1
|
Martiniakova M, Mondockova V, Kovacova V, Babikova M, Zemanova N, Biro R, Penzes N, Omelka R. Interrelationships among metabolic syndrome, bone-derived cytokines, and the most common metabolic syndrome-related diseases negatively affecting bone quality. Diabetol Metab Syndr 2024; 16:217. [PMID: 39238022 PMCID: PMC11378428 DOI: 10.1186/s13098-024-01440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Metabolic syndrome (MetS), as a set of medical conditions including hyperglycemia, hypertension, abdominal obesity, and dyslipidemia, represents a highly prevalent disease cluster worldwide. The individual components of MetS together increase the risk of MetS-related disorders. Recent research has demonstrated that bone, as an endocrine organ, releases several systemic cytokines (osteokines), including fibroblast growth factor 23 (FGF23), lipocalin 2 (LCN2), and sclerostin (SCL). This review not only summarizes current knowledge about MetS, osteokines and the most common MetS-related diseases with a detrimental impact on bone quality (type 2 diabetes mellitus: T2DM; cardiovascular diseases: CVDs; osteoporosis: OP), but also provides new interpretations of the relationships between osteokines and individual components of MetS, as well as between osteokines and MetS-related diseases mentioned above. In this context, particular emphasis was given on available clinical studies. According to the latest knowledge, FGF23 may become a useful biomarker for obesity, T2DM, and CVDs, as FGF23 levels were increased in patients suffering from these diseases. LCN2 could serve as an indicator of obesity, dyslipidemia, T2DM, and CVDs. The levels of LCN2 positively correlated with obesity indicators, triglycerides, and negatively correlated with high-density lipoprotein (HDL) cholesterol. Furthermore, subjects with T2DM and CVDs had higher LCN2 levels. SCL may act as a potential biomarker predicting the incidence of MetS including all its components, T2DM, CVDs, and OP. Elevated SCL levels were noted in individuals with T2DM, CVDs and reduced in patients with OP. The aforementioned bone-derived cytokines have the potential to serve as promising predictors and prospective treatment targets for MetS and MetS-related diseases negatively affecting bone quality.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01, Nitra, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01, Nitra, Slovakia
| | - Martina Babikova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Nina Zemanova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01, Nitra, Slovakia
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01, Nitra, Slovakia
| | - Noemi Penzes
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia.
| |
Collapse
|
2
|
Liu Y, Duan M, Zhang D, Xie J. The role of mechano growth factor in chondrocytes and cartilage defects: a concise review. Acta Biochim Biophys Sin (Shanghai) 2023; 55:701-712. [PMID: 37171185 PMCID: PMC10281885 DOI: 10.3724/abbs.2023086] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/23/2022] [Indexed: 05/13/2023] Open
Abstract
Mechano growth factor (MGF), an isoform of insulin-like growth factor 1 (IGF-1), is recognized as a typical mechanically sensitive growth factor and has been shown to play an indispensable role in the skeletal system. In the joint cavity, MGF is highly expressed in chondrocytes, especially in the damaged cartilage tissue caused by trauma or degenerative diseases such as osteoarthritis (OA). Cartilage is an extremely important component of joints because it functions as a shock absorber and load distributer at the weight-bearing interfaces in the joint cavity, but it can hardly be repaired once injured due to its lack of blood vessels, lymphatic vessels, and nerves. MGF has been proven to play an important role in chondrocyte behaviors, including cell proliferation, migration, differentiation, inflammatory reactions and apoptosis, in and around the injury site. Moreover, under the normalized mechanical microenvironment in the joint cavity, MGF can sense and respond to mechanical stimuli, regulate chondrocyte activity, and maintain the homeostasis of cartilage tissue. Recent reports continue to explain its effects on various cell types and sport-related tissues, but its role in cartilage development, homeostasis and disease occurrence is still controversial, and its internal biological mechanism is still elusive. In this review, we summarize recent discoveries on the role of MGF in chondrocytes and cartilage defects, including tissue repair at the macroscopic level and chondrocyte activities at the microcosmic level, and discuss the current state of research and potential gaps in knowledge.
Collapse
Affiliation(s)
- Yi Liu
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Mengmeng Duan
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Demao Zhang
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
- Institute of Biomedical EngineeringWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengdu610041China
| | - Jing Xie
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
- National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| |
Collapse
|
3
|
Can IGF-1 serve as a reliable skeletal maturity indicator? A meta-analysis. J Orofac Orthop 2021; 83:124-140. [PMID: 34596696 DOI: 10.1007/s00056-021-00357-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Many clinical studies have evaluated the role of biochemical mediators like insulin-like growth factor 1 (IGF-1) in assessment of skeletal maturity. But still the reliability of IGF‑1 as an indicator of skeletal maturity remains controversial. OBJECTIVE To assess the correlation between IGF‑1 and different radiographic skeletal maturity indicators. SEARCH METHODS Seven electronic databases (PubMed, Scopus, EMBASE, Medline, Cochrane CENTRAL, Web of Science and SciELO) were searched until January 2020 without any restriction based on language or date of publication. SELECTION CRITERIA The study design included cross-sectional and longitudinal studies comparing IGF‑1 and other skeletal maturity indicators (SMIs). DATA COLLECTION AND ANALYSIS Data extraction was done by two reviewers independently; 15 studies were eligible to be included in the quantitative synthesis. RESULTS There was significant positive correlation between IGF‑1 and different SMIs until puberty which was 0.95 (confidence interval [CI] = 0.89, 1.02) for males and 0.87 (CI = 0.77, 0.97) for females. A negative correlation between IGF‑1 and different SMIs was found after puberty which was -0.86 (CI = -0.97, -0.75) for males and -0.89 (CI = -0.98, -0.81) for females. The type of SMI compared and type of IGF‑1 sample used accounted for the high heterogeneity found across the studies. Chronological age and number of months passed after puberty showed moderate negative correlation with mean IGF‑1 levels which were -0.57 (CI = -0.67, -0.47) and -0.54 (CI = -0.66, -0.42). Annual increments in mandibular length showed significant positive correlation of 0.69 (CI = 0.48, 0.90). CONCLUSIONS IGF‑1 would serve as a promising alternative to conventional radiographic skeletal maturity indicators and in predicting the amount of residual mandibular growth.
Collapse
|
4
|
Mohd Ramli ES, Sukalingam K, Kamaruzzaman MA, Soelaiman IN, Pang KL, Chin KY. Direct and Indirect Effect of Honey as a Functional Food Against Metabolic Syndrome and Its Skeletal Complications. Diabetes Metab Syndr Obes 2021; 14:241-256. [PMID: 33500644 PMCID: PMC7822078 DOI: 10.2147/dmso.s291828] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Metabolic syndrome (MetS) refers to the simultaneous presence of hypertension, hyperglycemia, dyslipidemia and/or visceral obesity, which predisposes a person to cardiovascular diseases and diabetes. Evidence suggesting the presence of direct and indirect associations between MetS and osteoporosis is growing. Many studies have reported the beneficial effects of polyphenols in alleviating MetS in in vivo and in vitro models through their antioxidant and anti-inflammation actions. This review aims to summarize the effects of honey (based on unifloral and multi-floral nectar sources) on bone metabolism and each component of MetS. A literature search was performed using the PubMed and Scopus databases using specific search strings. Original studies related to components of MetS and bone, and the effects of honey on components of MetS and bone were included. Honey polyphenols could act synergistically in alleviating MetS by preventing oxidative damage and inflammation. Honey intake is shown to reduce blood glucose levels and prevent excessive weight gain. It also improves lipid metabolism by reducing total cholesterol, triglycerides and low-density lipoprotein, as well as increasing high-density lipoprotein. Honey can prevent bone loss by reducing the adverse effects of MetS on bone homeostasis, apart from its direct action on the skeletal system. In conclusion, honey supplementation could be integrated into the management of MetS and MetS-induced bone loss as a preventive and adjunct therapeutic agent.
Collapse
Affiliation(s)
- Elvy Suhana Mohd Ramli
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Kumeshini Sukalingam
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Mohd Amir Kamaruzzaman
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Ima Nirwana Soelaiman
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Kok-Lun Pang
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Dixit M, Poudel SB, Yakar S. Effects of GH/IGF axis on bone and cartilage. Mol Cell Endocrinol 2021; 519:111052. [PMID: 33068640 PMCID: PMC7736189 DOI: 10.1016/j.mce.2020.111052] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
Growth hormone (GH) and its mediator, the insulin-like growth factor-1 (IGF-1) regulate somatic growth, metabolism and many aspects of aging. As such, actions of GH/IGF have been studied in many tissues and organs over decades. GH and IGF-1 are part of the hypothalamic/pituitary somatotrophic axis that consists of many other regulatory hormones, receptors, binding proteins, and proteases. In humans, GH/IGF actions peak during pubertal growth and regulate skeletal acquisition through stimulation of extracellular matrix production and increases in bone mineral density. During aging the activity of these hormones declines, a state called somatopaguss, which associates with deleterious effects on the musculoskeletal system. In this review, we will focus on GH/IGF-1 action in bone and cartilage. We will cover many studies that have utilized congenital ablation or overexpression of members of this axis, as well as cell-specific gene-targeting approaches used to unravel the nature of the GH/IGF-1 actions in the skeleton in vivo.
Collapse
Affiliation(s)
- Manisha Dixit
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, NY, 10010, USA
| | - Sher Bahadur Poudel
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, NY, 10010, USA
| | - Shoshana Yakar
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, NY, 10010, USA.
| |
Collapse
|
6
|
Kelly RR, Sidles SJ, LaRue AC. Effects of Neurological Disorders on Bone Health. Front Psychol 2020; 11:612366. [PMID: 33424724 PMCID: PMC7793932 DOI: 10.3389/fpsyg.2020.612366] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/11/2020] [Indexed: 01/10/2023] Open
Abstract
Neurological diseases, particularly in the context of aging, have serious impacts on quality of life and can negatively affect bone health. The brain-bone axis is critically important for skeletal metabolism, sensory innervation, and endocrine cross-talk between these organs. This review discusses current evidence for the cellular and molecular mechanisms by which various neurological disease categories, including autoimmune, developmental, dementia-related, movement, neuromuscular, stroke, trauma, and psychological, impart changes in bone homeostasis and mass, as well as fracture risk. Likewise, how bone may affect neurological function is discussed. Gaining a better understanding of brain-bone interactions, particularly in patients with underlying neurological disorders, may lead to development of novel therapies and discovery of shared risk factors, as well as highlight the need for broad, whole-health clinical approaches toward treatment.
