1
|
Szekeres Z, Nagy A, Jahner K, Szabados E. Impact of Selected Glucagon-like Peptide-1 Receptor Agonists on Serum Lipids, Adipose Tissue, and Muscle Metabolism-A Narrative Review. Int J Mol Sci 2024; 25:8214. [PMID: 39125786 PMCID: PMC11311305 DOI: 10.3390/ijms25158214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1 RA) are novel antihyperglycemic agents. By acting through the central nervous system, they increase satiety and reduce food intake, thus lowering body weight. Furthermore, they increase the secretion of insulin while decreasing the production of glucagon. However, recent studies suggest a more complex metabolic impact through the interaction with various other tissues. In our present review, we aim to provide a summary of the effects of GLP-1 RA on serum lipids, adipose tissue, and muscle metabolism. It has been found that GLP-1 RA therapy is associated with decreased serum cholesterol levels. Epicardial adipose tissue thickness, hepatic lipid droplets, and visceral fat volume were reduced in obese patients with cardiovascular disease. GLP-1 RA therapy decreased the level of proinflammatory adipokines and reduced the expression of inflammatory genes. They have been found to reduce endoplasmic reticulum stress in adipocytes, leading to better adipocyte function and metabolism. Furthermore, GLP-1 RA therapy increased microvascular blood flow in muscle tissue, resulting in increased myocyte metabolism. They inhibited muscle atrophy and increased muscle mass and function. It was also observed that the levels of muscle-derived inflammatory cytokines decreased, and insulin sensitivity increased, resulting in improved metabolism. However, some clinical trials have been conducted on a very small number of patients, which limits the strength of these observations.
Collapse
Affiliation(s)
- Zsolt Szekeres
- Department of Laboratory Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary;
| | - Andras Nagy
- Faculty of Pharmacy, University of Pecs, 7624 Pecs, Hungary;
| | - Kamilla Jahner
- Department of Medical Imaging, Medical School, University of Pecs, 7624 Pecs, Hungary;
| | - Eszter Szabados
- 1st Department of Medicine, Division of Preventive Cardiology and Rehabilitation, Medical School, University of Pecs, 7624 Pecs, Hungary
| |
Collapse
|
2
|
Feng L, Chen Z, Bian H. Skeletal muscle: molecular structure, myogenesis, biological functions, and diseases. MedComm (Beijing) 2024; 5:e649. [PMID: 38988494 PMCID: PMC11234433 DOI: 10.1002/mco2.649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024] Open
Abstract
Skeletal muscle is an important motor organ with multinucleated myofibers as its smallest cellular units. Myofibers are formed after undergoing cell differentiation, cell-cell fusion, myonuclei migration, and myofibril crosslinking among other processes and undergo morphological and functional changes or lesions after being stimulated by internal or external factors. The above processes are collectively referred to as myogenesis. After myofibers mature, the function and behavior of skeletal muscle are closely related to the voluntary movement of the body. In this review, we systematically and comprehensively discuss the physiological and pathological processes associated with skeletal muscles from five perspectives: molecule basis, myogenesis, biological function, adaptive changes, and myopathy. In the molecular structure and myogenesis sections, we gave a brief overview, focusing on skeletal muscle-specific fusogens and nuclei-related behaviors including cell-cell fusion and myonuclei localization. Subsequently, we discussed the three biological functions of skeletal muscle (muscle contraction, thermogenesis, and myokines secretion) and its response to stimulation (atrophy, hypertrophy, and regeneration), and finally settled on myopathy. In general, the integration of these contents provides a holistic perspective, which helps to further elucidate the structure, characteristics, and functions of skeletal muscle.
Collapse
Affiliation(s)
- Lan‐Ting Feng
- Department of Cell Biology & National Translational Science Center for Molecular MedicineNational Key Laboratory of New Drug Discovery and Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Zhi‐Nan Chen
- Department of Cell Biology & National Translational Science Center for Molecular MedicineNational Key Laboratory of New Drug Discovery and Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Huijie Bian
- Department of Cell Biology & National Translational Science Center for Molecular MedicineNational Key Laboratory of New Drug Discovery and Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| |
Collapse
|
3
|
Fang P, She Y, Yu M, Min W, Shang W, Zhang Z. Adipose-Muscle crosstalk in age-related metabolic disorders: The emerging roles of adipo-myokines. Ageing Res Rev 2023; 84:101829. [PMID: 36563906 DOI: 10.1016/j.arr.2022.101829] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Obesity and type 2 diabetes account for a considerable proportion of the global burden of age-related metabolic diseases. In age-related metabolic diseases, tissue crosstalk and metabolic regulation have been primarily linked to endocrine processes. Skeletal muscle and adipose tissue are endocrine organs that release myokines and adipokines into the bloodstream, respectively. These cytokines regulate metabolic responses in a variety of tissues, including skeletal muscle and adipose tissue. However, the intricate mechanisms underlying adipose-muscle crosstalk in age-related metabolic diseases are not fully understood. Recent exciting evidence suggests that myokines act to control adipose tissue functions, including lipolysis, browning, and inflammation, whereas adipokines mediate the beneficial actions of adipose tissue in the muscle, such as glucose uptake and metabolism. In this review, we assess the mechanisms of adipose-muscle crosstalk in age-related disorders and propose that the adipokines adiponectin and spexin, as well as the myokines irisin and interleukin-6 (IL-6), are crucial for maintaining the body's metabolic balance in age-related metabolic disorders. In addition, these changes of adipose-muscle crosstalk in response to exercise or dietary flavonoid consumption are part of the mechanisms of both functions in the remission of age-related metabolic disorders. A better understanding of the intricate relationships between adipose tissue and skeletal muscle could lead to more potent therapeutic approaches to prolong life and prevent age-related metabolic diseases.
