manufactured by a simple and scalable ethanol injection method, owing to the high solubility in ethanol of all its lipidic components, including E6020. Furthermore, E6020 is a single molecule, well-characterized fully synthetic TLR4 agonist constructed in eight synthetic steps from entirely crystalline starting materials and intermediates via an optimized high-yield synthetic route. Overall, our data suggest that SPA14 is a viable, easy-to-manufacture, potent novel adjuvant system that could be broadly applicable as a ready-to-mix adjuvant in the form of a long-term stable liquid formulation.
Collapse
Affiliation(s)
- Ernesto Luna
- Sanofi Vaccines business unit, R&D, Orlando, FL, USA
| | - Sophie Ruiz
- Sanofi Vaccines business unit, R&D, Marcy L'Etoile, France
| | - Marie Garinot
- Sanofi Vaccines business unit, R&D, Marcy L'Etoile, France
| | | | | | - John Escobar
- Sanofi Vaccines business unit, R&D, Orlando, FL, USA
| | - Laurent Revet
- Sanofi Vaccines business unit, R&D, Marcy L'Etoile, France
| | | | - Fabienne Piras
- Sanofi Vaccines business unit, R&D, Marcy L'Etoile, France
| | | | | | - Bachra Rokbi
- Sanofi Vaccines business unit, R&D, Marcy L'Etoile, France
| | | | - Jean Haensler
- Sanofi Vaccines business unit, R&D, Marcy L'Etoile, France.
| |
Collapse
|
2
|
Chang J, Shin K, Lewis JM, Suh HW, Lee J, Damsky W, Xu S, Bosenberg M, Saltzman WM, Girardi M. Enhanced Intratumoral Delivery of Immunomodulator Monophosphoryl Lipid A through Hyperbranched Polyglycerol-Coated Biodegradable Nanoparticles. J Invest Dermatol 2024:S0022-202X(24)01983-3. [PMID: 39122142 DOI: 10.1016/j.jid.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 08/12/2024]
Abstract
Immunomodulatory agents have significant potential to enhance cancer treatment but have demonstrated limited efficacy beyond the preclinical setting owing to poor pharmacokinetics and toxicity associated with systemic administration. Conversely, when locally delivered, immunomodulatory agents require repeated administration to optimize immune stimulation. To overcome these challenges, we encapsulated the toll-like receptor 4 agonist monophosphoryl lipid A (MPLA) within hyperbranched polyglycerol-coated biodegradable nanoparticles (NPs) engineered for gradual drug release from the NP core, resulting in a more persistent stimulation of antitumor immune responses while minimizing systemic side effects. In a model of malignant melanoma, we demonstrate that hyperbranched polyglycerol-NP encapsulation significantly improves the antitumor efficacy of MPLA by enhancing its ability to remodel the tumor microenvironment. Relative to free MPLA, hyperbranched polyglycerol-coated NP-encapsulated MPLA significantly increased the NK cell- and cytotoxic T-cell-mediated antitumor immune response and tuned the tumor-draining lymph nodes toward a T helper 1 response. Furthermore, when combined with local delivery of a chemotherapeutic agent, hyperbranched polyglycerol-NP-MPLA induces the conversion of an immunosuppressive tumor microenvironment to immunogenic tumor microenvironment and significantly improves survival.
Collapse
Affiliation(s)
- Jungsoo Chang
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut, USA
| | - Kwangsoo Shin
- Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut, USA
| | - Julia M Lewis
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hee Won Suh
- Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut, USA
| | - Joohyung Lee
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - William Damsky
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Suzanne Xu
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Marcus Bosenberg
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut, USA; Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA; Yale Center for Immuno-Oncology, Yale School of Medicine, New Haven, Connecticut, USA
| | - W Mark Saltzman
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut, USA; Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA; Department of Chemical & Environmental Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael Girardi
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA; Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
3
|
Howell LM, Manole S, Reitter AR, Forbes NS. Controlled production of lipopolysaccharides increases immune activation in Salmonella treatments of cancer. Microb Biotechnol 2024; 17:e14461. [PMID: 38758181 PMCID: PMC11100551 DOI: 10.1111/1751-7915.14461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 05/18/2024] Open
Abstract
Immunotherapies have revolutionized cancer treatment. These treatments rely on immune cell activation in tumours, which limits the number of patients that respond. Inflammatory molecules, like lipopolysaccharides (LPS), can activate innate immune cells, which convert tumour microenvironments from cold to hot, and increase therapeutic efficacy. However, systemic delivery of lipopolysaccharides (LPS) can induce cytokine storm. In this work, we developed immune-controlling Salmonella (ICS) that only produce LPS in tumours after colonization and systemic clearance. We tuned the expression of msbB, which controls production of immunogenic LPS, by optimizing its ribosomal binding sites and protein degradation tags. This genetic system induced a controllable inflammatory response and increased dendritic cell cross-presentation in vitro. The strong off state did not induce TNFα production and prevented adverse events when injected into mice. The accumulation of ICS in tumours after intravenous injection focused immune responses specifically to tumours. Tumour-specific expression of msbB increased infiltration of immune cells, activated monocytes and neutrophils, increased tumour levels of IL-6, and activated CD8 T cells in draining lymph nodes. These immune responses reduced tumour growth and increased mouse survival. By increasing the efficacy of bacterial anti-cancer therapy, localized production of LPS could provide increased options to patients with immune-resistant cancers.
Collapse
Affiliation(s)
- Lars M. Howell
- Department of Chemical EngineeringUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | - Simin Manole
- Molecular and Cellular Biology ProgramUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | - Alec R. Reitter
- Department of Chemical EngineeringUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | - Neil S. Forbes
- Department of Chemical EngineeringUniversity of Massachusetts AmherstAmherstMassachusettsUSA
- Molecular and Cellular Biology ProgramUniversity of Massachusetts AmherstAmherstMassachusettsUSA
- Institute for Applied Life Sciences, University of Massachusetts AmherstAmherstMassachusettsUSA
| |
Collapse
|
4
|
Avalos-Padilla Y, Fernàndez-Busquets X. Nanotherapeutics against malaria: A decade of advancements in experimental models. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1943. [PMID: 38426407 DOI: 10.1002/wnan.1943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 11/01/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024]
Abstract
Malaria, caused by different species of protists of the genus Plasmodium, remains among the most common causes of death due to parasitic diseases worldwide, mainly for children aged under 5. One of the main obstacles to malaria eradication is the speed with which the pathogen evolves resistance to the drug schemes developed against it. For this reason, it remains urgent to find innovative therapeutic strategies offering sufficient specificity against the parasite to minimize resistance evolution and drug side effects. In this context, nanotechnology-based approaches are now being explored for their use as antimalarial drug delivery platforms due to the wide range of advantages and tuneable properties that they offer. However, major challenges remain to be addressed to provide a cost-efficient and targeted therapeutic strategy contributing to malaria eradication. The present work contains a systematic review of nanotechnology-based antimalarial drug delivery systems generated during the last 10 years. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Yunuen Avalos-Padilla
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Barcelona, Spain
| | - Xavier Fernàndez-Busquets
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Wang N, Wang T. Innovative translational platforms for rapid developing clinical vaccines against COVID-19 and other infectious disease. Biotechnol J 2024; 19:e2300658. [PMID: 38403469 DOI: 10.1002/biot.202300658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 02/27/2024]
Abstract
A vaccine is a biological preparation that contains the antigen capable of stimulating the immune system to form the defense against pathogens. Vaccine development often confronts big challenges, including time/energy-consuming, low efficacy, lag to pathogen emergence and mutation, and even safety concern. However, these seem now mostly conquerable through constructing the advanced translational platforms that can make innovative vaccines, sometimes, potentiated with a distinct multifunctional VADS (vaccine adjuvant delivery system), as evidenced by the development of various vaccines against the covid-19 pandemic at warp speed. Particularly, several covid-19 vaccines, such as the viral-vectored vaccines, mRNA vaccines and DNA vaccines, regarded as the innovative ones that are rapidly made via the high technology-based translational platforms. These products have manifested powerful efficacy while showing no unacceptable safety profile in clinics, allowing them to be approved for massive vaccination at also warp speed. Now, the proprietary translational platforms integrated with the state-of-the-art biotechnologies, and even the artificial intelligence (AI), represent an efficient mode for rapid making innovative clinical vaccines against infections, thus increasingly attracting interests of vaccine research and development. Herein, the advanced translational platforms for making innovative vaccines, together with their design principles and immunostimulatory efficacies, are comprehensively elaborated.
Collapse
Affiliation(s)
- Ning Wang
- School of Food and Biological engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Ting Wang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
6
|
Rujas E, Apellániz B, Torralba J, Andreu D, Caaveiro JMM, Wang S, Lu S, Nieva JL. Liposome-based peptide vaccines to elicit immune responses against the membrane active domains of the HIV-1 Env glycoprotein. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184235. [PMID: 37793559 DOI: 10.1016/j.bbamem.2023.184235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/12/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
The fusion peptide (FP) and the Trp-rich membrane proximal external region (MPER) display membrane activity during HIV-1 fusion. These domains are highly conserved in the envelope glycoprotein (Env) and, consequently, antibodies targeting these regions block entry of divergent HIV strains and isolates into target cells. With the aim of recovering concurrent responses against the membrane-active Env domains, we have produced hybrid peptides that connect FP and MPER sequences via flexible aminohexanoic acid tethers, and tested their potential as immunogens. We demonstrate that liposome-based formulations containing FP-MPER hybrid peptides could elicit in rabbits, antibodies with the binding sequence specificity of neutralizing antibodies that engage with the N-terminal MPER sub-region. Determination of the thermodynamic parameters of binding using the Fab 2F5 as an N-terminal MPER antibody model, revealed that the hydrophobic interaction surface for epitope engagement appears to be optimal in the FP-MPER hybrid. In general, our data support: i) the use of liposomes as carriers for membrane active peptides; ii) the capacity of these liposome-based vaccines to focus humoral responses to N-terminal MPER epitopes; and iii) the need to include lipid membranes in immunogens to elicit such specific responses.
Collapse
Affiliation(s)
- Edurne Rujas
- Instituto Biofisika (CSIC, UPV/EHU) and Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain.
| | - Beatriz Apellániz
- Department of Physiology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Johana Torralba
- Instituto Biofisika (CSIC, UPV/EHU) and Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - David Andreu
- Laboratory of Proteomics and Protein Chemistry, Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Jose M M Caaveiro
- Laboratory of Global Healthcare, School of Pharmaceutical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Shixia Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, United States of America
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, United States of America
| | - Jose L Nieva
- Instituto Biofisika (CSIC, UPV/EHU) and Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain.
| |
Collapse
|
7
|
He S, Liu S. Zwitterionic materials for nucleic acid delivery and therapeutic applications. J Control Release 2024; 365:919-935. [PMID: 38103789 DOI: 10.1016/j.jconrel.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Nucleic acid therapeutics have demonstrated substantial potential in combating various diseases. However, challenges persist, particularly in the delivery of multifunctional nucleic acids. To address this issue, numerous gene delivery vectors have been developed to fully unlock the potential of gene therapy. The advancement of innovative materials with exceptional delivery properties is critical to propel the clinical translation of nucleic acid drugs. Cationic vector materials have received extensive attention, while zwitterionic materials remain relatively underappreciated in delivery. In this review, we outline a diverse range of zwitterionic material nucleic acid carriers, predominantly encompassing zwitterionic lipids, polymers and peptides. Their respective chemical structures, synthesis approaches, properties, advantages, and therapeutic applications are summarized and discussed. Furthermore, we highlight the challenges and future opportunities associated with the development of zwitterionic vector materials. This review will aid to understand the zwitterionic materials in aiding gene delivery, contributing to the continual progress of nucleic acid therapeutics.
Collapse
Affiliation(s)
- Shun He
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shuai Liu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Lovell JF, Miura K, Baik YO, Lee C, Lee JY, Park YS, Hong I, Lee JH, Kim T, Seo SH, Kim JO, Song M, Kim CJ, Choi JK, Kim J, Choo EJ, Choi JH. One-year antibody durability induced by EuCorVac-19, a liposome-displayed COVID-19 receptor binding domain subunit vaccine, in healthy Korean subjects. Int J Infect Dis 2024; 138:73-80. [PMID: 37944586 DOI: 10.1016/j.ijid.2023.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE EuCorVac-19 (ECV-19), an adjuvanted liposome-displayed receptor binding domain (RBD) COVID-19 vaccine, previously reported interim Phase 2 trial results showing induction of neutralizing antibodies 3 weeks after prime-boost immunization. The objective of this study was to determine the longer-term antibody response of the vaccine. METHODS To assess immunogenicity 6 and 12 months after vaccination, participants in the Phase 2 trial (NCT04783311) were excluded if they: 1) withdrew, 2) reported COVID-19 infection or additional vaccination, or 3) exhibited increasing Spike (S) antibodies (representing possible non-reported infection). Following exclusions, of the 197 initial subjects, anti-S IgG antibodies and neutralizing antibodies were further assessed in 124 subjects at the 6-month timepoint, and 36 subjects at the 12-month timepoint. RESULTS Median anti-S antibody half-life was 52 days (interquartile range [IQR]:42-70), in the "early" period from 3 weeks to 6 months, and 130 days (IQR:97-169) in the "late" period from 6 to 12 months. There was a negative correlation between initial antibody titer and half-life. Anti-S and neutralizing antibody responses were correlated. Neutralizing antibody responses showed longer half-lives; the early period had a median half-life of 120 days (IQR:81-207), and the late period had a median half-life of 214 days (IQR:140-550). CONCLUSION These data establish antibody durability of ECV-19, using a framework to analyze COVID-19 vaccine-induced antibodies during periods of high infection.
