1
|
Jarmila P, Veronika M, Peter M. Advances in the delivery of anticancer drugs by nanoparticles and chitosan-based nanoparticles. Int J Pharm X 2024; 8:100281. [PMID: 39297017 PMCID: PMC11408389 DOI: 10.1016/j.ijpx.2024.100281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer is the leading cause of death globally, and conventional treatments have limited efficacy with severe side effects. The use of nanotechnology has the potential to reduce the side effects of drugs by creating efficient and controlled anticancer drug delivery systems. Nanoparticles (NPs) used as drug carriers offer several advantages, including enhanced drug protection, biodistribution, selectivity and, pharmacokinetics. Therefore, this review is devoted to various organic (lipid, polymeric) as well as inorganic nanoparticles based on different building units and providing a wide range of potent anticancer drug delivery systems. Within these nanoparticulate systems, chitosan (CS)-based NPs are discussed with particular emphasis due to the unique properties of CS and its derivatives including non-toxicity, biodegradability, mucoadhesivity, and tunable physico-chemical as well as biological properties allowing their alteration to specifically target cancer cells. In the context of streamlining the nanoparticulate drug delivery systems (DDS), innovative nanoplatform-based cancer therapy pathways involving passive and active targeting as well as stimuli-responsive DDS enhancing overall orthogonality of developed NP-DDS towards the target are included. The most up-to-date information on delivering anti-cancer drugs using modern dosage forms based on various nanoparticulate systems and, specifically, CSNPs, are summarised and evaluated concerning their benefits, limitations, and advanced applications.
Collapse
Affiliation(s)
- Prieložná Jarmila
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Mikušová Veronika
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Mikuš Peter
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| |
Collapse
|
2
|
Ramos-Valle A, Kirst H, Fanarraga ML. Biodegradable silica nanoparticles for efficient linear DNA gene delivery. Drug Deliv 2024; 31:2385376. [PMID: 39101224 DOI: 10.1080/10717544.2024.2385376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024] Open
Abstract
Targeting, safety, scalability, and storage stability of vectors are still challenges in the field of nucleic acid delivery for gene therapy. Silica-based nanoparticles have been widely studied as gene carriers, exhibiting key features such as biocompatibility, simplistic synthesis, and enabling easy surface modifications for targeting. However, the ability of the formulation to incorporate DNA is limited, which restricts the number of DNA molecules that can be incorporated into the particle, thereby reducing gene expression. Here we use polymerase chain reaction (PCR)-generated linear DNA molecules to augment the coding sequences of gene-carrying nanoparticles, thereby maximizing nucleic acid loading and minimizing the size of these nanocarriers. This approach results in a remarkable 16-fold increase in protein expression six days post-transfection in cells transfected with particles carrying the linear DNA compared with particles bearing circular plasmid DNA. The study also showed that the use of linear DNA entrapped in DNA@SiO2 resulted in a much more efficient level of gene expression compared to standard transfection reagents. The system developed in this study features simplicity, scalability, and increased transfection efficiency and gene expression over existing approaches, enabled by improved embedment capabilities for linear DNA, compared to conventional methods such as lipids or polymers, which generally show greater transfection efficiency with plasmid DNA. Therefore, this novel methodology can find applications not only in gene therapy but also in research settings for high-throughput gene expression screenings.
Collapse
Affiliation(s)
- Andrés Ramos-Valle
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, Santander, Spain
- Molecular Biology Department, Universidad de Cantabria, Santander, Spain
| | - Henning Kirst
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, Santander, Spain
- Molecular Biology Department, Universidad de Cantabria, Santander, Spain
| | - Mónica L Fanarraga
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, Santander, Spain
- Molecular Biology Department, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
3
|
Raj A, Chandran C S, Dua K, Kamath V, Alex AT. Targeting overexpressed surface proteins: A new strategy to manage the recalcitrant triple-negative breast cancer. Eur J Pharmacol 2024; 981:176914. [PMID: 39154820 DOI: 10.1016/j.ejphar.2024.176914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive and heterogeneous cancer that lacks all three molecular markers, Estrogen, Progesterone, and Human Epidermal Growth Factor Receptor 2 (HER2). This unique characteristic of TNBC makes it more resistant to hormonal therapy; hence, chemotherapy and surgery are preferred. Active targeting with nanoparticles is more effective in managing TNBC than a passive approach. The surface of TNBC cells overexpresses several cell-specific proteins, which can be explored for diagnostic and therapeutic purposes. Immunohistochemical analysis has revealed that TNBC cells overexpress αVβ3 integrin, Intercellular Adhesion Molecule 1 (ICAM-1), Glucose Transporter 5 (GLUT5), Transmembrane Glycoprotein Mucin 1 (MUC-1), and Epidermal Growth Factor Receptor (EGFR). These surface proteins can be targeted using ligands, such as aptamers, antibodies, and sugar molecules. Targeting the surface proteins of TNBC with ligands helps harmonize treatment and improve patient compliance. In this review, we discuss the proteins expressed, which are limited to αVβ3 integrin proteins, ICAM-1, GLUT-5, MUC1, and EGFR, on the surface of TNBC, the challenges associated with the preclinical setup of breast cancer for targeted nanoformulations, internalization techniques and their challenges, suggestions to overcome the limitations of successful translation of nanoparticles, and the possibility of ligand-conjugated nanoparticles targeting these surface receptors for a better therapeutic outcome.
Collapse
Affiliation(s)
- Alan Raj
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka state, India, 576104.
| | - Sarath Chandran C
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Government Medical College Kannur, Pariyaram, Kerala, India, 670 503; Kerala University of Health Sciences, Thrissur, Kerala, India - 680 596.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, Faculty of Health, University of Technology Sydney, Sydney, Australia-2007; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, Australia-2007.
| | - Venkatesh Kamath
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka state, India, 576104.
| | - Angel Treasa Alex
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka state, India, 576104.
| |
Collapse
|
4
|
Dastgerdi NK, Dastgerdi NK, Bayraktutan H, Costabile G, Atyabi F, Dinarvand R, Longobardi G, Alexander C, Conte C. Enhancing siRNA cancer therapy: Multifaceted strategies with lipid and polymer-based carrier systems. Int J Pharm 2024; 663:124545. [PMID: 39098747 DOI: 10.1016/j.ijpharm.2024.124545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Cancers are increasing in prevalence and many challenges remain for their treatment, such as chemoresistance and toxicity. In this context, siRNA-based therapeutics have many potential advantages for cancer therapies as a result of their ability to reduce or prevent expression of specific cancer-related genes. However, the direct delivery of naked siRNA is hindered by issues like enzymatic degradation, insufficient cellular uptake, and poor pharmacokinetics. Hence, the discovery of a safe and efficient delivery vehicle is essential. This review explores various lipid and polymer-based delivery systems for siRNA in cancer treatment. Both polymers and lipids have garnered considerable attention as carriers for siRNA delivery. While all of these systems protect siRNA and enhance transfection efficacy, each exhibits its unique strengths. Lipid-based delivery systems, for instance, demonstrate high entrapment efficacy and utilize cost-effective materials. Conversely, polymeric-based delivery systems offer advantages through chemical modifications. Nonetheless, certain drawbacks still limit their usage. To address these limitations, combining different materials in formulations (lipid, polymer, or targeting agent) could enhance pharmaceutical properties, boost transfection efficacy, and reduce side effects. Furthermore, co-delivery of siRNA with other therapeutic agents presents a promising strategy to overcome cancer resistance. Lipid-based delivery systems have been demonstrated to encapsulate many therapeutic agents and with high efficiency, but most are limited in terms of the functionalities they display. In contrast, polymeric-based delivery systems can be chemically modified by a wide variety of routes to include multiple components, such as release or targeting elements, from the same materials backbone. Accordingly, by incorporating multiple materials such as lipids, polymers, and/or targeting agents in RNA formulations it is possible to improve the pharmaceutical properties and therapeutic efficacy while reducing side effects. This review focuses on strategies to improve siRNA cancer treatments and discusses future prospects in this important field.
Collapse
Affiliation(s)
- Nazgol Karimi Dastgerdi
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK; Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazanin Karimi Dastgerdi
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hulya Bayraktutan
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | | | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614315, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614315, Iran.
| | | | - Cameron Alexander
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - Claudia Conte
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy.
| |
Collapse
|
5
|
Kräenbring MA, Özcan F, Segets D. Analyzing Emulsion Dynamics via Direct Visualization and Statistical Methodologies. ACS OMEGA 2024; 9:39253-39258. [PMID: 39310184 PMCID: PMC11411531 DOI: 10.1021/acsomega.4c06850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024]
Abstract
Analytical centrifugation is a powerful technique that leverages the principles of centrifugal force and optical detection to characterize emulsion droplets in a label-free and high-throughput manner. Other advantages include minimal sample preparation effort and compatibility with a wide range of emulsion formulations. However, the resulting data can be rather complex and, thus, difficult to fully understand and interpret. To tackle this, we developed two analytical methodologies that enable an easy and intuitive understanding of the data as well as an objective, quantitative analysis and validated them using six model emulsions employing different surfactants. Through their application, insights with unprecedented clarity into dynamic emulsion behavior, stability mechanisms, and emulsion-based processes can be gained, facilitating advancements in fields such as food science, pharmaceuticals, and materials engineering.
Collapse
Affiliation(s)
- Mena-Alexander Kräenbring
- Institute
for Energy and Materials Processes - Particle Science and Technology
(EMPI-PST), University of Duisburg-Essen, Duisburg 47057, Germany
| | - Fatih Özcan
- Institute
for Energy and Materials Processes - Particle Science and Technology
(EMPI-PST), University of Duisburg-Essen, Duisburg 47057, Germany
| | - Doris Segets
- Institute
for Energy and Materials Processes - Particle Science and Technology
(EMPI-PST), University of Duisburg-Essen, Duisburg 47057, Germany
- Center
for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47057, Germany
| |
Collapse
|
6
|
Jahan S, Ali A, Sultana N, Qizilbash FF, Ali H, Aqil M, Mujeeb M, Ali A. An overview of phospholipid enriched-edge activator-based vesicle nanocarriers: New paradigms to treat skin cancer. J Drug Target 2024:1-42. [PMID: 39246202 DOI: 10.1080/1061186x.2024.2402750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/04/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Skin cancer poses a significant global health concern necessitating innovative treatment approaches. This review explores the potential of vesicle nanoformulation incorporating EA (edge activators) to overcome barriers in skin cancer management. The skin's inherent protective mechanisms, specifically the outermost layer called the stratum corneum and the network of blood arteries, impede the permeation of drugs. Phospholipid-enriched EA based nanoformulation offer a promising solution by enhancing drug penetration through skin barriers. EAs like Span 80, Span 20, Tween 20, and sodium cholate etc., enhance vesicles deformability, influencing drug permeation. This review discusses topical application of drugs treat skin cancer, highlighting challenges connected with the conventional liposome and the significance of using EA-based nanoformulation in overcoming these challenges. Furthermore, it provides insights into various EA characteristics, critical insights, clinical trials, and patents. The review also offers a concise overview of composition, preparation techniques, and the application of EA-based nanoformulation such as transfersomes, transliposomes, transethosomes, and transniosomes for delivering drugs to treat skin cancer. Overall, this review intends to accelerate the development of formulations that incorporate EA, which would further improve topical drug delivery and enhance therapeutic outcomes in skin cancer treatment.
