1
|
Purinoceptor: a novel target for hypertension. Purinergic Signal 2023; 19:185-197. [PMID: 35181831 PMCID: PMC9984596 DOI: 10.1007/s11302-022-09852-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/08/2022] [Indexed: 12/11/2022] Open
Abstract
Hypertension is the leading cause of morbidity and mortality globally among all cardiovascular diseases. Purinergic signalling plays a crucial role in hypertension through the sympathetic nerve system, neurons in the brain stem, carotid body, endothelium, immune system, renin-angiotensin system, sodium excretion, epithelial sodium channel activity (ENaC), and renal autoregulation. Under hypertension, adenosine triphosphate (ATP) is released as a cotransmitter from the sympathetic nerve. It mediates vascular tone mainly through P2X1R activation on smooth muscle cells and activation of P2X4R and P2YR on endothelial cells and also via interaction with other purinoceptors, showing dual effects. P2Y1R is linked to neurogenic hypertension. P2X7R and P2Y11R are potential targets for immune-related hypertension. P2X3R located on the carotid body is the most promising novel therapeutic target for hypertension. A1R, A2AR, A2BR, and P2X7R are all related to renal autoregulation, which contribute to both renal damage and hypertension. The main focus is on the evidence addressing the involvement of purinoceptors in hypertension and therapeutic interventions.
Collapse
|
2
|
Unwin RJ. Purinergic signalling in the kidney - A beginning with Geoffrey Burnstock. Auton Neurosci 2021; 234:102833. [PMID: 34118763 DOI: 10.1016/j.autneu.2021.102833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 11/24/2022]
Abstract
This not an original publication or a current and up-to-date review of purinergic signalling and kidney function, but rather a tribute to Professor Geoffrey Burnstock, written as a short and personal memoir of our early collaborative work together on this topic: our beginnings and the subsequent journey we took with our many valued collaborators along the way.
Collapse
Affiliation(s)
- Robert J Unwin
- Department of Renal Medicine, University College London, UK.
| |
Collapse
|
3
|
Praetorius H. The bacteria and the host: a story of purinergic signaling in urinary tract infections. Am J Physiol Cell Physiol 2021; 321:C134-C146. [PMID: 33979212 DOI: 10.1152/ajpcell.00054.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The local environment forces a selection of bacteria that might invade the urinary tract, allowing only the most virulent to access the kidney. Quite similar to the diet in setting the stage for the gut microbiome, renal function determines the conditions for bacteria-host interaction in the urinary tract. In the kidney, the term local environment or microenvironment is completely justified because the environment literally changes within a few micrometers. The precise composition of the urine is a function of the epithelium lining the microdomain, and the microenvironment in the kidney shows more variation in the content of nutrients, ion composition, osmolality, and pH than any other site of bacteria-host interaction. This review will cover some of the aspects of bacterial-host interaction in this unique setting and how uropathogenic bacteria can alter the condition for bacteria-host interaction. There will be a particular focus on the recent findings regarding how bacteria specifically trigger host paracrine signaling, via release of extracellular ATP and activation of P2 purinergic receptors. These finding will be discussed from the perspective of severe urinary tract infections, including pyelonephritis and urosepsis.
Collapse
|
4
|
Resolving the Ionotropic P2X4 Receptor Mystery Points Towards a New Therapeutic Target for Cardiovascular Diseases. Int J Mol Sci 2020; 21:ijms21145005. [PMID: 32679900 PMCID: PMC7404342 DOI: 10.3390/ijms21145005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
Adenosine triphosphate (ATP) is a primordial versatile autacoid that changes its role from an intracellular energy saver to a signaling molecule once released to the extracellular milieu. Extracellular ATP and its adenosine metabolite are the main activators of the P2 and P1 purinoceptor families, respectively. Mounting evidence suggests that the ionotropic P2X4 receptor (P2X4R) plays pivotal roles in the regulation of the cardiovascular system, yet further therapeutic advances have been hampered by the lack of selective P2X4R agonists. In this review, we provide the state of the art of the P2X4R activity in the cardiovascular system. We also discuss the role of P2X4R activation in kidney and lungs vis a vis their interplay to control cardiovascular functions and dysfunctions, including putative adverse effects emerging from P2X4R activation. Gathering this information may prompt further development of selective P2X4R agonists and its translation to the clinical practice.
Collapse
|
5
|
Leipziger J, Praetorius H. Renal Autocrine and Paracrine Signaling: A Story of Self-protection. Physiol Rev 2020; 100:1229-1289. [PMID: 31999508 DOI: 10.1152/physrev.00014.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Autocrine and paracrine signaling in the kidney adds an extra level of diversity and complexity to renal physiology. The extensive scientific production on the topic precludes easy understanding of the fundamental purpose of the vast number of molecules and systems that influence the renal function. This systematic review provides the broader pen strokes for a collected image of renal paracrine signaling. First, we recapitulate the essence of each paracrine system one by one. Thereafter the single components are merged into an overarching physiological concept. The presented survey shows that despite the diversity in the web of paracrine factors, the collected effect on renal function may not be complicated after all. In essence, paracrine activation provides an intelligent system that perceives minor perturbations and reacts with a coordinated and integrated tissue response that relieves the work load from the renal epithelia and favors diuresis and natriuresis. We suggest that the overall function of paracrine signaling is reno-protection and argue that renal paracrine signaling and self-regulation are two sides of the same coin. Thus local paracrine signaling is an intrinsic function of the kidney, and the overall renal effect of changes in blood pressure, volume load, and systemic hormones will always be tinted by its paracrine status.
Collapse
Affiliation(s)
- Jens Leipziger
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; and Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| | - Helle Praetorius
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; and Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Komarynets O, Chassot A, Bernabeu E, Czogalla J, Roth I, Liaudet N, Prodon F, Loffing J, Feraille E. Aldosterone controls primary cilium length and cell size in renal collecting duct principal cells. FASEB J 2019; 34:2625-2640. [PMID: 31908048 DOI: 10.1096/fj.201901947r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/20/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022]
Abstract
Primary cilia are nonmotile sensory organelles found on the surface of almost all kidney tubule epithelial cells. Being exposed to the tubular lumen, primary cilia are thought to be chemo- and mechanosensors of luminal composition and flux, respectively. We hypothesized that, Na+ transport and primary cilia exist in a sensory functional connection in mature renal tubule epithelial cells. Our results demonstrate that primary cilium length is reduced in mineralocorticoid receptor (MR) knockout (KO) mice in a cell autonomous manner along the aldosterone-sensitive distal nephron (ADSN) compared with wild type (as µm ± SEM; 3.1 ± 0.2 vs 4.0 ± 0.1). In mouse cortical collecting duct (mCCD)cl1 cells, which are a model of collecting duct (CD) principal cells, changes in Na+ transport intensity were found to mediate primary cilium length in response to aldosterone (as µm ± SEM: control: 2.7 ± 0.9 vs aldosterone treated: 3.8 ± 0.8). Cilium length was positively correlated with the availability of IFT88, a major intraflagellar anterograde transport complex B component, which is stabilized in response to exposure to aldosterone treatment. This suggests that the abundance of IFT88 is a regulated, rate limiting factor in the elongation of primary cilia. As previously observed in vivo, aldosterone treatment increased cell volume of cultured CD principal cells. Knockdown of IFT88 prevents ciliogenesis and inhibits the adaptive increase in cell size that was observed in response to aldosterone treatment. In conclusion, our results reveal a functional connection between Na+ transport, primary cilia, and cell size, which may play a key role in the morphological and functional adaptation of the CD to sustained changes in active Na+ reabsorption due to variations in aldosterone secretion.
Collapse
Affiliation(s)
- Olga Komarynets
- Department of Cell Physiology and Metabolism, Faculty of Medicine of Geneva, University Medical Center, University of Geneva, Geneva, Switzerland
| | - Alexandra Chassot
- Department of Cell Physiology and Metabolism, Faculty of Medicine of Geneva, University Medical Center, University of Geneva, Geneva, Switzerland
| | - Eva Bernabeu
- Department of Cell Physiology and Metabolism, Faculty of Medicine of Geneva, University Medical Center, University of Geneva, Geneva, Switzerland
| | - Jan Czogalla
- Institute of Anatomy, University of Zürich, Zürich, Switzerland
| | - Isabelle Roth
- Department of Cell Physiology and Metabolism, Faculty of Medicine of Geneva, University Medical Center, University of Geneva, Geneva, Switzerland
| | - Nicolas Liaudet
- Service of Bioimaging, University of Geneva, Geneva, Switzerland
| | - François Prodon
- Service of Bioimaging, University of Geneva, Geneva, Switzerland
| | | | - Eric Feraille
- Department of Cell Physiology and Metabolism, Faculty of Medicine of Geneva, University Medical Center, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Zhang D, Pollock DM. Diurnal Regulation of Renal Electrolyte Excretion: The Role of Paracrine Factors. Annu Rev Physiol 2019; 82:343-363. [PMID: 31635525 DOI: 10.1146/annurev-physiol-021119-034446] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many physiological processes, including most kidney-related functions, follow specific rhythms tied to a 24-h cycle. This is largely because circadian genes operate in virtually every cell type in the body. In addition, many noncanonical genes have intrinsic circadian rhythms, especially within the liver and kidney. This new level of complexity applies to the control of renal electrolyte excretion. Furthermore, there is growing evidence that paracrine and autocrine factors, especially the endothelin system, are regulated by clock genes. We have known for decades that excretion of electrolytes is dependent on time of day, which could play an important role in fluid volume balance and blood pressure control. Here, we review what is known about the interplay between paracrine and circadian control of electrolyte excretion. The hope is that recognition of paracrine and circadian factors can be considered more deeply in the future when integrating with well-established neuroendocrine control of excretion.
Collapse
Affiliation(s)
- Dingguo Zhang
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35233, USA; ,
| | - David M Pollock
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35233, USA; ,
| |
Collapse
|
8
|
Vallon V, Unwin R, Inscho EW, Leipziger J, Kishore BK. Extracellular Nucleotides and P2 Receptors in Renal Function. Physiol Rev 2019; 100:211-269. [PMID: 31437091 DOI: 10.1152/physrev.00038.2018] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The understanding of the nucleotide/P2 receptor system in the regulation of renal hemodynamics and transport function has grown exponentially over the last 20 yr. This review attempts to integrate the available data while also identifying areas of missing information. First, the determinants of nucleotide concentrations in the interstitial and tubular fluids of the kidney are described, including mechanisms of cellular release of nucleotides and their extracellular breakdown. Then the renal cell membrane expression of P2X and P2Y receptors is discussed in the context of their effects on renal vascular and tubular functions. Attention is paid to effects on the cortical vasculature and intraglomerular structures, autoregulation of renal blood flow, tubuloglomerular feedback, and the control of medullary blood flow. The role of the nucleotide/P2 receptor system in the autocrine/paracrine regulation of sodium and fluid transport in the tubular and collecting duct system is outlined together with its role in integrative sodium and fluid homeostasis and blood pressure control. The final section summarizes the rapidly growing evidence indicating a prominent role of the extracellular nucleotide/P2 receptor system in the pathophysiology of the kidney and aims to identify potential therapeutic opportunities, including hypertension, lithium-induced nephropathy, polycystic kidney disease, and kidney inflammation. We are only beginning to unravel the distinct physiological and pathophysiological influences of the extracellular nucleotide/P2 receptor system and the associated therapeutic perspectives.
