1
|
Huang J, Michaud E, Shinde-Jadhav S, Fehric S, Marcq G, Mansure JJ, Cury F, Brimo F, Piccirillo CA, Kassouf W. Effects of combined radiotherapy with immune checkpoint blockade on immunological memory in luminal-like subtype murine bladder cancer model. Cancer Biol Ther 2024; 25:2365452. [PMID: 38860746 PMCID: PMC11174127 DOI: 10.1080/15384047.2024.2365452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024] Open
Abstract
MIBC is a highly lethal disease, and the patient survival rate has not improved significantly over the last decades. UPPL is a cell line that can be used to recapitulate the luminal-like molecular subtype of bladder cancer and to discover effective treatments to be translated in patients. Here, we investigate the effects of combinational treatments of radiotherapy and immunotherapy in this recently characterized UPPL tumor-bearing mice. We first characterized the baseline tumor microenvironment and the effect of radiation, anti-PD-L1, and combinatorial treatments. Then, the mice were re-challenged with a second tumor (rechallenged tumor) in the contralateral flank of the first tumor to assess the immunological memory. Radiation slowed down the tumor growth. All treatments also decreased the neutrophil population and increased the T cell population. Anti-PD-L1 therapy was not able to synergize with radiation to further delay tumor growth. Furthermore, none of the treatments were able to generate immune memory. The treatments were not sufficient to induce a significant and lasting pool of memory cells. We show here that anti-PD-L1 treatment added to radiotherapy was not enough to achieve T cell-mediated memory in UPPL tumors. Stronger T cell activation signals may be required to enhance radiation efficacy in luminal-like bladder cancer.
Collapse
Affiliation(s)
- JiaMin Huang
- Cancer Research Program, Research Institute of McGill University Health Center, Montréal, QC, Canada
| | - Eva Michaud
- Cancer Research Program, Research Institute of McGill University Health Center, Montréal, QC, Canada
| | - Surashri Shinde-Jadhav
- Cancer Research Program, Research Institute of McGill University Health Center, Montréal, QC, Canada
| | - Sabina Fehric
- Cancer Research Program, Research Institute of McGill University Health Center, Montréal, QC, Canada
| | - Gautier Marcq
- Division of Urology, Department of Surgery, McGill University Health Center, Montréal, QC, Canada
| | - Jose Joao Mansure
- Cancer Research Program, Research Institute of McGill University Health Center, Montréal, QC, Canada
| | - Fabio Cury
- Department of Radiation Oncology, McGill University Health Center, Montréal, QC, Canada
| | - Fadi Brimo
- Department of Pathology, McGill University Health Center, Montréal, QC, Canada
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology, Montréal, QC, Canada
| | - Wassim Kassouf
- Cancer Research Program, Research Institute of McGill University Health Center, Montréal, QC, Canada
- Division of Urology, Department of Surgery, McGill University Health Center, Montréal, QC, Canada
- Centre of Excellence in Translational Immunology, Montréal, QC, Canada
| |
Collapse
|
2
|
Chen J, Murabito JM, Lunetta KL. ONDSA: a testing framework based on Gaussian graphical models for differential and similarity analysis of multiple omics networks. Brief Bioinform 2024; 26:bbae610. [PMID: 39581869 PMCID: PMC11586129 DOI: 10.1093/bib/bbae610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024] Open
Abstract
The Gaussian graphical model (GGM) is a statistical network approach that represents conditional dependencies among components, enabling a comprehensive exploration of disease mechanisms using high-throughput multi-omics data. Analyzing differential and similar structures in biological networks across multiple clinical conditions can reveal significant biological pathways and interactions associated with disease onset and progression. However, most existing methods for estimating group differences in sparse GGMs only apply to comparisons between two groups, and the challenging problem of multiple testing across multiple GGMs persists. This limitation hinders the ability to uncover complex biological insights that arise from comparing multiple conditions simultaneously. To address these challenges, we propose the Omics Networks Differential and Similarity Analysis (ONDSA) framework, specifically designed for continuous omics data. ONDSA tests for structural differences and similarities across multiple groups, effectively controlling the false discovery rate (FDR) at a desired level. Our approach focuses on entry-wise comparisons of precision matrices across groups, introducing two test statistics to sequentially estimate structural differences and similarities while adjusting for correlated effects in FDR control procedures. We show via comprehensive simulations that ONDSA outperforms existing methods under a range of graph structures and is a valuable tool for joint comparisons of multiple GGMs. We also illustrate our method through the detection of neuroinflammatory pathways in a multi-omics dataset from the Framingham Heart Study Offspring cohort, involving three apolipoprotein E genotype groups. It highlights ONDSA's ability to provide a more holistic view of biological interactions and disease mechanisms through multi-omics data integration.
Collapse
Affiliation(s)
- Jiachen Chen
- Department of Biostatistics, Boston University School of Public Health, 801 Massachusetts Avenue, Crosstown, 3rd floor, Boston, MA 02218, United States
| | - Joanne M Murabito
- Framingham Heart Study, National Heart, Lung, and Blood Institute and Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, 73 Mount Wayte Avenue, Framingham, MA 01702, United States
- Department of Medicine, Section of General Internal Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, 72 E Concord St, Suite L-516, Boston, MA 02118, United States
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, 801 Massachusetts Avenue, Crosstown, 3rd floor, Boston, MA 02218, United States
| |
Collapse
|
3
|
Cuesta-Martín de la Cámara R, Torices-Pajares A, Miguel-Berenguel L, Reche-Yebra K, Frauca-Remacha E, Hierro-Llanillo L, Muñoz-Bartolo G, Lledín-Barbacho MD, Gutiérrez-Arroyo A, Martínez-Feito A, López-Granados E, Sánchez-Zapardiel E. Epstein-Barr virus-specific T-cell response in pediatric liver transplant recipients: a cross-sectional study by multiparametric flow cytometry. Front Immunol 2024; 15:1479472. [PMID: 39512353 PMCID: PMC11540634 DOI: 10.3389/fimmu.2024.1479472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024] Open
Abstract
Background Epstein-Barr virus (EBV) specific T-cell response measurement can help adjust immunosuppression in transplant patients with persistent infections. We aim to define T-cell responses against EBV in a cohort of pediatric liver-transplant patients. Methods Thirty-eight immunosuppressed pediatric liver-transplant patients (IP) and 25 EBV-seropositive healthy-adult controls (HC) were included in our cross-sectional study. Based on their EBV serological (S) and viral load (VL) status, patients were categorized into IP-SNEG, IP-SPOSVLNEG and IP-SPOSVLPOS groups. T-cell response was assessed at two timepoints by stimulating cells with EBV peptides (PepTivator®) and performing intracellular-cytokine and activation-induced marker staining. Background subtraction was used to determine EBV-specific T-lymphocyte frequency. Results Polyfunctional CD8+ T cells indicated previous EBV contact (IP-SNEG 0.00% vs IP-SPOS 0.04% and HC 0.02%; p=0.001 and p=0.01, respectively). Polyfunctional CD8+CD107a+IFNɣ+IL2-TNFα- profile was increased in serology-positive (IP-SNEG 0.01% vs IP-SPOS 0.13% and HC 0.03%; p=0.01 and p=0.50, respectively) and viral-load positive (IP-SPOSVLPOS 0.43% vs IP-SPOSVLNEG 0.07% and HC 0.03%; p=0.03 and p=0.001, respectively) patients. Central-memory cells were increased among serology-positive adults (IP-SNEG 0.00% vs IP-SPOS 0.13% and HC 4.33%; p=0.58 and p=0.002, respectively). At the second timepoint, IP-SNEG patients remained negative (first visit 0.01% vs second visit 0.00%, p=0.44). On the other hand, IP-SPOSVLPOS patients had cleared viral loads and, subsequently, decreased polyfunctional CD8+CD107a+IFNɣ+IL2-TNFα- cells (first visit 0.43% vs second visit 0.10%, p=0.81). Conclusion Polyfunctional CD8+ EBV-specific T-cell response allows detecting EBV previous contact in liver-transplant children. %CD8+CD107a+IFNɣ+IL2-TNFα- is increased in patients with positive viral loads. Central memory CD4+ T-cell population more effectively determines prior EBV-exposure in adults.
Collapse
Affiliation(s)
- Ricardo Cuesta-Martín de la Cámara
- Clinical Immunology Department, University Hospital La Paz, Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Medicine and surgery Department, Autonomous University of Madrid, Madrid, Spain
| | - Andrea Torices-Pajares
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | | | - Keren Reche-Yebra
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Esteban Frauca-Remacha
- Paediatric Hepatology Department, University Hospital La Paz, Madrid, Spain
- European Reference Network (ERN) RARE LIVER, Madrid, Spain
- European Reference Network (ERN) TransplantChild, Madrid, Spain
| | - Loreto Hierro-Llanillo
- Paediatric Hepatology Department, University Hospital La Paz, Madrid, Spain
- European Reference Network (ERN) RARE LIVER, Madrid, Spain
- European Reference Network (ERN) TransplantChild, Madrid, Spain
| | - Gema Muñoz-Bartolo
- Paediatric Hepatology Department, University Hospital La Paz, Madrid, Spain
- European Reference Network (ERN) RARE LIVER, Madrid, Spain
- European Reference Network (ERN) TransplantChild, Madrid, Spain
| | - María Dolores Lledín-Barbacho
- Paediatric Hepatology Department, University Hospital La Paz, Madrid, Spain
- European Reference Network (ERN) RARE LIVER, Madrid, Spain
- European Reference Network (ERN) TransplantChild, Madrid, Spain
| | | | - Ana Martínez-Feito
- Clinical Immunology Department, University Hospital La Paz, Madrid, Spain
| | - Eduardo López-Granados
- Clinical Immunology Department, University Hospital La Paz, Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- European Reference Network (ERN) TransplantChild, Madrid, Spain
- Centre for Biomedical Network Research on rare diseases (CIBERER U767), Madrid, Spain
| | - Elena Sánchez-Zapardiel
- Clinical Immunology Department, University Hospital La Paz, Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- European Reference Network (ERN) TransplantChild, Madrid, Spain
| |
Collapse
|
4
|
Azizi G, Van den Broek B, Ishikawa LLW, Naziri H, Yazdani R, Zhang GX, Ciric B, Rostami A. IL-7Rα on CD4 + T cells is required for their survival and the pathogenesis of experimental autoimmune encephalomyelitis. J Neuroinflammation 2024; 21:253. [PMID: 39380064 PMCID: PMC11460225 DOI: 10.1186/s12974-024-03224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND The IL-7 receptor alpha (IL-7Rα) binds both IL-7 and thymic stromal lymphopoietin (TSLP). IL-7Rα is essential for the development and survival of naive CD4+ T cells and their differentiation to effector/memory CD4+ T cells. Mice lacking IL-7Rα have severe lymphopenia and are resistant to experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis. However, it has been reported that IL-7Rα on peripheral CD4+ T cells is disposable for their maintenance and EAE pathogenesis, which does not align with the body of knowledge on the role of IL-7Rα in the biology of CD4+ T cells. Given that a definitive study on this important topic is lacking, we revisited it using a novel approach, an inducible knockout of the IL-7Rα gene in CD4+ T cells. METHODS We generated Il7rafl/fl/CD4CreERT2 double transgenic mouse line (henceforth CD4ΔIl7ra), susceptible to tamoxifen-induced knockout of the IL-7Rα gene in CD4+ T cells. CD4ΔIl7ra mice were immunized with MOG35 - 55 for EAE induction and monitored for disease development. The expression of IL-7Rα, CD4+ T cell numbers, and MOG35 - 55-specific CD4+ T cell response was evaluated in the central nervous system (CNS) and lymphoid tissues by flow cytometry. Additionally, splenocytes of CD4ΔIl7ra mice were stimulated with MOG35 - 55 to assess their proliferative response and cytokine production by T helper cells. RESULTS Loss of IL-7Rα from the surface of CD4+ T cells in CD4ΔIl7ra mice was virtually complete several days after tamoxifen treatment. The loss of IL-7Rα in CD4+ T cells led to a gradual and substantial decrease in their numbers in both non-immunized and immunized CD4ΔIl7ra mice, followed by slow repopulation up to the initial numbers. CD4ΔIl7ra mice did not develop EAE. We found a decrease in the total numbers of TNF-, IFN-γ-, IL-17 A-, and GM-CSF-producing CD4+ T cells and regulatory T cells in the spleens and CNS of immunized CD4ΔIl7ra mice. Tracking MOG35 - 55-specific CD4+ T cells revealed a significant reduction in their numbers in CD4ΔIl7ra mice and decreased proliferation and cytokine production in response to MOG35 - 55. CONCLUSION Our study demonstrates that IL-7Rα on peripheral CD4+ T cells is essential for their maintenance, immune response, and EAE pathogenesis.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/genetics
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Mice
- Receptors, Interleukin-7/metabolism
- Receptors, Interleukin-7/genetics
- Mice, Transgenic
- Mice, Inbred C57BL
- Myelin-Oligodendrocyte Glycoprotein/toxicity
- Myelin-Oligodendrocyte Glycoprotein/immunology
- Cell Survival/physiology
- Cell Survival/drug effects
- Peptide Fragments/toxicity
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Mice, Knockout
- Cytokines/metabolism
Collapse
Affiliation(s)
- Gholamreza Azizi
- Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Suite 300, Philadelphia, PA, 19107, USA
| | - Bram Van den Broek
- Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Suite 300, Philadelphia, PA, 19107, USA
| | | | - Hamed Naziri
- Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Suite 300, Philadelphia, PA, 19107, USA
| | - Reza Yazdani
- Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Suite 300, Philadelphia, PA, 19107, USA
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Suite 300, Philadelphia, PA, 19107, USA
| | - Bogoljub Ciric
- Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Suite 300, Philadelphia, PA, 19107, USA
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Suite 300, Philadelphia, PA, 19107, USA.