Collapse
Affiliation(s)
- Samreen Jahan
- Department of Pharmaceutics, School of Pharmaceutical Education And Research, Jamia Hamdard, New Delhi, India, 110062
| | - Asad Ali
- Department of Pharmaceutics, School of Pharmaceutical Education And Research, Jamia Hamdard, New Delhi, India, 110062
| | - Niha Sultana
- Department of Pharmaceutics, School of Pharmaceutical Education And Research, Jamia Hamdard, New Delhi, India, 110062
| | - Farheen Fatima Qizilbash
- Department of Pharmaceutics, School of Pharmaceutical Education And Research, Jamia Hamdard, New Delhi, India, 110062
| | - Hamad Ali
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education And Research, Jamia Hamdard, New Delhi, India, 110062
| | - Mohd Mujeeb
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062
| | - Asgar Ali
- Department of Pharmaceutics, School of Pharmaceutical Education And Research, Jamia Hamdard, New Delhi, India, 110062
| |
Collapse
|
7
|
Rajkhowa S, Hussain SZ, Agarwal M, Zaheen A, Al-Hussain SA, Zaki MEA. Advancing Antibiotic-Resistant Microbe Combat: Nanocarrier-Based Systems in Combination Therapy Targeting Quorum Sensing. Pharmaceutics 2024; 16:1160. [PMID: 39339197 PMCID: PMC11434747 DOI: 10.3390/pharmaceutics16091160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The increase in antibiotic-resistant bacteria presents a significant risk to worldwide public health, emphasizing the necessity of novel approaches to address infections. Quorum sensing, an essential method of communication among bacteria, controls activities like the formation of biofilms, the production of virulence factors, and the synthesis of secondary metabolites according to the number of individuals in the population. Quorum quenching, which interferes with these processes, emerges as a vital approach to diminish bacterial virulence and prevent biofilm formation. Nanocarriers, characterized by their small size, high surface-area-to-volume ratio, and modifiable surface chemistry, offer a versatile platform for the disruption of bacterial communication by targeting various stages within the quorum sensing pathway. These features allow nanocarriers to infiltrate biofilms, disrupt cell membranes, and inhibit bacterial proliferation, presenting a promising alternative to traditional antibiotics. Integrating nanocarrier-based systems into combination therapies provides a multi-pronged approach to infection control, enhancing both the efficacy and specificity of treatment regimens. Nonetheless, challenges related to the stability, safety, and clinical effectiveness of nanomaterial-based antimicrobial treatments remain. Continued research and development are essential to overcoming these obstacles and fully harnessing the potential of nano-antimicrobial therapies. This review emphasizes the importance of quorum sensing in bacterial behavior and highlights the transformative potential of nanotechnology in advancing antimicrobial treatments, offering innovative solutions to combat antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Sanchaita Rajkhowa
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, Assam, India; (S.Z.H.); (M.A.); (A.Z.)
| | - Safrina Zeenat Hussain
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, Assam, India; (S.Z.H.); (M.A.); (A.Z.)
| | - Manisha Agarwal
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, Assam, India; (S.Z.H.); (M.A.); (A.Z.)
| | - Alaiha Zaheen
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, Assam, India; (S.Z.H.); (M.A.); (A.Z.)
| | - Sami A. Al-Hussain
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - Magdi E. A. Zaki
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| |
Collapse
|
8
|
De K, Tanbir SKE, Sinha S, Mukhopadhyay S. Lipid-Based Nanocarrier by Targeting with LHRH Peptide: A Promising Approach for Prostate Cancer Radio-Imaging and Therapy. Mol Pharm 2024; 21:4128-4146. [PMID: 38920398 DOI: 10.1021/acs.molpharmaceut.4c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Prostate cancer is a prevalently detected malignancy with a dismal prognosis. Luteinizing-hormone-releasing-hormone (LHRH) receptors are overexpressed in such cancer cells, to which the LHRH-decapeptide can specifically bind. A lipid-polyethylene glycol-conjugated new LHRH-decapeptide analogue (D-P-HLH) was synthesized and characterized. D-P-HLH-coated and anticancer drug doxorubicin (DX)-loaded solid lipid nanoparticles (F-DX-SLN) were formulated by the cold homogenization technique and characterized by Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, differential scanning calorimetry, dynamic light scattering, electron microscopy, entrapment efficiency, and drug-release profile studies. F-DX-SLN allows site-specific DX delivery by reducing the side effects of chemotherapy. Cancer cells could precisely take up F-DX-SLN by targeting specific receptors, boosting the cytotoxicity at the tumor site. The efficacy of F-DX-SLN on PC3/SKBR3 cells by the MTT assay revealed that F-DX-SLN was more cytotoxic than DX and/or DX-SLN. Flow cytometry and confocal microscopic studies further support F-DX-SLNs' increased intracellular absorption capability in targeting LHRH overexpressed cancer cells. F-DX-SLN ensured high apoptotic potential, noticeably larger mitochondrial transmembrane depolarization action, as well as the activation of caspases, a longer half-life, and greater plasma concentration. F-DX-SLN/DX-SLN was radiolabeled with technetium-99m; scintigraphic imaging studies established its tumor selectivity in PC3 tumor-bearing nude mice. The efficacy of the formulations in cancer treatment, in vivo therapeutic efficacy tests, and histopathological studies were also conducted. Results clearly indicate that F-DX-SLN exhibits sustained and superior targeted administration of anticancer drugs, thus opening up the possibility of a drug delivery system with precise control and targeting effects. F-DX-SLN could also provide a nanotheranostic approach with improved efficacy for prostate cancer therapy.
Collapse
Affiliation(s)
- Kakali De
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - S K Eashayan Tanbir
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Samarendu Sinha
- Netaji Subhas Chandra Bose Cancer Hospital, 3081 Nayabad, Kolkata 700094, India
| | - Soma Mukhopadhyay
- Netaji Subhas Chandra Bose Cancer Hospital, 3081 Nayabad, Kolkata 700094, India
| |
Collapse
|
9
|
An P, Zhao Q, Hao S, Wang X, Tian J, Ma Z. Recent Advancements and Trends of Topical Drug Delivery Systems in Psoriasis: A Review and Bibliometric Analysis. Int J Nanomedicine 2024; 19:7631-7671. [PMID: 39099792 PMCID: PMC11296365 DOI: 10.2147/ijn.s461514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Psoriasis is an immune-mediated inflammatory skin disease where topical therapy is crucial. While various dosage forms have enhanced the efficacy of current treatments, their limited permeability and lack of targeted delivery to the dermis and epidermis remain challenges. We reviewed the evolution of topical therapies for psoriasis and conducted a bibliometric analysis from 1993 to 2023 using a predictive linear regression model. This included a comprehensive statistical and visual evaluation of each model's validity, literature profiles, citation patterns, and collaborations, assessing R variance and mean squared error (MSE). Furthermore, we detailed the structural features and penetration pathways of emerging drug delivery systems for topical treatment, such as lipid-based, polymer-based, metallic nanocarriers, and nanocrystals, highlighting their advantages. This systematic overview indicates that future research should focus on developing novel drug delivery systems characterized by enhanced stability, biocompatibility, and drug-carrying capacity.
Collapse
Affiliation(s)
- Pingyu An
- Basic Medical College, Harbin Medical University, Harbin, People’s Republic of China
| | - Qiyue Zhao
- School of Nursing, Southern Medical University, Guangzhou, People’s Republic of China
| | - Siyu Hao
- Department of Dermatology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Xiaodong Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Jiangtian Tian
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, People’s Republic of China
| | - Zhiqiang Ma
- Department of Dermatology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| |
Collapse
|
10
|
Chintapula U, Karim SU, Iyer PR, Asokan-Sheeja H, Neupane B, Nazneen F, Dong H, Bai F, Nguyen KT. A novel nanocomposite drug delivery system for SARS-CoV-2 infections. NANOSCALE ADVANCES 2024; 6:3747-3758. [PMID: 39050946 PMCID: PMC11265598 DOI: 10.1039/d4na00361f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/19/2024] [Indexed: 07/27/2024]
Abstract
To develop an inhalable drug delivery system, we synthesized poly (lactic-co-glycolic acid) nanoparticles with Remdesivir (RDV NPs) as an antiviral agent against SARS-CoV-2 replication and formulated Remdesivir-loaded nanocomposites (RDV NCs) via coating of RDV NPs with novel supramolecular cell-penetrating peptide nanofibers (NFs) to enhance cellular uptake and intracellular drug delivery. RDV NPs and RDV NCs were characterized using variou techniques, including Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS), and fluorescent microscopy. The cytotoxicity of RDV NCs was assessed in Vero E6 cells and primary human lung epithelial cells, with no significant cytotoxicity observed up to 1000 μg mL-1 and 48 h. RDV NCs were spherically shaped with a size range of 200-300 nm and a zeta potential of ∼+31 mV as well as indicating the presence of coated nanofibers. Reverse Transcription-quantitative Polymerase Chain Reaction (RT-qPCR), immunofluorescence and plaque assays of SARS-CoV-2 infected Vero E6 treated with RDV NCs showed significantly higher antiviral activities compared to those of free drug and uncoated RDV NPs. RDV NCs exhibited high antiviral activity against SARS-CoV-2, and the nanocomposite platform has the potential to be developed into an inhalable drug delivery system for other viral infections in the lungs.
Collapse
Affiliation(s)
- Uday Chintapula
- Department of Bioengineering, University of Texas at Arlington Arlington TX 76010 USA
| | - Shazeed-Ul Karim
- Department of Cell and Molecular Biology, University of Southern Mississippi Hattiesburg MS 39406 USA
| | | | - Haritha Asokan-Sheeja
- Department of Chemistry and Biochemistry, University of Texas at Arlington Arlington TX 76010 USA
| | - Biswas Neupane
- Department of Cell and Molecular Biology, University of Southern Mississippi Hattiesburg MS 39406 USA
| | - Farzana Nazneen
- Department of Cell and Molecular Biology, University of Southern Mississippi Hattiesburg MS 39406 USA
| | - He Dong
- Department of Chemistry and Biochemistry, University of Texas at Arlington Arlington TX 76010 USA
| | - Fengwei Bai
- Department of Cell and Molecular Biology, University of Southern Mississippi Hattiesburg MS 39406 USA
| | - Kytai T Nguyen
- Department of Bioengineering, University of Texas at Arlington Arlington TX 76010 USA
| |
Collapse
|
11
|
Karahmet Sher E, Alebić M, Marković Boras M, Boškailo E, Karahmet Farhat E, Karahmet A, Pavlović B, Sher F, Lekić L. Nanotechnology in medicine revolutionizing drug delivery for cancer and viral infection treatments. Int J Pharm 2024; 660:124345. [PMID: 38885775 DOI: 10.1016/j.ijpharm.2024.124345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Advancements in nanotechnology were vastly applied in medicine and pharmacy, especially in the field of nano-delivery systems. It took a long time for these systems to ensure precise delivery of very delicate molecules, such as RNA, to cells at concentrations that yield remarkable efficiency, with success rates reaching 95.0% and 94.5%. These days, there are several advantages of using nanotechnological solutions in the prevention and treatment of cancer and viral infections. Its interventions improve treatment outcomes both due to increased effectiveness of the drug at target location and by reducing adverse reactions, thereby increasing patient adherence to the therapy. Based on the current knowledge an updated review was made, and perspective, opportunities and challenges in nanomedicine were discussed. The methods employed include comprehensive examination of existing literature and studies on nanoparticles and nano-delivery systems including both in vitro tests performed on cell cultures and in vivo assessments carried out on appropriate animal models, with a specific emphasis on their applications in oncology and virology. This brings together various aspects including both structure and formation as well as its association with characteristic behaviour in organisms, providing a novel perspective. Furthermore, the practical application of these systems in medicine and pharmacy with a focus on viral diseases and malignancies was explored. This review can serve as a valuable guide for fellow researchers, helping them navigate the abundance of findings in this field. The results indicate that applications of nanotechnological solutions for the delivery of medicinal products improving therapeutic outcomes will continue to expand.
