1
|
Li J, Rouse SL, Matthews IR, Park Y, Eltawil Y, Sherr EH, Chan DK. Modulating the unfolded protein response with ISRIB mitigates cisplatin ototoxicity. Sci Rep 2024; 14:22382. [PMID: 39333235 PMCID: PMC11437005 DOI: 10.1038/s41598-024-70561-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/19/2024] [Indexed: 09/29/2024] Open
Abstract
Cisplatin is a commonly used chemotherapy agent with a nearly universal side effect of sensorineural hearing loss. The cellular mechanisms underlying cisplatin ototoxicity are poorly understood. Efforts in drug development to prevent or reverse cisplatin ototoxicity have largely focused on pathways of oxidative stress and apoptosis. An effective treatment for cisplatin ototoxicity, sodium thiosulfate (STS), while beneficial when used in standard risk hepatoblastoma, is associated with reduced survival in disseminated pediatric malignancy, highlighting the need for more specific drugs without potential tumor protective effects. The unfolded protein response (UPR) and endoplasmic reticulum (ER) stress pathways have been shown to be involved in the pathogenesis of noise-induced hearing loss and cochlear synaptopathy in vivo, and these pathways have been implicated broadly in cisplatin cytotoxicity. This study sought to determine whether the UPR can be targeted to prevent cisplatin ototoxicity. Neonatal cochlear cultures and HEK cells were exposed to cisplatin, and UPR marker gene expression and cell death measured. Treatment with ISRIB (Integrated Stress Response InhIBitor), a drug that activates eif2B and downregulates the pro-apoptotic PERK/CHOP pathway of the UPR, was tested for its ability to reduce apoptosis in HEK cells, hair-cell death in cochlear cultures, and hearing loss using an in vivo mouse model of cisplatin ototoxicity. Finally, to evaluate whether ISRIB might interfere with cisplatin chemoeffectiveness, we tested it in head and neck squamous cell carcinoma (HNSCC) cell-based assays of cisplatin cytotoxicity. Cisplatin exhibited a biphasic, non-linear dose-response of cell death and apoptosis that correlated with different patterns of UPR marker gene expression in HEK cells and cochlear cultures. ISRIB treatment protected against cisplatin-induced hearing loss and hair-cell death, but did not impact cisplatin's cytotoxic effects on HNSCC cell viability, unlike STS. These findings demonstrate that targeting the pro-apoptotic PERK/CHOP pathway with ISRIB can mitigate cisplatin ototoxicity without reducing anti-cancer cell effects, suggesting that this may be a viable strategy for drug development.
Collapse
Affiliation(s)
- Jiang Li
- Department of Neurology, UCSF, San Francisco, USA
| | - Stephanie L Rouse
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco (UCSF), 513 Parnassus Ave, Rm 719, San Francisco, CA, 94143, USA
- Department of Neurobiology, Harvard Medical School, Boston, USA
| | - Ian R Matthews
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco (UCSF), 513 Parnassus Ave, Rm 719, San Francisco, CA, 94143, USA
| | - Yesai Park
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco (UCSF), 513 Parnassus Ave, Rm 719, San Francisco, CA, 94143, USA
| | - Yasmin Eltawil
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco (UCSF), 513 Parnassus Ave, Rm 719, San Francisco, CA, 94143, USA
| | - Elliott H Sherr
- Department of Neurology, UCSF, San Francisco, USA
- Department of Pediatrics, Institute of Human Genetics, Weill Institute for Neurosciences, UCSF, San Francisco, USA
| | - Dylan K Chan
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco (UCSF), 513 Parnassus Ave, Rm 719, San Francisco, CA, 94143, USA.
| |
Collapse
|
2
|
Xie B, Zhou X, Luo C, Fang Y, Wang Y, Wei J, Cai L, Chen T. Reversal of Platinum-based Chemotherapy Resistance in Ovarian Cancer by Naringin Through Modulation of The Gut Microbiota in a Humanized Nude Mouse Model. J Cancer 2024; 15:4430-4447. [PMID: 38947385 PMCID: PMC11212103 DOI: 10.7150/jca.96448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/08/2024] [Indexed: 07/02/2024] Open
Abstract
As a chemotherapy agent, cisplatin (DDP) is often associated with drug resistance and gastrointestinal toxicity, factors that severely limit therapeutic efficacy in patients with ovarian cancer (OC). Naringin has been shown to increase sensitivity to cisplatin, but whether the intestinal microbiota is associated with this effect has not been reported so far. In this study, we applied a humanized mouse model for the first time to evaluate the reversal of cisplatin resistance by naringin, as well as naringin combined with the microbiota in ovarian cancer. The results showed that naringin combined with Bifidobacterium animalis subsp. lactis NCU-01 had an inhibitory effect on the tumor, significantly reducing tumor size (p<0.05), as well as the concentrations of serum tumor markers CA125 and HE4, increased the relative abundance of Bifidobacterium and Bacteroides, inhibit Toll-like receptor 4 (TLR4)/nuclear factor κB (NF-κB)-induced intestinal inflammation and increase the expression of intestinal permeability-associated proteins ZO-1 (p<0.001) and occludin (p<0.01). In conclusion, the above data demonstrate how naringin combined with Bifidobacterium animalis subsp. lactis NCU-01 reverses cisplatin resistance in ovarian cancer by modulating the intestinal microbiota, inhibiting the TLR4/NF-κB signaling pathway and modulating the p38MAPK signaling pathway.
Collapse
Affiliation(s)
- Bingqing Xie
- Department of Obstetrics & Gynecology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Xiaoni Zhou
- Department of Obstetrics & Gynecology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Chuanlin Luo
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Yilin Fang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Yufei Wang
- Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Jing Wei
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Liping Cai
- Department of Obstetrics & Gynecology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Tingtao Chen
- Department of Obstetrics & Gynecology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang,330031, Jiangxi, China
| |
Collapse
|
3
|
Li J, Rouse SL, Matthews IR, Sherr EH, Chan DK. Modulating the Unfolded Protein Response with ISRIB Mitigates Cisplatin Ototoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.17.562797. [PMID: 37905009 PMCID: PMC10614842 DOI: 10.1101/2023.10.17.562797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Cisplatin is a commonly used chemotherapy agent with a nearly universal side effect of sensorineural hearing loss. The cellular mechanisms underlying cisplatin ototoxicity are poorly understood. Efforts in drug development to prevent or reverse cisplatin ototoxicity have largely focused on pathways of oxidative stress and apoptosis. An effective treatment for cisplatin ototoxicity, sodium thiosulfate (STS), while beneficial when used in standard risk hepatoblastoma, is associated with reduced survival in disseminated pediatric malignancies, highlighting the need for more specific drugs without potential tumor protective effects. The unfolded protein response (UPR) and endoplasmic reticulum (ER) stress pathways have been shown to be involved in the pathogenesis of noise-induced hearing loss and cochlear synaptopathy in vivo, and these pathways have been implicated broadly in cisplatin cytotoxicity. This study sought to determine whether the UPR can be targeted to prevent cisplatin ototoxicity. Neonatal cochlear cultures and HEK cells were exposed to cisplatin and UPR-modulating drugs, and UPR marker gene expression and cell death measured. Treatment with ISRIB, a drug that activates eif2B and downregulates the pro-apoptotic PERK/CHOP pathway of the UPR, was tested in an in vivo mouse model of cisplatin ototoxicity and well as a head and neck squamous cell carcinoma (HNSCC) cell-based assay of cisplatin cytotoxicity. Cisplatin exhibited a biphasic, non-linear dose-response of cell death and apoptosis that correlated with different patterns of UPR marker gene expression in HEK cells and cochlear cultures. ISRIB treatment protected against cisplatin-induced hearing loss and hair-cell death, but did not impact the cytotoxic effects of cisplatin on HNSCC cell viability, unlike STS. These findings demonstrate that targeting the pro-apoptotic PERK/CHOP pathway with ISRIB can mitigate cisplatin ototoxicity without reducing anti-cancer cell effects, suggesting that this may be a viable strategy for drug development.
Collapse
|
4
|
Böpple K, Oren Y, Henry WS, Dong M, Weller S, Thiel J, Kleih M, Gaißler A, Zipperer D, Kopp HG, Aylon Y, Oren M, Essmann F, Liang C, Aulitzky WE. ATF3 characterizes aggressive drug-tolerant persister cells in HGSOC. Cell Death Dis 2024; 15:290. [PMID: 38658567 PMCID: PMC11043376 DOI: 10.1038/s41419-024-06674-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/19/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
High-grade serous ovarian cancer (HGSOC) represents the most common and lethal subtype of ovarian cancer. Despite initial response to platinum-based standard therapy, patients commonly suffer from relapse that likely originates from drug-tolerant persister (DTP) cells. We generated isogenic clones of treatment-naïve and cisplatin-tolerant persister HGSOC cells. In addition, single-cell RNA sequencing of barcoded cells was performed in a xenograft model with HGSOC cell lines after platinum-based therapy. Published single-cell RNA-sequencing data from neo-adjuvant and non-treated HGSOC patients and patient data from TCGA were analyzed. DTP-derived cells exhibited morphological alterations and upregulation of epithelial-mesenchymal transition (EMT) markers. An aggressive subpopulation of DTP-derived cells showed high expression of the stress marker ATF3. Knockdown of ATF3 enhanced the sensitivity of aggressive DTP-derived cells to cisplatin-induced cell death, implying a role for ATF3 stress response in promoting a drug tolerant persister cell state. Furthermore, single cell lineage tracing to detect transcriptional changes in a HGSOC cell line-derived xenograft relapse model showed that cells derived from relapsed solid tumors express increased levels of EMT and multiple endoplasmic reticulum (ER) stress markers, including ATF3. Single cell RNA sequencing of epithelial cells from four HGSOC patients also identified a small cell population resembling DTP cells in all samples. Moreover, analysis of TCGA data from 259 HGSOC patients revealed a significant progression-free survival advantage for patients with low expression of the ATF3-associated partial EMT genes. These findings suggest that increased ATF3 expression together with partial EMT promote the development of aggressive DTP, and thereby relapse in HGSOC patients.
Collapse
Affiliation(s)
- Kathrin Böpple
- Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology and University of Tuebingen, Auerbachstr. 112, 70376, Stuttgart, Germany.
| | - Yaara Oren
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Whitney S Henry
- Whitehead Institute for Biomedical Research, 455 Main St., Cambridge, MA, 02142, USA
| | - Meng Dong
- Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology and University of Tuebingen, Auerbachstr. 112, 70376, Stuttgart, Germany
| | - Sandra Weller
- Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology and University of Tuebingen, Auerbachstr. 112, 70376, Stuttgart, Germany
- Robert Bosch Center for Tumor Diseases (RBCT), Auerbachstr. 110, 70376, Stuttgart, Germany
| | - Julia Thiel
- Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology and University of Tuebingen, Auerbachstr. 112, 70376, Stuttgart, Germany
| | - Markus Kleih
- Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology and University of Tuebingen, Auerbachstr. 112, 70376, Stuttgart, Germany
| | - Andrea Gaißler
- Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology and University of Tuebingen, Auerbachstr. 112, 70376, Stuttgart, Germany
| | - Damaris Zipperer
- Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology and University of Tuebingen, Auerbachstr. 112, 70376, Stuttgart, Germany
| | - Hans-Georg Kopp
- Robert Bosch Hospital, Auerbachstr. 110, 70376, Stuttgart, Germany
- Robert Bosch Center for Tumor Diseases (RBCT), Auerbachstr. 110, 70376, Stuttgart, Germany
| | - Yael Aylon
- Weizmann Institute of Science, 234 Herzl St, Rehovot, Israel
| | - Moshe Oren
- Weizmann Institute of Science, 234 Herzl St, Rehovot, Israel
| | - Frank Essmann
- Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology and University of Tuebingen, Auerbachstr. 112, 70376, Stuttgart, Germany
- Robert Bosch Center for Tumor Diseases (RBCT), Auerbachstr. 110, 70376, Stuttgart, Germany
| | - Chunguang Liang
- Department of Bioinformatics, Biocenter Am Hubland, University of Wuerzburg, 97074, Wuerzburg, Germany.
- Institute of Immunology, Jena University Hospital, Friedrich-Schiller-University, Leutragraben 3, 07743, Jena, Germany.
| | | |
Collapse
|
5
|
Accattatis FM, Caruso A, Carleo A, Del Console P, Gelsomino L, Bonofiglio D, Giordano C, Barone I, Andò S, Bianchi L, Catalano S. CEBP-β and PLK1 as Potential Mediators of the Breast Cancer/Obesity Crosstalk: In Vitro and In Silico Analyses. Nutrients 2023; 15:2839. [PMID: 37447165 DOI: 10.3390/nu15132839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Over the last two decades, obesity has reached pandemic proportions in several countries, and expanding evidence is showing its contribution to several types of malignancies, including breast cancer (BC). The conditioned medium (CM) from mature adipocytes contains a complex of secretes that may mimic the obesity condition in studies on BC cell lines conducted in vitro. Here, we report a transcriptomic analysis on MCF-7 BC cells exposed to adipocyte-derived CM and focus on the predictive functional relevance that CM-affected pathways/processes and related biomarkers (BMs) may have in BC response to obesity. CM was demonstrated to increase cell proliferation, motility and invasion as well as broadly alter the transcript profiles of MCF-7 cells by significantly modulating 364 genes. Bioinformatic functional analyses unraveled the presence of five highly relevant central hubs in the direct interaction networks (DIN), and Kaplan-Meier analysis sorted the CCAAT/enhancer binding protein beta (CEBP-β) and serine/threonine-protein kinase PLK1 (PLK1) as clinically significant biomarkers in BC. Indeed, CEBP-β and PLK1 negatively correlated with BC overall survival and were up-regulated by adipocyte-derived CM. In addition to their known involvement in cell proliferation and tumor progression, our work suggests them as a possible "deus ex machina" in BC response to fat tissue humoral products in obese women.
