1
|
Xia L, Yuan H, Gao Z, Lv Y, Xu L, Hu F. The role of mitochondrial reactive oxygen species in initiating mitochondrial damage and inflammation in wasp-venom-induced acute kidney injury. J Toxicol Pathol 2025; 38:17-26. [PMID: 39839726 PMCID: PMC11745504 DOI: 10.1293/tox.2024-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/02/2024] [Indexed: 01/23/2025] Open
Abstract
Acute kidney injury induced by stings from multiple wasps is a medical emergency and is a driving factor of acute renal dysfunction. Numerous studies have shown that mitochondrial reactive oxygen species (mtROS) play a key role in ischemia-reperfusion injury-, cisplatin-, and sepsis-induced acute kidney injury. However, the role of mtROS and its underlying mechanisms in wasp-venom-induced acute kidney injury remain inconclusive. In this study, we investigated the role and mechanisms of mtROS in mitochondrial damage and inflammation in a mouse model of acute kidney injury induced using wasp venom. Changes in mitochondrial function, transcription factor A (TFAM) expression, and DNA maintenance levels, renal function, stimulator of interferon gene (STING) expression, and inflammatory mediator levels in model mice with or without the mtROS scavenger Mito-Tempo were analyzed in vivo. Downregulation of mtROS levels reversed renal damage and mitochondrial dysfunction, and reduced STING expression and inflammation in the kidneys of model mice. The suppression of mtROS levels also improved the decrease in TFAM levels and mitochondrial DNA copy numbers in the kidneys of the model mice. In summary, the existing evidence in this study shows that mtROS contribute significantly to mitochondrial damage and inflammation in acute kidney injury induced by wasp venom.
Collapse
Affiliation(s)
- Lingya Xia
- School of Medicine, Wuhan University of Science and
Technology, Wuhan 430065, China
- Department of Nephrology, Xiangyang Central Hospital,
Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441000, China
| | - Hai Yuan
- Department of Nephrology, Xiangyang Central Hospital,
Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441000, China
| | - Zhao Gao
- Department of Nephrology, Xiangyang Central Hospital,
Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441000, China
| | - Ying Lv
- Department of Nephrology, Xiangyang Central Hospital,
Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441000, China
| | - Liang Xu
- Department of Nephrology, Xiangyang Central Hospital,
Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441000, China
| | - Fengqi Hu
- Department of Nephrology, Xiangyang Central Hospital,
Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441000, China
| |
Collapse
|
2
|
Bradshaw PC, Aldridge JL, Jamerson LE, McNeal C, Pearson AC, Frasier CR. The Role of Cardiolipin in Brain Bioenergetics, Neuroinflammation, and Neurodegeneration. Mol Neurobiol 2024:10.1007/s12035-024-04630-6. [PMID: 39557801 DOI: 10.1007/s12035-024-04630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Cardiolipin (CL) is an essential phospholipid that supports the functions of mitochondrial membrane transporters and oxidative phosphorylation complexes. Due to the high level of fatty acyl chain unsaturation, CL is prone to peroxidation during aging, neurodegenerative disease, stroke, and traumatic brain or spinal cord injury. Therefore, effective therapies that stabilize and preserve CL levels or enhance healthy CL fatty acyl chain remodeling are needed. In the last few years, great strides have been made in determining the mechanisms through which precursors for CL biosynthesis, such as phosphatidic acid (PA), are transferred from the ER to the outer mitochondrial membrane (OMM) and then to the inner mitochondrial membrane (IMM) where CL biosynthesis takes place. Many neurodegenerative disorders show dysfunctional mitochondrial ER contact sites that may perturb PA transport and CL biosynthesis. However, little is currently known on how neuronal mitochondria regulate the synthesis, remodeling, and degradation of CL. This review will focus on recent developments on the role of CL in neurological disorders. Importantly, due to CL species in the brain being more unsaturated and diverse than in other tissues, this review will also identify areas where more research is needed to determine a complete picture of brain and spinal cord CL function so that effective therapeutics can be developed to restore the rates of CL synthesis and remodeling in neurological disorders.
Collapse
Affiliation(s)
- Patrick C Bradshaw
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Box 70582, Johnson City, TN, 37614, USA
| | - Jessa L Aldridge
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Box 70582, Johnson City, TN, 37614, USA
| | - Leah E Jamerson
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Box 70582, Johnson City, TN, 37614, USA
| | - Canah McNeal
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Box 70582, Johnson City, TN, 37614, USA
| | - A Catherine Pearson
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Chad R Frasier
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Box 70582, Johnson City, TN, 37614, USA.
| |
Collapse
|
3
|
Yao S, Wang Y, Mou X, Yang X, Cai Y. Recent advances of photoresponsive nanomaterials for diagnosis and treatment of acute kidney injury. J Nanobiotechnology 2024; 22:676. [PMID: 39501286 PMCID: PMC11536863 DOI: 10.1186/s12951-024-02906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/04/2024] [Indexed: 11/09/2024] Open
Abstract
Non-invasive imaging in the near-infrared region (NIR) offers enhanced tissue penetration, reduced spontaneous fluorescence of biological tissues, and improved signal-to-noise ratio (SNR), rendering it more suitable for in vivo deep tissue imaging. In recent years, a plethora of NIR photoresponsive materials have been employed for disease diagnosis, particularly acute kidney injury (AKI). These encompass inorganic nonmetallic materials such as carbon (C), silicon (Si), phosphorus (P), and upconversion nanoparticles (UCNPs); precious metal nanoparticles like gold and silver; as well as small molecule and organic semiconductor polymer nanoparticles with near infrared responsiveness. These materials enable effective therapy triggered by NIR light and serve as valuable tools for monitoring AKI in living systems. The review provides a concise overview of the current state and pathological characteristics of AKI, followed by an exploration of the application of nanomaterials and photoresponsive nanomaterials in AKI. Finally, it presents the design challenges and prospects associated with NIR photoresponsive materials in AKI.
Collapse
Affiliation(s)
- Shijie Yao
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Yinan Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| | - Xianghong Yang
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| | - Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- Clinical Research Institute, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
4
|
Maiwall R, Kulkarni AV, Arab JP, Piano S. Acute liver failure. Lancet 2024; 404:789-802. [PMID: 39098320 DOI: 10.1016/s0140-6736(24)00693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 08/06/2024]
Abstract
Acute liver failure (ALF) is a life-threatening disorder characterised by rapid deterioration of liver function, coagulopathy, and hepatic encephalopathy in the absence of pre-existing liver disease. The cause of ALF varies across the world. Common causes of ALF in adults include drug toxicity, hepatotropic and non-hepatotropic viruses, herbal and dietary supplements, antituberculosis drugs, and autoimmune hepatitis. The cause of liver failure affects the management and prognosis, and therefore extensive investigation for cause is strongly suggested. Sepsis with multiorgan failure and cerebral oedema remain the leading causes of death in patients with ALF and early identification and appropriate management can alter the course of ALF. Liver transplantation is the best current therapy, although the role of artificial liver support systems, particularly therapeutic plasma exchange, can be useful for patients with ALF, especially in non-transplant centres. In this Seminar, we discuss the cause, prognostic models, and management of ALF.