Collapse
Affiliation(s)
- Emina Karahmet Sher
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| | - Mirna Alebić
- Department of Pharmacy, University Hospital Centre Zagreb, Zagreb 10000, Croatia
| | - Marijana Marković Boras
- Department of Laboratory Diagnostic, University Clinical Hospital Mostar, Mostar 88000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Emina Boškailo
- International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Esma Karahmet Farhat
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Department of Food and Nutrition, Faculty of Food Technology, Juraj Strossmayer University of Osijek, Osijek 31000, Croatia
| | - Alma Karahmet
- International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Bojan Pavlović
- Faculty of Physical Education and Sports, University of East Sarajevo, Lukavica, Republika Srpska 75327, Bosnia and Herzegovina
| | - Farooq Sher
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| | - Lana Lekić
- Faculty of Health Studies, University of Sarajevo, Sarajevo 71000, Bosnia and Herzegovina
| |
Collapse
|
12
|
Shrivastava S, Upadhyay A, Pradhan SS, Saha S, Singh A. Evolution Kinetics of Stabilizing Pickering Emulsion by Brush-Modified Janus Particles: DPD Simulation and Experimental Insights. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13920-13934. [PMID: 38809114 DOI: 10.1021/acs.langmuir.4c01083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
In the present study, we report the evolution of stabilizing Pickering emulsions using brush-modified Janus particles (JPs), utilizing the dissipative particle dynamics (DPD) simulation technique. Our results are subsequently corroborated with experimental findings. Each JP has one-half of the hydrophobic surface, with the other half embedded with hydrophilic polymer brushes grown via atom transfer radical polymerization (ATRP). Our generic simulation model analyzes the chemical kinetics of polymer brush growth on one-half of the initiator-embedded microparticle (MP) surface, resulting in the formation of JP. This involves evaluating monomer conversion and reaction rates. Our results exhibit a substantial influence of the number of JPs, grafted brush density, and brush length on oil-in-water emulsion stability. We studied the evolution kinetics and stability of emulsion formation by analyzing the growth of average domain size and corresponding scaling functions up to a late time limit. This study aims to clarify the connection between the size, quantity, and functionality of JPs and the stability of Pickering emulsions.
Collapse
Affiliation(s)
- Samiksha Shrivastava
- Department of Physics, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Ashank Upadhyay
- Department of Material Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | | | - Sampa Saha
- Department of Material Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Awaneesh Singh
- Department of Physics, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
13
|
He X, Payne TJ, Takanashi A, Fang Y, Kerai SD, Morrow JP, Al-Wassiti H, Pouton CW, Kempe K. Tailored Monoacyl Poly(2-oxazoline)- and Poly(2-oxazine)-Lipids as PEG-Lipid Alternatives for Stabilization and Delivery of mRNA-Lipid Nanoparticles. Biomacromolecules 2024; 25:4591-4603. [PMID: 38918933 DOI: 10.1021/acs.biomac.4c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The successful use of lipid nanoparticles (LNPs) for clinical development of the COVID-19 mRNA vaccines marked a breakthrough in mRNA-LNP therapeutics. As one of the vital components of LNPs, poly(ethylene glycol)-lipid conjugates (PEG-lipids) influence particle biophysical properties and stability, as well as interactions within biological environments. Reports suggesting that anti-PEG antibodies can be detected quite commonly within the human population raise concerns that PEG content in commercial LNP products could further stimulate immune responses to PEG. The presence of anti-PEG antibodies has been linked to accelerated clearance of LNPs, potentially a source of variability in the biological response to mRNA-LNP products. This motivated us to explore potential PEG alternatives. Herein, we report physicochemical and biological properties of mRNA-LNPs assembled using poly(2-oxazoline) (POx)- and poly(2-oxazine) (POz)-based polymer-lipid conjugates. Notably, we investigated monoacyl lipids as alternatives to diacyl lipids. mRNA-LNPs produced using monoacyl POx/POz-lipids displayed comparable biophysical characteristics and cytocompatibility. Delivery of reporter mRNA resulted in similar transfection efficiencies, in both adherent and suspension cells, and in mice, compared to PEG-lipid equivalents. Our results suggest that monoacyl POx/POz-lipid-containing LNPs are promising candidates for the development of PEG-free LNP-based therapeutic products.
Collapse
Affiliation(s)
- Xie He
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Thomas J Payne
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Asuka Takanashi
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Yunji Fang
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Simran D Kerai
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Joshua P Morrow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Hareth Al-Wassiti
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Colin W Pouton
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
14
|
Alwani S, Wasan EK, Badea I. Solid Lipid Nanoparticles for Pulmonary Delivery of Biopharmaceuticals: A Review of Opportunities, Challenges, and Delivery Applications. Mol Pharm 2024; 21:3084-3102. [PMID: 38828798 DOI: 10.1021/acs.molpharmaceut.4c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Biopharmaceuticals such as nucleic acids, proteins, and peptides constitute a new array of treatment modalities for chronic ailments. Invasive routes remain the mainstay of administering biopharmaceuticals due to their labile nature in the biological environment. However, it is not preferred for long-term therapy due to the lack of patient adherence and clinical suitability. Therefore, alternative routes of administration are sought to utilize novel biopharmaceutical therapies to their utmost potential. Nanoparticle-mediated pulmonary delivery of biologics can facilitate both local and systemic disorders. Solid lipid nanoparticles (SLNs) afford many opportunities as pulmonary carriers due to their physicochemical stability and ability to incorporate both hydrophilic and hydrophobic moieties, thus allowing novel combinatorial drug/gene therapies. These applications include pulmonary infections, lung cancer, and cystic fibrosis, while systemic delivery of biomolecules, like insulin, is also attractive for the treatment of chronic ailments. This Review explores physiological and particle-associated factors affecting pulmonary delivery of biopharmaceuticals. It compares the advantages and limitations of SLNs as pulmonary nanocarriers along with design improvements underway to overcome these limitations. Current research illustrating various SLN designs to deliver proteins, peptides, plasmids, oligonucleotides, siRNA, and mRNA is also summarized.
Collapse
Affiliation(s)
- Saniya Alwani
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Health Sciences Building, Saskatoon, S7N 5E5 Saskatchewan, Canada
| | - Ellen K Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Health Sciences Building, Saskatoon, S7N 5E5 Saskatchewan, Canada
| | - Ildiko Badea
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Health Sciences Building, Saskatoon, S7N 5E5 Saskatchewan, Canada
| |
Collapse
|
15
|
Mangla B, Mittal P, Kumar P, Aggarwal G. Multifaceted role of erlotinib in various cancer: nanotechnology intervention, patent landscape, and advancements in clinical trials. Med Oncol 2024; 41:173. [PMID: 38864966 DOI: 10.1007/s12032-024-02414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/23/2024] [Indexed: 06/13/2024]
Abstract
Erlotinib (ELB) is a tyrosine kinase inhibitor that targets the activity of Epidermal Growth Factor Receptor (EGFR) protein found in both healthy and cancerous cells. It binds reversibly to the ATP-binding site of the EGFR tyrosine kinase. ELB was approved by the US Food and Drug Administration (FDA) in 2004 for advanced non-small cell lung cancer (NSCLC) treatment in patients who relapsed after at least one other therapy. It was authorized for use with gemcitabine in 2005 for the treatment of advanced pancreatic cancer. In addition to lung cancer, ELB has shown promising results in the treatment of other cancers, including breast, prostate, colon, pancreatic, cervical, ovarian, and head and neck cancers. However, its limited water solubility, as a BCS class II drug, presents biopharmaceutical problems. Nanoformulations have been developed to overcome these issues, including increased solubility, controlled release, enhanced stability, tumor accumulation, reduced toxicity, and overcoming drug resistance. In older patients, ELB management should involve individualized dosing based on age-related changes in drug metabolism and close monitoring for adverse effects. Regular assessments of renal and hepatic functions are essential. This review provides an overview of ELB's role of ELB in treating various cancers, its associated biopharmaceutical issues, and the latest developments in ELB-related nanotechnology interventions. It also covers ELB patents granted in previous years and the ongoing clinical trials.
Collapse
Affiliation(s)
- Bharti Mangla
- Centre for Advanced Formulation and Technology, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Priya Mittal
- Centre for Advanced Formulation and Technology, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Pankaj Kumar
- Centre for Advanced Formulation and Technology, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Geeta Aggarwal
- Centre for Advanced Formulation and Technology, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| |
Collapse
|
16
|
Pandey Y, Ingold A, Kumar N, Zenobi R. Nanoscale visualization of phase separation in binary supported lipid monolayer using tip-enhanced Raman spectroscopy. NANOSCALE 2024; 16:10578-10583. [PMID: 38767416 PMCID: PMC11154864 DOI: 10.1039/d4nr00816b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Supported lipid membranes are an important model system to study the phase separation behavior at the nanoscale. However, the conventional nanoanalytical tools often fail to provide reliable chemical characterization of the phase separated domains in a non-destructive and label-free manner. This study demonstrates the application of scanning tunneling microscopy-based tip-enhanced Raman spectroscopy (TERS) to study the nanoscale phase separation in supported d62-DPPC : DOPC lipid monolayers. Hyperspectral TERS imaging successfully revealed a clear segregation of the d62-DPPC-rich and DOPC-rich domains. Interestingly, nanoscale deposits of d62-DPPC were observed inside the DOPC-rich domains and vice versa. High-resolution TERS imaging also revealed the presence of a 40-120 nm wide interfacial region between the d62-DPPC-rich and DOPC-rich domains signifying a smooth transition rather than a sharp boundary between them. The novel insights obtained in this study demonstrate the effectiveness of TERS in studying binary lipid monolayers at the nanoscale.
Collapse
Affiliation(s)
- Yashashwa Pandey
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland.
| | - Andrea Ingold
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland.
| | - Naresh Kumar
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland.
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland.
| |
Collapse
|
17
|
Munir M, Zaman M, Waqar MA, Khan MA, Alvi MN. Solid lipid nanoparticles: a versatile approach for controlled release and targeted drug delivery. J Liposome Res 2024; 34:335-348. [PMID: 37840238 DOI: 10.1080/08982104.2023.2268711] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
Solid Lipid Nanoparticles (SLN), the first type of lipid-based solid carrier systems in the nanometer range, were introduced as a replacement for liposomes. SLN are aqueous colloidal dispersions with solid biodegradable lipids as their matrix. SLN is produced using processes like solvent diffusion method and high-pressure homogenization, among others. Major benefits include regulated release, increased bioavailability, preservation of peptides and chemically labile compounds like retinol against degradation, cost-effective excipients, better drug integration, and a broad range of applications. Solid lipid nanoparticles can be administered via different routes, such as oral, parenteral, pulmonary, etc. SLN can be prepared by using high shear mixing as well as low shear mixing. The next generation of solid lipids, nanostructured lipid carriers (NLC), can reduce some of the drawbacks of SLN, such as its restricted capacity for drug loading and drug expulsion during storage. NLC are controlled nanostructured lipid particles that enhance drug loading. This review covers a brief introduction of solid lipid nanoparticles, manufacturing techniques, benefits, limitations, and their characterization tests.
Collapse
Affiliation(s)
- Minahal Munir
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Zaman
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Ahsan Waqar
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Mahtab Ahmad Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Nadeem Alvi
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
18
|
Bonde S, Osmani RAM, Trivedi R, Patravale V, Angolkar M, Prasad AG, Ravikumar AA. Harnessing DNA origami's therapeutic potential for revolutionizing cardiovascular disease treatment: A comprehensive review. Int J Biol Macromol 2024; 270:132246. [PMID: 38735608 DOI: 10.1016/j.ijbiomac.2024.132246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/25/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
DNA origami is a cutting-edge nanotechnology approach that creates precise and detailed 2D and 3D nanostructures. The crucial feature of DNA origami is how it is created, which enables precise control over its size and shape. Biocompatibility, targetability, programmability, and stability are further advantages that make it a potentially beneficial technique for a variety of applications. The preclinical studies of sophisticated programmable nanomedicines and nanodevices that can precisely respond to particular disease-associated triggers and microenvironments have been made possible by recent developments in DNA origami. These stimuli, which are endogenous to the targeted disorders, include protein upregulation, pH, redox status, and small chemicals. Oncology has traditionally been the focus of the majority of past and current research on this subject. Therefore, in this comprehensive review, we delve into the intricate world of DNA origami, exploring its defining features and capabilities. This review covers the fundamental characteristics of DNA origami, targeting DNA origami to cells, cellular uptake, and subcellular localization. Throughout the review, we emphasised on elucidating the imperative for such a therapeutic platform, especially in addressing the complexities of cardiovascular disease (CVD). Moreover, we explore the vast potential inherent in DNA origami technology, envisioning its promising role in the realm of CVD treatment and beyond.
Collapse
Affiliation(s)
- Smita Bonde
- Department of Pharmaceutics, SSR College of Pharmacy, Silvassa 396230, UT of Dadra and Nagar Haveli, India.
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Rashmi Trivedi
- Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur 441002, Maharashtra, India.
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400019, Maharashtra, India.