Collapse
Affiliation(s)
- Felice Maria Accattatis
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Amanda Caruso
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Alfonso Carleo
- Department of Pulmonology, Hannover Medical School, Carl-Neuberg-Straße, 30625 Hannover, Germany
| | - Piercarlo Del Console
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Laura Bianchi
- Section of Functional Proteomics, Department of Life Sciences, Via Aldo Moro, University of Siena, 53100 Siena, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| |
Collapse
|
6
|
Das SK, Roy S, Das A, Chowdhury A, Chatterjee N, Bhaumik A. A conjugated 2D covalent organic framework as a drug delivery vehicle towards triple negative breast cancer malignancy. NANOSCALE ADVANCES 2022; 4:2313-2320. [PMID: 36133695 PMCID: PMC9417737 DOI: 10.1039/d2na00103a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/01/2022] [Indexed: 06/05/2023]
Abstract
Cancer, one of the deadliest diseases for both sexes, has always demanded updated treatment strategies with time. Breast cancer is responsible for the highest mortality rate among females worldwide and requires treatment with advanced regimens due to the higher probability of breast cancer cells to develop drug cytotoxicity followed by resistance. Covalent organic framework (COF) materials with ordered nanoscale porosity can serve as drug delivery vehicles due to their biocompatible nature and large internal void spaces. In this research work, we have employed a novel biocompatible COF, TRIPTA, as a drug delivery carrier towards breast cancer cells. It served as a drug delivery vehicle for cisplatin in triple negative breast cancer (TNBC) cells. We have checked the potency of TRIPTA in combating the proliferation of metastatic TNBC cells. Our results revealed that cisplatin loaded over TRIPTA-COF exhibited a greater impact on the CD44+/CD24- cancer stem cell niche of breast cancer. Retarded migration of cancer cells has also been observed with the dual treatment of TRIPTA and cisplatin compared to that of cisplatin alone. Epithelial-mesenchymal transition (EMT) has also been minimized by the combinatorial treatment of cisplatin carried by the carrier material in comparison to cisplatin alone. The epithelial marker E-cadherin is significantly increased in cells treated with cisplatin together with the carrier COF, and the expression of mesenchymal markers such as N-cadherin is lower. The transcriptional factor Snail has been observed under the same treatment. The carrier material is also internalized by the cancer cells in a time-dependent manner, suggesting that the organic carrier can serve as a specific drug delivery vehicle. Our experimental results suggested that TRIPTA-COF can serve as a potent nanocarrier for cisplatin, showing higher detrimental effects on the proliferation and migration of TNBC cells by increasing the cytotoxicity of cisplatin.
Collapse
Affiliation(s)
- Sabuj Kanti Das
- School of Materials Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Sraddhya Roy
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute 37, S P Mukherjee Road Kolkata-700 026 India
| | - Ananya Das
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute 37, S P Mukherjee Road Kolkata-700 026 India
| | - Avik Chowdhury
- School of Materials Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Nabanita Chatterjee
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute 37, S P Mukherjee Road Kolkata-700 026 India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| |
Collapse
|
7
|
Liu X, Yuan J, Zhang X, Li L, Dai X, Chen Q, Wang Y. ATF3 Modulates the Resistance of Breast Cancer Cells to Tamoxifen through an N6-Methyladenosine-Based Epitranscriptomic Mechanism. Chem Res Toxicol 2021; 34:1814-1821. [PMID: 34213887 DOI: 10.1021/acs.chemrestox.1c00206] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tamoxifen has been used for years for treating estrogen receptor-positive breast cancer; drug resistance, however, constitutes one of the main challenges for this therapy. We found that the protein expression level of ATF3 is significantly higher in tamoxifen-resistant (TamR) MCF-7 cells than the corresponding parental cancer cells. In addition, ATF3 protein expression is positively correlated with the resistance of TamR MCF-7 cells to 4-hydroxytamoxifen (4-OHT). Mechanistically, elevated ATF3 protein expression in TamR MCF-7 cells results from a lower level of expression of YTHDF2, an m6A reader protein, and the ensuing stabilization and increased translational efficiency of ATF3 mRNA. Additionally, TamR MCF-7 cells exhibited decreased methylation at A131, a consensus motif site for m6A, in the 5'-untranslated region (5'-UTR) of ATF3 mRNA. Moreover, augmented ATF3 stimulates the expression of ABCB1, an efflux pump that confers drug resistance in breast cancer cells, and ATF3 itself is also positively regulated by adenylate kinase 4. Together, our results uncovered a novel molecular target for m6A modification (i.e., ATF3 mRNA) and the epitranscriptomic regulator for this target (i.e., YTHDF2). We also illustrated the role of ATF3 in drug resistance, revealed its downstream target (i.e., ABCB1), and suggested ATF3 as a candidate therapeutic target for overcoming drug resistance in cancer cells.
Collapse
|
8
|
Bertolini G, Cancila V, Milione M, Lo Russo G, Fortunato O, Zaffaroni N, Tortoreto M, Centonze G, Chiodoni C, Facchinetti F, Pollaci G, Taiè G, Giovinazzo F, Moro M, Camisaschi C, De Toma A, D'Alterio C, Pastorino U, Tripodo C, Scala S, Sozzi G, Roz L. A novel CXCR4 antagonist counteracts paradoxical generation of cisplatin-induced pro-metastatic niches in lung cancer. Mol Ther 2021; 29:2963-2978. [PMID: 34023505 PMCID: PMC8530918 DOI: 10.1016/j.ymthe.2021.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/11/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023] Open
Abstract
Platinum-based chemotherapy remains widely used in advanced non-small cell lung cancer (NSCLC) despite experimental evidence of its potential to induce long-term detrimental effects, including the promotion of pro-metastatic microenvironments. In this study, we investigated the interconnected pathways underlying the promotion of cisplatin-induced metastases. In tumor-free mice, cisplatin treatment resulted in an expansion in the bone marrow of CCR2+CXCR4+Ly6Chigh inflammatory monocytes (IMs) and an increase in lung levels of stromal SDF-1, the CXCR4 ligand. In experimental lung metastasis assays, cisplatin-induced IMs promoted the extravasation of tumor cells and the expansion of CD133+CXCR4+ metastasis-initiating cells (MICs). Peptide R, a novel CXCR4 inhibitor designed as an SDF-1 mimetic peptide, prevented cisplatin-induced IM expansion, the recruitment of IMs into the lungs, and the promotion of metastasis. At the primary tumor site, cisplatin treatment reduced tumor size while simultaneously inducing tumor release of SDF-1, MIC expansion, and recruitment of pro-invasive CXCR4+ macrophages. Co-recruitment of MICs and CCR2+CXCR4+ IMs to distant SDF-1-enriched sites also promoted spontaneous metastases that were prevented by CXCR4 blockade. In clinical specimens from NSCLC patients SDF-1 levels were found to be higher in platinum-treated samples and related to a worse clinical outcome. Our findings reveal that activation of the CXCR4/SDF-1 axis specifically mediates the pro-metastatic effects of cisplatin and suggest CXCR4 blockade as a possible novel combination strategy to control metastatic disease.
Collapse
Affiliation(s)
- Giulia Bertolini
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Valeria Cancila
- Tumor Immunology Unit, University of Palermo, Palermo, Italy
| | - Massimo Milione
- 1st Pathology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giuseppe Lo Russo
- Thoracic Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Orazio Fortunato
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Tortoreto
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Centonze
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudia Chiodoni
- Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federica Facchinetti
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giuliana Pollaci
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giulia Taiè
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Giovinazzo
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Massimo Moro
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara Camisaschi
- Biomarkers Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandro De Toma
- Thoracic Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Crescenzo D'Alterio
- Functional Genomics, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale," Naples, Italy
| | - Ugo Pastorino
- Thoracic Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, University of Palermo, Palermo, Italy
| | - Stefania Scala
- Functional Genomics, Istituto Nazionale per lo Studio e la Cura dei Tumori-IRCCS-Fondazione "G. Pascale," Naples, Italy.
| | - Gabriella Sozzi
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Roz
- Tumor Genomics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
9
|
Wang H, Guo S, Kim SJ, Shao F, Ho JWK, Wong KU, Miao Z, Hao D, Zhao M, Xu J, Zeng J, Wong KH, Di L, Wong AHH, Xu X, Deng CX. Cisplatin prevents breast cancer metastasis through blocking early EMT and retards cancer growth together with paclitaxel. Am J Cancer Res 2021; 11:2442-2459. [PMID: 33500735 PMCID: PMC7797698 DOI: 10.7150/thno.46460] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer growth is usually accompanied by metastasis which kills most cancer patients. Here we aim to study the effect of cisplatin at different doses on breast cancer growth and metastasis. Methods: We used cisplatin to treat breast cancer cells, then detected the migration of cells and the changes of epithelial-mesenchymal transition (EMT) markers by migration assay, Western blot, and immunofluorescent staining. Next, we analyzed the changes of RNA expression of genes by RNA-seq and confirmed the binding of activating transcription factor 3 (ATF3) to cytoskeleton related genes by ChIP-seq. Thereafter, we combined cisplatin and paclitaxel in a neoadjuvant setting to treat xenograft mouse models. Furthermore, we analyzed the association of disease prognosis with cytoskeletal genes and ATF3 by clinical data analysis. Results: When administered at a higher dose (6 mg/kg), cisplatin inhibits both cancer growth and metastasis, yet with strong side effects, whereas a lower dose (2 mg/kg) cisplatin blocks cancer metastasis without obvious killing effects. Cisplatin inhibits cancer metastasis through blocking early steps of EMT. It antagonizes transforming growth factor beta (TGFβ) signaling through suppressing transcription of many genes involved in cytoskeleton reorganization and filopodia formation which occur early in EMT and are responsible for cancer metastasis. Mechanistically, TGFβ and fibronectin-1 (FN1) constitute a positive reciprocal regulation loop that is critical for activating TGFβ/SMAD3 signaling, which is repressed by cisplatin induced expression of ATF3. Furthermore, neoadjuvant administration of cisplatin at 2 mg/kg in conjunction with paclitaxel inhibits cancer growth and blocks metastasis without causing obvious side effects by inhibiting colonization of cancer cells in the target organs. Conclusion: Thus, cisplatin prevents breast cancer metastasis through blocking early EMT, and the combination of cisplatin and paclitaxel represents a promising therapy for killing breast cancer and blocking tumor metastasis.
Collapse
|
10
|
Abd El-Rhman RH, El-Naga RN, Gad AM, Tadros MG, Hassaneen SK. Dibenzazepine Attenuates Against Cisplatin-Induced Nephrotoxicity in Rats: Involvement of NOTCH Pathway. Front Pharmacol 2020; 11:567852. [PMID: 33381027 PMCID: PMC7768080 DOI: 10.3389/fphar.2020.567852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 11/06/2020] [Indexed: 02/05/2023] Open
Abstract
Cisplatin is one of the standard anti-cancer agents that are used to treat variety of solid tumors. Nevertheless, due to the accumulation of cisplatin in the renal epithelial cells, nephrotoxicity was found to be the main side effect that limits its clinical use. The current study was conducted to assess the potential nephroprotective effect of dibenzazepine, a Notch inhibitor, against cisplatin-induced nephrotoxicity in rats as well as the possible mechanisms underlying this nephroprotection. The rats were pre-treated with 2 mg/kg dibenzazepine for 7 days before giving a single nephrotoxic dose of cisplatin (7 mg/kg). Cisplatin induced acute nephrotoxicity, where blood urea nitrogen and serum creatinine levels were significantly increased. Besides, lipid peroxidation was markedly elevated and the levels of reduced glutathione and catalase were significantly reduced. Also, the tissue levels of the pro-inflammatory mediators; IL-1β, TNF-α, and NF-kB, were significantly increased in the cisplatin group. The pre-treatment with dibenzazepine significantly mitigated the nephrotoxic effects of cisplatin, the oxidative stress and inflammatory status as well as decreased caspase-3 expression, as compared to the cisplatin group. Furthermore, the up-regulation of Notch-1 and Hes-1 was found to be involved in cisplatin-induced nephrotoxicity and their expression was significantly reduced by dibenzazepine. The nephroprotective effect of dibenzazepine was further confirmed by the histopathological assessment. Moreover, dibenzazepine pre-treatment of hela and PC3 cells in vitro did not antagonize the cisplatin anti-cancer activity. In conclusion, these findings show that dibenzazepine provides protection against cisplatin-induced nephrotoxicity. Moreover, the up-regulation of the Notch pathway was shown to play a role in the pathogenesis of cisplatin-induced renal injury.
Collapse
Affiliation(s)
| | - Reem N El-Naga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amany M Gad
- Department of Pharmacology, Egyptian Drug Authority (ED), Giza, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, East Kantara Branch, New City, El Ismailia, Egypt
| | - Mariane G Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
11
|
A widespread role for SLC transmembrane transporters in resistance to cytotoxic drugs. Nat Chem Biol 2020; 16:469-478. [PMID: 32152546 PMCID: PMC7610918 DOI: 10.1038/s41589-020-0483-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/27/2020] [Indexed: 11/08/2022]
Abstract
Solute Carriers (SLCs) represent the largest family of transmembrane transporters in humans and constitute major determinants of cellular metabolism. Several SLCs have been shown to be required for the uptake of chemical compounds into cellular systems, but systematic surveys of transporter-drug relationships in human cells are currently lacking. We performed a series of genetic screens in a haploid human cell line against 60 cytotoxic compounds representative of the chemical space populated by approved drugs. By using an SLC-focused CRISPR/Cas9 library, we identified transporters whose absence induced resistance to the drugs tested. This included dependencies involving the transporters SLC11A2/SLC16A1 for artemisinin derivatives and SLC35A2/SLC38A5 for cisplatin. The functional dependence on SLCs observed for a significant proportion of the compounds screened suggests a widespread role for SLCs in the uptake and cellular activity of cytotoxic drugs and provides an experimentally validated set of SLC-drug associations for a number of clinically relevant compounds.
Collapse
|
12
|
Ku HC, Cheng CF. Master Regulator Activating Transcription Factor 3 (ATF3) in Metabolic Homeostasis and Cancer. Front Endocrinol (Lausanne) 2020; 11:556. [PMID: 32922364 PMCID: PMC7457002 DOI: 10.3389/fendo.2020.00556] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
Activating transcription factor 3 (ATF3) is a stress-induced transcription factor that plays vital roles in modulating metabolism, immunity, and oncogenesis. ATF3 acts as a hub of the cellular adaptive-response network. Multiple extracellular signals, such as endoplasmic reticulum (ER) stress, cytokines, chemokines, and LPS, are connected to ATF3 induction. The function of ATF3 as a regulator of metabolism and immunity has recently sparked intense attention. In this review, we describe how ATF3 can act as both a transcriptional activator and a repressor. We then focus on the role of ATF3 and ATF3-regulated signals in modulating metabolism, immunity, and oncogenesis. The roles of ATF3 in glucose metabolism and adipose tissue regulation are also explored. Next, we summarize how ATF3 regulates immunity and maintains normal host defense. In addition, we elaborate on the roles of ATF3 as a regulator of prostate, breast, colon, lung, and liver cancers. Further understanding of how ATF3 regulates signaling pathways involved in glucose metabolism, adipocyte metabolism, immuno-responsiveness, and oncogenesis in various cancers, including prostate, breast, colon, lung, and liver cancers, is then provided. Finally, we demonstrate that ATF3 acts as a master regulator of metabolic homeostasis and, therefore, may be an appealing target for the treatment of metabolic dyshomeostasis, immune disorders, and various cancers.