| |
Collapse
|
5
|
Chennareddy S, Rindler K, Ruggiero JR, Alkon N, Cohenour ER, Tran S, Weninger W, Griss J, Jonak C, Brunner PM. Single-cell RNA sequencing comparison of CD4+, CD8+ and TCR-γδ+ cutaneous T-cell lymphomas reveals subset-specific molecular phenotypes. Br J Dermatol 2024:ljae313. [PMID: 39133553 DOI: 10.1093/bjd/ljae313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/17/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Malignant clones of primary cutaneous T-cell lymphomas (CTCL) can show a CD4, CD8 or TCR-γδ phenotype, but their individual impact on tumor biology and skin lesion formation remains ill-defined. OBJECTIVES To perform a comprehensive molecular characterization of CD4+ vs. CD8+ and TCR-γ/δ+ CTCL lesions. METHODS We performed scRNA-seq of 18 CTCL skin biopsies to compare classic CD4+ advanced-stage mycosis fungoides (MF) with TCR-γ/δ+MF and primary cutaneous CD8+ aggressive epidermotropic cytotoxic T-cell lymphoma (Berti's lymphoma). RESULTS Malignant clones of TCR-γ/δ+MF and Berti's lymphoma showed similar clustering patterns distinct from CD4+MF, along with increased expression of cytotoxic markers such as NKG7, CTSW, GZMA, and GZMM. Only advanced-stage CD4+MF clones expressed central memory T-cell markers (SELL, CCR7, LEF1), alongside B1/B2 blood involvement, whereas TCR-γ/δ+MF and Berti's lymphoma harbored a more tissue-resident phenotype (CD69, CXCR4, NR4A1) without detectable cells in the blood. CD4+MF and TCR-γ/δ+MF skin lesions harbored strong type 2 immune activation across myeloid cells, while Berti's lymphoma was more skewed towards type 1 immune responses. Both CD4+MF and TCR-γ/δ+MF lesions showed upregulation of keratinocyte hyperactivation markers such as S100As and KRT16 genes. This increase was entirely absent in Berti's lymphoma, possibly reflecting an aberrant keratinocyte response to invading tumor cells, that could contribute to the formation of the typical ulcero-necrotic lesions within this entity. CONCLUSIONS Our scRNAseq profiling study reveals specific molecular patterns associated with distinct CTCL subtypes.
Collapse
Affiliation(s)
- Sumanth Chennareddy
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - John R Ruggiero
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Natalia Alkon
- Department of Dermatology, Medical University of Vienna, Austria
| | - Emry R Cohenour
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sophia Tran
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Johannes Griss
- Department of Dermatology, Medical University of Vienna, Austria
| | - Constanze Jonak
- Department of Dermatology, Medical University of Vienna, Austria
| | - Patrick M Brunner
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
Herr MM, Balderman SR, Wallace PK, Zhang Y, Tario JD, Buxbaum NP, Holtan S, Ross M, McCarthy PL, Betts B, Maslak P, Hahn TE. Outcomes of Human Leukocyte Antigen-Matched Related Donor and Haploidentical Allogeneic Hematopoietic Cell Transplantation Recipients by Immune Profiles of Recipients and Donors. Transplant Cell Ther 2024; 30:808.e1-808.e13. [PMID: 38801976 PMCID: PMC11296899 DOI: 10.1016/j.jtct.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Haploidentical (Haplo) allogeneic HCTs (alloHCT) have been used more frequently over the last decade as survival is similar to HLA-matched related donor (MRD) alloHCTs. We aimed to identify donor and recipient immune signatures before alloHCT that are associated with clinically meaningful outcomes in MRD vs Haplo alloHCT recipients. This retrospective cohort study of 165 MRD (n = 132) and Haplo (n = 33) alloHCT recipients and their related donors between 2007-2019 with paired peripheral blood samples immunophenotyped for T-cell, B-cell, NK cell and dendritic cell (DC) subsets. Immune cells were quantified before alloHCT in donors and recipients; calculations of immune cell ratios were classified as high, intermediate, and low and analyzed with alloHCT outcomes. Haplo donors were younger than MRD donors (median: 35 vs 51 years), whereas Haplo recipients were older than MRD recipients (median: 68 vs 54 years), were more likely to have a Karnofsky Performance Score ≤ 70 (76% vs 57%), 3+ comorbidities (54% vs 47%), and were in complete remission prior to alloHCT (58% vs 42%). In MRD alloHCT, a lower ratio of CD4+ to CD8+ effector memory cells in the donor was associated with lower 4-yr overall survival (OS; 25% vs 61%; P = .009), lower 4-yr progression free survival (PFS; 25% vs 58%; P = .014) and higher incidence of 1-yr transplant-related mortality (TRM; 39% vs 7%; P = .009) in recipients. A higher ratio of CD8+ effector memory to total NK cells measured in MRD recipients was associated with a higher incidence of grade II-IV aGvHD (63% vs 37%; P = .004) but was not statistically significant for III-IV aGvHD (23% vs 12%). In Haplo alloHCT, a lower ratio of total T-regulatory to CD4+ central memory cells in the donor was associated with lower 4-yr PFS (22% vs 60%; P = .0091). A higher ratio of CD4+ effector memory to CD8+ effector memory cells measured in Haplo recipients pre-alloHCT was associated with lower 4-yr OS (25% vs 88%; P = .0039). In both MRD and Haplo recipients, a higher ratio of CD4+ naïve to CD4+ central memory cells was associated with a higher incidence of grade II-IV aGvHD (64% vs 38%; P = .04). Evaluation of pre-alloHCT immune signatures of the donor and recipient may influence clinically meaningful patient outcomes in both MRD and Haplo transplants.
Collapse
Affiliation(s)
- Megan M Herr
- Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| | - Sophia R Balderman
- Roswell Park Comprehensive Cancer Center, Buffalo, New York; Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio
| | - Paul K Wallace
- Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Yali Zhang
- Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Joseph D Tario
- Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | | | - Shernan Holtan
- Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Maureen Ross
- Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | | | - Brian Betts
- Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Peter Maslak
- Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Theresa E Hahn
- Roswell Park Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
7
|
Bai W, Yang L, Qiu J, Zhu Z, Wang S, Li P, Zhou D, Wang H, Liao Y, Yu Y, Yang Z, Wen P, Zhang D. Single-cell analysis of CD4+ tissue residency memory cells (TRMs) in adult atopic dermatitis: A new potential mechanism. Genomics 2024; 116:110870. [PMID: 38821220 DOI: 10.1016/j.ygeno.2024.110870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 05/09/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
The pathophysiology of atopic dermatitis (AD) is complex. CD4+ T cells play an essential role in the development of lesions in AD. However, the underlying mechanism remains unclear. In the present study, we investigated the differentially expressed genes (DEGs) between adult AD lesioned and non-lesioned skin using two datasets from the Gene Expression Omnibus (GEO) database. 62 DEGs were shown to be related to cytokine response. Compared to non-lesioned skin, lesioned skin showed immune infiltration with increased numbers of activated natural killer (NK) cells and CD4+ T memory cells (p < 0.01). We then identified 13 hub genes with a strong association with CD4+ T cells using weighted correlation network analysis. Single-cell analysis of AD detected a novel CD4+ T subcluster, CD4+ tissue residency memory cells (TRMs), which were verified through immunohistochemistry (IHC) to be increased in the dermal area of AD. The significant relationship between CD4+ TRM and AD was assessed through further analyses. FOXO1 and SBNO2, two of the 13 hub genes, were characteristically expressed in the CD4+ TRM, but down-regulated in IFN-γ/TNF-α-induced HaCaT cells, as shown using quantitative polymerase chain reaction (qPCR). Moreover, SBNO2 expression was associated with increased Th1 infiltration in AD (p < 0.05). In addition, genes filtered using Mendelian randomization were positively correlated with CD4+ TRM and were highly expressed in IFN-γ/TNF-α-induced HaCaT cells, as determined using qPCR and western blotting. Collectively, our results revealed that the newly identified CD4+ TRM may be involved in the pathogenesis of adult AD.
Collapse
Affiliation(s)
- Wenxuan Bai
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Le Yang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jing Qiu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zihan Zhu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shuxing Wang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Peidi Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Dawei Zhou
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hongyi Wang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuxuan Liao
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yao Yu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zijiang Yang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Puqiao Wen
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Di Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
8
|
Cheung TT, Wai-Hung Ho D, Lyu SX, Zhang Q, Tsui YM, Ching-Yun Yu T, Man-Fong Sze K, Man-Fong Lee J, Lau VWH, Yin-Lun Chu E, Hing-Yin Tsang S, She WH, Ching-Yu Leung R, Chung-Cheung Yau T, Ng IOL. Multimodal Integrative Genomics and Pathology Analyses in Neoadjuvant Nivolumab Treatment for Intermediate and Locally Advanced Hepatocellular Carcinoma. Liver Cancer 2024; 13:70-88. [PMID: 38344450 PMCID: PMC10857832 DOI: 10.1159/000531176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/18/2023] [Indexed: 10/17/2024] Open
Abstract
Introduction Immunotherapy has resulted in pathologic responses in hepatocellular carcinoma (HCC), but the benefits and molecular mechanisms of neoadjuvant immune checkpoint blockade are largely unknown. Methods In this study, we evaluated the efficacy and safety of preoperative nivolumab (anti-PD-1) in patients with intermediate and locally advanced HCC and determined the molecular markers for predicting treatment response. Results Between July 2020 and November 2021, 20 treatment-naive HCC patients with intermediate and locally advanced tumors received preoperative nivolumab at 3 mg/kg for 3 cycles prior to surgical resection. Nineteen patients underwent surgical resection on trial. Seven (36.8%) of the 19 patients had major pathologic tumor necrosis (≥60%) in the post-nivolumab resection specimens, with 3 having almost complete (>90%) tumor necrosis. The tumor necrosis was hemorrhagic and often accompanied by increased or dense immune cell infiltrate at the border of the tumors. None of the patients developed major adverse reactions contradicting hepatectomy. RNA-sequencing analysis on both pre-nivolumab tumor biopsies and post-nivolumab resected specimens showed that, in cases with major pathologic necrosis, the proportion of CD8 T cells in the HCC tissues predominantly increased after treatment. Moreover, to investigate noninvasive biomarker for nivolumab response, we evaluated the copy number variation (CNV) using target-panel sequencing on plasma cell-free DNA of the patients and derived a CNV-based anti-PD-1 score. The score correlated with the extent of tumor necrosis and was validated in a Korean patient cohort with anti-PD-1 treatment. Conclusion Neoadjuvant nivolumab demonstrated promising clinical activity in intermediate and locally advanced HCC patients. We also identified useful noninvasive biomarker predicting responsiveness.
Collapse
Affiliation(s)
- Tan-To Cheung
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Daniel Wai-Hung Ho
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Shirley Xueying Lyu
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Qingyang Zhang
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Yu-Man Tsui
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Tiffany Ching-Yun Yu
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Karen Man-Fong Sze
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Joyce Man-Fong Lee
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Vince Wing-hang Lau
- Department of Diagnostic Radiology, Queen Mary Hospital, Hong Kong, Hong Kong SAR
| | - Edward Yin-Lun Chu
- Department of Diagnostic Radiology, Queen Mary Hospital, Hong Kong, Hong Kong SAR
| | - Simon Hing-Yin Tsang
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Wong-Hoi She
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Roland Ching-Yu Leung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Thomas Chung-Cheung Yau
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Irene Oi-Lin Ng
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| |
Collapse
|
9
|
Rausch JW, Parvez S, Pathak S, Capoferri AA, Kearney MF. HIV Expression in Infected T Cell Clones. Viruses 2024; 16:108. [PMID: 38257808 PMCID: PMC10820123 DOI: 10.3390/v16010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
The principal barrier to an HIV-1 cure is the persistence of infected cells harboring replication-competent proviruses despite antiretroviral therapy (ART). HIV-1 transcriptional suppression, referred to as viral latency, is foremost among persistence determinants, as it allows infected cells to evade the cytopathic effects of virion production and killing by cytotoxic T lymphocytes (CTL) and other immune factors. HIV-1 persistence is also governed by cellular proliferation, an innate and essential capacity of CD4+ T cells that both sustains cell populations over time and enables a robust directed response to immunological threats. However, when HIV-1 infects CD4+ T cells, this capacity for proliferation can enable surreptitious HIV-1 propagation without the deleterious effects of viral gene expression in latently infected cells. Over time on ART, the HIV-1 reservoir is shaped by both persistence determinants, with selective forces most often favoring clonally expanded infected cell populations harboring transcriptionally quiescent proviruses. Moreover, if HIV latency is incomplete or sporadically reversed in clonal infected cell populations that are replenished faster than they are depleted, such populations could both persist indefinitely and contribute to low-level persistent viremia during ART and viremic rebound if treatment is withdrawn. In this review, select genetic, epigenetic, cellular, and immunological determinants of viral transcriptional suppression and clonal expansion of HIV-1 reservoir T cells, interdependencies among these determinants, and implications for HIV-1 persistence will be presented and discussed.