Collapse
Affiliation(s)
- Volker Vallon
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Robert Unwin
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Edward W Inscho
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Jens Leipziger
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Bellamkonda K Kishore
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| |
Collapse
|
9
|
Zhang Y, Hansson KM, Liu T, Magnell K, Huang Y, Carlson NG, Kishore BK. Genetic deletion of ADP-activated P2Y 12 receptor ameliorates lithium-induced nephrogenic diabetes insipidus in mice. Acta Physiol (Oxf) 2019; 225:e13191. [PMID: 30257062 DOI: 10.1111/apha.13191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 12/31/2022]
Abstract
AIM Therapeutic use of lithium in bipolar disorder is limited by the development of nephrogenic diabetes insipidus (NDI). We reported that pharmacological blockade of P2Y12 receptor (R) with clopidogrel or prasugrel significantly ameliorated lithium-induced NDI in rodents. Using mice genetically lacking P2Y12 -R we evaluated whether the observed amelioration is mediated through P2Y12 -R METHODS: P2ry12-/- mouse line (C57/BL6) was rederived from cryopreserved embryos of the knockout (KO) mice generated by Deltagen Inc. Syngeneic wild type (WT) mice obtained by heterozygous crossing were inbred. Groups of adult WT and KO mice were fed lithium-added (40 mmol LiCl/kg food) or regular diet, and euthanized after 2 or 4 weeks. Twenty-four hour urine samples and terminal blood and kidney samples were analyzed. RESULTS At both time points, lithium-induced polyuria and decrease in aquaporin-2 (AQP2) protein abundance in the kidney medulla were less marked in KO vs WT mice. Immunofluorescence microscopy revealed that lithium-induced alterations in the cellular disposition of AQP2 protein in the medullary collecting ducts of WT mice were blunted in KO mice. Serum lithium, sodium and osmolality were similar in both genotypes after lithium treatment. After 2 weeks, lithium induced marked increases in urinary excretion of Na, K, and arginine vasopressin in WT mice but not in KO mice. CONCLUSION Taken together, our data show that similar to pharmacological blockade, deletion of P2Y12 -R significantly ameliorates lithium-induced NDI, without reducing serum lithium levels. Hence, targeting P2Y12 -R with currently available drugs in the market offers a novel and safer method for treating NDI.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Internal Medicine; University of Utah Health Sciences Center; Salt Lake City Utah
- Nephrology Research, Department of Veterans Affairs Salt; Lake City Health Care System; Salt Lake City Utah
| | - Kenny M. Hansson
- Cardiovascular, Renal and Metabolism Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Gothenburg Sweden
| | - Tao Liu
- Department of Internal Medicine; University of Utah Health Sciences Center; Salt Lake City Utah
- Nephrology Research, Department of Veterans Affairs Salt; Lake City Health Care System; Salt Lake City Utah
| | - Kerstin Magnell
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Gothenburg Sweden
| | - Yufeng Huang
- Department of Internal Medicine; University of Utah Health Sciences Center; Salt Lake City Utah
| | - Noel G. Carlson
- Center on Aging; University of Utah Health Sciences Center; Salt Lake City Utah
- Department of Neurobiology and Anatomy; University of Utah Health Sciences Center; Salt Lake City Utah
- Geriatric Research, Education and Clinical Center, Department of Veterans Affairs Salt; Lake City Health Care System; Salt Lake City Utah
| | - Bellamkonda K. Kishore
- Department of Internal Medicine; University of Utah Health Sciences Center; Salt Lake City Utah
- Nephrology Research, Department of Veterans Affairs Salt; Lake City Health Care System; Salt Lake City Utah
- Center on Aging; University of Utah Health Sciences Center; Salt Lake City Utah
- Department of Nutrition and Integrative Physiology; University of Utah College of Health; Salt Lake City Utah
| |
Collapse
|
10
|
Meleka MM, Edwards AJ, Xia J, Dahlen SA, Mohanty I, Medcalf M, Aggarwal S, Moeller KD, Mortensen OV, Osei-Owusu P. Anti-hypertensive mechanisms of cyclic depsipeptide inhibitor ligands for G q/11 class G proteins. Pharmacol Res 2019; 141:264-275. [PMID: 30634050 DOI: 10.1016/j.phrs.2019.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 01/14/2023]
Abstract
Augmented vasoconstriction is a hallmark of hypertension and is mediated partly by hyper-stimulation of G protein couple receptors (GPCRs) and downstream signaling components. Although GPCR blockade is a key component of current anti-hypertensive strategies, whether hypertension is better managed by directly targeting G proteins has not been thoroughly investigated. Here, we tested whether inhibiting Gq/11 proteins in vivo and ex vivo using natural cyclic depsipeptide, FR900359 (FR) from the ornamental plant, Ardisia crenata, and YM-254890 (YM) from Chromobacterium sp. QS3666, or it's synthetic analog, WU-07047 (WU), was sufficient to reverse hypertension in mice. All three inhibitors blocked G protein-dependent vasoconstriction, but to our surprise YM and WU and not FR inhibited K+-induced Ca2+ transients and vasoconstriction of intact vessels. However, each inhibitor blocked whole-cell L-type Ca2+ channel current in vascular smooth muscle cells. Subcutaneous injection of FR or YM (0.3 mg/kg, s.c.) in normotensive and hypertensive mice elicited bradycardia and marked blood pressure decrease, which was more severe and long lasting after the injection of FR relative to YM (FRt1/2 ≅ 12 h vs. YMt1/2 ≅ 4 h). In deoxycorticosterone acetate (DOCA)-salt hypertension mice, chronic injection of FR (0.3 mg/kg, s.c., daily for seven days) reversed hypertension (vehicle SBP: 149 ± 5 vs. FR SBP: 117 ± 7 mmHg), without any effect on heart rate. Our results together support the hypothesis that increased LTCC and Gq/11 activity is involved in the pathogenesis of hypertension, and that dual targeting of both proteins can reverse hypertension and associated cardiovascular disorders.
Collapse
Affiliation(s)
- Matthew M Meleka
- Departments of Pharmacology & Physiology, United States; Internal Medicine, Drexel University College of Medicine, Philadelphia, PA, 19102, United States
| | | | - Jingsheng Xia
- Departments of Pharmacology & Physiology, United States
| | | | | | - Matthew Medcalf
- Department of Chemistry, Washington University, St. Louis, MO, 63130, United States
| | | | - Kevin D Moeller
- Department of Chemistry, Washington University, St. Louis, MO, 63130, United States
| | | | | |
Collapse
|
11
|
Zhang Y, Riquier-Brison A, Liu T, Huang Y, Carlson NG, Peti-Peterdi J, Kishore BK. Genetic Deletion of P2Y 2 Receptor Offers Long-Term (5 Months) Protection Against Lithium-Induced Polyuria, Natriuresis, Kaliuresis, and Collecting Duct Remodeling and Cell Proliferation. Front Physiol 2018; 9:1765. [PMID: 30618788 PMCID: PMC6304354 DOI: 10.3389/fphys.2018.01765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/22/2018] [Indexed: 11/15/2022] Open
Abstract
Chronic lithium administration for the treatment of bipolar disorder leads to nephrogenic diabetes insipidus (NDI), characterized by polyuria, natriuresis, kaliuresis, and collecting duct remodeling and cell proliferation among other features. Previously, using a 2-week lithium-induced NDI model, we reported that P2Y2 receptor (R) knockout mice are significantly resistant to polyuria, natriuresis, kaliuresis, and decrease in AQP2 protein abundance in the kidney relative to wild type mice. Here we show this protection is long-lasting, and is also associated with significant amelioration of lithium-induced collecting duct remodeling and cell proliferation. Age-matched wild type and knockout mice were fed regular (n = 5/genotype) or lithium-added (40 mmol/kg chow; n = 10/genotype) diet for 5 months and euthanized. Water intake, urine output and osmolality were monitored once in every month. Salt blocks were provided to mice on lithium-diet to prevent sodium loss. At the end of 5 months mice were euthanized and serum and kidney samples were analyzed. There was a steady increase in lithium-induced polyuria, natriuresis and kaliuresis in wild type mice over the 5-month period. Increases in these urinary parameters were very low in lithium-fed knockout mice, resulting in significantly widening differences between the wild type and knockout mice. Terminal AQP2 and NKCC2 protein abundances in the kidney were significantly higher in lithium-fed knockout vs. wild type mice. There were no significant differences in terminal serum lithium or sodium levels between the wild type and knockout mice. Confocal immunofluorescence microscopy revealed that lithium-induced marked remodeling of collecting duct with significantly increased proportion of [H+]-ATPase-positive intercalated cells and decreased proportion of AQP2-positive principal cells in the wild type, but not in knockout mice. Lithium-induced collecting duct cell proliferation (indicated by Ki67 labeling), was significantly lower in knockout vs. wild type mice. This is the first piece of evidence that purinergic signaling is potentially involved in lithium-induced collecting duct remodeling and cell proliferation. Our results demonstrate that genetic deletion of P2Y2-R protects against the key structural and functional alterations in Li-induced NDI, and underscore the potential utility of targeting this receptor for the treatment of NDI in bipolar patients on chronic lithium therapy.
Collapse
Affiliation(s)
- Yue Zhang
- Nephrology Research, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, United States
- Department of Internal Medicine, University of Utah Health, Salt Lake City, UT, United States
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Anne Riquier-Brison
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA, United States
| | - Tao Liu
- Nephrology Research, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, United States
- Department of Internal Medicine, University of Utah Health, Salt Lake City, UT, United States
| | - Yufeng Huang
- Department of Internal Medicine, University of Utah Health, Salt Lake City, UT, United States
| | - Noel G. Carlson
- Geriatric Research, Education and Clinical Center, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, United States
- Department of Neurobiology and Anatomy, University of Utah Health, Salt Lake City, UT, United States
- Center on Aging, University of Utah Health, Salt Lake City, UT, United States
| | - János Peti-Peterdi
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA, United States
| | - Bellamkonda K. Kishore
- Nephrology Research, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, United States
- Department of Internal Medicine, University of Utah Health, Salt Lake City, UT, United States
- Center on Aging, University of Utah Health, Salt Lake City, UT, United States
- Department of Nutrition and Integrative Physiology, University of Utah Health, Salt Lake City, UT, United States
| |
Collapse
|
12
|
Craigie E, Menzies RI, Larsen CK, Jacquillet G, Carrel M, Wildman SS, Loffing J, Leipziger J, Shirley DG, Bailey MA, Unwin RJ. The renal and blood pressure response to low sodium diet in P2X4 receptor knockout mice. Physiol Rep 2018; 6:e13899. [PMID: 30350402 PMCID: PMC6198136 DOI: 10.14814/phy2.13899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 01/02/2023] Open
Abstract
In the kidney, purinergic (P2) receptor-mediated ATP signaling has been shown to be an important local regulator of epithelial sodium transport. Appropriate sodium regulation is crucial for blood pressure (BP) control and disturbances in sodium balance can lead to hypo- or hypertension. Links have already been established between P2 receptor signaling and the development of hypertension, attributed mainly to vascular and/or inflammatory effects. A transgenic mouse model with deletion of the P2X4 receptor (P2X4-/- ) is known to have hypertension, which is thought to reflect endothelial dysfunction and impaired nitric oxide (NO) release. However, renal function in this model has not been characterized; moreover, studies in vitro have shown that the P2X4 receptor can regulate renal epithelial Na+ channel (ENaC) activity. Therefore, in the present study we investigated renal function and sodium handling in P2X4-/- mice, focusing on ENaC-mediated Na+ reabsorption. We confirmed an elevated BP in P2X4-/- mice compared with wild-type mice, but found that ENaC-mediated Na+ reabsorption is no different from wild-type and does not contribute to the raised BP observed in the knockout. However, when P2X4-/- mice were placed on a low sodium diet, BP normalized. Plasma aldosterone concentration tended to increase according to sodium restriction status in both genotypes; in contrast to wild-types, P2X4-/- mice did not show an increase in functional ENaC activity. Thus, although the increased BP in P2X4-/- mice has been attributed to endothelial dysfunction and impaired NO release, there is also a sodium-sensitive component.