Collapse
Affiliation(s)
- Rakhi Maiwall
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India.
| | - Anand V Kulkarni
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, India
| | - Juan Pablo Arab
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Salvatore Piano
- Unit of Internal Medicine and Hepatology, Department of Medicine, University and Hospital of Padova, Padova, Italy
| |
Collapse
|
5
|
Kumar A, Epler K, DeWolf S, Barnes L, Hepokoski M. Bidirectional pressure: a mini review of ventilator-lung-kidney interactions. Front Physiol 2024; 15:1428177. [PMID: 38966229 PMCID: PMC11222611 DOI: 10.3389/fphys.2024.1428177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
Acute kidney injury and respiratory failure that requires mechanical ventilation are both common complications of critical illnesses. Failure of either of these organ systems also increases the risk of failure to the other. As a result, there is a high incidence of patients with concomitant acute kidney injury and the need for mechanical ventilation, which has a devasting impact on intensive care unit outcomes, including mortality. Despite decades of research into the mechanisms of ventilator-lung-kidney interactions, several gaps in knowledge remain and current treatment strategies are primarily supportive. In this review, we outline our current understanding of the mechanisms of acute kidney injury due to mechanical ventilation including a discussion of; 1) The impact of mechanical ventilation on renal perfusion, 2) activation of neurohormonal pathways by positive pressure ventilation, and 3) the role of inflammatory mediators released during ventilator induced lung injury. We also provide a review of the mechanisms by which acute kidney injury increases the risk of respiratory failure. Next, we outline a summary of the current therapeutic approach to preventing lung and kidney injury in the critically ill, including fluid and vasopressor management, ventilator strategies, and treatment of acute kidney injury. Finally, we conclude with a discussion outlining opportunities for novel investigations that may provide a rationale for new treatment approaches.
Collapse
Affiliation(s)
- Avnee Kumar
- VA San Diego Healthcare System, San Diego, CA, United States
- Division of Pulmonary and Critical Care and Sleep Medicine, University of California San Diego, San Diego, CA, United States
| | - Katie Epler
- VA San Diego Healthcare System, San Diego, CA, United States
- Division of Pulmonary and Critical Care and Sleep Medicine, University of California San Diego, San Diego, CA, United States
| | - Sean DeWolf
- VA San Diego Healthcare System, San Diego, CA, United States
- Division of Pulmonary and Critical Care and Sleep Medicine, University of California San Diego, San Diego, CA, United States
| | - Laura Barnes
- VA San Diego Healthcare System, San Diego, CA, United States
- Division of Pulmonary and Critical Care and Sleep Medicine, University of California San Diego, San Diego, CA, United States
| | - Mark Hepokoski
- VA San Diego Healthcare System, San Diego, CA, United States
- Division of Pulmonary and Critical Care and Sleep Medicine, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
6
|
Zhao X, Li Y, Yu J, Teng H, Wu S, Wang Y, Zhou H, Li F. Role of mitochondria in pathogenesis and therapy of renal fibrosis. Metabolism 2024; 155:155913. [PMID: 38609039 DOI: 10.1016/j.metabol.2024.155913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Renal fibrosis, specifically tubulointerstitial fibrosis, represents the predominant pathological consequence observed in the context of progressive chronic kidney conditions. The pathogenesis of renal fibrosis encompasses a multifaceted interplay of mechanisms, including but not limited to interstitial fibroblast proliferation, activation, augmented production of extracellular matrix (ECM) components, and impaired ECM degradation. Notably, mitochondria, the intracellular organelles responsible for orchestrating biological oxidation processes in mammalian cells, assume a pivotal role within this intricate milieu. Mitochondrial dysfunction, when manifest, can incite a cascade of events, including inflammatory responses, perturbed mitochondrial autophagy, and associated processes, ultimately culminating in the genesis of renal fibrosis. This comprehensive review endeavors to furnish an exegesis of mitochondrial pathophysiology and biogenesis, elucidating the precise mechanisms through which mitochondrial aberrations contribute to the onset and progression of renal fibrosis. We explored how mitochondrial dysfunction, mitochondrial cytopathy and mitochondrial autophagy mediate ECM deposition and renal fibrosis from a multicellular perspective of mesangial cells, endothelial cells, podocytes, macrophages and fibroblasts. Furthermore, it succinctly encapsulates the most recent advancements in the realm of mitochondrial-targeted therapeutic strategies aimed at mitigating renal fibrosis.
Collapse
Affiliation(s)
- Xiaodong Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yunkuo Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Jinyu Yu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Haolin Teng
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Shouwang Wu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Faping Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
7
|
Islamuddin M, Qin X. Renal macrophages and NLRP3 inflammasomes in kidney diseases and therapeutics. Cell Death Discov 2024; 10:229. [PMID: 38740765 PMCID: PMC11091222 DOI: 10.1038/s41420-024-01996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Macrophages are exceptionally diversified cell types and perform unique features and functions when exposed to different stimuli within the specific microenvironment of various kidney diseases. In instances of kidney tissue necrosis or infection, specific patterns associated with damage or pathogens prompt the development of pro-inflammatory macrophages (M1). These M1 macrophages contribute to exacerbating tissue damage, inflammation, and eventual fibrosis. Conversely, anti-inflammatory macrophages (M2) arise in the same circumstances, contributing to kidney repair and regeneration processes. Impaired tissue repair causes fibrosis, and hence macrophages play a protective and pathogenic role. In response to harmful stimuli within the body, inflammasomes, complex assemblies of multiple proteins, assume a pivotal function in innate immunity. The initiation of inflammasomes triggers the activation of caspase 1, which in turn facilitates the maturation of cytokines, inflammation, and cell death. Macrophages in the kidneys possess the complete elements of the NLRP3 inflammasome, including NLRP3, ASC, and pro-caspase-1. When the NLRP3 inflammasomes are activated, it triggers the activation of caspase-1, resulting in the release of mature proinflammatory cytokines (IL)-1β and IL-18 and cleavage of Gasdermin D (GSDMD). This activation process therefore then induces pyroptosis, leading to renal inflammation, cell death, and renal dysfunction. The NLRP3-ASC-caspase-1-IL-1β-IL-18 pathway has been identified as a factor in the development of the pathophysiology of numerous kidney diseases. In this review, we explore current progress in understanding macrophage behavior concerning inflammation, injury, and fibrosis in kidneys. Emphasizing the pivotal role of activated macrophages in both the advancement and recovery phases of renal diseases, the article delves into potential strategies to modify macrophage functionality and it also discusses emerging approaches to selectively target NLRP3 inflammasomes and their signaling components within the kidney, aiming to facilitate the healing process in kidney diseases.