Collapse
Affiliation(s)
- Jason W. Rausch
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.P.); (S.P.); (A.A.C.); (M.F.K.)
| | | | | | | | | |
Collapse
|
10
|
Rodriguez-Rodriguez C, González-Mancha N, Ochoa-Echeverría A, Liébana R, Merida I. Partial loss of Sorting Nexin 27 resembles age- and Down syndrome-associated T cell dysfunctions. Immun Ageing 2024; 21:2. [PMID: 38166948 PMCID: PMC10759489 DOI: 10.1186/s12979-023-00402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Sorting Nexin 27 (SNX27)-retromer complex facilitates cargo recycling from endosomes to the plasma membrane. SNX27 downregulation in neurons, as the result of Trisomy 21 (T21), has been linked with cognitive deficits due to impairment of AMPA and NMDA receptor recycling. Studies in human T cell lines likewise demonstrated that SNX27 regulates the correct delivery of cargoes to the immune synapse limiting the activation of pro-inflammatory pathways. Nevertheless, the physiological consequences of partial SNX27 loss in T cell homeostasis are still unclear. RESULTS In this study, we have explored the consequences of T cell specific partial SNX27 downregulation in mice. T cells with partial SNX27 deficiency show a marked deficit in the CD4+ T cell pool, a hallmark of aging in mice and humans, and a well-characterized comorbidity of individuals with Down syndrome (DS). When analyzed ex vivo, CD4+ T cells with partial SNX27 deletion demonstrate enhanced proliferation but diminished IL-2 production. In contrast, the CD8+ population show enhanced expression of pro-inflammatory cytokines and lytic enzymes. CONCLUSIONS This mouse model supports the relevance of SNX27 in the organization of the immune synapse, previously described in cell lines, as well as in the control of T cell homeostasis. Individuals with DS experiment an acceleration of the aging process, which particularly affects the immune and central nervous systems. Thus, we hypothesize that reduced SNX27 expression in DS could contribute to the dysregulation of these systems and further research in SNX27 will shed light on the molecular factors underlying the phenotypes observed in people with DS and its contribution to aging.
Collapse
Affiliation(s)
- Cristina Rodriguez-Rodriguez
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology (CNB-CSIC), UAM Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
| | - Natalia González-Mancha
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology (CNB-CSIC), UAM Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
| | - Ane Ochoa-Echeverría
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology (CNB-CSIC), UAM Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
| | - Rosa Liébana
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology (CNB-CSIC), UAM Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
| | - Isabel Merida
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology (CNB-CSIC), UAM Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain.
| |
Collapse
|
11
|
Zhang YT, Xu LJ, Li L. EGLN1: A Biomarker of Poor Prognosis of Cervical Cancer and a Target of Treatment. Genet Test Mol Biomarkers 2024; 28:10-21. [PMID: 38294357 DOI: 10.1089/gtmb.2023.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Objective: To conduct bioinformatics analysis on the prognostic effect, mechanism of action, and drug sensitivity of Egl-9 family hypoxia-inducible factor 1 (EGLN1) expression on cervical cancer. Methods: Bioinformatics were obtained from Gene Expression Profiling Interactive Analysis (GEPIA), Tumor Immune Estimation Resource (TIMER), and the human cancer metastasis database (HCMDB), and the effect of EGLN1 expression level on the prognosis of cervical cancer was comprehensively analyzed. The protein-protein interaction network was constructed by Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), and the possible mechanism of EGLN1 affecting the prognosis of cervical cancer was discussed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. In addition, Gene Set Cancer Analysis (GSCALite) was used to predict sensitive drugs online. Results: The higher the expression level of EGLN1, the shorter the tumor-free survival time and overall survival time of cervical cancer. The higher the stage of cervical cancer, the higher the expression level of EGLN1. The expression of EGLN1 affects the degree of immune infiltration, the variation of somatic copy number, and the level of N6-methyladenosine (m6A) modification in cervical cancer. COX regression model suggested that EGLN1 was an independent prognostic factor of cervical cancer. Conclusions: The high expression of EGLN1 in cervical cancer is an independent risk factor for the prognosis of cervical cancer, which affects the prognosis of cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) through different signal pathways. It is expected to be used to predict the sensitive anticancer drugs for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Yi-Ting Zhang
- Department of Gynecology, The First People's Hospital of Zhaoqing, Zhaoqing, P.R. China
| | - Lin-Jing Xu
- Department of Gynecology, The First People's Hospital of Zhaoqing, Zhaoqing, P.R. China
| | - Ling Li
- Department of Gynecology, The First People's Hospital of Zhaoqing, Zhaoqing, P.R. China
| |
Collapse
|
12
|
Luo H, Sun Y, Wang L, Liu H, Zhao R, Song M, Ge H. Targeting endoplasmic reticulum associated degradation pathway combined with radiotherapy enhances the immunogenicity of esophageal cancer cells. Cancer Biol Ther 2023; 24:2166763. [PMID: 36907982 PMCID: PMC10026871 DOI: 10.1080/15384047.2023.2166763] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/15/2022] [Accepted: 01/03/2023] [Indexed: 03/14/2023] Open
Abstract
Immunogenic cell death (ICD) is essential for the activation of immune system against cancer. We aimed to investigate the efficacy of endoplasmic reticulum (ER)-associated protein degradation (ERAD) inhibitors (EerI and NMS-873) in enhancing radiation-induced ICD in esophageal cancer (EC). EC cells were administered with ERAD inhibitors, radiation therapy (RT), and the combination treatment. ICD hallmarks including calreticulin (CALR), adenosine triphosphate (ATP), and high mobility group protein B1 (HMGB1) were detected. The efficacy of ERAD inhibitors combined with RT in stimulating ICD was analyzed. Additionally, the role of ICD hallmarks in immune cell infiltration and patient survival was investigated. Inhibiting ERAD pathways was able to stimulate ICD component emission from dying EC cells in a dose-dependent pattern. Radiation-induced ICD was significantly increased after high doses RT (≥10 Gy). ERAD inhibitor combined with moderate dose RT (≥6 Gy) was capable of stimulating increased ICD in EC cells. Dual therapy could elicit the antitumor immune response by enhancing dendritic cells maturation and phagocytosis. Further investigation revealed a significant correlation between CALR and tumor-infiltrating immune cells. Low expression of ATP and HMGB1 and high expression of CALR were associated with favorable survival in patients with EC. The immunogenicityof EC can be enhanced by ERAD inhibitors combined with moderate doses of RT. ICD hallmark genes, especially CALR, are correlated to immune cell infiltration and clinical outcomes in EC. The present results demonstrated an important method to improve the immunogenicity of EC cells for enhanced antitumor immune response.
Collapse
Affiliation(s)
- Hui Luo
- Laboratory of Radiation Oncology, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanan Sun
- Laboratory of Radiation Oncology, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Liuxiang Wang
- Academic of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Hui Liu
- Department of Basic Medicine, China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Ran Zhao
- Department of Basic Medicine, China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Mengqiu Song
- Department of Basic Medicine, China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Hong Ge
- Laboratory of Radiation Oncology, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Kaminski A, Hager FT, Kopplin L, Ticconi F, Leufgen A, Vendelova E, Rüttger L, Gasteiger G, Cerovic V, Kastenmüller W, Pabst O, Ugur M. Resident regulatory T cells reflect the immune history of individual lymph nodes. Sci Immunol 2023; 8:eadj5789. [PMID: 37874251 DOI: 10.1126/sciimmunol.adj5789] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
Regulatory T cells (Tregs) are present in lymphoid and nonlymphoid tissues where they restrict immune activation, prevent autoimmunity, and regulate inflammation. Tregs in nonlymphoid tissues are typically resident, whereas those in lymph nodes (LNs) are considered to recirculate. However, Tregs in LNs are not a homogenous population, and circulation kinetics of different Treg subsets are poorly characterized. Furthermore, whether Tregs can acquire memory T cell properties and persist for extended periods after their activation in LNs is unclear. Here, we used in situ labeling with a stabilized photoconvertible protein to uncover turnover rates of Tregs in LNs in vivo. We found that, whereas most Tregs in LNs recirculate, 10 to 20% are memory-like resident cells that remain in their respective LNs for weeks to months. Single-cell RNA sequencing revealed that LN-resident cells are a functionally and ontogenetically heterogeneous population and share the same core residency gene signature with conventional CD4+ and CD8+ T cells. Resident cells in LNs did not actively proliferate and did not require continuous T cell receptor (TCR) signaling for their residency. However, resident and circulating Tregs had distinct TCR repertoires, and each LN contained exclusive clonal subpopulations of resident Tregs. Our results demonstrate that, similar to conventional T cells, Tregs can form resident memory-like populations in LNs after adaptive immune responses. Specific and local suppression of immune responses by resident Tregs in draining LNs might provide previously unidentified therapeutic opportunities for the treatment of local chronic inflammatory conditions.
Collapse
Affiliation(s)
- Anne Kaminski
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Fabian Tobias Hager
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Lydia Kopplin
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Fabio Ticconi
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
- Institute for Computational Genomics, RWTH Aachen University, Aachen 52074, Germany
| | - Andrea Leufgen
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Emilia Vendelova
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg 97078, Germany
| | - Lennart Rüttger
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg 97078, Germany
| | - Georg Gasteiger
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg 97078, Germany
| | - Vuk Cerovic
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Wolfgang Kastenmüller
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg 97078, Germany
| | - Oliver Pabst
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Milas Ugur
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg 97078, Germany
| |
Collapse
|
14
|
Wu Z, Lin Q, Sheng L, Chen W, Liang M, Wu D, Ke Y. A novel immune-related risk-scoring system associated with the prognosis and response of cervical cancer patients treated with radiation therapy. Front Mol Biosci 2023; 10:1297774. [PMID: 38028542 PMCID: PMC10667679 DOI: 10.3389/fmolb.2023.1297774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Objective: The tumor microenvironment plays a critical role in the radiotherapy and immunotherapy response of cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC). Radioresistance is a key factor in treatment failure among patients who receive radical radiotherapy. Thus, new immune-related biomarkers associated with radiotherapy response in CESC are needed. Methods: In this study, the CIBERSORT and ESTIMATE methods were applied to determine the percentage of tumor-infiltrating cells and the number of immune components in 103 CESCs treated with radiotherapy from The Cancer Genome Atlas (TCGA) database. The main dysregulated genes were subjected to multivariate and univariate analyses. The prognostic value of this system was studied via receiver operating characteristic curve and survival analysis. For further confirmation, the biomarkers' expression levels and predictive value were validated by immunohistochemistry (IHC) and qRT-PCR. The CIBERSORT algorithm was used to calculate the compositional patterns of 22 types of immune cells in cervical cancer patients treated with radiation therapy. Results: Data for 17 radioresistant and 86 radiosensitive tumors were obtained from the The Cancer Genome Atlas database. 53 immune-related DEGs were identified. GO and KEGG analyses revealed that the DEGs were enriched in protein kinase B signaling, growth factors in cytokines, the MAPK pathway and the PI3K-Akt pathway. Then, 14 key immune-related genes built a risk scoring model were deemed prognostic in CESC with radiotherapy. The area under the curve (AUC) of the model was 0.723, and the high-risk group presented worse outcomes than the low-risk group. In addition, the high-risk group tended to have persistent tumors (p = 0.001). The high expression of WT1 and SPOUYT4 were associated with relapse, the high expression of Angiotensinogen and MIEN1 were associated with nonrelapse. Analysis of the immune microenvironment indicated that M0 macrophages, M2 macrophages, activated mast cells and resting memory CD4+ T cells were positively correlated with the risk score (p < 0.05). Conclusion: The novel immune-related risk scoring system has some advantages in predicting the prognosis and treatment response of cervical cancer patients treated with radiotherapy. Moreover, it might provide novel clues for providing targeted immune therapy to these patients.
Collapse
Affiliation(s)
- Zhuna Wu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qiuya Lin
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Liying Sheng
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Weihong Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Meili Liang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Danni Wu
- Department of Operation, The Second Hospital of Jinjiang, Quanzhou, China
| | - Yumin Ke
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
15
|
Stai S, Fylaktou A, Kasimatis E, Xochelli A, Lioulios G, Nikolaidou V, Papadopoulou A, Myserlis G, Iosifidou AM, Iosifidou MA, Papagianni A, Yannaki E, Tsoulfas G, Stangou M. Immune Profile Determines Response to Vaccination against COVID-19 in Kidney Transplant Recipients. Vaccines (Basel) 2023; 11:1583. [PMID: 37896986 PMCID: PMC10611345 DOI: 10.3390/vaccines11101583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND AND AIM Immune status profile can predict response to vaccination, while lymphocyte phenotypic alterations represent its effectiveness. We prospectively evaluated these parameters in kidney transplant recipients (KTRs) regarding Tozinameran (BNT162b2) vaccination. METHOD In this prospective monocenter observational study, 39 adult KTRs, on stable immunosuppression, naïve to COVID-19, with no protective humoral response after two Tozinameran doses, received the third vaccination dose, and, based on their immunity activation, they were classified as responders or non-responders. Humoral and cellular immunities were assessed at predefined time points (T0: 48 h before the first, T1: 48 h prior to the third and T2: three weeks after the third dose). RESULTS Responders, compared to non-responders, had a higher total and transitional B-lymphocyte count at baseline (96.5 (93) vs. 51 (52)cells/μL, p: 0.045 and 9 (17) vs. 1 (2)cells/μL, p: 0.031, respectively). In the responder group, there was a significant increase, from T0 to T1, in the concentrations of activated CD4+ (from 6.5 (4) to 10.08 (11)cells/μL, p: 0.001) and CD8+ (from 8 (19) to 14.76 (16)cells/μL, p: 0.004) and a drop in CD3+PD1+ T-cells (from 130 (121) to 30.44 (25)cells/μL, p: 0.001), while naïve and transitional B-cells increased from T1 to T2 (from 57.55 (66) to 1149.3 (680)cells/μL, p < 0.001 and from 1.4 (3) to 17.5 (21)cells/μL, p: 0.003). The percentages of memory and marginal zone B-lymphocytes, and activated CD4+, CD8+ and natural killer (NK) T-cells significantly increased, while those of naïve B-cells and CD3+PD1+ T-cells reduced from T0 to T1. CONCLUSIONS Responders and non-responders to the third BNT162b2 dose demonstrated distinct initial immune cell profiles and changes in cellular subpopulation composition following vaccination.