Collapse
Affiliation(s)
- Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yuqing She
- Department of Endocrinology, Pukou Branch of Jiangsu People's Hospital, Nanjing 211899, China
| | - Mei Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wen Min
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Wenbin Shang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
4
|
Pearsey HM, Henson J, Sargeant JA, Davies MJ, Khunti K, Suzuki T, Bowden-Davies KA, Cuthbertson DJ, Yates TE. Zinc-alpha2-glycoprotein, dysglycaemia and insulin resistance: a systematic review and meta-analysis. Rev Endocr Metab Disord 2020; 21:569-575. [PMID: 32377863 PMCID: PMC7557496 DOI: 10.1007/s11154-020-09553-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To systematically review the current literature investigating associations between zinc-alpha2-glycoprotein (ZAG) and dysglycaemia (including type 2 diabetes (T2DM), poly-cystic-ovary syndrome (PCOS), pre-diabetes or insulin resistance). This included relationships between ZAG and continuous measures of insulin and glucose. Additionally, we performed a meta-analysis to estimate the extent that ZAG differs between individuals with or without dysglycaemia; whilst examining the potential influence of adiposity. A systematic search was performed on four databases for studies on circulating ZAG concentrations in adult human populations, comparing healthy controls to individuals with dysglycaemia. Key characteristics, including the mean ZAG concentrations (mg∙L-1), and any correlational statistics between ZAG and continuous measures of glucose, glycated haemoglobin (HbA1c) or insulin were extracted. Meta-analyses were performed to compare metabolically healthy controls to cases, and on studies that compared controls and cases considered overweight or obese (body mass index (BMI) ≥25 kg.m2). 1575 papers were identified and 14 studies (16 cohorts) were considered eligible for inclusion. Circulating ZAG was lower in individuals with dysglycaemia compared to metabolically healthy controls (-4.14 [-8.17, -0.11] mg.L-1; I2 = 98.5%; p < 0.001). When using data from only studies with overweight or obese groups with or without dysglycaemia (three studies (four cohorts); pooled n = 332), the difference in circulating ZAG was no longer significant (-0.30 [-3.67, 3.07] mg. L-1; I2 = 28.0%; p = 0.225). These data suggest that ZAG may be implicated in dysglycaemia, although there was significant heterogeneity across different studies and the mediating effect of adiposity cannot be excluded. Therefore, more research is needed before robust conclusions can be drawn.
Collapse
Affiliation(s)
- Harriet M Pearsey
- Diabetes Research Centre, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4PW, UK.
- NIHR Leicester Biomedical Research Centre, Leicester, UK.
- Department of Health Science, University of Leicester, Leicester, UK.
| | - Joseph Henson
- Diabetes Research Centre, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4PW, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Jack A Sargeant
- Diabetes Research Centre, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4PW, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Melanie J Davies
- Diabetes Research Centre, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4PW, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Kamlesh Khunti
- Diabetes Research Centre, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4PW, UK
- NIHR ARC East Midlands, Leicester, UK
| | - Toru Suzuki
- NIHR Leicester Biomedical Research Centre, Leicester, UK
- Cardiovascular Sciences Unit, Leicester Glenfeild Hospital, Leicester, UK
| | | | - Daniel J Cuthbertson
- Clinical Sciences Centre, Aintree University Hospitals NHS Foundation Trust, Liverpool, UK
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Thomas E Yates
- Diabetes Research Centre, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4PW, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| |
Collapse
|
5
|
Severinsen MCK, Pedersen BK. Muscle-Organ Crosstalk: The Emerging Roles of Myokines. Endocr Rev 2020; 41:5835999. [PMID: 32393961 PMCID: PMC7288608 DOI: 10.1210/endrev/bnaa016] [Citation(s) in RCA: 455] [Impact Index Per Article: 113.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
Abstract
Physical activity decreases the risk of a network of diseases, and exercise may be prescribed as medicine for lifestyle-related disorders such as type 2 diabetes, dementia, cardiovascular diseases, and cancer. During the past couple of decades, it has been apparent that skeletal muscle works as an endocrine organ, which can produce and secrete hundreds of myokines that exert their effects in either autocrine, paracrine, or endocrine manners. Recent advances show that skeletal muscle produces myokines in response to exercise, which allow for crosstalk between the muscle and other organs, including brain, adipose tissue, bone, liver, gut, pancreas, vascular bed, and skin, as well as communication within the muscle itself. Although only few myokines have been allocated to a specific function in humans, it has been identified that the biological roles of myokines include effects on, for example, cognition, lipid and glucose metabolism, browning of white fat, bone formation, endothelial cell function, hypertrophy, skin structure, and tumor growth. This suggests that myokines may be useful biomarkers for monitoring exercise prescription for people with, for example, cancer, diabetes, or neurodegenerative diseases.