Collapse
Affiliation(s)
- Ryan R. Kelly
- Research Services, Ralph H. Johnson VA Medical Center, Charleston, SC, United States
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Sara J. Sidles
- Research Services, Ralph H. Johnson VA Medical Center, Charleston, SC, United States
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Amanda C. LaRue
- Research Services, Ralph H. Johnson VA Medical Center, Charleston, SC, United States
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
7
|
Yan Y, Wang L, Ge L, Pathak JL. Osteocyte-Mediated Translation of Mechanical Stimuli to Cellular Signaling and Its Role in Bone and Non-bone-Related Clinical Complications. Curr Osteoporos Rep 2020; 18:67-80. [PMID: 31953640 DOI: 10.1007/s11914-020-00564-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Osteocytes comprise > 95% of the cellular component in bone tissue and produce a wide range of cytokines and cellular signaling molecules in response to mechanical stimuli. In this review, we aimed to summarize the molecular mechanisms involved in the osteocyte-mediated translation of mechanical stimuli to cellular signaling, and discuss their role in skeletal (bone) diseases and extra-skeletal (non-bone) clinical complications. RECENT FINDINGS Two decades before, osteocytes were assumed as a dormant cells buried in bone matrix. In recent years, emerging evidences have shown that osteocytes are pivotal not only for bone homeostasis but also for vital organ functions such as muscle, kidney, and heart. Osteocyte mechanotransduction regulates osteoblast and osteoclast function and maintains bone homeostasis. Mechanical stimuli modulate the release of osteocyte-derived cytokines, signaling molecules, and extracellular cellular vesicles that regulate not only the surrounding bone cell function and bone homeostasis but also the distant organ function in a paracrine and endocrine fashion. Mechanical loading and unloading modulate the osteocytic release of NO, PGE2, and ATPs that regulates multiple cellular signaling such as Wnt/β-catenin, RANKL/OPG, BMPs, PTH, IGF1, VEGF, sclerostin, and others. Therefore, the in-depth study of the molecular mechanism of osteocyte mechanotransduction could unravel therapeutic targets for various bone and non-bone-related clinical complications such as osteoporosis, sarcopenia, and cancer metastasis to bone.
Collapse
Affiliation(s)
- Yongyong Yan
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China
| | - Liping Wang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China
| | - Linhu Ge
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China.
| | - Janak L Pathak
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China.
| |
Collapse
|
8
|
Ala M, Jafari RM, Dehpour AR. Diabetes Mellitus and Osteoporosis Correlation: Challenges and Hopes. Curr Diabetes Rev 2020; 16:984-1001. [PMID: 32208120 DOI: 10.2174/1573399816666200324152517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/02/2020] [Accepted: 02/24/2020] [Indexed: 01/14/2023]
Abstract
Diabetes and osteoporosis are two common diseases with different complications. Despite different therapeutic strategies, managing these diseases and reducing their burden have not been satisfactory, especially when they appear one after the other. In this review, we aimed to clarify the similarity, common etiology and possible common adjunctive therapies of these two major diseases and designate the known molecular pattern observed in them. Based on different experimental findings, we want to illuminate that interestingly similar pathways lead to diabetes and osteoporosis. Meanwhile, there are a few drugs involved in the treatment of both diseases, which most of the time act in the same line but sometimes with opposing results. Considering the correlation between diabetes and osteoporosis, more efficient management of both diseases, in conditions of concomitant incidence or cause and effect condition, is required.
Collapse
Affiliation(s)
- Moein Ala
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, 13145-784, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, 13145-784, Tehran, Iran
| |
Collapse
|
9
|
Yakar S, Werner H, Rosen CJ. Insulin-like growth factors: actions on the skeleton. J Mol Endocrinol 2018; 61:T115-T137. [PMID: 29626053 PMCID: PMC5966339 DOI: 10.1530/jme-17-0298] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/06/2018] [Indexed: 12/20/2022]
Abstract
The discovery of the growth hormone (GH)-mediated somatic factors (somatomedins), insulin-like growth factor (IGF)-I and -II, has elicited an enormous interest primarily among endocrinologists who study growth and metabolism. The advancement of molecular endocrinology over the past four decades enables investigators to re-examine and refine the established somatomedin hypothesis. Specifically, gene deletions, transgene overexpression or more recently, cell-specific gene-ablations, have enabled investigators to study the effects of the Igf1 and Igf2 genes in temporal and spatial manners. The GH/IGF axis, acting in an endocrine and autocrine/paracrine fashion, is the major axis controlling skeletal growth. Studies in rodents have clearly shown that IGFs regulate bone length of the appendicular skeleton evidenced by changes in chondrocytes of the proliferative and hypertrophic zones of the growth plate. IGFs affect radial bone growth and regulate cortical and trabecular bone properties via their effects on osteoblast, osteocyte and osteoclast function. Interactions of the IGFs with sex steroid hormones and the parathyroid hormone demonstrate the significance and complexity of the IGF axis in the skeleton. Finally, IGFs have been implicated in skeletal aging. Decreases in serum IGFs during aging have been correlated with reductions in bone mineral density and increased fracture risk. This review highlights many of the most relevant studies in the IGF research landscape, focusing in particular on IGFs effects on the skeleton.
Collapse
Affiliation(s)
- Shoshana Yakar
- David B. Kriser Dental Center, Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010-4086, USA
| | - Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Clifford J Rosen
- Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| |
Collapse
|
10
|
Cirmanova V, Zofkova I, Kasalicky P, Lanska V, Bayer M, Starka L, Kanceva R. Hormonal and bone parameters in pubertal girls. Physiol Res 2018; 66:S419-S424. [PMID: 28948826 DOI: 10.33549/physiolres.933733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Here we analyzed associations between muscles mass, total bone mineral content (BMC), lumbar spine bone density (BMD L1-L4) and serum or urine hormones in healthy peripubertal girls. Total BMC and areal BMD L1-L4, muscle mass and fat were measured by dual-energy X-ray absorptiometry (DXA). Muscle force (N) was estimated by a dynamometer. Circulating estradiol, follicle-stimulating hormone (FSH), luteinizing hormone (LH), 25-hydroxy vitamin D, parathyroid hormone (PTH), insulin-like growth factor 1 (IGF-1), leptin, osteocalcin, bone isoenzyme of alkaline phosphatase (bALP) and total calcium and phosphorus were quantified as the nocturnal melatonin and serotonin urinary excretion. Partial correlations adjusted for height, Tanner score and physical activity confirmed positive relationships between BMC or BMD L1-L4 (Z-score) and lean mass or fat. Furthermore, positive relationship was observed between BMC or BMD L1-L4 (Z-score) and serum leptin. After adjustment for Tanner score and physical activity, positive associations were observed between lean mass and IGF-1, leptin levels or muscle force. We proved positive relationships between bone mass and serum leptin in peripubertal girls.
Collapse
Affiliation(s)
- V Cirmanova
- Institute of Endocrinology, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
11
|
Nazif H, Shatla R, Elsayed R, Tawfik E, Osman N, Korra S, Ibrahim A. Bone mineral density and insulin-like growth factor-1 in children with spastic cerebral palsy. Childs Nerv Syst 2017; 33:625-630. [PMID: 28236062 DOI: 10.1007/s00381-017-3346-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/13/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND Children with cerebral palsy (CP) have significant decrease linear growth rate and low bone mineral density (BMD). AIMS This study is to evaluate BMD in children with CP and its relation to the levels of insulin-like growth factor-1 (IGF-1). SUBJECTS AND METHODS This cross-sectional study was carried out on 58 children suffering from spastic CP with the age range 4-12 years compared to 19 controls. All assessed by dual energy x-ray absorptiometry (DXA) to measure BMD, serum level of IGF-1, and serum vitamin D. The patients were classified according to their GMFCS. RESULTS Fractures were reported in seven (12.1%) of cases. Our study demonstrated that, IGF-1 level and BMD decrease in correlation with the severity of CP. IGF-1correlates positively with serum vitamin D, BMI, and BMD. CP children with severe GMFCS level or who use anticonvulsive drugs are at a high risk for low BMD and low levels of IGF-1. CONCLUSION Both BMD and IGF-1 were significantly in low children with spastic CP; IGF-1 negatively correlates with the severity of osteopenia in children with spastic. Children with CP who are not independently ambulant or with severe GMFCS level or who use anticonvulsive drugs are at a high risk for developing low BMD.
Collapse
Affiliation(s)
- H Nazif
- Department of Childhood Medical Studies, Institute of Postgraduate Childhood Studies, Ain Shams University, Cairo, Egypt
| | - R Shatla
- Department of Pediatrics, Pediatric Neurology Unit, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - R Elsayed
- Deparment of Pediatrics, Pediatric Neurology Unit, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - E Tawfik
- Department of Physical Medicine, Rheumatology and Rehabilitation Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - N Osman
- Department of Radio Diagnoses, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - S Korra
- Department of Molecular Biology, National Center for Radiation Research and Technology, Cairo, Egypt
| | - A Ibrahim
- Department of Childhood Medical Studies, Institute of Postgraduate Childhood Studies, Ain Shams University, Cairo, Egypt
| |
Collapse
|
12
|
Armakolas N, Armakolas A, Antonopoulos A, Dimakakos A, Stathaki M, Koutsilieris M. The role of the IGF-1 Ec in myoskeletal system and osteosarcoma pathophysiology. Crit Rev Oncol Hematol 2016; 108:137-145. [DOI: 10.1016/j.critrevonc.2016.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 10/05/2016] [Accepted: 11/13/2016] [Indexed: 11/28/2022] Open
|
13
|
Lindsey RC, Mohan S. Skeletal effects of growth hormone and insulin-like growth factor-I therapy. Mol Cell Endocrinol 2016; 432:44-55. [PMID: 26408965 PMCID: PMC4808510 DOI: 10.1016/j.mce.2015.09.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 10/23/2022]
Abstract
The growth hormone/insulin-like growth factor (GH/IGF) axis is critically important for the regulation of bone formation, and deficiencies in this system have been shown to contribute to the development of osteoporosis and other diseases of low bone mass. The GH/IGF axis is regulated by a complex set of hormonal and local factors which can act to regulate this system at the level of the ligands, receptors, IGF binding proteins (IGFBPs), or IGFBP proteases. A combination of in vitro studies, transgenic animal models, and clinical human investigations has provided ample evidence of the importance of the endocrine and local actions of both GH and IGF-I, the two major components of the GH/IGF axis, in skeletal growth and maintenance. GH- and IGF-based therapies provide a useful avenue of approach for the prevention and treatment of diseases such as osteoporosis.
