1
|
Zhang M, Zhao S, Xue Z, Sun J, Hao J, Deng F, Huang J, Du C, Du Y. Identification of Candidate Olfactory Genes in the Antennal Transcriptome of Loxostege sticticalis Trapped by Three Different Sex Pheromone Blends. INSECTS 2025; 16:152. [PMID: 40003782 PMCID: PMC11855687 DOI: 10.3390/insects16020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025]
Abstract
Insects sense intraspecific or interspecific information about the chemical substances in the habitat through the sensitive olfactory system to carry out foraging, mating, oviposition, and other activities. The antennae serve as the primary olfactory organs in insects. The olfactory process involves the participation of many proteins, such as odorant-binding proteins (OBPs) and odorant receptors (ORs), but ORs play a central role in olfactory specificity and sensitivity. The beet webworm, Loxostege sticticalis, is an omnivorous agricultural pest that endangers crops and poses a significant risk to the agricultural and animal husbandry production in northern China. In this study, Illumina sequencing was conducted on the antennal transcriptome of male L. sticticalis trapped by three different sex pheromone blends. A total of 10,320 DEGs were identified, from which 46 candidate olfactory genes were selected for further analysis. These candidate olfactory genes comprise 13 odorant receptors, 6 ionotropic receptors (IRs), 3 gustatory receptors (GRs), 12 odorant-binding proteins, and 13 chemosensory proteins (CSPs). In summary, we analyzed the antennal transcriptome of male L. sticticalis trapped by three different sex pheromone blends and identified several candidate olfactory genes. This discovery offers a foundation for further molecular-level investigations into the olfactory system of L. sticticalis.
Collapse
Affiliation(s)
- Mengke Zhang
- Institute of Pesticides and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China;
- Ispxtech Inc., Hangzhou 310018, China;
| | - Sumei Zhao
- Inner Mongolia Autonomous Region Plant Protection and Quarantine Center, Hohhot 010010, China; (S.Z.); (J.S.); (J.H.); (F.D.); (J.H.)
| | - Zhiping Xue
- Baotou Agricultural and Animal Husbandry Science Research Institute, Baotou 014030, China;
| | - Jiaying Sun
- Inner Mongolia Autonomous Region Plant Protection and Quarantine Center, Hohhot 010010, China; (S.Z.); (J.S.); (J.H.); (F.D.); (J.H.)
| | - Jiangning Hao
- Inner Mongolia Autonomous Region Plant Protection and Quarantine Center, Hohhot 010010, China; (S.Z.); (J.S.); (J.H.); (F.D.); (J.H.)
| | - Fengzhi Deng
- Inner Mongolia Autonomous Region Plant Protection and Quarantine Center, Hohhot 010010, China; (S.Z.); (J.S.); (J.H.); (F.D.); (J.H.)
| | - Junxia Huang
- Inner Mongolia Autonomous Region Plant Protection and Quarantine Center, Hohhot 010010, China; (S.Z.); (J.S.); (J.H.); (F.D.); (J.H.)
| | | | - Yongjun Du
- Institute of Pesticides and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China;
| |
Collapse
|
2
|
Zhang Y, Li Y, Han H, Wang X, Gao S, Zhao Q, Bieerdebieke H, Xu L, Zang Q, Wang H, Bai P, Lin K. Identification of miRNAs Involved in Olfactory Regulation in Antennae of Beet Webworm, Loxostege sticticalis (Lepidoptera: Pyralidae). Life (Basel) 2024; 14:1705. [PMID: 39768411 PMCID: PMC11677245 DOI: 10.3390/life14121705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
The beet webworm, Loxostege sticticalis, is a typical migratory pest. Although miRNAs participate in many physiological functions, little is known about the functions of miRNAs in olfactory regulation. In this study, 1120 (869 known and 251 novel) miRNAs were identified in the antennae of L. sticticalis by using high-throughput sequencing technology. Among the known miRNAs, 189 from 49 families were insect-specific, indicating that these miRNAs might play unique roles in insects. Furthermore, based on the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, we found that 3647 and 1393 miRNAs were associated with localization and the regulation of localization, respectively, and 80 miRNAs were enriched in the neuroactive ligand-receptor interaction pathway. These miRNAs might be involved in the olfactory system of L. sticticalis. Notably, qRT-PCR showed that most of the tested miRNAs presented similar expression patterns compared with the RNA-seq data and that miR-87-3, novel-miR-78, and novel-miR-142 were significantly differentially expressed in the antennae of males and females. In addition, 21 miRNAs were predicted to target 23 olfactory genes, including 10 odorant-binding proteins (OBPs), 3 chemosensory proteins (CSPs), 4 odorant receptors (ORs), 1 ionotropic receptor (IR), and 5 gustatory receptors (GRs). The olfactory-related miRNAs exhibited low-abundance transcripts, except undef-miR-55 and undef-miR-523, and gender-biased expression was not observed for olfactory-related miRNAs. Our findings provide an overview of the potential miRNAs involved in olfactory regulation, which may provide important information on the function of miRNAs in the insect olfactory system.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (Y.Z.); (S.G.); (Q.Z.); (L.X.); (H.W.)
| | - Yanyan Li
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot 010020, China; (Y.L.); (H.H.)
| | - Haibin Han
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot 010020, China; (Y.L.); (H.H.)
| | - Xiaoling Wang
- Xilin Gol League Agricultural and Animal Husbandry Technology Promotion Center, Xilinhot 026000, China;
| | - Shujing Gao
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (Y.Z.); (S.G.); (Q.Z.); (L.X.); (H.W.)
| | - Qing Zhao
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (Y.Z.); (S.G.); (Q.Z.); (L.X.); (H.W.)
| | - Halima Bieerdebieke
- The Center for Grassland Biological Disaster Prevention of Xinjiang Uygur Autonomous Region, Urumqi 830049, China;
| | - Linbo Xu
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (Y.Z.); (S.G.); (Q.Z.); (L.X.); (H.W.)
| | - Qicong Zang
- Heilongjiang Province Grassland Station, Harbin 150069, China;
| | - Hui Wang
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (Y.Z.); (S.G.); (Q.Z.); (L.X.); (H.W.)
| | - Penghua Bai
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Kejian Lin
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (Y.Z.); (S.G.); (Q.Z.); (L.X.); (H.W.)
| |
Collapse
|
3
|
Dessart M, Lazzari CR, Guerrieri FJ. Habituation leads to short but not long term memory formation in mosquito larvae. JOURNAL OF INSECT PHYSIOLOGY 2024; 155:104650. [PMID: 38777077 DOI: 10.1016/j.jinsphys.2024.104650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/21/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
In animals, memory allows to remember important locations and conserve energy by not responding to irrelevant stimuli. However, memory formation and maintenance are metabolically costly, making it worthwhile to understand the mechanisms underlying different types of memory and their adaptive value. In this study, we investigated the memory persistence of Aedes aegypti mosquito larvae, after habituation to a visual stimulus. We used an automated tracking system for quantifying the response of mosquito larvae to the passage of a shadow, simulating an approaching predator. First, we compared different retention times, from 4 min to 24 h, and found that mosquito larvae only exhibited memory capabilities less than 3 h after training. Secondly, we investigated the role of inter-trial intervals in memory formation. In contrast to other aquatic invertebrates, mosquito larvae showed no long-term memory even at long inter-trial intervals (i.e., 5 min and 10 min). Our results are discussed in relation to the ecological constraints.