Collapse
Affiliation(s)
- Eilidh Craigie
- Centre for NephrologyUniversity College London Medical SchoolLondonUnited Kingdom
- Institue for AnatomyUniversity of ZürichZürichSwitzerland
| | - Robert I. Menzies
- British Heart Foundation Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUnited Kingdom
| | - Casper K. Larsen
- Department of Biomedicine, PhysiologyAarhus UniversityAarhus CDenmark
| | - Grégory Jacquillet
- Centre for NephrologyUniversity College London Medical SchoolLondonUnited Kingdom
| | - Monique Carrel
- Institue for AnatomyUniversity of ZürichZürichSwitzerland
| | - Scott S. Wildman
- Urinary System Physiology UnitMedway School of PharmacyUniversity of KentKentUnited Kingdom
| | | | - Jens Leipziger
- Department of Biomedicine, PhysiologyAarhus UniversityAarhus CDenmark
| | - David G. Shirley
- Centre for NephrologyUniversity College London Medical SchoolLondonUnited Kingdom
| | - Matthew A. Bailey
- British Heart Foundation Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUnited Kingdom
| | - Robert J. Unwin
- Centre for NephrologyUniversity College London Medical SchoolLondonUnited Kingdom
- CVRM iMEDAstraZeneca GothenburgGothenburgSweden
| |
Collapse
|
13
|
Zhang Y, Peti-Peterdi J, Brandes AU, Riquier-Brison A, Carlson NG, Müller CE, Ecelbarger CM, Kishore BK. Prasugrel suppresses development of lithium-induced nephrogenic diabetes insipidus in mice. Purinergic Signal 2017; 13:239-248. [PMID: 28233082 PMCID: PMC5432483 DOI: 10.1007/s11302-017-9555-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/23/2017] [Indexed: 12/17/2022] Open
Abstract
Previously, we localized ADP-activated P2Y12 receptor (R) in rodent kidney and showed that its blockade by clopidogrel bisulfate (CLPD) attenuates lithium (Li)-induced nephrogenic diabetes insipidus (NDI). Here, we evaluated the effect of prasugrel (PRSG) administration on Li-induced NDI in mice. Both CLPD and PRSG belong to the thienopyridine class of ADP receptor antagonists. Groups of age-matched adult male B6D2 mice (N = 5/group) were fed either regular rodent chow (CNT), or with added LiCl (40 mmol/kg chow) or PRSG in drinking water (10 mg/kg bw/day) or a combination of LiCl and PRSG for 14 days and then euthanized. Water intake and urine output were determined and blood and kidney tissues were collected and analyzed. PRSG administration completely suppressed Li-induced polydipsia and polyuria and significantly prevented Li-induced decreases in AQP2 protein abundance in renal cortex and medulla. However, PRSG either alone or in combination with Li did not have a significant effect on the protein abundances of NKCC2 or NCC in the cortex and/or medulla. Immunofluorescence microscopy revealed that PRSG administration prevented Li-induced alterations in cellular disposition of AQP2 protein in medullary collecting ducts. Serum Li, Na, and osmolality were not affected by the administration of PRSG. Similar to CLPD, PRSG administration had no effect on Li-induced increase in urinary Na excretion. However, unlike CLPD, PRSG did not augment Li-induced increase in urinary arginine vasopressin (AVP) excretion. Taken together, these data suggest that the pharmacological inhibition of P2Y12-R by the thienopyridine group of drugs may potentially offer therapeutic benefits in Li-induced NDI.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Internal Medicine and Center on Aging, University of Utah Health Sciences Center, Veterans Affairs Salt Lake City, Health Care System, 500 Foothill Drive (151M), Salt Lake City, UT, 84148, USA
| | - János Peti-Peterdi
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, University of Southern California, 1501 San Pablo Street, ZNI 313, Los Angeles, CA, 90033, USA
| | - Anna U Brandes
- Department of Internal Medicine and Center on Aging, University of Utah Health Sciences Center, Veterans Affairs Salt Lake City, Health Care System, 500 Foothill Drive (151M), Salt Lake City, UT, 84148, USA
| | - Anne Riquier-Brison
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, University of Southern California, 1501 San Pablo Street, ZNI 313, Los Angeles, CA, 90033, USA
| | - Noel G Carlson
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Christa E Müller
- Depatment of Neurobiology and Anatomy and Center on Aging, University of Utah Health Sciences Center, Geriatric Research, Education, and Clinical Center (GRECC) Veterans Affairs Salt Lake City Health Care System, 500 Foothill Drive (151B), Salt Lake City, UT, 84148, USA
| | - Carolyn M Ecelbarger
- Department of Medicine, Center for the Study of Sex Differences in Health, Aging, and Disease, Georgetown University, 4000 Reservoir Road NW Bldg D, Rm 392, Washington, DC, 20057, USA
| | - Bellamkonda K Kishore
- Department of Internal Medicine and Center on Aging, University of Utah Health Sciences Center, Veterans Affairs Salt Lake City, Health Care System, 500 Foothill Drive (151M), Salt Lake City, UT, 84148, USA.
| |
Collapse
|
14
|
Burnstock G, Loesch A. Sympathetic innervation of the kidney in health and disease: Emphasis on the role of purinergic cotransmission. Auton Neurosci 2017; 204:4-16. [DOI: 10.1016/j.autneu.2016.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/27/2016] [Accepted: 05/29/2016] [Indexed: 11/29/2022]
|
15
|
Svendsen SL, Isidor S, Praetorius HA, Leipziger J. P2X Receptors Inhibit NaCl Absorption in mTAL Independently of Nitric Oxide. Front Physiol 2017; 8:18. [PMID: 28174542 PMCID: PMC5258741 DOI: 10.3389/fphys.2017.00018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/10/2017] [Indexed: 12/19/2022] Open
Abstract
Activation of basolateral P2X receptors markedly reduces NaCl absorption in mouse medullary thick ascending limb (mTAL). Here we tested the role of nitric oxide (NO) in the ATP-mediated (P2X) transport inhibition. We used isolated, perfused mTALs from mice to electrically measure NaCl absorption. By microelectrodes we determined the transepithelial voltage (Vte) and transepithelial resistance (Rte). Via these two parameters, we calculated the equivalent short circuit current, I'sc as a measure of the transepithelial Na+ absorption. Basolateral ATP (100 μM) acutely induced reversible inhibition of Na+ absorption (24 ± 4%, n = 10). Addition of L-arginine (100 μM) had no apparent effect on the ATP-induced transport inhibition. Acute reduction of extracellular [Ca2+] to either 100 nM or 0 nM by addition of EGTA had no effect on the ATP-induced transport inhibition. In the presence of the NO synthase (NOS) inhibitor L-NAME (100 μM) and/or ODQ to inhibit the guanylyl cyclase, the ATP effect remained unaffected. Increasing the concentration and incubation time for L-NAME (1 mM) still did not reveal any effect on the ATP-mediated transport inhibition. Acute addition of the NO donors SNAP (100 μM) and Spermine NONOate (10 μM) did not alter tubular transport. High concentrations of L-NAME (1 mM) in itself, however, reduced the transepithelial transport significantly. Thus, we find no evidence for nitric oxide (NO) as second messenger for P2X receptor-dependent transport inhibition in mTAL. Moreover, Ca2+ signaling appears not involved in the ATP-mediated effect. It remains undefined how P2X receptors trigger the marked reduction of transport in the TAL.
Collapse
Affiliation(s)
- Samuel L Svendsen
- Department of Biomedicine, Physiology, Aarhus University Aarhus, Denmark
| | - Søren Isidor
- Department of Biomedicine, Physiology, Aarhus University Aarhus, Denmark
| | - Helle A Praetorius
- Department of Biomedicine, Physiology, Aarhus University Aarhus, Denmark
| | - Jens Leipziger
- Department of Biomedicine, Physiology, Aarhus University Aarhus, Denmark
| |
Collapse
|
16
|
Menzies RI, Tam FW, Unwin RJ, Bailey MA. Purinergic signaling in kidney disease. Kidney Int 2016; 91:315-323. [PMID: 27780585 DOI: 10.1016/j.kint.2016.08.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/10/2016] [Accepted: 08/15/2016] [Indexed: 02/04/2023]
Abstract
Nucleotides are key subunits for nucleic acids and provide energy for intracellular metabolism. They can also be released from cells to act physiologically as extracellular messengers or pathologically as danger signals. Extracellular nucleotides stimulate membrane receptors in the P2 and P1 family. P2X are ATP-activated cation channels; P2Y and P1 are G-protein coupled receptors activated by ATP, ADP, UTP, and UDP in the case of P2 or adenosine for P1. Renal P2 receptors influence both vascular contractility and tubular function. Renal cells also express ectonucleotidases that rapidly hydrolyze extracellular nucleotides. These enzymes integrate this multireceptor purinergic-signaling complex by determining the nucleotide milieu to titrate receptor activation. Purinergic signaling also regulates immune cell function by modulating the synthesis and release of various cytokines such as IL1-β and IL-18 as part of inflammasome activation. Abnormal or excessive stimulation of this intricate paracrine system can be pro- or anti-inflammatory, and is also linked to necrosis and apoptosis. Kidney tissue injury causes a localized increase in ATP concentration, and sustained activation of P2 receptors can lead to renal glomerular, tubular, and vascular cell damage. Purinergic receptors also regulate the activity and proliferation of fibroblasts, promoting both inflammation and fibrosis in chronic disease. In this short review we summarize some of the recent findings related to purinergic signaling in the kidney. We focus predominantly on the P2X7 receptor, discussing why antagonists have so far disappointed in clinical trials and how advances in our understanding of purinergic signaling might help to reposition these compounds as potential treatments for renal disease.
Collapse
Affiliation(s)
- Robert I Menzies
- British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Frederick W Tam
- Imperial College Renal and Transplant Centre, Department of Medicine, Imperial College London, UK
| | - Robert J Unwin
- Cardiovascular and Metabolic Diseases Biotech Unit, AstraZeneca Gothenburg, Sweden; UCL Centre for Nephrology, University College London, London, UK.
| | - Matthew A Bailey
- British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
17
|
de Baaij JHF, Kompatscher A, Viering DHHM, Bos C, Bindels RJM, Hoenderop JGJ. P2X6 Knockout Mice Exhibit Normal Electrolyte Homeostasis. PLoS One 2016; 11:e0156803. [PMID: 27254077 PMCID: PMC4890750 DOI: 10.1371/journal.pone.0156803] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/19/2016] [Indexed: 12/02/2022] Open
Abstract
ATP-mediated signaling is an important regulator of electrolyte transport in the kidney. The purinergic cation channel P2X6 has been previously localized to the distal convoluted tubule (DCT), a nephron segment important for Mg2+ and Na+ reabsorption, but its role in ion transport remains unknown. In this study, P2x6 knockout (P2x6-/-) mice were generated to investigate the role of P2X6 in renal electrolyte transport. The P2x6-/- animals displayed a normal phenotype and did not differ physiologically from wild type mice. Differences in serum concentration and 24-hrs urine excretion of Na+, K+, Mg2+ and Ca2+ were not detected between P2x6+/+, P2x6+/- and P2x6-/- mice. Quantitative PCR was applied to examine potential compensatory changes in renal expression levels of other P2x subunits and electrolyte transporters, including P2x1-5, P2x7, Trpm6, Ncc, Egf, Cldn16, Scnn1, Slc12a3, Slc41a1, Slc41a3, Cnnm2, Kcnj10 and Fxyd2. Additionally, protein levels of P2X2 and P2X4 were assessed in P2x6+/+ and P2x6-/- mouse kidneys. However, significant changes in expression were not detected. Furthermore, no compensatory changes in gene expression could be demonstrated in heart material isolated from P2x6-/- mice. Except for a significant (P<0.05) upregulation of P2x2 in the heart of P2x6-/- mice compared to the P2x6+/+ mice. Thus, our data suggests that purinergic signaling via P2X6 is not significantly involved in the regulation of renal electrolyte handling under normal physiological conditions.