Collapse
Affiliation(s)
- Hui-Chen Ku
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Pediatrics, Tzu Chi University, Hualien, Taiwan
- *Correspondence: Ching-Feng Cheng
| |
Collapse
|
13
|
Zhang H, Chen R, Wang X, Zhang H, Zhu X, Chen J. Lobaplatin-Induced Apoptosis Requires p53-Mediated p38MAPK Activation Through ROS Generation in Non-Small-Cell Lung Cancer. Front Oncol 2019; 9:538. [PMID: 31428569 PMCID: PMC6689983 DOI: 10.3389/fonc.2019.00538] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/03/2019] [Indexed: 01/08/2023] Open
Abstract
Platinum-based chemotherapy is recommended as the first-line treatment regimen for patients with advanced non-small-cell lung cancer (NSCLC). Lobaplatin (LBP), a third-generation platinum anti-neoplastic agent, has shown an improved efficacy. This study is aimed to investigate the mechanisms of LBP-induced apoptosis in the A549 p53 wild-type cell line. The Cell Counting Kit-8 assay (CCK-8), flow cytometry (FCM), Western blot, xenograft tumor models, terminal deoxynucleotide transferase dUTP nick end labeling (TUNEL), and RNA interference were used in this study. Our results showed that the proliferation of A549 cells could be inhibited by LBP. At lower concentrations, LBP triggered cell cycle arrest at the G1 phase in A549 cells. LBP could also induce apoptosis of A549 cells. LBP also increased the expression of PARP and Bax and the cleavage of caspase-3, caspase-8, and caspase-9 and reduced Bcl-2 expression. In vivo experiment confirmed that LBP could inhibit tumor growth in the A549 xenograft models and induce apoptosis. Apoptosis of A549 cells was decreased after transfected with p53 shRNA or treated with reactive oxygen species inhibitor NAC and p38MAPK inhibitor SB203580, suggesting that the p53/ROS/p38MAPK pathway appeared to mediate the LBP-induced apoptosis of A549 cells. Our data demonstrate that LBP could be a promising candidate for the treatment of NSCLC with wild-type p53.
Collapse
Affiliation(s)
- Hongming Zhang
- Department of Respiratory Medicine, The Affiliated Yancheng Hospital, Medical School, Southeast University, Yancheng, China
| | - Runzhe Chen
- Department of Hematology and Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Xiyong Wang
- Anhui Medical University (Suzhou Municipal Hospital), Suzhou, China
| | - Haijun Zhang
- Department of Hematology and Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Xiaoli Zhu
- Department of Pulmonary Medicine, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Jibei Chen
- Department of Respiratory Medicine, The Affiliated Yancheng Hospital, Medical School, Southeast University, Yancheng, China
| |
Collapse
|
14
|
Ahmad S, Hussain A, Hussain A, Abdullah I, Ali MS, Froeyen M, Mirza MU. Quantification of Berberine in Berberis vulgaris L. Root Extract and Its Curative and Prophylactic Role in Cisplatin-Induced In Vivo Toxicity and In Vitro Cytotoxicity. Antioxidants (Basel) 2019; 8:E185. [PMID: 31248160 PMCID: PMC6616455 DOI: 10.3390/antiox8060185] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 01/16/2023] Open
Abstract
Cisplatin is amongst the most potent chemotherapeutic drugs with applications in more than 50% of cancer treatments, but dose-dependent side effects limit its usefulness. Berberis vulgaris L. (B. vulgaris) has a proven role in several therapeutic applications in the traditional medicinal system. High-performance liquid chromatography was used to quantify berberine, a potent alkaloid in the methanolic root extract of B. vulgaris (BvRE). Berberine chloride in BvRE was found to be 10.29% w/w. To assess the prophylactic and curative protective effects of BvRE on cisplatin-induced nephrotoxicity, hepatotoxicity, and hyperlipidemia, in vivo toxicity trials were carried out on 25 healthy male albino Wistar rats (130-180 g). Both prophylactic and curative trials included a single dose of cisplatin (4 mg/kg, i.p.) and nine doses of BvRE (500 mg/kg/day, orally). An array of marked toxicity effects appeared in response to cisplatin dosage evident by morphological condition, biochemical analysis of serum (urea, creatinine, total protein, alanine transaminase, aspartate transaminase, total cholesterol, and triglyceride), and organ tissue homogenates (malondialdehyde and catalase). Statistically-significant (p < 0.05) variations were observed in various parameters. Moreover, histological studies of liver and kidney tissues revealed that the protective effect of BvRE effectively minimized and reversed nephrotoxic, hepatotoxic, and hyperlipidemic effects caused by cisplatin in both prophylactic and curative groups with relatively promising ameliorative effects in the prophylactic regimen. The in vitro cell viability effect of cisplatin, BvRE, and their combination was determined on HeLa cells using the tetrazolium (MTT) assay. MTT clearly corroborated that HeLa cells appeared to be less sensitive to cisplatin and berberine individually, while the combination of both at the same concentrations resulted in growth inhibition of HeLa cells in a remarkable synergistic way. The present study validated the use of BvRE as a protective agent in combination therapy with cisplatin.
Collapse
Affiliation(s)
- Sarfraz Ahmad
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Amina Hussain
- Department of Biochemistry, Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore, Lahore 54000, Pakistan.
| | - Aroosha Hussain
- Department of Biochemistry, Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore, Lahore 54000, Pakistan.
| | - Iskandar Abdullah
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Muhammad Sajjad Ali
- Department of Biochemistry, Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore, Lahore 54000, Pakistan.
| | - Matheus Froeyen
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, B-3000 Leuven, Belgium.
| | - Muhammad Usman Mirza
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
15
|
Wang A, Li J, Zhou T, Li T, Cai H, Shi H, Liu A. CUEDC2 Contributes to Cisplatin-Based Chemotherapy Resistance in Ovarian Serious Carcinoma by Regulating p38 MAPK Signaling. J Cancer 2019; 10:1800-1807. [PMID: 31205536 PMCID: PMC6547988 DOI: 10.7150/jca.29889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/07/2019] [Indexed: 12/22/2022] Open
Abstract
Chemoresistance remains an obstacle to the successful treatment of ovarian carcinoma. CUE domain-containing 2 (CUEDC2) plays critical roles in tumor genesis and overexpresses in many solid cancers, including ovarian serous carcinoma. In previous study, we found that overexpression of CUEDC2 might be a promising biomarker to evaluate the progression and to predict likely relapse of serous ovarian carcinoma. In present study, we found that higher expression of CUEDC2 was associated with higher resistance to cisplatin. The overall survival (OS) and disease-free survival time (DFS) of patients with cisplatin resistant was shorter than that of those with cisplatin sensitive, respectively, and the cisplatin sensitivity was independent predictor of a shorter OS time and DFS time. Knockdown of CUEDC2 by small interfering RNA enhanced the cisplatin sensitivity of serous ovarian carcinoma cells in SKOV3 cell lines. Furthermore, the phosphorylation of p38 MAPK were obviously increased after CUEDC2 knockdown, while p38 MAPK signaling contributes to cell growth and cell apoptosis. Our data suggest that CUEDC2 takes part in cisplatin-based chemotherapy resistance by regulating p38 MAPK signaling. And CUEDC2 is a promising biomarker and therapeutic target of cisplatin resistance in ovarian serous carcinoma.
Collapse
Affiliation(s)
- Aichun Wang
- Department of Pathology, People's Liberation Army General Hospital, Beijing, 100853, China.,Department of Pathology, Haidian Maternal & Children Health Hospital, Beijing, 100080, China
| | - Jinhang Li
- Department of Pathology, People's Liberation Army General Hospital, Beijing, 100853, China
| | - Tao Zhou
- National Center of Biomedical Analysis, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Tao Li
- National Center of Biomedical Analysis, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Hong Cai
- National Center of Biomedical Analysis, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Huaiyin Shi
- Department of Pathology, People's Liberation Army General Hospital, Beijing, 100853, China
| | - Aijun Liu
- Department of Pathology, People's Liberation Army General Hospital, Beijing, 100853, China
| |
Collapse
|
16
|
Nadi S, Shabestani Monfared A, Zabihi E, Mahmoudzadeh A, Eyvazzadeh N, Tahamtan R. Combined Effect of Iodine Contrast Media, Cisplatin and External Beam Radiotherapy on Anaplastic Thyroid Cancer Cells. J Biomed Phys Eng 2019; 9:217-226. [PMID: 31214527 PMCID: PMC6538913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/12/2017] [Indexed: 11/08/2022]
Abstract
INTRODUCTION The current study investigated the combination of high Z atoms (iodine-, platinium-based drugs) with using low energy irradiation (120kvp) in Anaplastic Thyroid cancer cells. MATERIAL AND METHODS For this purpose, eight groups were designed: control (CNT), different concentrations of Iodine contrast media (ICM), irradiation with various doses, Cis-platin (CDDP) with different concentrations, (ICM + CDDP), (ICM + RAD), (CDDP + RAD) and (ICM + CDDP + RAD). The viability was measured by MTT and Colony assay. In MTT assay, the viability of 8305c cells RAD (2 Gy)+ICM (10mg/mL) group was significantly lower than those treated with RAD or ICM alone. CDDP +ICM+RAD group significantly decreased the viability. In colony assay, cells in ICM + RAD (2 Gy) group reduced the number of colonies more significant than RAD group. The difference of colony forming ability between CDDP and CDDP + RAD (2 Gy) was significant. The difference of ICM + CDDP + RAD (2 Gy) and CDDP +RAD (2 Gy) group was significant. All data were statistically analysed using one-way analysis of variance (ANOVA) followed by Chafe's multi-comparisons tests. All data were presented as mean ± standard deviation (SD) and analysed using statistical package for social sciences (SPSS 16). Significance was considered to be p<0.05. RESULTS In MTT assay, the viability of 8305c cells RAD (2 Gy) + ICM (10mg/mL) group was significantly lower than those treated with RAD or ICM alone. CDDP + ICM + RAD group significantly decreased the viability. In colony assay, cells in ICM + RAD (2 Gy) group reduced the number of colonies more significantly than RAD group. The difference of colony forming ability between CDDP and CDDP + RAD (2 Gy) was significant. The difference of ICM + CDDP + RAD (2 Gy) and CDDP + RAD (2 Gy) group was significant. CONCLUSION Exposure of ATC to ICM in the presence of CDDP increases tissue X-rays absorbance by Auger electrons and photo electrons leading to more fatal effects against the tumour.
Collapse
Affiliation(s)
- S. Nadi
- MSc Student of Radiobiology and Radiation Protection, Cellular and Molecular Biology Research Centre, Babol University of Medical Sciences, Babol, Iran
| | - A. Shabestani Monfared
- Professor of Medical Physics, Cellular and Molecular Biology Research Centre, Babol University of Medical Sciences, Babol, Iran
| | - E. Zabihi
- PharmD, Phd, Cellular and Molecular Biology Research Centre, Babol University of Medical Sciences, Babol, Iran
| | - A. Mahmoudzadeh
- Phd Immunology, Department of Bioscience and Biotechnology Malek-Ashtar University of Technology. Tehran, Iran
| | - N. Eyvazzadeh
- Phd of medical physic, Radiation Research Center, Faculty of Paramedicine, Aja University of Medical Sciences, Tehran, Iran
| | - R. Tahamtan
- MSc of Radiobiology and Radiation Protection, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
17
|
Necroptosis and Apoptosis Contribute to Cisplatin and Aminoglycoside Ototoxicity. J Neurosci 2019; 39:2951-2964. [PMID: 30733218 DOI: 10.1523/jneurosci.1384-18.2019] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 01/23/2019] [Accepted: 01/30/2019] [Indexed: 11/21/2022] Open
Abstract
Ototoxic side effects of cisplatin and aminoglycosides have been extensively studied, but no therapy is available to date. Sensory hair cells, upon exposure to cisplatin or aminoglycosides, undergo apoptotic and necrotic cell death. Blocking these cell death pathways has therapeutic potential in theory, but incomplete protection and lack of therapeutic targets in the case of necrosis, has hampered the development of clinically applicable drugs. Over the past decade, a novel form of necrosis, termed necroptosis, was established as an alternative cell death pathway. Necroptosis is distinguished from passive necrotic cell death, in that it follows a cellular program, involving the receptor-interacting protein kinase (RIPK) 1 and RIPK3. In this study, we used pharmacological and genetic interventions in the mouse to test the relative contributions of necroptosis and caspase-8-mediated apoptosis toward cisplatin and aminoglycoside ototoxicity. We find that ex vivo, only apoptosis contributes to cisplatin and aminoglycoside ototoxicity, while in vivo, necroptosis as well as apoptosis are involved in both sexes. Inhibition of necroptosis and apoptosis using pharmacological compounds is thus a viable strategy to ameliorate aminoglycoside and cisplatin ototoxicity.SIGNIFICANCE STATEMENT The clinical application of cisplatin and aminoglycosides is limited due to ototoxic side effects. Here, using pharmaceutical and genetic intervention, we present evidence that two types of programmed cell death, apoptosis and necroptosis, contribute to aminoglycoside and cisplatin ototoxicity. Key molecular factors mediating necroptosis are well characterized and druggable, presenting new avenues for pharmaceutical intervention.