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Aprameya Ganesh Prasad
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Akhila Akkihebbal Ravikumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| |
Collapse
|
19
|
Paramshetti S, Angolkar M, Talath S, Osmani RAM, Spandana A, Al Fatease A, Hani U, Ramesh KVRNS, Singh E. Unravelling the in vivo dynamics of liposomes: Insights into biodistribution and cellular membrane interactions. Life Sci 2024; 346:122616. [PMID: 38599316 DOI: 10.1016/j.lfs.2024.122616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Liposomes, as a colloidal drug delivery system dating back to the 1960s, remain a focal point of extensive research and stand as a highly efficient drug delivery method. The amalgamation of technological and biological advancements has propelled their evolution, elevating them to their current status. The key attributes of biodegradability and biocompatibility have been instrumental in driving substantial progress in liposome development. Demonstrating a remarkable ability to surmount barriers in drug absorption, enhance stability, and achieve targeted distribution within the body, liposomes have become pivotal in pharmaceutical research. In this comprehensive review, we delve into the intricate details of liposomal drug delivery systems, focusing specifically on their pharmacokinetics and cell membrane interactions via fusion, lipid exchange, endocytosis etc. Emphasizing the nuanced impact of various liposomal characteristics, we explore factors such as lipid composition, particle size, surface modifications, charge, dosage, and administration routes. By dissecting the multifaceted interactions between liposomes and biological barriers, including the reticuloendothelial system (RES), opsonization, enhanced permeability and retention (EPR) effect, ATP-binding cassette (ABC) phenomenon, and Complement Activation-Related Pseudoallergy (CARPA) effect, we provide a deeper understanding of liposomal behaviour in vivo. Furthermore, this review addresses the intricate challenges associated with translating liposomal technology into practical applications, offering insights into overcoming these hurdles. Additionally, we provide a comprehensive analysis of the clinical adoption and patent landscape of liposomes across diverse biomedical domains, shedding light on their potential implications for future research and therapeutic developments.
Collapse
Affiliation(s)
- Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Asha Spandana
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - K V R N S Ramesh
- Department of Pharmaceutics, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Ekta Singh
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
20
|
Petrovic S, Bita B, Barbinta-Patrascu ME. Nanoformulations in Pharmaceutical and Biomedical Applications: Green Perspectives. Int J Mol Sci 2024; 25:5842. [PMID: 38892030 PMCID: PMC11172476 DOI: 10.3390/ijms25115842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
This study provides a brief discussion of the major nanopharmaceuticals formulations as well as the impact of nanotechnology on the future of pharmaceuticals. Effective and eco-friendly strategies of biofabrication are also highlighted. Modern approaches to designing pharmaceutical nanoformulations (e.g., 3D printing, Phyto-Nanotechnology, Biomimetics/Bioinspiration, etc.) are outlined. This paper discusses the need to use natural resources for the "green" design of new nanoformulations with therapeutic efficiency. Nanopharmaceuticals research is still in its early stages, and the preparation of nanomaterials must be carefully considered. Therefore, safety and long-term effects of pharmaceutical nanoformulations must not be overlooked. The testing of nanopharmaceuticals represents an essential point in their further applications. Vegetal scaffolds obtained by decellularizing plant leaves represent a valuable, bioinspired model for nanopharmaceutical testing that avoids using animals. Nanoformulations are critical in various fields, especially in pharmacy, medicine, agriculture, and material science, due to their unique properties and advantages over conventional formulations that allows improved solubility, bioavailability, targeted drug delivery, controlled release, and reduced toxicity. Nanopharmaceuticals have transitioned from experimental stages to being a vital component of clinical practice, significantly improving outcomes in medical fields for cancer treatment, infectious diseases, neurological disorders, personalized medicine, and advanced diagnostics. Here are the key points highlighting their importance. The significant challenges, opportunities, and future directions are mentioned in the final section.
Collapse
Affiliation(s)
- Sanja Petrovic
- Department of Chemical Technologies, Faculty of Technology, University of Nis, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia;
| | - Bogdan Bita
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania;
| | - Marcela-Elisabeta Barbinta-Patrascu
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania;
| |
Collapse
|
21
|
Kumar M, Kumar D, Kumar D, Garg Y, Chopra S, Bhatia A. Therapeutic Potential of Nanocarrier Mediated Delivery of Peptides for Wound Healing: Current Status, Challenges and Future Prospective. AAPS PharmSciTech 2024; 25:108. [PMID: 38730090 DOI: 10.1208/s12249-024-02827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
Wound healing presents a complex physiological process that involves a sequence of events orchestrated by various cellular and molecular mechanisms. In recent years, there has been growing interest in leveraging nanomaterials and peptides to enhance wound healing outcomes. Nanocarriers offer unique properties such as high surface area-to-volume ratio, tunable physicochemical characteristics, and the ability to deliver therapeutic agents in a controlled manner. Similarly, peptides, with their diverse biological activities and low immunogenicity, hold great promise as therapeutics in wound healing applications. In this review, authors explore the potential of peptides as bioactive components in wound healing formulations, focusing on their antimicrobial, anti-inflammatory, and pro-regenerative properties. Despite the significant progress made in this field, several challenges remain, including the need for standardized characterization methods, optimization of biocompatibility and safety profiles, and translation from bench to bedside. Furthermore, developing multifunctional nanomaterial-peptide hybrid systems represents promising avenues for future research. Overall, the integration of nanomaterials made up of natural or synthetic polymers with peptide-based formulations holds tremendous therapeutic potential in advancing the field of wound healing and improving clinical outcomes for patients with acute and chronic wounds.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Dikshant Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Yogesh Garg
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India.
| |
Collapse
|
22
|
Shaw I, Boafo GF, Ali YS, Liu Y, Mlambo R, Tan S, Chen C. Advancements and prospects of lipid-based nanoparticles: dual frontiers in cancer treatment and vaccine development. J Microencapsul 2024; 41:226-254. [PMID: 38560994 DOI: 10.1080/02652048.2024.2326091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Cancer is a complex heterogeneous disease that poses a significant public health challenge. In recent years, lipid-based nanoparticles (LBNPs) have expanded drug delivery and vaccine development options owing to their adaptable, non-toxic, tuneable physicochemical properties, versatile surface functionalisation, and biocompatibility. LBNPs are tiny artificial structures composed of lipid-like materials that can be engineered to encapsulate and deliver therapeutic agents with pinpoint accuracy. They have been widely explored in oncology; however, our understanding of their pharmacological mechanisms, effects of their composition, charge, and size on cellular uptake, tumour penetration, and how they can be utilised to develop cancer vaccines is still limited. Hence, we reviewed LBNPs' unique characteristics, biochemical features, and tumour-targeting mechanisms. Furthermore, we examined their ability to enhance cancer therapies and their potential contribution in developing anticancer vaccines. We critically analysed their advantages and challenges impeding swift advancements in oncology and highlighted promising avenues for future research.
Collapse
Affiliation(s)
- Ibrahim Shaw
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Yimer Seid Ali
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
- Department of Pharmacy, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Yang Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Ronald Mlambo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
23
|
Bahrami K, Lee E, Morse B, Lanier OL, Peppas NA. Design of nanoparticle-based systems for the systemic delivery of chemotherapeutics: Alternative potential routes via sublingual and buccal administration for systemic drug delivery. Drug Deliv Transl Res 2024; 14:1173-1188. [PMID: 38151650 DOI: 10.1007/s13346-023-01493-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 12/29/2023]
Abstract
Conventional therapeutic approaches for cancer generally involve chemo- and radiation therapies that often exhibit low efficacy and induce toxic side effects. Recent years have seen significant advancements in the use of protein biologics as a promising alternative treatment option. Nanotechnology-based systems have shown great potential in providing more specific and targeted cancer treatments, thus improving upon many of the limitations associated with current treatments. The unique properties of biomaterial carriers at the nanoscale have been proven to enhance both the performance of the incorporated therapeutic agent and tumor targeting; however, many of these systems are delivered intravenously, which can cause hazardous side effects. Buccal and sublingual delivery systems offer an alternative route for more efficient delivery of nanotechnologies and drug absorption into systemic circulation. This review concentrates on emerging buccal and sublingual nanoparticle delivery systems for chemo- and protein therapeutics, their development, efficacy, and potential areas of improvement in the field. Several factors contribute to the development of effective buccal or sublingual nanoparticle delivery systems, including targeting efficiency of the nanoparticulate carriers, drug release, and carrier biocompatibility. Furthermore, the potential utilization of buccal and sublingual multilayer films combined with nanoparticle chemotherapeutic systems is outlined as a future avenue for in vitro and in vivo research.
Collapse
Affiliation(s)
- Kiana Bahrami
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
- Institute of Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, NY, USA
| | - Elaine Lee
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
- Institute of Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA
- School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Brinkley Morse
- Institute of Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Department of Neurology, Dell Medical School, University of Texas, Austin, USA
| | - Olivia L Lanier
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
- Institute of Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA.
- Institute of Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA.
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA.
- Department of Surgery and Perioperative Care, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
- Department of Pediatrics, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
24
|
Bonlawar J, Setia A, Challa RR, Vallamkonda B, Mehata AK, Vaishali, Viswanadh MK, Muthu MS. Targeted Nanotheransotics: Integration of Preclinical MRI and CT in the Molecular Imaging and Therapy of Advanced Diseases. Nanotheranostics 2024; 8:401-426. [PMID: 38751937 PMCID: PMC11093717 DOI: 10.7150/ntno.95791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/29/2024] [Indexed: 05/18/2024] Open
Abstract
The integration of preclinical magnetic resonance imaging (MRI) and computed tomography (CT) methods has significantly enhanced the area of therapy and imaging of targeted nanomedicine. Nanotheranostics, which make use of nanoparticles, are a significant advancement in MRI and CT imaging. In addition to giving high-resolution anatomical features and functional information simultaneously, these multifunctional agents improve contrast when used. In addition to enabling early disease detection, precise localization, and personalised therapy monitoring, they also enable early disease detection. Fusion of MRI and CT enables precise in vivo tracking of drug-loaded nanoparticles. MRI, which provides real-time monitoring of nanoparticle distribution, accumulation, and release at the cellular and tissue levels, can be used to assess the efficacy of drug delivery systems. The precise localization of nanoparticles within the body is achievable through the use of CT imaging. This technique enhances the capabilities of MRI by providing high-resolution anatomical information. CT also allows for quantitative measurements of nanoparticle concentration, which is essential for evaluating the pharmacokinetics and biodistribution of nanomedicine. In this article, we emphasize the integration of preclinical MRI and CT into molecular imaging and therapy for advanced diseases.
Collapse
Affiliation(s)
- Jyoti Bonlawar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Ranadheer Reddy Challa
- Department of Pharmaceutical Science, School of Applied Sciences and Humanities, VIGNAN'S Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh, India
| | - Bhaskar Vallamkonda
- Department of Pharmaceutical Science, School of Applied Sciences and Humanities, VIGNAN'S Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Vaishali
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Matte Kasi Viswanadh
- Department of Pharmaceutics, KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Greenfields, Vaddeswaram 522302, AP, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| |
Collapse
|
25
|
Wang B, Wang L, Yang Q, Zhang Y, Qinglai T, Yang X, Xiao Z, Lei L, Li S. Pulmonary inhalation for disease treatment: Basic research and clinical translations. Mater Today Bio 2024; 25:100966. [PMID: 38318475 PMCID: PMC10840005 DOI: 10.1016/j.mtbio.2024.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Pulmonary drug delivery has the advantages of being rapid, efficient, and well-targeted, with few systemic side effects. In addition, it is non-invasive and has good patient compliance, making it a highly promising drug delivery mode. However, there have been limited studies on drug delivery via pulmonary inhalation compared with oral and intravenous modes. This paper summarizes the basic research and clinical translation of pulmonary inhalation drug delivery for the treatment of diseases and provides insights into the latest advances in pulmonary drug delivery. The paper discusses the processing methods for pulmonary drug delivery, drug carriers (with a focus on various types of nanoparticles), delivery devices, and applications in pulmonary diseases and treatment of systemic diseases (e.g., COVID-19, inhaled vaccines, diagnosis of the diseases, and diabetes mellitus) with an updated summary of recent research advances. Furthermore, this paper describes the applications and recent progress in pulmonary drug delivery for lung diseases and expands the use of pulmonary drugs for other systemic diseases.