Collapse
Affiliation(s)
- Richard C Lindsey
- Musculoskeletal Disease Center, Loma Linda VA Healthcare System, Loma Linda, CA 92357, USA; Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; Department of Biochemistry, Loma Linda University, Loma Linda, CA 92354, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Loma Linda VA Healthcare System, Loma Linda, CA 92357, USA; Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; Department of Biochemistry, Loma Linda University, Loma Linda, CA 92354, USA.
| |
Collapse
|
14
|
The Relationship between Metabolic Syndrome and Osteoporosis: A Review. Nutrients 2016; 8:nu8060347. [PMID: 27338453 PMCID: PMC4924188 DOI: 10.3390/nu8060347] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 12/17/2022] Open
Abstract
Metabolic syndrome (MetS) and osteoporosis are two major healthcare problems worldwide. Metabolic syndrome is a constellation of medical conditions consisting of central obesity, hyperglycemia, hypertension, and dyslipidemia, in which each acts on bone tissue in different ways. The growing prevalence of MetS and osteoporosis in the population along with the controversial findings on the relationship between both conditions suggest the importance for further investigation and discussion on this topic. This review aims to assess the available evidence on the effects of each component of MetS on bone metabolism from the conventional to the contemporary. Previous studies suggested that the two conditions shared some common underlying pathways, which include regulation of calcium homeostasis, receptor activator of NF-κB ligand (RANKL)/receptor activator of the NF-κB (RANK)/osteoprotegerin (OPG) and Wnt-β-catenin signaling pathways. In conclusion, we suggest that MetS may have a potential role in developing osteoporosis and more studies are necessary to further prove this hypothesis.
Collapse
|
15
|
Yakar S, Isaksson O. Regulation of skeletal growth and mineral acquisition by the GH/IGF-1 axis: Lessons from mouse models. Growth Horm IGF Res 2016; 28:26-42. [PMID: 26432542 PMCID: PMC4809789 DOI: 10.1016/j.ghir.2015.09.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/16/2015] [Accepted: 09/24/2015] [Indexed: 12/31/2022]
Abstract
The growth hormone (GH) and its downstream mediator, the insulin-like growth factor-1 (IGF-1), construct a pleotropic axis affecting growth, metabolism, and organ function. Serum levels of GH/IGF-1 rise during pubertal growth and associate with peak bone acquisition, while during aging their levels decline and associate with bone loss. The GH/IGF-1 axis was extensively studied in numerous biological systems including rodent models and cell cultures. Both hormones act in an endocrine and autocrine/paracrine fashion and understanding their distinct and overlapping contributions to skeletal acquisition is still a matter of debate. GH and IGF-1 exert their effects on osteogenic cells via binding to their cognate receptor, leading to activation of an array of genes that mediate cellular differentiation and function. Both hormones interact with other skeletal regulators, such as sex-steroids, thyroid hormone, and parathyroid hormone, to facilitate skeletal growth and metabolism. In this review we summarized several rodent models of the GH/IGF-1 axis and described key experiments that shed new light on the regulation of skeletal growth by the GH/IGF-1 axis.
Collapse
Affiliation(s)
- Shoshana Yakar
- David B. Kriser Dental Center, Department of Basic Science and Craniofacial Biology New York University College of Dentistry New York, NY 10010-408
| | - Olle Isaksson
- Institute of Medicine, Sahlgrenska University Hospital, University of Gothenburg, SE-41345 Gothenburg, Sweden
| |
Collapse
|
16
|
Garfinkel BP, Arad S, Le PT, Bustin M, Rosen CJ, Gabet Y, Orly J. Proportionate Dwarfism in Mice Lacking Heterochromatin Protein 1 Binding Protein 3 (HP1BP3) Is Associated With Alterations in the Endocrine IGF-1 Pathway. Endocrinology 2015; 156:4558-70. [PMID: 26402843 PMCID: PMC5393342 DOI: 10.1210/en.2015-1668] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/18/2015] [Indexed: 01/08/2023]
Abstract
Heterochromatin protein 1 binding protein 3 (HP1BP3) is a recently described histone H1-related protein with roles in chromatin structure and transcriptional regulation. To explore the potential physiological role of HP1BP3, we have previously described an Hp1bp3(-/-) mouse model with reduced postnatal viability and growth. We now find that these mice are proportionate dwarfs, with reduction in body weight, body length, and organ weight. In addition to their small size, microcomputed tomography analysis showed that Hp1bp3(-/-) mice present a dramatic impairment of their bone development and structure. By 3 weeks of age, mice of both sexes have severely impaired cortical and trabecular bone, and these defects persist into adulthood and beyond. Primary cultures of both osteoblasts and osteoclasts from Hp1bp3(-/-) bone marrow and splenocytes, respectively, showed normal differentiation and function, strongly suggesting that the impaired bone accrual is due to noncell autonomous systemic cues in vivo. One major endocrine pathway regulating both body growth and bone acquisition is the IGF regulatory system, composed of IGF-1, the IGF receptors, and the IGF-binding proteins (IGFBPs). At 3 weeks of age, Hp1bp3(-/-) mice exhibited a 60% reduction in circulating IGF-1 and a 4-fold increase in the levels of IGFBP-1 and IGFBP-2. These alterations were reflected in similar changes in the hepatic transcripts of the Igf1, Igfbp1, and Igfbp2 genes. Collectively, these results suggest that HP1BP3 plays a key role in normal growth and bone development by regulating transcription of endocrine IGF-1 components.
Collapse
Affiliation(s)
- Benjamin P. Garfinkel
- Department of Biological Chemistry (B.P.G., S.A., J.O.), The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; Center for Clinical and Translational Research (P.T.L., C.J.R.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Protein Section (M.B.), Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892; and Department of Anatomy and Anthropology (Y.G.), Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 64239, Israel
| | - Shiri Arad
- Department of Biological Chemistry (B.P.G., S.A., J.O.), The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; Center for Clinical and Translational Research (P.T.L., C.J.R.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Protein Section (M.B.), Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892; and Department of Anatomy and Anthropology (Y.G.), Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 64239, Israel
| | - Phuong T. Le
- Department of Biological Chemistry (B.P.G., S.A., J.O.), The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; Center for Clinical and Translational Research (P.T.L., C.J.R.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Protein Section (M.B.), Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892; and Department of Anatomy and Anthropology (Y.G.), Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 64239, Israel
| | - Michael Bustin
- Department of Biological Chemistry (B.P.G., S.A., J.O.), The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; Center for Clinical and Translational Research (P.T.L., C.J.R.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Protein Section (M.B.), Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892; and Department of Anatomy and Anthropology (Y.G.), Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 64239, Israel
| | - Clifford J. Rosen
- Department of Biological Chemistry (B.P.G., S.A., J.O.), The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; Center for Clinical and Translational Research (P.T.L., C.J.R.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Protein Section (M.B.), Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892; and Department of Anatomy and Anthropology (Y.G.), Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 64239, Israel
| | | | | |
Collapse
|
17
|
Yu H, Wergedal JE, Rundle CH, Mohan S. Reduced bone mass accrual in mouse model of repetitive mild traumatic brain injury. ACTA ACUST UNITED AC 2015; 51:1427-37. [PMID: 25785491 DOI: 10.1682/jrrd.2014.04.0095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/10/2014] [Indexed: 11/05/2022]
Abstract
Traumatic brain injury (TBI) can affect bone by influencing the production/actions of pituitary hormones and neuropeptides that play significant regulatory roles in bone metabolism. Previously, we demonstrated that experimental TBI exerted a negative effect on the skeleton. Since mild TBI (mTBI) accounts for the majority of TBI cases, this study was undertaken to evaluate TBI effects using a milder impact model in female mice. Repetitive mTBI caused microhemorrhaging, astrocytosis, and increased anti-inflammatory protective actions in the brain of the impacted versus control mice 2 wk after the first impact. Serum levels of growth regulating insulin-like growth factor 1 (IGF-I) were reduced by 28.9%. Bone mass was reduced significantly in total body as well as individual skeletons. Tibial total cortical density was reduced by 7.0%, which led to weaker bones, as shown by a 31.3% decrease in femoral size adjusted peak torque. A 27.5% decrease in tibial trabecular bone volume per total volume was accompanied by a 34.3% (p = 0.07) decrease in bone formation rate (BFR) per total area. Based on our data, we conclude that repetitive mTBI exerted significant negative effects on accrual of both cortical and trabecular bone mass in mice caused by a reduced BFR.
Collapse
|
18
|
Locke MEO, Milojevic M, Eitutis ST, Patel N, Wishart AE, Daley M, Hill KA. Genomic copy number variation in Mus musculus. BMC Genomics 2015; 16:497. [PMID: 26141061 PMCID: PMC4490682 DOI: 10.1186/s12864-015-1713-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 06/22/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Copy number variation is an important dimension of genetic diversity and has implications in development and disease. As an important model organism, the mouse is a prime candidate for copy number variant (CNV) characterization, but this has yet to be completed for a large sample size. Here we report CNV analysis of publicly available, high-density microarray data files for 351 mouse tail samples, including 290 mice that had not been characterized for CNVs previously. RESULTS We found 9634 putative autosomal CNVs across the samples affecting 6.87% of the mouse reference genome. We find significant differences in the degree of CNV uniqueness (single sample occurrence) and the nature of CNV-gene overlap between wild-caught mice and classical laboratory strains. CNV-gene overlap was associated with lipid metabolism, pheromone response and olfaction compared to immunity, carbohydrate metabolism and amino-acid metabolism for wild-caught mice and classical laboratory strains, respectively. Using two subspecies of wild-caught Mus musculus, we identified putative CNVs unique to those subspecies and show this diversity is better captured by wild-derived laboratory strains than by the classical laboratory strains. A total of 9 genic copy number variable regions (CNVRs) were selected for experimental confirmation by droplet digital PCR (ddPCR). CONCLUSION The analysis we present is a comprehensive, genome-wide analysis of CNVs in Mus musculus, which increases the number of known variants in the species and will accelerate the identification of novel variants in future studies.
Collapse
Affiliation(s)
- M Elizabeth O Locke
- Department of Computer Science, The University of Western Ontario, London, ON, N6A 5B7, Canada.
| | - Maja Milojevic
- Department of Biology, The University of Western Ontario, Biological and Geological Sciences Building 1151 Richmond St. N, London, ON, N6A 5B7, Canada.
| | - Susan T Eitutis
- Department of Biology, The University of Western Ontario, Biological and Geological Sciences Building 1151 Richmond St. N, London, ON, N6A 5B7, Canada.
| | - Nisha Patel
- Department of Biology, The University of Western Ontario, Biological and Geological Sciences Building 1151 Richmond St. N, London, ON, N6A 5B7, Canada.
| | - Andrea E Wishart
- Department of Biology, The University of Western Ontario, Biological and Geological Sciences Building 1151 Richmond St. N, London, ON, N6A 5B7, Canada.
| | - Mark Daley
- Department of Computer Science, The University of Western Ontario, London, ON, N6A 5B7, Canada.
- Department of Biology, The University of Western Ontario, Biological and Geological Sciences Building 1151 Richmond St. N, London, ON, N6A 5B7, Canada.
| | - Kathleen A Hill
- Department of Computer Science, The University of Western Ontario, London, ON, N6A 5B7, Canada.