Collapse
Affiliation(s)
- Mohammad Islamuddin
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA, 70433, USA.
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| | - Xuebin Qin
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA, 70433, USA.
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
8
|
Sun Q, Kamath P, Sun Y, Liang M, Wu L, Chang E, Chen Q, Alam A, Liu Y, Zhao H, Ma D. Dexmedetomidine attenuates lipopolysaccharide-induced renal cell fibrotic phenotypic changes by inhibiting necroinflammation via activating α 2-adrenoceptor: A combined randomised animal and in vitro study. Biomed Pharmacother 2024; 174:116462. [PMID: 38513598 DOI: 10.1016/j.biopha.2024.116462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Acute kidney injury (AKI) was reported to be one of the initiators of chronic kidney disease (CKD) development. Necroinflammation may contribute to the progression from AKI to CKD. Dexmedetomidine (Dex), a highly selective α2-adrenoreceptor (AR) agonist, has cytoprotective and "anti-" inflammation effects. This study was designed to investigate the anti-fibrotic properties of Dex in sepsis models. METHODS C57BL/6 mice were randomly treated with an i.p. injection of lipopolysaccharides (LPS) (10 mg/kg) alone, LPS with Dex (25 μg/kg), or LPS, Dex and Atipamezole (Atip, an α2-adrenoreceptor antagonist) (500 μg/kg) (n=5/group). Human proximal tubular epithelial cells (HK2) were also cultured and then exposed to LPS (1 μg/ml) alone, LPS and Dex (1 μM), transforming growth factor-beta 1 (TGF-β1) (5 ng/ml) alone, TGF-β1 and Dex, with or without Atip (100 μM) in culture media. Epithelial-mesenchymal transition (EMT), cell necrosis, necroptosis and pyroptosis, and c-Jun N-terminal kinase (JNK) phosphorylation were then determined. RESULTS Dex treatment significantly alleviated LPS-induced AKI, myofibroblast activation, NLRP3 inflammasome activation, and necroptosis in mice. Atip counteracted its protective effects. Dex attenuated LPS or TGF-β1 induced EMT and also prevented necrosis, necroptosis, and pyroptosis in response to LPS stimulation in the HK2 cells. The anti-EMT effects of Dex were associated with JNK phosphorylation. CONCLUSIONS Dex reduced EMT following LPS stimulation whilst simultaneously inhibiting pyroptosis and necroptosis via α2-AR activation in the renal tubular cells. The "anti-fibrotic" and cytoprotective properties and its clinical use of Dex need to be further studied.
Collapse
Affiliation(s)
- Qizhe Sun
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Priyanka Kamath
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Yibing Sun
- Department of Anaesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Min Liang
- Department of Anaesthesiology, the First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Lingzhi Wu
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Enqiang Chang
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Qian Chen
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Azeem Alam
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Yi Liu
- Department of Anaesthesiology, Shanxi Province Cancer Hospital (Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University), Shanxi Province, China
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK; Perioperative and Systems Medicine Laboratory, National Clinical Research Center for Child Health, Children's hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
9
|
Tie H, Kuang G, Gong X, Zhang L, Zhao Z, Wu S, Huang W, Chen X, Yuan Y, Li Z, Li H, Zhang L, Wan J, Wang B. LXA4 protected mice from renal ischemia/reperfusion injury by promoting IRG1/Nrf2 and IRAK-M-TRAF6 signal pathways. Clin Immunol 2024; 261:110167. [PMID: 38453127 DOI: 10.1016/j.clim.2024.110167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/26/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Excessive inflammatory response and increased oxidative stress play an essential role in the pathophysiology of ischemia/reperfusion (I/R)-induced acute kidney injury (IRI-AKI). Emerging evidence suggests that lipoxin A4 (LXA4), as an endogenous negative regulator in inflammation, can ameliorate several I/R injuries. However, the mechanisms and effects of LXA4 on IRI-AKI remain unknown. In this study, A bilateral renal I/R mouse model was used to evaluate the role of LXA4 in wild-type, IRG1 knockout, and IRAK-M knockout mice. Our results showed that LXA4, as well as 5-LOX and ALXR, were quickly induced, and subsequently decreased by renal I/R. LXA4 pretreatment improved renal I/R-induced renal function impairment and renal damage and inhibited inflammatory responses and oxidative stresses in mice kidneys. Notably, LXA4 inhibited I/R-induced the activation of TLR4 signal pathway including decreased phosphorylation of TAK1, p36, and p65, but did not affect TLR4 and p-IRAK-1. The analysis of transcriptomic sequencing data and immunoblotting suggested that innate immune signal molecules interleukin-1 receptor-associated kinase-M (IRAK-M) and immunoresponsive gene 1 (IRG1) might be the key targets of LXA4. Further, the knockout of IRG1 or IRAK-M abolished the beneficial effects of LXA4 on IRI-AKI. In addition, IRG1 deficiency reversed the up-regulation of IRAK-M by LXA4, while IRAK-M knockout had no impact on the IRG1 expression, indicating that IRAK-M is a downstream molecule of IRG1. Mechanistically, we found that LXA4-promoted IRG1-itaconate not only enhanced Nrf2 activation and increased HO-1 and NQO1, but also upregulated IRAK-M, which interacted with TRAF6 by competing with IRAK-1, resulting in deactivation of TLR4 downstream signal in IRI-AKI. These data suggested that LXA4 protected against IRI-AKI via promoting IRG1/Itaconate-Nrf2 and IRAK-M-TRAF6 signaling pathways, providing the rationale for a novel strategy for preventing and treating IRI-AKI.
Collapse
Affiliation(s)
- Hongtao Tie
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Ge Kuang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Xia Gong
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Lidan Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zizuo Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengwang Wu
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Wenya Huang
- Yiling Women and Children's Hospital of Yichang City, Hubei, China
| | - Xiahong Chen
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Yinglin Yuan
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenhan Li
- Department of Endocrinology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Hongzhong Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University; Chongqing, China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Jingyuan Wan
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China..
| | - Bin Wang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China; Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
10
|
Liu X, Li X, Chen Y, Liu X, Liu Y, Wei H, Li N. Systemic immune-inflammation Index is associated with chronic kidney disease in the U.S. population: insights from NHANES 2007-2018. Front Immunol 2024; 15:1331610. [PMID: 38449859 PMCID: PMC10915063 DOI: 10.3389/fimmu.2024.1331610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/07/2024] [Indexed: 03/08/2024] Open
Abstract
Objectives The systemic immune-inflammation index (SII), a novel and systematic inflammatory biomarker that is associated with chronic kidney disease (CKD), has not received much attention. This study aimed to investigate the relationship between SII and CKD in the United States (U.S.) population. Methods Our study ultimately included a nationally representative sample of 10,787 adults who participated in the 2007-2018 National Health and Nutrition Examination Survey. Weighted multivariate logistic regression was used to assess the correlation between SII and CKD, and a restricted cubic spline (RCS) model was subsequently used to explore the non-linear relationship between SII and CKD. Subgroup analyses were performed to further the effects of other covariates on the relationship between SII and CKD. Results Following confounder adjustment, a higher SII was related to the incidence of CKD (OR =1.36; 95% CI, 1.07-1.73; p =0.01), as validated by multivariable logistic regression. The RCS curve revealed a non-linear positive correlation between SII/1000 and CKD incidence (p for non-linear =0.0206). Additionally, subgroup analysis confirmed a stronger correlation for male participants (OR =2.628; 95% CI, 1.829-3.776) than for female participants (OR =1.733; 95% CI, 1.379-2.178) (p for interaction =0.046). Conclusions SII is positively associated with the incidence of CKD among U.S. adults, especially in males. However, further studies are needed to confirm our findings and explore the causal factors that can contribute to the prevention and treatment of CKD.