Collapse
Affiliation(s)
- Mai Charlotte Krogh Severinsen
- Centre of Inflammation and Metabolism/Centre for Physical Activity Research (CIM/CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bente Klarlund Pedersen
- Centre of Inflammation and Metabolism/Centre for Physical Activity Research (CIM/CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Lin Y, Li J, Wu D, Wang F, Fang Z, Shen G. Identification of Hub Genes in Type 2 Diabetes Mellitus Using Bioinformatics Analysis. Diabetes Metab Syndr Obes 2020; 13:1793-1801. [PMID: 32547141 PMCID: PMC7250707 DOI: 10.2147/dmso.s245165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/23/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is one of the most common chronic diseases in the world with complicated pathogenesis. This study aimed to identify differentially expressed genes (DEGs) and molecular pathways in T2DM using bioinformatics analysis. MATERIALS AND METHODS To explore potential therapeutic targets for T2DM, we analyzed three microarray datasets (GSE50397, GSE38642, and GSE44035) acquired from the Gene Expression Omnibus (GEO) database. DEGs between T2DM islet and normal islet were picked out by the GEO2R tool and Venn diagram software. Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) to identify the pathways and functional annotation of DEGs. Then, protein-protein interaction (PPI) of these DEGs was visualized by Cytoscape with Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). RESULTS In total, we identified 36 DEGs in the three datasets, including 32 up-regulated genes and four down-regulated genes. The improved functions and pathways of the DEGs enriched in cytokine-cytokine receptor interaction, pathways in cancer, PI3K-Akt signaling pathway, and Rheumatoid arthritis. Among them, ten hub genes with a high degree of connectivity were selected. Furthermore, via the re-analysis of DAVID, four genes (IL6, MMP3, MMP1, and IL11) were significantly enriched in the Rheumatoid arthritis pathway. CONCLUSION Our study, based on the GEO database, identified four significant up-regulated DEGs and provided novel targets for diagnosis and treatment of T2DM.
Collapse
Affiliation(s)
- YiXuan Lin
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, People’s Republic of China
| | - Jinju Li
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, People’s Republic of China
| | - Di Wu
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, People’s Republic of China
| | - FanJing Wang
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, People’s Republic of China
| | - ZhaoHui Fang
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, People’s Republic of China
- Anhui Academic of Traditional Chinese Medicine Diabetes Research Institute, Hefei, Anhui, People’s Republic of China
- Correspondence: ZhaoHui Fang; GuoMing Shen Tel +86-13085513100 Email ;
| | - GuoMing Shen
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, People’s Republic of China
| |
Collapse
|
7
|
Lund KP, von Stemann JH, Eriksson F, Hansen MB, Pedersen BK, Sørensen SS, Bruunsgaard H. IL-10-specific autoantibodies predict major adverse cardiovascular events in kidney transplanted patients - a retrospective cohort study. Transpl Int 2019; 32:933-948. [PMID: 30883970 DOI: 10.1111/tri.13425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/12/2018] [Accepted: 03/11/2019] [Indexed: 01/23/2023]
Abstract
End-stage renal failure is associated with persistent systemic inflammation. The aim of this study was to investigate if systemic inflammation at the time of kidney transplantation is linked to poor graft survival, major adverse cardiovascular events (MACE), and increased mortality, and if these processes are modulated by naturally occurring cytokine-specific autoantibodies (c-aAbs), which have been shown to regulate cytokine activity in vitro. Serum levels of cytokines, high-sensitivity C-reactive protein (hsCRP) and c-aAbs specific for interleukin (IL)-1α, tumor necrosis factor (TNF)-α, IL-6, and IL-10 were measured at the time of transplantation in a retrospective cohort study of 619 kidney transplanted patients with a median follow-up of 4.9 years (range 1.2-8.2 years). Systemic inflammation was associated with all-cause mortality in simple and multiple Cox regression analyses. IL-10-specific c-aAbs were associated with MACE after transplantation, suggesting that IL-10 may be a protective factor. Similarly, patients with a history of MACE before transplantation had lower levels of TNF-α-specific c-aAbs, hence we hypothesized that TNF may be a risk factor of MACE. These findings support that pro-inflammatory activity before transplantation is a pathological driver of MACE and all-cause mortality after transplantation. This information adds to pretransplantation risk estimation in renal transplant candidates.