Collapse
Affiliation(s)
- Stamatia Stai
- School of Medicine, Aristotle University of Thessaloniki, 45642 Thessaloniki, Greece; (S.S.); (E.K.); (G.L.); (G.M.); (A.M.I.); (M.A.I.); (A.P.); (G.T.)
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece
| | - Asimina Fylaktou
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.F.); (A.X.); (V.N.)
| | - Efstratios Kasimatis
- School of Medicine, Aristotle University of Thessaloniki, 45642 Thessaloniki, Greece; (S.S.); (E.K.); (G.L.); (G.M.); (A.M.I.); (M.A.I.); (A.P.); (G.T.)
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece
| | - Aliki Xochelli
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.F.); (A.X.); (V.N.)
| | - Georgios Lioulios
- School of Medicine, Aristotle University of Thessaloniki, 45642 Thessaloniki, Greece; (S.S.); (E.K.); (G.L.); (G.M.); (A.M.I.); (M.A.I.); (A.P.); (G.T.)
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece
| | - Vasiliki Nikolaidou
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.F.); (A.X.); (V.N.)
| | - Anastasia Papadopoulou
- Hematology Department, Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, “George Papanikolaou” Hospital, 57010 Thessaloniki, Greece; (A.P.); (E.Y.)
| | - Grigorios Myserlis
- School of Medicine, Aristotle University of Thessaloniki, 45642 Thessaloniki, Greece; (S.S.); (E.K.); (G.L.); (G.M.); (A.M.I.); (M.A.I.); (A.P.); (G.T.)
- Department of Transplant Surgery, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Artemis Maria Iosifidou
- School of Medicine, Aristotle University of Thessaloniki, 45642 Thessaloniki, Greece; (S.S.); (E.K.); (G.L.); (G.M.); (A.M.I.); (M.A.I.); (A.P.); (G.T.)
| | - Myrto Aikaterini Iosifidou
- School of Medicine, Aristotle University of Thessaloniki, 45642 Thessaloniki, Greece; (S.S.); (E.K.); (G.L.); (G.M.); (A.M.I.); (M.A.I.); (A.P.); (G.T.)
| | - Aikaterini Papagianni
- School of Medicine, Aristotle University of Thessaloniki, 45642 Thessaloniki, Greece; (S.S.); (E.K.); (G.L.); (G.M.); (A.M.I.); (M.A.I.); (A.P.); (G.T.)
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece
| | - Evangelia Yannaki
- Hematology Department, Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, “George Papanikolaou” Hospital, 57010 Thessaloniki, Greece; (A.P.); (E.Y.)
| | - Georgios Tsoulfas
- School of Medicine, Aristotle University of Thessaloniki, 45642 Thessaloniki, Greece; (S.S.); (E.K.); (G.L.); (G.M.); (A.M.I.); (M.A.I.); (A.P.); (G.T.)
- Department of Transplant Surgery, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Maria Stangou
- School of Medicine, Aristotle University of Thessaloniki, 45642 Thessaloniki, Greece; (S.S.); (E.K.); (G.L.); (G.M.); (A.M.I.); (M.A.I.); (A.P.); (G.T.)
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece
| |
Collapse
|
16
|
Baessler A, Fuchs B, Perkins B, Richens AW, Novis CL, Harrison-Chau M, Sircy LM, Thiede KA, Hale JS. Tet2 deletion in CD4+ T cells disrupts Th1 lineage commitment in memory cells and enhances T follicular helper cell recall responses to viral rechallenge. Proc Natl Acad Sci U S A 2023; 120:e2218324120. [PMID: 37639586 PMCID: PMC10483640 DOI: 10.1073/pnas.2218324120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/27/2023] [Indexed: 08/31/2023] Open
Abstract
Following viral clearance, antigen-specific CD4+ T cells contract and form a pool of distinct Th1 and Tfh memory cells that possess unique epigenetic programs, allowing them to rapidly recall their specific effector functions upon rechallenge. DNA methylation programing mediated by the methylcytosine dioxygenase Tet2 contributes to balancing Th1 and Tfh cell differentiation during acute viral infection; however, the role of Tet2 in CD4+ T cell memory formation and recall is unclear. Using adoptive transfer models of antigen-specific wild type and Tet2 knockout CD4+ T cells, we find that Tet2 is required for full commitment of CD4+ T cells to the Th1 lineage and that in the absence of Tet2, memory cells preferentially recall a Tfh like phenotype with enhanced expansion upon secondary challenge. These findings demonstrate an important role for Tet2 in enforcing lineage commitment and programing proliferation potential, and highlight the potential of targeting epigenetic programing to enhance adaptive immune responses.
Collapse
Affiliation(s)
- Andrew Baessler
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT84112
| | - Bryce Fuchs
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT84112
| | - Bryant Perkins
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT84112
| | - Andrew W. Richens
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT84112
| | - Camille L. Novis
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT84112
| | - Malia Harrison-Chau
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT84112
| | - Linda M. Sircy
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT84112
| | - Kendall A. Thiede
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT84112
| | - J. Scott Hale
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT84112
| |
Collapse
|
17
|
Rayzan E, Sadeghalvad M, Shahkarami S, Zoghi S, Aryan Z, Mahdaviani SA, Boztug K, Rezaei N. A novel X-linked mutation in IL2RG associated with early-onset inflammatory bowel disease: a case report of twin brothers. J Med Case Rep 2023; 17:307. [PMID: 37461086 DOI: 10.1186/s13256-023-04049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 06/19/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND X-linked severe combined immunodeficiency is caused by IL2RG gene mutation. Several variations have been identified in the IL2RG gene, which potentially can prevent the production of nonfunctional proteins. Herein, a novel X-linked variant in the IL2RG gene is reported in twin brothers, associated with inflammatory bowel symptoms. CASE PRESENTATION The patients were 26-month-old monozygotic twin middle-eastern males with failure to thrive and several inpatient admissions due to severe chronic nonbloody diarrhea that started at the age of 12 months. Pancolitis was revealed after performing upper and lower gastrointestinal endoscopies on the twin with more severe gastrointestinal symptoms. Flow cytometric evaluation of the peripheral blood cells showed low levels of CD4+ cells in both patients. Next generation sequencing-based gene panel test results of the two patients proved a novel heterozygous missense X-linked IL2RG mutation (70330011 A > G, p.Trp197Arg) in one of the patients, which was predicted to be deleterious (CADD score of 28), which soon after was confirmed by Sanger segregation in his twin brother. Both parents were wild types and had never experienced similar symptoms. The patients received an human leukocyte antigen (HLA)-matched cord blood transplant. The twin with more severe gastrointestinal symptoms died 1 month after transplantation. In his brother, watery diarrhea eventually subsided after transplantation. CONCLUSION Intestinal involvement in X-linked severe combined immunodeficiency is a rare presentation that might be neglected. The increasing availability of genetic screening tests worldwide could be helpful for early detection of such lethal primary immunodeficiency diseases and in implementing effective interventions to handle the severe outcomes.
Collapse
Affiliation(s)
- Elham Rayzan
- International Hematology/Oncology of Pediatrics' Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Boston, MA, USA
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, , Children's Medical Center Hospital, Tehran University of Medical Science, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
| | - Mona Sadeghalvad
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, , Children's Medical Center Hospital, Tehran University of Medical Science, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Shahkarami
- Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
- Medical Genetics Network (MeGeNe), Universal Scientific Education and Research Network (USERN), Munich, Germany
| | - Samaneh Zoghi
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Zahra Aryan
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Disease Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaan Boztug
- Department of Pediatric Hematology and Oncology, St. Anna Children's Hospital, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, , Children's Medical Center Hospital, Tehran University of Medical Science, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Cao J, Xu H, Yu Y, Xu Z. Regulatory roles of cytokines in T and B lymphocytes-mediated immunity in teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 144:104621. [PMID: 36801469 DOI: 10.1016/j.dci.2022.104621] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 06/05/2023]
Abstract
T and B lymphocytes (T and B cells) are immune effector cells that play critical roles in adaptive immunity and defend against external pathogens in most vertebrates, including teleost fish. In mammals, the development and immune response of T and B cells is associated with cytokines including chemokines, interferons, interleukins, lymphokines, and tumor necrosis factors during pathogenic invasion or immunization. Given that teleost fish have evolved a similar adaptive immune system to mammals with T and B cells bearing unique receptors (B-cell receptors (BCRs) and T-cell receptors (TCRs)) and that cytokines in general have been identified, whether the regulatory roles of cytokines in T and B cell-mediated immunity are evolutionarily conserved between mammalians and teleost fish is a fascinating question. Thus, the purpose of this review is to summarize the current knowledge of teleost cytokines and T and B cells as well as the regulatory roles of cytokines on these two types of lymphocytes. This may provide important information on the parallelisms and dissimilarities of the functions of cytokines in bony fish versus higher vertebrates, which may aid in the evaluation and development of adaptive immunity-based vaccines or immunostimulants.
Collapse
Affiliation(s)
- Jiafeng Cao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Haoyue Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yongyao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
19
|
Rizzi A, Lo Presti E, Chini R, Gammeri L, Inchingolo R, Lohmeyer FM, Nucera E, Gangemi S. Emerging Role of Alarmins in Food Allergy: An Update on Pathophysiological Insights, Potential Use as Disease Biomarkers, and Therapeutic Implications. J Clin Med 2023; 12:jcm12072699. [PMID: 37048784 PMCID: PMC10094851 DOI: 10.3390/jcm12072699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Food allergies are immuno-mediated adverse reactions to ingestion or contact with foods, representing a widespread health problem. The immune response can be IgE-mediated, non-IgE-mediated, or with a mixed mechanism. The role of innate immunity and alarmins in the pathogenesis of diseases such as asthma and atopic dermatitis is well known. Some authors have investigated the correlation between alarmins and food allergies, often obtaining interesting results. We analyzed articles published in English from the last 22 years present on PubMed concerning the role of alarmins in the pathogenesis of food allergies and their potential use as disease biomarkers, response biomarkers to therapy, or potential therapeutic targets. Nuclear alarmins (TSLP, IL-33, IL-25) appear to have a critical role in IgE-mediated allergies but are also implicated in entities such as eosinophilic esophagitis. Calprotectin and defensins may play a role as disease biomarkers and could help predict response to therapy, although results in the literature are often conflicting. Despite the promising results, more studies on humans still need to be conducted. Deepening our knowledge regarding alarmins and their involvement in food allergies could lead to the development of new biological therapies, significantly impacting patients' quality of life.
Collapse
Affiliation(s)
- Angela Rizzi
- UOSD Allergologia e Immunologia Clinica, Dipartimento Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Elena Lo Presti
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), 90146 Palermo, Italy
| | - Raffaella Chini
- UOSD Allergologia e Immunologia Clinica, Dipartimento Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Luca Gammeri
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Riccardo Inchingolo
- Pulmonary Medicine Unit, Department of Neurosciences, Sense Organs and Thorax, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | | | - Eleonora Nucera
- UOSD Allergologia e Immunologia Clinica, Dipartimento Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
20
|
Gan Q, Mao L, Shi R, Chang L, Wang G, Cheng J, Chen R. Prognostic Value and Immune Infiltration of HPV-Related Genes in the Immune Microenvironment of Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma. Cancers (Basel) 2023; 15:1419. [PMID: 36900213 PMCID: PMC10000937 DOI: 10.3390/cancers15051419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 03/12/2023] Open
Abstract
Mounting evidence has highlighted the immune environment as a critical feature in the development of cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC). However, the relationship between the clinical characteristics of the immune environment and CESC remain unclear. Therefore, the aim of this study was to further characterize the relationship between the tumor and immune microenvironment and the clinical features of CESC using a variety of bioinformatic methods. Expression profiles (303 CESCs and three control samples) and relevant clinical data were obtained from The Cancer Genome Atlas. We divided CESC cases into different subtypes and performed a differential gene expression analysis. In addition, gene ontology (GO) and gene set enrichment analysis (GSEA) were performed to identify potential molecular mechanisms. Furthermore, data from 115 CESC patients from East Hospital were used to help identify the relationship between the protein expressions of key genes and disease-free survival using tissue microarray technology. Cases of CESC (n = 303) were divided into five subtypes (C1-C5) based on their expression profiles. A total of 69 cross-validated differentially expressed immune-related genes were identified. Subtype C4 demonstrated a downregulation of the immune profile, lower tumor immune/stroma scores, and worse prognosis. In contrast, the C1 subtype showed an upregulation of the immune profile, higher tumor immune/stroma scores, and better prognosis. A GO analysis suggested that changes in CESC were primarily enriched nuclear division, chromatin binding, and condensed chromosomes. In addition, GSEA demonstrated that cellular senescence, the p53 signaling pathway, and viral carcinogenesis are critical features of CESC. Moreover, high FOXO3 and low IGF-1 protein expression were closely correlated with decreased clinical prognosis. In summary, our findings provide novel insight into the relationship between the immune microenvironment and CESC. As such, our results may provide guidance for developing potential immunotherapeutic targets and biomarkers for CESC.