Collapse
Affiliation(s)
- Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, Buffalo, New York, USA.
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Yeong Ok Baik
- Eubiologics, R&D Center, EuBiologics Co., Ltd., Chuncheon, Korea
| | - Chankyu Lee
- Eubiologics, R&D Center, EuBiologics Co., Ltd., Chuncheon, Korea
| | - Jeong-Yoon Lee
- Eubiologics, R&D Center, EuBiologics Co., Ltd., Chuncheon, Korea
| | | | - Ingi Hong
- International Vaccine Institute, Gwanak-gu, Seoul, Korea
| | - Jung Hyuk Lee
- International Vaccine Institute, Gwanak-gu, Seoul, Korea
| | - Taewoo Kim
- International Vaccine Institute, Gwanak-gu, Seoul, Korea
| | - Sang Hwan Seo
- International Vaccine Institute, Gwanak-gu, Seoul, Korea
| | - Jae-Ouk Kim
- International Vaccine Institute, Gwanak-gu, Seoul, Korea
| | - Manki Song
- International Vaccine Institute, Gwanak-gu, Seoul, Korea
| | - Chung-Jong Kim
- Department of Internal Medicine, Ewha Womans University, Seoul, Korea
| | - Jae-Ki Choi
- Department of Infectious Diseases, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jieun Kim
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Eun Ju Choo
- Department of Infectious Diseases, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Jung-Hyun Choi
- Department of Infectious Diseases, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
9
|
Desai DN, Mahal A, Varshney R, Obaidullah AJ, Gupta B, Mohanty P, Pattnaik P, Mohapatra NC, Mishra S, Kandi V, Rabaan AA, Mohapatra RK. Nanoadjuvants: Promising Bioinspired and Biomimetic Approaches in Vaccine Innovation. ACS OMEGA 2023; 8:27953-27968. [PMID: 37576639 PMCID: PMC10413842 DOI: 10.1021/acsomega.3c02030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023]
Abstract
Adjuvants are the important part of vaccine manufacturing as they elicit the vaccination effect and enhance the durability of the immune response through controlled release. In light of this, nanoadjuvants have shown unique broad spectrum advantages. As nanoparticles (NPs) based vaccines are fast-acting and better in terms of safety and usability parameters as compared to traditional vaccines, they have attracted the attention of researchers. A vaccine nanocarrier is another interesting and promising area for the development of next-generation vaccines for prophylaxis. This review looks at the various nanoadjuvants and their structure-function relationships. It compiles the state-of-art literature on numerous nanoadjuvants to help domain researchers orient their understanding and extend their endeavors in vaccines research and development.
Collapse
Affiliation(s)
- Dhruv N. Desai
- Department
of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ahmed Mahal
- Department
of Medical Biochemical Analysis, College of Health Technology, Cihan University−Erbil, Erbil, Kurdistan Region, Iraq
| | - Rajat Varshney
- Department
of Veterinary Microbiology, FVAS, Banaras
Hindu University, Mirzapur 231001, India
| | - Ahmad J. Obaidullah
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Bhawna Gupta
- School
of Biotechnology, KIIT Deemed-to-be University, Bhubaneswar 751024, Odisha, India
| | - Pratikhya Mohanty
- Bioenergy
Lab, BDTC, School of Biotechnology, KIIT
Deemed-to-be University, Bhubaneswar 751024, Odisha, India
| | | | | | - Snehasish Mishra
- Bioenergy
Lab, BDTC, School of Biotechnology, KIIT
Deemed-to-be University, Bhubaneswar 751024, Odisha, India
| | - Venkataramana Kandi
- Department
of Microbiology, Prathima Institute of Medical
Sciences, Karimnagar 505 417, Telangana, India
| | - Ali A. Rabaan
- Molecular
Diagnostic Laboratory, Johns Hopkins Aramco
Healthcare, Dhahran 31311, Saudi Arabia
- College
of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department
of Public Health and Nutrition, The University
of Haripur, Haripur 22610, Pakistan
| | - Ranjan K. Mohapatra
- Department
of Chemistry, Government College of Engineering, Keonjhar 758002, Odisha, India
| |
Collapse
|
10
|
Li H, Sun X, Zhao Y, Zhang C, Jiang K, Ren J, Xing L, He M. Pan-cancer analysis of TASL: a novel immune infiltration-related biomarker for tumor prognosis and immunotherapy response prediction. BMC Cancer 2023; 23:528. [PMID: 37296415 DOI: 10.1186/s12885-023-11015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND New immunotherapeutic strategies based on predictors are urgently needed. Toll-like receptor adaptor interacting with SLC15A4 on the lysosome (TASL) was recently confirmed to fulfill an important role in the innate immune response. However, whether TASL is involved in tumor development and immunotherapy response prediction has not been reported. METHODS TCGA and GTEx were used to yield transcriptional, genetic, and epigenetic levels of TASL in 33 cancer types. CIBERSORT was used to explore the correlation between TASL expression and multiple immune-related signatures and tumor-infiltrating immune cell content in different cancer types. The ability of TASL to predict tumor immunotherapy response was analyzed in seven datasets. Finally, we tested TASL expression in human glioma cell lines and tissue samples and analyzed its correlation with clinicopathological parameters. RESULTS TASL is widely heterogeneous at the transcriptional, genetic, and epigenetic levels. High TASL expression is an independent poor prognostic factor for immune "cold" tumor Low-Grade Glioma (LGG) but an opposite factor for "hot" tumors Lung Adenocarcinoma (LUAD) and Skin Cutaneous Melanoma (SKCM). TASL may affect tumor immune infiltration by mediating tumor-infiltrating lymphocytes and tumor-associated macrophages. It may differentially affect the prognosis of the three cancers by regulating the immunosuppressive microenvironment in LGG and the immunostimulatory microenvironment in LUAD and SKCM. High TASL expression is a potential biomarker for the positive response to immunotherapy in cancers such as SKCM and was also experimentally confirmed to be positively associated with adverse clinicopathological features of gliomas. CONCLUSION TASL expression is an independent prognostic factor for LGG, LUAD, and SKCM. High TASL expression is a potential biomarker for the positive response to immunotherapy in certain cancer types such as SKCM. Further basic studies focusing on TASL expression and tumor immunotherapy are urgently needed.
Collapse
Affiliation(s)
- Huanyu Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Key Laboratory of Precision Diagnosis and Treatment of GastrointestinalTumors (China Medical University), Ministry of Education, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, 110122, Liaoning Province, China
| | - Xiaoyu Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Key Laboratory of Precision Diagnosis and Treatment of GastrointestinalTumors (China Medical University), Ministry of Education, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, 110122, Liaoning Province, China
| | - Yanyun Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Key Laboratory of Precision Diagnosis and Treatment of GastrointestinalTumors (China Medical University), Ministry of Education, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, 110122, Liaoning Province, China
| | - Changzhu Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Key Laboratory of Precision Diagnosis and Treatment of GastrointestinalTumors (China Medical University), Ministry of Education, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, 110122, Liaoning Province, China
| | - Kai Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Key Laboratory of Precision Diagnosis and Treatment of GastrointestinalTumors (China Medical University), Ministry of Education, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, 110122, Liaoning Province, China
| | - Jie Ren
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, China.
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Key Laboratory of Precision Diagnosis and Treatment of GastrointestinalTumors (China Medical University), Ministry of Education, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, 110122, Liaoning Province, China.
| | - Lijuan Xing
- Precision Laboratory, Panjin Central Hospital, Panjin, 124000, Liaoning Province, China.
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, China.
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Key Laboratory of Precision Diagnosis and Treatment of GastrointestinalTumors (China Medical University), Ministry of Education, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, 110122, Liaoning Province, China.
| |
Collapse
|
11
|
Castelletto V, Seitsonen J, Hamley IW. Effect of Glycosylation on Self-Assembly of Lipid A Lipopolysaccharides in Aqueous Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37289534 DOI: 10.1021/acs.langmuir.3c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lipopolysaccharides (LPSs) based on lipid A produced by bacteria are of interest due to their bioactivity in stimulating immune responses, as are simpler synthetic components or analogues. Here, the self-assembly in water of two monodisperse lipid A derivatives based on simplified bacterial LPS structures is examined and compared to that of a native Escherichia coli LPS using small-angle X-ray scattering and cryogenic transmission electron microscopy. The critical aggregation concentration is obtained from fluorescence probe experiments, and conformation is probed using circular dichroism spectroscopy. The E. coli LPS is found to form wormlike micelles, whereas the synthetic analogues bearing six lipid chains and with four or two saccharide head groups (Kdo2-lipid A and monophosphoryl lipid A) self-assemble into nanosheets or vesicles, respectively. These observations are rationalized by considering the surfactant packing parameter.
Collapse
Affiliation(s)
- Valeria Castelletto
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| | - Jani Seitsonen
- Nanomicroscopy Center, Aalto University, Puumiehenkuja 2, Espoo FIN-02150, Finland
| | - Ian W Hamley
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| |
Collapse
|
12
|
Wang Z, Zhao A, Wang C, Huang D, Yu J, Yu L, Wu Y, Wang X. Metabolic engineering of Escherichia coli to efficiently produce monophosphoryl lipid A. Biotechnol Appl Biochem 2023. [PMID: 36659840 DOI: 10.1002/bab.2443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/08/2023] [Indexed: 01/21/2023]
Abstract
Monophosphoryl lipid A (MPL), mainly isolated from Salmonella minnesota R595, has been used as adjuvant in several vaccines. In this study, an Escherichia coli strain that can efficiently produce the MPL has been constructed. The gene clusters related to the biosynthesis of O-antigen, core oligosaccharide, enterobacterial common antigen, and colanic acid were sequentially removed to save the carbon source and to increase the activity of PagP in E. coli MG1655. Then, the genes pldA, mlaA, and mlaC related to the phospholipid transport system were further deleted, resulting in the strain MW012. Finally, the genes lpxE from Francisella novicida and pagP and pagL from Salmonella were overexpressed in MW012 to modify the structure of lipid A, resulting in the strain MW012/pWEPL. Lipid A species were isolated from MW012/pWEPL and analyzed by thin-layer chromatography and liquid chromatography-mass spectrometry. The results showed that mainly two MPL species were produced in E. coli MW012/pWEPL, one is hexa-acylated, and the other is penta-acylated. More importantly, the proportion of the hexa-acylated MPL, which is the most effective component of lipid A vaccine adjuvant, reached 75%. E. coli MW012/pWEPL constructed in this study provided a good alternative for the production of lipid A vaccine adjuvant MPL.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Aizhen Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Chenhui Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Danyang Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jing Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Letong Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yuanming Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
13
|
Alving CR, Rao M, Matyas GR. Similarities and differences of chemical compositions and physical and functional properties of adjuvant system 01 and army liposome formulation with QS21. Front Immunol 2023; 14:1102524. [PMID: 36761767 PMCID: PMC9905621 DOI: 10.3389/fimmu.2023.1102524] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
A vaccine adjuvant known as Adjuvant System 01 (AS01) consists of liposomes containing a mixture of natural congeners of monophosphoryl lipid A (MPL®) obtained from bacterial lipopolysaccharide, and a tree saponin known as QS21. Two vaccines containing AS01 as the adjuvant have been licensed, including a malaria vaccine (Mosquirix®) approved by World Health. Organization and European Medicines Agency for use in sub-Saharan Africa, and a shingles vaccine (Shingrix®) approved by the U.S. Food and Drug Administration. The success of the AS01 vaccine adjuvant has led to the development of another liposomal vaccine adjuvant, referred to as Army Liposome Formulation with QS21 (ALFQ). Like AS01, ALFQ consists of liposomes containing monophosphoryl lipid A (as a synthetic molecule known as 3D-PHAD®) and QS21 as adjuvant constituents, and the polar headgroups of the liposomes of AS01 and ALFQ are similar. We compare here AS01 with ALFQ with respect to their similar and different liposomal chemical structures and physical characteristics with a goal of projecting some of the likely mechanisms of safety, side effects, and mechanisms of adjuvanticity. We hypothesize that some of the side effects exhibited in humans after injection of liposome-based vaccines might be caused by free fatty acid and lysophospholipid released by enzymatic attack of liposomal phospholipid by phospholipase A2 at the injection site or systemically after injection.