Collapse
|
18
|
Anjana S, Joseph J, John J, Balachandran S, Kumar TRS, Abraham A. Novel flourescent spiroborate esters: potential therapeutic agents in in vitro cancer models. Mol Biol Rep 2018; 46:727-740. [PMID: 30554314 DOI: 10.1007/s11033-018-4529-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
Abstract
The current treatment system in cancer therapy, which includes chemotherapy/radiotherapy is expensive and often deleterious to surrounding healthy tissue. Presently, several medicinal plants and their constituents are in use to manage the development and progression of these diseases.They have been found effective, safe, and less expensive. In the present study, we are proposing the utility of a new class of curcumin derivative, Rubrocurcumin, the spiroborate ester of curcumin with boric acid and oxalic acid (1:1:1), which have enhanced biostability for therapeutic applications. In vitro cytocompatibility of this drug complex was analysed using MTT assay, neutral red assay, lactate dehydrogenase assay in 3T3L1 adipocytes. Anti tumour activity of this drug complex on MCF7 and A431 human cancer cell line was studied by morphological analysis using phase contrast microscopy, Hoechst staining and cell cycle analysis by FACS. To explore the chemotherapeutic effect, the cytotoxic effect of this compound was also carried out. Rubrocurcumin is more biostable than natural curcumin in physiological medium. Our results prove that this curcumin derivative drug complex possess more efficacy and anti-cancer activity compared with curcumin. The findings out of this study suggests this novel compound as potential candidate for site targeted drug delivery.
Collapse
Affiliation(s)
- S Anjana
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Josna Joseph
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Jeena John
- Department of Chemistry, MG College, Thiruvananthapuram, Kerala, India
| | - S Balachandran
- Department of Chemistry, MG College, Thiruvananthapuram, Kerala, India
| | - T R Santhosh Kumar
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Annie Abraham
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
19
|
Dabiri Y, Schmid A, Theobald J, Blagojevic B, Streciwilk W, Ott I, Wölfl S, Cheng X. A Ruthenium(II) N-Heterocyclic Carbene (NHC) Complex with Naphthalimide Ligand Triggers Apoptosis in Colorectal Cancer Cells via Activating the ROS-p38 MAPK Pathway. Int J Mol Sci 2018; 19:ijms19123964. [PMID: 30544880 PMCID: PMC6320930 DOI: 10.3390/ijms19123964] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 12/14/2022] Open
Abstract
The p38 MAPK pathway is known to influence the anti-tumor effects of several chemotherapeutics, including that of organometallic drugs. Previous studies have demonstrated the important role of p38 both as a regulator and a sensor of cellular reactive oxygen species (ROS) levels. Investigating the anti-cancer properties of novel 1,8-naphthalimide derivatives containing Rh(I) and Ru(II) N-heterocyclic carbene (NHC) ligands, we observed a profound induction of ROS by the complexes, which is most likely generated from mitochondria (mtROS). Further analyses revealed a rapid and consistent activation of p38 signaling by the naphthalimide-NHC conjugates, with the Ru(II) analogue—termed MC6—showing the strongest effect. In view of this, genetic as well as pharmacological inhibition of p38α, attenuated the anti-proliferative and pro-apoptotic effects of MC6 in HCT116 colon cancer cells, highlighting the involvement of this signaling molecule in the compound’s toxicity. Furthermore, the influence of MC6 on p38 signaling appeared to be dependent on ROS levels as treatment with general- and mitochondria-targeted anti-oxidants abrogated p38 activation in response to MC6 as well as the molecule’s cytotoxic- and apoptogenic response in HCT116 cells. Altogether, our results provide new insight into the molecular mechanisms of naphthalimide-metal NHC analogues via the ROS-induced activation of p38 MAPK, which may have therapeutic interest for the treatment of various cancer types.
Collapse
Affiliation(s)
- Yasamin Dabiri
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| | - Alice Schmid
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| | - Jannick Theobald
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| | - Biljana Blagojevic
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| | - Wojciech Streciwilk
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany.
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany.
| | - Stefan Wölfl
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| | - Xinlai Cheng
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| |
Collapse
|
20
|
de Anda-Jáuregui G, Espinal-Enríquez J, Hur J, Alcalá-Corona SA, Ruiz-Azuara L, Hernández-Lemus E. Identification of Casiopeina II-gly secondary targets through a systems pharmacology approach. Comput Biol Chem 2018; 78:127-132. [PMID: 30504090 DOI: 10.1016/j.compbiolchem.2018.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 10/20/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023]
Abstract
Casiopeinas are a group of copper-based compounds designed to be used as less toxic, more efficient chemotherapeutic agents. In this study, we analyzed the in vitro effects of Casiopeina II-gly on the expression of canonical biological pathways. Using microarray data from HeLa cell lines treated with Casiopeina II-gly, we identified biological pathways that are perturbed after treatment. We present a novel approach integrating pathway analysis and network theory: The Pathway Crosstalk Network. We constructed a network with deregulated pathways, featuring links between those pathways that crosstalk with each other. We identified modules grouping deregulated pathways that are functionally related. Through this approach, we were able to identify three features of Casiopeina treatment: (a) Perturbation of signaling pathways, related to induction of apoptosis; (b) perturbation of metabolic pathways, and (c) activation of immune responses. These findings can be useful to drive new experimental exploration on their role in adverse effects and efficacy of Casiopeinas.
Collapse
Affiliation(s)
- Guillermo de Anda-Jáuregui
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, United States; Computational Genomics Department, National Institute of Genomic Medicine (INMEGEN), Mexico.
| | - Jesús Espinal-Enríquez
- Computational Genomics Department, National Institute of Genomic Medicine (INMEGEN), Mexico; Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Junguk Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, United States
| | - Sergio Antonio Alcalá-Corona
- Computational Genomics Department, National Institute of Genomic Medicine (INMEGEN), Mexico; Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Lena Ruiz-Azuara
- Inorganic Chemistry Department, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Enrique Hernández-Lemus
- Computational Genomics Department, National Institute of Genomic Medicine (INMEGEN), Mexico; Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), Mexico.
| |
Collapse
|
21
|
Schmidtova S, Kalavska K, Kucerova L. Molecular Mechanisms of Cisplatin Chemoresistance and Its Circumventing in Testicular Germ Cell Tumors. Curr Oncol Rep 2018; 20:88. [PMID: 30259297 DOI: 10.1007/s11912-018-0730-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Testicular germ cell tumors (TGCTs) represent the most common solid tumors affecting young men. Majority of TGCTs respond well to cisplatin-based chemotherapy. However, patients with refractory disease have limited treatment modalities associated with poor prognosis. Here, we discuss the main molecular mechanisms associated with acquired cisplatin resistance in TGCTs and how their understanding might help in the development of new approaches to tackle this clinically relevant problem. We also discuss recent data on the strategies of circumventing the cisplatin resistance from different tumor types potentially efficient also in TGCTs. RECENT FINDINGS Recent data regarding deregulation of various signaling pathways as well as genetic and epigenetic mechanisms in cisplatin-resistant TGCTs have contributed to understanding of the mechanisms related to the resistance to cisplatin-based chemotherapy in these tumors. Understanding of these mechanisms enabled explaining why majority but not all TGCTs patients are curable with cisplatin-based chemotherapy. Moreover, it could lead to the development of more effective treatment of refractory TGCTs and potentially other solid tumors resistant to platinum-based chemotherapy. This review provides additional insights into mechanisms associated with cisplatin resistance in TGCTs, which is a complex phenomenon, and there is a need for novel modalities to overcome it.
Collapse
Affiliation(s)
- Silvia Schmidtova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Katarina Kalavska
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenová 1, 833 10, Bratislava, Slovakia
- Translational Research Unit, Faculty of Medicine, Comenius University, Klenová 1, Bratislava, 833 10, Slovakia
| | - Lucia Kucerova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia.
| |
Collapse
|
22
|
Hasim MS, Nessim C, Villeneuve PJ, Vanderhyden BC, Dimitroulakos J. Activating Transcription Factor 3 as a Novel Regulator of Chemotherapy Response in Breast Cancer. Transl Oncol 2018; 11:988-998. [PMID: 29940414 PMCID: PMC6039300 DOI: 10.1016/j.tranon.2018.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/25/2018] [Accepted: 06/01/2018] [Indexed: 12/22/2022] Open
Abstract
Anthracyclines, such as doxorubicin, are used as first-line chemotherapeutics, usually in combination therapies, for the treatment of advanced breast cancer. While these drugs have been successful therapeutic options, their use is limited due to serious drug related toxicities and acquired tumor resistance. Uncovering the molecular mechanisms that mediate doxorubicin's cytotoxic effect will lead to the identification of novel more efficacious combination therapies and allow for reduced doses of doxorubicin to be administered while maintaining efficacy. In our study, we demonstrate that activating transcription factor (ATF) 3 expression was upregulated by doxorubicin treatment in a representative panel of human breast cancer cell lines MCF7 and MDA-MB-231. We have also shown that doxorubicin treatment can induce ATF3 expression in ex vivo human breast and ovarian tumor samples. The upregulation of ATF3 in the cell lines was regulated by multiple cellular mechanisms including the activation of JNK and ATM signaling pathways. Importantly, loss of ATF3 expression resulted in reduced sensitivity to doxorubicin treatment in mouse embryonic fibroblasts. Through a 1200 FDA-approved compound library screen, we identified a number of agents whose cytotoxicity is dependent on ATF3 expression that also enhanced doxorubicin induced cytotoxicity. For example, the combination of the HDAC inhibitor vorinostat or the nucleoside analogue trifluridine could synergistically enhance doxorubicin cytotoxicity in the MCF7 cell line. Synergy in cell lines with the combination of ATF3 inducers and patients with elevated basal levels of ATF3 shows enhanced response to chemotherapy. Taken together, our results demonstrate a role for ATF3 in mediating doxorubicin cytotoxicity and provide rationale for the combination of ATF3-inducing agents with doxorubicin as a novel therapeutic approach.
Collapse
Affiliation(s)
- Mohamed S Hasim
- Cancer Therapeutics Program at the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry at the University of Ottawa, Ottawa, Ontario, Canada
| | - Carolyn Nessim
- Department of General Surgery, The Ottawa Hospital, Ottawa, Ontario, Canada
| | | | - Barbara C Vanderhyden
- Cancer Therapeutics Program at the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Jim Dimitroulakos
- Cancer Therapeutics Program at the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry at the University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
23
|
Pai CS, Sharma PK, Huang HT, Loganathan S, Lin H, Hsu YL, Phasuk S, Liu IY. The Activating Transcription Factor 3 ( Atf3) Homozygous Knockout Mice Exhibit Enhanced Conditioned Fear and Down Regulation of Hippocampal GELSOLIN. Front Mol Neurosci 2018. [PMID: 29515366 PMCID: PMC5826182 DOI: 10.3389/fnmol.2018.00037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The genetic and molecular basis underlying fear memory formation is a key theme in anxiety disorder research. Because activating transcription factor 3 (ATF3) is induced under stress conditions and is highly expressed in the hippocampus, we hypothesize that ATF3 plays a role in fear memory formation. We used fear conditioning and various other paradigms to test Atf3 knockout mice and study the role of ATF3 in processing fear memory. The results demonstrated that the lack of ATF3 specifically enhanced the expression of fear memory, which was indicated by a higher incidence of the freeze response after fear conditioning, whereas the occurrence of spatial memory including Morris Water Maze and radial arm maze remained unchanged. The enhanced freezing behavior and normal spatial memory of the Atf3 knockout mice resembles the fear response and numbing symptoms often exhibited by patients affected with posttraumatic stress disorder. Additionally, we determined that after fear conditioning, dendritic spine density was increased, and expression of Gelsolin, the gene encoding a severing protein for actin polymerization, was down-regulated in the bilateral hippocampi of the Atf3 knockout mice. Taken together, our results suggest that ATF3 may suppress fear memory formation in mice directly or indirectly through mechanisms involving modulation of actin polymerization.
Collapse
Affiliation(s)
- Chia-Sheng Pai
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Pranao K Sharma
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Hsien-Ting Huang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | | | - Heng Lin
- Department of Physiology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Luan Hsu
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Sarayut Phasuk
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,Department of Physiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ingrid Y Liu
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
24
|
Nakamura H, Taguchi A, Kawana K, Baba S, Kawata A, Yoshida M, Fujimoto A, Ogishima J, Sato M, Inoue T, Nishida H, Furuya H, Yamashita A, Eguchi S, Tomio K, Mori-Uchino M, Adachi K, Arimoto T, Wada-Hiraike O, Oda K, Nagamatsu T, Osuga Y, Fujii T. Therapeutic significance of targeting survivin in cervical cancer and possibility of combination therapy with TRAIL. Oncotarget 2018; 9:13451-13461. [PMID: 29568369 PMCID: PMC5862590 DOI: 10.18632/oncotarget.24413] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 01/30/2018] [Indexed: 01/04/2023] Open
Abstract
Loss of p53 function due to human papillomavirus (HPV) infection induces resistance to apoptosis in cervical cancer cells. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), which induces apoptosis in a p53-independent manner, may provide an alternative strategy for treating cervical cancer. Survivin, an antiapoptotic protein that is highly expressed in cancer cells, regulates apoptosis and the cell cycle. Here, we investigated the therapeutic potential of targeting survivin, while focusing on the TRAIL-induced apoptosis pathway. The viability and cell cycle of HPV16-positive CaSki and SiHa cells were assessed after survivin knockdown by small interfering RNA (si-survivin). E-cadherin expression was also assessed after si-survivin treatment, using western blotting. SiHa (a TRAIL-resistant cell line) was used for further studies. The small molecule YM155 and resveratrol (RVT; a polyphenol with the potential to suppress survivin expression) were used as survivin inhibitors. The effects of si-survivin and survivin inhibitors on TRAIL- or cisplatin (CDDP)-induced apoptosis were analyzed by annexin-V staining. si-survivin treatment decreased cell viability and led to G2/M arrest, accompanied by morphological changes and E-cadherin upregulation in both CaSki and SiHa cells. si-survivin and YM155 synergistically sensitized TRAIL-resistant SiHa cells to TRAIL-induced apoptosis (p < 0.05). However, si-survivin and YM155 only slightly increased CDDP-induced apoptosis. RVT markedly enhanced TRAIL-induced apoptosis by suppressing survivin expression. Targeting of survivin expression might be an ideal strategy for cervical cancer treatment as it would decrease viable cell number and enhance apoptosis sensitivity. Further, combination therapy with TRAIL, rather than CDDP, may be compatible with the proposed survivin-targeting strategy.