Collapse
Affiliation(s)
- Martin Dessart
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - University de Tours, Parc Grandmont, 37200 Tours, France.
| | - Claudio R Lazzari
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - University de Tours, Parc Grandmont, 37200 Tours, France
| | - Fernando J Guerrieri
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - University de Tours, Parc Grandmont, 37200 Tours, France.
| |
Collapse
|
4
|
Piersanti S, Rebora M, Salerno G, Vitecek S, Anton S. Sensory pathway in aquatic basal polyneoptera: Antennal sensilla and brain morphology in stoneflies. ARTHROPOD STRUCTURE & DEVELOPMENT 2024; 79:101345. [PMID: 38493543 DOI: 10.1016/j.asd.2024.101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024]
Abstract
Aquatic insects represent a great portion of Arthropod diversity and the major fauna in inland waters. The sensory biology and neuroanatomy of these insects are, however, poorly investigated. This research aims to describe the antennal sensilla of nymphs of the stonefly Dinocras cephalotes using scanning electron microscopy and comparing them with the adult sensilla. Besides, central antennal pathways in nymphs and adults are investigated by neuron mass-tracing with tetramethylrhodamine, and their brain structures are visualized with an anti-synapsin antibody. No dramatic changes occur in the antennal sensilla during nymphal development, while antennal sensilla profoundly change from nymphs to adults when switching from an aquatic to an aerial lifestyle. However, similar brain structures are used in nymphs and adults to process diverging sensory information, perceived through different sensilla in water and air. These data provide valuable insights into the evolution of aquatic heterometabolous insects, maintaining a functional sensory system throughout development, including a distinct adaptation of the peripheral olfactory systems during the transition from detection of water-soluble chemicals to volatile compounds in the air. From a conservation biology perspective, the present data contribute to a better knowledge of the biology of stoneflies, which are very important bioindicators in rivers.
Collapse
Affiliation(s)
- Silvana Piersanti
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy.
| | - Manuela Rebora
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy.
| | - Gianandrea Salerno
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy.
| | - Simon Vitecek
- QUIVER, WasserCluster Lunz -Biologische Station, Dr.-Carl-Kupelwieserpromenade5, 3293, Lunz am See, Austria; Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180, Vienna, Austria.
| | - Sylvia Anton
- IGEPP, INRAE, Institut Agro, University of Rennes, 2, rue André Le Nôtre, 49045, Angers Cedex 01, France.
| |
Collapse
|
5
|
Derby CD, Caprio J. What are olfaction and gustation, and do all animals have them? Chem Senses 2024; 49:bjae009. [PMID: 38422390 DOI: 10.1093/chemse/bjae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Indexed: 03/02/2024] Open
Abstract
Different animals have distinctive anatomical and physiological properties to their chemical senses that enhance detection and discrimination of relevant chemical cues. Humans and other vertebrates are recognized as having 2 main chemical senses, olfaction and gustation, distinguished from each other by their evolutionarily conserved neuroanatomical organization. This distinction between olfaction and gustation in vertebrates is not based on the medium in which they live because the most ancestral and numerous vertebrates, the fishes, live in an aquatic habitat and thus both olfaction and gustation occur in water and both can be of high sensitivity. The terms olfaction and gustation have also often been applied to the invertebrates, though not based on homology. Consequently, any similarities between olfaction and gustation in the vertebrates and invertebrates have resulted from convergent adaptations or shared constraints during evolution. The untidiness of assigning olfaction and gustation to invertebrates has led some to recommend abandoning the use of these terms and instead unifying them and others into a single category-chemical sense. In our essay, we compare the nature of the chemical senses of diverse animal types and consider their designation as olfaction, oral gustation, extra-oral gustation, or simply chemoreception. Properties that we have found useful in categorizing chemical senses of vertebrates and invertebrates include the nature of peripheral sensory cells, organization of the neuropil in the processing centers, molecular receptor specificity, and function.
Collapse
Affiliation(s)
- Charles D Derby
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - John Caprio
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
6
|
Zhang Y, Han HB, Li YY, Xu LB, Hao LF, Wang H, Wang WH, Gao SJ, Lin KJ. Functional Characterization of Pheromone Receptors in the Beet Webworm, Loxostege sticticalis (Lepidoptera: Pyralidae). INSECTS 2023; 14:584. [PMID: 37504590 PMCID: PMC10380584 DOI: 10.3390/insects14070584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023]
Abstract
Lepidopteran insects mainly rely on sex pheromones to complete sexual communications. Pheromone receptors (PRs) are expressed on the olfactory receptor neurons (ORNs) of the sensilla trichodea and play an essential role in sexual communication. Despite extensive investigations into the mechanisms of peripheral recognition of sex pheromones in Lepidoptera, knowledge about these mechanisms in L. sticticalis remains limited. In this study, five candidate LstiPRs were analyzed in a phylogenetic tree with those of other Lepidopteran insects. Electroantennography (EAG) assays showed that the major sex pheromone component E11-14:OAc elicited a stronger antennal response than other compounds in male moths. Moreover, two types of neurons in sensilla trichodea were classified by single sensillum recordings, of which the "a" neuron specifically responded to E11-14:OAc. Five candidate PRs were functionally assayed by the heterologous expression system of Xenopus oocytes, and LstiPR2 responded to the major sex pheromone E11-14:OAc. Our findings suggest that LstiPR2 is a PR sensitive to L. sticticalis's major sex pheromone compound, E11-14:OAc. Furthermore, this study offers valuable insights into the sexual communication behavior of L. sticticalis, forming a foundation for further analysis of the species' central nervous system.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Hai-Bin Han
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Yan-Yan Li
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot 010020, China
| | - Lin-Bo Xu
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Li-Fen Hao
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Hui Wang
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Wen-He Wang
- Forest Farm of Baichengzi of Alukeerqin Banner, Chifeng 024000, China
| | - Shu-Jing Gao
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Ke-Jian Lin
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| |
Collapse
|
7
|
King BH, Gunathunga PB. Gustation in insects: taste qualities and types of evidence used to show taste function of specific body parts. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:11. [PMID: 37014302 PMCID: PMC10072106 DOI: 10.1093/jisesa/iead018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/03/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
The insect equivalent of taste buds are gustatory sensilla, which have been found on mouthparts, pharynxes, antennae, legs, wings, and ovipositors. Most gustatory sensilla are uniporous, but not all apparently uniporous sensilla are gustatory. Among sensilla containing more than one neuron, a tubular body on one dendrite is also indicative of a taste sensillum, with the tubular body adding tactile function. But not all taste sensilla are also tactile. Additional morphological criteria are often used to recognize if a sensillum is gustatory. Further confirmation of such criteria by electrophysiological or behavioral evidence is needed. The five canonical taste qualities to which insects respond are sweet, bitter, sour, salty, and umami. But not all tastants that insects respond to easily fit in these taste qualities. Categories of insect tastants can be based not only on human taste perception, but also on whether the response is deterrent or appetitive and on chemical structure. Other compounds that at least some insects taste include, but are not limited to: water, fatty acids, metals, carbonation, RNA, ATP, pungent tastes as in horseradish, bacterial lipopolysaccharides, and contact pheromones. We propose that, for insects, taste be defined not only as a response to nonvolatiles but also be restricted to responses that are, or are thought to be, mediated by a sensillum. This restriction is useful because some of the receptor proteins in gustatory sensilla are also found elsewhere.
Collapse
Affiliation(s)
- B H King
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | | |
Collapse
|
8
|
Xie TY, Ma SY, He FX. Report on antennal sensilla of Aphelocheirus ellipsoideus (Hemiptera, Heteroptera, Aphelocheiridae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21917. [PMID: 35618668 DOI: 10.1002/arch.21917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
The comparative morphology study on antennal sensilla of Aphelocheirus ellipsoideus from the family Aphelocheiridae, carried out with the use of a scanning electron microscope, is provided. Five main types of mechano-, chemo-, and thermo-hygroreceptive sensilla with two subtypes of sensilla basiconica were found and described on their surface, including sensilla trichodea, campaniformia, basiconica, ampullacea, and plate-like. Antennal sensilla of A. ellipsoideus on macropterous and brachypterous forms were different.