Collapse
Affiliation(s)
- Jeroen H. F. de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Andreas Kompatscher
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Daan H. H. M. Viering
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caro Bos
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - René J. M. Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost G. J. Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
18
|
Zhang Y, Peti-Peterdi J, Heiney KM, Riquier-Brison A, Carlson NG, Müller CE, Ecelbarger CM, Kishore BK. Clopidogrel attenuates lithium-induced alterations in renal water and sodium channels/transporters in mice. Purinergic Signal 2015; 11:507-18. [PMID: 26386699 PMCID: PMC4648798 DOI: 10.1007/s11302-015-9469-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/09/2015] [Indexed: 10/23/2022] Open
Abstract
Lithium (Li) administration causes deranged expression and function of renal aquaporins and sodium channels/transporters resulting in nephrogenic diabetes insipidus (NDI). Extracellular nucleotides (ATP/ADP/UTP), via P2 receptors, regulate these transport functions. We tested whether clopidogrel bisulfate (CLPD), an antagonist of ADP-activated P2Y(12) receptor, would affect Li-induced alterations in renal aquaporins and sodium channels/transporters. Adult mice were treated for 14 days with CLPD and/or Li and euthanized. Urine and kidneys were collected for analysis. When administered with Li, CLPD ameliorated polyuria, attenuated the rise in urine prostaglandin E2 (PGE2), and resulted in significantly higher urinary arginine vasopressin (AVP) and aldosterone levels as compared to Li treatment alone. However, urine sodium excretion remained elevated. Semi-quantitative immunoblotting revealed that CLPD alone increased renal aquaporin 2 (AQP2), Na-K-2Cl cotransporter (NKCC2), Na-Cl cotransporter (NCC), and the subunits of the epithelial Na channel (ENaC) in medulla by 25-130 %. When combined with Li, CLPD prevented downregulation of AQP2, Na-K-ATPase, and NKCC2 but was less effective against downregulation of cortical α- or γ-ENaC (70 kDa band). Thus, CLPD primarily attenuated Li-induced downregulation of proteins involved in water conservation (AVP-sensitive), with modest effects on aldosterone-sensitive proteins potentially explaining sustained natriuresis. Confocal immunofluorescence microscopy revealed strong labeling for P2Y(12)-R in proximal tubule brush border and blood vessels in the cortex and less intense labeling in medullary thick ascending limb and the collecting ducts. Therefore, there is the potential for CLPD to be directly acting at the tubule sites to mediate these effects. In conclusion, P2Y(12)-R may represent a novel therapeutic target for Li-induced NDI.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Internal Medicine and Center on Aging, University of Utah Health Sciences Center & Veterans Affairs Salt Lake City Health Care System, 500 Foothill Drive (151M), Salt Lake City, UT, 84148, USA
| | - János Peti-Peterdi
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, University of Southern California, 1501 San Pablo Street, ZNI 313, Los Angeles, CA, 90033, USA
| | - Kristina M Heiney
- Department of Internal Medicine and Center on Aging, University of Utah Health Sciences Center & Veterans Affairs Salt Lake City Health Care System, 500 Foothill Drive (151M), Salt Lake City, UT, 84148, USA
| | - Anne Riquier-Brison
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, University of Southern California, 1501 San Pablo Street, ZNI 313, Los Angeles, CA, 90033, USA
| | - Noel G Carlson
- Department of Neurobiology and Anatomy and Center on Aging Geriatric Research, Education, and Clinical Center (GRECC), University of Utah Health Sciences Center & Veterans Affairs Salt Lake City Health Care System, 500 Foothill Drive (151B), Salt Lake City, UT, 84148, USA
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Carolyn M Ecelbarger
- Department of Medicine, Center for the Study of Sex Differences in Health, Aging, and Disease, Georgetown University, 4000 Reservoir Road NW Bldg D, Rm 392, Washington, DC, 20057, USA
| | - Bellamkonda K Kishore
- Department of Internal Medicine and Center on Aging, University of Utah Health Sciences Center & Veterans Affairs Salt Lake City Health Care System, 500 Foothill Drive (151M), Salt Lake City, UT, 84148, USA.
| |
Collapse
|
19
|
Guan Z, Fellner RC, Van Beusecum J, Inscho EW. P2 receptors in renal autoregulation. Curr Vasc Pharmacol 2015; 12:818-28. [PMID: 24066935 DOI: 10.2174/15701611113116660152] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 03/06/2013] [Accepted: 05/01/2014] [Indexed: 11/22/2022]
Abstract
Autoregulation of renal blood flow and glomerular filtration rate is an essential function of the renal microcirculation. While the existence of this phenomenon has been known for many years, the exact mechanisms that underlie this regulatory system remain poorly understood. The work of many investigators has provided insights into many aspects of the autoregulatory mechanism, but many critical components remain elusive. This review is intended to update the reader on the role of P2 purinoceptors as a postulated mechanism responsible for renal autoregulatory resistance adjustments. It will summarize recent advances in normal function and it will touch on more recent ideas regarding autoregulatory insufficiency in hypertension and inflammation. Current thoughts on the nature of the mechanosensor responsible for myogenic behavior will be also be discussed as well as current thoughts on the mechanisms involved in ATP release to the extracellular fluid space.
Collapse
Affiliation(s)
| | | | | | - Edward W Inscho
- Department of Physiology, Medical College of Georgia, Georgia Regents University, 1120 15th Street, Augusta, Georgia 30912-3000.
| |
Collapse
|
20
|
Kishore BK, Carlson NG, Ecelbarger CM, Kohan DE, Müller CE, Nelson RD, Peti-Peterdi J, Zhang Y. Targeting renal purinergic signalling for the treatment of lithium-induced nephrogenic diabetes insipidus. Acta Physiol (Oxf) 2015; 214:176-88. [PMID: 25877068 PMCID: PMC4430398 DOI: 10.1111/apha.12507] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/08/2015] [Indexed: 12/26/2022]
Abstract
Lithium still retains its critical position in the treatment of bipolar disorder by virtue of its ability to prevent suicidal tendencies. However, chronic use of lithium is often limited by the development of nephrogenic diabetes insipidus (NDI), a debilitating condition. Lithium-induced NDI is due to resistance of the kidney to arginine vasopressin (AVP), leading to polyuria, natriuresis and kaliuresis. Purinergic signalling mediated by extracellular nucleotides (ATP/UTP), acting via P2Y receptors, opposes the action of AVP on renal collecting duct (CD) by decreasing the cellular cAMP and thus AQP2 protein levels. Taking a cue from this phenomenon, we discovered the potential involvement of ATP/UTP-activated P2Y2 receptor in lithium-induced NDI in rats and showed that P2Y2 receptor knockout mice are significantly resistant to Li-induced polyuria, natriuresis and kaliuresis. Extension of these studies revealed that ADP-activated P2Y12 receptor is expressed in the kidney, and its irreversible blockade by the administration of clopidogrel bisulphate (Plavix(®)) ameliorates Li-induced NDI in rodents. Parallel in vitro studies showed that P2Y12 receptor blockade by the reversible antagonist PSB-0739 sensitizes CD to the action of AVP. Thus, our studies unravelled the potential beneficial effects of targeting P2Y2 or P2Y12 receptors to counter AVP resistance in lithium-induced NDI. If established in further studies, our findings may pave the way for the development of better and safer methods for the treatment of NDI by bringing a paradigm shift in the approach from the current therapies that predominantly counter the anti-AVP effects to those that enhance the sensitivity of the kidney to AVP action.
Collapse
Affiliation(s)
- B. K. Kishore
- Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Nephrology Research, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah, USA
- Center on Aging, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - N. G. Carlson
- Center on Aging, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Neurobiology and Anatomy, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Geriatric Research, Education and Clinical Center, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah, USA
| | - C. M. Ecelbarger
- Department of Medicine, Georgetown University, Washington, District of Columbia, USA
- Center for the Study of Sex Differences in Health, Aging, and Disease, Georgetown University, Washington, District of Columbia, USA
| | - D. E. Kohan
- Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Nephrology Research, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah, USA
| | - C. E. Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - R. D. Nelson
- Department of Paediatrics, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - J. Peti-Peterdi
- Department of Physiology and Biophysics, and Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Y. Zhang
- Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Nephrology Research, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah, USA
| |
Collapse
|
21
|
Franco M, Bautista-Pérez R, Pérez-Méndez O. Purinergic receptors in tubulointerstitial inflammatory cells: a pathophysiological mechanism of salt-sensitive hypertension. Acta Physiol (Oxf) 2015; 214:75-87. [PMID: 25683649 DOI: 10.1111/apha.12471] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 10/28/2014] [Accepted: 02/09/2015] [Indexed: 12/24/2022]
Abstract
Recent studies have suggested that both the tubulointerstitial inflammatory cells and the activation of purinergic receptors integrate common mechanisms that result in salt-sensitive hypertension. The basis of this hypothesis is that renal endothelial cells release ATP in response to shear stress in the setting of hypertension. It has been demonstrated that the over-expression and activation of the P2X7, P2Y12 and P2X1 receptors favour the elevation of blood pressure induced by high-salt intake. In addition, the release of interleukins and inflammatory mediators in the tubulointerstitial area appears to be related to the activation of these receptors. Renal vasoconstriction and tubulointerstitial injury develop as a result, which increase sodium reabsorption by epithelial cells. Consistent with these effects, the reduction of tubulointerstitial inflammation caused by immunosuppressants, such as mycophenolate mofetil, prevents the development of salt-sensitive hypertension. Also, P2X7-receptor knockout mice develop minor renal injury when hypertension is induced via the administration of deoxycorticosterone acetate and a high-salt diet. In the setting of angiotensin II-induced hypertension, which is an early stage in the development of salt-sensitive hypertension, an acute blockade with the specific, non-selective P2 antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid prevented the renal vasoconstriction induced by angiotensin II. In addition, it normalized glomerular haemodynamics and restored sodium excretion to control values. These findings suggest that chronic administration of P2 purinergic antagonists may prevent the deleterious effects of purinergic receptors during the development of salt-sensitive hypertension.
Collapse
Affiliation(s)
- M. Franco
- Renal Physiopathology Laboratory; Department of Nephrology; Instituto Nacional de Cardiología Ignacio Chávez; México City Mexico
| | - R. Bautista-Pérez
- Renal Physiopathology Laboratory; Department of Nephrology; Instituto Nacional de Cardiología Ignacio Chávez; México City Mexico
- Molecular Biology Department; Instituto Nacional de Cardiología Ignacio Chávez; México City Mexico
| | - O. Pérez-Méndez
- Molecular Biology Department; Instituto Nacional de Cardiología Ignacio Chávez; México City Mexico
| |
Collapse
|
22
|
Fenton RA, Poulsen SB, de la Mora Chavez S, Soleimani M, Busslinger M, Dominguez Rieg JA, Rieg T. Caffeine-induced diuresis and natriuresis is independent of renal tubular NHE3. Am J Physiol Renal Physiol 2015; 308:F1409-20. [PMID: 25925253 DOI: 10.1152/ajprenal.00129.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/18/2015] [Indexed: 01/15/2023] Open
Abstract
Caffeine is one of the most widely consumed behavioral substances. We have previously shown that caffeine- and theophylline-induced inhibition of renal reabsorption causes diuresis and natriuresis, an effect that requires functional adenosine A1 receptors. In this study, we tested the hypothesis that blocking the Gi protein-coupled adenosine A1 receptor via the nonselective adenosine receptor antagonist caffeine changes Na(+)/H(+) exchanger isoform 3 (NHE3) localization and phosphorylation, resulting in diuresis and natriuresis. We generated tubulus-specific NHE3 knockout mice (Pax8-Cre), where NHE3 abundance in the S1, S2, and S3 segments of the proximal tubule was completely absent or severely reduced (>85%) in the thick ascending limb. Consumption of fluid and food, as well as glomerular filtration rate, were comparable in control or tubulus-specific NHE3 knockout mice under basal conditions, while urinary pH was significantly more alkaline without evidence for metabolic acidosis. Caffeine self-administration increased total fluid and food intake comparably between genotypes, without significant differences in consumption of caffeinated solution. Acute caffeine application via oral gavage elicited a diuresis and natriuresis that was comparable between control and tubulus-specific NHE3 knockout mice. The diuretic and natriuretic response was independent of changes in total NHE3 expression, phosphorylation of serine-552 and serine-605, or apical plasma membrane NHE3 localization. Although caffeine had no clear effect on localization of the basolateral Na(+)/bicarbonate cotransporter NBCe1, pretreatment with DIDS inhibited caffeine-induced diuresis and natriuresis. In summary, NHE3 is not required for caffeine-induced diuresis and natriuresis.