Collapse
Affiliation(s)
- Xiaoxin Liu
- Department of Nephrology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinyu Li
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yulin Chen
- Department of Nephrology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyu Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanyan Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haotian Wei
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ningxu Li
- Department of Nephrology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
11
|
Watral J, Formanowicz D, Perek B, Kostka-Jeziorny K, Podkowińska A, Tykarski A, Luczak M. Comprehensive proteomics of monocytes indicates oxidative imbalance functionally related to inflammatory response in chronic kidney disease-related atherosclerosis. Front Mol Biosci 2024; 11:1229648. [PMID: 38389898 PMCID: PMC10882078 DOI: 10.3389/fmolb.2024.1229648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/16/2024] [Indexed: 02/24/2024] Open
Abstract
Atherosclerosis-induced cardiovascular events are the leading cause of mortality in chronic kidney disease (CKD) patients. Monocytes are involved in the formation of atherosclerotic plaques and mediate in the overproduction of ROS, promoting inflammation and oxidative stress. However, the relationship between monocytes, inflammation, and oxidative status in CKD-associated atherosclerosis has not been thoroughly investigated. Monocytes and plasma derived from two groups of CKD patients with varying degrees of atherosclerosis and two groups of patients with cardiovascular disease (CVD) and non-CKD atherosclerosis were analyzed. This study was designed to perform a comprehensive proteomic analysis of monocytes in combination with functional bioinformatics. In addition, a targeted investigation of oxidative stress- and inflammatory-related factors to explore CKD-associated atherosclerosis was applied. Dysregulation of proteins involved in lipid oxidation, cell survival, ROS synthesis and metabolism, and inflammatory responses has been revealed. The characteristic disturbances in the monocyte proteome changed with the progression of CKD. A closer examination of oxidative stress's triggers, mediators, and effects on protein and lipid levels showed alterations in the oxidative imbalance between CKD and CVD. CKD monocytes demonstrated a significant increase of oxidized glutathione without changing the level of its reduced form. Evaluation of enzymatic antioxidants, sources of ROS, and modifications caused by ROS also revealed significant alterations between the study groups. In CKD, inflammation and oxidative imbalance correlated and drove each other. However, in CVD, oxidative stress-related factors were associated with each other but not to inflammatory proteins. Moreover, lipid abnormalities were more specific to classical CVD and unrelated to CKD. Such a comprehensive characterization of monocytes and oxidative stress in CKD and CVD patients has never been presented so far. Obtained results support the involvement of distinct mechanisms underlying the acceleration of atherosclerotic and non-atherosclerotic CKD.
Collapse
Affiliation(s)
- Joanna Watral
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznan, Poland
| | - Dorota Formanowicz
- Chair and Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Bartłomiej Perek
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Kostka-Jeziorny
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Andrzej Tykarski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Magdalena Luczak
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
12
|
Ullah MM, Collett JA, Bacallao RL, Basile DP. Impaired hemodynamic renal reserve response following recovery from established acute kidney injury and improvement by hydrodynamic isotonic fluid delivery. Am J Physiol Renal Physiol 2024; 326:F86-F94. [PMID: 37881874 PMCID: PMC11194053 DOI: 10.1152/ajprenal.00204.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023] Open
Abstract
Renal reserve capacity may be compromised following recovery from acute kidney injury (AKI) and could be used to identify impaired renal function in the face of restored glomerular filtration rate (GFR) or plasma creatinine. To investigate the loss of hemodynamic renal reserve responses following recovery in a model of AKI, rats were subjected to left unilateral renal ischemia-reperfusion (I/R) injury and contralateral nephrectomy and allowed to recover for 5 wk. Some rats were treated 24 h post-I/R by hydrodynamic isotonic fluid delivery (AKI-HIFD) of saline through the renal vein, previously shown to improve recovery and inflammation relative to control rats that received saline through the vena cava (AKI-VC). At 5 wk after surgery, plasma creatinine and GFR recovered to levels observed in uninephrectomized sham controls. Baseline renal blood flow (RBF) was not different between AKI or sham groups, but infusion of l-arginine (7.5 mg/kg/min) significantly increased RBF in sham controls, whereas the RBF response to l-arginine was significantly reduced in AKI-VC rats relative to sham rats (22.6 ± 2.2% vs. 13.8 ± 1.8%, P < 0.05). RBF responses were partially protected in AKI-HIFD rats relative to AKI-VC rats (17.0 ± 2.2%) and were not significantly different from sham rats. Capillary rarefaction observed in AKI-VC rats was significantly protected in AKI-HIFD rats. There was also a significant increase in T helper 17 cell infiltration and interstitial fibrosis in AKI-VC rats versus sham rats, which was not present in AKI-HIFD rats. These data suggest that recovery from AKI results in impaired hemodynamic reserve and that associated CKD progression may be mitigated by HIFD in the early post-AKI period.NEW & NOTEWORTHY Despite the apparent recovery of renal filtration function following acute kidney injury (AKI) in rats, the renal hemodynamic reserve response is significantly attenuated, suggesting that clinical evaluation of this parameter may provide information on the potential development of chronic kidney disease. Treatments such as hydrodynamic isotonic fluid delivery, or other treatments in the early post-AKI period, could minimize chronic inflammation or loss of microvessels with the potential to promote a more favorable outcome on long-term function.