Collapse
Affiliation(s)
- Tong-Yin Xie
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Shi-Yan Ma
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Fu-Xia He
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| |
Collapse
|
9
|
Cetinić KA, Grgić I, Previšić A, Rožman M. The curious case of methylparaben: Anthropogenic contaminant or natural origin? CHEMOSPHERE 2022; 294:133781. [PMID: 35104549 DOI: 10.1016/j.chemosphere.2022.133781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/28/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The widespread use of methylparaben as a preservative has caused increased exposure to natural aquatic systems in recent decades. However, current studies have suggested that exposure to this compound can result in endocrine disrupting effects, raising much concern regarding its environmental impact. In contast, methylparaben has also been found to be part of the metabolome of some organisms, prompting the question as to whether this compound may be more natural than previously assumed. Through a combination of field studies investigating the natural presence of methylparaben across different taxa, and a 54-day microcosm experiment examining the bioaccumulation and movement of methylparaben across different life stages of aquatic insects (order Trichoptera), our results offer evidence suggesting the natural origin of methylparaben in aquatic and terrestrial biota. This study improves our understanding of the role and impact this compound has on biota and challenges the current paradigm that methylparaben is exclusively a harmful anthropogenic contaminant. Our findings highlight the need for further research on this topic to fully understand the origin and role of parabens in the environment which will allow for a comprehensive understanding of the extent of environmental contamination and result in a representative assessment of the environmental risk that may pose.
Collapse
Affiliation(s)
| | | | - Ana Previšić
- Department of Biology, Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | | |
Collapse
|
10
|
Kandori I, Hiramatsu M, Soda M, Nakashima S, Funami S, Yokoi T, Tsuchihara K, Papaj DR. Long horns protect Hestina japonica butterfly larvae from their natural enemies. Sci Rep 2022; 12:2835. [PMID: 35181732 PMCID: PMC8857287 DOI: 10.1038/s41598-022-06770-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/02/2022] [Indexed: 11/10/2022] Open
Abstract
Animals sometimes have prominent projections on or near their heads serving diverse functions such as male combat, mate attraction, digging, capturing prey, sensing or defence against predators. Some butterfly larvae possess a pair of long frontal projections; however, the function of those projections is not well known. Hestina japonica butterfly larvae have a pair of long hard projections on their heads (i.e., horns). Here we hypothesized that they use these horns to protect themselves from natural enemies (i.e., predators and parasitoids). Field surveys revealed that the primary natural enemies of H. japonica larvae were Polistes wasps. Cage experiments revealed that larvae with horns intact and larvae with horns removed and fitted with horns of other individuals succeeded in defending themselves against attacks of Polistes wasps significantly more often than larvae with horns removed. We discuss that the horns counter the paper wasps’ hunting strategy of first biting the larvae’s ‘necks’ and note that horns evolved repeatedly only within the Nymphalidae in a phylogeny of the Lepidoptera. This is the first demonstration that arthropods use head projections for physical defence against predators.
Collapse
Affiliation(s)
- Ikuo Kandori
- Faculty of Agriculture, Kindai University, Nara, 631-8505, Japan.
| | - Mamoru Hiramatsu
- Faculty of Agriculture, Kindai University, Nara, 631-8505, Japan
| | - Minako Soda
- Faculty of Agriculture, Kindai University, Nara, 631-8505, Japan
| | - Shinya Nakashima
- Faculty of Agriculture, Kindai University, Nara, 631-8505, Japan
| | - Shun Funami
- Faculty of Agriculture, Kindai University, Nara, 631-8505, Japan
| | - Tomoyuki Yokoi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Kazuko Tsuchihara
- Department of Information Science, Tohoku Gakuin University, Sendai, Miyagi, 981-3193, Japan
| | - Daniel R Papaj
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
11
|
Resetarits WJ, Breech TM, Bohenek JR, Pintar MR. Cue reduction or general cue masking do not underlie generalized chemical camouflage in pirate perch. Ecology 2021; 103:e3625. [PMID: 34970743 DOI: 10.1002/ecy.3625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/16/2021] [Accepted: 07/20/2021] [Indexed: 11/06/2022]
Abstract
Avoiding detection is perhaps the ultimate weapon for both predators and prey. Chemosensory detection of predators via waterborne or airborne cues (predator-released kairomones) is a key prey adaptation in aquatic ecosystems. Pirate perch, Aphredoderus sayanus, a largely insectivorous mesopredatory fish, are considered to be chemically camouflaged because they are unavoided by all colonizing organisms tested, including treefrogs and aquatic insects, despite stronger predatory effects on target taxa than several avoided fish. To address the mechanism behind camouflage we used aquatic insect colonization as a bioassay to test 1) whether increasing pirate perch density/biomass leads to increased avoidance, and 2) whether pirate perch mask heterospecific fish kairomones. Insect abundances, species richness, and community structure showed no response to pirate perch density. Lastly, pirate perch did not mask the kairomones of heterospecific predatory fish. Results support the idea that fish kairomones are species-specific, and chemical camouflage is driven by a unique chemical signature that is either undetectable or has no negative associations for colonizers.
Collapse
Affiliation(s)
- William J Resetarits
- Department of Biology and Centers for Water and Wetlands Resources, and Biodiversity and Conservation Research, The University of Mississippi, University, MS
| | - Tyler M Breech
- Department of Biology and Centers for Water and Wetlands Resources, and Biodiversity and Conservation Research, The University of Mississippi, University, MS
| | - Jason R Bohenek
- Department of Biology and Centers for Water and Wetlands Resources, and Biodiversity and Conservation Research, The University of Mississippi, University, MS
| | - Matthew R Pintar
- Department of Biology and Centers for Water and Wetlands Resources, and Biodiversity and Conservation Research, The University of Mississippi, University, MS
| |
Collapse
|
12
|
Šigutová H, Harabiš F, Šigut M, Vojar J, Choleva L, Dolný A. Specialization directs habitat selection responses to a top predator in semiaquatic but not aquatic taxa. Sci Rep 2021; 11:18928. [PMID: 34556794 PMCID: PMC8460784 DOI: 10.1038/s41598-021-98632-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/13/2021] [Indexed: 02/08/2023] Open
Abstract
Habitat selectivity has become an increasingly acknowledged mechanism shaping the structure of freshwater communities; however, most studies have focused on the effect of predators and competitors, neglecting habitat complexity and specialization. In this study, we examined the habitat selection of semiaquatic (amphibians: Bufonidae; odonates: Libellulidae) and aquatic organisms (true bugs: Notonectidae; diving beetles: Dytiscidae). From each family, we selected one habitat generalist species able to coexist with fish (Bufo bufo, Sympetrum sanguineum, Notonecta glauca, Dytiscus marginalis) and one species specialized in fishless habitats (Bufotes viridis, Sympetrum danae, Notonecta obliqua, Acilius sulcatus). In a mesocosm experiment, we quantified habitat selection decisions in response to the non-consumptive presence of fish (Carassius auratus) and vegetation structure mimicking different successional stages of aquatic habitats (no macrophytes; submerged and floating macrophytes; submerged, floating, and littoral-emergent macrophytes). No congruence between habitat specialists and generalists was observed, but a similar response to fish and vegetation structure defined both semiaquatic and aquatic organisms. While semiaquatic generalists did not distinguish between fish and fishless pools, specialists avoided fish-occupied pools and had a preferred vegetation structure. In aquatic taxa, predator presence affected habitat selection only in combination with vegetation structure, and all species preferred fishless pools with floating and submerged macrophytes. Fish presence triggered avoidance only in the generalist bug N. glauca. Our results highlight the significance of habitat selectivity for structuring freshwater ecosystems and illustrate how habitat selection responses to a top predator are dictated by specialization and life history.