Collapse
Affiliation(s)
- Hiroe Nakamura
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Nihon University School of Medicine, Itabashiku, Tokyo 173-8610, Japan
| | - Satoshi Baba
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Akira Kawata
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Mitsuyo Yoshida
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Asaha Fujimoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Juri Ogishima
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Masakazu Sato
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tomoko Inoue
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Haruka Nishida
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hitomi Furuya
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Aki Yamashita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Satoko Eguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kensuke Tomio
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Mayuyo Mori-Uchino
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Katsuyuki Adachi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Takahide Arimoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Katsutoshi Oda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
25
|
Mon MT, Yodkeeree S, Punfa W, Pompimon W, Limtrakul P. Alkaloids from Stephania venosa as Chemo-Sensitizers in SKOV3 Ovarian Cancer Cells via Akt/NF-κB Signaling. Chem Pharm Bull (Tokyo) 2018; 66:162-169. [PMID: 29386467 DOI: 10.1248/cpb.c17-00687] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Crebanine (CN), tetrahydropalmatine (THP), O-methylbulbocapnine (OMBC) and N-methyl tetrahydropalmatine (NMTHP) are isoquinoline derived natural alkaloids isolated from tubers of Stephania venosa. We investigated chemo-sensitizing effects of these alkaloids in ovarian cancer cells and evaluated underlying molecular mechanisms involved in chemo-sensitivity. Detection of cell apoptosis was evaluated by using flow cytometry. Cell viability was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Chou-Talalay median effect principle was used to evaluate potential drug interactions. Protein analyses were performed on ovarian carcinoma cells using Western blotting upon treatment with anticancer drug and alkaloids. Aporphine alkaloids, such as CN and OMBC, enhanced cisplatin sensitivity in intrinsic cisplatin resistant SKOV3 cells, but not in cisplatin sensitive A2780 cells. Protoberberine alkaloids, such as THP and NMTHP, had no synergistic effect on cisplatin sensitivity in either cell line. Chemo-sensitizing effects of CN and OMBC in SKOV3 cells were mediated via activating apoptosis-induced cell death through caspase-3, -8 and cleaved poly ADP-ribose polymerase (PARP) and via inhibiting anti-apopotic and survival protein expression, such as Bcl-xL, Baculoviral IAP repeat-containing protein 3 (cIAP-2), survivin and interleukin (IL) -6. Cisplatin stimulated protein kinase B (Akt) and nuclear factor-kappaB (NF-κB) signaling pathways, but not mitogen-activated protein kinase (MAPK), activator protein 1 (AP-1) and signal transducer and activator of transcription 3 (STAT3) in SKOV3 cells. Akt/NF-κB signaling was blocked by CN and OMBC leading to increased sensitization to cisplatin. These findings demonstrate that CN and OMBC sensitizes SKOV3 cells to cisplatin via inhibition of Akt/NF-κB signaling and the down regulation of NF-κB mediated gene products. Our results suggest that alkaloids obtained from S. venosa could be used as chemo-sensitizers in ovarian cancer to sensitize and minimize the dose related toxicity of platinum-based chemotherapeutic drugs.
Collapse
Affiliation(s)
- May Thuu Mon
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University.,Department of Biochemistry, University of Medicine-2
| | - Supachai Yodkeeree
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University.,Center for Research and Development of Natural Products for Health, Chiang Mai University
| | - Wanisa Punfa
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University.,Center for Research and Development of Natural Products for Health, Chiang Mai University
| | - Wilart Pompimon
- Laboratory of Natural Products, Department of Chemistry, Faculty of Science, Lampang Rajabhat University
| | - Pornngarm Limtrakul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University.,Center for Research and Development of Natural Products for Health, Chiang Mai University
| |
Collapse
|
26
|
Hu LY, Zhou Y, Cui WQ, Hu XM, Du LX, Mi WL, Chu YX, Wu GC, Wang YQ, Mao-Ying QL. Triggering receptor expressed on myeloid cells 2 (TREM2) dependent microglial activation promotes cisplatin-induced peripheral neuropathy in mice. Brain Behav Immun 2018; 68:132-145. [PMID: 29051087 DOI: 10.1016/j.bbi.2017.10.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/04/2017] [Accepted: 10/14/2017] [Indexed: 12/30/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common adverse side effect of many antineoplastic agents. Patients treated with chemotherapy often report pain and paresthesias in a "glove-and-stocking" distribution. Diverse mechanisms contribute to the development and maintenance of CIPN. However, the role of spinal microglia in CIPN is not completely understood. In this study, cisplatin-treated mice displayed persistent mechanical allodynia, sensory deficits and decreased density of intraepidermal nerve fibers (IENFs). In the spinal cord, activation of microglia, but not astrocyte, was persistently observed until week five after the first cisplatin injection. Additionally, mRNA levels of inflammation related molecules including IL-1β, IL-6, tumor necrosis factor (TNF)-α, inducible nitric oxide synthase (iNOS) and CD16, were increased after cisplatin treatment. Intraperitoneal (i.p.) or intrathecal (i.t.) injection with minocycline both alleviated cisplatin-induced mechanical allodynia and sensory deficits, and prevented IENFs loss. Furthermore, cisplatin enhanced triggering receptor expressed on myeloid cells 2 (TREM2) /DNAX-activating protein of 12 kDa (DAP12) signaling in the spinal cord microglia. The blockage of TREM2 by i.t. injecting anti-TREM2 neutralizing antibody significantly attenuated cisplatin-induced mechanical allodynia, sensory deficits and IENFs loss. Meanwhile, anti-TREM2 neutralizing antibody prominently suppressed the spinal IL-6, TNF-α, iNOS and CD16 mRNA level, but it dramatically up-regulated the anti-inflammatory cytokines IL-4 and IL-10. The data demonstrated that cisplatin triggered persistent activation of spinal cord microglia through strengthening TREM2/DAP12 signaling, which further resulted in CIPN. Functional blockage of TREM2 or inhibition of microglia both benefited for cisplatin-induced peripheral neuropathy. Microglial TREM2/DAP12 may serve as a potential target for CIPN intervention.
Collapse
Affiliation(s)
- Lang-Yue Hu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Science, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, People's Republic of China
| | - Yang Zhou
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Science, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, People's Republic of China
| | - Wen-Qiang Cui
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Science, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, People's Republic of China
| | - Xue-Ming Hu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Science, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, People's Republic of China
| | - Li-Xia Du
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Science, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, People's Republic of China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Science, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, People's Republic of China
| | - Yu-Xia Chu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Science, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, People's Republic of China
| | - Gen-Cheng Wu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Science, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, People's Republic of China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Science, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, People's Republic of China
| | - Qi-Liang Mao-Ying
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Science, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, People's Republic of China.
| |
Collapse
|
27
|
Shen J, Lin H, Li G, Jin RA, Shi L, Chen M, Chang C, Cai X. TR4 nuclear receptor enhances the cisplatin chemo-sensitivity via altering the ATF3 expression to better suppress HCC cell growth. Oncotarget 2017; 7:32088-99. [PMID: 27050071 PMCID: PMC5077999 DOI: 10.18632/oncotarget.8525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 03/02/2016] [Indexed: 12/30/2022] Open
Abstract
Early studies indicated that TR4 nuclear receptor (TR4) may play a key role to modulate the prostate cancer progression, its potential linkage to liver cancer progression, however, remains unclear. Here we found that higher TR4 expression in hepatocellular carcinoma (HCC) cells might enhance the efficacy of cisplatin chemotherapy to better suppress the HCC progression. Knocking down TR4 with TR4-siRNA in HCC Huh7 and Hep3B cells increased cisplatin chemotherapy resistance and overexpression of TR4 with TR4-cDNA in HCC LM3 and SNU387 cells increased cisplatin chemotherapy sensitivity. Mechanism dissection found that TR4 might function through altering the ATF3 expression at the transcriptional level to enhance the cisplatin chemotherapy sensitivity, and interrupting ATF3 expression via ATF3-siRNA reversed TR4-enhanced cisplatin chemotherapy sensitivity in HCC cells. The in vivo HCC mouse model using xenografted HCC LM3 cells also confirmed in vitro cell lines data showing TR4 enhanced the cisplatin chemotherapy sensitivity. Together, these results provided a new potential therapeutic approach via altering the TR4-ATF3 signals to increase the efficacy of cisplatin to better suppress the HCC progression.
Collapse
Affiliation(s)
- Jiliang Shen
- Chawnshang Chang Liver Cancer Center, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.,George Whipple Laboratory for Cancer Research, Departments of Pathology and Urology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hui Lin
- Chawnshang Chang Liver Cancer Center, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Gonghui Li
- Chawnshang Chang Liver Cancer Center, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Ren-An Jin
- Chawnshang Chang Liver Cancer Center, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.,George Whipple Laboratory for Cancer Research, Departments of Pathology and Urology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Liang Shi
- Chawnshang Chang Liver Cancer Center, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.,George Whipple Laboratory for Cancer Research, Departments of Pathology and Urology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Mingming Chen
- Chawnshang Chang Liver Cancer Center, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Chawnshang Chang
- George Whipple Laboratory for Cancer Research, Departments of Pathology and Urology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA.,Sex Hormone Research Center, China Medical University/Hospital, Taichung 404, Taiwan
| | - Xiujun Cai
- Chawnshang Chang Liver Cancer Center, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
28
|
Chüeh AC, Tse JWT, Dickinson M, Ioannidis P, Jenkins L, Togel L, Tan B, Luk I, Davalos-Salas M, Nightingale R, Thompson MR, Williams BRG, Lessene G, Lee EF, Fairlie WD, Dhillon AS, Mariadason JM. ATF3 Repression of BCL-X L Determines Apoptotic Sensitivity to HDAC Inhibitors across Tumor Types. Clin Cancer Res 2017; 23:5573-5584. [PMID: 28611196 PMCID: PMC5600837 DOI: 10.1158/1078-0432.ccr-17-0466] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/27/2017] [Accepted: 06/09/2017] [Indexed: 12/13/2022]
Abstract
Purpose: Histone deacetylase inhibitors (HDACi) are epigenome-targeting small molecules approved for the treatment of cutaneous T-cell lymphoma and multiple myeloma. They have also demonstrated clinical activity in acute myelogenous leukemia, non-small cell lung cancer, and estrogen receptor-positive breast cancer, and trials are underway assessing their activity in combination regimens including immunotherapy. However, there is currently no clear strategy to reliably predict HDACi sensitivity. In colon cancer cells, apoptotic sensitivity to HDACi is associated with transcriptional induction of multiple immediate-early (IE) genes. Here, we examined whether this transcriptional response predicts HDACi sensitivity across tumor type and investigated the mechanism by which it triggers apoptosis.Experimental Design: Fifty cancer cell lines from diverse tumor types were screened to establish the correlation between apoptotic sensitivity, induction of IE genes, and components of the intrinsic apoptotic pathway.Results: We show that sensitivity to HDACi across tumor types is predicted by induction of the IE genes FOS, JUN, and ATF3, but that only ATF3 is required for HDACi-induced apoptosis. We further demonstrate that the proapoptotic function of ATF3 is mediated through direct transcriptional repression of the prosurvival factor BCL-XL (BCL2L1) These findings provided the rationale for dual inhibition of HDAC and BCL-XL, which we show strongly cooperate to overcome inherent resistance to HDACi across diverse tumor cell types.Conclusions: These findings explain the heterogeneous responses of tumor cells to HDACi-induced apoptosis and suggest a framework for predicting response and expanding their therapeutic use in multiple cancer types. Clin Cancer Res; 23(18); 5573-84. ©2017 AACR.
Collapse
Affiliation(s)
| | - Janson W T Tse
- Ludwig Institute for Cancer Research, Melbourne, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | | | - Paul Ioannidis
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - Laura Jenkins
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - Lars Togel
- Ludwig Institute for Cancer Research, Melbourne, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - BeeShin Tan
- Ludwig Institute for Cancer Research, Melbourne, Australia
| | - Ian Luk
- Ludwig Institute for Cancer Research, Melbourne, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Mercedes Davalos-Salas
- Ludwig Institute for Cancer Research, Melbourne, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - Rebecca Nightingale
- Ludwig Institute for Cancer Research, Melbourne, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - Matthew R Thompson
- Hudson Institute of Medical Research and Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria
| | - Bryan R G Williams
- Hudson Institute of Medical Research and Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria
| | | | - Erinna F Lee
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, Victoria, Australia
| | - Walter D Fairlie
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, Victoria, Australia
| | - Amardeep S Dhillon
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - John M Mariadason
- Ludwig Institute for Cancer Research, Melbourne, Australia.
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
29
|
Chang YS, Jalgaonkar SP, Middleton JD, Hai T. Stress-inducible gene Atf3 in the noncancer host cells contributes to chemotherapy-exacerbated breast cancer metastasis. Proc Natl Acad Sci U S A 2017; 114:E7159-E7168. [PMID: 28784776 PMCID: PMC5576783 DOI: 10.1073/pnas.1700455114] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Chemotherapy is a double-edged sword. It is anticancer because of its cytotoxicity. Paradoxically, by increasing chemoresistance and cancer metastasis, it is also procancer. However, the underlying mechanisms for chemotherapy-induced procancer activities are not well understood. Here we describe the ability of paclitaxel (PTX), a frontline chemotherapeutic agent, to exacerbate metastasis in mouse models of breast cancer. We demonstrate that, despite the apparent benefit of reducing tumor size, PTX increased the circulating tumor cells in the blood and enhanced the metastatic burden at the lung. At the primary tumor, PTX increased the abundance of the tumor microenvironment of metastasis, a landmark microanatomical structure at the microvasculature where cancer cells enter the blood stream. At the metastatic lung, PTX improved the tissue microenvironment (the "soil") for cancer cells (the "seeds") to thrive; these changes include increased inflammatory monocytes and reduced cytotoxicity. Importantly, these changes in the primary tumor and the metastatic lung were all dependent on Atf3, a stress-inducible gene, in the noncancer host cells. Together, our data provide mechanistic insights into the procancer effect of chemotherapy, explaining its paradox in the context of the seed-and-soil theory. Analyses of public datasets suggest that our data may have relevance to human cancers. Thus, ATF3 in the host cells links a chemotherapeutic agent-a stressor-to immune modulation and cancer metastasis. Dampening the effect of ATF3 may improve the efficacy of chemotherapy.