- Department of Biology, The University of Western Ontario, Biological and Geological Sciences Building 1151 Richmond St. N, London, ON, N6A 5B7, Canada.
| |
Collapse
|
19
|
Abstract
Bones are structures in vertebrates that provide support to organs, protect soft organs, and give them shape and defined features, functions that are essential for their survival. To perform these functions, bones are constantly renewed throughout life. The process through which bones are renewed is known as bone remodeling, an energy demanding process sensitive to changes in energy homeostasis of the organism. A close interplay takes place between the diversity of nutritional cues and metabolic signals with different elements of the hypothalamic circuits to co-ordinate energy metabolism with the regulation of bone mass. In this review, we focus on how mouse and human genetics have elucidated the roles of hormonal signals and neural circuits that originate in, or impinge on, the hypothalamus in the regulation of bone mass. This will help to understand the mechanisms whereby regulation of bone is gated and dynamically regulated by the hypothalamus.
Collapse
Affiliation(s)
- Kunal Sharan
- Systems Biology of Bone Laboratory, Department of Mouse and Zebrafish Genetics, The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Vijay K Yadav
- Systems Biology of Bone Laboratory, Department of Mouse and Zebrafish Genetics, The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom; Sanger Mouse Genetics Project, Department of Mouse and Zebrafish Genetics, The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom.
| |
Collapse
|
20
|
Chin KY, Ima-Nirwana S, Mohamed IN, Hanapi Johari M, Ahmad F, Mohamed Ramli ES, Wan Ngah WZ. Insulin-like growth factor-1 is a mediator of age-related decline of bone health status in men. Aging Male 2014; 17:102-6. [PMID: 24593848 DOI: 10.3109/13685538.2014.896895] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE The role of insulin-like growth factor-1 (IGF-1) in bone health in men is debatable. This study aimed to determine whether IGF-1 is a mediator in age-related decline of bone health status measured by calcaneal speed of sound (SOS) in Malaysian men. METHODS The study recruited 279 Chinese and Malay men. Their demographic data, weight, height, calcaneal SOS were taken and fasting blood was collected for total testosterone, sex-hormone binding globulin and IGF-1 assays. The associations between the studied variables were assessed using multiple linear regression (MLR) analysis. Mediator analysis was performed using Sobel test. RESULTS There was a significant and parallel decrease of IGF-1 and SOS with age (p < 0.05). Serum IGF-1 was significantly and positively associated with SOS (p < 0.05) but after further adjustment for age, the significance was lost (p > 0.05). The strength of the association between age and SOS decreased after adjusting for IGF-1 level but it remained significant (p < 0.05). Sobel test revealed that IGF-1 was a significant partial mediator in the relationship between age and SOS (z = -4.3). CONCLUSION Serum IGF-1 is a partial mediator in the age-related decline of bone health in men as determined by calcaneal ultrasound. A prospective study should be performed to validate this relationship.
Collapse
|
21
|
Yu H, Watt H, Mohan S. The negative impact of traumatic brain injury (TBI) on bone in a mouse model. Brain Inj 2013; 28:244-51. [PMID: 24295038 DOI: 10.3109/02699052.2013.859735] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION While it is well established that the brain produces hypothalamic hormones and neuropeptides that influence skeletal metabolism, the impact of traumatic brain injury (TBI) on bone is unknown. Based on the recognition from clinical studies that there is an association between TBI and long-term hypothalamic pituitary dysfunction, it was hypothesized that TBI exerts a negative impact on skeletal growth and maintenance. METHODS To test the hypothesis, this study employed a repetitive weight drop model for TBI. Four impacts were applied for four consecutive days on 5-week old female C57BL/6 J mice. Bone measurements were taken 2 weeks after the first impact. RESULTS Bone mineral content (BMC), bone area (B area) and bone mineral density (BMD) in the total body were reduced by 14.5%, 9.8% and 5.2%, respectively, in the impacted vs. control mice. There was a 17.1% reduction in total volumetric BMD (vBMD) and a 4.0% reduction in material vBMD in cortical bone. In trabecular bone, there was a 44.0% reduction in BV/TV. Although there was no change in the cross-sectional bone size, the tibial growth plate and the tibia itself were shortened. CONCLUSION The repetitive animal TBI model produced an immediate, strong negative impact on bone mass acquisition in young mice.
Collapse
Affiliation(s)
- Hongrun Yu
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center , Loma Linda, CA , USA and
| | | | | |
Collapse
|
22
|
Abstract
Posttraumatic stress disorder (PTSD) disrupts hypothalamic-pituitary-adrenal (HPA) axis function. Given the established role of HPA axis hormones in regulating bone metabolism, we tested the hypothesis that traumatic stress has a negative impact on bone development. We employed a variant single prolonged stress (SPS) model in which several stressors were applied to three week old C57BL/6J mice. Compared to the controls, the stressed mice showed increased freezing behavior reminiscent of PTSD symptoms. At two weeks, bone mineral content (BMC), bone area (B area) and bone mineral density (BMD) in total body based on dual-energy X-ray absorptiometry (DXA) analysis were reduced by 10.2%, 7.0% and 3.6%, respectively. Micro-CT analysis of the metaphyseal region of the excised tibia revealed that SPS caused a deterioration of trabecular architecture with trabecular number (Tb.N), BV/TV, connectivity density (Conn-Den) decreasing 12.0%, 18.9%, 23.3% and trabecular spacing (Tb.Sp), structure model index (SMI) increasing 13.9%, 21.8%, respectively. Mechanical loading increased the cross-sectional area in the mid-shaft region of the loaded right versus unloaded left tibia by 7.6% in the controls, and 10.0% in the stressed mice. Therefore, SPS applied to pre-pubertal young mice produced strong negative impact on both bone mass acquisition and trabecular architecture. Mechanical loading can be employed to increase bone size, a parameter related to bone strength, in normal as well as stressed conditions.
Collapse
Affiliation(s)
- Hongrun Yu
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA
| | | | | | | |
Collapse
|
23
|
Doorn J, Roberts SJ, Hilderink J, Groen N, van Apeldoorn A, van Blitterswijk C, Schrooten J, de Boer J. Insulin-like growth factor-I enhances proliferation and differentiation of human mesenchymal stromal cells in vitro. Tissue Eng Part A 2013; 19:1817-28. [PMID: 23530894 DOI: 10.1089/ten.tea.2012.0522] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human mesenchymal stromal cells (hMSCs) offer great potential for bone tissue engineering applications, but their in vivo performance remains limited. Preconditioning of these cells with small molecules to improve their differentiation before implantation, or incorporation of growth factors are possible solutions. Insulin-like growth factor-1 (IGF-1) is one of the most abundant growth factors in bone, involved in growth, development, and metabolism, but its effects on hMSCs are still subject of debate. Here we examined the effects of IGF-1 on proliferation and differentiation of hMSCs in vitro and we found that serum abolished the effects of IGF-1. Only in the absence of serum, IGF-1 increased proliferation, alkaline phosphatase expression, and osteogenic gene expression of hMSCs. Furthermore, we examined synergistic effects of bone morphogenetic protein-2 (BMP-2) and IGF-1 and, although IGF-1 enhanced BMP-2-induced mineralization, IGF-1 only slightly affected in vivo bone formation.
Collapse
Affiliation(s)
- Joyce Doorn
- MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Yu H, Watt H, Kesavan C, Johnson PJ, Wergedal JE, Mohan S. Lasting consequences of traumatic events on behavioral and skeletal parameters in a mouse model for post-traumatic stress disorder (PTSD). PLoS One 2012; 7:e42684. [PMID: 22927935 PMCID: PMC3425500 DOI: 10.1371/journal.pone.0042684] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 07/11/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD) is an anxiety disorder that not only affects mental health, but may also affect bone health. However, there have been no studies to examine the direct relationship between PTSD and bone. METHODOLOGY/PRINCIPAL FINDINGS We employed electric shocks in mice to simulate traumatic events that cause PTSD. We also injected the anxiogenic drug FG-7142 prior to electric shocks. Electric shocks created lasting conditioned fear memory in all mice. In young mice, electric shocks elicited not only behavioral response but also skeletal response, and injection of FG-7142 appeared to increase both types of response. For example in behavioral response within the first week, mice shocked alone froze an average of 6.2 sec in 10 sec tests, and mice injected with FG-7142 froze 7.6 sec, both significantly different (P<0.05) from control mice, which only froze 1.3 sec. In skeletal response at week 2, shocks alone reduced 6% bone mineral content (BMC) in total body (P = 0.06), while shocks with FG-7142 injection reduced not only 11% BMC (P<0.05) but also 6% bone mineral density (BMD) (P<0.05). In addition, FG-7142 injection also caused significant reductions of BMC in specific bones such as femur, lumbar vertebra, and tibia at week 3. Strong negative correlations (R(2) = -0.56, P<0.05) and regression (y = 0.2527-0.0037 * x, P<0.01) between freezing behavior and total body BMC in young mice indicated that increased contextual PTSD-like behavior was associated with reduced bone mass acquisition. CONCLUSIONS/SIGNIFICANCE This is the first study to document evidence that traumatic events induce lasting consequences on both behavior and skeletal growth, and electric shocks coupled with injection of anxiogenic FG-7142 in young mice can be used as a model to study the effect of PTSD-like symptoms on bone development.
Collapse
Affiliation(s)
- Hongrun Yu
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California, United States of America
- Department of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Heather Watt
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California, United States of America
| | - Chandrasekhar Kesavan
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California, United States of America
- Department of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Patrick J. Johnson
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California, United States of America
| | - Jon E. Wergedal
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California, United States of America
- Department of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California, United States of America
- Department of Medicine, Loma Linda University, Loma Linda, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
Somm E, Bonnet N, Martinez A, Marks PMH, Cadd VA, Elliott M, Toulotte A, Ferrari SL, Rizzoli R, Hüppi PS, Harper E, Melmed S, Jones R, Aubert ML. A botulinum toxin-derived targeted secretion inhibitor downregulates the GH/IGF1 axis. J Clin Invest 2012; 122:3295-306. [PMID: 22850878 DOI: 10.1172/jci63232] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/14/2012] [Indexed: 01/15/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are zinc endopeptidases that block release of the neurotransmitter acetylcholine in neuromuscular synapses through cleavage of soluble N-ethylmaleimide-sensitive fusion (NSF) attachment protein receptor (SNARE) proteins, which promote fusion of synaptic vesicles to the plasma membrane. We designed and tested a BoNT-derived targeted secretion inhibitor (TSI) targeting pituitary somatotroph cells to suppress growth hormone (GH) secretion and treat acromegaly. This recombinant protein, called SXN101742, contains a modified GH-releasing hormone (GHRH) domain and the endopeptidase domain of botulinum toxin serotype D (GHRH-LHN/D, where HN/D indicates endopeptidase and translocation domain type D). In vitro, SXN101742 targeted the GHRH receptor and depleted a SNARE protein involved in GH exocytosis, vesicle-associated membrane protein 2 (VAMP2). In vivo, administering SXN101742 to growing rats produced a dose-dependent inhibition of GH synthesis, storage, and secretion. Consequently, hepatic IGF1 production and resultant circulating IGF1 levels were reduced. Accordingly, body weight, body length, organ weight, and bone mass acquisition were all decreased, reflecting the biological impact of SXN101742 on the GH/IGF1 axis. An inactivating 2-amino acid substitution within the zinc coordination site of the endopeptidase domain completely abolished SXN101742 inhibitory actions on GH and IGF1. Thus, genetically reengineered BoNTs can be targeted to nonneural cells to selectively inhibit hormone secretion, representing a new approach to treating hormonal excess.