Collapse
Affiliation(s)
- Hana Šigutová
- grid.412684.d0000 0001 2155 4545Department of Biology and Ecology, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic
| | - Filip Harabiš
- grid.15866.3c0000 0001 2238 631XDepartment of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, 16521 Prague, Czech Republic
| | - Martin Šigut
- grid.412684.d0000 0001 2155 4545Department of Biology and Ecology, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic
| | - Jiří Vojar
- grid.15866.3c0000 0001 2238 631XDepartment of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, 16521 Prague, Czech Republic
| | - Lukáš Choleva
- grid.412684.d0000 0001 2155 4545Department of Biology and Ecology, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic ,grid.418095.10000 0001 1015 3316Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Liběchov, Czech Republic
| | - Aleš Dolný
- grid.412684.d0000 0001 2155 4545Department of Biology and Ecology, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic
| |
Collapse
|
13
|
Piersanti S, Rebora M, Salerno G, Anton S. The Antennal Pathway of Dragonfly Nymphs, from Sensilla to the Brain. INSECTS 2020; 11:E886. [PMID: 33339188 PMCID: PMC7765675 DOI: 10.3390/insects11120886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 11/25/2022]
Abstract
Dragonflies are hemimetabolous insects, switching from an aquatic life style as nymphs to aerial life as adults, confronted to different environmental cues. How sensory structures on the antennae and the brain regions processing the incoming information are adapted to the reception of fundamentally different sensory cues has not been investigated in hemimetabolous insects. Here we describe the antennal sensilla, the general brain structure, and the antennal sensory pathways in the last six nymphal instars of Libellula depressa, in comparison with earlier published data from adults, using scanning electron microscopy, and antennal receptor neuron and antennal lobe output neuron mass-tracing with tetramethylrhodamin. Brain structure was visualized with an anti-synapsin antibody. Differently from adults, the nymphal antennal flagellum harbors many mechanoreceptive sensilla, one olfactory, and two thermo-hygroreceptive sensilla at all investigated instars. The nymphal brain is very similar to the adult brain throughout development, despite the considerable differences in antennal sensilla and habitat. Like in adults, nymphal brains contain mushroom bodies lacking calyces and small aglomerular antennal lobes. Antennal fibers innervate the antennal lobe similar to adult brains and the gnathal ganglion more prominently than in adults. Similar brain structures are thus used in L. depressa nymphs and adults to process diverging sensory information.
Collapse
Affiliation(s)
- Silvana Piersanti
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, 06123 Perugia, Italy; (S.P.); (M.R.)
| | - Manuela Rebora
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, 06123 Perugia, Italy; (S.P.); (M.R.)
| | - Gianandrea Salerno
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, 06123 Perugia, Italy;
| | - Sylvia Anton
- IGEPP, INRAE, Institut Agro, Univ Rennes, 49045 Angers, France
| |
Collapse
|
14
|
Macêdo LPR, Dornelas ASP, Vieira MM, Ferreira JSDJ, Sarmento RA, Cavallini GS. Effects of lethal and sublethal concentrations of peracetic acid and active chlorine of calcium hypochlorite on Chironomus xanthus. CHEMOSPHERE 2020; 256:127171. [PMID: 32470743 DOI: 10.1016/j.chemosphere.2020.127171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Freshwater ecosystems are vulnerable to residual concentrations of chemical agents from anthropogenic activities, and the real impacts of such compounds can only be evaluated accurately using ecotoxicological tests. The assessment of ecotoxicological effects of peracetic acid (PAA) and the active chlorine of calcium hypochlorite (Ca(ClO)2) on the insect Chironomus xanthus Meigen (Diptera: Chironomidae) is highly relevant as there are few reports on its effects in fresh water ecosystems. To our best knowledge, this is the first study to assess the chronic toxicity of the compounds to C. xanthus. The toxicity bioassays for C. xanthus included the acute effect (CL50) and the chronic effects based on body length, head width, and cumulative emergence. The results obtained in the acute effect tests indicated that the active chlorine of Ca(ClO)2 is 14 fold more toxic than PAA to C. xanthus. In sublethal evaluations, the active chlorine of Ca(ClO)2 presented higher toxicity than PAA in terms of percentage emergence, body development, and head width. In general, the results showed lower PAA toxicity relative to the active chlorine of Ca(ClO)2, demonstrating that PAA is a promising substitute for chlorinated disinfectants. In addition, the study facilitates the establishment of reference values for the safe release of effluents treated with PAA into water bodies.
Collapse
Affiliation(s)
- Luana Priscilla Rodrigues Macêdo
- Multidisciplinar em Ensino, Educação, Química, Linguagens e Meio Ambiente, Instituto Federal do Pará, 68.629-020, Paragominas, Pará, Brazil; Programa de Pós-graduação em Química, Universidade Federal do Tocantins, 77.402-970, Gurupi, Tocantins, Brazil
| | | | - Mayane Marques Vieira
- Curso de Química Ambiental, Universidade Federal do Tocantins, 77.402-970, Gurupi, Tocantins, Brazil
| | - Joel Santiago de Jesus Ferreira
- Curso de Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Tocantins, 77.402-970, Gurupi, Tocantins, Brazil
| | - Renato Almeida Sarmento
- Programa de Pós-graduação em Produção Vegetal, Universidade Federal do Tocantins, 77.402-970, Gurupi, Tocantins, Brazil
| | - Grasiele Soares Cavallini
- Programa de Pós-graduação em Química, Universidade Federal do Tocantins, 77.402-970, Gurupi, Tocantins, Brazil; Curso de Química Ambiental, Universidade Federal do Tocantins, 77.402-970, Gurupi, Tocantins, Brazil.
| |
Collapse
|
15
|
Cinel SD, Hahn DA, Kawahara AY. Predator-induced stress responses in insects: A review. JOURNAL OF INSECT PHYSIOLOGY 2020; 122:104039. [PMID: 32113954 DOI: 10.1016/j.jinsphys.2020.104039] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 04/26/2018] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Predators can induce extreme stress and profound physiological responses in prey. Insects are the most dominant animal group on Earth and serve as prey for many different predators. Although insects have an extraordinary diversity of anti-predator behavioral and physiological responses, predator-induced stress has not been studied extensively in insects, especially at the molecular level. Here, we review the existing literature on physiological predator-induced stress responses in insects and compare what is known about insect stress to vertebrate stress systems. We conclude that many unrelated insects share a baseline pathway of predator-induced stress responses that we refer to as the octopamine-adipokinetic hormone (OAH) axis. We also present best practices for studying predator-induced stress responses in prey insects. We encourage investigators to compare neurophysiological responses to predator-related stress at the organismal, neurohormonal, tissue, and cellular levels within and across taxonomic groups. Studying stress-response variation between ecological contexts and across taxonomic levels will enable the field to build a holistic understanding of, and distinction between, taxon- and stimulus-specific responses relative to universal stress responses.