Collapse
Affiliation(s)
- Yi Seok Chang
- Molecular, Cellular, and Developmental Biology Program, Ohio State University, Columbus, OH 43210
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH 43210
| | - Swati P Jalgaonkar
- Molecular, Cellular, and Developmental Biology Program, Ohio State University, Columbus, OH 43210
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH 43210
| | - Justin D Middleton
- Molecular, Cellular, and Developmental Biology Program, Ohio State University, Columbus, OH 43210
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH 43210
| | - Tsonwin Hai
- Molecular, Cellular, and Developmental Biology Program, Ohio State University, Columbus, OH 43210;
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH 43210
| |
Collapse
|
30
|
Bar J, Hasim MS, Baghai T, Niknejad N, Perkins TJ, Stewart DJ, Sekhon HS, Villeneuve PJ, Dimitroulakos J. Induction of Activating Transcription Factor 3 Is Associated with Cisplatin Responsiveness in Non-Small Cell Lung Carcinoma Cells. Neoplasia 2017; 18:525-35. [PMID: 27659012 PMCID: PMC5031866 DOI: 10.1016/j.neo.2016.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/30/2016] [Accepted: 07/11/2016] [Indexed: 11/30/2022] Open
Abstract
Non–small cell lung carcinoma (NSCLC) is the most common cause of cancer deaths, with platin-based combination chemotherapy the most efficacious therapies. Gains in overall survival are modest, highlighting the need for novel therapeutic approaches including the development of next-generation platin combination regimens. The goal of this study was to identify novel regulators of platin-induced cytotoxicity as potential therapeutic targets to further enhance platin cytotoxicity. Employing RNA-seq transcriptome analysis comparing two parental NSCLC cell lines Calu6 and H23 to their cisplatin-resistant sublines, Calu6cisR1 and H23cisR1, activating transcription factor 3 (ATF3) was robustly induced in cisplatin-treated parental sensitive cell lines but not their resistant sublines, and in three of six tumors evaluated, but not in their corresponding normal adjacent lung tissue (0/6). Cisplatin-induced JNK activation was a key regulator of this ATF3 induction. Interestingly, in both resistant sublines, this JNK induction was abrogated, and the expression of an activated JNK construct in these cells enhanced both cisplatin-induced cytotoxicity and ATF3 induction. An FDA-approved drug compound screen was employed to identify enhancers of cisplatin cytotoxicity that were dependent on ATF3 gene expression. Vorinostat, a histone deacetylase inhibitor, was identified in this screen and demonstrated synergistic cytotoxicity with cisplatin in both the parental Calu6 and H23 cell lines and importantly in their resistant sublines as well that was dependent on ATF3 expression. Thus, we have identified ATF3 as an important regulator of cisplatin cytotoxicity and that ATF3 inducers in combination with platins are a potential novel therapeutic approach for NSCLC.
Collapse
Affiliation(s)
- Jair Bar
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Medical Oncology, the Ottawa Hospital, Ottawa, Ontario, Canada
| | - Mohamed S Hasim
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, Ontario, Canada
| | - Tabassom Baghai
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Nima Niknejad
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Theodore J Perkins
- Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, Ontario, Canada; Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - David J Stewart
- Department of Medical Oncology, the Ottawa Hospital, Ottawa, Ontario, Canada
| | | | - Patrick J Villeneuve
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Thoracic Surgery, the Ottawa Hospital, Ottawa, Ontario, Canada
| | - Jim Dimitroulakos
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, Ontario, Canada.
| |
Collapse
|
31
|
De Marco C, Laudanna C, Rinaldo N, Oliveira DM, Ravo M, Weisz A, Ceccarelli M, Caira E, Rizzuto A, Zoppoli P, Malanga D, Viglietto G. Specific gene expression signatures induced by the multiple oncogenic alterations that occur within the PTEN/PI3K/AKT pathway in lung cancer. PLoS One 2017; 12:e0178865. [PMID: 28662101 PMCID: PMC5491004 DOI: 10.1371/journal.pone.0178865] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 05/19/2017] [Indexed: 01/04/2023] Open
Abstract
Hyperactivation of the phosphatydil-inositol-3' phosphate kinase (PI3K)/AKT pathway is observed in most NSCLCs, promoting proliferation, migration, invasion and resistance to therapy. AKT can be activated through several mechanisms that include loss of the negative regulator PTEN, activating mutations of the catalytic subunit of PI3K (PIK3CA) and/or mutations of AKT1 itself. However, number and identity of downstream targets of activated PI3K/AKT pathway are poorly defined. To identify the genes that are targets of constitutive PI3K/AKT signalling in lung cancer cells, we performed a comparative transcriptomic analysis of human lung epithelial cells (BEAS-2B) expressing active mutant AKT1 (AKT1-E17K), active mutant PIK3CA (PIK3CA-E545K) or that are silenced for PTEN. We found that, altogether, aberrant PI3K/AKT signalling in lung epithelial cells regulated the expression of 1,960/20,436 genes (9%), though only 30 differentially expressed genes (DEGs) (15 up-regulated, 12 down-regulated and 3 discordant) out of 20,436 that were common among BEAS-AKT1-E17K, BEAS-PIK3CA-E545K and BEAS-shPTEN cells (0.1%). Conversely, DEGs specific for mutant AKT1 were 133 (85 up-regulated; 48 down-regulated), DEGs specific for mutant PIK3CA were 502 (280 up-regulated; 222 down-regulated) and DEGs specific for PTEN loss were 1549 (799 up-regulated, 750 down-regulated). The results obtained from array analysis were confirmed by quantitative RT-PCR on selected up- and down-regulated genes (n = 10). Treatment of BEAS-C cells and the corresponding derivatives with pharmacological inhibitors of AKT (MK2206) or PI3K (LY294002) further validated the significance of our findings. Moreover, mRNA expression of selected DEGs (SGK1, IGFBP3, PEG10, GDF15, PTGES, S100P, respectively) correlated with the activation status of the PI3K/AKT pathway assessed by S473 phosphorylation in NSCLC cell lines (n = 6). Finally, we made use of Ingenuity Pathway Analysis (IPA) to investigate the relevant BioFunctions enriched by the costitutive activation of AKT1-, PI3K- or PTEN-dependent signalling in lung epithelial cells. Expectedly, the analysis of the DEGs common to all three alterations highlighted a group of BioFunctions that included Cell Proliferation of tumor cell lines (14 DEGs), Invasion of cells (10 DEGs) and Migration of tumour cell lines (10 DEGs), with a common core of 5 genes (ATF3, CDKN1A, GDF15, HBEGF and LCN2) that likely represent downstream effectors of the pro-oncogenic activities of PI3K/AKT signalling. Conversely, IPA analysis of exclusive DEGs led to the identification of different downstream effectors that are modulated by mutant AKT1 (TGFBR2, CTSZ, EMP1), mutant PIK3CA (CCND2, CDK2, IGFBP2, TRIB1) and PTEN loss (ASNS, FHL2). These findings not only shed light on the molecular mechanisms that are activated by aberrant signalling through the PI3K/AKT pathway in lung epithelial cells, but also contribute to the identification of previously unrecognised molecules whose regulation takes part in the development of lung cancer.
Collapse
Affiliation(s)
- Carmela De Marco
- Dipartimento di Medicina Sperimentale e Clinica, Università "Magna Graecia", Catanzaro, Italia
| | - Carmelo Laudanna
- Dipartimento di Medicina Sperimentale e Clinica, Università "Magna Graecia", Catanzaro, Italia
| | - Nicola Rinaldo
- Biogem scarl, Instituto di Rihe Genetiche "Gaetano Salvatore", Ariano Irpino, Italia
| | - Duarte Mendes Oliveira
- Dipartimento di Medicina Sperimentale e Clinica, Università "Magna Graecia", Catanzaro, Italia
| | - Maria Ravo
- Laboratorio di Medicina Molecolare e Genomica, Facoltà di Medicina e Chirurgia, Università di Salerno, Baronissi, Italia
| | - Alessandro Weisz
- Laboratorio di Medicina Molecolare e Genomica, Facoltà di Medicina e Chirurgia, Università di Salerno, Baronissi, Italia
| | - Michele Ceccarelli
- Dipartimento di Studi Biologici e Ambientali, Università del Sannio, Benevento, Italia
| | - Elvira Caira
- Dipartimento di Medicina Sperimentale e Clinica, Università "Magna Graecia", Catanzaro, Italia
| | - Antonia Rizzuto
- Dipartimento di Scienze Mediche e Chirurgiche, Università "Magna Graecia", Catanzaro, Italia
| | - Pietro Zoppoli
- Dipartimento di Medicina Sperimentale e Clinica, Università "Magna Graecia", Catanzaro, Italia
| | - Donatella Malanga
- Dipartimento di Medicina Sperimentale e Clinica, Università "Magna Graecia", Catanzaro, Italia
| | - Giuseppe Viglietto
- Dipartimento di Medicina Sperimentale e Clinica, Università "Magna Graecia", Catanzaro, Italia.,Biogem scarl, Instituto di Rihe Genetiche "Gaetano Salvatore", Ariano Irpino, Italia
| |
Collapse
|
32
|
Park GH, Song HM, Jeong JB. Kahweol from Coffee Induces Apoptosis by Upregulating Activating Transcription Factor 3 in Human Colorectal Cancer Cells. Biomol Ther (Seoul) 2017; 25:337-343. [PMID: 27871156 PMCID: PMC5424645 DOI: 10.4062/biomolther.2016.114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/27/2016] [Accepted: 08/23/2016] [Indexed: 12/30/2022] Open
Abstract
Kahweol as a coffee-specific diterpene has been reported to induce apoptosis in human cancer cells. Although some molecular targets for kahweol-mediated apoptosis have been elucidated, the further mechanism for apoptotic effect of kahweol is not known. Activating transcription factor 3 (ATF3) has been reported to be associated with apoptosis in colorectal cancer. The present study was performed to investigate the molecular mechanism by which kahweol stimulates ATF3 expression and apoptosis in human colorectal cancer cells. Kahweol increased apoptosis in human colorectal cancer cells. It also increased ATF3 expression through the transcriptional activity. The responsible cis-element for ATF3 transcriptional activation by kahweol was CREB located between -147 to -85 of ATF3 promoter. ATF3 overexpression increased kahweol-mediated cleaved PARP, while ATF3 knockdown attenuated the cleavage of PARP by kahweol. Inhibition of ERK1/2 and GSK3β blocked kahweol-mediated ATF3 expression. The results suggest that kahweol induces apoptosis through ATF3-mediated pathway in human colorectal cancer cells.
Collapse
Affiliation(s)
- Gwang Hun Park
- Department of Bioresource Sciences, Andong National University, Andong 36729, Republic of Korea
| | - Hun Min Song
- Department of Bioresource Sciences, Andong National University, Andong 36729, Republic of Korea
| | - Jin Boo Jeong
- Department of Bioresource Sciences, Andong National University, Andong 36729, Republic of Korea
| |
Collapse
|
33
|
Thakor FK, Wan KW, Welsby PJ, Welsby G. Pharmacological effects of asiatic acid in glioblastoma cells under hypoxia. Mol Cell Biochem 2017; 430:179-190. [PMID: 28205096 PMCID: PMC5437181 DOI: 10.1007/s11010-017-2965-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/30/2017] [Indexed: 01/21/2023]
Abstract
Glioblastoma multiforme is the most common and malignant primary brain tumor in adults. Despite current treatment options including surgery followed by radiation and chemotherapy with temozolomide and cisplatin, the median survival rate remains low (<16 months). Combined with increasing drug resistance and the inability of some compounds to cross the blood–brain barrier, novel compounds are being sought for the treatment of this disease. Here, we aimed to examine the pharmacological effect of Asiatic acid (AA) in glioblastoma under hypoxia. To investigate the effects of AA on cell viability, proliferation, apoptosis, and wound healing, SVG p12 fetal glia and U87-MG grade IV glioblastoma cells were cultured under normoxic (21% O2) and hypoxic (1% O2) conditions. In normoxia, AA reduced cell viability in U87-MG cells in a time and concentration-dependent manner. A significant decrease in viability, compared to cisplatin, was observed following 2 h of AA treatment with no significant changes in cell proliferation or cell cycle progression observed. Under hypoxia, a significantly greater number of cells underwent apoptosis in comparison to cisplatin. While cisplatin showed a reduction in wound healing in normoxia, a significantly greater reduction was observed following AA treatment. An overall reduction in wound healing was observed under hypoxia. The results of this study show that AA has cytotoxic effects on glioma cell lines and has the potential to become an alternative treatment for glioblastoma.
Collapse
Affiliation(s)
- Flourina Kumar Thakor
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| | - Ka-Wai Wan
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| | - Philip John Welsby
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| | - Gail Welsby
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK.
| |
Collapse
|
34
|
Kumar S, Tchounwou PB. Molecular mechanisms of cisplatin cytotoxicity in acute promyelocytic leukemia cells. Oncotarget 2016; 6:40734-46. [PMID: 26486083 PMCID: PMC4747365 DOI: 10.18632/oncotarget.5754] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/19/2015] [Indexed: 11/25/2022] Open
Abstract
Cis-diamminedichloroplatinum (II) (cisplatin) is a widely used anti-tumor drug for the treatment of a broad range of human malignancies with successful therapeutic outcomes for head and neck, ovarian, and testicular cancers. It has been found to inhibit cell cycle progression and to induce oxidative stress and apoptosis in acute promyelocytic leukemia (APL) cells. However, its molecular mechanisms of cytotoxic action are poorly understood. We hypothesized that cisplatin induces cytotoxicity through DNA adduct formation, oxidative stress, transcriptional factors (p53 and AP-1), cell cycle regulation, stress signaling and apoptosis in APL cells. We used the APL cell line as a model, and applied a variety of molecular tools to elucidate the cytotoxic mode of action of cisplatin. We found that cisplatin inhibited cell proliferation by a cytotoxicity, characterized by DNA damage and modulation of oxidative stress. Cisplatin also activated p53 and phosphorylated activator protein (AP-1) component, c-Jun at serine (63, 73) residue simultaneously leading to cell cycle arrest through stimulation of p21 and down regulation of cyclins and cyclin dependent kinases in APL cell lines. It strongly activated the intrinsic pathway of apoptosis through alteration of the mitochondrial membrane potential, release of cytochrome C, and up-regulation of caspase 3 activity. It also down regulated the p38MAPK pathway. Overall, this study highlights the molecular mechanisms that underline cisplatin toxicity to APL cells, and provides insights into selection of novel targets and/or design of therapeutic agents to treat APL.