Collapse
Affiliation(s)
- Kit P Lund
- Department of Clinical Immunology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Jakob H von Stemann
- Department of Clinical Immunology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Frank Eriksson
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Morten B Hansen
- Department of Clinical Immunology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Bente K Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet University of Copenhagen, Copenhagen, Denmark
| | - Søren S Sørensen
- Department of Nephrology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Helle Bruunsgaard
- Department of Clinical Immunology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark.,The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Chang DC, Piaggi P, Hanson RL, Knowler WC, Bogardus C, Krakoff J. Autoantibodies against PFDN2 are associated with an increased risk of type 2 diabetes: A case-control study. Diabetes Metab Res Rev 2017; 33:10.1002/dmrr.2922. [PMID: 28731290 PMCID: PMC6417877 DOI: 10.1002/dmrr.2922] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/30/2017] [Accepted: 07/17/2017] [Indexed: 11/08/2022]
Abstract
BACKGROUND The adaptive immune system is involved in type 2 diabetes mellitus (T2DM), indicating the presence of unidentified autoantibodies that might be useful biomarkers for emerging immunomodulatory therapy. A prior microarray study with a small number of participants suggested the association of novel autoantibodies with T2DM in Southwest American Indians. We therefore sought to determine whether antibodies against 14 target proteins are associated with T2DM in a large case-control study. METHODS Participants were adults (age 20-59 y) of Southwest American Indian heritage. Plasma antibodies against 14 possible target proteins were measured in 476 cases with T2DM of less than 5 years duration and compared with 424 controls with normal glucose regulation. RESULTS Higher levels of antibodies against prefoldin subunit 2 (PFDN2) were associated with T2DM (P = .0001; Bonferroni-corrected threshold for multiple tests = 0.0036 [α = 0.05]). The association between anti-PFDN2 antibodies and T2DM remained in multivariable logistic regression (odds ratio 1.27; 95% confidence interval, 1.09-1.49; per one SD difference in anti-PFDN2 antibody). The odds of T2DM were increased in the highest anti-PFDN2 antibody quintile by 66% compared with the lowest quintile. Differences in anti-PFDN2 antibodies were most prominent among cases with earlier onset of disease (ie, age 20-39 y) compared with controls. CONCLUSIONS Anti-PFDN2 antibodies are associated with T2DM and might be a useful biomarker. These findings indicate that autoimmunity may play a role in T2DM in Southwest American Indians, especially among adults presenting with young onset of disease.
Collapse
Affiliation(s)
- Douglas C. Chang
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - Paolo Piaggi
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - Robert L. Hanson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - William C. Knowler
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - Clifton Bogardus
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - Jonathan Krakoff
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| |
Collapse
|
9
|
von Stemann JH, Rigas AS, Thørner LW, Rasmussen DGK, Pedersen OB, Rostgaard K, Erikstrup C, Ullum H, Hansen MB. Prevalence and correlation of cytokine-specific autoantibodies with epidemiological factors and C-reactive protein in 8,972 healthy individuals: Results from the Danish Blood Donor Study. PLoS One 2017; 12:e0179981. [PMID: 28665954 PMCID: PMC5493339 DOI: 10.1371/journal.pone.0179981] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/07/2017] [Indexed: 12/12/2022] Open
Abstract
Natural cytokine-specific autoantibodies (c-aAb) have been measured in healthy and diseased individuals, and have been considered as both endogenous immune-regulators and pathogenic factors. Overall, the etiology and potential pathology of c-aAb are still undefined. To further characterize the sero-prevalence, predictors and consequences of high c-aAb levels, we performed the largest population-based study of c-aAb to date, using participants and epidemiological data from the Danish Blood Donor Study. Using a validated bead-based multiplex assay we assessed plasma levels of IL-1α, IL-6, IL-10, IFNα and GM-CSF-specific c-aAb in 8,972 healthy blood donors. Trace levels of at least one of the investigated c-aAb could be measured in 86% of the participants. The presence of high levels of potentially inhibitory c-aAb was generally associated with increasing age and male or female sex, depending on the c-aAb in question. A negative correlation between high levels of IL-6-specific c-aAb and plasma levels of C-reactive protein was observed, indicating cytokine-neutralizing levels of c-aAb in healthy blood donors. There was no substantial correlation between high levels of the five individual c-aAb investigated in this study. These data suggest that autoimmunity against endogenous cytokines is a relatively common phenomenon in healthy individuals, and that predictive factors for high, potentially neutralizing c-aAb levels vary depending on the cytokine in question, and may differ from predictors of general c-aAb presence.
Collapse
Affiliation(s)
- Jakob Hjorth von Stemann
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- * E-mail:
| | - Andreas Stribolt Rigas
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lise Wegner Thørner
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | | | - Klaus Rostgaard
- Epidemiology research, Statens Serum Institut, Copenhagen, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Ullum
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten Bagge Hansen
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
10
|
Hou WH, Li CY, Chang HH, Sun Y, Tsai CC. A population-based cohort study suggests an increased risk of multiple sclerosis incidence in patients with type 2 diabetes mellitus. J Epidemiol 2017; 27:235-241. [PMID: 28142047 PMCID: PMC5394222 DOI: 10.1016/j.je.2016.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/17/2016] [Indexed: 12/17/2022] Open
Abstract
Background To prospectively investigate the incidence and relative risks of multiple sclerosis (MS) in patients with type 2 diabetes (T2DM). Materials and methods Patients with T2DM (n = 614,623) and age- and sex-matched controls (n = 614,021) were followed from 2000 to 2008 to identify cases of newly diagnosed MS (ICD-9-CM: 340). The person-year approach with Poisson assumption was used to evaluate the incidence density. We estimated the covariate-adjusted hazard ratio (HR) of MS incidence in relation to T2DM diabetes using a multiple Cox proportional hazard regression model. Results Over 9 years of follow-up, 175 T2DM patients were newly diagnosed with MS, and 114 matched controls had the same first-ever diagnosis, representing a covariate-adjusted HR of 1.44 (95% confidence interval [CI], 1.08–1.94). The sex-specific adjusted HR for both men and women with T2DM was also elevated at 1.34 (95% CI, 0.81–2.23) and 1.51 (95% CI, 1.05–2.19), respectively. Women aged ≤50 years had the greatest risk of MS (HR 2.16; 95% CI, 1.02–4.59). Conclusion This study demonstrated a moderate but significant association of T2DM with MS incidence, and the association was not confounded by socio-demographic characteristics or certain MS-related co-morbidities. Risk ratio of incident multiple sclerosis (MS) in T2DM patients was 1.44. Risk ratio of incident MS was highest in women aged <50 years. The PAR% for T2DM in the MS incidence was estimated at 2.55%.