Collapse
Affiliation(s)
- Md Mahbub Ullah
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Jason A Collett
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Robert L Bacallao
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, United States
| | - David P Basile
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
13
|
Fang H, Xu S, Wang Y, Yang H, Su D. Endogenous stimuli-responsive drug delivery nanoplatforms for kidney disease therapy. Colloids Surf B Biointerfaces 2023; 232:113598. [PMID: 37866237 DOI: 10.1016/j.colsurfb.2023.113598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Kidney disease is one of the most life-threatening health problems, affecting millions of people in the world. Commonly used steroids and immunosuppressants often fall exceptionally short of outcomes with inescapable systemic toxicity. With the booming research in nanobiotechnology, stimuli-responsive nanoplatform has come an appealing therapeutic strategy for kidney disease. Endogenous stimuli-responsive materials have shown profuse promise owing to their enhanced spatiotemporal control and precise to the location of the lesion. This review focuses on recent advances stimuli-responsive drug delivery nano-architectonics for kidney disease. First, a brief introduction of pathogenesis of kidney disease and pathological microenvironment were provided. Then, various endogenous stimulus involved in drug delivery nanoplatforms including pH, ROS, enzymes, and glucose were categorized based on the pathological mechanisms of kidney disease. Next, we separately summarized literature examples of endogenous stimuli-responsive nanomaterials, and outlined the design strategies and response mechanisms. Finally, the paper was concluded by discussing remaining challenges and future perspectives of endogenous stimuli-responsive drug delivery nanoplatform for expediting the speed of development and clinical applications.
Collapse
Affiliation(s)
- Hufeng Fang
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China.
| | - Shan Xu
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China
| | - Yu Wang
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China
| | - Hao Yang
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China
| | - Dan Su
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China.
| |
Collapse
|
14
|
Li N, Han L, Wang X, Qiao O, Zhang L, Gong Y. Biotherapy of experimental acute kidney injury: emerging novel therapeutic strategies. Transl Res 2023; 261:69-85. [PMID: 37329950 DOI: 10.1016/j.trsl.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Acute kidney injury (AKI) is a complex and heterogeneous disease with high incidence and mortality, posing a serious threat to human life and health. Usually, in clinical practice, AKI is caused by crush injury, nephrotoxin exposure, ischemia-reperfusion injury, or sepsis. Therefore, most AKI models for pharmacological experimentation are based on this. The current research promises to develop new biological therapies, including antibody therapy, non-antibody protein therapy, cell therapy, and RNA therapy, that could help mitigate the development of AKI. These approaches can promote renal repair and improve systemic hemodynamics after renal injury by reducing oxidative stress, inflammatory response, organelles damage, and cell death, or activating cytoprotective mechanisms. However, no candidate drugs for AKI prevention or treatment have been successfully translated from bench to bedside. This article summarizes the latest progress in AKI biotherapy, focusing on potential clinical targets and novel treatment strategies that merit further investigation in future pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Ning Li
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Lu Han
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Xinyue Wang
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Ou Qiao
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Li Zhang
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Yanhua Gong
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China.
| |
Collapse
|
15
|
Alruwaili M, Al-kuraishy HM, Alexiou A, Papadakis M, ALRashdi BM, Elhussieny O, Saad HM, Batiha GES. Pathogenic Role of Fibrinogen in the Neuropathology of Multiple Sclerosis: A Tale of Sorrows and Fears. Neurochem Res 2023; 48:3255-3269. [PMID: 37442896 PMCID: PMC10514123 DOI: 10.1007/s11064-023-03981-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating neurodegenerative disease of the central nervous system (CNS) due to injury of the myelin sheath by immune cells. The clotting factor fibrinogen is involved in the pathogenesis of MS by triggering microglia and the progress of neuroinflammation. Fibrinogen level is correlated with MS severity; consequently, inhibition of the fibrinogen cascade may reduce MS neuropathology. Thus, this review aimed to clarify the potential role of fibrinogen in the pathogenesis of MS and how targeting of fibrinogen affects MS neuropathology. Accumulation of fibrinogen in the CNS may occur independently or due to disruption of blood-brain barrier (BBB) integrity in MS. Fibrinogen acts as transduction and increases microglia activation which induces the progression of inflammation, oxidative stress, and neuronal injury. Besides, brain fibrinogen impairs the remyelination process by inhibiting the differentiation of oligodendrocyte precursor cells. These findings proposed that fibrinogen is associated with MS neuropathology through interruption of BBB integrity, induction of neuroinflammation, and demyelination with inhibition of the remyelination process by suppressing oligodendrocytes. Therefore, targeting of fibrinogen and/or CD11b/CD18 receptors by metformin and statins might decrease MS neuropathology. In conclusion, inhibiting the expression of CD11b/CD18 receptors by metformin and statins may decrease the pro-inflammatory effect of fibrinogen on microglia which is involved in the progression of MS.
Collapse
Affiliation(s)
- Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Hayder M. Al-kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770 Australia
- AFNP Med, 1030 Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283 Wuppertal, Germany
| | - Barakat M. ALRashdi
- Biology Department, College of Science, Jouf University, Sakaka, 41412 Saudi Arabia
| | - Omnya Elhussieny
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744 Egypt
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744 Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Egypt
| |
Collapse
|
16
|
Kim TM, Lee KW, Kim HD, Hong SO, Cho HJ, Yang JH, Kim SJ, Park JB. Evaluation of Selected Markers in Kidneys of Cynomolgus Monkey ( Macaca fascicularis) with Induced Diabetes during Renal Ischemia-reperfusion Injury. Comp Med 2023; 73:357-372. [PMID: 38087409 PMCID: PMC10702167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/26/2023] [Accepted: 05/04/2023] [Indexed: 12/18/2023]
Abstract
We previously reported that induced type 1 diabetes mellitus (DM) increases the susceptibility of acute kidney injury in- duced by ischemia-reperfusion injury (IRI) in cynomolgus monkeys. In this follow-up study, we compared the expression of selected markers in the renal tissues of monkeys subjected to bilateral renal IRI with and without diabetes. All tissues were obtained from the original study. Renal biopsies were obtained before and 24 and 48 h after ischemia and were examined for expression of KI-67 (tubular proliferation), Na+ /K+ ATPase (sodium-potassium pump), TNF-α(tumor necrosis factor-α, inflammation), CD31 (microvessels), CD3 (T-cells), 2 fibrotic markers (fibroblast specific protein-1, FSP-1;α-smooth muscle actin,α -SMA), and cleaved caspase 3 (apoptosis). Generally, the expression of these markers differed in monkeys with and without DM. As compared with non-DM monkeys, DM monkeys had more cells that expressed KI-67 during progression of acute kidney injury (AKI). Na+ /K+ ATPase expression was clearly present at baseline in the basolateral tubular areas only in the non-DM monkeys. At 48 h, its expression in the basolateral area was not visible in DM monkeys, but was still present in intercellular junctions of non-DM monkeys. The expression of TNF-αwas higher in DM before and 48 h after ischemia. Before and 24 h after ischemia, the number of CD31-positive capillaries was not different between 2 groups, although more collapsed vessels were found at in DM at 24 h. At 48 h, the number of capillaries was less in DM compared with those from non-DM animals. DM monkeys had more interstitial CD3-positive cells than did non-DM monkeys at 24 and 48 h after ischemia. Finally, FSP-1-stained cells were more abundant in DM than non-DM at 24 and 48 h. Our results show that DM aggravates the recovery of renal ischemia/reperfusion injury by affecting tubular proliferation, capillary density, T cell infil- tration and by altering protein and mRNA expression of various genes involved in ion channel, inflammation, and fibrotic change. The results from this observational study demonstrate that DM aggravates the recovery of renal ischemia/reperfusion injury by affecting multiple events including tubular necrosis, proliferation, function, inflammation and by inducing capillary rarefaction in cynomolgus monkeys.