Collapse
Affiliation(s)
- Sanjay Kumar
- Cellomics and Toxicogenomics Research Laboratory, NIH/NIMHD-RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson, Mississippi 39217, USA
| | - Paul B Tchounwou
- Cellomics and Toxicogenomics Research Laboratory, NIH/NIMHD-RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson, Mississippi 39217, USA
| |
Collapse
|
35
|
García-Cano J, Roche O, Cimas FJ, Pascual-Serra R, Ortega-Muelas M, Fernández-Aroca DM, Sánchez-Prieto R. p38MAPK and Chemotherapy: We Always Need to Hear Both Sides of the Story. Front Cell Dev Biol 2016; 4:69. [PMID: 27446920 PMCID: PMC4928511 DOI: 10.3389/fcell.2016.00069] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/13/2016] [Indexed: 12/14/2022] Open
Abstract
The p38MAPK signaling pathway was initially described as a stress response mechanism. In fact, during previous decades, it was considered a pathway with little interest in oncology especially in comparison with other MAPKs such as ERK1/2, known to be target of oncogenes like Ras. However, its involvement in apoptotic cell death phenomena makes this signaling pathway more attractive for many cancer research laboratories. This apoptotic role allows to establish a link between p38MAPK and regular chemotherapeutic agents such as Cisplatin or base analogs (Cytarabine, Gemcitabine or 5-Fluorouracil) which are currently used in hospitals across the world. In fact, and more recently, p38MAPK has also been connected with targeted therapies like tyrosine kinase inhibitors (vg. Imatinib, Sorafenib) and, to a lesser extent, with monoclonal antibodies. In addition, the oncogenic or tumor suppressor potential of this signaling pathway has aroused the interest of the scientific community in evaluating p38MAPK as a novel target for cancer therapy. In this review, we will summarize the role of p38MAPK in chemotherapy as well as the potential that p38MAPK inhibition can bring to cancer therapy. All the evidences suggest that p38MAPK could be a double-edged sword and that the search for the most appropriate candidate patients, depending on their pathology and treatment, will lead to a more rational use of this new therapeutic tool.
Collapse
Affiliation(s)
- Jesús García-Cano
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| | - Olga Roche
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| | - Francisco J Cimas
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| | - Raquel Pascual-Serra
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| | - Marta Ortega-Muelas
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| | - Diego M Fernández-Aroca
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| | - Ricardo Sánchez-Prieto
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| |
Collapse
|
36
|
Interferon β improves the efficacy of low dose cisplatin by inhibiting NF-κB/p-Akt signaling on HeLa cells. Biomed Pharmacother 2016; 82:124-32. [PMID: 27470347 DOI: 10.1016/j.biopha.2016.04.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/26/2016] [Accepted: 04/26/2016] [Indexed: 01/23/2023] Open
Abstract
The purpose of this study was to evaluate the anticancer efficacy of interferon β in combination with low dose of cisplatin on human cervical cancer progression, as well as its principal action mechanism. The combination treatment synergistically potentiated the effect of interferon β on cell growth inhibition and DNA damage on HeLa cells by repressing NF-κB/p-Akt signaling. Synergistic targeting of these pathways has a therapeutic potential. Further, the combination treatment ameliorated the expression of pro-apoptotic Bax, and decreased the expression of anti-apoptotic protein Bcl-2. Additionally, the expression of active PARP was significantly increased and MMP-9 level was decreased in combination group as compared to the expression seen for the treatment with interferon β or cisplatin alone. Results demonstrate that the synergistic inhibitory effects of interferon β and low dose of cisplatin on human cervical cancer cells and also suggest that the inhibition of NF-κB/p-Akt signaling pathway plays a critical role in the anticancer effects of combination treatment along with the induction of PARP. Therefore, the combination of interferon β and cisplatin may be a useful treatment for human cervical cancer, with a greater effectiveness than other treatments.
Collapse
|
37
|
Zhou X, Qu Z, Zhu C, Lin Z, Huo Y, Wang X, Wang J, Li B. Identification of urinary microRNA biomarkers for detection of gentamicin-induced acute kidney injury in rats. Regul Toxicol Pharmacol 2016; 78:78-84. [PMID: 27074385 DOI: 10.1016/j.yrtph.2016.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 11/17/2022]
Abstract
MicroRNAs (miRNAs) have been recently recognized as promising non-invasive biomarkers for detecting the organ injuries. To further understand the sensibility and reliability of miRNA measurements in urine sample for predicting drug-induced early nephrotoxicity, a global urinary miRNA expression analysis was performed in the rodent models with gentamicin-induced acute kidney injury (AKI). Male Wistar rats were daily administrated with gentamicin (0, 60, and 120 mg/kg) for up to 10 days by intraperitoneal injection, and the miRNA profiling of animal urine samples were subsequently analyzed using TaqMan(®) Array Rodent miRNA Cards. The results showed that four miRNAs (mmu-miR-138-5p, mmu-miR-1971, mmu-miR-218-1-3p, and rno-miR-489) were continuously increased in urine samples since day 4 after administration with gentamicin, which was not reflected by the standard markers such as serum creatinine (Cr) and urea nitrogen (BUN). Furthermore, other nine urinary miRNAs were increased in both 60 and 120 mg/kg groups on day 8. Receiver operator characteristics analysis demonstrated that the performance of these miRNAs with time- or dose-dependent increases were comparable to standard biomarkers (i.e. serum Cr and BUN), suggesting that the urinary miRNA panel can be used as potential biomarkers for the detection of gentamicin-induced AKI in rats. Moreover, the computer prediction analysis showed that these differentially expressed miRNAs were potentially targeted to many genes, which were mainly associated with the regulation of metabolic process and signaling. These data will improve the understanding and prediction of toxicology processes induced by nephrotoxicants.
Collapse
Affiliation(s)
- Xiaobing Zhou
- National Center for Safety Evaluation of Drugs, National Institutes of Food and Drug Control, Hongda Middle Street A8, Beijing Economic and Technological Development Area, Beijing, 100176, China
| | - Zhe Qu
- National Center for Safety Evaluation of Drugs, National Institutes of Food and Drug Control, Hongda Middle Street A8, Beijing Economic and Technological Development Area, Beijing, 100176, China
| | - Cong Zhu
- National Center for Safety Evaluation of Drugs, National Institutes of Food and Drug Control, Hongda Middle Street A8, Beijing Economic and Technological Development Area, Beijing, 100176, China
| | - Zhi Lin
- National Center for Safety Evaluation of Drugs, National Institutes of Food and Drug Control, Hongda Middle Street A8, Beijing Economic and Technological Development Area, Beijing, 100176, China
| | - Yan Huo
- National Center for Safety Evaluation of Drugs, National Institutes of Food and Drug Control, Hongda Middle Street A8, Beijing Economic and Technological Development Area, Beijing, 100176, China
| | - Xue Wang
- National Center for Safety Evaluation of Drugs, National Institutes of Food and Drug Control, Hongda Middle Street A8, Beijing Economic and Technological Development Area, Beijing, 100176, China
| | - Jufeng Wang
- National Center for Safety Evaluation of Drugs, National Institutes of Food and Drug Control, Hongda Middle Street A8, Beijing Economic and Technological Development Area, Beijing, 100176, China
| | - Bo Li
- National Center for Safety Evaluation of Drugs, National Institutes of Food and Drug Control, Hongda Middle Street A8, Beijing Economic and Technological Development Area, Beijing, 100176, China.
| |
Collapse
|
38
|
Yuan A, Hsiao YJ, Chen HY, Chen HW, Ho CC, Chen YY, Liu YC, Hong TH, Yu SL, Chen JJW, Yang PC. Opposite Effects of M1 and M2 Macrophage Subtypes on Lung Cancer Progression. Sci Rep 2015; 5:14273. [PMID: 26399191 PMCID: PMC4585843 DOI: 10.1038/srep14273] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/24/2015] [Indexed: 12/11/2022] Open
Abstract
Macrophages in a tumor microenvironment have been characterized as M1- and M2-polarized subtypes. Here, we discovered the different macrophages' impacts on lung cancer cell A549. The M2a/M2c subtypes promoted A549 invasion and xenograft tumor growth. The M1 subtype suppressed angiogenesis. M1 enhanced the sensitivity of A549 to cisplatin and decreased the tube formation activity and cell viability of A549 cells by inducing apoptosis and senescence. Different macrophage subtypes regulated genes involved in the immune response, cytoskeletal remodeling, coagulation, cell adhesion, and apoptosis pathways in A549 cells, which was a pattern that correlated with the altered behaviors of the A549 cells. Furthermore, we found that the identified M1/M2 gene signatures were significantly correlated with the extended overall survival of lung cancer patients. These results suggest that M1/M2 gene expression signature may be used as a prognostic indicator for lung cancer patients, and M1/M2 polarization may be a target of investigation of immune-modulating therapies for lung cancer in the future.
Collapse
Affiliation(s)
- Ang Yuan
- Departments of Chest Medicine and Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Jing Hsiao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chao-Chi Ho
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Yun Chen
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Chia Liu
- Departments of Chest Medicine and Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tsai-Hsia Hong
- Departments of Surgery, National Taiwan University Hospital, Taipei, Taiwan.,General Education Center, National Defense University, Taipei, Taiwan
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pathology, National Taiwan University College of Medicine, Taipei, Taiwan.,Center for Optoelectronic Biomedicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jeremy J W Chen
- Institute of Biomedical Sciences, National Chung-Hsing University, Taichung, Taiwan.,Agricultural Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
39
|
An apoptosis-enhancing drug overcomes platinum resistance in a tumour-initiating subpopulation of ovarian cancer. Nat Commun 2015; 6:7956. [PMID: 26234182 PMCID: PMC4532886 DOI: 10.1038/ncomms8956] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/29/2015] [Indexed: 02/07/2023] Open
Abstract
High-grade serous ovarian cancers (HGSCs) are deadly malignancies that relapse despite carboplatin chemotherapy. Here we show that 16 independent primary HGSC samples contain a CA125-negative population enriched for carboplatin-resistant cancer initiating cells. Transcriptome analysis reveals upregulation of homologous recombination DNA repair and anti-apoptotic signals in this population. While treatment with carboplatin enriches for CA125-negative cells, co-treatment with carboplatin and birinapant eliminates these cells in HGSCs expressing high levels of the inhibitor of apoptosis protein cIAP in the CA125-negative population. Birinapant sensitizes CA125-negative cells to carboplatin by mediating degradation of cIAP causing cleavage of caspase 8 and restoration of apoptosis. This co-therapy significantly improves disease-free survival in vivo compared with either therapy alone in tumour-bearing mice. These findings suggest that therapeutic strategies that target CA125-negative cells may be useful in the treatment of HGSC. Despite normalization of the CA125 serum biomarker at the completion of carboplatin therapy the vast majority of patients with high grade serous ovarian cancers relapse. Here, Janzen et al., identify a sub-population of tumor cells that are CA125 negative, cancer initiating and platinum resistant but readily eliminated with the addition of apoptosis enhancing drugs to carboplatin.
Collapse
|
40
|
Fan S, Chen WX, Lv XB, Tang QL, Sun LJ, Liu BD, Zhong JL, Lin ZY, Wang YY, Li QX, Yu X, Zhang HQ, Li YL, Wen B, Zhang Z, Chen WL, Li JS. miR-483-5p determines mitochondrial fission and cisplatin sensitivity in tongue squamous cell carcinoma by targeting FIS1. Cancer Lett 2015; 362:183-91. [DOI: 10.1016/j.canlet.2015.03.045] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 03/26/2015] [Accepted: 03/28/2015] [Indexed: 12/21/2022]
|
41
|
Xie JJ, Xie YM, Chen B, Pan F, Guo JC, Zhao Q, Shen JH, Wu ZY, Wu JY, Xu LY, Li EM. ATF3 functions as a novel tumor suppressor with prognostic significance in esophageal squamous cell carcinoma. Oncotarget 2015; 5:8569-82. [PMID: 25149542 PMCID: PMC4226705 DOI: 10.18632/oncotarget.2322] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
ATF3 was a transcription factor involved in the progression of certain cancers. Here, we sought to explore the expression and biological function of ATF3 in esophageal squamous cell carcinomas (ESCC). The prognostic significance of ATF3 expression was evaluated in 150 ESCC samples and 21 normal squamous cell epithelium tissues. Results showed that ATF3 was down-regulated in ESCC lesions compared with paired non-cancerous tissues and low tumorous ATF3 expression significantly correlated with shorter overall survival (OS) and disease-free survival (DFS). Cox regression analysis confirmed that ATF3 expression was an independent prognostic factor. Experimentally, forced expression of ATF3 led to decreased growth and invasion properties of ESCC cells in vitro and in vivo, whereas knockdown of ATF3 did the opposite. Furthermore, ATF3 upregulated the expression of MDM2 by increasing the nuclear translocation of P53 and formed an ATF3/MDM2/MMP-2 complex that facilitated MMP-2 degradation, which subsequently led to inhibition of cell invasion. Finally, we showed that Cisplatin could restrain the invasion of ESCC cells by inducing the expression of ATF3 via P53 signaling. Combined, our findings highlight a suppressed role for ATF3 in ESCC and targeting ATF3 might be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Jian-Jun Xie
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Medical College of Shantou University, Shantou 515041, P. R. China. Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 515041, P. R. China
| | - Yang-Min Xie
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Medical College of Shantou University, Shantou 515041, P. R. China. Department of Experimental Animal Center, Medical College of Shantou University, Shantou 515041, P. R. China
| | - Bo Chen
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Medical College of Shantou University, Shantou 515041, P. R. China. Institute of Oncologic Pathology, Medical College of Shantou University, Shantou 515041, P. R. China
| | - Feng Pan
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Medical College of Shantou University, Shantou 515041, P. R. China. Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 515041, P. R. China
| | - Jin-Cheng Guo
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Medical College of Shantou University, Shantou 515041, P. R. China. Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 515041, P. R. China
| | - Qing Zhao
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Medical College of Shantou University, Shantou 515041, P. R. China. Institute of Oncologic Pathology, Medical College of Shantou University, Shantou 515041, P. R. China
| | - Jin-Hui Shen
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou 515041, P. R. China
| | - Zhi-Yong Wu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Medical College of Shantou University, Shantou 515041, P. R. China. Department of Oncologic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou 515041, P. R. China
| | - Jian-Yi Wu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Medical College of Shantou University, Shantou 515041, P. R. China. Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 515041, P. R. China
| | - Li-Yan Xu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Medical College of Shantou University, Shantou 515041, P. R. China. Institute of Oncologic Pathology, Medical College of Shantou University, Shantou 515041, P. R. China
| | - En-Min Li
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Medical College of Shantou University, Shantou 515041, P. R. China. Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 515041, P. R. China
| |
Collapse
|
42
|
The induction of activating transcription factor 3 (ATF3) contributes to anti-cancer activity of Abeliophyllum distichum Nakai in human colorectal cancer cells. Altern Ther Health Med 2014; 14:487. [PMID: 25494848 PMCID: PMC4302050 DOI: 10.1186/1472-6882-14-487] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 12/11/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND Recently, Abeliophyllum distichum Nakai (A. distichum) has been reported to exert the inhibitory effect on angiotensin converting enzyme. However, no specific pharmacological effects from A. distichum have been described. We performed in vitro study to evaluate anti-cancer properties of A. distichum and then elucidate the potential mechanisms. METHODS Cell viability was measured by MTT assay. ATF3 expression level was evaluated by Western blot or RT-PCR and ATF3 transcriptional activity was determined using a dual-luciferase assay kit after the transfection of ATF3 promoter constructs. In addition, ATF3-dependent apoptosis was evaluated by Western blot after ATF3 knockdown using ATF3 siRNA. RESULTS Exposure of ethyl acetate fraction from the parts of A. distichum including flower, leaf and branch to human colorectal cancer cells, breast cancer cells and hepatocellular carcinoma reduced the cell viability. The branch extracts from A. distichum (EAFAD-B) increased the expression of activating transcription factor 3 (ATF3) and promoter activity, indicating transcriptional activation of ATF3 gene by EAFAD-B. In addition, our data showed that EAFAD-B-responsible sites might be between -147 and -85 region of the ATF3 promoter. EAFAD-B-induced ATF3 promoter activity was significantly decreased when the CREB site was deleted. However, the deletion of Ftz sites did not affect ATF3 promoter activity by EAFAD-B. We also observed that inhibition of p38MAPK and GSK3β attenuated EAFAD-B-mediated ATF3 promoter activation. Also, EAFAD-B contributes at least in part to increase of ATF3 accumulation. CONCLUSION These findings suggest that the anti-cancer activity of EAFAD-B may be a result of ATF3 promoter activation and subsequent increase of ATF3 expression.