Collapse
Affiliation(s)
- Wen-Hsuan Hou
- Master Program in Long-Term Care, College of Nursing, Taipei Medical University, Taipei, Taiwan; School of Gerontology Health Management, College of Nursing, Taipei Medical University, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chung-Yi Li
- Department and Institute of Public Health, College of Medicine, National Cheng Kung University, Tainan City, Taiwan; Department of Public Health, College of Public Health, China Medical University, Taichung City, Taiwan
| | - Hsin-Hui Chang
- Department and Institute of Public Health, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Yu Sun
- Department of Neurology, En Chu Kong Hospital, Sanxia District, New Taipei City, Taiwan
| | - Chiang-Chin Tsai
- Department of Surgery, Tainan Sin-Lau Hospital, Tainan, Taiwan; Department of Health Care Administration, Chang Jung Christian University, Tainan, Taiwan.
| |
Collapse
|
11
|
Dauriz M, Trombetta M, Boselli L, Santi L, Brangani C, Pichiri I, Bonora E, Bonadonna RC. Interleukin-6 as a potential positive modulator of human beta-cell function: an exploratory analysis-the Verona Newly Diagnosed Type 2 Diabetes Study (VNDS) 6. Acta Diabetol 2016; 53:393-402. [PMID: 26538364 DOI: 10.1007/s00592-015-0807-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/28/2015] [Indexed: 12/15/2022]
Abstract
AIMS Recent studies in mouse models of T2D showed that interleukin-6 (IL-6), released from skeletal muscle, is associated with increased glucose-dependent insulin secretion. Few data currently exist exploring the relationship between IL-6 and beta-cell function in humans. We investigated whether IL-6 is positively associated with beta-cell function in newly diagnosed T2D. We extended the same analyses to IL-10, because it regulated similarly to IL-6 in skeletal muscle, and TNF-α and C-reactive protein (CRP), as general biomarkers of inflammation. METHODS In 330 VNDS participants, we assessed (1) basal plasma concentrations of IL-6, IL-10, TNF-α, and CRP; (2) beta-cell function, estimated by OGTT minimal modeling and expressed as derivative (DC) and proportional control (PC); (3) insulin sensitivity, by euglycemic insulin clamp. RESULTS IL-6 was positively associated with PC in both univariate analysis (p = 0.04) and after adjustment for age, sex, BMI, HbA1c, and M-clamp (p = 0.01). HbA1c was the major independent contributor to the overall variance of PC (16 %), followed by BMI and IL-6 (~2 % each). Similar results were obtained for IL-10 (p = 0.048, univariate; p = 0.04, fully adjusted). TNF-α and CRP were not significantly associated with any component of beta-cell function. CONCLUSIONS Our data are the first evidence in human subjects that an endocrine loop involving IL-6 may act as positive modulator of glucose-dependent insulin secretion. Further functional studies are needed to corroborate IL-6 system as a potential druggable target in diabetes. CLINICAL TRIAL REGISTRATION NUMBER NCT01526720 ( http://www.clinicaltrial.gov ).
Collapse
Affiliation(s)
- Marco Dauriz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona - Ospedale Civile Maggiore, Piazzale Stefani, 1, 37126, Verona, Italy
| | - Maddalena Trombetta
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona - Ospedale Civile Maggiore, Piazzale Stefani, 1, 37126, Verona, Italy
| | - Linda Boselli
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona - Ospedale Civile Maggiore, Piazzale Stefani, 1, 37126, Verona, Italy
| | - Lorenza Santi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona - Ospedale Civile Maggiore, Piazzale Stefani, 1, 37126, Verona, Italy
| | - Corinna Brangani
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona - Ospedale Civile Maggiore, Piazzale Stefani, 1, 37126, Verona, Italy
| | - Isabella Pichiri
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona - Ospedale Civile Maggiore, Piazzale Stefani, 1, 37126, Verona, Italy
| | - Enzo Bonora
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona - Ospedale Civile Maggiore, Piazzale Stefani, 1, 37126, Verona, Italy
| | - Riccardo C Bonadonna
- Division of Endocrinology, Department of Clinical and Experimental Medicine, University of Parma School of Medicine and Azienda Ospedaliera Universitaria - Ospedale Maggiore, Via Gramsci 14, 43126, Parma, Italy.