Collapse
Affiliation(s)
- Tae M Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Gangwon-do 25354, South Korea
- Institutes of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do 25354, South Korea
| | - Kyo W Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea
| | - Hong D Kim
- Institutes of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do 25354, South Korea
| | - Sung O Hong
- Institutes of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do 25354, South Korea
| | - Hye J Cho
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Gangwon-do 25354, South Korea
| | - Je H Yang
- Laboratory Animal Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea
| | - Sung J Kim
- GenNBio Inc., 80 Deurimsandan 2-ro, Cheongbuk-myeon, Pyeongtaek-si, Gyeonggi-do 17796, South Korea
| | - Jae B Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea
| |
Collapse
|
17
|
Mazzarino M, Cetin E, Bartosova M, Marinovic I, Ipseiz N, Hughes TR, Schmitt CP, Ramji DP, Labéta MO, Raby AC. Therapeutic targeting of chronic kidney disease-associated DAMPs differentially contributing to vascular pathology. Front Immunol 2023; 14:1240679. [PMID: 37849759 PMCID: PMC10577224 DOI: 10.3389/fimmu.2023.1240679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/08/2023] [Indexed: 10/19/2023] Open
Abstract
Chronic Kidney Disease (CKD) is associated with markedly increased cardiovascular (CV) morbidity and mortality. Chronic inflammation, a hallmark of both CKD and CV diseases (CVD), is believed to drive this association. Pro-inflammatory endogenous TLR agonists, Damage-Associated Molecular Patterns (DAMPs), have been found elevated in CKD patients' plasma and suggested to promote CVD, however, confirmation of their involvement, the underlying mechanism(s), the extent to which individual DAMPs contribute to vascular pathology in CKD and the evaluation of potential therapeutic strategies, have remained largely undescribed. A multi-TLR inhibitor, soluble TLR2, abrogated chronic vascular inflammatory responses and the increased aortic atherosclerosis-associated gene expression observed in nephropathic mice, without compromising infection clearance. Mechanistically, we confirmed elevation of 4 TLR DAMPs in CKD patients' plasma, namely Hsp70, Hyaluronic acid, HMGB-1 and Calprotectin, which displayed different abilities to promote key cellular responses associated with vascular inflammation and progression of atherosclerosis in a TLR-dependent manner. These included loss of trans-endothelial resistance, enhanced monocyte migration, increased cytokine production, and foam cell formation by macrophages, the latter via cholesterol efflux inhibition. Calprotectin and Hsp70 most consistently affected these functions. Calprotectin was further elevated in CVD-diagnosed CKD patients and strongly correlated with the predictor of CV events CRP. In nephropathic mice, Calprotectin blockade robustly reduced vascular chronic inflammatory responses and pro-atherosclerotic gene expression in the blood and aorta. Taken together, these findings demonstrated the critical extent to which the DAMP-TLR pathway contributes to vascular inflammatory and atherogenic responses in CKD, revealed the mechanistic contribution of specific DAMPs and described two alternatives therapeutic approaches to reduce chronic vascular inflammation and lower CV pathology in CKD.
Collapse
Affiliation(s)
- Morgane Mazzarino
- Division of Infection & Immunity, Cardiff University, Cardiff, United Kingdom
- Wales Kidney Research Unit, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Esra Cetin
- Division of Infection & Immunity, Cardiff University, Cardiff, United Kingdom
- Wales Kidney Research Unit, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Maria Bartosova
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Iva Marinovic
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Natacha Ipseiz
- Division of Infection & Immunity, Cardiff University, Cardiff, United Kingdom
| | - Timothy R. Hughes
- Division of Infection & Immunity, Cardiff University, Cardiff, United Kingdom
| | - Claus Peter Schmitt
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Dipak P. Ramji
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Mario O. Labéta
- Division of Infection & Immunity, Cardiff University, Cardiff, United Kingdom
- Wales Kidney Research Unit, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Anne-Catherine Raby
- Division of Infection & Immunity, Cardiff University, Cardiff, United Kingdom
- Wales Kidney Research Unit, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
18
|
Yan J, Li X, Liu N, He JC, Zhong Y. Relationship between Macrophages and Tissue Microenvironments in Diabetic Kidneys. Biomedicines 2023; 11:1889. [PMID: 37509528 PMCID: PMC10377233 DOI: 10.3390/biomedicines11071889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage kidney disease. Increasing evidence has suggested that inflammation is a key microenvironment involved in the development and progression of DN. Studies have confirmed that macrophage accumulation is closely related to the progression to human DN. Macrophage phenotype is highly regulated by the surrounding microenvironment in the diabetic kidneys. M1 and M2 macrophages represent distinct and sometimes coexisting functional phenotypes of the same population, with their roles implicated in pathological changes, such as in inflammation and fibrosis associated with the stage of DN. Recent findings from single-cell RNA sequencing of macrophages in DN further confirmed the heterogeneity and plasticity of the macrophages. In addition, intrinsic renal cells interact with macrophages directly or through changes in the tissue microenvironment. Macrophage depletion, modification of its polarization, and autophagy could be potential new therapies for DN.
Collapse
Affiliation(s)
- Jiayi Yan
- Division of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xueling Li
- Division of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ni Liu
- Division of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - John Cijiang He
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yifei Zhong
- Division of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
19
|
Nakagawa M, Izawa T, Kuwamura M, Yamate J. Analyses of damage-associated molecular patterns, particularly biglycan, in cisplatin-induced rat progressive renal fibrosis. J Toxicol Pathol 2023; 36:181-185. [PMID: 37577365 PMCID: PMC10412960 DOI: 10.1293/tox.2022-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/07/2023] [Indexed: 08/15/2023] Open
Abstract
Damage-associated molecular patterns (DAMPs) and their receptors (TLR-2 and -4) may play important roles in renal fibrosis, of which the pathogenesis is complicated. We used rat renal lesions induced by a single intraperitoneal injection of cisplatin at 6 mg/kg body weight; consisting of tissue damage of renal tubules on days 1 and 3, further damage and regeneration with inflammation mainly on days 5 and 7, and interstitial fibrosis on days 9, 12, 15, and 20. Microarray analyses on days 5 (the commencement of inflammation) and 9 (the commencement of interstitial fibrosis) showed that DAMPs increased by more than two-fold relative to control included common extra-cellular matrix (ECM) components such as laminin (Lamc2) and fibronectin, and heat shock protein family, as well as fibrinogen, although it was limited analysis; Lamc2, an element of basement membrane, may be regarded as an indicator for damaged renal tubules. In the real-time RT-PCR analyses, TLR-2 significantly increased transiently on day 1, whereas TLR-4 significantly increased on days 9 and 15, almost in agreement with the increased biglycan (a small leucine-rich proteoglycan as ubiquitous ECM component). As M1/M2 macrophages participated in renal lesions, such as inflammation and fibrosis, presumably, TLR-4, which may be expressed in immune cells, could play crucial roles in the formation of renal lesions in association with biglycan.