Collapse
Affiliation(s)
- Robert A Fenton
- InterPrET Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Søren B Poulsen
- InterPrET Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Manoocher Soleimani
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio; Research Services, Veterans Affairs Medical Center, Cincinnati, Ohio
| | | | - Jessica A Dominguez Rieg
- VA San Diego Healthcare System, San Diego, California; Bastyr University California, San Diego, California; and
| | - Timo Rieg
- VA San Diego Healthcare System, San Diego, California; Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
23
|
Zhang Y, Robson SC, Morris KL, Heiney KM, Dwyer KM, Kishore BK, Ecelbarger CM. Impaired natriuretic response to high-NaCl diet plus aldosterone infusion in mice overexpressing human CD39, an ectonucleotidase (NTPDase1). Am J Physiol Renal Physiol 2015; 308:F1398-408. [PMID: 25877509 DOI: 10.1152/ajprenal.00125.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/09/2015] [Indexed: 01/14/2023] Open
Abstract
Extracellular nucleotides acting through P2 receptors facilitate natriuresis. To define how purinergic mechanisms are involved in sodium homeostasis, we used transgenic (TG) mice that globally overexpress human CD39 (hCD39, NTPDase1), an ectonucleotidase that hydrolyzes extracellular ATP/ADP to AMP, resulting in an altered extracellular purine profile. On a high-sodium diet (HSD, 3.5% Na(+)), urine volume and serum sodium were significantly higher in TG mice but sodium excretion was unaltered. Furthermore, TG mice showed an attenuated fall in urine aldosterone with HSD. Western blot analysis revealed significantly lower densities (∼40%) of the β-subunit of the epithelial sodium channel (ENaC) in medulla, and the major band (85-kDa) of γ-ENaC in TG mice cortex. To evaluate aldosterone-independent differences, in a second experiment, aldosterone was clamped by osmotic minipump at 20 μg/day, and mice were fed either an HSD or a low-sodium diet (LSD, 0.03% Na(+)). Here, no differences in urine volume or osmolality, or serum aldosterone were found, but TG mice showed a modest, yet significant impairment in late natriuresis (days 3 and 4). Several major sodium transporters or channel subunits were differentially expressed between the genotypes. HSD caused a downregulation of Na-Cl cotransporter (NCC) in both genotypes; and had higher cortical levels of NCC, Na-K-ATPase (α-1 subunit), and α- and γ-ENaC. The Na-K-2Cl cotransporter (NKCC2) was downregulated by HSD in wild-type mice, but it increased in TG mice. In summary, our data support the concept that extracellular nucleotides facilitate natriuresis; they also reveal an aldosterone-independent downregulation of major renal sodium transporters and channel subunits by purinergic signaling.
Collapse
Affiliation(s)
- Yue Zhang
- Nephrology Research, Department of Veterans Administration Salt Lake City Health Care System, Salt Lake City, Utah; Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Simon C Robson
- Transplant Institute and Gastroenterology Division, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Kaiya L Morris
- Nephrology Research, Department of Veterans Administration Salt Lake City Health Care System, Salt Lake City, Utah; Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Kristina M Heiney
- Nephrology Research, Department of Veterans Administration Salt Lake City Health Care System, Salt Lake City, Utah; Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Karen M Dwyer
- Immunology Research Center, Department of Medicine, University of Melbourne, St. Vincent's Hospital, Fitzroy, Australia
| | - Bellamkonda K Kishore
- Nephrology Research, Department of Veterans Administration Salt Lake City Health Care System, Salt Lake City, Utah; Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah; Center on Aging, University of Utah Health Sciences Center, Salt Lake City, Utah;
| | - Carolyn M Ecelbarger
- Department of Medicine, Georgetown University, Washington, DC; and Center for the Study of Sex Differences in Health, Aging, and Disease, Georgetown University, Washington, District of Columbia
| |
Collapse
|
24
|
Van Beusecum J, Inscho EW. Regulation of renal function and blood pressure control by P2 purinoceptors in the kidney. Curr Opin Pharmacol 2015; 21:82-8. [PMID: 25616035 PMCID: PMC5515225 DOI: 10.1016/j.coph.2015.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 12/24/2014] [Accepted: 01/05/2015] [Indexed: 12/11/2022]
Abstract
Kidneys are important regulators of extracellular fluid volume (ECFV) homeostasis. ECFV is a key regulatory component of long-term blood pressure control influenced by controlling tubular sodium transport. In recent decades, renal P2 purinoceptors (P2 receptors) have come to the forefront as a mechanism for regulating ECFV. P2 receptors are broadly distributed in renal tubular and vascular elements where they confer segmental control of renal vascular resistance, autoregulation, and tubular reabsorption. Activation or impairment of renal P2 purinoceptors is implicated in the regulating blood pressure or causing renal pathologies including hypertension. In this brief review, we discuss the role of renal vascular and tubular P2 purinoceptors in the regulation of renal hemodynamics, maintenance of ECFV, regulation of sodium reabsorption and the control of blood pressure.
Collapse
Affiliation(s)
- Justin Van Beusecum
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Edward W Inscho
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
25
|
Pandit MM, Inscho EW, Zhang S, Seki T, Rohatgi R, Gusella L, Kishore B, Kohan DE. Flow regulation of endothelin-1 production in the inner medullary collecting duct. Am J Physiol Renal Physiol 2015; 308:F541-52. [PMID: 25587122 DOI: 10.1152/ajprenal.00456.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Collecting duct-derived endothelin (ET)-1 is an autocrine inhibitor of Na(+) and water reabsorption; its deficiency causes hypertension and water retention. Extracellular fluid volume expansion increases collecting duct ET-1, thereby promoting natriuresis and diuresis; however, how this coupling between volume expansion and collecting duct ET-1 occurs is incompletely understood. One possibility is that volume expansion increases tubular fluid flow. To investigate this, cultured IMCD3 cells were subjected to static or flow conditions. Exposure to a shear stress of 2 dyn/cm(2) for 2 h increased ET-1 mRNA content by ∼2.3-fold. Absence of perfusate Ca(2+), chelation of intracellular Ca(2+), or inhibition of Ca(2+) signaling (calmodulin, Ca(2+)/calmodulin-dependent kinase, calcineurin, PKC, or phospholipase C) prevented the flow response. Evaluation of possible flow-activated Ca(2+) entry pathways revealed no role for transient receptor potential (TRP)C3, TRPC6, and TRPV4; however, cells with TRPP2 (polycystin-2) knockdown had no ET-1 flow response. Flow increased intracellular Ca(2+) was blunted in TRPP2 knockdown cells. Nonspecific blockade of P2 receptors, as well as specific inhibition of P2X7 and P2Y2 receptors, prevented the ET-1 flow response. The ET-1 flow response was not affected by inhibition of either epithelial Na(+) channels or the mitochondrial Na(+)/Ca(2+) exchanger. Taken together, these findings provide evidence that in IMCD3 cells, flow, via polycystin-2 and P2 receptors, engages Ca(2+)-dependent signaling pathways that stimulate ET-1 synthesis.
Collapse
Affiliation(s)
- Meghana M Pandit
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah; Department of Pharmaceutics and Pharmaceutical Chemistry, Salt Lake City, Utah
| | | | - Shali Zhang
- University of Alabama at Birmingham, Birmingham, Alabama
| | - Tsugio Seki
- Department of Medical Education, California Northstate University, Elk Grove, California
| | - Rajeev Rohatgi
- Department of Medicine, James J. Peter Veterans Affairs Medical Center, Bronx, New York; Department of Medicine and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Luca Gusella
- Department of Medicine, James J. Peter Veterans Affairs Medical Center, Bronx, New York; Department of Medicine and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Bellamkonda Kishore
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah; Salt Lake Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah; Department of Pharmaceutics and Pharmaceutical Chemistry, Salt Lake City, Utah; Salt Lake Veterans Affairs Medical Center, Salt Lake City, Utah
| |
Collapse
|
26
|
Pearce D, Soundararajan R, Trimpert C, Kashlan OB, Deen PM, Kohan DE. Collecting duct principal cell transport processes and their regulation. Clin J Am Soc Nephrol 2015; 10:135-46. [PMID: 24875192 PMCID: PMC4284417 DOI: 10.2215/cjn.05760513] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The principal cell of the kidney collecting duct is one of the most highly regulated epithelial cell types in vertebrates. The effects of hormonal, autocrine, and paracrine factors to regulate principal cell transport processes are central to the maintenance of fluid and electrolyte balance in the face of wide variations in food and water intake. In marked contrast with the epithelial cells lining the proximal tubule, the collecting duct is electrically tight, and ion and osmotic gradients can be very high. The central role of principal cells in salt and water transport is reflected by their defining transporters-the epithelial Na(+) channel (ENaC), the renal outer medullary K(+) channel, and the aquaporin 2 (AQP2) water channel. The coordinated regulation of ENaC by aldosterone, and AQP2 by arginine vasopressin (AVP) in principal cells is essential for the control of plasma Na(+) and K(+) concentrations, extracellular fluid volume, and BP. In addition to these essential hormones, additional neuronal, physical, and chemical factors influence Na(+), K(+), and water homeostasis. Notably, a variety of secreted paracrine and autocrine agents such as bradykinin, ATP, endothelin, nitric oxide, and prostaglandin E2 counterbalance and limit the natriferic effects of aldosterone and the water-retaining effects of AVP. Considerable recent progress has improved our understanding of the transporters, receptors, second messengers, and signaling events that mediate principal cell responses to changing environments in health and disease. This review primarily addresses the structure and function of the key transporters and the complex interplay of regulatory factors that modulate principal cell ion and water transport.
Collapse
Affiliation(s)
- David Pearce
- Division of Nephrology, Department of Medicine, University of California, San Francisco, California
| | - Rama Soundararajan
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, Texas
| | - Christiane Trimpert
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ossama B. Kashlan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Peter M.T. Deen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Donald E. Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah
| |
Collapse
|
27
|
Menzies RI, Unwin RJ, Bailey MA. Renal P2 receptors and hypertension. Acta Physiol (Oxf) 2015; 213:232-41. [PMID: 25345692 DOI: 10.1111/apha.12412] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/23/2014] [Accepted: 10/17/2014] [Indexed: 12/11/2022]
Abstract
The regulation of extracellular fluid volume is a key component of blood pressure homeostasis. Long-term blood pressure is stabilized by the acute pressure natriuresis response by which changes in renal perfusion pressure evoke corresponding changes in renal sodium excretion. A wealth of experimental evidence suggests that a defect in the pressure natriuresis response contributes to the development and maintenance of hypertension. The mechanisms underlying the relationship between renal perfusion pressure and sodium excretion are incompletely understood. Increased blood flow through the vasa recta increases renal interstitial hydrostatic pressure, thereby reducing the driving force for transepithelial sodium reabsorption. Paracrine signalling also contributes to the overall natriuretic response by inhibiting tubular sodium reabsorption in several nephron segments. In this brief review, we discuss the role of purinergic signalling in the renal control of blood pressure. ATP is released from renal tubule and vascular cells in response to increased flow and can activate P2 receptor subtypes expressed in both epithelial and vascular endothelial/smooth muscle cells. In concert, these effects integrate the vascular and tubular responses to increased perfusion pressure and targeting P2 receptors, particularly P2X7, may prove beneficial for treatment of hypertension.