| |
Collapse
|
12
|
Use of a High-Density Protein Microarray to Identify Autoantibodies in Subjects with Type 2 Diabetes Mellitus and an HLA Background Associated with Reduced Insulin Secretion. PLoS One 2015; 10:e0143551. [PMID: 26606528 PMCID: PMC4659622 DOI: 10.1371/journal.pone.0143551] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/05/2015] [Indexed: 12/27/2022] Open
Abstract
New biomarkers for type 2 diabetes mellitus (T2DM) may aid diagnosis, drug development or clinical treatment. Evidence is increasing for the adaptive immune system’s role in T2DM and suggests the presence of unidentified autoantibodies. While high-density protein microarrays have emerged as a useful technology to identify possible novel autoantigens in autoimmune diseases, its application in T2DM has lagged. In Pima Indians, the HLA haplotype (HLA-DRB1*02) is protective against T2DM and, when studied when they have normal glucose tolerance, subjects with this HLA haplotype have higher insulin secretion compared to those without the protective haplotype. Possible autoantibody biomarkers were identified using microarrays containing 9480 proteins in plasma from Pima Indians with T2DM without the protective haplotype (n = 7) compared with those with normal glucose regulation (NGR) with the protective haplotype (n = 11). A subsequent validation phase involving 45 cases and 45 controls, matched by age, sex and specimen storage time, evaluated 77 proteins. Eleven autoantigens had higher antibody signals among T2DM subjects with the lower insulin-secretion HLA background compared with NGR subjects with the higher insulin-secretion HLA background (p<0.05, adjusted for multiple comparisons). PPARG2 and UBE2M had lowest p-values (adjusted p = 0.023) while PPARG2 and RGS17 had highest case-to-control antibody signal ratios (1.7). A multi-protein classifier involving the 11 autoantigens had sensitivity, specificity, and area under the receiver operating characteristics curve of 0.73, 0.80, and 0.83 (95% CI 0.74–0.91, p = 3.4x10-8), respectively. This study identified 11 novel autoantigens which were associated with T2DM and an HLA background associated with reduced insulin secretion. While further studies are needed to distinguish whether these antibodies are associated with insulin secretion via the HLA background, T2DM more broadly, or a combination of the two, this study may aid the search for autoantibody biomarkers by narrowing the list of protein targets.
Collapse
|
13
|
Guldager DKR, von Stemann JH, Larsen R, Bay JT, Galle PS, Svenson M, Ullum H, Hansen MB. A rapid, accurate and robust particle-based assay for the simultaneous screening of plasma samples for the presence of five different anti-cytokine autoantibodies. J Immunol Methods 2015; 425:62-68. [DOI: 10.1016/j.jim.2015.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/15/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
|
14
|
Exercise as an anti-inflammatory therapy for rheumatic diseases—myokine regulation. Nat Rev Rheumatol 2014; 11:86-97. [DOI: 10.1038/nrrheum.2014.193] [Citation(s) in RCA: 272] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Hyper-inflammation and skin destruction mediated by rosiglitazone activation of macrophages in IL-6 deficiency. J Invest Dermatol 2014; 135:389-399. [PMID: 25184961 PMCID: PMC4291681 DOI: 10.1038/jid.2014.375] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 05/22/2014] [Accepted: 05/28/2014] [Indexed: 11/24/2022]
Abstract
Injury initiates recruitment of macrophages to support tissue repair; however, excessive macrophage activity may exacerbate tissue damage causing further destruction and subsequent delay in wound repair. Here we show that the peroxisome proliferation–activated receptor-γ agonist, rosiglitazone (Rosi), a medication recently reintroduced as a drug to treat diabetes and with known anti-inflammatory properties, paradoxically generates pro-inflammatory macrophages. This is observed in both IL-6-deficient mice and control wild-type mice experimentally induced to produce high titers of auto-antibodies against IL-6, mimicking IL-6 deficiency in human diseases. IL-6 deficiency when combined with Rosi-mediated upregulation of suppressor of cytokine signaling 3 leads to an altered ratio of nuclear signal transducer and activator of transcription 3/NF-κB that allows hyper-induction of inducible nitric oxide synthase (iNOS). Macrophages activated in this manner cause de novo tissue destruction, recapitulating human chronic wounds, and can be reversed in vivo by recombinant IL-6, blocking macrophage infiltration, or neutralizing iNOS. This study provides insight into an unanticipated paradoxical role of Rosi in mediating hyper-inflammatory macrophage activation significant for diseases associated with IL-6 deficiency.