Collapse
Affiliation(s)
- Carl R Alving
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Mangala Rao
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Gary R Matyas
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
14
|
Zhou S, Luo Y, Lovell JF. Vaccine approaches for antigen capture by liposomes. Expert Rev Vaccines 2023; 22:1022-1040. [PMID: 37878481 PMCID: PMC10872528 DOI: 10.1080/14760584.2023.2274479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION Liposomes have been used as carriers for vaccine adjuvants and antigens due to their inherent biocompatibility and versatility as delivery vehicles. Two vial admixture of protein antigens with liposome-formulated immunostimulatory adjuvants has become a broadly used clinical vaccine preparation approach. Compared to freely soluble antigens, liposome-associated forms can enhance antigen delivery to antigen-presenting cells and co-deliver antigens with adjuvants, leading to improved vaccine efficacy. AREAS COVERED Several antigen-capture strategies for liposomal vaccines have been developed for proteins, peptides, and nucleic acids. Specific antigen delivery methodologies are discussed, including electrostatic adsorption, encapsulation inside the liposome aqueous core, and covalent and non-covalent antigen capture. EXPERT OPINION Several commercial vaccines include active lipid components, highlighting an increasingly prominent role of liposomes and lipid nanoparticles in vaccine development. Utilizing liposomes to associate antigens offers potential advantages, including antigen and adjuvant dose-sparing, co-delivery of antigen and adjuvant to immune cells, and enhanced immunogenicity. Antigen capture by liposomes has demonstrated feasibility in clinical testing. New antigen-capture techniques have been developed and appear to be of interest for vaccine development.
Collapse
Affiliation(s)
- Shiqi Zhou
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Yuan Luo
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
15
|
Zeng Y, Zou F, Xia N, Li S. In-depth review of delivery carriers associated with vaccine adjuvants: current status and future perspectives. Expert Rev Vaccines 2023; 22:681-695. [PMID: 37496496 DOI: 10.1080/14760584.2023.2238807] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
INTRODUCTION Vaccines are powerful tools for controlling microbial infections and preventing epidemics. To enhance the immune response to antigens, effective subunit vaccines or mRNA vaccines often require the combination of adjuvants or delivery carriers. In recent years, with the rapid development of immune mechanism research and nanotechnology, various studies based on the optimization of traditional adjuvants or various novel carriers have been intensified, and the construction of vaccine adjuvant delivery systems (VADS) with both adjuvant activity and antigen delivery has become more and more important in vaccine research. AREAS COVERED This paper reviews the common types of vaccine adjuvant delivery carriers, classifies the VADS according to their basic carrier types, introduces the current research status and future development trend, and emphasizes the important role of VADS in novel vaccine research. EXPERT OPINION As the number of vaccine types increases, conventional aluminum adjuvants show limitations in effectively stimulating cellular immune responses, limiting their use in therapeutic vaccines for intracellular infections or tumors. In contrast, the use of conventional adjuvants as VADS to carry immunostimulatory molecules or deliver antigens can greatly enhance the immune boosting effect of classical adjuvants. A comprehensive understanding of the various delivery vehicles will further facilitate the development of vaccine adjuvant research.
Collapse
Affiliation(s)
- Yarong Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen University, Xiamen, China
| | - Feihong Zou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen University, Xiamen, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen University, Xiamen, China
- The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen University, Xiamen, China
| |
Collapse
|
16
|
Bo Y, Wang H. Materials‐based vaccines for infectious diseases. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1824. [PMID: 35708013 PMCID: PMC9541041 DOI: 10.1002/wnan.1824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/16/2022] [Indexed: 12/03/2022]
Abstract
Infectious diseases that result from pathogen infection are among the leading causes of human death, with pathogens such as human immunodeficiency virus, malaria, influenza, and ongoing SARS‐COV‐2 viruses constantly threatening the global population. While the mechanisms behind various infectious diseases are not entirely clear and thus retard the development of effective therapeutics, vaccines have served as a universal approach to containing infectious diseases. However, conventional vaccines that solely consist of antigens or simply mix antigens and adjuvants have failed to control various highly infective or deadly pathogens. Biomaterials‐based vaccines have provided a promising solution due to their ability to synergize the function of antigens and adjuvants, troubleshoot delivery issues, home and manipulate immune cells in situ. In this review, we will summarize different types of materials‐based vaccines for generating cellular and humoral responses against pathogens and discuss the design criteria for amplifying the efficacy of materials‐based vaccines against infectious diseases. This article is categorized under:Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease
Collapse
Affiliation(s)
- Yang Bo
- Department of Materials Science and Engineering University of Illinois at Urbana‐Champaign Urbana Illinois USA
| | - Hua Wang
- Department of Materials Science and Engineering University of Illinois at Urbana‐Champaign Urbana Illinois USA
- Cancer Center at Illinois (CCIL) Urbana Illinois USA
- Department of Bioengineering University of Illinois at Urbana‐Champaign Urbana Illinois USA
- Carle College of Medicine University of Illinois at Urbana‐Champaign Urbana Illinois USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana‐Champaign Urbana Illinois USA
| |
Collapse
|
17
|
Wu SJ, Ewing D, Sundaram AK, Chen HW, Liang Z, Cheng Y, Jani V, Sun P, Gromowski GD, De La Barrera RA, Schilling MA, Petrovsky N, Porter KR, Williams M. Enhanced Immunogenicity of Inactivated Dengue Vaccines by Novel Polysaccharide-Based Adjuvants in Mice. Microorganisms 2022; 10:microorganisms10051034. [PMID: 35630476 PMCID: PMC9146336 DOI: 10.3390/microorganisms10051034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/03/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Dengue fever, caused by any of four dengue viruses (DENV1-4), is a major global burden. Currently, there is no effective vaccine that prevents infection in dengue naïve populations. We tested the ability of two novel adjuvants (Advax-PEI and Advax-2), using aluminum hydroxide (alum) as control, to enhance the immunogenicity of formalin- or psoralen-inactivated (PIV or PsIV) DENV2 vaccines in mice. Mice were vaccinated on days 0 and 30, and serum samples were collected on days 30, 60, 90, and 101. Neutralizing antibodies were determined by microneutralization (MN) assays, and the geometric mean 50% MN (MN50) titers were calculated. For the PIV groups, after one dose MN50 titers were higher in the novel adjuvant groups compared to the alum control, while MN50 titers were comparable between the adjuvant groups after the second dose. For the PsIV groups, both novel adjuvants induced higher MN50 titers than the alum control after the second dose. Spleen cells were collected on days 45 and 101 for enzyme-linked immunospot (ELISPOT) for IFNγ and IL4. Both PIV and PsIV groups elicited different degrees of IFNγ and IL4 responses. Overall, Advax-2 gave the best responses just ahead of Advax-PEI. Given Advax-2’s extensive human experience in other vaccine applications, it will be pursued for further development.
Collapse
Affiliation(s)
- Shuenn-Jue Wu
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (D.E.); (A.K.S.); (H.-W.C.); (Z.L.); (Y.C.); (V.J.); (P.S.); (M.A.S.)
- Correspondence:
| | - Dan Ewing
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (D.E.); (A.K.S.); (H.-W.C.); (Z.L.); (Y.C.); (V.J.); (P.S.); (M.A.S.)
| | - Appavu K. Sundaram
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (D.E.); (A.K.S.); (H.-W.C.); (Z.L.); (Y.C.); (V.J.); (P.S.); (M.A.S.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Hua-Wei Chen
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (D.E.); (A.K.S.); (H.-W.C.); (Z.L.); (Y.C.); (V.J.); (P.S.); (M.A.S.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Zhaodong Liang
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (D.E.); (A.K.S.); (H.-W.C.); (Z.L.); (Y.C.); (V.J.); (P.S.); (M.A.S.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Ying Cheng
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (D.E.); (A.K.S.); (H.-W.C.); (Z.L.); (Y.C.); (V.J.); (P.S.); (M.A.S.)
- Leidos, Inc., Reston, VA 20190, USA
| | - Vihasi Jani
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (D.E.); (A.K.S.); (H.-W.C.); (Z.L.); (Y.C.); (V.J.); (P.S.); (M.A.S.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Peifang Sun
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (D.E.); (A.K.S.); (H.-W.C.); (Z.L.); (Y.C.); (V.J.); (P.S.); (M.A.S.)
| | - Gregory D. Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Rafael A. De La Barrera
- Pilot Bioproduction Facility, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Megan A. Schilling
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (D.E.); (A.K.S.); (H.-W.C.); (Z.L.); (Y.C.); (V.J.); (P.S.); (M.A.S.)
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., Warradale, SA 5042, Australia;
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Kevin R. Porter
- Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (K.R.P.); (M.W.)
| | - Maya Williams
- Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (K.R.P.); (M.W.)
| |
Collapse
|
18
|
Tretiakova DS, Vodovozova EL. Liposomes as Adjuvants and Vaccine Delivery Systems. BIOCHEMISTRY (MOSCOW) SUPPLEMENT. SERIES A, MEMBRANE AND CELL BIOLOGY 2022; 16:1-20. [PMID: 35194485 PMCID: PMC8853224 DOI: 10.1134/s1990747822020076] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022]
Abstract
The review considers liposomes as systems of substantial interest as adjuvant carriers in vaccinology due to their versatility and maximal biocompatibility. Research and development on the use of liposomes and lipid nanoparticles to create subunit vaccines for the prevention and treatment of infectious diseases has been going on for several decades. In recent years, the area has seen serious progress due to the improvement of the technology of industrial production of various high-grade lipids suitable for parenteral administration and the emergence of new technologies and equipment for the production of liposomal preparations. When developing vaccines, it is necessary to take into account how the body’s immune system (innate and adaptive immunity) functions. The review briefly describes some of the fundamental mechanisms underlying the mobilization of immunity when encountering an antigen, as well as the influence of liposome carriers on the processes of internalization of antigens by immunocompetent cells and ways of immune response induction. The results of the studies on the interactions of liposomes with antigen-presenting cells in function of the liposome size, charge, and phase state of the bilayer, which depends on the lipid composition, are often contradictory and should be verified in each specific case. The introduction of immunostimulant components into the composition of liposomal vaccine complexes—ligands of the pathogen-associated molecular pattern receptors—permits modulation of the strength and type of the immune response. The review briefly discusses liposome-based vaccines approved for use in the clinic for the treatment and prevention of infectious diseases, including mRNA-loaded lipid nanoparticles. Examples of liposomal vaccines that undergo various stages of clinical trials are presented.
Collapse
Affiliation(s)
- D S Tretiakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - E L Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
19
|
Abstract
A favorable outcome of the COVID-19 crisis might be achieved with massive vaccination. The proposed vaccines contain several different vaccine active principles (VAP), such as inactivated virus, antigen, mRNA, and DNA, which are associated with either standard adjuvants or nanomaterials (NM) such as liposomes in Moderna's and BioNTech/Pfizer's vaccines. COVID-19 vaccine adjuvants may be chosen among liposomes or other types of NM composed for example of graphene oxide, carbon nanotubes, micelles, exosomes, membrane vesicles, polymers, or metallic NM, taking inspiration from cancer nano-vaccines, whose adjuvants may share some of their properties with those of viral vaccines. The mechanisms of action of nano-adjuvants are based on the facilitation by NM of targeting certain regions of immune interest such as the mucus, lymph nodes, and zones of infection or blood irrigation, the possible modulation of the type of attachment of the VAP to NM, in particular VAP positioning on the NM external surface to favor VAP presentation to antigen presenting cells (APC) or VAP encapsulation within NM to prevent VAP degradation, and the possibility to adjust the nature of the immune response by tuning the physico-chemical properties of NM such as their size, surface charge, or composition. The use of NM as adjuvants or the presence of nano-dimensions in COVID-19 vaccines does not only have the potential to improve the vaccine benefit/risk ratio, but also to reduce the dose of vaccine necessary to reach full efficacy. It could therefore ease the overall spread of COVID-19 vaccines within a sufficiently large portion of the world population to exit the current crisis.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France. .,Nanobacterie SARL, 36 Boulevard Flandrin, 75116, Paris, France.,Institute of Anatomy, UZH University of Zurich, Instiute of Anatomy, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
20
|
Mabrouk MT, Chiem K, Rujas E, Huang WC, Jahagirdar D, Quinn B, Surendran Nair M, Nissly RH, Cavener VS, Boyle NR, Sornberger TA, Kuchipudi SV, Ortega J, Julien JP, Martinez-Sobrido L, Lovell J. Lyophilized, thermostable Spike or RBD immunogenic liposomes induce protective immunity against SARS-CoV-2 in mice. SCIENCE ADVANCES 2021; 7:eabj1476. [PMID: 34851667 PMCID: PMC8635435 DOI: 10.1126/sciadv.abj1476] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/12/2021] [Indexed: 05/22/2023]
Abstract
The COVID-19 pandemic has spurred interest in potent and thermostable SARS-CoV-2 vaccines. Here, we assess low-dose immunization with lyophilized nanoparticles decorated with recombinant SARS-CoV-2 antigens. The SARS-CoV-2 Spike glycoprotein or its receptor-binding domain (RBD; mouse vaccine dose, 0.1 μg) was displayed on liposomes incorporating a particle-inducing lipid, cobalt porphyrin-phospholipid (dose, 0.4 μg), along with monophosphoryl lipid A (dose, 0.16 μg) and QS-21 (dose, 0.16 μg). Following optimization of lyophilization conditions, Spike or RBD-decorated liposomes were effectively reconstituted and maintained conformational capacity for binding human angiotensin-converting enzyme 2 (hACE2) for at least a week when stored at 60°C in lyophilized but not liquid format. Prime-boost intramuscular vaccination of hACE2-transgenic mice with the reconstituted vaccine formulations induced effective antibody responses that inhibited RBD binding to hACE2 and neutralized pseudotyped and live SARS-CoV-2. Two days following viral challenge, immunized transgenic mice cleared the virus and were fully protected from lethal disease.