Collapse
Affiliation(s)
- Emmanuel Somm
- Department of Paediatrics, University of Geneva School of Medicine, Genevea, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
The importance of the insulin-like growth factor (IGF)-I axis in the regulation of bone size and bone mineral density, two important determinants of bone strength, has been well established from clinical studies involving patients with growth hormone deficiency and IGF-I gene disruption. Data from transgenic animal studies involving disruption and overexpression of components of the IGF-I axis also provide support for a key role for IGF-I in bone metabolism. IGF-I actions in bone are subject to regulation by systemic hormones, local growth factors, as well as mechanical stress. In this review we describe findings from various genetic mouse models that pertain to the role of endocrine and local sources of IGF-I in the regulation of skeletal growth.
Collapse
Affiliation(s)
- Subburaman Mohan
- Musculoskeletal Disease Center, Research Service (151), Jerry L Pettis VA Medical Center, 11201 Benton Street, Loma Linda, CA, 92357, USA.
| | | |
Collapse
|
27
|
Abstract
Type I insulin-like growth factor receptor (IGF-IR) is widely expressed across many cell types in fetal and postnatal tissues. The activation of this receptor after the binding of secreted IGF-I and IGF-II promotes cell differentiation and proliferation. IGF-IR has an important role in normal fetal and postnatal growth and development. IGF-IR gene anomalies presenting with intrauterine and postnatal growth retardation have recently been reported in some families. Familial short stature with IGF-IR gene anomaly is considered rare, and the clinical condition and features remain unknown. IGF-IR gene anomaly such as heterozygous IGF-IR mutation or haploinsufficiency of the IGF-IR gene should be investigated in those patients presenting with 1) low birth weight and birth height (< -1.5 SD), 2) a familial history of low birth weight, 3) a normal or increased IGF-I level, 4) a normal or increased GH response to the GH stimulation test, and/or 5) less response to GH treatment than common small for gestational age (SGA) short-stature patients. In this review, we provide an overview of current knowledge of familial short stature with IGF-IR gene anomaly.
Collapse
Affiliation(s)
- Yuki Kawashima
- Division of Pediatrics & Perinatology, Tottori University, Yonago 683-8504, Japan.
| | | | | |
Collapse
|
28
|
Courtland HW, Sun H, Beth-On M, Wu Y, Elis S, Rosen CJ, Yakar S. Growth hormone mediates pubertal skeletal development independent of hepatic IGF-1 production. J Bone Miner Res 2011; 26:761-8. [PMID: 20928887 PMCID: PMC3179330 DOI: 10.1002/jbmr.265] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Deficiencies in either growth hormone (GH) or insulin-like growth factor 1 (IGF-1) are associated with reductions in bone size during growth in humans and animal models. Liver-specific IGF-1-deficient (LID) mice, which have 75% reductions in serum IGF-1, were created previously to separate the effects of endocrine (serum) IGF-1 from autocrine/paracrine IGF-1. However, LID mice also have two- to threefold increases in GH, and this may contribute to the observed pubertal skeletal phenotype. To clarify the role of GH in skeletal development under conditions of significantly reduced serum IGF-1 levels (but normal tissue IGF-1 levels), we studied the skeletal response of male LID and control mice to GH inhibition by pegvisomant from 4 to 8 weeks of age. Treatment of LID mice with pegvisomant resulted in significant reductions in body weight, femur length (Le), and femur total area (Tt.Ar), as well as further reductions in serum IGF-1 levels by 8 weeks of age, compared with the mean values of vehicle-treated LID mice. Reductions in both Tt.Ar and Le were proportional after treatment with pegvisomant. On the other hand, the relative amount of cortical tissue formed (RCA) in LID mice treated with pegvisomant was significantly less than that in both vehicle-treated LID and control mice, indicating that antagonizing GH action, either directly (through GH receptor signaling inhibition) or indirectly (through further reductions in serum/tissue IGF-1 levels), results in disproportionate reductions in the amount of cortical bone formed. This resulted in bones with significantly reduced mechanical properties (femoral whole-bone stiffness and work to failure were markedly decreased), suggesting that compensatory increases of GH in states of IGF-1 deficiency (LID mice) act to protect against a severe inhibition of bone modeling during growth, which otherwise would result in bones that are too weak for normal and/or extreme loading conditions.
Collapse
Affiliation(s)
- Hayden-William Courtland
- Division of Endocrinology, Diabetes and Bone Diseases, Mount Sinai School of Medicine, New York, NY 10029-6574, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Wongdee K, Charoenphandhu N. Osteoporosis in diabetes mellitus: Possible cellular and molecular mechanisms. World J Diabetes 2011; 2:41-8. [PMID: 21537459 PMCID: PMC3083906 DOI: 10.4239/wjd.v2.i3.41] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/13/2010] [Accepted: 12/20/2010] [Indexed: 02/05/2023] Open
Abstract
Osteoporosis, a global age-related health problem in both male and female elderly, insidiously deteriorates the microstructure of bone, particularly at trabecular sites, such as vertebrae, ribs and hips, culminating in fragility fractures, pain and disability. Although osteoporosis is normally associated with senescence and estrogen deficiency, diabetes mellitus (DM), especially type 1 DM, also contributes to and/or aggravates bone loss in osteoporotic patients. This topic highlight article focuses on DM-induced osteoporosis and DM/osteoporosis comorbidity, covering alterations in bone metabolism as well as factors regulating bone growth under diabetic conditions including, insulin, insulin-like growth factor-1 and angiogenesis. Cellular and molecular mechanisms of DM-related bone loss are also discussed. This information provides a foundation for the better understanding of diabetic complications and for development of early screening and prevention of osteoporosis in diabetic patients.
Collapse
Affiliation(s)
- Kannikar Wongdee
- Kannikar Wongdee, Narattaphol Charoenphandhu, Consortium for Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | |
Collapse
|
30
|
Breen ME, Laing EM, Hall DB, Hausman DB, Taylor RG, Isales CM, Ding KH, Pollock NK, Hamrick MW, Baile CA, Lewis RD. 25-hydroxyvitamin D, insulin-like growth factor-I, and bone mineral accrual during growth. J Clin Endocrinol Metab 2011; 96:E89-98. [PMID: 20962027 PMCID: PMC3038478 DOI: 10.1210/jc.2010-0595] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT The extent to which 25-hydroxyvitamin D [25(OH)D] and IGF-I influence bone mineral content (BMC) accrual from early to mid-puberty is unclear. OBJECTIVE, SETTING, AND PARTICIPANTS: This study sought to determine relationships among 25(OH)D, IGF-I, and BMC in community-dwelling prepubertal females (n = 76; aged 4-8 yr at baseline) over a period of up to 9 yr. DESIGN The hypothesis that changes in IGF-I vs. 25(OH)D are more strongly associated with BMC accrual was formulated after data collection. 25(OH)D and IGF-I were log-transformed and further adjusted using two-way ANOVA for differences in season and race. Linear mixed modeling (including a random subject-specific intercept and a random subject-specific slope on age) was employed to analyze the proportion of variance the transformed 25(OH)D and IGF-I variables explained for the bone outcomes. RESULTS IGF-I was more strongly associated with BMC accrual than 25(OH)D at the total body (R(2) = 0.874 vs. 0.809), proximal femur (R(2) = 0.847 vs. 0.771), radius (R(2) = 0.812 vs. 0.759), and lumbar spine (R(2) = 0.759 vs. 0.698). The rate of BMC accrual was positively associated with changes in IGF-I but negatively associated with 25(OH)D. When IGF-I and 25(OH)D were included in the same regression equation, 25(OH)D did not have a significant predictive effect on BMC accrual above and beyond that of IGF-I. CONCLUSIONS These prospective data in early adolescent females indicate that both 25(OH)D and IGF-I have a significant impact on bone mineral accrual; however, the positive association of IGF-I and BMC accrual is greater than the negative association of 25(OH)D and BMC accrual.
Collapse
Affiliation(s)
- M E Breen
- Department of Foods and Nutrition, The University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Insulin-like growth factor-1 (IGF-1) plays a central role in cellular growth, differentiation, survival, and cell cycle progression. It is expressed early during development and its effects are mediated through binding to a tyrosine kinase receptor, the insulin-like growth factor-1 receptor (IGF-1R). In the circulation, the IGFs bind to IGF-binding proteins (IGFBPs), which determine their bioavailability and regulate the interaction between the IGFs and IGF-1R. Studies in animal models and in humans have established critical roles for IGFs in skeletal growth and development. In this review we present new and old findings from mouse models of the IGF system and discuss their clinical relevance to normal and pathological skeletal physiology.
Collapse
Affiliation(s)
- Shoshana Yakar
- Division of Endocrinology, University of North Carolina, Chapel Hill, NC, USA.
| | | | | |
Collapse
|
32
|
The IGF/IGFBP system in relation to macroscopic bone architecture in pediatric renal transplant patients. Pediatr Nephrol 2010; 25:659-67. [PMID: 20033221 DOI: 10.1007/s00467-009-1405-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 11/11/2009] [Accepted: 11/21/2009] [Indexed: 10/20/2022]
Abstract
The post-transplant bone disease of the peripheral skeleton in pediatric renal transplant recipients is characterized by an inadequately thin bone cortex in relation to muscular force. A major hormonal modulator of periosteal growth is the insulin-like growth factor (IGF)/IGF binding protein (IGFBP) system. We therefore hypothesized that the reduced cortical thickness in these patients may be due to functional IGF deficiency. To test this hypothesis, we investigated 55 patients (mean estimated glomerular filtration rate 86.3 +/- 30.0 ml/min/1.73 m(2)) in a cross-sectional study. Parameters of macroscopic bone architecture and forearm muscle size were analyzed by peripheral quantitative computed tomography (pQCT), and serum IGF/IGFBP system components were measured by specific radioimmunoassays. The mean (+/- standard deviation) standardized serum IGF-I (0.20 +/- 1.16 score) level was normal, while the mean IGF-II (1.16 +/- 0.11 score) level was significantly elevated. Serum IGFBP-1 and IGFBP-2 levels were not altered, whereas the IGFBP-3 (1.34 +/- 0.15 score) level was significantly increased. The serum IGFBP-4 level was slightly elevated (by 11%), the IGFBP-6 level was markedly (2.3-fold) elevated, while the IGFBP-5 level was comparable to that of the control. The respective age-adjusted cortical thickness at both the proximal (r = 0.407, P < 0.005) and distal (r = 0.383, P < 0.01) forearm was positively correlated with the standardized serum IGF-I level. In conclusion, the serum IGF/IGFBP system in pediatric renal transplant recipients is characterized by an increase in the levels of the inhibitory IGFBPs, IGFBP-3, -4 and -6, resulting in a functional IGF deficiency. The positive correlation of IGF-I with cortical thickness underlines the importance of this hormonal system in the modeling of bone, particularly periosteal growth.