Collapse
Affiliation(s)
- Scott D Cinel
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA.
| | - Daniel A Hahn
- Department of Entomology & Nematology, University of Florida, Gainesville, FL 32611, USA
| | - Akito Y Kawahara
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
16
|
Ong'wen F, Onyango PO, Bukhari T. Direct and indirect effects of predation and parasitism on the Anopheles gambiae mosquito. Parasit Vectors 2020; 13:43. [PMID: 32000840 PMCID: PMC6990496 DOI: 10.1186/s13071-020-3915-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/24/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A good understanding of mosquito ecology is imperative for integrated vector control of malaria. In breeding sites, Anopheles larvae are concurrently exposed to predators and parasites. However, to our knowledge, there is no study on combined effects of predators and parasites on development and survival of larvae and their carry-over effects on adult survivorship and susceptibility to further parasite infection. METHODS This study focused on effects of the nymphs of the dragonfly Pantala flavescens and the parasitic fungus Beauveria bassiana on Anopheles gambiae, to determine: predation efficacy of nymphs against An. gambiae larvae; development rate of An. gambiae larvae in the presence of one, two or four constrained nymphs; efficacy of B. bassiana against An. gambiae larvae at doses of 3, 6 and 12 mg; and survival of adult mosquitoes exposed to B. bassiana, following pre-exposure to a constrained predator and/or parasite at the larval stage. The experiments consisted of survival bioassays quantified as pupation day, or dead larvae and/or adults. RESULTS Nymphs had an average predation efficacy of 88.3% (95% CI: 87.5-89.1) at 24 hours, against An. gambiae larvae. The presence of one or two nymphs reduced development time of larvae by 0.65 and 0.35 days, respectively. However, development time of larvae exposed to four nymphs was similar to the control larvae. Larvae exposed to 3, 6 and 12 mg of B. bassiana were 2.0, 2.5 and 3.5 times more likely to die, respectively, compared to control larvae. Adults not pre-exposed, those pre-exposed to predator, parasite, or both were 45.8, 67.4, 50.9 and 112.0 times more likely to die, respectively, compared to control that were unexposed to predator or parasite, at larval and adult stage. CONCLUSIONS This study shows that both predator and parasite can reduce larval population of An. gambiae, and presence of predator cues decreases development time in breeding sites, as well as, increases the susceptibility of emerging adult to fungus. Predator and parasite both have an additive effect on survival of adults exposed to B. bassiana. Field studies are required for an in-depth understanding of predator and parasite influence on mosquito development time, survival and susceptibility in nature.
Collapse
Affiliation(s)
- Fedinand Ong'wen
- Department of Zoology, School of Physical and Biological Sciences, Maseno University, Maseno, Kenya
| | - Patrick Ogola Onyango
- Department of Zoology, School of Physical and Biological Sciences, Maseno University, Maseno, Kenya
| | - Tullu Bukhari
- Department of Zoology, School of Physical and Biological Sciences, Maseno University, Maseno, Kenya.
| |
Collapse
|
17
|
Bui M, Shyong J, Lutz EK, Yang T, Li M, Truong K, Arvidson R, Buchman A, Riffell JA, Akbari OS. Live calcium imaging of Aedes aegypti neuronal tissues reveals differential importance of chemosensory systems for life-history-specific foraging strategies. BMC Neurosci 2019; 20:27. [PMID: 31208328 PMCID: PMC6580577 DOI: 10.1186/s12868-019-0511-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/10/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The mosquito Aedes aegypti has a wide variety of sensory pathways that have supported its success as a species as well as a highly competent vector of numerous debilitating infectious pathogens. Investigations into mosquito sensory systems and their effects on behavior are valuable resources for the advancement of mosquito control strategies. Numerous studies have elucidated key aspects of mosquito sensory systems, however there remains critical gaps within the field. In particular, compared to that of the adult form, there has been a lack of studies directed towards the immature life stages. Additionally, although numerous studies have pinpointed specific sensory receptors as well as responding motor outputs, there has been a lack of studies able to monitor both concurrently. RESULTS To begin filling aforementioned gaps, here we engineered Ae. aegypti to ubiquitously express a genetically encoded calcium indicator, GCaMP6s. Using this strain, combined with advanced microscopy, we simultaneously measured live stimulus-evoked calcium responses in both neuronal and muscle cells with a wide spatial range and resolution. CONCLUSIONS By coupling in vivo live calcium imaging with behavioral assays we were able to gain functional insights into how stimulus-evoked neural and muscle activities are represented, modulated, and transformed in mosquito larvae enabling us to elucidate mosquito sensorimotor properties important for life-history-specific foraging strategies.
Collapse
Affiliation(s)
- Michelle Bui
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093 USA
| | - Jennifer Shyong
- Department of Entomology and Riverside Center for Disease Vector Research, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521 USA
| | - Eleanor K. Lutz
- Department of Biology, University of Washington, Seattle, WA 98195 USA
| | - Ting Yang
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093 USA
| | - Ming Li
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093 USA
| | - Kenneth Truong
- Department of Entomology and Riverside Center for Disease Vector Research, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521 USA
| | - Ryan Arvidson
- Department of Entomology and Riverside Center for Disease Vector Research, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521 USA
| | - Anna Buchman
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093 USA
| | | | - Omar S. Akbari
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093 USA
- Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA 92093 USA
| |
Collapse
|
18
|
Li H, Wang P, Zhang L, Xu X, Cao Z, Zhang L. Expressions of Olfactory Proteins in Locust Olfactory Organs and a Palp Odorant Receptor Involved in Plant Aldehydes Detection. Front Physiol 2018; 9:663. [PMID: 29915543 PMCID: PMC5994405 DOI: 10.3389/fphys.2018.00663] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 05/14/2018] [Indexed: 12/12/2022] Open
Abstract
The main chemosensory organs of locusts consisted of the antennae and the mouthparts (maxillary and labial palps), which are suggested to perform different functions. However, very few are known about the differences of these two organs at molecular level. To understand the differences of locust antennae and palps in olfaction, the electrophysiological response and olfactory gene expression of these two organs were conducted. Our electrophysiological experiments with Locusta migratoria showed that the responses of mouthpart palps and antennae to odorants are quite different. Only a few odorants, such as (E,E)-2,4-hexadienal and (E,E)-2,4-heptadienal, elicited stronger electrophysiological responses of both maxillary and labial palps in comparison to the antennae. Additionally, we obtained 114 and 11 putative odorant receptor (OR) gene segments from the antennal and palp transcriptomes, respectively. Two novel odorant-binding proteins (OBPs; OBP15 and OBP16) and one novel OR (OR142) were identified for the first time. Out of the 16 OBP genes tested in RT-PCR and qPCR analyses, OBP8 was highly expressed in the nymphal palps. OBP4, OBP10, and OBP16 were only detected in the antennae. The other 11 OBP genes were jointly expressed in both antennae and palps. The relative expression level of OBP6 in male palps was much higher than that of female palps. Furthermore, for the 11 OR genes identified in palp transcriptome, the expression levels of OR12, OR13, OR14, and OR18 in the palps were significantly higher than those in the antennae. The OR12 in palps was demonstrated to be involved in detection of hexanal and E-2-hexenal, as well as (E,E)-2,4-heptadienal. Our results provide information on the different olfactory roles of locust antennae and palps at the molecular level.