Collapse
Affiliation(s)
- Moustafa T. Mabrouk
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Kevin Chiem
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Edurne Rujas
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Wei-Chiao Huang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Dushyant Jahagirdar
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Breandan Quinn
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Meera Surendran Nair
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Ruth H. Nissly
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Victoria S. Cavener
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Nina R. Boyle
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Ty A. Sornberger
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Suresh V. Kuchipudi
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Departments of Biochemistry and Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | - Jonathan Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
- Corresponding author.
| |
Collapse
|
21
|
Alum Pickering Emulsion as Effective Adjuvant to Improve Malaria Vaccine Efficacy. Vaccines (Basel) 2021; 9:vaccines9111244. [PMID: 34835175 PMCID: PMC8624716 DOI: 10.3390/vaccines9111244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Malaria is a life-threatening global epidemic disease and has caused more than 400,000 deaths in 2019. To control and prevent malaria, the development of a vaccine is a potential method. An effective malaria vaccine should either combine antigens from all stages of the malaria parasite’s life cycle, or epitopes of multiple key antigens due to the complexity of the Plasmodium parasite. Malaria’s random constructed antigen-1 (M.RCAg-1) is one of the recombinant vaccines, which was selected from a DNA library containing thousands of diverse multi-epitope chimeric antigen genes. Moreover, besides selecting an antigen, using an adjuvant is another important procedure for most vaccine development procedures. Freund’s adjuvant is considered an effective vaccine adjuvant for malaria vaccine, but it cannot be used in clinical settings because of its serious side effects. Traditional adjuvants, such as alum adjuvant, are limited by their unsatisfactory immune effects in malaria vaccines, hence there is an urgent need to develop a novel, safe and efficient adjuvant. In recent years, Pickering emulsions have attracted increasing attention as novel adjuvant. In contrast to classical emulsions, Pickering emulsions are stabilized by solid particles instead of surfactant, having pliability and lateral mobility. In this study, we selected aluminum hydroxide gel (termed as “alum”) as a stabilizer to prepare alum-stabilized Pickering emulsions (ALPE) as a malaria vaccine adjuvant. In addition, monophosphoryl lipid A (MPLA) as an immunostimulant was incorporated into the Pickering emulsion (ALMPE) to further enhance the immune response. In vitro tests showed that, compared with alum, ALPE and ALMPE showed higher antigen load rates and could be effectively endocytosed by J774a.1 cells. In vivo studies indicated that ALMPE could induce as high antibody titers as Freund’s adjuvant. The biocompatibility study also proved ALMPE with excellent biocompatibility. These results suggest that ALMPE is a potential adjuvant for a malaria vaccine.
Collapse
|
22
|
Nakhaei P, Margiana R, Bokov DO, Abdelbasset WK, Jadidi Kouhbanani MA, Varma RS, Marofi F, Jarahian M, Beheshtkhoo N. Liposomes: Structure, Biomedical Applications, and Stability Parameters With Emphasis on Cholesterol. Front Bioeng Biotechnol 2021; 9:705886. [PMID: 34568298 PMCID: PMC8459376 DOI: 10.3389/fbioe.2021.705886] [Citation(s) in RCA: 225] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Liposomes are essentially a subtype of nanoparticles comprising a hydrophobic tail and a hydrophilic head constituting a phospholipid membrane. The spherical or multilayered spherical structures of liposomes are highly rich in lipid contents with numerous criteria for their classification, including structural features, structural parameters, and size, synthesis methods, preparation, and drug loading. Despite various liposomal applications, such as drug, vaccine/gene delivery, biosensors fabrication, diagnosis, and food products applications, their use encounters many limitations due to physico-chemical instability as their stability is vigorously affected by the constituting ingredients wherein cholesterol performs a vital role in the stability of the liposomal membrane. It has well established that cholesterol exerts its impact by controlling fluidity, permeability, membrane strength, elasticity and stiffness, transition temperature (Tm), drug retention, phospholipid packing, and plasma stability. Although the undetermined optimum amount of cholesterol for preparing a stable and controlled release vehicle has been the downside, but researchers are still focused on cholesterol as a promising material for the stability of liposomes necessitating explanation for the stability promotion of liposomes. Herein, the prior art pertaining to the liposomal appliances, especially for drug delivery in cancer therapy, and their stability emphasizing the roles of cholesterol.
Collapse
Affiliation(s)
- Pooria Nakhaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
- Cipto Mangunkusumo Hospital, The National Referral Hospital, Central Jakarta, Indonesia
- Master’s Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Dmitry O. Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology, and Food Safety, Moscow, Russia
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Mohammad Amin Jadidi Kouhbanani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Czechia
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Jarahian
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, Heidelberg, Germany
| | - Nasrin Beheshtkhoo
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Czechia
| |
Collapse
|
23
|
Sliepen K, Schermer E, Bontjer I, Burger JA, Lévai RF, Mundsperger P, Brouwer PJM, Tolazzi M, Farsang A, Katinger D, Moore JP, Scarlatti G, Shattock RJ, Sattentau QJ, Sanders RW. Interplay of diverse adjuvants and nanoparticle presentation of native-like HIV-1 envelope trimers. NPJ Vaccines 2021; 6:103. [PMID: 34404812 PMCID: PMC8371121 DOI: 10.1038/s41541-021-00364-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
The immunogenicity of HIV-1 envelope (Env) trimers is generally poor. We used the clinically relevant ConM SOSIP trimer to compare the ability of different adjuvants (squalene emulsion, ISCOMATRIX, GLA-LSQ, and MPLA liposomes) to support neutralizing antibody (NAb) responses in rabbits. The trimers were administered as free proteins or on nanoparticles. The rank order for the adjuvants was ISCOMATRIX > SE > GLA-LSQ ~ MPLA liposomes > no adjuvant. Stronger NAb responses were elicited when the ConM SOSIP trimers were presented on ferritin nanoparticles. We also found that the GLA-LSQ adjuvant induced an unexpectedly strong antibody response to the ferritin core of the nanoparticles. This "off-target" effect may have compromised its ability to induce the more desired antitrimer antibodies. In summary, both adjuvants and nanoparticle display can improve the magnitude of the antibody response to SOSIP trimers but the best combination of trimer presentation and adjuvant can only be identified experimentally.
Collapse
Affiliation(s)
- Kwinten Sliepen
- Department of Medical Microbiology, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Edith Schermer
- Department of Medical Microbiology, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ilja Bontjer
- Department of Medical Microbiology, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Judith A Burger
- Department of Medical Microbiology, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Réka Felfödiné Lévai
- Control Laboratory of Veterinary Medicinal Products and Animal Facility, Directorate of Veterinary Medicinal Products, National Food Chain Safety Office, Budapest, Hungary
| | | | - Philip J M Brouwer
- Department of Medical Microbiology, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Monica Tolazzi
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Attila Farsang
- Control Laboratory of Veterinary Medicinal Products and Animal Facility, Directorate of Veterinary Medicinal Products, National Food Chain Safety Office, Budapest, Hungary
| | - Dietmar Katinger
- Polymun Scientific Immunbiologische Forschung GmbH, Klosterneuburg, Austria
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Robin J Shattock
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Section of Virology, Norfolk Place, London, W21PG, UK
| | - Quentin J Sattentau
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, OX13RE, UK
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
24
|
Memvanga PB, Nkanga CI. Liposomes for malaria management: the evolution from 1980 to 2020. Malar J 2021; 20:327. [PMID: 34315484 PMCID: PMC8313885 DOI: 10.1186/s12936-021-03858-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/16/2021] [Indexed: 12/31/2022] Open
Abstract
Malaria is one of the most prevalent parasitic diseases and the foremost cause of morbidity in the tropical regions of the world. Strategies for the efficient management of this parasitic infection include adequate treatment with anti-malarial therapeutics and vaccination. However, the emergence and spread of resistant strains of malaria parasites to the majority of presently used anti-malarial medications, on the other hand, complicates malaria treatment. Other shortcomings of anti-malarial drugs include poor aqueous solubility, low permeability, poor bioavailability, and non-specific targeting of intracellular parasites, resulting in high dose requirements and toxic side effects. To address these limitations, liposome-based nanotechnology has been extensively explored as a new solution in malaria management. Liposome technology improves anti-malarial drug encapsulation, bioavailability, target delivery, and controlled release, resulting in increased effectiveness, reduced resistance progression, and fewer adverse effects. Furthermore, liposomes are exploited as immunological adjuvants and antigen carriers to boost the preventive effectiveness of malaria vaccine candidates. The present review discusses the findings from studies conducted over the last 40 years (1980-2020) using in vitro and in vivo settings to assess the prophylactic and curative anti-malarial potential of liposomes containing anti-malarial agents or antigens. This paper and the discussion herein provide a useful resource for further complementary investigations and may pave the way for the research and development of several available and affordable anti-malarial-based liposomes and liposomal malaria vaccines by allowing a thorough evaluation of liposomes developed to date for the management of malaria.
Collapse
Affiliation(s)
- Patrick B Memvanga
- Faculty of Pharmaceutical Sciences, Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, University of Kinshasa, B.P. 212, Kinshasa XI, Democratic Republic of the Congo.
| | - Christian I Nkanga
- Faculty of Pharmaceutical Sciences, Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, University of Kinshasa, B.P. 212, Kinshasa XI, Democratic Republic of the Congo
| |
Collapse
|
25
|
Nardo D, Akers CM, Cheung NE, Isom CM, Spaude JT, Pack DW, Venditto VJ. Cyanuric chloride as the basis for compositionally diverse lipids. RSC Adv 2021; 11:24752-24761. [PMID: 34354826 PMCID: PMC8280964 DOI: 10.1039/d1ra02425f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Cyanuric chloride has been utilized in the development of new synthetic lipid compounds using two differing schemes. The resulting lipids, presented in this manuscript, were characterized and evaluated for their ability to form nanoparticles and subsequently tested for their utility in various biological applications, including gene delivery and immunization. Of the 12 lipids synthesized, 8 formed nanoparticles that remained stable, based on dynamic light scattering, for at least one month. The compounds were then assessed for their toxicity, and subsequently tested for their ability to encapsulate drugs, genes and peptides. While the compounds did not seem to encapsulate carboxyfluorescein, we demonstrate that these lipids are capable of plasmid delivery in vitro, and inducing antibody profiles similar to other hydrophobic anchors in liposomal peptide vaccines. This strategy for accessing diverse lipid compounds offers a way to easily optimize lipid-based therapeutics for research in an expedited manner.
Collapse
Affiliation(s)
- David Nardo
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy Lexington KY 40536 USA
| | - Caleb M Akers
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy Lexington KY 40536 USA
| | - Nicholas E Cheung
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy Lexington KY 40536 USA
| | - Cierra M Isom
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy Lexington KY 40536 USA
| | - Jason T Spaude
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy Lexington KY 40536 USA
| | - Daniel W Pack
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy Lexington KY 40536 USA
- Department of Chemical and Materials Engineering, University of Kentucky College of Engineering Lexington KY 40536 USA
| | - Vincent J Venditto
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy Lexington KY 40536 USA
| |
Collapse
|
26
|
Sei CJ, Rao M, Schuman RF, Daum LT, Matyas GR, Rikhi N, Muema K, Anderson A, Jobe O, Kroscher KA, Alving CR, Fischer GW. Conserved Influenza Hemagglutinin, Neuraminidase and Matrix Peptides Adjuvanted with ALFQ Induce Broadly Neutralizing Antibodies. Vaccines (Basel) 2021; 9:vaccines9070698. [PMID: 34202178 PMCID: PMC8310080 DOI: 10.3390/vaccines9070698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 01/07/2023] Open
Abstract
A universal influenza candidate vaccine that targets multiple conserved influenza virus epitopes from hemagglutinin (HA), neuraminidase (NA) and matrix (M2e) proteins was combined with the potent Army liposomal adjuvant (ALFQ) to promote induction of broad immunity to seasonal and pandemic influenza strains. The unconjugated and CRM-conjugated composite peptides formulated with ALFQ were highly immunogenic and induced both humoral and cellular immune responses in mice. Broadly reactive serum antibodies were induced across various IgG isotypes. Mice immunized with the unconjugated composite peptide developed antibody responses earlier than mice immunized with conjugated peptides, and the IgG antibodies were broadly reactive and neutralizing across Groups 1 and 2 influenza viruses. Multi-epitope unconjugated influenza composite peptides formulated with ALFQ provide a novel strategy for the development of a universal influenza vaccine. These synthetic peptide vaccines avoid the pitfalls of egg-produced influenza vaccines and production can be scaled up rapidly and economically.