Collapse
|
33
|
Abstract
Cancellous bone decreases and bone marrow fat content increases with age. Osteoblasts and adipocytes are derived from a common precursor, and growth hormone (GH), a key hormone in integration of energy metabolism, regulates the differentiation and function of both cell lineages. Since an age-related decline in GH is associated with bone loss, we investigated the relationship between GH and bone marrow adiposity in hypophysectomized (HYPOX) rats and in mice with defects in GH signaling. HYPOX dramatically reduced body weight gain, bone growth and mineralizing perimeter, serum insulin-like growth factor 1 (IGF-1) levels, and mRNA levels for IGF-1 in liver and bone. Despite reduced body mass and adipocyte precursor pool size, HYPOX resulted in a dramatic increase in bone lipid levels, as reflected by increased bone marrow adiposity and bone triglyceride and cholesterol content. GH replacement normalized bone marrow adiposity and precursor pool size, as well as mineralizing perimeter in HYPOX rats. In contrast, 17beta -estradiol, IGF-1, thyroxine, and cortisone were ineffective. Parathyroid hormone (PTH) reversed the inhibitory effects of HYPOX on mineralizing perimeter but had no effect on adiposity. Finally, bone marrow adiposity was increased in mice deficient in GH and IGF-1 but not in mice deficient in serum IGF-1. Taken together, our findings indicate that the reciprocal changes in bone and fat mass in GH signaling-deficient rodents are not directly coupled with one another. Rather, GH enhances adipocyte as well as osteoblast precursor pool size. However, GH increases osteoblast differentiation while suppressing bone marrow lipid accumulation.
Collapse
|
34
|
Turner RT, Rosen CJ, Iwaniec UT. Effects of alcohol on skeletal response to growth hormone in hypophysectomized rats. Bone 2010; 46:806-12. [PMID: 19879987 PMCID: PMC3522444 DOI: 10.1016/j.bone.2009.10.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Revised: 10/20/2009] [Accepted: 10/26/2009] [Indexed: 10/20/2022]
Abstract
Chronic alcohol abuse is an established risk factor for osteoporosis. However, the precise mechanisms for the bone loss are largely unknown. Alcohol decreases skeletal expression of insulin-like growth factor-I (IGF-I), an important growth hormone (GH)-regulated skeletal growth factor. Therefore, we investigated the effects of alcohol on the skeletal response to GH in male Sprague-Dawley rats made GH-deficient by hypophysectomy (HYPOX). Four groups of sexually mature (3-month-old) rats were studied: pituitary-intact (control), HYPOX, HYPOX + GH, and HYPOX + alcohol + GH. All animals were transferred to a liquid diet 6 days following surgery. The alcohol-fed group was adapted to a graded increase in alcohol beginning 11 days following surgery. GH or vehicle was administered during the final 8 days of study and all animals were sacrificed 25 days following surgery. HYPOX resulted in cessation of body weight gain and tibial growth. Compared to controls, longitudinal bone growth and cancellous bone formation were lower following HYPOX. The latter was associated with lower mineralizing perimeter/bone perimeter. Bone marrow adiposity was higher following HYPOX. Compared to HYPOX, GH treatment increased body weight gain and bone formation rate, and decreased bone marrow adiposity. In contrast to the effects of GH treatment without alcohol, bone marrow adiposity did not differ between HYPOX and alcohol-fed GH-treated HYPOX rats. Alcohol did not alter GH-induced weight gain or increases in serum IGF-I levels, but significantly impaired the effects of GH on tibial growth and cancellous bone formation. We conclude that the detrimental skeletal effects of alcohol abuse observed in this experiment are mediated, at least in part, by skeletal resistance to GH.
Collapse
Affiliation(s)
- Russell T. Turner
- Department of Nutrition and Exercise Sciences, Oregon State University, Corvallis, OR
| | - Clifford J Rosen
- Maine Center for Osteoporosis Research and Education, St Joseph Hospital, Bangor, Maine
- The Jackson Laboratory, Bar Harbor, Maine
| | - Urszula T. Iwaniec
- Department of Nutrition and Exercise Sciences, Oregon State University, Corvallis, OR
- Corresponding author: Urszula T. Iwaniec, Ph.D., Department of Nutrition and Exercise Sciences, 108 Milam Hall, Oregon State University, Corvallis, OR 97331, Tel: 541-737-9925, Fax: 541-737-6914,
| |
Collapse
|
35
|
Cannata D, Vijayakumar A, Fierz Y, LeRoith D. The GH/IGF-1 axis in growth and development: new insights derived from animal models. Adv Pediatr 2010; 57:331-51. [PMID: 21056746 DOI: 10.1016/j.yapd.2010.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dara Cannata
- Division of Endocrinology, Diabetes and Bone Diseases, The Samuel Bronfman Department of Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, Atran 4th Floor-36, PO Box 1055, New York, NY 10029-6574, USA
| | | | | | | |
Collapse
|
36
|
Serum IGF-1 determines skeletal strength by regulating subperiosteal expansion and trait interactions. J Bone Miner Res 2009; 24:1481-92. [PMID: 19257833 PMCID: PMC2718800 DOI: 10.1359/jbmr.090226] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Strong correlations between serum IGF-1 levels and fracture risk indicate that IGF-1 plays a critical role in regulating bone strength. However, the mechanism by which serum IGF-1 regulates bone structure and fracture resistance remains obscure and cannot be determined using conventional approaches. Previous analysis of adult liver-specific IGF-1-deficient (LID) mice, which exhibit 75% reductions in serum IGF-1 levels, showed reductions in periosteal circumference, femoral cross-sectional area, cortical thickness, and total volumetric BMD. Understanding the developmental sequences and the resultant anatomical changes that led to this adult phenotype is the key for understanding the complex relationship between serum IGF-1 levels and fracture risk. Here, we identified a unique developmental pattern of morphological and compositional traits that contribute to bone strength. We show that reduced bone strength associated with low levels of IGF-1 in serum (LID mice) result in impaired subperiosteal expansion combined with impaired endosteal apposition and lack of compensatory changes in mineralization throughout growth and aging. We show that serum IGF-1 affects cellular activity differently depending on the cortical surface. Last, we show that chronic reductions in serum IGF-1 indirectly affect bone strength through its effect on the marrow myeloid progenitor cell population. We conclude that serum IGF-1 not only regulates bone size, shape, and composition during ontogeny, but it plays a more fundamental role-that of regulating an individual's ability to adapt its bone structure to mechanical loads during growth and development.
Collapse
|
37
|
Ruiz C, Abril N, Tarín JJ, García-Pérez MA, Cano A. The new frontier of bone formation: a breakthrough in postmenopausal osteoporosis? Climacteric 2009; 12:286-300. [PMID: 19415543 DOI: 10.1080/13697130902736939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Osteoporosis is a chronic disease that accelerates after menopause in many women. Most of the pharmacologic attempts to control the disease, such as hormone therapy, have emphasized the constraint of bone resorption. Since recent years have witnessed important advances in the field of bone formation, this review aims to update the present knowledge on the mechanisms affecting osteoblastogenesis and on the therapeutic results achieved by recently approved drugs. METHOD We sought peer-reviewed, full-length basic and clinical articles published between 1995 and May 2008 using a PubMed search strategy, with the terms osteoporosis and osteoblast, osteoporosis and strontium ranelate, and osteoporosis and parathyroid hormone (PTH). This search was further supplemented by a hand-search of reference lists of selected review papers. After crossing-cleaning the reference lists, some 800 articles were selected. Articles on regulators of osteoblast differentiation and function, together with well-designed clinical studies, were surveyed. RESULTS A complex network of systemic and local factors regulates osteoblastogenesis. Advances in fracture protection have been published in clinical studies with PTH. Some investigators claim an anabolic effect for strontium ranelate, which also confers protection against fracture. CONCLUSION The control of bone formation offers new clinical potential. Stimulation of bone formation by PTH has translated into fracture protection. The action of strontium ranelate has been claimed to be mediated by some level of bone formation, but this hypothesis still needs clarification.
Collapse
Affiliation(s)
- C Ruiz
- Department of Obstetrics and Gynecology, Hospital Clínico Universitario, Valencia, Spain
| | | | | | | | | |
Collapse
|
38
|
Yao W, Zhong J, Yu J, Warner T, Bozic T, Ye P, D’Ercole AJ, Hock JM, Lee WH. IGF-I improved bone mineral density and body composition of weaver mutant mice. Growth Horm IGF Res 2008; 18:517-525. [PMID: 18550407 PMCID: PMC2633297 DOI: 10.1016/j.ghir.2008.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 04/01/2008] [Accepted: 04/25/2008] [Indexed: 11/16/2022]
Abstract
Our recent report on a parallel decrease in the body weights and serum IGF-I levels of weaver mice suggests that IGF-I's endocrine function may be impaired in neurodegenerative diseases. To further understand the overall effects of IGF-I deficiency on the postnatal growth, we measured bone mineral density (BMD), bone mineral content (BMC), lean body mass (LBM) and fat mass in male and female weaver mice and wild-type littermates on D21 (prepuberty), D45 (puberty), and D60 (postpuberty) using dual-energy X-ray absorptiometry (DEXA). In both male and female weaver mice, we found that the levels of circulating IGF-I paralleled those of BMD, BMC, and LBM, but not the fat mass. Male weaver mice have normal fat mass at all three ages studied, whereas female weaver mice showed a trend to increase their fat mass as they mature. To determine whether circulating IGF-I is a determinant of body composition, we crossbred IGF-I transgenic mice with homozygous weaver mice, which resulted in a significant increase in circulating IGF-I levels in both male and female weaver mice and normalization of their BMD, BMC and body weights. In summary, our results demonstrated that normal circulating IGF-I levels are important in maintaining BMD, BMC, and body composition in neurodegenerative diseases, such as hereditary cerebellar ataxia.