Collapse
Affiliation(s)
- R. I. Menzies
- University/British Heart Foundation; Centre for Cardiovascular Science; The University of Edinburgh; Edinburgh UK
- MRC Institute for Genetics and Molecular Medicine; The University of Edinburgh; Edinburgh UK
| | - R. J. Unwin
- UCL Centre for Nephrology; University College London; London UK
| | - M. A. Bailey
- University/British Heart Foundation; Centre for Cardiovascular Science; The University of Edinburgh; Edinburgh UK
| |
Collapse
|
28
|
Pluznick JL, Caplan MJ. Chemical and Physical Sensors in the Regulation of Renal Function. Clin J Am Soc Nephrol 2014; 10:1626-35. [PMID: 25280495 DOI: 10.2215/cjn.00730114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In order to assess the status of the volume and composition of the body fluid compartment, the kidney monitors a wide variety of chemical and physical parameters. It has recently become clear that the kidney's sensory capacity extends well beyond its ability to sense ion concentrations in the forming urine. The kidney also keeps track of organic metabolites derived from a surprising variety of sources and uses a complex interplay of physical and chemical sensing mechanisms to measure the rate of fluid flow in the nephron. Recent research has provided new insights into the nature of these sensory mechanisms and their relevance to renal function.
Collapse
Affiliation(s)
- Jennifer L Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Michael J Caplan
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
29
|
Burnstock G, Evans LC, Bailey MA. Purinergic signalling in the kidney in health and disease. Purinergic Signal 2014; 10:71-101. [PMID: 24265071 PMCID: PMC3944043 DOI: 10.1007/s11302-013-9400-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/21/2022] Open
Abstract
The involvement of purinergic signalling in kidney physiology and pathophysiology is rapidly gaining recognition and this is a comprehensive review of early and recent publications in the field. Purinergic signalling involvement is described in several important intrarenal regulatory mechanisms, including tuboglomerular feedback, the autoregulatory response of the glomerular and extraglomerular microcirculation and the control of renin release. Furthermore, purinergic signalling influences water and electrolyte transport in all segments of the renal tubule. Reports about purine- and pyrimidine-mediated actions in diseases of the kidney, including polycystic kidney disease, nephritis, diabetes, hypertension and nephrotoxicant injury are covered and possible purinergic therapeutic strategies discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|
30
|
Kim MJ, Turner CM, Hewitt R, Smith J, Bhangal G, Pusey CD, Unwin RJ, Tam FWK. Exaggerated renal fibrosis in P2X4 receptor-deficient mice following unilateral ureteric obstruction. Nephrol Dial Transplant 2014; 29:1350-61. [PMID: 24574541 PMCID: PMC4071051 DOI: 10.1093/ndt/gfu019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background The ATP-sensitive P2X7 receptor (P2X7R) has been shown to contribute to renal injury in nephrotoxic nephritis, a rodent model of acute glomerulonephritis, and in unilateral ureteric obstruction (UUO), a rodent model of chronic interstitial inflammation and fibrosis. Renal tubular cells, endothelial cells and macrophages also express the closely related P2X4 receptor (P2X4R), which is chromosomally co-located with P2X7R and has 40% homology; it is also pro-inflammatory and has been shown to interact with P2X7R to modulate its pro-apoptotic and pro-inflammatory effects. Therefore, we chose to explore the function of P2X4R in the UUO model of renal injury using knockout mice. We hypothesized that UUO-induced tubulointerstitial damage and fibrosis would also be attenuated in P2X4R−/− mice. Method P2X4R−/− and wild-type (WT) mice were subjected to either UUO or sham operation. Kidney samples taken on Days 7 and 14 were evaluated for renal inflammation and fibrosis, and expression of pro-fibrotic factors. Results To our surprise, the obstructed kidney in P2X4R−/− mice showed more severe renal injury, more collagen deposition (picrosirius red staining, increase of 53%; P < 0.05) and more type I collagen staining (increase of 107%; P < 0.01), as well as increased mRNA for TGF-β (increase of 102%, P < 0.0005) and CTGF (increase of 157%; P < 0.05) by Day 14, compared with the UUO WT mice. Conclusion These findings showed that lack of P2X4R expression leads to increased renal fibrosis, and increased expression of TGF-β and CTGF in the UUO model.
Collapse
Affiliation(s)
- Min Jeong Kim
- Imperial College Renal and Transplant Centre, Hammersmith Hospital, Imperial College London, London, UK Clinic for Transplantations immunology and Nephrology, University Hospital Basel, Basel, Switzerland Department of Biomedicine, Molecular Nephrology, University Hospital Basel, Basel, Switzerland
| | - Clare M Turner
- Imperial College Renal and Transplant Centre, Hammersmith Hospital, Imperial College London, London, UK
| | - Reiko Hewitt
- Imperial College Renal and Transplant Centre, Hammersmith Hospital, Imperial College London, London, UK
| | - Jennifer Smith
- Imperial College Renal and Transplant Centre, Hammersmith Hospital, Imperial College London, London, UK
| | - Gurjeet Bhangal
- Imperial College Renal and Transplant Centre, Hammersmith Hospital, Imperial College London, London, UK
| | - Charles D Pusey
- Imperial College Renal and Transplant Centre, Hammersmith Hospital, Imperial College London, London, UK
| | - Robert J Unwin
- UCL Centre for Nephrology, University College London, London, UK
| | - Frederick W K Tam
- Imperial College Renal and Transplant Centre, Hammersmith Hospital, Imperial College London, London, UK
| |
Collapse
|
31
|
P2X4 receptor regulation of transient receptor potential melastatin type 6 (TRPM6) Mg2+ channels. Pflugers Arch 2014; 466:1941-52. [DOI: 10.1007/s00424-014-1440-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/13/2013] [Accepted: 01/03/2014] [Indexed: 12/27/2022]
|
32
|
Stockand JD, Vallon V, Ortiz P. In vivo and ex vivo analysis of tubule function. Compr Physiol 2013; 2:2495-525. [PMID: 23720256 DOI: 10.1002/cphy.c100051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Analysis of tubule function with in vivo and ex vivo approaches has been instrumental in revealing renal physiology. This work allows assignment of functional significance to known gene products expressed along the nephron, primary of which are proteins involved in electrolyte transport and regulation of these transporters. Not only we have learned much about the key roles played by these transport proteins and their proper regulation in normal physiology but also the combination of contemporary molecular biology and molecular genetics with in vivo and ex vivo analysis opened a new era of discovery informative about the root causes of many renal diseases. The power of in vivo and ex vivo analysis of tubule function is that it preserves the native setting and control of the tubule and proteins within tubule cells enabling them to be investigated in a "real-life" environment with a high degree of precision. In vivo and ex vivo analysis of tubule function continues to provide a powerful experimental outlet for testing, evaluating, and understanding physiology in the context of the novel information provided by sequencing of the human genome and contemporary genetic screening. These tools will continue to be a mainstay in renal laboratories as this discovery process continues and as we continue to identify new gene products functionally compromised in renal disease.
Collapse
Affiliation(s)
- James D Stockand
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas, USA.
| | | | | |
Collapse
|
33
|
Crawford C, Wildman SSP, Kelly MC, Kennedy-Lydon TM, Peppiatt-Wildman CM. Sympathetic nerve-derived ATP regulates renal medullary vasa recta diameter via pericyte cells: a role for regulating medullary blood flow? Front Physiol 2013; 4:307. [PMID: 24194721 PMCID: PMC3810653 DOI: 10.3389/fphys.2013.00307] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 10/08/2013] [Indexed: 01/03/2023] Open
Abstract
Pericyte cells are now known to be a novel locus of blood flow control, being able to regulate capillary diameter via their unique morphology and expression of contractile proteins. We have previously shown that exogenous ATP causes constriction of vasa recta via renal pericytes, acting at a variety of membrane bound P2 receptors on descending vasa recta (DVR), and therefore may be able to regulate medullary blood flow (MBF). Regulation of MBF is essential for appropriate urine concentration and providing essential oxygen and nutrients to this region of high, and variable, metabolic demand. Various sources of endogenous ATP have been proposed, including from epithelial, endothelial, and red blood cells in response to stimuli such as mechanical stimulation, local acidosis, hypoxia, and exposure to various hormones. Extensive sympathetic innervation of the nephron has previously been shown, however the innervation reported has focused around the proximal and distal tubules, and ascending loop of Henle. We hypothesize that sympathetic nerves are an additional source of ATP acting at renal pericytes and therefore regulate MBF. Using a rat live kidney slice model in combination with video imaging and confocal microscopy techniques we firstly show sympathetic nerves in close proximity to vasa recta pericytes in both the outer and inner medulla. Secondly, we demonstrate pharmacological stimulation of sympathetic nerves in situ (by tyramine) evokes pericyte-mediated vasoconstriction of vasa recta capillaries; inhibited by the application of the P2 receptor antagonist suramin. Lastly, tyramine-evoked vasoconstriction of vasa recta by pericytes is significantly less than ATP-evoked vasoconstriction. Sympathetic innervation may provide an additional level of functional regulation in the renal medulla that is highly localized. It now needs to be determined under which physiological/pathophysiological circumstances that sympathetic innervation of renal pericytes is important.
Collapse
Affiliation(s)
- C Crawford
- Urinary System Physiology Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich Chatham Maritime, Kent, UK
| | | | | | | | | |
Collapse
|
34
|
Birch RE, Schwiebert EM, Peppiatt-Wildman CM, Wildman SS. Emerging key roles for P2X receptors in the kidney. Front Physiol 2013; 4:262. [PMID: 24098285 PMCID: PMC3785026 DOI: 10.3389/fphys.2013.00262] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/05/2013] [Indexed: 12/29/2022] Open
Abstract
P2X ionotropic non-selective cation channels are expressed throughout the kidney and are activated in a paracrine or autocrine manner following the binding of extracellular ATP and related extracellular nucleotides. Whilst there is a wealth of literature describing a regulatory role of P2 receptors (P2R) in the kidney, there are significantly less data on the regulatory role of P2X receptors (P2XR) compared with that described for metabotropic P2Y. Much of the historical literature describing a role for P2XR in the kidney has focused heavily on the role of P2X1R in the autoregulation of renal blood flow. More recently, however, there has been a plethora of manuscripts providing compelling evidence for additional roles for P2XR in both kidney health and disease. This review summarizes the current evidence for the involvement of P2XR in the regulation of renal tubular and vascular function, and highlights the novel data describing their putative roles in regulating physiological and pathophysiological processes in the kidney.
Collapse
Affiliation(s)
- R. E. Birch
- Medway School of Pharmacy, The Universities of Kent and GreenwichKent, UK
| | | | | | - S. S. Wildman
- Medway School of Pharmacy, The Universities of Kent and GreenwichKent, UK
| |
Collapse
|
35
|
Craigie E, Birch RE, Unwin RJ, Wildman SS. The relationship between P2X4 and P2X7: a physiologically important interaction? Front Physiol 2013; 4:216. [PMID: 23966951 PMCID: PMC3744038 DOI: 10.3389/fphys.2013.00216] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/27/2013] [Indexed: 11/24/2022] Open
Abstract
Purinergic signaling within the kidney is becoming an important focus in the study of renal health and disease. The effectors of ATP signaling, the P2Y and P2X receptors, are expressed to varying extents in and along the nephron. There are many studies demonstrating the importance of the P2Y2 receptor on kidney function, and other P2 receptors are now emerging as participants in renal regulation. The P2X4 receptor has been linked to epithelial sodium transport in the nephron and expression levels of the P2X7 receptor are up-regulated in certain pathophysiological states. P2X7 antagonism has been shown to ameliorate rodent models of DOCA salt-induced hypertension and P2X4 null mice are hypertensive. Interestingly, polymorphisms in the genetic loci of P2X4 and P2X7 have been linked to blood pressure variation in human studies. In addition to the increasing evidence linking these two P2X receptors to renal function and health, a number of studies link the two receptors in terms of physical associations between their subunits, demonstrated both in vitro and in vivo. This review will analyze the current literature regarding interactions between P2X4 and P2X7 and assess the potential impact of these with respect to renal function.