Collapse
Affiliation(s)
- Bin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Binzhou People's Hospital, Binzhou, 256610, Shandong, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yuming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Tang Qinglai
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zian Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lanjie Lei
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| |
Collapse
|
26
|
Peng Y, Yang Z, Sun H, Li J, Lan X, Liu S. Nanomaterials in Medicine: Understanding Cellular Uptake, Localization, and Retention for Enhanced Disease Diagnosis and Therapy. Aging Dis 2024:AD.2024.0206-1. [PMID: 38421835 DOI: 10.14336/ad.2024.0206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Nanomaterials (NMs) have emerged as promising tools for disease diagnosis and therapy due to their unique physicochemical properties. To maximize the effectiveness and design of NMs-based medical applications, it is essential to comprehend the complex mechanisms of cellular uptake, subcellular localization, and cellular retention. This review illuminates the various pathways that NMs take to get from the extracellular environment to certain intracellular compartments by investigating the various mechanisms that underlie their interaction with cells. The cellular uptake of NMs involves complex interactions with cell membranes, encompassing endocytosis, phagocytosis, and other active transport mechanisms. Unique uptake patterns across cell types highlight the necessity for customized NMs designs. After internalization, NMs move through a variety of intracellular routes that affect where they are located subcellularly. Understanding these pathways is pivotal for enhancing the targeted delivery of therapeutic agents and imaging probes. Furthermore, the cellular retention of NMs plays a critical role in sustained therapeutic efficacy and long-term imaging capabilities. Factors influencing cellular retention include nanoparticle size, surface chemistry, and the cellular microenvironment. Strategies for prolonging cellular retention are discussed, including surface modifications and encapsulation techniques. In conclusion, a comprehensive understanding of the mechanisms governing cellular uptake, subcellular localization, and cellular retention of NMs is essential for advancing their application in disease diagnosis and therapy. This review provides insights into the intricate interplay between NMs and biological systems, offering a foundation for the rational design of next-generation nanomedicines.
Collapse
Affiliation(s)
- Yue Peng
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhengshuang Yang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Hui Sun
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinling Li
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiuwan Lan
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Sijia Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
27
|
Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology's frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduct Target Ther 2024; 9:34. [PMID: 38378653 PMCID: PMC10879169 DOI: 10.1038/s41392-024-01745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Inflammation-associated diseases encompass a range of infectious diseases and non-infectious inflammatory diseases, which continuously pose one of the most serious threats to human health, attributed to factors such as the emergence of new pathogens, increasing drug resistance, changes in living environments and lifestyles, and the aging population. Despite rapid advancements in mechanistic research and drug development for these diseases, current treatments often have limited efficacy and notable side effects, necessitating the development of more effective and targeted anti-inflammatory therapies. In recent years, the rapid development of nanotechnology has provided crucial technological support for the prevention, treatment, and detection of inflammation-associated diseases. Various types of nanoparticles (NPs) play significant roles, serving as vaccine vehicles to enhance immunogenicity and as drug carriers to improve targeting and bioavailability. NPs can also directly combat pathogens and inflammation. In addition, nanotechnology has facilitated the development of biosensors for pathogen detection and imaging techniques for inflammatory diseases. This review categorizes and characterizes different types of NPs, summarizes their applications in the prevention, treatment, and detection of infectious and inflammatory diseases. It also discusses the challenges associated with clinical translation in this field and explores the latest developments and prospects. In conclusion, nanotechnology opens up new possibilities for the comprehensive management of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaohan Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yi Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xingyu Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lixiang Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
28
|
Kothapalli P, Vasanthan M. Lipid-based nanocarriers for enhanced delivery of plant-derived bioactive molecules: a comprehensive review. Ther Deliv 2024; 15:135-155. [PMID: 38214118 DOI: 10.4155/tde-2023-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Bioactive compounds derived from plants have been investigated for treating various pathological conditions. However, the utilization of these compounds has challenges such as instability, low solubility and bioavailability. To overcome these challenges, the encapsulation of bioactive molecules with in a novel nano carrier system enabling effective delivery and clinical translation has become essential. Lipid-based nanocarriers provide versatile platforms for encapsulating and delivering bioactive compounds and overcome the challenges. These novel carriers can improve solubility, stability, improved drug retention and therapeutic efficacy of plant derived bioactive compounds. The current review evaluates the challenges in delivery of plant bioactives and highlights the potential of various lipid-based nano carriers designed to improve its therapeutic efficacy.
Collapse
Affiliation(s)
- Pavithra Kothapalli
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science & Technology, Kattankulathur, Tamilnadu, 603203, India
| | - Manimaran Vasanthan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science & Technology, Kattankulathur, Tamilnadu, 603203, India
| |
Collapse
|
29
|
Rano S, Bhaduri A, Singh M. Nanoparticle-based platforms for targeted drug delivery to the pulmonary system as therapeutics to curb cystic fibrosis: A review. J Microbiol Methods 2024; 217-218:106876. [PMID: 38135160 DOI: 10.1016/j.mimet.2023.106876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
Cystic fibrosis (CF) is a genetic disorder of the respiratory system caused by mutation of the Cystic Fibrosis Trans-Membrane Conductance Regulator (CFTR) gene that affects a huge number of people worldwide. It results in difficulty breathing due to a large accumulation of mucus in the respiratory tract, resulting in serious bacterial infections, and subsequent death. Traditional drug-based treatments face hindered penetration at the site of action due to the thick mucus layer. Nanotechnology offers possibilities for developing advanced and effective treatment platforms by focusing on drugs that can penetrate the dense mucus layer, fighting against the underlying bacterial infections, and targeting the genetic cause of the disease. In this review, current nanoparticle-mediated drug delivery platforms for CF, challenges in therapeutics, and future prospects have been highlighted. The effectiveness of the different types of nano-based systems conjugated with various drugs to combat the symptoms and the challenges of treating CF are brought into focus. The toxic effects of these nano-medicines and the various factors that are responsible for their effectiveness are also highlighted.
Collapse
Affiliation(s)
- Sujoy Rano
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Purba Medinipur, Haldia 721657, West Bengal, India; In-vitro Biology, Aragen Life Sciences, Hyderabad 500076, Telangana, India
| | - Ahana Bhaduri
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Purba Medinipur, Haldia 721657, West Bengal, India
| | - Mukesh Singh
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Purba Medinipur, Haldia 721657, West Bengal, India; Department of Botany, Kabi Nazrul College, Murarai, Birbhum 731219 (West Bengal), India.
| |
Collapse
|
30
|
Jasim A, Albukhaty S, Sulaiman GM, Al-Karagoly H, Jabir MS, Abomughayedh AM, Mohammed HA, Abomughaid MM. Liposome Nanocarriers Based on γ Oryzanol: Preparation, Characterization, and In Vivo Assessment of Toxicity and Antioxidant Activity. ACS OMEGA 2024; 9:3554-3564. [PMID: 38284009 PMCID: PMC10809378 DOI: 10.1021/acsomega.3c07339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/09/2023] [Accepted: 12/25/2023] [Indexed: 01/30/2024]
Abstract
The present study aimed to develop and characterize liposome nanocarriers based on γ oryzanol and evaluate their potential in vitro and in vivo toxicity and antioxidant effects. The liposomes were physicochemically characterized using various techniques, including dynamic light scattering (DLS) for size and polydispersity index (PDI) measurements and ζ-potential analysis. The in vitro toxicity assessments were performed using hemolysis and MTT assays on the HS5 cell line. In vivo, acute oral toxicity was evaluated by using LD50 assays in mice. Additionally, antioxidant activity was assessed through biochemical analysis of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and liver tissue catalase, malondialdehyde (MDA), and glutathione (GSH) levels. The results revealed that the liposomes exhibited a uniform and spherical morphology with suitable physicochemical properties for drug delivery applications. The in vitro cytotoxicity and hemolysis assays and the in vivo LD50 experiment indicated the potential safety of γ oryzanol liposomes, especially at lower concentrations. In addition, the assessment of liver enzymes, i.e., ALT and AST, and the antioxidant markers further revealed the safety of the formulation, particularly for the liver as a highly sensitive soft organ. Overall, the liposome nanocarriers based on γ oryzanol were successfully formulated and expressed potential safety, supporting their application for the purposes of drug delivery and therapeutic interventions, particularly for hepatocellular and antioxidant therapies; however, further investigations for preclinical and clinical studies could be the future prospects for liposome nanocarriers based on γ oryzanol to explore the safety and efficacy of these nanocarriers in various disease models and clinical settings.
Collapse
Affiliation(s)
- Ahmed
J. Jasim
- Department
of Biomedical Engineering, University of
Technology, Baghdad 10066, Iraq
| | - Salim Albukhaty
- Department
of Chemistry, College of Science, University
of Misan, Maysan 62001, Iraq
- College
of Medicine, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
| | - Ghassan M. Sulaiman
- Division
of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq
| | - Hassan Al-Karagoly
- Department
of Internal and Preventive Medicine, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Diwaniyah 58001, Iraq
| | - Majid S. Jabir
- Division
of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq
| | - Ali M. Abomughayedh
- Pharmacy
Department, Aseer Central Hospital, Ministry
of Health, Asir 62523, Saudi Arabia
| | - Hamdoon A. Mohammed
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
- Department
of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Mosleh M. Abomughaid
- Department
of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, Bisha 67714, Saudi Arabia
| |
Collapse
|
31
|
John R, Monpara J, Swaminathan S, Kalhapure R. Chemistry and Art of Developing Lipid Nanoparticles for Biologics Delivery: Focus on Development and Scale-Up. Pharmaceutics 2024; 16:131. [PMID: 38276502 PMCID: PMC10819224 DOI: 10.3390/pharmaceutics16010131] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Lipid nanoparticles (LNPs) have gained prominence as primary carriers for delivering a diverse array of therapeutic agents. Biological products have achieved a solid presence in clinical settings, and the anticipation of creating novel variants is increasing. These products predominantly encompass therapeutic proteins, nucleic acids and messenger RNA. The advancement of efficient LNP-based delivery systems for biologics that can overcome their limitations remains a highly favorable formulation strategy. Moreover, given their small size, biocompatibility, and biodegradation, LNPs can proficiently transport therapeutic moiety into the cells without significant toxicity and adverse reactions. This is especially crucial for the existing and upcoming biopharmaceuticals since large molecules as a group present several challenges that can be overcome by LNPs. This review describes the LNP technology for the delivery of biologics and summarizes the developments in the chemistry, manufacturing, and characterization of lipids used in the development of LNPs for biologics. Finally, we present a perspective on the potential opportunities and the current challenges pertaining to LNP technology.
Collapse
Affiliation(s)
- Rijo John
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19104, USA; (R.J.); (J.M.)
| | - Jasmin Monpara
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19104, USA; (R.J.); (J.M.)
| | - Shankar Swaminathan
- Drug Product Development, Astellas Institute of Regenerative Medicine, Westborough, MA 01581, USA;
| | - Rahul Kalhapure
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
- Odin Pharmaceuticals LLC, 300 Franklin Square Dr, Somerset, NJ 08873, USA
| |
Collapse
|
32
|
Li D, Taylor A, Shi H, Zhou F, Li P, Joshi J, Zhu W, Wang S. Peptide-Guided Nanoparticle Drug Delivery for Cardiomyocytes. BIOLOGY 2024; 13:47. [PMID: 38248477 PMCID: PMC10812947 DOI: 10.3390/biology13010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND Nanoparticles (NPs) have been extensively utilized as a drug delivery system to control the release of therapeutic agents to treat cardiac injuries. However, despite the advantages of utilizing NP-based drug delivery for treating heart diseases, the current delivery system lacks specificity in targeting the cardiac tissue, thus limiting its application. METHODS We created three linear peptides, each consisting of 16-24 amino acids. These peptides were conjugated on the surface of NPs, resulting in the formation of cardiac targeting peptide (CTP)-NPs (designated as CTP-NP1, CTP-NP2, and CTP-NP3). To assess their effectiveness, we compared the binding efficiency of these three CTP-NPs to human and mouse cardiomyocytes. Additionally, we determined their distribution 24 h after injecting the CTP-NPs intravenously into adult C57BL/6J mice. RESULTS When compared to control NPs without CTP (Con-NPs), all three CTP-NPs exhibited significantly increased binding affinity to both human and mouse cardiomyocytes in vitro and enhanced retention in mouse hearts in vivo. A thorough assessment of the heart sections demonstrated that the binding specificity of CTP-NP3 to cardiomyocytes in vivo was significantly greater than that of Con-NPs. None of the three CTP-NPs were proven to cause cardiomyocyte apoptosis. CONCLUSIONS Biocompatible and safe CTP-NP3 can target the heart via binding to cardiomyocytes. This approach of targeting specific molecules-coated NPs may help in delivering therapeutic compounds to cardiomyocytes for the treatment of heart diseases with high efficacy and low toxicity to other tissues.