Collapse
|
16
|
Harder-Lauridsen NM, Krogh-Madsen R, Holst JJ, Plomgaard P, Leick L, Pedersen BK, Fischer CP. Effect of IL-6 on the insulin sensitivity in patients with type 2 diabetes. Am J Physiol Endocrinol Metab 2014; 306:E769-78. [PMID: 24473436 DOI: 10.1152/ajpendo.00571.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Elevated interleukin-6 (IL-6) levels are associated with type 2 diabetes, but its role in glucose metabolism is controversial. We investigated the effect of IL-6 on insulin-stimulated glucose metabolism in type 2 diabetes patients and hypothesized that an acute, moderate IL-6 elevation would increase the insulin-mediated glucose uptake. Men with type 2 diabetes not treated with insulin [n = 9, age 54.9 ± 9.7 (mean ± SD) yr, body mass index 34.8 ± 6.1 kg/m(2), HbA1c 7.0 ± 1.0%] received continuous intravenous infusion with either recombinant human IL-6 (rhIL-6) or placebo. After 1 h with placebo or rhIL-6, a 3-h hyperinsulinemic-isoglycemic clamp was initiated. Whole body glucose metabolism was measured using stable isotope-labeled tracers. Signal transducer and activator of transcription 3 (STAT3) phosphorylation and suppressor of cytokine signaling 3 (SOCS3) expression were measured in muscle biopsies. Whole body energy expenditure was measured using indirect calorimetry. In response to the infusion of rhIL-6, circulating levels of IL-6 (P < 0.001), neutrophils (P < 0.001), and cortisol (P < 0.001) increased while lymphocytes decreased (P < 0.01). However, IL-6 infusion did not change glucose infusion rate, rate of appearance, or rate of disappearance during the clamp. While IL-6 enhanced phosphorylation of STAT3 in skeletal muscle (P = 0.041), the expression of SOCS3 remained unchanged. Whole body oxygen uptake (P < 0.01) and expired carbon dioxide (P < 0.01) increased during rhIL-6 infusion. In summary, although IL-6 induced local and systemic responses, the insulin-stimulated glucose uptake was not affected. While different contributing factors may be involved, our results are in contrast to our hypothesis and previous findings in young, healthy men.
Collapse
Affiliation(s)
- N M Harder-Lauridsen
- Faculty of Health Sciences, Department of Infectious Diseases and CMRC, The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Inflammation-induced inhibition of the insulin signalling pathway can lead to insulin resistance and contribute to the development of type 2 diabetes mellitus (T2DM). Obesity and insulin resistance are associated with a chronic but subclinical inflammatory process that impairs insulin action in most tissues and could also hamper pancreatic β-cell function. The involvement of monocytic cells and the profiles of the chemokines and cytokines induced by this inflammation suggest an innate immune response. However, emerging data indicate that elements of the adaptive immune system could also be involved. As activation of an adaptive response requires antigen specificity, some researchers have hypothesized that T2DM evolves from an innate immune response to an autoimmune condition. In this Perspectives article, we present the arguments for and against this hypothesis and discuss which mechanisms could be involved in a putative switch from innate immunity to autoimmunity.
Collapse
Affiliation(s)
- Lício A Velloso
- Laboratory of Cell Signalling, Obesity and Comorbidities Research Centre, University of Campinas, DCM-FCM UNICAMP, 13,084-970 Campinas, São Paulo, Brazil
| | | | | |
Collapse
|
18
|
Mukumoto H, Takahashi Y, Ando M, Nishikawa M, Takakura Y. Expression Profile-Dependent Improvement of Insulin Sensitivity by Gene Delivery of Interleukin-6 in a Mouse Model of Type II Diabetes. Mol Pharm 2013; 10:3812-21. [DOI: 10.1021/mp400288e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hanae Mukumoto
- Department of
Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuki Takahashi
- Department of
Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuru Ando
- Department of
Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Makiya Nishikawa
- Department of
Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshinobu Takakura
- Department of
Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
19
|
Nielsen CH, Bendtzen K. Immunoregulation by naturally occurring and disease-associated autoantibodies : binding to cytokines and their role in regulation of T-cell responses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 750:116-32. [PMID: 22903670 PMCID: PMC7123141 DOI: 10.1007/978-1-4614-3461-0_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The role of naturally occurring autoantibodies (NAbs) in homeostasis and in disease manifestations is poorly understood. In the present chapter, we review how NAbs may interfere with the cytokine network and how NAbs, through formation of complement-activating immune complexes with soluble self-antigens, may promote the uptake and presentation of self-molecules by antigen-presenting cells. Both naturally occurring and disease-associated autoantibodies against a variety of cytokines have been reported, including NAbs against interleukin (IL)-1α, IL-6, IL-8, IL-10, granulocyte-macrophage colony-stimulating factor, interferon (IFN)-α, IFN-β, IFN-γ, macrophage chemotactic protein-1 and IL-21. NAbs against a variety of other self-antigens have also been reported, and using thyroglobulin as an example we discuss how NAbs are capable of promoting uptake of immune complexes via complement receptors and Fc-receptors on antigen-presenting cells and thereby regulate T-cell activity. Knowledge of the influence of NAbs against cytokines on immune homeostasis is likely to have wide-ranging implications both in understanding pathogenesis and in treatment of many immunoinflammatory disorders, including a number of autoimmune and autoinflammatory diseases.
Collapse
Affiliation(s)
- Claus H Nielsen
- Institute for Inflammation Research, Department of Rheumatology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | | |
Collapse
|
20
|
Abstract
Lymphocytes and myeloid cells (monocyte/macrophages) have important roles in multiple types of diseases characterized by unresolved inflammation. The relatively recent appreciation of obesity, insulin resistance and type 2 diabetes (T2D) as chronic inflammatory diseases has stimulated interest in understanding the role of immune cells in metabolic imbalance. Myeloid cells regulate inflammation through cytokine production and the adipose tissue remodeling that accompanies hyper-nutrition, thus are critical players in metabolic homeostasis. More recently, multiple studies have indicated a role for T cells in obesity-associated inflammation and insulin resistance in model organisms, with parallel work indicating that pro-inflammatory changes in T cells also associate with human T2D. Furthermore, the expansion of T cells with similar antigen-binding sites in obesity and T2D indicates these diseases share characteristics previously attributed to inflammatory autoimmune disorders. Parallel pro-inflammatory changes in the B-cell compartment of T2D patients have also been identified. Taken together, these studies indicate that in addition to accepted pro-inflammatory roles of myeloid cells in T2D, pro-inflammatory skewing of both major lymphocyte subsets has an important role in T2D disease pathogenesis. Basic immunological principles suggest that alterations in lymphocyte function in obesity and T2D patients are an integral part of a feed-forward pro-inflammatory loop involving additional cell types. Importantly, the pro-inflammatory loop almost inevitably includes adipocytes, known to respond to pro-inflammatory, pro-diabetogenic cytokines originating from the myeloid and lymphoid compartments. We propose a model for inflammation in T2D that functionally links lymphocyte, myeloid and adipocyte contributions, and importantly proposes that tools for B-cell ablation or regulation of T-cell subset balance may have a place in the endocrinologist's limited arsenal.