Collapse
Affiliation(s)
- Weiguo Yao
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Jin Zhong
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Jun Yu
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Therry Warner
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Tomica Bozic
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Pediatrics, Clinical Hospital, 88000 Mostar, Bosnia and Herzegovina
| | - Ping Ye
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7039
| | - A. Joseph D’Ercole
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7039
| | - Janet. M. Hock
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Wei-Hua Lee
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
39
|
Govoni KE, Wergedal JE, Chadwick RB, Srivastava AK, Mohan S. Prepubertal OVX increases IGF-I expression and bone accretion in C57BL/6J mice. Am J Physiol Endocrinol Metab 2008; 295:E1172-80. [PMID: 18812464 PMCID: PMC2584807 DOI: 10.1152/ajpendo.90507.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is generally well accepted that the pubertal surge in estrogen is responsible for the rapid bone accretion that occurs during puberty and that this effect is mediated by an estrogen-induced increase in growth hormone (GH)/insulin-like growth factor (IGF) action. To test the cause and effect relationship between estrogen and GH/IGF, we evaluated the consequence of ovariectomy (OVX) in prepubertal mice (C57BL/6J mice at 3 wk of age) on skeletal changes and the GH/IGF axis during puberty. Contrary to our expectations, OVX increased body weight (12-18%), bone mineral content (11%), bone length (4%), bone size (3%), and serum, liver, and bone IGF-I (30-50%) and decreased total body fat (18%) at 3 wk postsurgery. To determine whether estrogen is the key ovarian factor responsible for these changes, we performed a second experiment in which OVX mice were treated with placebo or estrogen implants. In addition to observing similar results compared with our first experiment, estrogen treatment partially rescued the increased body weight and bone size and completely rescued body fat and IGF-I levels. The increased bone accretion in OVX mice was due to increased bone formation rate (as determined by bone histomorphometry) and increased serum procollagen peptide. In conclusion, contrary to the known estrogen effect as an initiator of GH/IGF surge and thereby pubertal growth spurt, our findings demonstrate that loss of estrogen and/or other hormones during the prepubertal growth period effect leads to an increase in IGF-I production and bone accretion in mice.
Collapse
Affiliation(s)
- Kristen E Govoni
- Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, California 92357, USA
| | | | | | | | | |
Collapse
|
40
|
Blair HC, Zaidi M, Huang CLH, Sun L. The developmental basis of skeletal cell differentiation and the molecular basis of major skeletal defects. Biol Rev Camb Philos Soc 2008; 83:401-15. [PMID: 18710437 DOI: 10.1111/j.1469-185x.2008.00048.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vertebrate skeletal differentiation retains elements from simpler phyla, and reflects the differentiation of supporting tissues programmed by primary embryonic development. This developmental scheme is driven by homeotic genes expressed in sequence, with subdivision of skeletal primordia driven by a combination of seven transmembrane-pass receptors responding to Wnt-family signals, and by bone morphogenetic family signals that define borders of individual bones. In sea-dwelling vertebrates, an essentially complete form of the skeleton adapted by the land-living vertebrates develops in cartilage, based on type II collagen and hydrophilic proteoglycans. In bony fishes, this skeleton is mineralized to form a solid bony skeleton. In the land-living vertebrates, most of the skeleton is replaced by an advanced vascular mineralized skeleton based on type I collagen, which reduces skeletal mass while facilitating use of skeletal mineral for metabolic homeostasis. Regulation of the mammalian skeleton, in this context, reflects practical adaptations to the needs for life on land that are related to ancestral developmental signals. This regulation includes central nervous system regulation that integrates bone turnover with overall metabolism. Recent work on skeletal development, in addition, demonstrates molecular mechanisms that cause developmental bone diseases.
Collapse
Affiliation(s)
- Harry C Blair
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | | | |
Collapse
|
41
|
Abstract
INTRODUCTION The metalloproteinase, pregnancy-associated plasma protein-A (PAPP-A) functions to enhance local insulin-like growth factor (IGF)-I bioavailability through cleavage of inhibitory IGF binding proteins. Because IGF-I is an important regulator of skeletal growth and remodeling and PAPP-A is highly expressed by osteoblastic cells, we hypothesized that, in the absence of PAPP-A, bone physiology would be compromised because of a blunting of local IGF-I action even in the presence of normal circulating IGF-I levels. MATERIALS AND METHODS pQCT, muCT, histomorphometry, and mechanical strength testing were performed on bones from PAPP-A knockout (KO) mice and wildtype (WT) littermates at 2-12 mo of age. IGF-I levels and bone formation and resorption markers were determined in sera from these animals. RESULTS Volumetric BMD in PAPP-A KO mice measured by pQCT at the femoral midshaft, which is primarily cortical bone, was 10% less than WT at 2 mo. This difference was maintained at 4, 6, and 12 mo. Cortical thickness at this site was similarly decreased. On the other hand, trabecular bone at the distal femur (pQCT) and in the tibia (muCT) showed age-progressive decreases in bone volume fraction in PAPP-A KO compared with WT mice. Tibial muCT indicated a 46% relative decrease in trabecular bone volume/total volume (BV/TV) and a 28% relative decrease in trabecular thickness in PAPP-A KO compared with WT mice at 6 mo. These trabecular deficiencies in PAPP-A KO mice corresponded to a weakening of the bone. Serum markers and bone histomorphometry indicated that the primary impact of PAPP-A is on skeletal remodeling resulting in a state of low-turnover osteopenia in adult PAPP-A KO mice. Circulating IGF-I levels were not altered in PAPP-A KO mice. CONCLUSIONS PAPP-A is a bone growth regulatory factor in vivo and, in its absence, mice show skeletal insufficiency in mass, density, architecture, and strength. The data suggest a primary role for PAPP-A in modulating local IGF bioavailability for trabecular bone remodeling.
Collapse
|
42
|
DeMambro VE, Clemmons DR, Horton LG, Bouxsein ML, Wood TL, Beamer WG, Canalis E, Rosen CJ. Gender-specific changes in bone turnover and skeletal architecture in igfbp-2-null mice. Endocrinology 2008; 149:2051-61. [PMID: 18276763 PMCID: PMC2329262 DOI: 10.1210/en.2007-1068] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
IGF-binding protein-2 (IGFBP-2) is a 36-kDa protein that binds to the IGFs with high affinity. To determine its role in bone turnover, we compared Igfbp2(-/-) mice with Igfbp2(+/+) colony controls. Igfbp2(-/-) males had shorter femurs and were heavier than controls but were not insulin resistant. Serum IGF-I levels in Igfbp2(-/-) mice were 10% higher than Igfbp2(+/+) controls at 8 wk of age; in males, this was accompanied by a 3-fold increase in hepatic Igfbp3 and Igfbp5 mRNA transcripts compared with Igfbp2(+/+) controls. The skeletal phenotype of the Igfbp2(-/-) mice was gender and compartment specific; Igfbp2(-/-) females had increased cortical thickness with a greater periosteal circumference compared with controls, whereas male Igfbp2(-/-) males had reduced cortical bone area and a 20% reduction in the trabecular bone volume fraction due to thinner trabeculae than Igfbp2(+/+) controls. Serum osteocalcin levels were reduced by nearly 40% in Igfbp2(-/-) males, and in vitro, both CFU-ALP(+) preosteoblasts, and tartrate-resistant acid phosphatase-positive osteoclasts were significantly less abundant than in Igfbp2(+/+) male mice. Histomorphometry confirmed fewer osteoblasts and osteoclasts per bone perimeter and reduced bone formation in the Igfbp2(-/-) males. Lysates from both osteoblasts and osteoclasts in the Igfbp2(-/-) males had phosphatase and tensin homolog (PTEN) levels that were significantly higher than Igfbp2(+/+) controls and were suppressed by addition of exogenous IGFBP-2. In summary, there are gender- and compartment-specific changes in Igfbp2(-/-) mice. IGFBP-2 may regulate bone turnover in both an IGF-I-dependent and -independent manner.
Collapse
Affiliation(s)
- V E DeMambro
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Mohan S, Baylink DJ, Srivastava AK. A chemical mutagenesis screen to identify modifier genes that interact with growth hormone and TGF-beta signaling pathways. Bone 2008; 42:388-95. [PMID: 18063435 DOI: 10.1016/j.bone.2007.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 10/01/2007] [Accepted: 10/12/2007] [Indexed: 11/23/2022]
Abstract
We describe a phenotype-driven mutagenesis screen in which mice carrying a targeted mutation are bred with ENU-treated males in order to provide a sensitized system for detecting dominant modifier mutations. The presence of initial mutation renders the screening system more responsive to subtle changes in modifier genes that would not be penetrant in an otherwise wild type background. We utilized two mutant mouse models: 1) mice carrying a mutation in growth hormone releasing hormone receptor (Ghrhr) (denoted 'lit' allele, Ghrhr(lit)), which results in GH deficiency; and 2) mice lacking Smad2 gene, a signal transducer for TGF-beta, an important bone growth factor. The Smad2(-/-) mice are lethal and Ghrhr(lit/lit) mice are dwarf, but both Smad2(+/-) and Ghrhr(lit/)(+) mice exhibit normal growth. We injected 6-7 weeks old C57BL/6J male mice with ENU (100 mg/kg dose) and bred them with Ghrhr(lit/)(+) and Smad2(+/-) mice. The F1 mice with Ghrhr(lit/)(+) or Smad2(+/-) genotype were screened for growth and skeletal phenotypes. An outlier was identified as >3 SD units different from wild type control (n=20-30). We screened about 100 F1 mice with Ghrhr(lit/)(+) and Smad2(+/-) genotypes and identified nine outliers. A backcross established heritability of three mutant lines in multiple generations. Among the phenotypic deviants, we have identified a mutant mouse with 30-40% reduced bone size. The magnitude of the bone size phenotype was amplified by the presence of one copy of the disrupted Ghrhr gene as determined by the 2-way ANOVA (p<0.02 for interaction). Thus, a new mouse model has been established to identify a gene that interacts with GH signaling to regulate bone size. In addition, the sensitized screen also demonstrated higher recovery of skeletal phenotypes as compared to that obtained in the classical ENU screen in wild type mice. The discovery of mutants in a selected pathway will provide a valuable tool to not only to discover novel genes involved in a particular process but will also prove useful for the elucidation of the biology of that process.
Collapse
Affiliation(s)
- Subburaman Mohan
- Musculoskeletal Disease Center, Loma Linda VA Health Care Systems, Loma Linda, CA 92357, USA
| | | | | |
Collapse
|
44
|
Govoni KE, Wergedal JE, Florin L, Angel P, Baylink DJ, Mohan S. Conditional deletion of insulin-like growth factor-I in collagen type 1alpha2-expressing cells results in postnatal lethality and a dramatic reduction in bone accretion. Endocrinology 2007; 148:5706-15. [PMID: 17717052 PMCID: PMC2916650 DOI: 10.1210/en.2007-0608] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IGF-I acts through endocrine and local, autocrine/paracrine routes. Disruption of both endocrine and local IGF-I action leads to neonatal lethality and impaired growth in various tissues including bone; however, the severity of growth and skeletal phenotype caused by disruption of endocrine IGF-I action is far less than with total IGF-I disruption. Based on these data and the fact that bone cells express IGF-I in high abundance, we and others predicted that locally produced IGF-I is also critical in regulating growth and bone accretion. To determine the role of local IGF-I, type 1alpha2 collagen-Cre mice were crossed with IGF-I loxP mice to generate Cre+ (conditional mutant) and Cre- (control) loxP homozygous mice. Surprisingly, approximately 40-50% of the conditional mutants died at birth, which is similar to total IGF-I disruption, but not observed in mice lacking circulating IGF-I. Expression of IGF-I in bone and muscle but not liver and brain was significantly decreased in the conditional mutant. Accordingly, circulating levels of serum IGF-I were also not affected. Disruption of local IGF-I dramatically reduced body weight 28-37%, femur areal bone mineral density 10-25%, and femur bone size 18-24% in growing mice. In addition, mineralization was reduced as early as during embryonic development. Consistently, histomorphometric analysis determined impaired osteoblast function as demonstrated by reduced mineral apposition rate (14-30%) and bone formation rate (35-57%). In conclusion, both local and endocrine IGF-I actions are involved in regulating growth of various tissues including bone, but they act via different mechanisms.