Collapse
Affiliation(s)
- Dong Li
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Biotherapeutics, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Austin Taylor
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - Haiwang Shi
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Biotherapeutics, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Fang Zhou
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - Pengsheng Li
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Biotherapeutics, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Jyotsna Joshi
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Biotherapeutics, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Wuqiang Zhu
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Biotherapeutics, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Shu Wang
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| |
Collapse
|
33
|
Kim Y, Jeon Y, Na M, Hwang SJ, Yoon Y. Recent Trends in Chemical Sensors for Detecting Toxic Materials. SENSORS (BASEL, SWITZERLAND) 2024; 24:431. [PMID: 38257524 PMCID: PMC10821350 DOI: 10.3390/s24020431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
Industrial development has led to the widespread production of toxic materials, including carcinogenic, mutagenic, and toxic chemicals. Even with strict management and control measures, such materials still pose threats to human health. Therefore, convenient chemical sensors are required for toxic chemical monitoring, such as optical, electrochemical, nanomaterial-based, and biological-system-based sensors. Many existing and new chemical sensors have been developed, as well as new methods based on novel technologies for detecting toxic materials. The emergence of material sciences and advanced technologies for fabrication and signal-transducing processes has led to substantial improvements in the sensing elements for target recognition and signal-transducing elements for reporting interactions between targets and sensing elements. Many excellent reviews have effectively summarized the general principles and applications of different types of chemical sensors. Therefore, this review focuses on chemical sensor advancements in terms of the sensing and signal-transducing elements, as well as more recent achievements in chemical sensors for toxic material detection. We also discuss recent trends in biosensors for the detection of toxic materials.
Collapse
Affiliation(s)
| | | | | | | | - Youngdae Yoon
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.K.); (Y.J.); (M.N.); (S.-J.H.)
| |
Collapse
|
34
|
Ereej N, Hameed H, Khan MA, Faheem S, Hameed A. Nanoparticle-based Gene Therapy for Neurodegenerative Disorders. Mini Rev Med Chem 2024; 24:1723-1745. [PMID: 38676491 DOI: 10.2174/0113895575301011240407082559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/29/2024]
Abstract
Neurological disorders present a formidable challenge in modern medicine due to the intricate obstacles set for the brain and the multipart nature of genetic interventions. This review article delves into the promising realm of nanoparticle-based gene therapy as an innovative approach to addressing the intricacies of neurological disorders. Nanoparticles (NPs) provide a multipurpose podium for the conveyance of therapeutic genes, offering unique properties such as precise targeting, enhanced stability, and the potential to bypass blood-brain barrier (BBB) restrictions. This comprehensive exploration reviews the current state of nanoparticle-mediated gene therapy in neurological disorders, highlighting recent advancements and breakthroughs. The discussion encompasses the synthesis of nanoparticles from various materials and their conjugation to therapeutic genes, emphasizing the flexibility in design that contributes to specific tissue targeting. The abstract also addresses the low immunogenicity of these nanoparticles and their stability in circulation, critical factors for successful gene delivery. While the potential of NP-based gene therapy for neurological disorders is vast, challenges and gaps in knowledge persist. The lack of extensive clinical trials leaves questions about safety and potential side effects unanswered. Therefore, this abstract emphasizes the need for further research to validate the therapeutic applications of NP-mediated gene therapy and to address nanosafety concerns. In conclusion, nanoparticle-based gene therapy emerges as a promising avenue in the pursuit of effective treatments for neurological disorders. This abstract advocates for continued research efforts to bridge existing knowledge gaps, unlocking the full potential of this innovative approach and paving the way for transformative solutions in the realm of neurological health.
Collapse
Affiliation(s)
- Nelofer Ereej
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Mahtab Ahmad Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
- Institute of Clinical and Experimental Pharmacology and Toxicology, University of Lubeck 23566 Lubeck, Germany
| | - Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Anam Hameed
- Department of Human Nutrition and Dietetics, Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Gulberg III, Lahore 54000, Pakistan
| |
Collapse
|
35
|
Ashin ZF, Yacoub AS, Saady M, Thompson SE, Awad K, Aswath P, Brotto M, Varanasi V. Nanoparticles and Their Applications in Lipid Signaling. Methods Mol Biol 2024; 2816:41-52. [PMID: 38977587 DOI: 10.1007/978-1-0716-3902-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
This chapter provides an overview of the diverse range of applications associated with nanoparticles. The application of nanoparticles in the medical field has garnered considerable attention due to their unique properties and versatile compositions. They have shown promise in the treatment of cancer, fungal and viral infections, and pain management. These systems provide numerous benefits, such as increased drug stability, improved bioavailability, and targeted delivery to specific tissues or cells. The objective of this chapter is to provide a brief analysis of the differences between nanoparticles and lipid particles, focusing particularly on the importance of nanoparticle size and composition in their interactions with lipids. Additionally, the applications of nanoparticles in lipid signaling will be discussed, considering the vital roles lipids play in cellular signaling pathways. Nanoparticles have shown immense potential in the regulation and control of medical pathways. In this case, we will focus on the manufacture of liposomes, a type of nanoparticle composed of lipids. The reason behind the extensive investigation into liposomes as drug delivery vehicles is their remarkable biocompatibility and adaptability. This section will provide insights into the methods and techniques employed for liposome formulation.
Collapse
Affiliation(s)
- Zeinab Fotouhi Ashin
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, TX, USA
- Bone Muscle Research Center, The University of Texas at Arlington, Arlington, TX, USA
| | - Ahmed S Yacoub
- Bone Muscle Research Center, The University of Texas at Arlington, Arlington, TX, USA
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, USA
| | - Marwa Saady
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, Cairo, Egypt
| | - Sophia E Thompson
- Bone Muscle Research Center, The University of Texas at Arlington, Arlington, TX, USA
| | - Kamal Awad
- Bone Muscle Research Center, The University of Texas at Arlington, Arlington, TX, USA
| | - Pranesh Aswath
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, TX, USA
| | - Marco Brotto
- Bone Muscle Research Center, The University of Texas at Arlington, Arlington, TX, USA
| | - Venu Varanasi
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, TX, USA.
- Bone Muscle Research Center, The University of Texas at Arlington, Arlington, TX, USA.
| |
Collapse
|
36
|
Singh CP, Rai PK, Kumar M, Tiwari V, Tiwari A, Sharma A, Sharma K. Emphasis on Nanostructured Lipid Carriers in the Ocular Delivery of Antibiotics. Pharm Nanotechnol 2024; 12:126-142. [PMID: 37519002 DOI: 10.2174/2211738511666230727102213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Drug distribution to the eye is still tricky because of the eye's intricate structure. Systemic delivery, as opposed to more traditional methods like eye drops and ointments, is more effective but higher doses can be harmful. OBJECTIVE The use of solid lipid nanoparticles (SLNPs) as a method of drug delivery has been the subject of research since the 1990s. Since SLNPs are derived from naturally occurring lipids, they pose no health risks to the user. To raise the eye's absorption of hydrophilic and lipophilic drugs, SLNs can promote corneal absorption and improve the ocular bioavailability of SLNPs. METHODS To address problems related to ocular drug delivery, many forms of nano formulation were developed. Some of the methods developed are, emulsification and ultra-sonication, high-speed stirring and ultra-sonication, thin layer hydration, adapted melt-emulsification, and ultrasonication techniques, hot o/w micro-emulsion techniques, etc. Results: Nanostructured lipid carriers are described in this review in terms of their ocular penetration mechanism, structural characteristic, manufacturing process, characterization, and advantages over other nanocarriers. CONCLUSION Recent developments in ocular formulations with nanostructured bases, such as surfacemodified attempts have been made to increase ocular bioavailability in both the anterior and posterior chambers by incorporating cationic chemicals into a wide variety of polymeric systems.
Collapse
Affiliation(s)
- Chandra Pratap Singh
- Usha college of Pharmacy & Medical Sciences, Vijaygaon, Ambedkar Nagar, 224122, UP, India
- Faculty of Pharmaceutical Sciences, Invertis University, Bareilly, 243123, UP, India
| | - Pankaj Kumar Rai
- Faculty of Pharmaceutical Sciences, Invertis University, Bareilly, 243123, UP, India
| | - Manish Kumar
- School of Pharmaceutical Sciences, CT University, Ludhiana, Punjab, India
| | - Varsha Tiwari
- Pharmacy Academy, IFTM University, Lodhipur-Rajput, Moradabad, 244102, India
| | - Abhishek Tiwari
- Pharmacy Academy, IFTM University, Lodhipur-Rajput, Moradabad, 244102, India
| | - Ajay Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India
| | - Kamini Sharma
- School of Pharmaceutical Sciences, CT University, Ludhiana, Punjab, India
| |
Collapse
|
37
|
Singh S, Patil VM, Paliwal SK, Masand N. Nanotechnology-based Drug Delivery of Topical Antifungal Agents. Pharm Nanotechnol 2024; 12:185-196. [PMID: 37594096 DOI: 10.2174/2211738511666230818125031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023]
Abstract
Among the various prominent fungal infections, superficial ones are widespread. A large number of antifungal agents and their formulations for topical use are commercially available. They have some pharmacokinetic limitations which cannot be retracted by conventional delivery systems. While nanoformulations composed of lipidic and polymeric nanoparticles have the potential to overcome the limitations of conventional systems. The broad spectrum category of antifungals i.e. azoles (ketoconazole, voriconazole, econazole, miconazole, etc.) nanoparticles have been designed, prepared and their pharmacokinetic and pharmacodynamic profile was established. This review briefly elaborates on the types of nano-based topical drug delivery systems and portrays their advantages for researchers in the related field to benefit the available antifungal therapeutics.
Collapse
Affiliation(s)
- Sumita Singh
- Department of Pharmacy, Banasthali Vidyapith, Tonk, Rajasthan, India
- Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Vaishali M Patil
- Charak School of Pharmacy, Chaudhary Charan Singh (CCS) University, Meerut, Uttar Pradesh, India
| | | | - Neeraj Masand
- Department of Pharmacy, Lala Lajpat Rai Memorial Medical College, Meerut, Uttar Pradesh, India
| |
Collapse
|
38
|
Mahajan K, Bhattacharya S. The Advancement and Obstacles in Improving the Stability of Nanocarriers for Precision Drug Delivery in the Field of Nanomedicine. Curr Top Med Chem 2024; 24:686-721. [PMID: 38409730 DOI: 10.2174/0115680266287101240214071718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/28/2024]
Abstract
Nanocarriers have emerged as a promising class of nanoscale materials in the fields of drug delivery and biomedical applications. Their unique properties, such as high surface area- tovolume ratios and enhanced permeability and retention effects, enable targeted delivery of therapeutic agents to specific tissues or cells. However, the inherent instability of nanocarriers poses significant challenges to their successful application. This review highlights the importance of nanocarrier stability in biomedical applications and its impact on biocompatibility, targeted drug delivery, long shelf life, drug delivery performance, therapeutic efficacy, reduced side effects, prolonged circulation time, and targeted delivery. Enhancing nanocarrier stability requires careful design, engineering, and optimization of physical and chemical parameters. Various strategies and cutting-edge techniques employed to improve nanocarrier stability are explored, with a focus on their applications in drug delivery. By understanding the advances and challenges in nanocarrier stability, this review aims to contribute to the development and implementation of nanocarrier- based therapies in clinical settings, advancing the field of nanomedicine.