Collapse
|
21
|
Matthews VB, Allen TL, Risis S, Chan MHS, Henstridge DC, Watson N, Zaffino LA, Babb JR, Boon J, Meikle PJ, Jowett JB, Watt MJ, Jansson JO, Bruce CR, Febbraio MA. Interleukin-6-deficient mice develop hepatic inflammation and systemic insulin resistance. Diabetologia 2010; 53:2431-41. [PMID: 20697689 DOI: 10.1007/s00125-010-1865-y] [Citation(s) in RCA: 255] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 07/07/2010] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS The role of IL-6 in the development of obesity and hepatic insulin resistance is unclear and still the subject of controversy. We aimed to determine whether global deletion of Il6 in mice (Il6 (-/-)) results in standard chow-induced and high-fat diet (HFD)-induced obesity, hepatosteatosis, inflammation and insulin resistance. METHODS Male, 8-week-old Il6 (-/-) and littermate control mice were fed a standard chow or HFD for 12 weeks and phenotyped accordingly. RESULTS Il6 (-/-) mice displayed obesity, hepatosteatosis, liver inflammation and insulin resistance when compared with control mice on a standard chow diet. When fed a HFD, the Il6 (-/-) and control mice had marked, equivalent gains in body weight, fat mass and ectopic lipid deposition in the liver relative to chow-fed animals. Despite this normalisation, the greater liver inflammation, damage and insulin resistance observed in chow-fed Il6 (-/-) mice relative to control persisted when both were fed the HFD. Microarray analysis from livers of mice fed a HFD revealed that genes associated with oxidative phosphorylation, the electron transport chain and tricarboxylic acid cycle were uniformly decreased in Il6 (-/-) relative to control mice. This coincided with reduced maximal activity of the mitochondrial enzyme β-hydroxyacyl-CoA-dehydrogenase and decreased levels of mitochondrial respiratory chain proteins. CONCLUSIONS/INTERPRETATION Our data suggest that IL-6 deficiency exacerbates HFD-induced hepatic insulin resistance and inflammation, a process that appears to be related to defects in mitochondrial metabolism.
Collapse
Affiliation(s)
- V B Matthews
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart & Diabetes Institute, PO Box 6492, St Kilda Road Central, Melbourne, 3008, VIC, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Influence of physical exercise on neuroimmunological functioning and health: aging and stress. Neurotox Res 2010; 20:69-83. [PMID: 20953749 DOI: 10.1007/s12640-010-9224-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/16/2010] [Accepted: 09/21/2010] [Indexed: 12/20/2022]
Abstract
Chronic and acute stress, with associated pathophysiology, are implicated in a variety of disease states, with neuroimmunological dysregulation and inflammation as major hazards to health and functional sufficiency. Psychosocial stress and negative affect are linked to elevations in several inflammatory biomarkers. Immunosenescence, the deterioration of immune competence observed in the aged aspect of the life span, linked to a dramatic rise in morbidity and susceptibility to diseases with fatal outcomes, alters neuroimmunological function and is particularly marked in the neurodegenerative disorders, e.g., Parkinson's disease and diabetes. Physical exercise diminishes inflammation and elevates agents and factors involved in immunomodulatory function. Both the alleviatory effects of life-long physical activity upon multiple cancer forms and the palliative effects of physical activity for individuals afflicted by cancer offer advantages in health intervention. Chronic conditions of stress and affective dysregulation are associated with neuroimmunological insufficiency and inflammation, contributing to health risk and mortality. Physical exercise regimes have induced manifest anti-inflammatory benefits, mediated possibly by brain-derived neurotrophic factor. The epidemic proportions of metabolic disorders, obesity, and diabetes demand attention; several variants of exercise regimes have been found repeatedly to induce both prevention and improvement under both laboratory and clinical conditions. Physical exercise offers a unique non-pharmacologic intervention incorporating multiple activity regimes, e.g., endurance versus resistance exercise that may be adapted to conform to the particular demands of diagnosis, intervention and prognosis inherent to the staging of autoimmune disorders and related conditions.
Collapse
|
23
|
Park EY, Kim TY. Autoantibodies found in type-2 diabetes with AIT test may be associated with its nephropathic complication. Diabetes Res Clin Pract 2010; 90:e3-4. [PMID: 20537745 DOI: 10.1016/j.diabres.2010.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 04/29/2010] [Indexed: 11/30/2022]
|