Collapse
Affiliation(s)
- Clara J. Sei
- Longhorn Vaccines and Diagnostics, Gaithersburg, MD 20878, USA; (N.R.); (K.M.); (K.A.K.); (G.W.F.)
- Correspondence: ; Tel.: +1-240-848-4293
| | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.R.); (G.R.M.); (A.A.); (O.J.); (C.R.A.)
| | | | - Luke T. Daum
- Longhorn Vaccines and Diagnostics, San Antonio, TX 78209, USA;
| | - Gary R. Matyas
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.R.); (G.R.M.); (A.A.); (O.J.); (C.R.A.)
| | - Nimisha Rikhi
- Longhorn Vaccines and Diagnostics, Gaithersburg, MD 20878, USA; (N.R.); (K.M.); (K.A.K.); (G.W.F.)
| | - Kevin Muema
- Longhorn Vaccines and Diagnostics, Gaithersburg, MD 20878, USA; (N.R.); (K.M.); (K.A.K.); (G.W.F.)
| | - Alexander Anderson
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.R.); (G.R.M.); (A.A.); (O.J.); (C.R.A.)
- Oak Ridge Institute of Science and Education, Oak Ridge, TN 37831, USA
| | - Ousman Jobe
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.R.); (G.R.M.); (A.A.); (O.J.); (C.R.A.)
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Kellie A. Kroscher
- Longhorn Vaccines and Diagnostics, Gaithersburg, MD 20878, USA; (N.R.); (K.M.); (K.A.K.); (G.W.F.)
| | - Carl R. Alving
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.R.); (G.R.M.); (A.A.); (O.J.); (C.R.A.)
| | - Gerald W. Fischer
- Longhorn Vaccines and Diagnostics, Gaithersburg, MD 20878, USA; (N.R.); (K.M.); (K.A.K.); (G.W.F.)
| |
Collapse
|
27
|
Abbasi S, Uchida S. Multifunctional Immunoadjuvants for Use in Minimalist Nucleic Acid Vaccines. Pharmaceutics 2021; 13:644. [PMID: 34062771 PMCID: PMC8147386 DOI: 10.3390/pharmaceutics13050644] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Subunit vaccines based on antigen-encoding nucleic acids have shown great promise for antigen-specific immunization against cancer and infectious diseases. Vaccines require immunostimulatory adjuvants to activate the innate immune system and trigger specific adaptive immune responses. However, the incorporation of immunoadjuvants into nonviral nucleic acid delivery systems often results in fairly complex structures that are difficult to mass-produce and characterize. In recent years, minimalist approaches have emerged to reduce the number of components used in vaccines. In these approaches, delivery materials, such as lipids and polymers, and/or pDNA/mRNA are designed to simultaneously possess several functionalities of immunostimulatory adjuvants. Such multifunctional immunoadjuvants encode antigens, encapsulate nucleic acids, and control their pharmacokinetic or cellular fate. Herein, we review a diverse class of multifunctional immunoadjuvants in nucleic acid subunit vaccines and provide a detailed description of their mechanisms of adjuvanticity and induction of specific immune responses.
Collapse
Affiliation(s)
- Saed Abbasi
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Satoshi Uchida
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
- Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| |
Collapse
|
28
|
Federizon J, Feugmo CGT, Huang WC, He X, Miura K, Razi A, Ortega J, Karttunen M, Lovell JF. Experimental and Computational Observations of Immunogenic Cobalt Porphyrin Lipid Bilayers: Nanodomain-Enhanced Antigen Association. Pharmaceutics 2021; 13:pharmaceutics13010098. [PMID: 33466686 PMCID: PMC7828809 DOI: 10.3390/pharmaceutics13010098] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/18/2022] Open
Abstract
Cobalt porphyrin phospholipid (CoPoP) can incorporate within bilayers to enable non-covalent surface-display of antigens on liposomes by mixing with proteins bearing a polyhistidine tag (his-tag); however, the mechanisms for how this occurs are poorly understood. These were investigated using the his-tagged model antigen Pfs25, a protein antigen candidate for malaria transmission-blocking vaccines. Pfs25 was found to associate with the small molecule aquocobalamin, a form of vitamin B12 and a cobalt-containing corrin macrocycle, but without particle formation, enabling comparative assessment. Relative to CoPoP liposomes, binding and serum stability studies indicated a weaker association of Pfs25 to aquocobalamin or cobalt nitrilotriacetic acid (Co-NTA) liposomes, which have cobalt displayed in the aqueous phase on lipid headgroups. Antigen internalization by macrophages was enhanced with Pfs25 bound to CoPoP liposomes. Immunization in mice with Pfs25 bound to CoPoP liposomes elicited antibodies that recognized ookinetes and showed transmission-reducing activity. To explore the physical mechanisms involved, we employed molecular dynamics (MD) simulations of bilayers containing phospholipid, cholesterol, as well as either CoPoP or NTA-functionalized lipids. The results show that the CoPoP-containing bilayer creates nanodomains that allow access for a limited but sufficient amount of water molecules that could be replaced by his-tags due to their favorable free energy properties allowing for stabilization. The position of the metal center within the NTA liposomes was much more exposed to the aqueous environment, which could explain its limited capacity for stabilizing Pfs25. This study illustrates the impact of CoPoP-induced antigen particleization in enhancing vaccine efficacy, and provides molecular insights into the CoPoP bilayer properties that enable this.
Collapse
Affiliation(s)
- Jasmin Federizon
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA; (J.F.); (W.-C.H.); (X.H.)
| | | | - Wei-Chiao Huang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA; (J.F.); (W.-C.H.); (X.H.)
| | - Xuedan He
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA; (J.F.); (W.-C.H.); (X.H.)
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA;
| | - Aida Razi
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada; (A.R.); (J.O.)
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada; (A.R.); (J.O.)
| | - Mikko Karttunen
- Department of Chemistry, the University of Western Ontario, London, ON N6A 3K7, Canada;
- Centre for Advanced Materials and Biomaterials Research, the University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Applied Mathematics, the University of Western Ontario, London, ON N6A 5B7, Canada
- Correspondence: (M.K.); (J.F.L.)
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA; (J.F.); (W.-C.H.); (X.H.)
- Correspondence: (M.K.); (J.F.L.)
| |
Collapse
|
29
|
Bashiri S, Koirala P, Toth I, Skwarczynski M. Carbohydrate Immune Adjuvants in Subunit Vaccines. Pharmaceutics 2020; 12:E965. [PMID: 33066594 PMCID: PMC7602499 DOI: 10.3390/pharmaceutics12100965] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022] Open
Abstract
Modern subunit vaccines are composed of antigens and a delivery system and/or adjuvant (immune stimulator) that triggers the desired immune responses. Adjuvants mimic pathogen-associated molecular patterns (PAMPs) that are typically associated with infections. Carbohydrates displayed on the surface of pathogens are often recognized as PAMPs by receptors on antigen-presenting cells (APCs). Consequently, carbohydrates and their analogues have been used as adjuvants and delivery systems to promote antigen transport to APCs. Carbohydrates are biocompatible, usually nontoxic, biodegradable, and some are mucoadhesive. As such, carbohydrates and their derivatives have been intensively explored for the development of new adjuvants. This review assesses the immunological functions of carbohydrate ligands and their ability to enhance systemic and mucosal immune responses against co-administered antigens. The role of carbohydrate-based adjuvants/delivery systems in the development of subunit vaccines is discussed in detail.
Collapse
Affiliation(s)
- Sahra Bashiri
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; (S.B.); (P.K.)
| | - Prashamsa Koirala
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; (S.B.); (P.K.)
| | - Istvan Toth
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; (S.B.); (P.K.)
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
- School of Pharmacy, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; (S.B.); (P.K.)
| |
Collapse
|
30
|
Cheng R, Fontana F, Xiao J, Liu Z, Figueiredo P, Shahbazi MA, Wang S, Jin J, Torrieri G, Hirvonen JT, Zhang H, Chen T, Cui W, Lu Y, Santos HA. Recombination Monophosphoryl Lipid A-Derived Vacosome for the Development of Preventive Cancer Vaccines. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44554-44562. [PMID: 32960566 PMCID: PMC7549091 DOI: 10.1021/acsami.0c15057] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 05/09/2023]
Abstract
Recently, there has been an increasing interest for utilizing the host immune system to fight against cancer. Moreover, cancer vaccines, which can stimulate the host immune system to respond to cancer in the long term, are being investigated as a promising approach to induce tumor-specific immunity. In this work, we prepared an effective cancer vaccine (denoted as "vacosome") by reconstructing the cancer cell membrane, monophosphoryl lipid A as a toll-like receptor 4 agonist, and egg phosphatidylcholine. The vacosome triggered and enhanced bone marrow dendritic cell maturation as well as stimulated the antitumor response against breast cancer 4T1 cells in vitro. Furthermore, an immune memory was established in BALB/c mice after three-time preimmunization with the vacosome. After that, the immunized mice showed inhibited tumor growth and prolonged survival period (longer than 50 days). Overall, our results demonstrate that the vacosome can be a potential candidate for clinical translation as a cancer vaccine.
Collapse
Affiliation(s)
- Ruoyu Cheng
- Drug Research Program,
Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Flavia Fontana
- Drug Research Program,
Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Junyuan Xiao
- Shanghai Key Laboratory for Prevention and Treatment
of Bone and Joint Diseases, Shanghai Institute of Traumatology and
Orthopaedics, Ruijin Hospital, Shanghai
Jiao Tong University School of Medicine, 197 Ruijin Second Road, 200025 Shanghai, PR China
| | - Zehua Liu
- Drug Research Program,
Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Patrícia Figueiredo
- Drug Research Program,
Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Mohammad-Ali Shahbazi
- Drug Research Program,
Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | - Shiqi Wang
- Drug Research Program,
Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jing Jin
- Shanghai Key Laboratory for Prevention and Treatment
of Bone and Joint Diseases, Shanghai Institute of Traumatology and
Orthopaedics, Ruijin Hospital, Shanghai
Jiao Tong University School of Medicine, 197 Ruijin Second Road, 200025 Shanghai, PR China
| | - Giulia Torrieri
- Drug Research Program,
Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jouni T. Hirvonen
- Drug Research Program,
Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Hongbo Zhang
- Shanghai Key Laboratory for Prevention and Treatment
of Bone and Joint Diseases, Shanghai Institute of Traumatology and
Orthopaedics, Ruijin Hospital, Shanghai
Jiao Tong University School of Medicine, 197 Ruijin Second Road, 200025 Shanghai, PR China
- Department of Pharmaceutical Sciences Laboratory and
Turku Center for Biotechnology, Åbo
Akademi University, FI-20520 Turku, Finland
| | - Tongtong Chen
- Radiology Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, 200025 Shanghai, PR China
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment
of Bone and Joint Diseases, Shanghai Institute of Traumatology and
Orthopaedics, Ruijin Hospital, Shanghai
Jiao Tong University School of Medicine, 197 Ruijin Second Road, 200025 Shanghai, PR China
| | - Yong Lu
- Radiology Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, 200025 Shanghai, PR China
| | - Hélder A. Santos
- Drug Research Program,
Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
- Helsinki Insititute of Life Science, HiLIFE, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
31
|
Singh P, Matyas GR, Anderson A, Beck Z. Biophysical characterization of polydisperse liposomal adjuvant formulations. Biochem Biophys Res Commun 2020; 529:362-365. [PMID: 32703436 DOI: 10.1016/j.bbrc.2020.05.156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/15/2020] [Indexed: 11/27/2022]
Abstract
Army Liposome Formulations (ALF) are potent adjuvants, of which there are two primary forms, lyophilized ALF (ALFlyo) containing monophosphoryl lipid A (MPLA) and ALF containing MPLA and QS21 (ALFQ). ALFlyo and ALFQ adjuvants are essential constituents of candidate vaccines for bacterial, viral, and parasitic diseases. They have been widely used in preclinical immunogenicity studies in small animals and non-human primates and are progressing to phase I/IIa clinical trials. ALFQ was prepared by adding saponin QS21 to small unilamellar liposome vesicles (SUVs) of ALF55 that contain 55 mol% cholesterol, whereas ALFlyo was created by reconstituting lyophilized SUVs of ALF43, consisting of 43 mol% cholesterol, in aqueous buffer solution. These formulations display heterogenous particle size distribution. Since biophysical characteristics of liposomes may impact their adjuvant potential, we characterized the particle size distribution and lamellarity of the individual liposome particles in ALFlyo and ALFQ formulations using cryo-electron microscopy and a newly developed MANTA technology. ALFlyo and ALFQ exhibited similar particle size distributions with liposomes ranging from 50 nm to several μm. However, fundamental differences were observed in the lamellar structures of the liposomes. ALFlyo displayed a greater number of multilamellar and multivesicular liposome particles, as compared to that in ALFQ, which was predominately unilamellar.