Collapse
Affiliation(s)
- Kalpesh Mahajan
- Department of Quality Assurence, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKMS NMIMS Maharashtra, Shirpur, 425405, India
| |
Collapse
|
39
|
Nayab DE, Din FU, Ali H, Kausar WA, Urooj S, Zafar M, Khan I, Shabbir K, Khan GM. Nano biomaterials based strategies for enhanced brain targeting in the treatment of neurodegenerative diseases: an up-to-date perspective. J Nanobiotechnology 2023; 21:477. [PMID: 38087359 PMCID: PMC10716964 DOI: 10.1186/s12951-023-02250-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
Neurons and their connecting axons gradually degenerate in neurodegenerative diseases (NDs), leading to dysfunctionality of the neuronal cells and eventually their death. Drug delivery for the treatment of effected nervous system is notoriously complicated because of the presence of natural barriers, i.e., the blood-brain barrier and the blood cerebrospinal fluid barrier. Palliative care is currently the standard care for many diseases. Therefore, treatment programs that target the disease's origin rather than its symptoms are recommended. Nanotechnology-based drug delivery platforms offer an innovative way to circumvent these obstacles and deliver medications directly to the central nervous system, thereby enabling treatment of several common neurological problems, i.e., Alzheimer's, Parkinson's, Huntington's, and amyotrophic lateral sclerosis. Interestingly, the combination of nanomedicine and gene therapy enables targeting of selective mutant genes responsible for the progression of NDs, which may provide a much-needed boost in the struggle against these diseases. Herein, we discussed various central nervous system delivery obstacles, followed by a detailed insight into the recently developed techniques to restore neurological function via the differentiation of neural stem cells. Moreover, a comprehensive background on the role of nanomedicine in controlling neurogenesis via differentiation of neural stem cells is explained. Additionally, numerous phytoconstituents with their neuroprotective properties and molecular targets in the identification and management of NDs are also deliberated. Furthermore, a detailed insight of the ongoing clinical trials and currently marketed products for the treatment of NDs is provided in this manuscript.
Collapse
Affiliation(s)
- Dur E Nayab
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Fakhar Ud Din
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid- i-Azam University, Islamabad, 45320, Pakistan.
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Warda Arooj Kausar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Shaiza Urooj
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid- i-Azam University, Islamabad, 45320, Pakistan
| | - Maryam Zafar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ibrahim Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Kanwal Shabbir
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid- i-Azam University, Islamabad, 45320, Pakistan
| | - Gul Majid Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid- i-Azam University, Islamabad, 45320, Pakistan
- Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
40
|
Krishna SS, Sudheesh MS, Viswanad V. Liposomal drug delivery to the lungs: a post covid-19 scenario. J Liposome Res 2023; 33:410-424. [PMID: 37074963 DOI: 10.1080/08982104.2023.2199068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/10/2023] [Indexed: 04/20/2023]
Abstract
High local delivery of anti-infectives to the lungs is required for activity against infections of the lungs. The present pandemic has highlighted the potential of pulmonary delivery of anti-infective agents as a viable option for infections like Covid-19, which specifically causes lung infections and mortality. To prevent infections of such type and scale in the future, target-specific delivery of drugs to the pulmonary region is a high-priority area in the field of drug delivery. The suboptimal effect of oral delivery of anti-infective drugs to the lungs due to the poor biopharmaceutical property of the drugs makes this delivery route very promising for respiratory infections. Liposomes have been used as an effective delivery system for drugs due to their biocompatible and biodegradable nature, which can be used effectively for target-specific drug delivery to the lungs. In the present review, we focus on the use of liposomal drug delivery of anti-infectives for the acute management of respiratory infections in the wake of Covid-19 infection.
Collapse
Affiliation(s)
- S Swathi Krishna
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS, Kochi, India
| | - M S Sudheesh
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS, Kochi, India
| | - Vidya Viswanad
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS, Kochi, India
| |
Collapse
|
41
|
Sarkar T, Moinuddin SM, Isbatan A, Chen J, Mann D, Ahsan F. Intratracheally Administered Peptide-Modified Lipid Admixture Containing Fasudil and/or DETA NONOate Ameliorates Various Pathologies of Pulmonary Arterial Hypertension. Pharmaceuticals (Basel) 2023; 16:1656. [PMID: 38139783 PMCID: PMC10747237 DOI: 10.3390/ph16121656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
This study examined the therapeutic potential of a combination therapy using fasudil, a Rho-kinase inhibitor, and DETA NONOate (DN), a nitric oxide donor, delivered as a lipid admixture modified with a cyclic homing peptide known as CAR (CAR-lipid mixture) for the treatment of pulmonary arterial hypertension (PAH). CAR-lipid mixtures were initially prepared via a thin-film hydration method and then combined with fasudil, DN, or a mixture of both. The therapeutic efficacy of this drug-laden lipid mixture was evaluated in a Sugen/Hypoxia (Su/Hx) rat model of PAH by measuring RV systolic pressure (RVSP), mean pulmonary arterial pressure (mPAP), Fulton indices, and assessing right ventricular (RV) functions, as well as evaluating pulmonary vascular morphology. Rats that received no treatment exhibited increases in RVSP, mPAP, Fulton indices, and changes in RV functional parameters. However, the treatment with the CAR-lipid mixture containing either fasudil or DN or a combination of both led to a decline in mPAP, RVSP, and Fulton indices compared to saline-treated rats. Similarly, rats that received these treatments showed concurrent improvement in various echocardiographic parameters such as pulmonary acceleration time (PAT), tricuspid annular plane systolic excursion (TAPSE), and ventricular free wall thickness (RVFWT). A significant decrease in the wall thickness of pulmonary arteries larger than 100 µm was observed with the combination therapy. The findings reveal that fasudil, DN, and their combination in a CAR-modified lipid mixture improved pulmonary hemodynamics, RV functions, and pathological alterations in the pulmonary vasculature. This study underscores the potential of combination therapy and targeted drug delivery in PAH treatment, laying the groundwork for future investigations into the optimization of these treatments, their long-term safety and efficacy, and the underlying mechanism of action of the proposed therapy.
Collapse
Affiliation(s)
- Tanoy Sarkar
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| | - Sakib M. Moinuddin
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| | - Ayman Isbatan
- Cardiovascular Research Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jiwang Chen
- Cardiovascular Research Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Medicine, Section of Pulmonary, Critical Care Medicine, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - David Mann
- Vascular BioSciences, Goleta, CA 93117, USA
| | - Fakhrul Ahsan
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| |
Collapse
|
42
|
Sahu S, Srinivasan H, Jadhav SE, Sharma VK, Debnath A. Aspirin-Induced Ordering and Faster Dynamics of a Cationic Bilayer for Drug Encapsulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16432-16443. [PMID: 37948158 DOI: 10.1021/acs.langmuir.3c02241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The lipid dynamics and phase play decisive roles in drug encapsulation and delivery to the intracellular target. Thus, understanding the dynamic and structural alterations of membranes induced by drugs is essential for targeted delivery. To this end, united-atom molecular dynamics simulations of a model bilayer, dioctadecyldimethylammonium bromide (DODAB), are performed in the absence and presence of the usual nonsteroidal anti-inflammatory drug (NSAID), aspirin, at 298, 310, and 345 K. At 298 and 310 K, the bilayers are in the interdigitated two-dimensional square phases, which become rugged in the presence of aspirin, as evident from height fluctuations. At 345 K, the bilayer is in the fluid phase in both the absence and presence of aspirin. Aspirin is preferentially located near the oppositely charged headgroup and creates void space, which leads to an increase in the interdigitation and order parameters. Although the center of mass of lipids experiences structural arrest, they reach the diffusive regime faster and have higher lateral diffusion constants in the presence of aspirin. Results are found to be consistent with recent quasi-elastic neutron scattering studies that reveal that aspirin acts as a plasticizer and enhances lateral diffusion of lipids in both ordered and fluid phases. Different relaxation time scales of the bonds along the alkyl tails of DODAB due to the multitude of lipid motions become faster upon the addition of aspirin. Our results show that aspirin insertion is most favorable at physiological temperature. Thus, the ordered, more stable, and faster DODAB bilayer can be a potential drug carrier for the protected encapsulation of aspirin, followed by targeted and controlled drug release with antibacterial activity in the future.
Collapse
Affiliation(s)
- Samapika Sahu
- Department of Chemistry, Indian Institute of Technology, Jodhpur 342037, India
| | - Harish Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Center, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Sankalp E Jadhav
- Department of Chemistry, Indian Institute of Technology, Jodhpur 342037, India
| | - Veerendra K Sharma
- Solid State Physics Division, Bhabha Atomic Research Center, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Ananya Debnath
- Department of Chemistry, Indian Institute of Technology, Jodhpur 342037, India
| |
Collapse
|
43
|
Mehta M, Bui TA, Yang X, Aksoy Y, Goldys EM, Deng W. Lipid-Based Nanoparticles for Drug/Gene Delivery: An Overview of the Production Techniques and Difficulties Encountered in Their Industrial Development. ACS MATERIALS AU 2023; 3:600-619. [PMID: 38089666 PMCID: PMC10636777 DOI: 10.1021/acsmaterialsau.3c00032] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 02/13/2024]
Abstract
Over the past decade, the therapeutic potential of nanomaterials as novel drug delivery systems complementing conventional pharmacology has been widely acknowledged. Among these nanomaterials, lipid-based nanoparticles (LNPs) have shown remarkable pharmacological performance and promising therapeutic outcomes, thus gaining substantial interest in preclinical and clinical research. In this review, we introduce the main types of LNPs used in drug formulations such as liposomes, nanoemulsions, solid lipid nanoparticles, nanostructured lipid carriers, and lipid polymer hybrid nanoparticles, focusing on their main physicochemical properties and therapeutic potential. We discuss computational studies and modeling techniques to enhance the understanding of how LNPs interact with therapeutic cargo and to predict the potential effectiveness of such interactions in therapeutic applications. We also analyze the benefits and drawbacks of various LNP production techniques such as nanoprecipitation, emulsification, evaporation, thin film hydration, microfluidic-based methods, and an impingement jet mixer. Additionally, we discuss the major challenges associated with industrial development, including stability and sterilization, storage, regulatory compliance, reproducibility, and quality control. Overcoming these challenges and facilitating regulatory compliance represent the key steps toward LNP's successful commercialization and translation into clinical settings.
Collapse
Affiliation(s)
- Meenu Mehta
- School
of Biomedical Engineering, Faculty of Engineering and Information
Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Thuy Anh Bui
- School
of Biomedical Engineering, Faculty of Engineering and Information
Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Xinpu Yang
- School
of Biomedical Engineering, Faculty of Engineering and Information
Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Yagiz Aksoy
- Cancer
Diagnosis and Pathology Group, Kolling Institute of Medical Research,
Royal North Shore Hospital, St Leonards NSW 2065 Australia - Sydney
Medical School, University of Sydney, Sydney NSW 2006 Australia
| | - Ewa M. Goldys
- Graduate
School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale
Biophotonics, Faculty of Engineering, UNSW Sydney, NSW 2052, Australia
| | - Wei Deng
- School
of Biomedical Engineering, Faculty of Engineering and Information
Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
44
|
Soni M, Yadav A, Maurya A, Das S, Dubey NK, Dwivedy AK. Advances in Designing Essential Oil Nanoformulations: An Integrative Approach to Mathematical Modeling with Potential Application in Food Preservation. Foods 2023; 12:4017. [PMID: 37959136 PMCID: PMC10648556 DOI: 10.3390/foods12214017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Preservation of foods, along with health and safety issues, is a growing concern in the current generation. Essential oils have emerged as a natural means for the long-term protection of foods along with the maintenance of their qualities. Direct applications of essential oils have posed various constraints to the food system and also have limitations in application; hence, encapsulation of essential oils into biopolymers has been recognized as a cutting-edge technology to overcome these challenges. This article presents and evaluates the strategies for the development of encapsulated essential oils on the basis of fascination with the modeling and shuffling of various biopolymers, surfactants, and co-surfactants, along with the utilization of different fabrication processes. Artificial intelligence and machine learning have enabled the preparation of different nanoemulsion formulations, synthesis strategies, stability, and release kinetics of essential oils or their bioactive components from nanoemulsions with improved efficacy in food systems. Different mathematical models for the stability and delivery kinetics of essential oils in food systems have also been discussed. The article also explains the advanced application of modeling-based encapsulation strategies on the preservation of a variety of food commodities with their intended implication in food and agricultural industries.