Collapse
Affiliation(s)
- Hongwei Li
- Department of Entomology, China Agricultural University, Beijing, China
| | - Peng Wang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Liwei Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xiao Xu
- Department of Entomology, China Agricultural University, Beijing, China
| | - Zewen Cao
- Department of Entomology, China Agricultural University, Beijing, China
| | - Long Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
Piersanti S, Rebora M. The antennae of damselfly larvae. ARTHROPOD STRUCTURE & DEVELOPMENT 2018; 47:36-44. [PMID: 29191794 DOI: 10.1016/j.asd.2017.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 06/07/2023]
Abstract
The larval antennal sensilla of two Zygoptera species, Calopteryx haemorroidalis (Calopterygidae) and Ischnura elegans (Coenagrionidae) are investigated with SEM and TEM. These two species have different antennae (geniculate, setaceous) and live in different environments (lotic, lentic waters). Notwithstanding this, similarities in the kind and distribution of sensilla are outlined: in both species the majority of sensilla types is located on the apical portion of the antenna, namely a composed coeloconic sensillum (possible chemoreceptor), two other coeloconic sensilla (possible thermo-hygroreceptors) and an apical seta (direct contact mechanoreceptor). Other mechanoreceptors, such as filiform hairs sensitive to movements of the surrounding medium or bristles positioned to sense the movements of the flagellar segments, are present on the antenna. Similarities in the antennal sensilla types and distribution are observed also with other dragonfly species, such as Onychogomphus forcipatus and Libellula depressa. A peculiar structure with an internal organization similar to that of a gland is observed in the apical antenna of C. haemorroidalis and I. elegans and it is present also in O. forcipatus and L. depressa. The possible function of this structure is at the moment unknown but deserves further investigations owing to its widespread presence in Odonata larvae.
Collapse
Affiliation(s)
- Silvana Piersanti
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto, 1, 06121 Perugia, Italy.
| | - Manuela Rebora
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto, 1, 06121 Perugia, Italy
| |
Collapse
|
20
|
Melnitsky SI, Ivanov VD, Valuyskiy MY, Zueva LV, Zhukovskaya MI. Comparison of sensory structures on the antenna of different species of Philopotamidae (Insecta: Trichoptera). ARTHROPOD STRUCTURE & DEVELOPMENT 2018; 47:45-55. [PMID: 29224983 DOI: 10.1016/j.asd.2017.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 06/07/2023]
Abstract
Structure and distribution of sensilla were studied in sixteen species of the caddisfly family Philopotamidae. Their antennae bear numerous curved trichoid and pseudoplacoid sensilla and fewer coronal, styloconic and chaetoid sensilla on the flagellar segments. The most numerous pseudoplacoid sensilla have non-specific localization. The curved trichoid sensilla form clusters ventrally on each antennal segment. Sensilla belonging to coronal, styloconic and chaetoid types have specific positions. Long grooved trichoid sensilla are located nonspecifically in all the studied species. The average number of sensilla per segment decreases from the proximal to distal part of the flagellum. Scapus and pedicellum are devoid of most types of sensilla, however, they bear the Böhm bristles and long trichoid sensilla. A positive correlation between antenna dimensions and its cuticular structures is found.
Collapse
Affiliation(s)
- Stanislav I Melnitsky
- Department of Entomology, Faculty of Biology, St. Petersburg State University, 199034, Universitrtskaya 7/9, St. Petersburg, Russia
| | - Vladimir D Ivanov
- Department of Entomology, Faculty of Biology, St. Petersburg State University, 199034, Universitrtskaya 7/9, St. Petersburg, Russia. v--
| | - Mikhail Yu Valuyskiy
- Department of Entomology, Faculty of Biology, St. Petersburg State University, 199034, Universitrtskaya 7/9, St. Petersburg, Russia
| | - Lydia V Zueva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, 194223, Torez Pr. 44, St. Petersburg, Russia
| | - Marianna I Zhukovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, 194223, Torez Pr. 44, St. Petersburg, Russia
| |
Collapse
|
21
|
Ioannidis P, Simao FA, Waterhouse RM, Manni M, Seppey M, Robertson HM, Misof B, Niehuis O, Zdobnov EM. Genomic Features of the Damselfly Calopteryx splendens Representing a Sister Clade to Most Insect Orders. Genome Biol Evol 2017; 9:415-430. [PMID: 28137743 PMCID: PMC5381652 DOI: 10.1093/gbe/evx006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2017] [Indexed: 12/14/2022] Open
Abstract
Insects comprise the most diverse and successful animal group with over one million described species that are found in almost every terrestrial and limnic habitat, with many being used as important models in genetics, ecology, and evolutionary research. Genome sequencing projects have greatly expanded the sampling of species from many insect orders, but genomic resources for species of certain insect lineages have remained relatively limited to date. To address this paucity, we sequenced the genome of the banded demoiselle, Calopteryx splendens, a damselfly (Odonata: Zygoptera) belonging to Palaeoptera, the clade containing the first winged insects. The 1.6 Gbp C. splendens draft genome assembly is one of the largest insect genomes sequenced to date and encodes a predicted set of 22,523 protein-coding genes. Comparative genomic analyses with other sequenced insects identified a relatively small repertoire of C. splendens detoxification genes, which could explain its previously noted sensitivity to habitat pollution. Intriguingly, this repertoire includes a cytochrome P450 gene not previously described in any insect genome. The C. splendens immune gene repertoire appears relatively complete and features several genes encoding novel multi-domain peptidoglycan recognition proteins. Analysis of chemosensory genes revealed the presence of both gustatory and ionotropic receptors, as well as the insect odorant receptor coreceptor gene (OrCo) and at least four partner odorant receptors (ORs). This represents the oldest known instance of a complete OrCo/OR system in insects, and provides the molecular underpinning for odonate olfaction. The C. splendens genome improves the sampling of insect lineages that diverged before the radiation of Holometabola and offers new opportunities for molecular-level evolutionary, ecological, and behavioral studies.
Collapse
Affiliation(s)
- Panagiotis Ioannidis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Felipe A Simao
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Robert M Waterhouse
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Mosè Manni
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Mathieu Seppey
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Bernhard Misof
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Oliver Niehuis
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland
| |
Collapse
|
22
|
Buchanan AL, Hermann SL, Lund M, Szendrei Z. A meta-analysis of non-consumptive predator effects in arthropods: the influence of organismal and environmental characteristics. OIKOS 2017. [DOI: 10.1111/oik.04384] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Amanda L. Buchanan
- Dept of Entomology; Michigan State University; 1129 Farm Lane East Lansing MI 48824 USA
| | - Sara L. Hermann
- Dept of Entomology; Michigan State University; 1129 Farm Lane East Lansing MI 48824 USA
- Program in Ecology, Evolutionary Biology and Behavior, Michigan State Univ.; East Lansing MI USA
| | - Margaret Lund
- Dept of Entomology; Michigan State University; 1129 Farm Lane East Lansing MI 48824 USA
| | - Zsofia Szendrei
- Dept of Entomology; Michigan State University; 1129 Farm Lane East Lansing MI 48824 USA
- Program in Ecology, Evolutionary Biology and Behavior, Michigan State Univ.; East Lansing MI USA
| |
Collapse
|
23
|
Rebora M, Piersanti S, Frati F, Salerno G. Antennal responses to volatile organic compounds in a stonefly. JOURNAL OF INSECT PHYSIOLOGY 2017; 98:231-237. [PMID: 28115118 DOI: 10.1016/j.jinsphys.2017.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 06/06/2023]
Abstract
Notwithstanding their long antennae, especially in the adult stage, Plecoptera represent a poorly studied group as regards their sensory structures and their ability to perceive olfactory stimuli is so far totally unknown. A recent investigation on the antenna of Dinocras cephalotes revealed two kinds of putative olfactory sensilla (multiporous single walled sensilla and digitated double walled sensilla). The present electrophysiological study (electroantennography, EAG), in which male and female antennae of D. cephalotes (Plecoptera, Perlidae) have been stimulated with a set of generic odours belonging to different functional groups, shows that Plecoptera can perceive olfactory cues through their antennal sensilla. Indeed, although many chemicals did not elicit any response, high EAG activity has been recorded in response to pentanoic acid, propanal, butyric acid, propionic acid, isoamylamine and ammonia. The response was very similar in both sexes even if propanal elicited a response only in males. EAG dose-responses curves in both males and females showed that EAG responses were similar in males and females and generally increased in amplitude with increasing doses of the chemicals. Behavioural, neuroanatomical and molecular investigations on Plecoptera olfaction, could be particularly interesting not only to increase the knowledge of the adult stonefly behaviour but also to better understand the adaptation of the olfactory sensory system in aquatic insects moving from land to water.