Collapse
|
43
|
Yu L, Gu C, Zhong D, Shi L, Kong Y, Zhou Z, Liu S. Induction of autophagy counteracts the anticancer effect of cisplatin in human esophageal cancer cells with acquired drug resistance. Cancer Lett 2014; 355:34-45. [PMID: 25236911 DOI: 10.1016/j.canlet.2014.09.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 02/07/2023]
Abstract
Cisplatin-based chemotherapy frequently resulted in acquired resistance. The underpinning mechanism of such resistance remains obscure especially in relation to autophagic response. This study thus investigated the role of autophagy in the anticancer activity of cisplatin in human esophageal cancer cells with acquired cisplatin resistance. In response to cisplatin treatment, EC109 cells exhibited substantial apoptosis and senescence whereas cisplatin-resistant EC109/CDDP cells exhibited resistance. In this respect, cisplatin increased ERK phosphorylation whose inhibition by MEK inhibitor significantly attenuated the cytotoxic and cytostatic effect of cisplatin. Notably, cisplatin preferentially induces autophagy in EC109/CDDP cells but not in EC109 cells. Moreover, the induction of autophagy was accompanied by the suppression of mTORC1 activity. Abolition of autophagy by pharmacological inhibitors or knockdown of ATG5/7 re-sensitized EC109/CDDP cells. Co-administration of an autophagy inhibitor chloroquine and cisplatin significantly suppressed tumor growth whereas cisplatin monotherapy failed to elicit anticancer activity in nude mice xenografted with EC109/CDDP cells. To conclude, our data implicate autophagic response as a key mechanism of acquired resistance to cisplatin, suggesting that autophagy is a novel target to improve therapy efficiency of cisplatin toward human esophageal cancers with acquired resistance.
Collapse
Affiliation(s)
- Le Yu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Chunping Gu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Desheng Zhong
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Lili Shi
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yi Kong
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zhitao Zhou
- Electron Microscopy Laboratory, Southern Medical University, Guangzhou, China
| | - Shuwen Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
44
|
Vo V, Tanthmanatham O, Han H, Bhowmik PK, Spangelo BL. Synthesis of [PtCl2(4,4'-dialkoxy-2,2'-bipyridine)] complexes and their in vitro anticancer properties. Metallomics 2014; 5:973-87. [PMID: 23817622 DOI: 10.1039/c3mt00128h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of [Pt(II)Cl2(4,4'-dialkoxy-2,2'-bipyridine)] complexes of the general formula of [Pt(II)Cl2(4,4'-bis(RO)-2,2'-bipyridine)] (where R = -(CH2)n-1CH3, n = 2-6, 8) were synthesized and characterized using (1)H NMR, (13)C NMR spectroscopy, elemental analysis, mass spectroscopy, and differential scanning calorimetry measurements. The in vitro anti-proliferative activities of these compounds were evaluated against human cancer cell lines A549 (lung adenocarcinoma), DU145 (prostate carcinoma), MCF-7 (breast adenocarcinoma), and MDA-MB-435 (melanoma) using the MTS cell proliferation assay. Several Pt(II) coordination compounds were found to have greatly enhanced activity compared to cisplatin after a one hour treatment in all cell lines tested. A structure-activity relationship was observed, that is, the activity increases as the carbon chain length of the alkyl group increases. The activity was maximum when the carbon chain length reached four or five carbons and decreased with the longer carbon chain length. Fluorescence microscopy and flow cytometry data indicate that the main mode of cell death is through apoptosis with some necrotic responses.
Collapse
Affiliation(s)
- Van Vo
- Department of Chemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Box 454003, Las Vegas, NV 89154-4003, USA
| | | | | | | | | |
Collapse
|
45
|
Evaluation of novel trans-sulfonamide platinum complexes against tumor cell lines. Eur J Med Chem 2014; 76:360-8. [PMID: 24589491 DOI: 10.1016/j.ejmech.2014.02.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/30/2014] [Accepted: 02/08/2014] [Indexed: 11/24/2022]
Abstract
Platinum-based drugs, mainly cisplatin, are employed for the treatment of solid malignancies. However, cisplatin treatment often results in the development of chemoresistance, leading to therapeutic failure. Here, the antitumor activity of different trans-sulfonamide platinum complexes in a panel of human cell lines is presented. The cytotoxicity profiles and cell cycle analyses of these platinum sulfonamide complexes were different from those of cisplatin. These studies showed that complex 2b with cyclohexyldiamine and dansyl moieties had the best antitumoral activities.
Collapse
|
46
|
A Taiwanese Propolis Derivative Induces Apoptosis through Inducing Endoplasmic Reticular Stress and Activating Transcription Factor-3 in Human Hepatoma Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:658370. [PMID: 24222778 PMCID: PMC3814109 DOI: 10.1155/2013/658370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 09/01/2013] [Indexed: 12/22/2022]
Abstract
Activating transcription factor-(ATF-) 3, a stress-inducible transcription factor, is rapidly upregulated under various stress conditions and plays an important role in inducing cancer cell apoptosis. NBM-TP-007-GS-002 (GS-002) is a Taiwanese propolin G (PPG) derivative. In this study, we examined the antitumor effects of GS-002 in human hepatoma Hep3B and HepG2 cells in vitro. First, we found that GS-002 significantly inhibited cell proliferation and induced cell apoptosis in dose-dependent manners. Several main apoptotic indicators were found in GS-002-treated cells, such as the cleaved forms of caspase-3, caspase-9, and poly(ADP-ribose) polymerase (PARP). GS-002 also induced endoplasmic reticular (ER) stress as evidenced by increases in ER stress-responsive proteins including glucose-regulated protein 78 (GRP78), growth arrest- and DNA damage-inducible gene 153 (GADD153), phosphorylated eukaryotic initiation factor 2α (eIF2α), phosphorylated protein endoplasmic-reticular-resident kinase (PERK), and ATF-3. The induction of ATF-3 expression was mediated by mitogen-activated protein kinase (MAPK) signaling pathways in GS-002-treated cells. Furthermore, we found that GS-002 induced more cell apoptosis in ATF-3-overexpressing cells. These results suggest that the induction of apoptosis by the propolis derivative, GS-002, is partially mediated through ER stress and ATF-3-dependent pathways, and GS-002 has the potential for development as an antitumor drug.
Collapse
|
47
|
Park EJ, Umh HN, Kim SW, Cho MH, Kim JH, Kim Y. ERK pathway is activated in bare-FeNPs-induced autophagy. Arch Toxicol 2013; 88:323-36. [PMID: 24068039 DOI: 10.1007/s00204-013-1134-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 09/12/2013] [Indexed: 11/30/2022]
Abstract
Iron oxide nanoparticles (FeNPs) are known to be one of the most biocompatible and safe nanoparticles. However, their long-term persistence remains a problem, and macrophages play as an important mediator in continuous stimulation of the immune system due to biopersistence of nanoparticles. In the present study, we identified the mechanisms underlying the uptake and toxicity of bare-FeNPs using RAW264.7 cells, a mouse peritoneal macrophage cell line. The bare-FeNPs penetrated the cell membrane through electrostatic interactions together with the general phagocytic pathway. At 24 h after exposure, they distributed freely in the cytosol or within autophagosome-like vacuoles. Bare-FeNPs induced decrease in the cell viability along with the cell cycle arrest in G1 phase. In addition, they increased the generation of ROS and the secretion of NO and TNF alpha as well as the expression of SOD-1 and SOD-2 proteins, which are an antioxidant. While the mitochondrial calcium level, the intensity of labeled mitochondria, and ATP production decreased, the levels of autophagy-related proteins such as p62, beclin 1, ATG5, and LC3B increased in a dose-dependent manner together with the levels of ATF 3, p-EGFR, and p-ERK proteins. However, the level of p-JNK protein clearly decreased. TEM images also showed that damaged organelle exist within autophagosome-like vacuoles with bare-FeNPs. On the basis of these results, we suggest that bare-FeNPs induce autophagy by initiating oxidative stress in RAW264.7 cells. Furthermore, ERK, but not JNK, pathway is activated in bare-FeNPs-induced autophagy.
Collapse
Affiliation(s)
- Eun-Jung Park
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea,
| | | | | | | | | | | |
Collapse
|
48
|
Signalling mechanisms involved in renal pathological changes during cisplatin-induced nephropathy. Eur J Clin Pharmacol 2013; 69:1863-74. [PMID: 23929259 DOI: 10.1007/s00228-013-1568-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/24/2013] [Indexed: 12/20/2022]
Abstract
CONTEXT Cisplatin, a coordination platinum complex, is used as a potential anti-neoplastic agent, having well recognized DNA-damaging property that triggers cell-cycle arrest and cell death in cancer therapy. Beneficial chemotherapeutic actions of cisplatin can be detrimental for kidneys. BACKGROUND Unbound cisplatin gets accumulated in renal tubular cells, leading to cell injury and death. This liable action of cisplatin on kidneys is mediated by altered intracellular signalling pathways such as mitogen-activated protein kinase (MAPK), extracellular regulated kinase (ERK), or C- Jun N terminal kinase/stress-activated protein kinase (JNK/SAPK). Further, these signalling alterations are responsible for release and activation of tumour necrosis factor (TNF-α), mitochondrial dysfunction, and apoptosis, which ultimately cause the renal pathogenic process. Cisplatin itself enhances the generation of reactive oxygen species (ROS) and activation of nuclear factor-κB (NF-κB), inflammation, and mitochondrial dysfunction, which further leads to renal apoptosis. Cisplatin-induced nephropathy is also mediated through the p53 and protein kinase-Cδ (PKCδ) signalling pathways. OBJECTIVE This review explores these signalling alterations and their possible role in the pathogenesis of cisplatin-induced renal injury.
Collapse
|
49
|
Niknejad N, Gorn-Hondermann I, Ma L, Zahr S, Johnson-Obeseki S, Corsten M, Dimitroulakos J. Lovastatin-induced apoptosis is mediated by activating transcription factor 3 and enhanced in combination with salubrinal. Int J Cancer 2013; 134:268-79. [DOI: 10.1002/ijc.28369] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 06/11/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Nima Niknejad
- Centre for Cancer Therapeutics; Ottawa Hospital Research Institute; Ottawa ON Canada
- Faculty of Medicine and the Department of Biochemistry; University of Ottawa; Ottawa ON Canada
| | - Ivan Gorn-Hondermann
- Centre for Cancer Therapeutics; Ottawa Hospital Research Institute; Ottawa ON Canada
| | - Laurie Ma
- Centre for Cancer Therapeutics; Ottawa Hospital Research Institute; Ottawa ON Canada
| | - Stephanie Zahr
- Centre for Cancer Therapeutics; Ottawa Hospital Research Institute; Ottawa ON Canada
- Faculty of Medicine and the Department of Biochemistry; University of Ottawa; Ottawa ON Canada
| | | | - Martin Corsten
- Department of Otolaryngology; The Ottawa Hospital; Ottawa ON Canada
| | - Jim Dimitroulakos
- Centre for Cancer Therapeutics; Ottawa Hospital Research Institute; Ottawa ON Canada
- Faculty of Medicine and the Department of Biochemistry; University of Ottawa; Ottawa ON Canada
| |
Collapse
|
50
|
Overcoming intratumor heterogeneity of polygenic cancer drug resistance with improved biomarker integration. Neoplasia 2013; 14:1278-89. [PMID: 23308059 DOI: 10.1593/neo.122096] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 12/11/2012] [Accepted: 12/11/2012] [Indexed: 12/14/2022] Open
Abstract
Improvements in technology and resources are helping to advance our understanding of cancer-initiating events as well as factors involved with tumor progression, adaptation, and evasion of therapy. Tumors are well known to contain diverse cell populations and intratumor heterogeneity affords neoplasms with a diverse set of biologic characteristics that can be used to evolve and adapt. Intratumor heterogeneity has emerged as a major hindrance to improving cancer patient care. Polygenic cancer drug resistance necessitates reconsidering drug designs to include polypharmacology in pursuit of novel combinatorial agents having multitarget activity to overcome the diverse and compensatory signaling pathways in which cancer cells use to survive and evade therapy. Advances will require integration of different biomarkers such as genomics and imaging to provide for more adequate elucidation of the spatially varying location, type, and extent of diverse intratumor signaling molecules to provide for a rationale-based personalized cancer medicine strategy.
Collapse
|