Collapse
Affiliation(s)
| | | | | | | | | | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Banaras Hindu University, Varanasi 221005, India; (M.S.); (A.Y.); (A.M.); (S.D.); (N.K.D.)
| |
Collapse
|
45
|
Tao R, Liu L, Xiong Y, Zhang Q, Lv X, He L, Ren F, Zhou L, Chen B, Wu K, Zhang Y, Chen H. Construction and evaluation of a phospholipid-based phase transition in situ gel system for brexpiprazole. Drug Deliv Transl Res 2023; 13:2819-2833. [PMID: 37160629 DOI: 10.1007/s13346-023-01349-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 05/11/2023]
Abstract
The objective of this study was to develop phospholipid-based injectable phase transition in situ gels (PTIGs) for the sustained release of Brexpiprazole (Brex). Phospholipid (Lipoid S100, S100) and stearic acid (SA) were used as the gel matrix which was dissolved in biocompatible solvent medium-chain triglyceride (MCT), N-methyl pyrrolidone (NMP), and ethanol to obtain PTIGs solution. The Brex PTIG showed a solution condition of low viscosity in vitro and was gelatinized in situ in vivo after subcutaneous injection. Both in vitro release assay and in vivo pharmacokinetics study in SD rats displayed that Brex in PTIGs could achieve a sustained release, compared with brexpiprazole solution (Brex-Sol) or brexpiprazole suspension (Brex-Sus). The Brex-PTIGs had good degradability and biocompatibility in vivo with rare inflammation at the injection site. Among the three Brex-PTIG formulations, Brex-PTIG-3 with the SA in the formulation had the greatest gelation viscosity, the lowest initial release rate, and the most stable release profile with sustained release of up to 60 days. The above results indicated that, as a novel drug delivery system, the Brex-PTIGs offered a new option for the clinical treatment of patients with schizophrenia.
Collapse
Affiliation(s)
- Ran Tao
- College of Pharmacy, Chongqing Medical University, Chongqing, 400042, China
| | - Li Liu
- Yaopharma Co, Ltd, No. 100, Xingguang Ave, Chongqing, 401121, China
| | - Yingxin Xiong
- Yaopharma Co, Ltd, No. 100, Xingguang Ave, Chongqing, 401121, China
| | - Qianyu Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400042, China
| | - Xiangyu Lv
- Yaopharma Co, Ltd, No. 100, Xingguang Ave, Chongqing, 401121, China
| | - Linbo He
- Yaopharma Co, Ltd, No. 100, Xingguang Ave, Chongqing, 401121, China
| | - Fang Ren
- College of Pharmacy, Chongqing Medical University, Chongqing, 400042, China
| | - Lu Zhou
- College of Pharmacy, Chongqing Medical University, Chongqing, 400042, China
| | - Baoyan Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, 400042, China
| | - Kexin Wu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400042, China
| | - Yan Zhang
- Yaopharma Co, Ltd, No. 100, Xingguang Ave, Chongqing, 401121, China.
| | - Huali Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, 400042, China.
| |
Collapse
|
46
|
Hou J, Xiong W, Shao X, Long L, Chang Y, Chen G, Wang L, Wang Z, Huang Y. Liposomal Resveratrol Alleviates Platelet Storage Lesion via Antioxidation and the Physical Buffering Effect. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45658-45667. [PMID: 37729093 DOI: 10.1021/acsami.3c09935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Platelet transfusion is essential in the treatment of platelet-related diseases and the prevention of bleeding in patients with surgical procedures. Platelet transfusion efficacy and shelf life are limited mainly by the development of platelet storage lesion (PSL). Mitigating PSL is the key to prolonging the platelet shelf life and reducing wastage. Excess intracellular reactive oxygen species (ROS) are one of the main factors causing PSL. In this study, we explored a nanomedicine strategy to improve the quality and functions of platelets in storage. Resveratrol (Res), a natural plant product, is known for its antioxidative effect. However, medical applications of Res are limited due to its low water solubility and stability. Therefore, we used a resveratrol-loaded liposomal system (Res-Lipo) to better utilize the antioxidant effect of the drug. This study aimed to evaluate the effect of Res-Lipo on platelet oxidative stress and alleviation of PSL during the storage time. Res-Lipo scavenged intracellular ROS and inhibited platelet apoptosis and activation during storage. Res-Lipo not only maintained mitochondrial function but also improved platelet aggregation in response to adenosine 5'-diphosphate. These results revealed that Res-Lipo ameliorated PSL and prolonged the platelet survival time in vivo. The strategy provides a potential method for extending the platelet storage time and might be considered a potential and safe additive to alleviate PSL.
Collapse
Affiliation(s)
- Jiazhen Hou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wei Xiong
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510450, China
| | - Xinyue Shao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Li Long
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510450, China
| | - Ya Chang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guihua Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510450, China
| | - Li Wang
- Department of Transfusion Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhicheng Wang
- Department of Transfusion Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Yongzhuo Huang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China
| |
Collapse
|
47
|
Etemad L, Salmasi Z, Moosavian Kalat SA, Moshiri M, Zamanian J, Kesharwani P, Sahebkar A. An overview on nanoplatforms for statins delivery: Perspectives for safe and effective therapy. ENVIRONMENTAL RESEARCH 2023; 234:116572. [PMID: 37429398 DOI: 10.1016/j.envres.2023.116572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Statins are the most widely used pharmacological agents for reducing blood cholesterol levels and treating atherosclerotic cardiovascular diseases. Most of the statins' derivatives have been limited by water solubility, bioavailability, and oral absorption, which has led to adverse effects on several organs, especially at high doses. As an approach to reducing statin intolerance, achieving a stable formulation with improved efficacy and bioavailability at low doses has been suggested. Nanotechnology-based formulations may provide a therapeutic benefit over traditional formulations in terms of potency and biosafety. Nanocarriers can provide tailored delivery platforms for statins, thereby enhancing the localized biological effects and lowering the risk of undesired side effects while boosting statin's therapeutic index. Furthermore, tailored nanoparticles can deliver the active cargo to the desired site, which culminates in reducing off-targeting and toxicity. Nanomedicine could also provide opportunities for therapeutic methods by personalized medicine. This review delves into the existing data on the potential improvement of statin therapy using nano-formulations.
Collapse
Affiliation(s)
- Leila Etemad
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Alia Moosavian Kalat
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Moshiri
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Clinical Toxicology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Zamanian
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
48
|
Sun Q, Chen X, Luo H, Meng C, Zhu D. Cancer stem cells of head and neck squamous cell carcinoma; distance towards clinical application; a systematic review of literature. Am J Cancer Res 2023; 13:4315-4345. [PMID: 37818051 PMCID: PMC10560931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/16/2023] [Indexed: 10/12/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the major pathological type of head and neck cancer (HNC). The disease ranks sixth among the most common malignancies worldwide, with an increasing incidence rate yearly. Despite the development of therapy, the prognosis of HNSCC remains unsatisfactory, which may be attributed to the resistance to traditional radio-chemotherapy, relapse, and metastasis. To improve the diagnosis and treatment, the targeted therapy for HNSCC may be successful as that for some other tumors. Nanocarriers are the most effective system to deliver the anti-cancerous agent at the site of interest using passive or active targeting approaches. The system enhances the drug concentration in HCN target cells, increases retention, and reduces toxicity to normal cells. Among the different techniques in nanotechnology, quantum dots (QDs) possess multiple fluorescent colors emissions under single-source excitation and size-tunable light emission. Dendrimers are the most attractive nanocarriers, which possess the desired properties of drug retention, release, unaffecting by the immune system, blood circulation time enhancing, and cells or organs specific targeting properties. In this review, we have discussed the up-to-date knowledge of the Cancer Stem Cells of Head and Neck Squamous Cell Carcinoma. Although a lot of data is available, still much more efforts remain to be made to improve the treatment of HNSCC.
Collapse
Affiliation(s)
- Qingjia Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, The China-Japan Union Hospital of Jilin UniversityXiantai Street 126, Changchun 130033, Jilin, China
| | - Xi Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, The China-Japan Union Hospital of Jilin UniversityXiantai Street 126, Changchun 130033, Jilin, China
| | - Hong Luo
- Department of Hematology, The First Hospital of QiqiharQiqihar 161005, Heilongjiang, China
| | - Cuida Meng
- Department of Otorhinolaryngology, Head and Neck Surgery, The China-Japan Union Hospital of Jilin UniversityXiantai Street 126, Changchun 130033, Jilin, China
| | - Dongdong Zhu
- Department of Otorhinolaryngology, Head and Neck Surgery, The China-Japan Union Hospital of Jilin UniversityXiantai Street 126, Changchun 130033, Jilin, China
| |
Collapse
|
49
|
Lehman SE, Benkstein KD, Cleveland TE, Anderson KW, Carrier MJ, Vreeland WN. Particle Metrology Approach to Understanding How Storage Conditions Affect Long-Term Liposome Stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12313-12323. [PMID: 37603854 PMCID: PMC10484209 DOI: 10.1021/acs.langmuir.3c01270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/28/2023] [Indexed: 08/23/2023]
Abstract
Lipid nanoparticles are a generic type of nanomaterial with broad applicability in medicine as drug delivery vehicles. Liposomes are a subtype of lipid nanoparticles and, as a therapeutic platform, can be loaded with a genetic material or pharmaceutical agents for use as drug treatments. An open question for these types of lipid nanoparticles is what factor(s) affect the long-term stability of the particles. The stability of the particle is of great interest to understand and predict the effective shelf-life and storage requirements. In this report, we detail a one-year study of liposome stability as a function of lipid composition, buffer composition/pH, and storage temperature. This was done in aqueous solution without freezing. The effect of lipid composition is shown to be a critical factor when evaluating stability of the measured particle size and number concentration. Other factors (i.e., storage temperature and buffer pH/composition) were shown to be less critical but still have some effect. The stability of these particles informs formulation and optimal storage requirements and assists with future developmental planning of a NIST liposome-based reference material. This work also highlights the complex nature of long-term soft particle storage in biopharmaceutical applications.
Collapse
Affiliation(s)
- Sean E. Lehman
- Bioprocess
Measurements Group, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Kurt D. Benkstein
- Bioprocess
Measurements Group, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Thomas E. Cleveland
- Biomolecular
Structure and Function Group, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Institute
for Bioscience and Biotechnology Research, Rockville, Maryland 20850, United States
| | - Kyle W. Anderson
- Bioprocess
Measurements Group, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Institute
for Bioscience and Biotechnology Research, Rockville, Maryland 20850, United States
| | - Michael J. Carrier
- Bioprocess
Measurements Group, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Wyatt N. Vreeland
- Bioprocess
Measurements Group, Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
50
|
Abla KK, Mehanna MM. The battle of lipid-based nanocarriers against blood-brain barrier: a critical review. J Drug Target 2023; 31:832-857. [PMID: 37577919 DOI: 10.1080/1061186x.2023.2247583] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
Central nervous system integrity is the state of brain functioning across sensory, cognitive, emotional-social behaviors, and motor domains, allowing a person to realise his full potential. Thus, brain disorders seriously affect patients' quality of life. Efficient drug delivery to treat brain disorders remains a crucial challenge due to numerous brain barriers, particularly the blood-brain barrier (BBB), which greatly impacts the ultimate drug therapeutic efficacy. Lately, nanocarrier technology has made huge progress in overcoming these barriers by improving drug solubility, ameliorating its retention, reducing its toxicity, and targeting the encapsulated agents to different brain tissues. The current review primarily offers an overview of the different components of BBB and the progress, strategies, and contemporary applications of the nanocarriers, specifically lipid-based nanocarriers (LBNs), in treating various brain disorders.
Collapse
Affiliation(s)
- Kawthar K Abla
- Pharmaceutical Nanotechnology Research Lab, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Mohammed M Mehanna
- Faculty of Pharmacy, Industrial Pharmacy Department, Alexandria University, Alexandria, Egypt
| |
Collapse
|