Collapse
Affiliation(s)
- Pushpendra Singh
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA.
| | - Gary R Matyas
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA.
| | - Alexander Anderson
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA.
| | - Zoltan Beck
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA.
| |
Collapse
|
32
|
Torralba J, de la Arada I, Carravilla P, Insausti S, Rujas E, Largo E, Eggeling C, Arrondo JLR, Apellániz B, Nieva JL. Cholesterol Constrains the Antigenic Configuration of the Membrane-Proximal Neutralizing HIV-1 Epitope. ACS Infect Dis 2020; 6:2155-2168. [PMID: 32584020 DOI: 10.1021/acsinfecdis.0c00243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The envelope glycoprotein (Env) enables HIV-1 cell entry through fusion of host-cell and viral membranes induced by the transmembrane subunit gp41. Antibodies targeting the C-terminal sequence of the membrane-proximal external region (C-MPER) block the fusogenic activity of gp41 and achieve neutralization of divergent HIV-1 strains and isolates. Thus, recreating the structure that generates broadly neutralizing C-MPER antibodies during infection is a major goal in HIV vaccine development. Here, we have reconstituted a peptide termed CpreTM-TMD in a membrane environment. This peptide contains the C-MPER epitope and the minimum TMD residues required for the anchorage of the Env glycoprotein to the viral membrane. In addition, we have used antibody 10E8 variants to gauge the antigenic configuration attained by CpreTM-TMD as a function of the membrane cholesterol content, a functional determinant of the HIV envelope and liposome-based vaccines. Differential binding of the 10E8 variants and the trend of the IgG responses recovered from rabbits immunized with liposome-peptide formulations, suggested that cholesterol may restrict 10E8 accessibility to the C-MPER epitope. Our data ruled out the destabilization of the lipid bilayer architecture in CpreTM-TMD-containing membranes, and pointed to the perturbation of the helical conformation by lipid packing as the cause of the antigenic configuration loss induced by cholesterol. Overall, our results provide additional insights into the structural basis of the Env complex anchoring to membranes, and suggest new approaches to the design of effective immunogens directed against the near pan-neutralizing HIV-1 epitope C-MPER.
Collapse
Affiliation(s)
- Johana Torralba
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - Igor de la Arada
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - Pablo Carravilla
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Sara Insausti
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - Edurne Rujas
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - Eneko Largo
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
- Department of Immunology, Microbiology and Parasitology, Medicine and Odontology Faculty, University of Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - Christian Eggeling
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, OX3 9DS Oxford, U.K
| | - José L R Arrondo
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| | - Beatriz Apellániz
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
- Department of Physiology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain
| | - José L Nieva
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain
| |
Collapse
|
33
|
Park H, Bang E, Hong JJ, Lee S, Ko HL, Kwak HW, Park H, Kang KW, Kim R, Ryu SR, Kim G, Oh H, Kim H, Lee K, Kim M, Kim SY, Kim J, El‐Baz K, Lee H, Song M, Jeong DG, Keum G, Nam J. Nanoformulated Single‐Stranded RNA‐Based Adjuvant with a Coordinative Amphiphile as an Effective Stabilizer: Inducing Humoral Immune Response by Activation of Antigen‐Presenting Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hyo‐Jung Park
- Department of Biotechnology The Catholic University of Korea Bucheon 14662 Republic of Korea
| | - Eun‐Kyoung Bang
- Center for Neuro-Medicine Brain Science Institute Korea Institute of Science and Technology Seoul 02792 Republic of Korea
| | - Jung Joo Hong
- National Primate Research Center Korea Research Institute of Bioscience and Biotechnology Cheongju 28116 Republic of Korea
| | - Sang‐Myeong Lee
- Division of Biotechnology College of Environmental and Bioresource Sciences Jeonbuk National University Iksan 54596 Republic of Korea
- Korea Zoonosis Research Institute Jeonbuk National University Iksan 54531 Republic of Korea
| | - Hae Li Ko
- Department of Biotechnology The Catholic University of Korea Bucheon 14662 Republic of Korea
- Present address: Scripps Korea Antibody Institute Chuncheon 24341 Republic of Korea
| | - Hye Won Kwak
- Department of Biotechnology The Catholic University of Korea Bucheon 14662 Republic of Korea
| | - Hyelim Park
- Department of Biotechnology The Catholic University of Korea Bucheon 14662 Republic of Korea
| | - Kyung Won Kang
- Division of Biotechnology College of Environmental and Bioresource Sciences Jeonbuk National University Iksan 54596 Republic of Korea
| | - Rhoon‐Ho Kim
- Department of Biotechnology The Catholic University of Korea Bucheon 14662 Republic of Korea
| | - Seung Rok Ryu
- Division of Biotechnology College of Environmental and Bioresource Sciences Jeonbuk National University Iksan 54596 Republic of Korea
| | - Green Kim
- National Primate Research Center Korea Research Institute of Bioscience and Biotechnology Cheongju 28116 Republic of Korea
| | - Hanseul Oh
- National Primate Research Center Korea Research Institute of Bioscience and Biotechnology Cheongju 28116 Republic of Korea
| | - Hye‐Jung Kim
- Department of Biotechnology The Catholic University of Korea Bucheon 14662 Republic of Korea
| | - Kyuri Lee
- College of Pharmacy Graduate School of Pharmaceutical Sciences Ewha Womans University Seoul 03760 Republic of Korea
| | - Minjeong Kim
- College of Pharmacy Graduate School of Pharmaceutical Sciences Ewha Womans University Seoul 03760 Republic of Korea
| | - Soo Young Kim
- College of Pharmacy Graduate School of Pharmaceutical Sciences Ewha Womans University Seoul 03760 Republic of Korea
| | - Jae‐Ouk Kim
- Clinical Research Lab International Vaccine Institute, Seoul National University Research Park Seoul 08826 Republic of Korea
| | - Karim El‐Baz
- Center for Neuro-Medicine Brain Science Institute Korea Institute of Science and Technology Seoul 02792 Republic of Korea
| | - Hyukjin Lee
- College of Pharmacy Graduate School of Pharmaceutical Sciences Ewha Womans University Seoul 03760 Republic of Korea
| | - Manki Song
- Clinical Research Lab International Vaccine Institute, Seoul National University Research Park Seoul 08826 Republic of Korea
| | - Dae Gwin Jeong
- Infectious Diseases Research Center Korea Research Institute of Bioscience and Biotechnology Daejeon 34141 Republic of Korea
| | - Gyochang Keum
- Center for Neuro-Medicine Brain Science Institute Korea Institute of Science and Technology Seoul 02792 Republic of Korea
| | - Jae‐Hwan Nam
- Department of Biotechnology The Catholic University of Korea Bucheon 14662 Republic of Korea
| |
Collapse
|
34
|
Wheat W, Chow L, Rozo V, Herman J, Still Brooks K, Colbath A, Hunter R, Dow S. Non-specific protection from respiratory tract infections in cattle generated by intranasal administration of an innate immune stimulant. PLoS One 2020; 15:e0235422. [PMID: 32584899 PMCID: PMC7316291 DOI: 10.1371/journal.pone.0235422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022] Open
Abstract
Alternatives to antibiotics for prevention of respiratory tract infections in cattle are urgently needed given the increasing public and regulatory pressure to reduce overall antibiotic usage. Activation of local innate immune defenses in the upper respiratory tract is one strategy to induce non-specific protection against infection with the diverse array of viral and bacterial pathogens associated with bovine respiratory disease complex (BRDC), while avoiding the use of antibiotics. Our prior studies in rodent models demonstrated that intranasal administration of liposome-TLR complexes (LTC) as a non-specific immune stimulant generated high levels of protection against lethal bacterial and viral pathogens. Therefore, we conducted studies to assess LTC induction of local immune responses and protective immunity to BRDC in cattle. In vitro, LTC were shown to activate peripheral blood mononuclear cells in cattle, which was associated with secretion of INFγ and IL-6. Macrophage activation with LTC triggered intracellular killing of Mannheimia hemolytica and several other bacterial pathogens. In studies in cattle, intranasal administration of LTC demonstrated dose-dependent activation of local innate immune responses in the nasopharynx, including recruitment of monocytes and prolonged upregulation (at least 2 weeks) of innate immune cytokine gene expression by nasopharyngeal mucosal cells. In a BRDC challenge study, intranasal administration of LTC prior to pathogen exposure resulted in significant reduction in both clinical signs of infection and disease-associated euthanasia rates. These findings indicate that intranasal administration of a non-specific innate immune stimulant can be an effective method of rapidly generating generalized protection from mixed viral and bacterial respiratory tract infections in cattle.
Collapse
Affiliation(s)
- William Wheat
- Department of Clinical Sciences, From the Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, Colorado, United States of America
| | - Lyndah Chow
- Department of Clinical Sciences, From the Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, Colorado, United States of America
| | - Vanessa Rozo
- Department of Clinical Sciences, From the Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, Colorado, United States of America
| | - Julia Herman
- Department of Clinical Sciences, From the Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, Colorado, United States of America
| | - Kelly Still Brooks
- Department of Clinical Sciences, From the Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, Colorado, United States of America
| | - Aimee Colbath
- Department of Clinical Sciences, From the Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, Colorado, United States of America
| | - Randy Hunter
- Hunter Cattle Company, Wheatland, Wyoming, United States of America
| | - Steven Dow
- Department of Clinical Sciences, From the Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
35
|
Park HJ, Bang EK, Hong JJ, Lee SM, Ko HL, Kwak HW, Park H, Kang KW, Kim RH, Ryu SR, Kim G, Oh H, Kim HJ, Lee K, Kim M, Kim SY, Kim JO, El-Baz K, Lee H, Song M, Jeong DG, Keum G, Nam JH. Nanoformulated Single-Stranded RNA-Based Adjuvant with a Coordinative Amphiphile as an Effective Stabilizer: Inducing Humoral Immune Response by Activation of Antigen-Presenting Cells. Angew Chem Int Ed Engl 2020; 59:11540-11549. [PMID: 32239636 DOI: 10.1002/anie.202002979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/01/2020] [Indexed: 12/29/2022]
Abstract
As agonists of TLR7/8, single-stranded RNAs (ssRNAs) are safe and promising adjuvants that do not cause off-target effects or innate immune overactivation. However, low stability prevents them from mounting sufficient immune responses. This study evaluates the adjuvant effects of ssRNA derived from the cricket paralysis virus intergenic region internal ribosome entry site, formulated as nanoparticles with a coordinative amphiphile, containing a zinc/dipicolylamine complex moiety as a coordinative phosphate binder, as a stabilizer for RNA-based adjuvants. The nanoformulated ssRNA adjuvant was resistant to enzymatic degradation in vitro and in vivo, and that with a coordinative amphiphile bearing an oleyl group (CA-O) was approximately 100 nm, promoted effective recognition, and improved activation of antigen-presenting cells, leading to better induction of neutralizing antibodies following single immunization. Hence, CA-O may increase the efficacy of ssRNA-based adjuvants, proving useful to meet the urgent need for vaccines during pathogen outbreaks.
Collapse
Affiliation(s)
- Hyo-Jung Park
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Eun-Kyoung Bang
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jung Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Sang-Myeong Lee
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea.,Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea
| | - Hae Li Ko
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.,Present address: Scripps Korea Antibody Institute, Chuncheon, 24341, Republic of Korea
| | - Hye Won Kwak
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Hyelim Park
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Kyung Won Kang
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Rhoon-Ho Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Seung Rok Ryu
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Green Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Hanseul Oh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Hye-Jung Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Kyuri Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Minjeong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Soo Young Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jae-Ouk Kim
- Clinical Research Lab, International Vaccine Institute, Seoul National, University Research Park, Seoul, 08826, Republic of Korea
| | - Karim El-Baz
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Manki Song
- Clinical Research Lab, International Vaccine Institute, Seoul National, University Research Park, Seoul, 08826, Republic of Korea
| | - Dae Gwin Jeong
- Infectious Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Gyochang Keum
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jae-Hwan Nam
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| |
Collapse
|
36
|
Alving CR, Peachman KK, Matyas GR, Rao M, Beck Z. Army Liposome Formulation (ALF) family of vaccine adjuvants. Expert Rev Vaccines 2020; 19:279-292. [PMID: 32228108 PMCID: PMC7412170 DOI: 10.1080/14760584.2020.1745636] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/17/2020] [Indexed: 12/19/2022]
Abstract
Introduction: From its earliest days, the US. military has embraced the use of vaccines to fight infectious diseases. The Army Liposome Formulation (ALF) has been a pivotal innovation as a vaccine adjuvant that provides excellent safety and potency and could lead to dual-use military and civilian benefits. For protection of personnel against difficult disease threats found in many areas of the world, Army vaccine scientists have created novel liposome-based vaccine adjuvants.Areas covered: ALF consists of liposomes containing saturated phospholipids, cholesterol, and monophosphoryl lipid A (MPLA) as an immunostimulant. ALF exhibited safety and strong potency in many vaccine clinical trials. Improvements based on ALF include: ALF adsorbed to aluminum hydroxide (ALFA); ALF containing QS21 saponin (ALFQ); and ALFQ adsorbed to aluminum hydroxide (ALFQA). Preclinical safety and efficacy studies with ALF, LFA, ALFQ, and ALFQA are discussed in preparation for upcoming vaccine trials targeting malaria, HIV-1, bacterial diarrhea, and opioid addiction.Expert opinion: The introduction of ALF in the 1980s stimulated commercial interest in vaccines to infectious diseases, and therapeutic vaccines to cancer, and Alzheimer's disease. It is likely that ALF, ALFA, and ALFQ, will provide momentum for new types of modern vaccines with improved efficacy and safety.