Collapse
Affiliation(s)
- Manuela Rebora
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Italy
| | - Silvana Piersanti
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Italy.
| | - Francesca Frati
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Italy
| | - Gianandrea Salerno
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Italy
| |
Collapse
|
24
|
Song LM, Wang XM, Huang JP, Zhu F, Jiang X, Zhang SG, Ban LP. Ultrastructure and morphology of antennal sensilla of the adult diving beetle Cybister japonicus Sharp. PLoS One 2017; 12:e0174643. [PMID: 28358865 PMCID: PMC5373609 DOI: 10.1371/journal.pone.0174643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 03/13/2017] [Indexed: 11/18/2022] Open
Abstract
The morphology and distribution of the antennal sensilla of adult diving beetle Cybister japonicus Sharp (Dytiscidae, Coleoptera), have been examined. Five types of sensilla on the antennae were identified by scanning electron microscope (SEM) and transmission electron microscope (TEM). Sensilla placodea and elongated s. placodea are the most abundant types of sensilla, distributing only on the flagellum. Both these types of sensilla carry multiple pore systems with a typical function as chemoreceptors. Three types of s. coeloconica (Type I–III) were also identified, with the characterization of the pit-in-pit style, and carrying pegs externally different from each other. Our data indicated that both type I and type II of s. coleconica contain two bipolar neurons, while the type III of s. coleconica contains three dendrites in the peg. Two sensory dendrites in the former two sensilla are tightly embedded inside the dendrite sheath, with no space left for sensilla lymph. There are no specific morphological differences in the antennal sensilla observed between males and females, except that the males have longer antennae and more sensilla than the females.
Collapse
Affiliation(s)
- Li-Mei Song
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xue-Min Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian-Ping Huang
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fang Zhu
- Department of Entomology, Washington State University, Pullman, Washington, United States of America
| | - Xiang Jiang
- Huangpu Entry-Exit Inspection and Quarantine Bureau, Guangdong, China
| | - Shan-Gan Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Li-Ping Ban
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
25
|
Rebora M, Tierno de Figueroa JM, Piersanti S. Antennal sensilla of the stonefly Dinocras cephalotes (Plecoptera: Perlidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2016; 45:552-561. [PMID: 27742465 DOI: 10.1016/j.asd.2016.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
Plecoptera, one of the most primitive groups of Neoptera, are important aquatic insects usually employed as bioindicators of high water quality. Notwithstanding the well-developed antennae of the adult, its sensory abilities are so far not well known. The present paper describes at ultrastructural level under scanning and transmission electron microscopy the antennal sensilla of the adult stonefly Dinocras cephalotes (Plecoptera, Perlidae). Adult males and females show a filiform antenna constituted of a scape, a pedicel and a flagellum composed of very numerous segments with no clear sexual dimorphism in the number and distribution of the antennal sensilla. The most represented sensilla are sensilla trichodea, with different length, whose internal structure reveal their mechanosensory function, sensilla chaetica, with an apical pore, with an internal structure revealing a typical gustatory function, porous pegs representing single-walled olfactory sensilla, digitated pegs with hollow cuticular spoke channels representing double-walled olfactory sensilla, pegs in pits for which we hypothesize a thermo-hygrosensory function. The diversity of described sensilla is discussed in relation to known biological aspects of the studied species. This opens new perspectives in the study of the behavior of these aquatic insects during their adult stage.
Collapse
Affiliation(s)
- Manuela Rebora
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, 06121, Italy.
| | | | - Silvana Piersanti
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, 06121, Italy
| |
Collapse
|
26
|
Campos D, Gravato C, Quintaneiro C, Koba O, Randak T, Soares AMVM, Pestana JLT. Are insect repellents toxic to freshwater insects? A case study using caddisflies exposed to DEET. CHEMOSPHERE 2016; 149:177-182. [PMID: 26855222 DOI: 10.1016/j.chemosphere.2016.01.098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/05/2016] [Accepted: 01/23/2016] [Indexed: 06/05/2023]
Abstract
Stream ecosystems face ever-increasing pressures by the presence of emergent contaminants, such as, personal care products. N, N-diethyl-3-methylbenzamide (DEET) is a synthetic insect repellent that is being found in surface waters environments in concentrations up to 33.4 μg/L. Information concerning DEET's toxicity in the aquatic environment is still limited and focused only on its acute effects on model species. Our main objective was to assess the effects of DEET exposure to a caddisfly non-target species using sub-lethal endpoints. For that, we chose Sericostoma vittatum, an important shredder in Portuguese freshwaters that has been already used in different ecotoxicological assays. Besides acute tests, S. vittatum were exposed during 6 days to a gradient of DEET concentrations (8, 18 and 40.5 mg/L) to assess effects on feeding behaviour and biochemical responses, such as, lipid peroxidation levels (LPO), catalase and acetylcholinesterase (AChE) activities, and also assess effects on energy reserves and consumption. Acute tests revealed a 48 h-LC50 of 80.12 mg/L and DEET exposure caused feeding inhibition with a LOEC of 36.80 mg/L. Concerning the biochemical responses, DEET caused no effects in LPO nor on catalase activity. A non-significant decrease in AChE activity was observed. Regarding energetic reserves, exposure to DEET caused a significant reduction in S. vittatum carbohydrates levels. These results add important information for the risk assessment of insect repellents in the aquatic environment and suggest that reported environmental concentrations of DEET are not toxic to non-target freshwater insects.
Collapse
Affiliation(s)
- Diana Campos
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Carlos Gravato
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Carla Quintaneiro
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Olga Koba
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Tomas Randak
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João L T Pestana
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
27
|
Campos D, Gravato C, Quintaneiro C, Soares AMVM, Pestana JLT. Responses of the aquatic midge Chironomus riparius to DEET exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 172:80-85. [PMID: 26773354 DOI: 10.1016/j.aquatox.2015.12.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/18/2015] [Accepted: 12/29/2015] [Indexed: 06/05/2023]
Abstract
N,N-diethyl-3-methylbenzamide (DEET) is the active ingredient of many commercial insect repellents. Despite being detected worldwide in effluents, surface water and groundwater, there is still limited information on DEET's toxicity toward non-target aquatic invertebrates. Thus, our main objective was to assess the effects of DEET in the life cycle of Chironomus riparius and assess its biochemical effects. Laboratory assays showed that DEET reduced developmental rates (reduced larval growth, delayed emergence) of C. riparius larvae and also caused a decrease in the size of adult midges. Concerning the biochemical responses, a short exposure to DEET caused no effects in lipid peroxidation, despite the significant inhibition of catalase and glutathione-S-transferase activities and of total glutathione contents. Moreover, inhibition of acetylcholinesterase activity was also observed showing neurotoxic effects. Environmental risk assessment of insect repellents is needed. Our results showed moderate toxicity of DEET toward C. riparius, however, due to their mode of action, indirect ecological effects of DEET and of other insect repellents cannot be excluded and should be evaluated.