Collapse
Affiliation(s)
- Qiyu Gan
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Luning Mao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100021, China
| | - Rui Shi
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Linlin Chang
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Guozeng Wang
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Jingxin Cheng
- Department of Gynecology and Obstetrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Rui Chen
- Department of Gynecology, Shanghai United Family Hospital, Shanghai 200120, China
| |
Collapse
|
21
|
Soluble factors from TLR4- or TCR-activated cells contribute to stability of the resting phenotype and increase the expression of CXCR4 of human memory CD4 T cells. Immunol Res 2022; 71:388-403. [PMID: 36539634 DOI: 10.1007/s12026-022-09345-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022]
Abstract
It has been proposed that cytokines can induce activation of resting T cells in an antigen-independent manner. However, experimental conditions have included the use of fetal serum and nanogram concentrations of added cytokines. To evaluate the effect of cytokines and chemokines generated by activated immune cells on the phenotypic profile of human memory CD4 T cells, the cells were cultured in FBS-free conditions in the presence of IL-15 and 5% of hAB serum and incubated with conditioned medium (CM) obtained from PBMC activated through the TCR using anti-CD3/CD28/CD2 antibodies (TCR-CM) or through TLR4 using bacterial LPS (TLR4-CM). Cytokines and chemokines present in the CMs were evaluated by ProcartaPlex immunoassay. Cell viability, proliferation, and surface markers were determined by flow cytometry on day 2, 5, and 8 of culture. Cell viability was maintained by TLR4-CM plus IL-15 for 8 days but decreased in the presence of the TCR-CM plus IL-15. In combination with IL-15, the TLR4-CM, but not the TCR-CM, maintained the expression of CD3 and CD4 stable. Both conditions stabilized the expression of CD45RO and CCR5. Thus, the TLR4-CM better supported the viability and stability of the memory phenotype. None of the CMs induced proliferation or expression of activation markers; however, they induced an increased expression of CXCR4. This study indicates that resting memory CD4 T cells are not activated by, but may be sensitive to soluble factors produced by antigen or PAMP-stimulated cells, which may contribute to their homeostasis and favor the CXCR4 expression.
Collapse
|
22
|
Abstract
BACKGROUND Osteosarcoma (OS) is the most common bone cancer in adolescents, and has a high propensity to metastasize. Ferroptosis is a unique modality of cell death, driving the metastasis of cancer cells. Identifying ferroptosis-related genes (FRGs) as prognostic factors will be critical to predict the outcomes of OS. This study aimed to explore the prognostic value of FRGs in OS and build a prognostic model to indirectly improve OS patients' outcomes. METHODS OS data were downloaded from the TARGET database and 2 Gene Expression Omnibus datasets. Univariate Cox regression was conducted to assess FRGs. A risk score model basing on 5 FRGs was constructed via LASSO-Cox regression. Multivariate Cox regression analysis was used to determine the independent prognostic factors. The Nomogram model was built using independent prognostic factors. The relationship between the risk score and the immune cell infiltration was estimated by CIBERSORT, and the correlation between the risk score and immune checkpoints was also analyzed. RESULTS Based on the prognosis-related FRGs, we built a regression model: Risk score = (-0.01382853 × ACSL4) - (0.05371778 × HMOX1) - (0.02434655 × GPX4) - (0.16432810 × PRNP) - (0.15567120 × ATG7). OS patients with high risk score tended to suffer from poor prognosis, validated in 2 Gene Expression Omnibus datasets. The Nomogram model showed the combination of the risk score and the tumour-node-metastasis stage improved predictive effectiveness. The risk score was also related to immune cell infiltration and immune checkpoint expression. CONCLUSION The risk score model based on 5 FRGs was a reliable prognostic predictive indicator for OS patients.
Collapse
Affiliation(s)
- Zhanyong Ge
- Department of Orthopaedic, Tianjin Jinnan Hospital, Tianjin, P.R. China
| | - Delei Song
- Department of West Hospital Orthopaedic Trauma, ZiBo Central Hospital, Zibo, P.R. China
- * Correspondence: Delei Song, Department of West Hospital Orthopaedic Trauma, ZiBo Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo, Shandong 255020, P.R. China (e-mail: )
| |
Collapse
|
23
|
Zhang Z, Butler R, Koestler DC, Bell-Glenn S, Warrier G, Molinaro AM, Christensen BC, Wiencke JK, Kelsey KT, Salas LA. Comparative analysis of the DNA methylation landscape in CD4, CD8, and B memory lineages. Clin Epigenetics 2022; 14:173. [PMID: 36522672 PMCID: PMC9753273 DOI: 10.1186/s13148-022-01399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND There is considerable evidence that epigenetic mechanisms and DNA methylation are critical drivers of immune cell lineage differentiation and activation. However, there has been limited coordinated investigation of common epigenetic pathways among cell lineages. Further, it remains unclear if long-lived memory cell subtypes differentiate distinctly by cell lineages. RESULTS We used the Illumina EPIC array to investigate the consistency of DNA methylation in B cell, CD4 T, and CD8 T naïve and memory cells states. In the process of naïve to memory activation across the three lineages, we identify considerable shared epigenetic regulation at the DNA level for immune memory generation. Further, in central to effector memory differentiation, our analyses revealed specific CpG dinucleotides and genes in CD4 T and CD8 T cells with DNA methylation changes. Finally, we identified unique DNA methylation patterns in terminally differentiated effector memory (TEMRA) CD8 T cells compared to other CD8 T memory cell subtypes. CONCLUSIONS Our data suggest that epigenetic alterations are widespread and essential in generating human lymphocyte memory. Unique profiles are involved in methylation changes that accompany memory genesis in the three subtypes of lymphocytes.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Rondi Butler
- Department of Epidemiology, Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Devin C Koestler
- Department of Biostatistics and Data Science, University of Kansas Cancer Center, Kansas City, KS, USA
| | - Shelby Bell-Glenn
- Department of Biostatistics and Data Science, University of Kansas Cancer Center, Kansas City, KS, USA
| | - Gayathri Warrier
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| | - Annette M Molinaro
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - John K Wiencke
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| | - Karl T Kelsey
- Department of Epidemiology, Pathology and Laboratory Medicine, Brown University, Providence, RI, USA.
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| |
Collapse
|
24
|
Adaptive discrimination between harmful and harmless antigens in the immune system by predictive coding. iScience 2022; 26:105754. [PMID: 36594030 PMCID: PMC9804113 DOI: 10.1016/j.isci.2022.105754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/08/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
The immune system discriminates between harmful and harmless antigens based on past experiences; however, the underlying mechanism is largely unknown. From the viewpoint of machine learning, the learning system predicts the observation and updates the prediction based on prediction error, a process known as "predictive coding." Here, we modeled the population dynamics of T cells by adopting the concept of predictive coding; conventional and regulatory T cells predict the antigen concentration and excessive immune response, respectively. Their prediction error signals, possibly via cytokines, induce their differentiation to memory T cells. Through numerical simulations, we found that the immune system identifies antigen risks depending on the concentration and input rapidness of the antigen. Further, our model reproduced history-dependent discrimination, as in allergy onset and subsequent therapy. Taken together, this study provided a novel framework to improve our understanding of how the immune system adaptively learns the risks of diverse antigens.
Collapse
|
25
|
Saheb Sharif-Askari N, Alabed M, Selvakumar B, Mdkhana B, Salam Bayram O, Kalaji Z, Hafezi S, Elemam NM, Saheb Sharif-Askari F, Halwani R. Simvastatin reduced infiltration of memory subsets of T lymphocytes in the lung tissue during Th2 allergic inflammation. Int Immunopharmacol 2022; 113:109347. [DOI: 10.1016/j.intimp.2022.109347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
26
|
Morgan DM, Shreffler WG, Love JC. Revealing the heterogeneity of CD4+ T cells through single-cell transcriptomics. J Allergy Clin Immunol 2022; 150:748-755. [DOI: 10.1016/j.jaci.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/07/2022]
|
27
|
Liu Y, Zhou J, Li X, Zhang X, Shi J, Wang X, Li H, Miao S, Chen H, He X, Dong L, Lee GR, Zheng J, Liu RJ, Su B, Ye Y, Flavell RA, Yi C, Wu Y, Li HB. tRNA-m 1A modification promotes T cell expansion via efficient MYC protein synthesis. Nat Immunol 2022; 23:1433-1444. [PMID: 36138184 DOI: 10.1038/s41590-022-01301-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 08/04/2022] [Indexed: 02/04/2023]
Abstract
Naive T cells undergo radical changes during the transition from dormant to hyperactive states upon activation, which necessitates de novo protein production via transcription and translation. However, the mechanism whereby T cells globally promote translation remains largely unknown. Here, we show that on exit from quiescence, T cells upregulate transfer RNA (tRNA) m1A58 'writer' proteins TRMT61A and TRMT6, which confer m1A58 RNA modification on a specific subset of early expressed tRNAs. These m1A-modified early tRNAs enhance translation efficiency, enabling rapid and necessary synthesis of MYC and of a specific group of key functional proteins. The MYC protein then guides the exit of naive T cells from a quiescent state into a proliferative state and promotes rapid T cell expansion after activation. Conditional deletion of the Trmt61a gene in mouse CD4+ T cells causes MYC protein deficiency and cell cycle arrest, disrupts T cell expansion upon cognate antigen stimulation and alleviates colitis in a mouse adoptive transfer colitis model. Our study elucidates for the first time, to our knowledge, the in vivo physiological roles of tRNA-m1A58 modification in T cell-mediated pathogenesis and reveals a new mechanism of tRNA-m1A58-controlled T cell homeostasis and signal-dependent translational control of specific key proteins.
Collapse
Affiliation(s)
- Yongbo Liu
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Zhou
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Xiaoyu Li
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoting Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Jintong Shi
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefei Wang
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shan Miao
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huifang Chen
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Chongqing International Institute for Immunology, Chongqing, China
| | - Xiaoxiao He
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liting Dong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Gap Ryol Lee
- Department of Life Science, Sogang University, Seoul, Republic of Korea
| | - Junke Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ru-Juan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Bing Su
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youqiong Ye
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA. .,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA.
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China. .,Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| | - Yuzhang Wu
- Chongqing International Institute for Immunology, Chongqing, China.
| | - Hua-Bing Li
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Chongqing International Institute for Immunology, Chongqing, China. .,Department of Geriatrics, Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
28
|
Carey A, Niedernhofer L, Camell C. Telomeres are a life-extending gift. Nat Cell Biol 2022; 24:1449-1450. [PMID: 36168042 DOI: 10.1038/s41556-022-01004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anna Carey
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Laura Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Christina Camell
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
29
|
Sekaran SD, Ismail AA, Thergarajan G, Chandramathi S, Rahman SKH, Mani RR, Jusof FF, Lim YAL, Manikam R. Host immune response against DENV and ZIKV infections. Front Cell Infect Microbiol 2022; 12:975222. [PMID: 36159640 PMCID: PMC9492869 DOI: 10.3389/fcimb.2022.975222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022] Open
Abstract
Dengue is a major public health concern, affecting almost 400 million people worldwide, with about 70% of the global burden of disease in Asia. Despite revised clinical classifications of dengue infections by the World Health Organization, the wide spectrum of the manifestations of dengue illness continues to pose challenges in diagnosis and patient management for clinicians. When the Zika epidemic spread through the American continent and then later to Africa and Asia in 2015, researchers compared the characteristics of the Zika infection to Dengue, considering both these viruses were transmitted primarily through the same vector, the Aedes aegypti female mosquitoes. An important difference to note, however, was that the Zika epidemic diffused in a shorter time span compared to the persisting feature of Dengue infections, which is endemic in many Asian countries. As the pathogenesis of viral illnesses is affected by host immune responses, various immune modulators have been proposed as biomarkers to predict the risk of the disease progression to a severe form, at a much earlier stage of the illness. However, the findings for most biomarkers are highly discrepant between studies. Meanwhile, the cross-reactivity of CD8+ and CD4+ T cells response to Dengue and Zika viruses provide important clues for further development of potential treatments. This review discusses similarities between Dengue and Zika infections, comparing their disease transmissions and vectors involved, and both the innate and adaptive immune responses in these infections. Consideration of the genetic identity of both the Dengue and Zika flaviviruses as well as the cross-reactivity of relevant T cells along with the actions of CD4+ cytotoxic cells in these infections are also presented. Finally, a summary of the immune biomarkers that have been reported for dengue and Zika viral infections are discussed which may be useful indicators for future anti-viral targets or predictors for disease severity. Together, this information appraises the current understanding of both Zika and Dengue infections, providing insights for future vaccine design approaches against both viruses.