Collapse
Affiliation(s)
- Eilidh Craigie
- Centre for Nephrology, UCL Medical School, University College London London, UK
| | | | | | | |
Collapse
|
36
|
Arulkumaran N, Turner CM, Sixma ML, Singer M, Unwin R, Tam FWK. Purinergic signaling in inflammatory renal disease. Front Physiol 2013; 4:194. [PMID: 23908631 PMCID: PMC3725473 DOI: 10.3389/fphys.2013.00194] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/05/2013] [Indexed: 11/21/2022] Open
Abstract
Extracellular purines have a role in renal physiology and adaption to inflammation. However, inflammatory renal disease may be mediated by extracellular purines, resulting in renal injury. The role of purinergic signaling is dependent on the concentrations of extracellular purines. Low basal levels of purines are important in normal homeostasis and growth. Concentrations of extracellular purines are significantly elevated during inflammation and mediate either an adaptive role or propagate local inflammation. Adenosine signaling mediates alterations in regional renal blood flow by regulation of the renal microcirculation, tubulo-glomerular feedback, and tubular transport of sodium and water. Increased extracellular ATP and renal P2 receptor-mediated inflammation are associated with various renal diseases, including hypertension, diabetic nephropathy, and glomerulonephritis. Experimental data suggests P2 receptor deficiency or receptor antagonism is associated with amelioration of antibody-mediated nephritis, suggesting a pathogenic (rather than adaptive) role of purinergic signaling. We discuss the role of extracellular nucleotides in adaptation to ischemic renal injury and in the pathogenesis of inflammatory renal disease.
Collapse
Affiliation(s)
- Nishkantha Arulkumaran
- Imperial College Kidney and Transplant Institute, Imperial College London, Hammersmith Hospital London, UK ; Division of Medicine, Bloomsbury Institute of Intensive Care Medicine, University College London London, UK
| | | | | | | | | | | |
Collapse
|
37
|
Birch R, Scott‐Ward T, Tam FWK, Peppiatt‐Wildman CM, Unwin RJ, Wildman SSP. Interdependent expression of P2X receptors in the mouse kidney: P2X4‐P2X7 receptor “cross‐talk”. FASEB J 2013. [DOI: 10.1096/fasebj.27.1_supplement.884.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rebecca Birch
- Medway School of PharmacyUniversities of Kent and GreenwichKentUnited Kingdom
| | - Toby Scott‐Ward
- Medway School of PharmacyUniversities of Kent and GreenwichKentUnited Kingdom
| | - Frederick W K Tam
- Kidney and Transplant InstituteImperial CollegeHammersmith HospitalLondonUnited Kingdom
| | | | - Robert J Unwin
- Department of PhysiologyUCL Medical SchoolRoyal Free HospitalLondonUnited Kingdom
| | - Scott S P Wildman
- Medway School of PharmacyUniversities of Kent and GreenwichKentUnited Kingdom
| |
Collapse
|
38
|
Zerpa H, Crawford C, Knight GE, Fordham AF, Janska SE, Peppiatt-Wildman CM, Elliott J, Burnstock G, Wildman SS. Extracellular ATP signaling in equine digital blood vessels. Eur J Pharmacol 2013; 702:242-9. [PMID: 23370179 DOI: 10.1016/j.ejphar.2013.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 12/20/2012] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
Abstract
The functional distribution of ATP-activated P2 receptors is well characterized for many blood vessels, but not in the equine digital vasculature, which is a superficial vascular bed that displays thermoregulatory functions and has been implicated in ischemia-reperfusion injuries of the hoof. Isolated equine digital arteries (EDA) and veins (EDV) were submitted to isometric tension studies, whereby electric field stimulation (EFS) and concentration-response curves to exogenously applied agonists were constructed under low tone conditions. Additionally, immunofluorescent localization of P2X and P2Y receptor subtypes was performed. EFS-induced constriction was abolished by tetrodotoxin (1 μM, n=4). Endothelium denudation did not modify the EFS-induced constriction (n=3). The EFS-induced constriction in EDA was inhibited by phentolamine (67.7±1.8%, n=6; 10 μM), and by the non-selective P2 receptor antagonist suramin (46.2±1.3%, n=6; 10 μM). EFS-induced constriction in EDV was reduced by suramin (48.2±2.4%, n=6; 10 μM), the P2 receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (58.3±4.5%, n=6; 10 μM), and phentolamine (23.2±2.5%, n=6; 10 μM). Exogenous methoxamine and ATP mimicked EFS-induced constriction in EDA and EDV. Immunostaining for P2X1, P2X2 and P2X3, and, for P2X1 and P2X7 receptor subunits were observed in EDA and EDV smooth muscle and adventitia, respectively. ATP and noradrenaline are co-transmitters in sympathetic nerves supplying the equine digital vasculature, noradrenaline being the dominant agonist in EDA, and ATP in EDV. In conclusion, P2X receptors mediate vasoconstriction in EDA and EDV, although different P2X subunits are involved in these vessels. The physiological significance of this finding in relation to thermoregulatory functions and equine laminitis is discussed.
Collapse
Affiliation(s)
- Hector Zerpa
- Biomedical Department, Faculty of Veterinary Sciences, Central University of Venezuela, Maracay, Bolivarian Republic of Venezuela.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Patel AB, Frindt G, Palmer LG. Feedback inhibition of ENaC during acute sodium loading in vivo. Am J Physiol Renal Physiol 2012; 304:F222-32. [PMID: 23171553 DOI: 10.1152/ajprenal.00596.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The epithelial Na(+) channel (ENaC) is tightly regulated by sodium intake to maintain whole body sodium homeostasis. In addition, ENaC is inhibited by high levels of intracellular Na(+) [Na(+)](i), presumably to prevent cell Na(+) overload and swelling. However, it is not clear if this regulation is relevant in vivo. We show here that in rats, an acute (4 h) oral sodium load decreases whole-cell amiloride-sensitive currents (I(Na)) in the cortical collecting duct (CCD) even when plasma aldosterone levels are maintained high by infusing the hormone. This was accompanied by decreases in whole-kidney cleaved α-ENaC (2.6 fold), total β-ENaC (1.7 fold), and cleaved γ-ENaC (6.2 fold). In addition, cell-surface β- and γ-ENaC expression was measured using in situ biotinylation. There was a decrease in cell-surface core-glycosylated (2.2 fold) and maturely glycosylated (4.9 fold) β-ENaC and cleaved γ-ENaC (4.7 fold). There were no significant changes for other apical sodium transporters. To investigate the role of increases in Na(+) entry and presumably [Na(+)](i) on ENaC, animals were infused with amiloride prior to and during sodium loading. Blocking Na(+) entry did not inhibit the effect of resalting on I(Na). However, amiloride did prevent decreases in ENaC expression, an effect that was not mimicked by hydrochlorothiazide administration. Na(+) entry and presumably [Na(+)](i) can regulate ENaC expression but does not fully account for the aldosterone-independent decrease in I(Na) during an acute sodium load.
Collapse
Affiliation(s)
- Ankit B Patel
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | |
Collapse
|
40
|
Abstract
Cellular release of nucleotides is of physiological importance to regulate and maintain cell function and integrity. Also in the tubular and collecting duct system of the kidney, nucleotides are released in response to changes in cell volume or luminal flow rate and act in a paracrine and autocrine way on basolateral and luminal P2Y receptors. Recent studies using gene knockout mice assigned a prominent role to G protein-coupled P2Y(2) receptors, which are activated by both ATP and UTP. The antidiuretic hormone, arginine-vasopressin (AVP), and possibly an increase in collecting duct cell volume induce ATP release. The subsequent activation of P2Y(2) receptors inhibits AVP-induced cAMP formation and water reabsorption, which stabilizes cell volume and facilitates water excretion. An increase in NaCl intake enhances luminal release of ATP and UTP in the aldosterone-sensitive distal nephron which by activating apical P2Y(2) receptors and phospholipase C lowers the open probability of the epithelial sodium channel ENaC, thereby facilitating sodium excretion. Thus, the renal ATP/UTP/P2Y(2) receptor system not only serves to preserve cell volume and integrity but is also regulated by stimuli that derive from body NaCl homeostasis. The system also inhibits ENaC activity during aldosterone escape, i.e. when sodium reabsorption via ENaC is inappropriately high. The P2Y(2) receptor tone inhibits the expression and activity of the Na-K-2Cl cotransporter NKCC2 in the thick ascending limb and mediates vasodilation. While the role of other P2Y receptors in the kidney is less clear, the ATP/UTP/P2Y(2) receptor system regulates NaCl and water homeostasis and blood pressure.
Collapse
Affiliation(s)
- Volker Vallon
- Department of Medicine, University of California San Diego, San Diego, CA 92161, USA; VA San Diego Healthcare System, San Diego California, San Diego, CA 92161, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
41
|
Zhang Y, Morris KL, Sparrow SK, Dwyer KM, Enjyoji K, Robson SC, Kishore BK. Defective renal water handling in transgenic mice over-expressing human CD39/NTPDase1. Am J Physiol Renal Physiol 2012; 303:F420-30. [PMID: 22622462 DOI: 10.1152/ajprenal.00060.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ectonucleoside triphosphate diphosphohydrolase-1 hydrolyzes extracellular ATP and ADP to AMP. Previously, we showed that CD39 is expressed at several sites within the kidney and thus may impact the availability of type 2 purinergic receptor (P2-R) ligands. Because P2-Rs appear to regulate urinary concentrating ability, we have evaluated renal water handling in transgenic mice (TG) globally overexpressing hCD39. Under basal conditions, TG mice exhibited significantly impaired urinary concentration and decreased protein abundance of AQP2 in the kidney compared with wild-type (WT) mice. Urinary excretion of total nitrates/nitrites was significantly higher in TG mice, but the excretion of AVP or PGE(2) was equivalent to control WT mice. There were no significant differences in electrolyte-free water clearance or fractional excretion of sodium. Under stable hydrated conditions (gelled diet feeding), the differences between the WT and TG mice were negated, but the decrease in urine osmolality persisted. When water deprived, TG mice failed to adequately concentrate urine and exhibited impaired AVP responses. However, the increases in urinary osmolalities in response to subacute dDAVP or chronic AVP treatment were similar in TG and WT mice. These observations suggest that TG mice have impaired urinary concentrating ability despite normal AVP levels. We also note impaired AVP release in response to water deprivation but that TG kidneys are responsive to exogenous dDAVP or AVP. We infer that heightened nucleotide scavenging by increased levels of CD39 altered the release of endogenous AVP in response to dehydration. We propose that ectonucleotidases and modulated purinergic signaling impact urinary concentration and indicate potential utility of targeted therapy for the treatment of water balance disorders.
Collapse
Affiliation(s)
- Yue Zhang
- Nephrology Research, Department of Veterans Administration Salt Lake City Health Care System, Salt Lake City, UT 84148, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Intrinsic control of sodium excretion in the distal nephron by inhibitory purinergic regulation of the epithelial Na(+) channel. Curr Opin Nephrol Hypertens 2012; 21:52-60. [PMID: 22143248 DOI: 10.1097/mnh.0b013e32834db4a0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW This review summarizes the new evidence for an intrinsic control system in the aldosterone-sensitive distal nephron in which purinergic signaling regulates sodium transport and governs renal sodium excretion. RECENT FINDINGS Electrophysiological studies identify epithelial Na(+) channels (ENaC) as final effectors of purinergic signaling via P2Y(2) receptors in the distal nephron. Inhibition of ENaC by autocrine/paracrine purinergic signaling reduces sodium reabsorption allowing an appropriately graded pressure-natriuresis response when delivery of sodium to the distal nephron is high. Disruption of this intrinsic control mechanism decreases sodium excretion and therefore has a prohypertensive effect. Because purinergic inhibition of ENaC is tonic yet submaximal, its enhancement increases sodium excretion and therefore has an antihypertensive action. SUMMARY Purinergic inhibitory regulation of ENaC is a key component of an intrinsic control system that enables the distal nephron to respond appropriately to the delivered load of sodium. This control system is physiologically important and functions in parallel with extrinsic control by the renin-angiotensin-aldosterone system, enabling sodium excretion to keep pace with sodium intake, especially when intake is high, and thereby maintaining arterial blood pressure. Disruption of intrinsic control of sodium transport by the distal nephron likely contributes to diseases such as arterial hypertension.