Collapse
Affiliation(s)
- Diana Campos
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Carlos Gravato
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Carla Quintaneiro
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João L T Pestana
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
28
|
Rebora M, Piersanti S, Salerno G, Gorb S. The antenna of a burrowing dragonfly larva, Onychogomphus forcipatus (Anisoptera, Gomphidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2015; 44:595-603. [PMID: 26113430 DOI: 10.1016/j.asd.2015.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/13/2015] [Accepted: 06/14/2015] [Indexed: 06/04/2023]
Abstract
The larva of the dragonfly Onychogomphus forcipatus (Anisoptera, Gomphidae) has a burrowing lifestyle and antennae composed of four short and broad segments (scape, pedicel and a two-segmented flagellum). The present ultrastructural investigation revealed that different sensilla and one gland are located on the antenna. There is a great diversity of mechanoreceptors of different kinds. In particular club-shaped sensilla, sensilla chaetica, and tree-like sensilla show the typical structure of bristles, the most common type of mechanoreceptors, usually responding to direct touch, while numerous long thin thorny trichoid sensilla show a morphology recalling the structure of filiform hair mechanoreceptors. The latter ones are presumably important in larval Odonata for current detection and rheotactic orientation, especially in a burrowing species. On the smooth apical cuticle of the second flagellar segment, three structures are visible: (1) a small ellipsoidal pit hosting a convoluted peg, the morphology of which resembles that of a typical chemoreceptor (even if pores are lacking), (2) a couple of small pits (not investigated under TEM), and (3) one wide depression with spherical structures, the internal morphology of which lets us assume that it is a gland with unknown function. This is the first report of an antennal gland in palaeopteran insects.
Collapse
Affiliation(s)
- Manuela Rebora
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, 06121, Italy.
| | - Silvana Piersanti
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, 06121, Italy
| | - Gianandrea Salerno
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, 06123, Italy
| | - Stanislav Gorb
- Department Functional Morphology and Biomechanics, Zoological Institute of the University of Kiel, Am Botanischen Garten 1-9, 24098 Kiel, Germany
| |
Collapse
|
29
|
Kandori I, Tsuchihara K, Suzuki TA, Yokoi T, Papaj DR. Long Frontal Projections Help Battus philenor (Lepidoptera: Papilionidae) Larvae Find Host Plants. PLoS One 2015. [PMID: 26222554 PMCID: PMC4519131 DOI: 10.1371/journal.pone.0131596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Animals sometimes develop conspicuous projections on or near their heads as, e.g., weaponry, burrowing or digging tools, and probes to search for resources. The frontal projections that insects generally use to locate and assess resources are segmented appendages, including antennae, maxillary palps, and labial palps. There is no evidence to date that arthropods, including insects, use projections other than true segmental appendages to locate food. In this regard, it is noteworthy that some butterfly larvae possess a pair of long antenna-like projections on or near their heads. To date, the function of these projections has not been established. Larvae of pipevine swallowtail butterflies Battus philenor (Papilionidae) have a pair of long frontal fleshy projections that, like insect antennae generally, can be actively moved. In this study, we evaluated the possible function of this pair of long moveable frontal projections. In laboratory assays, both frontal projections and lateral ocelli were shown to increase the frequency with which search larvae found plants. The frontal projections increased finding of host and non-host plants equally, suggesting that frontal projections do not detect host-specific chemical cues. Detailed SEM study showed that putative mechanosensillae are distributed all around the frontal as well as other projections. Taken together, our findings suggest that the frontal projections and associated mechanosensillae act as vertical object detectors to obtain tactile information that, together with visual information from lateral ocelli and presumably chemical information from antennae and mouthparts, help larvae to find host plants. Field observations indicate that host plants are small and scattered in southern Arizona locations. Larvae must therefore find multiple host plants to complete development and face significant challenges in doing so. The frontal projections may thus be an adaptation for finding a scarce resource before starving to death. This is the first evidence that arthropods use projections other than true segmental appendages such as antennae, mouthparts and legs, to locate food resources.
Collapse
Affiliation(s)
- Ikuo Kandori
- Laboratory of Entomology, Faculty of Agriculture, Kinki University, Nara, Japan
- * E-mail:
| | | | - Taichi A. Suzuki
- Department of Integrative Biology, University of California, Berkeley, United States of America
| | - Tomoyuki Yokoi
- Laboratory of Conservation Ecology, Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Daniel R. Papaj
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, United States of America
| |
Collapse
|
30
|
Carlson BE, Langkilde T. A Common Marking Technique Affects Tadpole Behavior and Risk of Predation. Ethology 2012. [DOI: 10.1111/eth.12050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bradley E. Carlson
- Department of Biology and Intercollege Graduate Degree Program in Ecology; The Pennsylvania State University; University Park; PA; USA
| | - Tracy Langkilde
- Department of Biology and Intercollege Graduate Degree Program in Ecology; The Pennsylvania State University; University Park; PA; USA
| |
Collapse
|
31
|
Hanke W, Wieskotten S, Marshall C, Dehnhardt G. Hydrodynamic perception in true seals (Phocidae) and eared seals (Otariidae). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2012. [PMID: 23180048 DOI: 10.1007/s00359-012-0778-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pinnipeds, that is true seals (Phocidae), eared seals (Otariidae), and walruses (Odobenidae), possess highly developed vibrissal systems for mechanoreception. They can use their vibrissae to detect and discriminate objects by direct touch. At least in Phocidae and Otariidae, the vibrissae can also be used to detect and analyse water movements. Here, we review what is known about this ability, known as hydrodynamic perception, in pinnipeds. Hydrodynamic perception in pinnipeds developed convergently to the hydrodynamic perception with the lateral line system in fish and the sensory hairs in crustaceans. So far two species of pinnipeds, the harbour seal (Phoca vitulina) representing the Phocidae and the California sea lion (Zalophus californianus) representing the Otariidae, have been studied for their ability to detect local water movements (dipole stimuli) and to follow hydrodynamic trails, that is the water movements left behind by objects that have passed by at an earlier point in time. Both species are highly sensitive to dipole stimuli and can follow hydrodynamic trails accurately. In the individuals tested, California sea lions were clearly more sensitive to dipole stimuli than harbour seals, and harbour seals showed a superior trail following ability as compared to California sea lions. Harbour seals have also been shown to derive additional information from hydrodynamic trails, such as motion direction, size and shape of the object that caused the trail (California sea lions have not yet been tested). The peculiar undulated shape of the harbour seals' vibrissae appears to play a crucial role in trail following, as it suppresses self-generated noise while the animal is swimming.
Collapse
Affiliation(s)
- Wolf Hanke
- Institute for Biosciences, Chair of Sensory and Cognitive Ecology, Rostock University, Albert-Einstein-Strasse 3, 18059, Rostock, Germany.
| | | | | | | |
Collapse
|
32
|
Crespo JG, Vickers NJ. Antennal lobe organization in the slender pigeon louse, Columbicola columbae (Phthiraptera: Ischnocera). ARTHROPOD STRUCTURE & DEVELOPMENT 2012; 41:227-230. [PMID: 22406082 DOI: 10.1016/j.asd.2012.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 02/27/2012] [Accepted: 02/27/2012] [Indexed: 05/31/2023]
Abstract
This study reports on the structure of the antennal lobe of the pigeon louse, Columbicola columbae. Anterograde staining of antennal receptor neurons revealed an antennal lobe with a few diffuse compartments, an organization distinct from the typical spheroidal glomerular structure found in the olfactory bulb of vertebrates and the antennal lobe of many other insects. This anatomical arrangement of neuronal input is somewhat reminiscent of the aglomerular antennal lobe previously reported in psyllids and aphids. As in psyllids, reports on the odor-mediated behavior of C. columbae suggest that the olfactory sense is important in these animals and indicates that a glomerular organization of the antennal lobe may not be necessary to subtend odor-mediated behaviors in all insects. The diffuse or aglomerular antennal lobe organization found in these two Paraneopteran insect orders might represent an independently evolved reduction due to similar ecological constraints.
Collapse
Affiliation(s)
- José G Crespo
- Department of Biology, University of Utah, Salt Lake City, 84112, USA.
| | | |
Collapse
|