Collapse
Affiliation(s)
- Kristen E Govoni
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, 11201 Benton Street, Loma Linda, CA 92357, USA
| | | | | | | | | | | |
Collapse
|
45
|
Ali O, Shim M, Fowler E, Cohen P, Oppenheim W. Spinal bone mineral density, IGF-1 and IGFBP-3 in children with cerebral palsy. HORMONE RESEARCH 2007; 68:316-20. [PMID: 17912004 DOI: 10.1159/000109088] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Accepted: 03/10/2007] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Childhood cerebral palsy (CP) is associated with osteopenia and the GH-IGF axis plays an important role in bone metabolism. We studied the relationship between spinal bone mineral density (BMD) and serum IGF-1 and IGFBP-3 in children with CP. METHODS Cross-sectional study of 30 children (9 F and 21 M, ages 4.5-15) with CP. Subjects underwent dual-energy x-ray absorptiometry scans (spinal BMD), blood tests (IGF-1, IGFBP-3, Ca, P, PTH, vitamin D, osteocalcin) and urine tests (N-telopeptide). RESULTS Spinal BMD was decreased in children with CP (average Z-score -2.14 +/- 1.08) compared to age- and gender-matched norms. IGF-1 and IGFBP-3 were also decreased compared to age-matched norms (average IGF-1 Z-score -0.74 +/- 1.2, average IGFBP-3 Z-score -0.68 +/- 1.2). All other blood and urine tests, including measures of calcium and vitamin D status, were normal. In 25 CP children with osteopenia (Z-score >-1), there was a trend towards correlation between spinal BMD Z-score and serum IGF-1 SDS score (r = 0.328, p = 0.09). IGFBP-3 Z-scores were available in 24 of these patients and had a statistically significant correlation with spinal BMD Z-score (r = 0.386, p = 0.05). CONCLUSION Osteopenia is common in children withCP and may be associated with lower IGF-1 and IGFBP-3 levels.
Collapse
Affiliation(s)
- Omar Ali
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | | | |
Collapse
|
46
|
Abstract
The use of genetically manipulated mouse models, gene and protein discovery and the cataloguing of genetic mutations have each allowed us to obtain new insights into skeletal morphogenesis and remodeling. These techniques have made it possible to identify molecules that are obligatory for specific cellular functions, and to exploit these molecules for therapeutic purposes. New insights into the pathophysiology of diseases have also enabled us to understand molecular defects in a way that was not possible a decade ago. This review summarizes our current understanding of the carefully orchestrated cross-talk between cells of the bone marrow and between bone cells and the brain through which bone is constantly remodeled during adult life. It also highlights molecular aberrations that cause bone cells to become dysfunctional, as well as therapeutic options and opportunities to counteract skeletal loss.
Collapse
Affiliation(s)
- Mone Zaidi
- The Mount Sinai Bone Program, Department of Medicine, Box 1055, Mount Sinai School of Medicine, New York, New York 10029, USA.
| |
Collapse
|
47
|
Govoni KE, Lee SK, Chung YS, Behringer RR, Wergedal JE, Baylink DJ, Mohan S. Disruption of insulin-like growth factor-I expression in type IIalphaI collagen-expressing cells reduces bone length and width in mice. Physiol Genomics 2007; 30:354-62. [PMID: 17519362 PMCID: PMC2925693 DOI: 10.1152/physiolgenomics.00022.2007] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
It is well established that insulin-like growth factor (IGF)-I is critical for the regulation of peak bone mineral density (BMD) and bone width. However, the role of systemic vs. local IGF-I is not well understood. To determine the role local IGF-I plays in regulating BMD and bone width, we crossed IGF-I flox/flox mice with procollagen, typeIIalphaI-Cre mice to generate conditional mutants in which chondrocyte-derived IGF-I was disrupted. Bone parameters were measured by dual X-ray absorptiometry at 2, 4, 8, and 12 wk of age and peripheral quantitative computed tomography at 12 wk of age. Body length, areal BMD, and bone mineral content (BMC) were reduced (P < 0.05) between 4 and 12 wk in the conditional mutant mice. Bone width was reduced 7% in the vertebrae and femur (P < 0.05) of conditional mutant mice at 12 wk. Gains in body length and total body BMC and BMD were reduced by 27, 22, and 18%, respectively (P < 0.05) in conditional mutant mice between 2 and 4 wk of age. Expression of parathyroid hormone related protein, parathyroid hormone receptor, distal-less homeobox (Dlx)-5, SRY-box containing gene-9, and IGF binding protein (IGFBP)-5 were reduced 27, 36, 45, 33, and 45%, respectively, in the conditional mutant cartilage (P < 0.05); however, no changes in Indian hedgehog, Dlx-3, growth hormone receptor, IGF-I receptor, and IGFBP-3 expression were observed (P > or = 0.20). In conclusion, IGF-I from cells expressing procollagen type IIalphaI regulates bone accretion that occurs during postnatal growth period.
Collapse
Affiliation(s)
- Kristen E Govoni
- Jerry L. Pettis Veterans Affairs Medical Center and Loma Linda University, Loma Linda, California 92357, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Jiang J, Lichtler AC, Gronowicz GA, Adams DJ, Clark SH, Rosen CJ, Kream BE. Transgenic mice with osteoblast-targeted insulin-like growth factor-I show increased bone remodeling. Bone 2006; 39:494-504. [PMID: 16644298 DOI: 10.1016/j.bone.2006.02.068] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 02/09/2006] [Accepted: 02/22/2006] [Indexed: 11/17/2022]
Abstract
To determine the effects of locally-expressed insulin-like growth factor (IGF-I) on bone remodeling, a transgene was produced in which murine IGF-I cDNA was cloned downstream of a gene fragment comprising 3.6 kb of 5' upstream regulatory sequence and most of the first intron of the rat Col1a1 gene. The construct was expressed at the mRNA and protein level in transfected osteoblasts. Five lines of transgenic mice were generated by embryo microinjection. Transgene mRNA levels were highest in calvaria, long bone and tendon, and lower in skin. Serum IGF-I and body weight were increased in males and females only in the highest expressing line. Histomorphometry showed that transgenic calvaria were wider and had greater marrow area and bone area. Transgenic calvaria had increased osteoclast number per bone surface. Percent collagen synthesis and cell replication were increased in transgenic calvaria. Femur length, cortical width and cross-sectional area were increased in transgenic femurs of the highest expressing line, while femoral trabecular bone volume was little affected. Thus, broad overexpression of IGF-I in cells of the osteoblast lineage increased indices of bone formation and resorption.
Collapse
Affiliation(s)
- Jin Jiang
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Davey RA, MacLean HE. Current and future approaches using genetically modified mice in endocrine research. Am J Physiol Endocrinol Metab 2006; 291:E429-38. [PMID: 16684850 DOI: 10.1152/ajpendo.00124.2006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genetically modified mouse models have been used widely to advance our knowledge in the field of endocrinology and metabolism. A number of different approaches to generate genetically modified mice are now available, which provide the power to analyze the role of individual proteins in vivo. However, there are a number of points to be considered in the use and interpretation of these models. This review discusses the advantages and disadvantages involved in the generation and use of different genetically modified mouse models in endocrine research, including conventional techniques (e.g., overexpression, knockout, and knock-in models), tissue- and/or time-specific deletion of target genes [e.g., Cre-loxP and short interfering (si)RNA transgenic approaches], and gene-trap approaches to undertake functional genomics. This review also highlights the many factors that should be considered when assessing the phenotype of these mouse models, many of which are relevant to all murine physiological studies. These approaches are a powerful means by which to dissect the function of genes and are revolutionizing our understanding of endocrine physiology and metabolism.
Collapse
Affiliation(s)
- Rachel A Davey
- Dept. of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia
| | | |
Collapse
|
50
|
He J, Rosen CJ, Adams DJ, Kream BE. Postnatal growth and bone mass in mice with IGF-I haploinsufficiency. Bone 2006; 38:826-35. [PMID: 16427371 DOI: 10.1016/j.bone.2005.11.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 10/25/2005] [Accepted: 11/17/2005] [Indexed: 11/23/2022]
Abstract
We examined the influence of IGF-I haploinsufficiency on growth, bone mass and osteoblast differentiation in Igf1 heterozygous knockout (HET) mice. Cohorts of male and female wild type (WT) and HET mice in the outbred CD-1 background were analyzed at 1, 2, 4, 8, 12, 15 and 18 months of age for body weight, serum IGF-I and bone morphometry. Compared to WT mice, HET mice had 20-30% lower serum IGF-I levels in both genders and in all age groups. Female HET mice showed significant reductions in body weight (10-20%), femur length (4-6%) and femoral bone mineral density (BMD) (7-12%) before 15 months of age. Male HET mice showed significant differences in all parameters at 2 months and thereafter. At 8 and 12 months, WT mice also showed a significant gender effect: despite their lower body weight, female mice had higher femoral BMD and femur length compared to males. Microcomputed tomography showed a significant reduction in cortical bone area (7-20%) and periosteal circumference (5-13%) with no consistent pattern of change in trabecular bone measurements in 2- and 8-month old HET mice in both genders. HET primary osteoblast cultures showed a 40% reduction in IGF-I protein expression and a 50% decrease in IGF-I mRNA expression. Cell growth and proliferation were decreased in HET cultures. Thus, IGF-I haploinsufficiency in outbred male and female mice resulted in reduced body weight, femur length and areal BMD at most ages. Serum IGF-I levels showed a high level of positive correlation with body weight and skeletal morphometry. These studies show that IGF-I is a determinant of bone size and mass in postnatal life. We speculate that impaired osteoblast proliferation may contribute to the skeletal phenotype of mice with IGF-I haploinsufficiency.
Collapse
Affiliation(s)
- Jianing He
- Department of Medicine, The University of Connecticut Health Center, Farmington, 06030-1850, USA
| | | | | | | |
Collapse
|