Collapse
Affiliation(s)
- Carl R. Alving
- Laboratory of Adjuvant & Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Kristina K. Peachman
- Laboratory of Adjuvant & Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Gary R. Matyas
- Laboratory of Adjuvant & Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Mangala Rao
- Laboratory of Adjuvant & Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Zoltan Beck
- Laboratory of Adjuvant & Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| |
Collapse
|
37
|
Immunological and Toxicological Considerations for the Design of Liposomes. NANOMATERIALS 2020; 10:nano10020190. [PMID: 31978968 PMCID: PMC7074910 DOI: 10.3390/nano10020190] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/25/2022]
Abstract
Liposomes hold great potential as gene and drug delivery vehicles due to their biocompatibility and modular properties, coupled with the major advantage of attenuating the risk of systemic toxicity from the encapsulated therapeutic agent. Decades of research have been dedicated to studying and optimizing liposomal formulations for a variety of medical applications, ranging from cancer therapeutics to analgesics. Some effort has also been made to elucidate the toxicities and immune responses that these drug formulations may elicit. Notably, intravenously injected liposomes can interact with plasma proteins, leading to opsonization, thereby altering the healthy cells they come into contact with during circulation and removal. Additionally, due to the pharmacokinetics of liposomes in circulation, drugs can end up sequestered in organs of the mononuclear phagocyte system, affecting liver and spleen function. Importantly, liposomal agents can also stimulate or suppress the immune system depending on their physiochemical properties, such as size, lipid composition, pegylation, and surface charge. Despite the surge in the clinical use of liposomal agents since 1995, there are still several drawbacks that limit their range of applications. This review presents a focused analysis of these limitations, with an emphasis on toxicity to healthy tissues and unfavorable immune responses, to shed light on key considerations that should be factored into the design and clinical use of liposomal formulations.
Collapse
|
38
|
Aghebati T, Arabsalmani M, Mohammadpour AH, Afshar M, Jaafari MR, Abnous K, Nazemi S, Badiee A. Development of an effective liposomal cholesterol ester transfer protein (CETP) vaccine for protecting against atherosclerosis in rabbit model. Pharm Dev Technol 2019; 25:432-439. [PMID: 31852350 DOI: 10.1080/10837450.2019.1706181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Clinical trials of cholesterol ester transfer protein (CETP) peptide vaccine were stopped after disappointing results in humans due to the inadequacy of adjuvant aluminum hydroxide in stimulating the immune response against the self-antigen of CETP. To increase the efficacy of the CETP vaccine, we developed a novel liposomal form of tetanus toxoid-CETP (TT-CETP) peptide (Lip CETP) with well-characterized properties and high encapsulation efficiency. The vaccine efficacy against atherosclerosis was evaluated in rabbits challenged with a high cholesterol diet. Rabbits were immunized with Lip-CETP or liposome containing CETP with CpG ODN (Lip CETP/CpG). Control groups received empty liposomes or buffer. Anti-TT-CETP specific antibodies in serum were determined and gene expression of cytokine IFN-γ and IL-4 were measured in blood peripheral mononuclear cells. Therapeutic response was evaluated by titration of plasma lipoproteins during the study and pathologic analysis of aorta atherosclerotic lesions at the end. Lip-CETP/CpG elicited strong anti-TT-CETP antibodies and a higher IFN-γ level than the buffer. IL-4 was lower than the buffer in all vaccinated groups. Plasma lipoproteins showed no significant difference in the studied groups. Atherosclerosis thickness grade of the aorta was lower than the buffer group (p < 0.001) in rabbits vaccinated with Lip-CETP but not with Lip-CETP/CpG. In conclusion, Lip-CETP showed a strong atheroprotective effect.
Collapse
Affiliation(s)
- Tamara Aghebati
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdieh Arabsalmani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hooshang Mohammadpour
- Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Afshar
- Department of Anatomy, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran.,Medical Toxicology Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Nazemi
- Department of Cardiovascular Diseases, Razavi Hospital, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
39
|
Braunstein MJ, Kucharczyk J, Adams S. Targeting Toll-Like Receptors for Cancer Therapy. Target Oncol 2019; 13:583-598. [PMID: 30229471 DOI: 10.1007/s11523-018-0589-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The immune system encompasses a broad array of defense mechanisms against foreign threats, including invading pathogens and transformed neoplastic cells. Toll-like receptors (TLRs) are critically involved in innate immunity, serving as pattern recognition receptors whose stimulation leads to additional innate and adaptive immune responses. Malignant cells exploit the natural immunomodulatory functions of TLRs, expressed mainly by infiltrating immune cells but also aberrantly by tumor cells, to foster their survival, invasion, and evasion of anti-tumor immune responses. An extensive body of research has demonstrated context-specific roles for TLR activation in different malignancies, promoting disease progression in certain instances while limiting cancer growth in others. Despite these conflicting roles, TLR agonists have established therapeutic benefits as anti-cancer agents that activate immune cells in the tumor microenvironment and facilitate the expression of cytokines that allow for infiltration of anti-tumor lymphocytes and the suppression of oncogenic signaling pathways. This review focuses on the clinical application of TLR agonists for cancer treatment. We also highlight agents that are undergoing development in clinical trials, including investigations of TLR agonists in combination with other immunotherapies.
Collapse
Affiliation(s)
- Marc J Braunstein
- Department of Medicine, NYU Winthrop Hospital, 120 Mineola Blvd. Suite 500, Mineola, 11501, NY, USA
| | - John Kucharczyk
- Department of Medicine, NYU Winthrop Hospital, 120 Mineola Blvd. Suite 500, Mineola, 11501, NY, USA
| | - Sylvia Adams
- Department of Medicine, NYU Langone Medical Center, Laura and Isaac Perlmutter Cancer Center, 160 East 34th Street, 4th Floor, New York, 10016, NY, USA.
| |
Collapse
|
40
|
Singh P, Bodycomb J, Travers B, Tatarkiewicz K, Travers S, Matyas GR, Beck Z. Particle size analyses of polydisperse liposome formulations with a novel multispectral advanced nanoparticle tracking technology. Int J Pharm 2019; 566:680-686. [PMID: 31176851 DOI: 10.1016/j.ijpharm.2019.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/24/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022]
Abstract
Liposomes are potent adjuvant constituents for licensed vaccines and vaccine candidates and carriers for drug delivery. Depending on the method of preparation, liposomes vary in size distribution, either forming uniform small size vesicles or a heterogeneous mixture of small to large vesicles. Importantly, differences in liposomal size have been demonstrated to induce differential immune responses. Determination of particle size distribution could therefore be crucial for the efficacy and stability of vaccine formulations. We compared the techniques of dynamic light scattering, laser diffraction, and conventional nanoparticle tracking analysis with a novel multispectral advanced nanoparticle tracking analysis (MANTA) for particle size determination of mono- and polydisperse liposomes. MANTA reported an average 146 nm size of monodisperse liposomes but showed a multimodal distribution of polydisperse liposomes with continuous sizes from 50 to 2000 nm. However, approximately 95% of particles were in the size range of 50-1500 nm and only few particles were identified in the 1500-2000 nm range for the investigated volume. Based on our results, we conclude that MANTA is the most suitable approach and can serve as stand-alone technique for particle size characterization of heterogeneous liposome samples in the 50-2000 nm size range.
Collapse
Affiliation(s)
- Pushpendra Singh
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, USA; Laboratory of Adjuvant and Antigen Research, U S Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Jeffrey Bodycomb
- HORIBA Instruments Inc, 20 Knightsbridge Rd, Piscataway Township, NJ, USA
| | - Bill Travers
- Anatom Technology Inc, 22803 Shady Grove Ct, Baldwin, MD, USA
| | | | - Sean Travers
- Anatom Technology Inc, 22803 Shady Grove Ct, Baldwin, MD, USA
| | - Gary R Matyas
- Laboratory of Adjuvant and Antigen Research, U S Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Zoltan Beck
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, USA; Laboratory of Adjuvant and Antigen Research, U S Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, USA.
| |
Collapse
|
41
|
Wang N, Chen M, Wang T. Liposomes used as a vaccine adjuvant-delivery system: From basics to clinical immunization. J Control Release 2019; 303:130-150. [PMID: 31022431 PMCID: PMC7111479 DOI: 10.1016/j.jconrel.2019.04.025] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022]
Abstract
Liposomes are widely utilized as a carrier to improve therapeutic efficacy of agents thanks to their merits of high loading capacity, targeting delivery, reliable protection of agents, good biocompatibility, versatile structure modification and adjustable characteristics, such as size, surface charge, membrane flexibility and the agent loading mode. In particular, in recent years, through modification with immunopotentiators and targeting molecules, and in combination with innovative immunization devices, liposomes are rapidly developed as a multifunctional vaccine adjuvant-delivery system (VADS) that has a high capability in inducing desired immunoresponses, as they can target immune cells and even cellular organelles, engender lysosome escape, and promote Ag cross-presentation, thus enormously enhancing vaccination efficacy. Moreover, after decades of development, several products developed on liposome VADS have already been authorized for clinical immunization and are showing great advantages over conventional vaccines. This article describes in depth some critical issues relevant to the development of liposomes as a VADS, including principles underlying immunization, physicochemical properties of liposomes as the immunity-influencing factors, functional material modification to enhance immunostimulatory functions, the state-of-the-art liposome VADSs, as well as the marketed vaccines based on a liposome VADS. Therefore, this article provides a comprehensive reference to the development of novel liposome vaccines.
Collapse
Affiliation(s)
- Ning Wang
- School of Food and Bioengineering, Hefei University of Technology, 193 Tun Brook Road, Hefei, Anhui Province 230009, China
| | - Minnan Chen
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China
| | - Ting Wang
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China.
| |
Collapse
|
42
|
Hildebrand D, Metz-Zumaran C, Jaschkowitz G, Heeg K. Silencing SOCS1 via Liposome-Packed siRNA Sustains TLR4-Ligand Adjuvant. Front Immunol 2019; 10:1279. [PMID: 31214204 PMCID: PMC6558036 DOI: 10.3389/fimmu.2019.01279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 05/20/2019] [Indexed: 11/13/2022] Open
Abstract
Infectious diseases remain one of the leading causes of death worldwide. Vaccination is a powerful instrument to avert a variety of those by inducing a pathogen-specific immune response and ensure a long-lasting protection against the respective infection. Nevertheless, due to increasing numbers of immunocompromised patients and emergence of more aggressive pathogens existing vaccination techniques are limited. In our study we investigated a new strategy to strengthen vaccine adjuvant in order to increase immunity against infectious diseases. The strategy is based on an amplification of Toll-like receptor 4 (TLR4) -induced activation of antigen-presenting cells (APCs) by turning off a powerful endogenous inhibitor of APC-activation. TLR4 signaling induces the release of cytokines that bind autocrine and paracrine to receptors, activating the Janus kinase (JAK) 2/signal transducers and activators of transcription (STAT) 3 cascade. Subsequently, STAT3 induces expression of suppressor of cytokine signaling (SOCS) 1 that terminates the inflammatory response. In the approach, TLR4-adjuvant monophosphoryl lipid A (MPLA)-stimulated monocyte-activation is reinforced and sustained by silencing SOCS1 via lipid nanoparticle-enclosed siRNA (L-siRNA). L-siRNA is transported into primary cells without any toxic side effects and protected from early degradation. Through lipid core-embedded functional groups the lipid particle escapes from endosomes and releases the siRNA when translocated into the cytoplasm. SOCS1 is potently silenced, and SOCS1-mediated termination of NFκB signaling is abrogated. Consequently, the MPLA-stimulated activation of APCs, monitored by release of pro-inflammatory cytokines such as IL-6, TNFα, and IL-1β, upregulation of MHC class II molecules and costimulatory CD80/CD86 is strongly enhanced and prolonged. SOCS1-silenced APCs, pulsed with liposomal tetanus light chain toxin (TeTxLC) antigen, activate autologous T cells much more intensively than SOCS1-expressing cells. Importantly, expansion of cocultured CD4+ as well as CD8+ T cells is remarkably enhanced. Furthermore, our results point toward a broad T helper cell response as TH1 typical as well as TH2 characteristic cytokines are elevated. Taken together, this study in the human system comprises a translational potential to develop more effective vaccines against infectious diseases by inhibition of the endogenous negative-feedback loop in APCs.