Collapse
Affiliation(s)
- Minto Nakagawa
- Laboratory of Veterinary Pathology, Osaka Metropolitan
University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka 598-8531, Japan
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Osaka Metropolitan
University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka 598-8531, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Osaka Metropolitan
University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka 598-8531, Japan
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Osaka Metropolitan
University, 1-58 Rinku-Ourai-Kita, Izumisano City, Osaka 598-8531, Japan
| |
Collapse
|
20
|
Fiorentino M, Bagagli F, Deleonardis A, Stasi A, Franzin R, Conserva F, Infante B, Stallone G, Pontrelli P, Gesualdo L. Acute Kidney Injury in Kidney Transplant Patients in Intensive Care Unit: From Pathogenesis to Clinical Management. Biomedicines 2023; 11:1474. [PMID: 37239144 PMCID: PMC10216683 DOI: 10.3390/biomedicines11051474] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Kidney transplantation is the first-choice treatment for end-stage renal disease (ESRD). Kidney transplant recipients (KTRs) are at higher risk of experiencing a life-threatening event requiring intensive care unit (ICU) admission, mainly in the late post-transplant period (more than 6 months after transplantation). Urosepsis and bloodstream infections account for almost half of ICU admissions in this population; in addition, potential side effects related to immunosuppressive treatment should be accounted for cytotoxic and ischemic changes induced by calcineurin inhibitor (CNI), sirolimus/CNI-induced thrombotic microangiopathy and posterior reversible encephalopathy syndrome. Throughout the ICU stay, Acute Kidney Injury (AKI) incidence is common and ranges from 10% to 80%, and up to 40% will require renal replacement therapy. In-hospital mortality can reach 30% and correlates with acute illness severity and admission diagnosis. Graft survival is subordinated to baseline estimated glomerular filtration rate (eGFR), clinical presentation, disease severity and potential drug nephrotoxicity. The present review aims to define the impact of AKI events on short- and long-term outcomes in KTRs, focusing on the epidemiologic data regarding AKI incidence in this subpopulation; the pathophysiological mechanisms underlying AKI development and potential AKI biomarkers in kidney transplantation, graft and patients' outcomes; the current diagnostic work up and management of AKI; and the modulation of immunosuppression in ICU-admitted KTRs.
Collapse
Affiliation(s)
- Marco Fiorentino
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70121 Bari, Italy; (M.F.)
| | - Francesca Bagagli
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70121 Bari, Italy; (M.F.)
| | - Annamaria Deleonardis
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70121 Bari, Italy; (M.F.)
| | - Alessandra Stasi
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70121 Bari, Italy; (M.F.)
| | - Rossana Franzin
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70121 Bari, Italy; (M.F.)
| | - Francesca Conserva
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70121 Bari, Italy; (M.F.)
| | - Barbara Infante
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy
| | - Paola Pontrelli
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70121 Bari, Italy; (M.F.)
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70121 Bari, Italy; (M.F.)
| |
Collapse
|
21
|
Li S, Zhang Y, Lu R, Lv X, Lei Q, Tang D, Dai Q, Deng Z, Liao X, Tu S, Yang H, Xie Y, Meng J, Yuan Q, Qin J, Pu J, Peng Z, Tao L. Peroxiredoxin 1 aggravates acute kidney injury by promoting inflammation through Mincle/Syk/NF-κB signaling. Kidney Int 2023:S0085-2538(23)00328-9. [PMID: 37164261 DOI: 10.1016/j.kint.2023.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/12/2023]
Abstract
Damage-associated molecular patterns (DAMPs) are a cause of acute kidney injury (AKI). Our knowledge of these DAMPs remains incomplete. Here, we report serum peroxiredoxin 1 (Prdx1) as a novel DAMP for AKI. Lipopolysaccharide (LPS) and kidney ischemia/reperfusion injury instigated AKI with concurrent increases in serum Prdx1 and reductions of Prdx1 expression in kidney tubular epithelial cells. Genetic knockout of Prdx1 or use of a Prdx1-neutralizing antibody protected mice from AKI and this protection was impaired by introduction of recombinant Prdx1 (rPrdx1). Mechanistically, lipopolysaccharide increased serum and kidney proinflammatory cytokines, macrophage infiltration, and the content of M1 macrophages. All these events were suppressed in Prdx1-/- mice and renewed upon introduction of rPrdx1. In primary peritoneal macrophages, rPrdx1 induced M1 polarization, activated macrophage-inducible C-type lectin (Mincle) signaling, and enhanced proinflammatory cytokine production. Prdx1 interacted with Mincle to initiate acute kidney inflammation. Of note, rPrdx1 upregulated Mincle and the spleen tyrosine kinase Syk system in the primary peritoneal macrophages, while knockdown of Mincle abolished the increase in activated Syk. Additionally, rPrdx1 treatment enhanced the downstream events of Syk, including transcription factor NF-κB signaling pathways. Furthermore, serum Prdx1 was found to be increased in patients with AKI; the increase of which was associated with kidney function decline and inflammatory biomarkers in patient serum. Thus, kidney-derived serum Prdx1 contributes to AKI at least in part by activating Mincle signaling and downstream pathways.
Collapse
Affiliation(s)
- Shenglan Li
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Yan Zhang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Rong Lu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, China; Health Management Center of Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Xin Lv
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Qunjuan Lei
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Damu Tang
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
| | - Qin Dai
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Zhenghao Deng
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China; Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaohua Liao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Sha Tu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Huixiang Yang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Yanyun Xie
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Jie Meng
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China; Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, China
| | - Qiongjing Yuan
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Jiao Qin
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China; Department of Nephrology, Hengyang Medical College, Changsha Central Hospital of University of South China, Changsha, China
| | - Jiaxi Pu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, China.