Collapse
Affiliation(s)
| | - Amni Adilah Ismail
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Gaythri Thergarajan
- Faculty of Medical & Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Samudi Chandramathi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - S. K. Hanan Rahman
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ravishankar Ram Mani
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Felicita Fedelis Jusof
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yvonne A. L. Lim
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Rishya Manikam
- Department of Trauma and Emergency Medicine, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
30
|
Choi SH, Huang AY, Letterio JJ, Kim BG. Smad4-deficient T cells promote colitis-associated colon cancer via an IFN-γ-dependent suppression of 15-hydroxyprostaglandin dehydrogenase. Front Immunol 2022; 13:932412. [PMID: 36045676 PMCID: PMC9420841 DOI: 10.3389/fimmu.2022.932412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Immune cells and the cytokines they produce are important mediators of the transition from colitis to colon cancer, but the mechanisms mediating this disease progression are poorly understood. Interferon gamma (IFN-γ) is known to contribute to the pathogenesis of colitis through immune modulatory mechanisms, and through direct effects on endothelial and epithelial homeostasis. Here we explore whether IFN-γ influences tumor progression by expanding the effector memory T cells (TEM) population and restricting the expression of tumor suppressors in a preclinical model of spontaneous colitis-associated colorectal cancer (CAC). We show that IFN-γ expression is significantly increased both in the T cells and the colonic mucosal epithelia of mice with a T cell-restricted deletion of the TGF-β intermediate, SMAD4 (Smad4TKO). The increase of IFN-γ expression correlates with the onset of spontaneous CAC in Smad4TKO mice by 6 months of age. This phenotype is greatly ameliorated by the introduction of a germline deletion of IFN-γ in Smad4TKO mice (Smad4TKO/IFN-γKO, DKO). DKO mice had a significantly reduced incidence and progression of CAC, and a decrease in the number of mucosal CD4+ TEM cells, when compared to those of Smad4TKO mice. Similarly, the colon epithelia of DKO mice exhibited a non-oncogenic signature with a decrease in the expression of iNOS and p-STAT1, and a restoration of the tumor suppressor gene, 15-hydroxyprostaglandin dehydrogenase (15-PGDH). In vitro, treatment of human colon cancer cells with IFN-γ decreased the expression of 15-PGDH. Our data suggest that Smad4-deficient T cells promote CAC through mechanisms that include an IFN-γ-dependent suppression of the tumor suppressor 15-PGDH.
Collapse
Affiliation(s)
- Sung Hee Choi
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Alex Y. Huang
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- The Angie Fowler Adolescent and Young Adult Cancer Institute, University Hospitals (UH) Rainbow Babies and Children’s Hospital, Cleveland, OH, United States
| | - John J. Letterio
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- The Angie Fowler Adolescent and Young Adult Cancer Institute, University Hospitals (UH) Rainbow Babies and Children’s Hospital, Cleveland, OH, United States
| | - Byung-Gyu Kim
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- *Correspondence: Byung-Gyu Kim,
| |
Collapse
|
31
|
The Regulatory-T-Cell Memory Phenotype: What We Know. Cells 2022; 11:cells11101687. [PMID: 35626725 PMCID: PMC9139615 DOI: 10.3390/cells11101687] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 01/25/2023] Open
Abstract
In immunology, the discovery of regulatory T (Treg) cells was a major breakthrough. Treg cells play a key role in pregnancy maintenance, in the prevention of autoimmune responses, and in the control of all immune responses, including responses to self cells, cancer, infection, and a transplant. It is currently unclear whether Treg cells are capable of long-term memory of an encounter with an antigen. Although the term “immunological memory” usually means an enhanced ability to protect the body from reinfection, the memory of the suppressive activity of Treg cells helps to avoid the state of generalized immunosuppression that may result from the second activation of the immune system. In this review, we would like to discuss the concept of regulatory memory and in which tissues memory Treg cells can perform their functions.
Collapse
|
32
|
Vakili ME, Faghih Z, Sarvari J, Doroudchi M, Hosseini SN, Kabelitz D, Kalantar K. Lower frequency of T stem cell memory (TSCM) cells in hepatitis B vaccine nonresponders. Immunol Res 2022; 70:469-480. [PMID: 35445310 PMCID: PMC9273562 DOI: 10.1007/s12026-022-09278-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/01/2022] [Indexed: 11/25/2022]
Abstract
Despite the availability of an effective vaccine and antiviral treatments, hepatitis B is still a global public health problem. Hepatitis B vaccination can prevent the disease. Vaccination induces long-lasting protective immune memory, and the identification of memory cell subsets can indicate the effectiveness of vaccines. Here, we compared the frequency of CD4+ memory T cell subsets between responders and nonresponders to HB vaccination. Besides, the frequency of IFN-γ+ memory T cells was compared between studied groups. Study participants were grouped according to their anti-HBsAb titer. For restimulation of CD4+ memory T cells, peripheral blood mononuclear cells (PBMCs) were cultured in the presence of HBsAg and PHA for 48 h. Besides, PMA, ionomycin, and brefeldin were added during the last 5 h of incubation to induce IFN-γ production. Flow cytometry was used for analysis. There was a statistically significant difference in the frequency of CD4+CD95+, CD4+CD95Hi, and CD4+CD95low/med T stem cell memory (TSCM) cells between responder and nonresponder groups. However, the comparison of the frequency of memory T cells producing IFN-γ showed no differences. Our results identified a possible defect of immunological CD4+ memory T cell formation in nonresponders due to their lower frequency of CD4+ TSCM cells.
Collapse
Affiliation(s)
- Mahsa Eshkevar Vakili
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Faghih
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamal Sarvari
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Nezamedin Hosseini
- Department of Recombinant Hepatitis B Vaccine, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig, Holstein Campus Kiel, 24105, Kiel, Germany.
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
33
|
Fulop T, Larbi A, Pawelec G, Cohen AA, Provost G, Khalil A, Lacombe G, Rodrigues S, Desroches M, Hirokawa K, Franceschi C, Witkowski JM. Immunosenescence and Altered Vaccine Efficiency in Older Subjects: A Myth Difficult to Change. Vaccines (Basel) 2022; 10:vaccines10040607. [PMID: 35455356 PMCID: PMC9030923 DOI: 10.3390/vaccines10040607] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 12/14/2022] Open
Abstract
Organismal ageing is associated with many physiological changes, including differences in the immune system of most animals. These differences are often considered to be a key cause of age-associated diseases as well as decreased vaccine responses in humans. The most often cited vaccine failure is seasonal influenza, but, while it is usually the case that the efficiency of this vaccine is lower in older than younger adults, this is not always true, and the reasons for the differential responses are manifold. Undoubtedly, changes in the innate and adaptive immune response with ageing are associated with failure to respond to the influenza vaccine, but the cause is unclear. Moreover, recent advances in vaccine formulations and adjuvants, as well as in our understanding of immune changes with ageing, have contributed to the development of vaccines, such as those against herpes zoster and SARS-CoV-2, that can protect against serious disease in older adults just as well as in younger people. In the present article, we discuss the reasons why it is a myth that vaccines inevitably protect less well in older individuals, and that vaccines represent one of the most powerful means to protect the health and ensure the quality of life of older adults.
Collapse
Affiliation(s)
- Tamas Fulop
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.K.); (G.L.)
- Correspondence: (T.F.); (S.R.)
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore;
| | - Graham Pawelec
- Department of Immunology, University of Tübingen, 72072 Tübingen, Germany;
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada
| | - Alan A. Cohen
- Groupe de Recherche PRIMUS, Department of Family Medicine, University of Sherbrooke, 3001 12e Ave N, Sherbrooke, QC J1H 5N4, Canada;
| | | | - Abedelouahed Khalil
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.K.); (G.L.)
| | - Guy Lacombe
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.K.); (G.L.)
| | - Serafim Rodrigues
- Ikerbasque, The Basque Foundation for Science, 48009 Bilbao, Spain;
- BCAM—The Basque Center for Applied Mathematics, 48009 Bilbao, Spain
- Correspondence: (T.F.); (S.R.)
| | - Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, CEDEX, 06902 Sophia Antipolis, France;
- The Jean Alexandre Dieudonné Laboratory, Université Côte d’Azur, CEDEX 2, 06108 Nice, France
| | - Katsuiku Hirokawa
- Institute of Health and Life Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan;
| | - Claudio Franceschi
- IRCCS Institute of Neurological Sciences of Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
- Department of Applied Mathematics and Laboratory of Systems Biology of Healthy Aging, Lobachevsky State University, 603000 Nizhny Novgorod, Russia
| | - Jacek M. Witkowski
- Department of Pathophysiology, Medical University of Gdansk, 80-210 Gdansk, Poland;
| |
Collapse
|
34
|
Matthe DM, Thoma OM, Sperka T, Neurath MF, Waldner MJ. Telomerase deficiency reflects age-associated changes in CD4+ T cells. Immun Ageing 2022; 19:16. [PMID: 35321714 PMCID: PMC8941756 DOI: 10.1186/s12979-022-00273-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/02/2022] [Indexed: 01/01/2023]
Abstract
Background Amongst other systemic changes, aging leads to an immune dysfunction. On the molecular level, a hallmark of aging is telomere shortening. The functional relevance of telomerase, an enzyme capable of elongating telomeres in T cells upon antigen stimulation, is not fully understood. Studying the impact of telomere shortening on CD4+ T cells and especially Th1 effector function can provide a better understanding on immune dysfunctions in elderly. Results We investigated T cell numbers and differentiation in telomerase-deficient (mTerc−/−) mice under steady-state conditions and the functional role of telomerase in CD4+ T cells using in vitro stimulation and Th1 polarization protocols by comparing T cells from mTerc−/− and control mice. We report reduced relative CD4+ T cell numbers in blood and secondary lymphoid organs and a relative decline in the naïve T cell population in thymus, blood and spleen of mTerc−/− mice compared to control mice. Importantly, after in vitro polarization, mTerc−/− G3 CD4+ T cells showed higher numbers of IFNγ-producing cells and reduced expression of CD28. Notably, telomerase-deficient T cells were more susceptible to inhibition of Th1 polarization by IL-6 in vitro. These results demonstrate that telomerase deficiency recapitulates several changes of CD4+ T cells seen in aged humans regarding the naïve T cell population, expression of CD28 and cytokine production. Conclusion Our data suggest that telomere shortening could play a key role in the aging of T cell immunity, with clinical implications for immune diseases and tumor development and that mTerc−/− mice are a suitable model to study aging-related defects of adaptive immunity. Supplementary Information The online version contains supplementary material available at 10.1186/s12979-022-00273-0.
Collapse
Affiliation(s)
- Diana M Matthe
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Oana-Maria Thoma
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany.,Erlangen Graduate School of Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tobias Sperka
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Maximilian J Waldner
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany. .,Erlangen Graduate School of Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
35
|
Taylor JM, Li A, McLachlan CS. Immune cell profile and immune-related gene expression of obese peripheral blood and liver tissue. FEBS Lett 2022; 596:199-210. [PMID: 34850389 DOI: 10.1002/1873-3468.14248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/10/2022]
Abstract
Obesity is associated with changes in immune cell subpopulations. However, tissue and blood obesity-responsive immune phenotypic pathways have not been contrasted. Here, the local niche immune cell population and gene expression in fatty liver is compared to peripheral blood of obese individuals. The Cibersort algorithm enumerated increased fractions of memory CD4+ T lymphocytes and reductions in natural killer and memory B cells in obese liver tissue and obese blood, with similar reductions found in nonalcoholic fatty liver disease tissue. Gene expression analysis identified inflammatory immune signatures of regulatory CD4+ T cells with inferred Th1, Th17, Th2, or Treg phenotypes that differed between liver and blood. Our study suggests that the local tissue-specific immune phenotype in the liver differs from the obese peripheral circulation, with the latter reflective of multisystemic persistent inflammation that is characteristic of obesity.
Collapse
Affiliation(s)
- Jude M Taylor
- Centre for Healthy Futures, Torrens University Australia, Pyrmont, Australia
| | - Amy Li
- Centre for Healthy Futures, Torrens University Australia, Pyrmont, Australia
- Department of Pharmacy & Biomedical Sciences, La Trobe University, Bendigo, Australia
| | - Craig S McLachlan
- Centre for Healthy Futures, Torrens University Australia, Pyrmont, Australia
| |
Collapse
|
36
|
Rangel-Mata FJ, Ávila-Muro EE, Reyes-Martínez JE, Olmos-Ortiz LM, Brunck ME, Arriaga-Pizano LA, Cuéllar-Mata P. Immune cell arrival kinetics to peritoneum and role during murine-experimental trichomoniasis. Parasitology 2021; 148:1624-1635. [PMID: 35060469 PMCID: PMC11010205 DOI: 10.1017/s0031182021001311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/09/2021] [Accepted: 07/15/2021] [Indexed: 01/07/2023]
Abstract
Trichomonas vaginalis causes trichomoniasis, an inflammatory process related to an increased rate of HIV transmission. In order to study T. vaginalis infection response in a microorganism-free environment, an infection model was established providing a host–parasite interaction system useful to study the interplay between immune cells and the parasite. Infected mice peritoneal cells were immunophenotyped at different times after infection using flow cytometry. Neutrophils and macrophages showed the most relevant increase from third to 12th day post-infection. A high number of B lymphocytes were present on 15th day post-infection, and an increase in memory T cells was observed on sixth day post-infection. The levels of NO increased at day 10 post-infection; no significant influence was observed on T. vaginalis clearance. Increased viability of T. vaginalis was observed when the NETs inhibitors, metformin and Cl− amidine, were administrated, highlighting the importance of this mechanism to control parasite infection (43 and 86%, respectively). This report presents a comprehensive cell count of the immune cells participating against trichomoniasis in an in vivo interaction system. These data highlight the relevance of innate mechanisms such as specific population changes of innate immune cells and their impact on the T. vaginalis viability.