Collapse
Affiliation(s)
- Dagmar Hildebrand
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany.,DZIF German Center for Infection Research, Braunschweig, Germany
| | - Camila Metz-Zumaran
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany.,DZIF German Center for Infection Research, Braunschweig, Germany
| | - Greta Jaschkowitz
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Klaus Heeg
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany.,DZIF German Center for Infection Research, Braunschweig, Germany
| |
Collapse
|
43
|
Zhu D, Hu C, Fan F, Qin Y, Huang C, Zhang Z, Lu L, Wang H, Sun H, Leng X, Wang C, Kong D, Zhang L. Co-delivery of antigen and dual agonists by programmed mannose-targeted cationic lipid-hybrid polymersomes for enhanced vaccination. Biomaterials 2019; 206:25-40. [DOI: 10.1016/j.biomaterials.2019.03.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/01/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023]
|
44
|
Adams JR, Senapati S, Haughney SL, Wannemuehler MJ, Narasimhan B, Mallapragada SK. Safety and biocompatibility of injectable vaccine adjuvants composed of thermogelling block copolymer gels. J Biomed Mater Res A 2019; 107:1754-1762. [PMID: 30972906 DOI: 10.1002/jbm.a.36691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 02/25/2019] [Accepted: 03/22/2019] [Indexed: 11/08/2022]
Abstract
Injectable thermogelling polymers have been recently investigated as novel adjuvants and delivery systems for next generation vaccines. As research into natural and synthetic biocompatible polymers progresses, the safety and biocompatibility of these compounds is of paramount importance. We have developed cationic pentablock copolymer (PBC) vaccine adjuvants based on Pluronic F127, a thermogelling triblock copolymer that has been approved by the FDA for multiple applications, and methacrylated poly(diethyl amino)ethyl methacrylate outer blocks. These novel materials have been demonstrated to effectively create an antigen depot, minimally impact antigen stability, and enhance the immune response to antigens (i.e., adjuvanticity) in mice. In this work, we investigated the safety and biocompatibility of the parent triblock Pluronic gels and the cationic PBC gels in mice. Histological analysis showed no injection site reactions and no damage to the liver or kidneys was observed upon administering the block copolymer formulations. However, the subcutaneous injection of a thermogelling Pluronic solution induced increased levels of lipids in the blood, with no further deleterious effects observed from the addition of the cationic outer blocks. This hyperlipidemia resolved within 30 days after the administration of the Pluronic formulation. To mitigate this adverse effect, the vaccine adjuvant formulations were modified by adding poly(vinyl alcohol), which allowed gelation, while reducing the amount of Pluronic in the formulation. This modified formulation abrogated the observed hyperlipidemia and no adverse effects were observed in the serum through biomarker analysis or at the injection site (i.e., inflammation) in comparison to the responses induced by administration of saline or incomplete Freund's adjuvant. These studies provide a foundation to developing these gels as adjuvants for next generation vaccines. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1754-1762, 2019.
Collapse
Affiliation(s)
- Justin R Adams
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011
| | - Sujata Senapati
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011
| | - Shannon L Haughney
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011
| | - Michael J Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa, 50011
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011
| | - Surya K Mallapragada
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011
| |
Collapse
|
45
|
Espinosa DA, Beatty PR, Reiner GL, Sivick KE, Hix Glickman L, Dubensky TW, Harris E. Cyclic Dinucleotide-Adjuvanted Dengue Virus Nonstructural Protein 1 Induces Protective Antibody and T Cell Responses. THE JOURNAL OF IMMUNOLOGY 2019; 202:1153-1162. [PMID: 30642979 DOI: 10.4049/jimmunol.1801323] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/12/2018] [Indexed: 01/12/2023]
Abstract
Endothelial dysfunction and vascular leak, pathogenic hallmarks of severe dengue disease, are directly triggered by dengue virus (DENV) nonstructural protein 1 (NS1). Previous studies have shown that immunization with NS1, as well as passive transfer of NS1-immune serum or anti-NS1 mAb, prevent NS1-mediated lethality in vivo. In this study, we evaluated the immunogenicity and protective capacity of recombinant DENV NS1 administered with cyclic dinucleotides (CDNs), potent activators of innate immune pathways and highly immunogenic adjuvants. Using both wild-type C57BL/6 mice and IFN-α/β receptor-deficient mice, we show that NS1-CDN immunizations elicit serotype-specific and cross-reactive Ab and T cell responses. Furthermore, NS1-CDN vaccinations conferred significant homotypic and heterotypic protection from DENV2-induced morbidity and mortality. In addition, we demonstrate that high anti-NS1 Ab titers are associated with protection, supporting the role of humoral responses against DENV NS1 as correlates of protection. These findings highlight the potential of CDN-based adjuvants for inducing Ab and T cell responses and validate NS1 as an important candidate for dengue vaccine development.
Collapse
Affiliation(s)
- Diego A Espinosa
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720
| | - P Robert Beatty
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720
| | | | | | | | | | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720;
| |
Collapse
|
46
|
Lybaert L, Vermaelen K, De Geest BG, Nuhn L. Immunoengineering through cancer vaccines – A personalized and multi-step vaccine approach towards precise cancer immunity. J Control Release 2018; 289:125-145. [DOI: 10.1016/j.jconrel.2018.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023]
|
47
|
Baay M, Bollaerts K, Verstraeten T. A systematic review and meta-analysis on the safety of newly adjuvanted vaccines among older adults. Vaccine 2018; 36:4207-4214. [PMID: 29885773 DOI: 10.1016/j.vaccine.2018.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
Abstract
INTRODUCTION New adjuvants have been developed to improve the efficacy of vaccines and for dose-sparing capacity and may overcome immuno senescence in the elderly. We reviewed the safety of newly-adjuvanted vaccines in older adults. METHODS We searched Medline for clinical trials (CTs) including new adjuvant systems (AS01, AS02, AS03, or MF59), used in older adults, published between 01/1995 and 09/2017. Safety outcomes were: serious adverse events (SAEs); solicited local and general AEs (reactogenicity); unsolicited AEs; and potentially immune-mediated diseases (pIMDs). Standard random effects meta-analyses were conducted by type of safety event and adjuvant type, reporting Relative Risks (RR) with 95% confidence intervals (95% CI). RESULTS We identified 1040 publications, from which we selected 7, 7, and 12 CTs on AS01/AS02, AS03 and MF59, respectively. 47,602 study participants received newly-adjuvanted vaccine and 44,521 control vaccine, or placebo. Rates of SAEs (RR = 0.99, 95% CI = 0.96-1.02), deaths (RR = 0.99, 95% CI = 0.92-1.06) and pIMDs (RR = 0.94, 95% CI = 0.79-1.1) were comparable in newly-adjuvanted and control groups. Vaccine-related SAEs occurred in <1% of the subjects in both groups. The reactogenicity of AS01/AS02 and AS03 adjuvanted vaccines was higher compared to control vaccines, whereas MF59-adjuvanted vaccines resulted only in more pain. Grade 3 reactogenicity was reported infrequently, with fatigue (RR = 2.48, 95% CI = 1.69-3.64), headache (RR = 2.94, 95% CI = 1.24-6.95), and myalgia (RR = 2.68, 95% CI = 1.86-3.80) occurring more frequently in newly-adjuvanted groups. Unsolicited AEs occurred slightly more frequently in newly-adjuvanted groups (RR = 1.04, 95% CI = 1.00-1.08). CONCLUSIONS Our review suggests that, within the clinical trial setting, the use of new adjuvants in older adults has not led to any safety concerns, with no increase in SAEs or fatalities. Higher rates for solicited AEs were observed, especially for AS01/AS02 and AS03 adjuvanted vaccines, but AEs were mostly mild and transient. Further evidence will need to come from the use of new adjuvants in the real-world setting, where larger numbers can be studied to potentially detect rare reactions.
Collapse
Affiliation(s)
- Marc Baay
- P95, Epidemiology and Pharmacovigilance Consulting and Services, Leuven, Belgium
| | - Kaatje Bollaerts
- P95, Epidemiology and Pharmacovigilance Consulting and Services, Leuven, Belgium
| | - Thomas Verstraeten
- P95, Epidemiology and Pharmacovigilance Consulting and Services, Leuven, Belgium.
| |
Collapse
|
48
|
Abstract
In humans and other mammals, recognition of endotoxins—abundant surface lipopolysaccharides (LPS) of Gram-negative bacteria—provides a potent stimulus for induction of inflammation and mobilization of host defenses. The structurally unique lipid A region of LPS is the principal determinant of this pro-inflammatory activity. This region of LPS is normally buried within the bacterial outer membrane and aggregates of purified LPS, making even more remarkable its picomolar potency and the ability of discrete variations in lipid A structure to markedly alter the pro-inflammatory activity of LPS. Two recognition systems—MD-2/TLR4 and “LPS-sensing” cytosolic caspases—together confer LPS responsiveness at the host cell surface, within endosomes, and at sites physically accessible to the cytosol. Understanding how the lipid A of LPS is delivered and recognized at these diverse sites is crucial to understanding how the magnitude and character of the inflammatory responses are regulated.
Collapse
Affiliation(s)
- Jerrold Weiss
- Inflammation Program and Departments of Internal Medicine and Microbiology, University of Iowa, Iowa City, Iowa, USA.,Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - Jason Barker
- Inflammation Program and Departments of Internal Medicine and Microbiology, University of Iowa, Iowa City, Iowa, USA.,Veterans Affairs Medical Center, Iowa City, Iowa, USA
| |
Collapse
|
49
|
Minz S, Pandey RS. Development of Adjuvanted Solid Fat Nanoemulsions for Pulmonary Hepatitis B Vaccination. J Pharm Sci 2018; 107:1701-1712. [PMID: 29454622 DOI: 10.1016/j.xphs.2018.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 02/04/2018] [Accepted: 02/06/2018] [Indexed: 10/18/2022]
Abstract
Pulmonary vaccination is one of the most promising routes for immunization owing to its noninvasive nature and induction of strong mucosal immunity and systemic response. In the present study, recombinant hepatitis B surface antigen loaded solid fat nanoemulsions (SFNs) as carrier system and monophosphoryl lipid A as an adjuvant-carrier system was prepared and evaluated as multiadjuvanted vaccine system for deep pulmonary vaccination. Deposition and clearance from the deep lung of rats were determined by gamma scintigraphy. Biodistribution of SFNs was determined by the live animal imaging system. SFNs dispersion showed slower clearance as compared with sodium pertechnetate control solution (∗∗∗p <0.001) from the pulmonary region due to the virtue of particulate and hydrophobic nature of formulations. Humoral (sIgA and IgG) and cellular (IL-2 and IF-γ) immune responses were found to be significant (∗∗∗p <0.001) when compared with naïve antigen (recombinant surface antigen without any excipient) solution. Data indicate that deep pulmonary immunization offers a stronger immune response with balanced humoral, mucosal, and cellular immunization, which further needs to be tested in higher animals to support this hypothesis for clinical translation of this so far neglected yet potential target tissue for immunization.
Collapse
Affiliation(s)
- Sunita Minz
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India 484887; SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India 495009
| | - Ravi Shankar Pandey
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India 495009.
| |
Collapse
|
50
|
Beck Z, Torres OB, Matyas GR, Lanar DE, Alving CR. Immune response to antigen adsorbed to aluminum hydroxide particles: Effects of co-adsorption of ALF or ALFQ adjuvant to the aluminum-antigen complex. J Control Release 2018; 275:12-19. [PMID: 29432824 DOI: 10.1016/j.jconrel.2018.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/04/2018] [Indexed: 12/12/2022]
Abstract
Aluminum salts have been used as vaccine adjuvants for >50 years, and they are currently present in at least 146 licensed vaccines worldwide. In this study we examined whether adsorption of Army Liposome Formulation (ALF) to an aluminum salt that already has an antigen adsorbed to it might result in improved immune potency of the aluminum-adsorbed antigen. ALF is composed of a family of anionic liposome-based adjuvants, in which the liposomes contain synthetic phospholipids having dimyristoyl fatty acyl groups, cholesterol and monophosphoryl lipid A (MPLA). For certain candidate vaccines, ALF has been added to aluminum hydroxide (AH) gel as a second adjuvant to form ALFA. Here we show that different methods of preparation of ALF changed the physical structures of both ALF and ALFA. Liposomes containing the saponin QS21 (ALFQ) have also been mixed with AH to form ALFQA as an effective combination. In this study, we first adsorbed one of two different antigens to AH, either tetanus toxoid conjugated to 34 copies of a hapten (MorHap), which has been used in a candidate heroin vaccine, or gp140 protein derived from the envelope protein of HIV-1. We then co-adsorbed ALF or ALFQ to the AH to form ALFA or ALFQA. In each case, the immune potency of the antigen adsorbed to AH was greatly increased by co-adsorbing either ALF or ALFQ to the AH. Based on IgG subtype and cytokine analysis by ELISPOT, ALFA induced predominately a Th2-type response and ALFQ and ALFQA each induced more balanced Th1/Th2 responses.
Collapse
Affiliation(s)
- Zoltan Beck
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA; Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Oscar B Torres
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA; Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Gary R Matyas
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - David E Lanar
- Malaria Vaccine Branch, US Military Malaria Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD 20910, USA
| | - Carl R Alving
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| |
Collapse
|