Collapse
|
43
|
|
44
|
Palmer LG, Patel A, Frindt G. Regulation and dysregulation of epithelial Na+ channels. Clin Exp Nephrol 2011; 16:35-43. [PMID: 22038262 DOI: 10.1007/s10157-011-0496-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 03/25/2011] [Indexed: 12/15/2022]
Affiliation(s)
- Lawrence G Palmer
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA.
| | | | | |
Collapse
|
45
|
|
46
|
Purinergic activation of Ca2+-permeable TRPV4 channels is essential for mechano-sensitivity in the aldosterone-sensitive distal nephron. PLoS One 2011; 6:e22824. [PMID: 21850238 PMCID: PMC3151261 DOI: 10.1371/journal.pone.0022824] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 07/03/2011] [Indexed: 11/19/2022] Open
Abstract
Mechanical forces are known to induce increases of [Ca2+]i in the aldosterone-sensitive distal nephron (ASDN) cells to regulate epithelial transport. At the same time, mechanical stress stimulates ATP release from ASDN cells. In this study, we combined ratiometric Fura-2 based monitoring of [Ca2+]i in freshly isolated split-opened ASDN with targeted deletion of P2Y2 and TRPV4 in mice to probe a role for purinergic signaling in mediating mechano-sensitive responses in ASDN cells. ATP application causes a reproducible transient Ca2+ peak followed by a sustained plateau. Individual cells of the cortical collecting duct (CCD) and the connecting tubule (CNT) respond to purinergic stimulation with comparative elevations of [Ca2+]i. Furthermore, ATP-induced Ca2+-responses are nearly identical in both principal (AQP2-positive) and intercalated (AQP2-negative) cells as was confirmed using immunohistochemistry in split-opened ASDN. UTP application produces elevations of [Ca2+]i similar to that observed with ATP suggesting a dominant role of P2Y2-like receptors in generation of [Ca2+]i response. Indeed, genetic deletion of P2Y2 receptors decreases the magnitude of ATP-induced and UTP-induced Ca2+ responses by more than 70% and 90%, respectively. Both intracellular and extracellular sources of Ca2+ appeared to contribute to the generation of ATP-induced Ca2+ response in ASDN cells. Importantly, flow- and hypotonic-induced Ca2+ elevations are markedly blunted in P2Y2 −/− mice. We further demonstrated that activation of mechano-sensitive TRPV4 channel plays a major role in the sustained [Ca2+]i elevation during purinergic stimulation. Consistent with this, ATP-induced Ca2+ plateau are dramatically attenuated in TRV4 −/− mice. Inhibition of TRPC channels with 10 µM BTP2 also decreased ATP-induced Ca2+ plateau whilst to a lower degree than that observed with TRPV4 inhibition/genetic deletion. We conclude that stimulation of purinergic signaling by mechanical stimuli leads to activation of TRPV4 and, to a lesser extent, TRPCs channels, and this is an important component of mechano-sensitive response of the ASDN.
Collapse
|
47
|
Crawford C, Kennedy-Lydon TM, Callaghan H, Sprott C, Simmons RL, Sawbridge L, Syme HM, Unwin RJ, Wildman SSP, Peppiatt-Wildman CM. Extracellular nucleotides affect pericyte-mediated regulation of rat in situ vasa recta diameter. Acta Physiol (Oxf) 2011; 202:241-51. [PMID: 21624094 DOI: 10.1111/j.1748-1716.2011.02310.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM We hypothesized that extracellular nucleotides, established as being released from renal tubular epithelial cells, act at pericytes to regulate vasa recta capillary diameter. METHODS A rat live kidney slice model and video imaging techniques were used to investigate the effects of extracellular nucleotides on in situ (subsurface) vasa recta diameter at pericyte and non-pericyte sites. In addition, RT-qPCR was used to quantify P2 receptor mRNA expression in isolated vasa recta. RESULTS Extracellular ATP, UTP, benzylbenzyl ATP (BzATP) or 2-methylthioATP (2meSATP) evoked a significantly greater vasoconstriction of subsurface vasa recta at pericytes than at non-pericyte sites. The rank order of agonist potency was BzATP = 2meSATP > ATP = UTP. The vasoconstriction evoked at pericyte sites by ATP was significantly attenuated by the P2 receptor antagonists suramin, pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) (PPADS) or Reactive Blue-2 (RB-2). UTP-evoked vasoconstriction at pericytes was attenuated by suramin or RB-2 but not PPADS. Interestingly, suramin or PPADS, when applied in the absence of a P2 receptor agonist, evoked a weak but significant vasoconstriction of vasa recta at pericyte sites, suggesting tonic vasodilation by nucleotides. Significant levels of P2X(1, 3 and 7) and P2Y(4 and 6) receptor mRNA were detected in vasa recta. CONCLUSION Extracellular nucleotides act at pericytes to cause vasoconstriction of in situ vasa recta. Pharmacological characterization, supported by RT-qPCR data, suggests that P2X(1 and 7) and P2Y(4) receptors mediate nucleotide-evoked vasoconstriction of vasa recta by pericytes. We propose that nucleotides released from renal tubular epithelial cells, in close proximity to vasa recta capillaries, are key in regulating renal medullary blood flow.
Collapse
Affiliation(s)
- C Crawford
- Urinary System Physiology Unit, Department of Veterinary Basic Sciences, Royal Veterinary College, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Vallon V, Rieg T. Regulation of renal NaCl and water transport by the ATP/UTP/P2Y2 receptor system. Am J Physiol Renal Physiol 2011; 301:F463-75. [PMID: 21715471 DOI: 10.1152/ajprenal.00236.2011] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Extracellular nucleotides (e.g., ATP) activate ionotropic P2X and metabotropic P2Y receptors in the plasma membrane to regulate and maintain cell function and integrity. This includes the renal tubular and collecting duct system, where the locally released nucleotides act in a paracrine and autocrine way to regulate transport of electrolytes and water and maintain cell volume. A prominent role has been assigned to Gq-coupled P2Y(2) receptors, which are typically activated by both ATP and UTP. Studies in gene knockout mice revealed an antihypertensive activity of P2Y(2) receptors that is linked to vasodilation and an inhibitory influence on renal salt reabsorption. Flow induces apical ATP release in the thick ascending limb, and first evidence indicates an inhibitory influence of P2Y(2) receptor tone on the expression and activity of the Na-K-2Cl cotransporter NKCC2 in this segment. The apical ATP/UTP/P2Y(2) receptor system in the connecting tubule/cortical collecting duct mediates the inhibitory effect of dietary salt on the open probability of the epithelial sodium channel ENaC and inhibits ENaC activity during aldosterone escape. Connexin 30 has been implicated in the luminal release of the ATP involved in the regulation of ENaC. An increase in collecting duct cell volume in response to manipulating water homeostasis increases ATP release. The subsequent activation of P2Y(2) receptors inhibits vasopressin-induced cAMP formation and water reabsorption, which facilitates water excretion and stabilizes cell volume. Thus recent studies have established the ATP/UTP/P2Y(2) receptor system as a relevant regulator of renal salt and water homeostasis and blood pressure regulation. The pathophysiological relevance and therapeutic potential remains to be determined, but dual effects of P2Y(2) receptor activation on both the vasculature and renal salt reabsorption implicate these receptors as potential therapeutic targets in hypertension.
Collapse
Affiliation(s)
- Volker Vallon
- Dept. of Medicine, Univ. of California San Diego, 92161, USA.
| | | |
Collapse
|
49
|
Holtzclaw JD, Cornelius RJ, Hatcher LI, Sansom SC. Coupled ATP and potassium efflux from intercalated cells. Am J Physiol Renal Physiol 2011; 300:F1319-26. [PMID: 21454249 PMCID: PMC3119139 DOI: 10.1152/ajprenal.00112.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 03/24/2011] [Indexed: 12/27/2022] Open
Abstract
Increased flow in the distal nephron induces K secretion through the large-conductance, calcium-activated K channel (BK), which is primarily expressed in intercalated cells (IC). Since flow also increases ATP release from IC, we hypothesized that purinergic signaling has a role in shear stress (τ; 10 dynes/cm(2)) -induced, BK-dependent, K efflux. We found that 10 μM ATP led to increased IC Ca concentration, which was significantly reduced in the presence of the P(2) receptor blocker suramin or calcium-free buffer. ATP also produced BK-dependent K efflux, and IC volume decrease. Suramin inhibited τ-induced K efflux, suggesting that K efflux is at least partially dependent on purinergic signaling. BK-β4 small interfering (si) RNA, but not nontarget siRNA, decreased ATP secretion and both ATP-dependent and τ-induced K efflux. Similarly, carbenoxolone (25 μM), which blocks connexins, putative ATP pathways, blocked τ-induced K efflux and ATP secretion. Compared with BK-β4(-/-) mice, wild-type mice with high distal flows exhibited significantly more urinary ATP excretion. These data demonstrate coupled electrochemical efflux between K and ATP as part of the mechanism for τ-induced ATP release in IC.
Collapse
Affiliation(s)
- J David Holtzclaw
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5850, USA
| | | | | | | |
Collapse
|
50
|
Rieg T, Gerasimova M, Boyer JL, Insel PA, Vallon V. P2Y₂ receptor activation decreases blood pressure and increases renal Na⁺ excretion. Am J Physiol Regul Integr Comp Physiol 2011; 301:R510-8. [PMID: 21613580 DOI: 10.1152/ajpregu.00148.2011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ATP and UTP are endogenous agonists of P2Y(2/4) receptors. To define the in vivo effects of P2Y(2) receptor activation on blood pressure and urinary excretion, we compared the response to INS45973, a P2Y(2/4) receptor agonist and UTP analog, in wild-type (WT) and P2Y(2) receptor knockout (P2Y(2)-/-) mice. INS45973 was administered intravenously as a bolus injection or continuous infusion to determine effects on blood pressure and renal function, respectively. Within seconds, bolus application of INS45973 (0.1 to 3 mg/kg body wt) dose-dependently decreased blood pressure in WT (maximum response -35 ± 2 mmHg) and to a similar extent in endothelial nitric oxide synthase knockout mice. By contrast, blood pressure increased in P2Y(2)-/- (maximum response +18 ± 1 mmHg) but returned to basal levels within 60 s. Continuous infusion of INS45973 (25 to 750 μg·min(-1)·kg(-1) body wt) dose-dependently increased urinary excretion of Na(+) in WT (maximum response +46 ± 15%) but reduced Na(+) excretion in P2Y(2)-/- (maximum responses of -45 ± 15%) mice. In renal clearance experiments, INS45973 did not affect glomerular filtration rate but lowered blood pressure and increased fractional excretion of fluid, Na(+), and K(+) in WT relative to P2Y(2)-/- mice. The blood pressure responses to INS45973 are consistent with P2Y(2) receptor-mediated NO-independent vasodilation and implicate responses to endothelium-derived hyperpolarizing factor, and P2Y(2) receptor-independent vasoconstriction, probably via activation of P2Y(4) receptors on smooth muscle. Systemic activation of P2Y(2) receptors thus lowers blood pressure and inhibits renal Na(+) reabsorption, effects suggesting the potential utility of P2Y(2) agonism in the treatment of hypertension.
Collapse
Affiliation(s)
- Timo Rieg
- Department of Medicine, University of California San Diego, La Jolla, California 92161, USA.
| | | | | | | | | |
Collapse
|