Collapse
Affiliation(s)
- F. J. Rangel-Mata
- Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| | - E. E. Ávila-Muro
- Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| | | | - L. M. Olmos-Ortiz
- Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| | - M. E. Brunck
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Mexico
| | | | - P. Cuéllar-Mata
- Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| |
Collapse
|
37
|
Novak N, Tordesillas L, Cabanillas B. Diversity of T cells in the skin: Novel insights. Int Rev Immunol 2021; 42:185-198. [PMID: 34607528 DOI: 10.1080/08830185.2021.1985116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
T cells populate the skin to provide an effective immunosurveillance against external insults and to maintain tissue homeostasis. Most cutaneous T cells are αβ T cells, however, γδ T cells also exist although in much lower frequency. Different subsets of αβ T cells can be found in the skin, such as short-lived effector T cells, central memory T cells, effector memory T cells, and tissue-resident memory T cells. Their differential biology, function, and location provide an ample spectrum of immune responses in the skin. Foxp3+ memory regulatory T cells have a pivotal role in maintaining homeostasis in the skin and their dysregulation has been linked with different skin pathologies. The skin also contains populations of non-classical T cells, such as γδ T cells, NK T cells, and MR1-restricted T cells. Their role in skin homeostasis and response to pathogens has been well established in the past years, however, there is also growing evidence of their role in mediating allergic skin inflammation and promoting sensitization to allergens. In this review, we provide an updated overview on the different subsets of T cells that populate the skin with a specific focus on their role in allergic skin inflammation.
Collapse
Affiliation(s)
- Natalija Novak
- Department of Dermatology and Allergy, University Hospital, Bonn, Germany
| | - Leticia Tordesillas
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Beatriz Cabanillas
- Department of Allergy, Research Institute Hospital 12 de Octubre, Madrid, Spain
| |
Collapse
|
38
|
O'Neill CL, Shrimali PC, Clapacs ZE, Files MA, Rudra JS. Peptide-based supramolecular vaccine systems. Acta Biomater 2021; 133:153-167. [PMID: 34010691 PMCID: PMC8497425 DOI: 10.1016/j.actbio.2021.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022]
Abstract
Currently approved replication-competent and inactivated vaccines are limited by excessive reactogenicity and poor safety profiles, while subunit vaccines are often insufficiently immunogenic without co-administering exogenous adjuvants. Self-assembling peptide-, peptidomimetic-, and protein-based biomaterials offer a means to overcome these challenges through their inherent modularity, multivalency, and biocompatibility. As these scaffolds are biologically derived and present antigenic arrays reminiscent of natural viruses, they are prone to immune recognition and are uniquely capable of functioning as self-adjuvanting vaccine delivery vehicles that improve humoral and cellular responses. Beyond this intrinsic immunological advantage, the wide range of available amino acids allows for facile de novo design or straightforward modifications to existing sequences. This has permitted the development of vaccines and immunotherapies tailored to specific disease models, as well as generalizable platforms that have been successfully applied to prevent or treat numerous infectious and non-infectious diseases. In this review, we briefly introduce the immune system, discuss the structural determinants of coiled coils, β-sheets, peptide amphiphiles, and protein subunit nanoparticles, and highlight the utility of these materials using notable examples of their innate and adaptive immunomodulatory capacity. STATEMENT OF SIGNIFICANCE: Subunit vaccines have recently gained considerable attention due to their favorable safety profiles relative to traditional whole-cell vaccines; however, their reduced efficacy requires co-administration of reactogenic adjuvants to boost immune responses. This has led to collaborative efforts between engineers and immunologists to develop nanomaterial-based vaccination platforms that can elicit protection without deleterious side effects. Self-assembling peptidic biomaterials are a particularly attractive approach to this problem, as their structure and function can be controlled through primary sequence design and their capacity for multivalent presentation of antigens grants them intrinsic self-adjuvanticity. This review introduces the various architectures adopted by self-assembling peptides and discusses their application as modulators of innate and adaptive immunity.
Collapse
Affiliation(s)
- Conor L O'Neill
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States.
| | - Paresh C Shrimali
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States.
| | - Zoe E Clapacs
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States.
| | - Megan A Files
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, United States.
| | - Jai S Rudra
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States.
| |
Collapse
|
39
|
Magro G, Calistri A, Parolin C. Targeting and Understanding HIV Latency: The CRISPR System against the Provirus. Pathogens 2021; 10:pathogens10101257. [PMID: 34684206 PMCID: PMC8539363 DOI: 10.3390/pathogens10101257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 11/16/2022] Open
Abstract
The presence of latently infected cells and reservoirs in HIV-1 infected patients constitutes a significant obstacle to achieve a definitive cure. Despite the efforts dedicated to solve these issues, the mechanisms underlying viral latency are still under study. Thus, on the one hand, new strategies are needed to elucidate which factors are involved in latency establishment and maintenance. On the other hand, innovative therapeutic approaches aimed at eradicating HIV infection are explored. In this context, advances of the versatile CRISPR-Cas gene editing technology are extremely promising, by providing, among other advantages, the possibility to target the HIV-1 genome once integrated into cellular DNA (provirus) and/or host-specific genes involved in virus infection/latency. This system, up to now, has been employed with success in numerous in vitro and in vivo studies, highlighting its increasing significance in the field. In this review, we focus on the progresses made in the use of different CRISPR-Cas strategies to target the HIV-1 provirus, and we then discuss recent advancements in the use of CRISPR screens to elucidate the role of host-specific factors in viral latency.
Collapse
Affiliation(s)
| | - Arianna Calistri
- Correspondence: (A.C.); (C.P.); Tel.: +39-049-827-2341 (A.C.); +39-049-827-2365 (C.P.)
| | - Cristina Parolin
- Correspondence: (A.C.); (C.P.); Tel.: +39-049-827-2341 (A.C.); +39-049-827-2365 (C.P.)
| |
Collapse
|
40
|
He Z, Wang X, Yang Z, Jiang Y, Li L, Wang X, Song Z, Wang X, Wan J, Jiang S, Zhang N, Cui R. Expression and prognosis of CDC45 in cervical cancer based on the GEO database. PeerJ 2021; 9:e12114. [PMID: 34557356 PMCID: PMC8420875 DOI: 10.7717/peerj.12114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/15/2021] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is one of the most common malignant tumors in women, and its morbidity and mortality are increasing year by year worldwide. Therefore, an urgent and challenging task is to identify potential biomarkers for cervical cancer. This study aims to identify the hub genes based on the GEO database and then validate their prognostic values in cervical cancer by multiple databases. By analysis, we obtained 83 co-expressed differential genes from the GEO database (GSE63514, GSE67522 and GSE39001). GO and KEGG enrichment analysis showed that these 83 co-expressed it mainly involved differential genes in DNA replication, cell division, cell cycle, etc.. The PPI network was constructed and top 10 genes with protein-protein interaction were selected. Then, we validated ten genes using some databases such as TCGA, GTEx and oncomine. Survival analysis demonstrated significant differences in CDC45, RFC4, TOP2A. Differential expression analysis showed that these genes were highly expressed in cervical cancer tissues. Furthermore, univariate and multivariate cox regression analysis indicated that CDC45 and clinical stage IV were independent prognostic factors for cervical cancer. In addition, the HPA database validated the protein expression level of CDC45 in cervical cancer. Further studies investigated the relationship between CDC45 and tumor-infiltrating immune cells via CIBERSORT. Finally, gene set enrichment analysis (GSEA) showed CDC45 related genes were mainly enriched in cell cycle, chromosome, catalytic activity acting on DNA, etc. These results suggested CDC45 may be a potential biomarker associated with the prognosis of cervical cancer.
Collapse
Affiliation(s)
- Zikang He
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China
| | - Xiaojin Wang
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China
| | - Zhiming Yang
- Department of Clinical Laboratory, Handan Central Hospital, Handan, China
| | - Ying Jiang
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China
| | - Luhui Li
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China
| | - Xingyun Wang
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China
| | - Zheyao Song
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China
| | - Xiuli Wang
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China.,Department of Clinical Laboratory, The Seventh Hospital in Qiqihar, Qiqihar, China
| | - Jiahui Wan
- Department of Clinical Laboratory, Harbin Public Security Hospital, Harbin, China
| | - Shijun Jiang
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China.,Department of Clinical Laboratory, Daqing Medical College, Daqing, China
| | - Naiwen Zhang
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China
| | - Rongjun Cui
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
41
|
Poznyak AV, Bezsonov EE, Popkova TV, Starodubova AV, Orekhov AN. Immunity in Atherosclerosis: Focusing on T and B Cells. Int J Mol Sci 2021; 22:ijms22168379. [PMID: 34445084 PMCID: PMC8395064 DOI: 10.3390/ijms22168379] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is the major cause of the development of cardiovascular disease, which, in turn, is one of the leading causes of mortality worldwide. From the point of view of pathogenesis, atherosclerosis is an extremely complex disease. A huge variety of processes, such as violation of mitophagy, oxidative stress, damage to the endothelium, and others, are involved in atherogenesis; however, the main components of atherogenesis are considered to be inflammation and alterations of lipid metabolism. In this review, we want to focus on inflammation, and more specifically on the cellular elements of adaptive immunity, T and B cells. It is known that various T cells are widely represented directly in atherosclerotic plaques, while B cells can be found, for example, in the adventitia layer. Of course, such widespread and well-studied cells have attracted attention as potential therapeutic targets for the treatment of atherosclerosis. Various approaches have been developed and tested for their efficacy.
Collapse
Affiliation(s)
- Anastasia V. Poznyak
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia
- Correspondence: (A.V.P.); (A.N.O.)
| | - Evgeny E. Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia;
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| | - Tatyana V. Popkova
- V.A. Nasonova Institute of Rheumatology, 34A Kashirskoye Shosse, 115522 Moscow, Russia;
| | - Antonina V. Starodubova
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, 2/14 Ustinsky Passage, 109240 Moscow, Russia;
- Medical Faculty, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, 117997 Moscow, Russia
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia;
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
- Correspondence: (A.V.P.); (A.N.O.)
| |
Collapse
|
42
|
Li G, Kolan SS, Guo S, Marciniak K, Kolan P, Malachin G, Grimolizzi F, Haraldsen G, Skålhegg BS. Activated, Pro-Inflammatory Th1, Th17, and Memory CD4+ T Cells and B Cells Are Involved in Delayed-Type Hypersensitivity Arthritis (DTHA) Inflammation and Paw Swelling in Mice. Front Immunol 2021; 12:689057. [PMID: 34408746 PMCID: PMC8365304 DOI: 10.3389/fimmu.2021.689057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/13/2021] [Indexed: 11/23/2022] Open
Abstract
Delayed-type hypersensitivity arthritis (DTHA) is a recently established experimental model of rheumatoid arthritis (RA) in mice with pharmacological values. Despite an indispensable role of CD4+ T cells in inducing DTHA, a potential role for CD4+ T cell subsets is lacking. Here we have quantified CD4+ subsets during DTHA development and found that levels of activated, pro-inflammatory Th1, Th17, and memory CD4+ T cells in draining lymph nodes were increased with differential dynamic patterns after DTHA induction. Moreover, according to B-cell depletion experiments, it has been suggested that this cell type is not involved in DTHA. We show that DTHA is associated with increased levels of B cells in draining lymph nodes accompanied by increased levels of circulating IgG. Finally, using the anti-rheumatoid agents, methotrexate (MTX) and the anti-inflammatory drug dexamethasone (DEX), we show that MTX and DEX differentially suppressed DTHA-induced paw swelling and inflammation. The effects of MTX and DEX coincided with differential regulation of levels of Th1, Th17, and memory T cells as well as B cells. Our results implicate Th1, Th17, and memory T cells, together with activated B cells, to be involved and required for DTHA-induced paw swelling and inflammation.
Collapse
Affiliation(s)
- Gaoyang Li
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | - Shuai Guo
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Katarzyna Marciniak
- Department of Pathology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Pratibha Kolan
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Giulia Malachin
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Franco Grimolizzi
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Guttorm Haraldsen
- Department of Pathology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Bjørn Steen Skålhegg
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
43
|
Rausch JW, Le Grice SFJ. Characterizing the Latent HIV-1 Reservoir in Patients with Viremia Suppressed on cART: Progress, Challenges, and Opportunities. Curr HIV Res 2021; 18:99-113. [PMID: 31889490 PMCID: PMC7475929 DOI: 10.2174/1570162x18666191231105438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
Modern combination antiretroviral therapy (cART) can bring HIV-1 in blood plasma to level undetectable by standard tests, prevent the onset of acquired immune deficiency syndrome (AIDS), and allow a near-normal life expectancy for HIV-infected individuals. Unfortunately, cART is not curative, as within a few weeks of treatment cessation, HIV viremia in most patients rebounds to pre-cART levels. The primary source of this rebound, and the principal barrier to a cure, is the highly stable reservoir of latent yet replication-competent HIV-1 proviruses integrated into the genomic DNA of resting memory CD4+ T cells. In this review, prevailing models for how the latent reservoir is established and maintained, residual viremia and viremic rebound upon withdrawal of cART, and the types and characteristics of cells harboring latent HIV-1 will be discussed. Selected technologies currently being used to advance our understanding of HIV latency will also be presented, as will a perspective on which areas of advancement are most essential for producing the next generation of HIV-1 therapeutics.
Collapse
Affiliation(s)
- Jason W Rausch
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD 21702, United States
| | - Stuart F J Le Grice
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD 21702, United States
| |
Collapse
|
44
|
The Bone Marrow as Sanctuary for Plasma Cells and Memory T-Cells: Implications for Adaptive Immunity and Vaccinology. Cells 2021; 10:cells10061508. [PMID: 34203839 PMCID: PMC8232593 DOI: 10.3390/cells10061508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022] Open
Abstract
The bone marrow (BM) is key to protective immunological memory because it harbors a major fraction of the body’s plasma cells, memory CD4+ and memory CD8+ T-cells. Despite its paramount significance for the human immune system, many aspects of how the BM enables decade-long immunity against pathogens are still poorly understood. In this review, we discuss the relationship between BM survival niches and long-lasting humoral immunity, how intrinsic and extrinsic factors define memory cell longevity and show that the BM is also capable of adopting many responsibilities of a secondary lymphoid organ. Additionally, with more and more data on the differentiation and maintenance of memory T-cells and plasma cells upon vaccination in humans being reported, we discuss what factors determine the establishment of long-lasting immunological memory in the BM and what we can learn for vaccination technologies and antigen design. Finally, using these insights, we touch on how this holistic understanding of the BM is necessary for the development of modern and efficient vaccines against the pandemic SARS-CoV-2.
Collapse
|
45
|
Koenig JFE, Bruton K, Phelps A, Grydziuszko E, Jiménez-Saiz R, Jordana M. Memory Generation and Re-Activation in Food Allergy. Immunotargets Ther 2021; 10:171-184. [PMID: 34136419 PMCID: PMC8200165 DOI: 10.2147/itt.s284823] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Recent evidence has highlighted the critical role of memory cells in maintaining lifelong food allergies, thereby identifying these cells as therapeutic targets. IgG+ memory B cells replenish pools of IgE-secreting cells upon allergen exposure, which contract thereafter due to the short lifespan of tightly regulated IgE-expressing cells. Advances in the detection and highly dimensional analysis of allergen-specific B and T cells from allergic patients have provided insight on their phenotype and function. The newly identified Th2A and Tfh13 populations represent a leap in our understanding of allergen-specific T cell phenotypes, although how these populations contribute to IgE memory responses remains poorly understood. Within, we discuss the mechanisms by which memory B and T cells are activated, integrating knowledge from human systems and fundamental research. We then focus on memory reactivation, specifically, on the pathways of secondary IgE responses. Throughout, we identify areas of future research which will help identify immunotargets for a transformative therapy for food allergy.
Collapse
Affiliation(s)
- Joshua F E Koenig
- McMaster Immunology Research Centre, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Kelly Bruton
- McMaster Immunology Research Centre, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Allyssa Phelps
- McMaster Immunology Research Centre, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Emily Grydziuszko
- McMaster Immunology Research Centre, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Rodrigo Jiménez-Saiz
- McMaster Immunology Research Centre, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de la Princesa (IIS-IP), Madrid, Spain
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), Madrid, Spain
| | - Manel Jordana
- McMaster Immunology Research Centre, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
46
|
Mitoma S, Carr BV, Harvey Y, Moffat K, Sekiguchi S, Charleston B, Norimine J, Seago J. The detection of long-lasting memory foot-and-mouth disease (FMD) virus serotype O-specific CD4 + T cells from FMD-vaccinated cattle by bovine major histocompatibility complex class II tetramer. Immunology 2021; 164:266-278. [PMID: 34003490 PMCID: PMC8442236 DOI: 10.1111/imm.13367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 11/27/2022] Open
Abstract
Foot‐and‐mouth disease (FMD) is a highly contagious, economically devastating disease of cloven‐hooved animals. The development of long‐lasting effective FMD vaccines would greatly benefit the global FMD control programme. Deep analysis of adaptive immunity in cattle vaccinated against FMD is technically challenging due to the lack of species‐specific tools. In this study, we aimed to identify CD4+ T‐cell epitopes in the FMD virus (FMDV) capsid and to phenotype the CD4+ T cells that recognize them using bovine major histocompatibility complex (BoLA) class II tetramer. A BoLA class II tetramer based on the DRA/DRB3*020:02 allele and FMDV antigen‐stimulated PBMCs from bovine vaccinates were used to successfully identify four epitopes in the FMDV capsid, three of which have not been previously reported; two epitopes were identified in the structural protein VP1, one in VP3 and one in VP4. Specificity of the three novel epitopes was confirmed by proliferation assay. All epitope‐expanded T‐cell populations produced IFN‐γ in vitro, indicating a long‐lasting Th1 cell phenotype after FMD vaccination. VP3‐specific CD4+ T cells exhibited the highest frequency amongst the identified epitopes, comprising >0·004% of the CD4+ T‐cell population. CD45RO+CCR7+ defined central memory CD4+ T‐cell subpopulations were present in higher frequency in FMDV‐specific CD4+ T‐cell populations from FMD‐vaccinated cattle ex vivo. This indicates an important role in maintaining cell adaptive immunity after FMD vaccination. Notably, FMDV epitope‐loaded tetramers detected the presence of FMDV‐specific CD4+ T cells in bovine PBMC more than four years after vaccination. This work contributes to our understanding of vaccine efficacy.
Collapse
Affiliation(s)
- Shuya Mitoma
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | | | | | | | - Satoshi Sekiguchi
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | | | - Junzo Norimine
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | | |
Collapse
|
47
|
Michelini S, Barbero F, Prinelli A, Steiner P, Weiss R, Verwanger T, Andosch A, Lütz-Meindl U, Puntes VF, Drobne D, Duschl A, Horejs-Hoeck J. Gold nanoparticles (AuNPs) impair LPS-driven immune responses by promoting a tolerogenic-like dendritic cell phenotype with altered endosomal structures. NANOSCALE 2021; 13:7648-7666. [PMID: 33928963 PMCID: PMC8087175 DOI: 10.1039/d0nr09153g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/12/2021] [Indexed: 05/15/2023]
Abstract
Dendritic cells (DCs) shape immune responses by influencing T-cell activation. Thus, they are considered both an interesting model for studying nano-immune interactions and a promising target for nano-based biomedical applications. However, the accentuated ability of nanoparticles (NPs) to interact with biomolecules may have an impact on DC function that poses an unexpected risk of unbalanced immune reactions. Here, we investigated the potential effects of gold nanoparticles (AuNPs) on DC function and the consequences for effector and memory T-cell responses in the presence of the microbial inflammatory stimulus lipopolysaccharide (LPS). Overall, we found that, in the absence of LPS, none of the tested NPs induced a DC response. However, whereas 4-, 8-, and 11 nm AuNPs did not modulate LPS-dependent immune responses, 26 nm AuNPs shifted the phenotype of LPS-activated DCs toward a tolerogenic state, characterized by downregulation of CD86, IL-12 and IL-27, upregulation of ILT3, and induction of class E compartments. Moreover, this DC phenotype was less proficient in promoting Th1 activation and central memory T-cell proliferation. Taken together, these findings support the perception that AuNPs are safe under homeostatic conditions; however, particular care should be taken in patients experiencing a current infection or disorders of the immune system.
Collapse
Affiliation(s)
- Sara Michelini
- Department of Biosciences, Paris-Lodron University Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria.
| | - Francesco Barbero
- Insitut Català de Nanosciència i Nanotecnologia (ICN2), UAB Campus, Bellaterra, Barcelona 08193, Spain
| | | | - Philip Steiner
- Department of Biosciences, Paris-Lodron University Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria.
| | - Richard Weiss
- Department of Biosciences, Paris-Lodron University Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria.
| | - Thomas Verwanger
- Department of Biosciences, Paris-Lodron University Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria.
| | - Ancuela Andosch
- Department of Biosciences, Paris-Lodron University Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria.
| | - Ursula Lütz-Meindl
- Department of Biosciences, Paris-Lodron University Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria.
| | - Victor F Puntes
- Insitut Català de Nanosciència i Nanotecnologia (ICN2), UAB Campus, Bellaterra, Barcelona 08193, Spain
| | - Damjana Drobne
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Albert Duschl
- Department of Biosciences, Paris-Lodron University Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria.
| | - Jutta Horejs-Hoeck
- Department of Biosciences, Paris-Lodron University Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria.
| |
Collapse
|
48
|
Moshfegh CM, Case AJ. The Redox-Metabolic Couple of T Lymphocytes: Potential Consequences for Hypertension. Antioxid Redox Signal 2021; 34:915-935. [PMID: 32237890 PMCID: PMC8035925 DOI: 10.1089/ars.2020.8042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/25/2022]
Abstract
Significance: T lymphocytes, as part of the adaptive immune system, possess the ability to activate and function in extreme cellular microenvironments, which requires these cells to remain highly malleable. One mechanism in which T lymphocytes achieve this adaptability is by responding to cues from both reactive oxygen and nitrogen species, as well as metabolic flux, which together fine-tune the functional fate of these adaptive immune cells. Recent Advances: To date, examinations of the redox and metabolic effects on T lymphocytes have primarily investigated these biological processes as separate entities. Given that the redox and metabolic environments possess significant overlaps of pathways and molecular species, it is inevitable that perturbations in one environment affect the other. Recent consideration of this redox-metabolic couple has demonstrated the strong link and regulatory consequences of these two systems in T lymphocytes. Critical Issues: The redox and metabolic control of T lymphocytes is essential to prevent dysregulated inflammation, which has been observed in cardiovascular diseases such as hypertension. The role of the adaptive immune system in hypertension has been extensively investigated, but the understanding of how the redox and metabolic environments control T lymphocytes in this disease remains unclear. Future Directions: Herein, we provide a discussion of the redox and metabolic control of T lymphocytes as separate entities, as well as coupled to one another, to regulate adaptive immunity. While investigations examining this pair together in T lymphocytes are sparse, we speculate that T lymphocyte destiny is shaped by the redox-metabolic couple. In contrast, disrupting this duo may have inflammatory consequences such as hypertension.
Collapse
Affiliation(s)
- Cassandra M. Moshfegh
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Adam J. Case
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
49
|
Frias AB, Boi SK, Lan X, Youngblood B. Epigenetic regulation of T cell adaptive immunity. Immunol Rev 2021; 300:9-21. [PMID: 33644866 DOI: 10.1111/imr.12943] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/24/2022]
Abstract
The conceptualization of adaptive immunity, founded on the observation of immunological memory, has served as the basis for modern vaccination and immunotherapy approaches. This fundamental concept has allowed immunologists to explore mechanisms that enable humoral and cellular lymphocytes to tailor immune response functions to a wide array of environmental insults and remain poised for future pathogenic encounters. Until recently, for T cells it has remained unclear how memory differentiation acquires and sustains a gene expression program that grants a cell with a capacity for a heightened recall response. Recent investigations into this critical question have identified epigenetic programs as a causal molecular mechanism governing T cell subset specification and immunological memory. Here, we outline the studies that have illustrated this concept and posit on how insights into T cell adaptive immunity can be applied to improve upon existing immunotherapies.
Collapse
Affiliation(s)
- Adolfo B Frias
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shannon K Boi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xin Lan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.,College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ben Youngblood
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
50
|
Ioannidou K, Ndiaye DR, Noto A, Fenwick C, Fortis SP, Pantaleo G, Petrovas C, de Leval L. In Situ Characterization of Follicular Helper CD4 T Cells Using Multiplexed Imaging. Front Immunol 2021; 11:607626. [PMID: 33633728 PMCID: PMC7901994 DOI: 10.3389/fimmu.2020.607626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/24/2020] [Indexed: 12/19/2022] Open
Abstract
Follicular helper CD4 T (Tfh) cells play an essential role in the formation of germinal centers (GCs), where mature B cells proliferate, differentiate, and provide long-term protective humoral responses. Despite the extensive phenotypic characterization and identification of human Tfh cell subsets, their spatial positioning at tissue level is not well understood. Here, we describe a quantitative multiplexed immunofluorescence approach allowing for the comprehensive in situ characterization of Tfh cells in human tonsils and lymph nodes (LNs) from individuals with angioimmunoblastic T-cell lymphoma (AITL). We have developed eight multiplexed panels comprising a spectrum of Tfh cell markers, like PD-1, CXCR5, and ICOS, along with transcription factors (Bcl6, Tbet, GATA3), to assess their expression, frequencies, spatial distribution and co-localization in a quantitative manner. Combined analysis of relevant markers revealed the presence of several Tfh cell subsets at tissue level based on the differential expression of surface receptors, nuclear factors as well as their distinct localization within the follicular areas. Interestingly, we found a considerable amount of tonsillar Tfh cells expressing high levels of the Th2 regulator GATA3. The co-expression of GATA3, CXCR5, and BCL6, points to an important role of GATA3 for the generation of effector human Tfh cells. Furthermore, our data revealed significantly different Tfh cell profile signatures between health and disease. Therefore, our imaging platform generates meaningful information for the in situ characterization of human Tfh cells and could provide the base for future studies aiming to a comprehensive understanding of Tfh cell tissue heterogeneity.
Collapse
Affiliation(s)
- Kalliopi Ioannidou
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Daba-Rokhya Ndiaye
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Alessandra Noto
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Craig Fenwick
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Sotirios P Fortis
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Constantinos Petrovas
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.,Tissue Analysis Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Laurence de Leval
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| |
Collapse
|