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, China.
| |
Collapse
|
22
|
Fu Y, Xiang Y, Wang Y, Liu Z, Yang D, Zha J, Tang C, Cai J, Chen G, Dong Z. The STAT1/HMGB1/NF-κB pathway in chronic inflammation and kidney injury after cisplatin exposure. Theranostics 2023; 13:2757-2773. [PMID: 37284446 PMCID: PMC10240827 DOI: 10.7150/thno.81406] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/26/2023] [Indexed: 06/08/2023] Open
Abstract
Rationale: Cisplatin, a potent chemotherapeutic drug, induces side effects in normal tissues including the kidney. To reduce the side effects, repeated low-dose cisplatin (RLDC) is commonly used in clinical setting. While RLDC reduces acute nephrotoxicity to certain extents, a significant portion of patients later develop chronic kidney problems, underscoring the need for novel therapeutics to alleviate the long-term sequelae of RLDC therapy. Methods: In vivo, the role of HMGB1 was examined by testing HMGB1 neutralizing antibodies in RLDC mice. In vitro, the effects of HMGB1 knockdown on RLDC-induced nuclear factor-κB (NF-κB) activation and fibrotic phenotype changes were tested in proximal tubular cells. To study signal transducer and activator of transcription 1 (STAT1), siRNA knockdown and its pharmacological inhibitor Fludarabine were used. We also searched the Gene Expression Omnibus (GEO) database for transcriptional expression profiles and evaluated kidney biopsy samples from CKD patients to verify the STAT1/HMGB1/NF-κB signaling axis. Results: We found that RLDC induced kidney tubule damage, interstitial inflammation, and fibrosis in mice, accompanied by up-regulation of HMGB1. Blockage of HMGB1with neutralizing antibodies and Glycyrrhizin suppressed NF-κB activation and associated production of pro-inflammatory cytokines, reduced tubular injury and renal fibrosis, and improved renal function after RLDC treatment. Consistently, knockdown of HMGB1 decreased NF-κB activation and prevented the fibrotic phenotype in RLDC-treated renal tubular cells. At the upstream, knockdown of STAT1 suppressed HMGB1 transcription and cytoplasmic accumulation in renal tubular cells, suggesting a critical role of STAT1 in HMGB1 activation. Upregulation of STAT1/HMGB1/NF-κB along with inflammatory cytokines was also verified in kidney tissues of CKD patients. Conclusion: These results unravel the STAT1/HMGB1/NF-κB pathway that contributes to persistent inflammation and chronic kidney problems after cisplatin nephrotoxicity, suggesting new therapeutic targets for kidney protection in cancer patients receiving cisplatin chemotherapy.
Collapse
Affiliation(s)
- Ying Fu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yu Xiang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Ying Wang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Zhiwen Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Danyi Yang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Jie Zha
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Chengyuan Tang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Juan Cai
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Guochun Chen
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| |
Collapse
|
23
|
Wu X, Dayanand KK, Thylur Puttalingaiah R, Punnath K, Norbury CC, Gowda DC. Different TLR signaling pathways drive pathology in experimental cerebral malaria vs. malaria-driven liver and lung pathology. J Leukoc Biol 2023; 113:471-488. [PMID: 36977632 DOI: 10.1093/jleuko/qiad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 03/30/2023] Open
Abstract
Malaria infection causes multiple organ-specific lethal pathologies, including cerebral malaria, and severe liver and lung pathologies by inducing strong inflammatory responses. Gene polymorphism studies suggest that TLR4 and TLR2 contribute to severe malaria, but the roles of these signaling molecules in malaria pathogenesis remain incompletely understood. We hypothesize that danger-associated molecular patterns produced in response to malaria activate TLR2 and TLR4 signaling and contribute to liver and lung pathologies. By using a mouse model of Plasmodium berghei NK65 infection, we show that the combined TLR2 and TLR4 signaling contributes to malaria liver and lung pathologies and mortality. Macrophages, neutrophils, natural killer cells, and T cells infiltrate to the livers and lungs of infected wild-type mice more than TLR2,4-/- mice. Additionally, endothelial barrier disruption, tissue necrosis, and hemorrhage were higher in the livers and lungs of infected wild-type mice than in those of TLR2,4-/- mice. Consistent with these results, the levels of chemokine production, chemokine receptor expression, and liver and lung pathologic markers were higher in infected wild-type mice than in TLR2,4-/- mice. In addition, the levels of HMGB1, a potent TLR2- and TLR4-activating danger-associated molecular pattern, were higher in livers and lungs of wild-type mice than TLR2,4-/- mice. Treatment with glycyrrhizin, an immunomodulatory agent known to inhibit HMGB1 activity, markedly reduced mortality in wild-type mice. These results suggest that TLR2 and TLR4 activation by HMGB1 and possibly other endogenously produced danger-associated molecular patterns contribute to malaria liver and lung injury via signaling mechanisms distinct from those involved in cerebral malaria pathogenesis.
Collapse
Affiliation(s)
- Xianzhu Wu
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | - Kiran K Dayanand
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | - Ramesh Thylur Puttalingaiah
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | - Kishore Punnath
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | - Christopher C Norbury
- Departments of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | - D Channe Gowda
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
24
|
Cormican S, Negi N, Naicker SD, Islam MN, Fazekas B, Power R, Griffin TP, Dennedy MC, MacNeill B, Malone AF, Griffin MD. Chronic Kidney Disease Is Characterized by Expansion of a Distinct Proinflammatory Intermediate Monocyte Subtype and by Increased Monocyte Adhesion to Endothelial Cells. J Am Soc Nephrol 2023; 34:793-808. [PMID: 36799882 PMCID: PMC10125648 DOI: 10.1681/asn.0000000000000083] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/13/2022] [Indexed: 01/27/2023] Open
Abstract
SIGNIFICANCE STATEMENT CKD is accompanied by abnormal inflammation, which contributes to progressive loss of functional renal tissue and accelerated cardiovascular disease. Although studies have documented that dysregulation of monocyte maturation and function is associated with CKD and its complications, it is not well characterized. This study reveals that a distinctive human monocyte subtype with high propensity for releasing proinflammatory mediators and activating endothelial cells is increased in adults with CKD compared with adults with high cardiovascular risk and normal kidney function. It also demonstrates that human monocyte adhesion to endothelial layers and responses to specific inflammatory migration signals are enhanced in CKD. These findings offer insights into the mechanisms of CKD-associated intravascular and localized inflammation and may suggest potential targets for therapeutic interventions. BACKGROUND Cardiovascular disease (CVD) in patients with CKD is associated with increased circulating intermediate monocytes (IMs). Dysregulation of monocyte maturation and function is associated with CKD and its complications, but it is incompletely characterized. METHODS To explore monocyte repertoire abnormalities in CKD, we studied properties of monocyte subpopulations, including IM subpopulations distinguished by HLA-DR expression level, in individuals with or without CKD. Using flow cytometry, we profiled monocyte populations in blood samples from adults with CKD, healthy volunteers (HVs), and patient controls (PCs) with high CVD risk. Monocyte subpopulations were also derived from single-cell RNA-sequencing profiles of paired blood and biopsy samples from kidney transplant recipients. We quantified intracellular cytokine production, migration, and endothelial adhesion in ex vivo assays of PBMCs. RESULTS Of four predefined blood monocyte subpopulations, only HLA-DR hi IMs were increased in individuals with CKD compared with HVs and PCs. In HVs and patients with CKD, LPS-stimulated HLA-DR hi IMs isolated from blood produced higher amounts of TNF and IL-1 β than other monocyte populations. Single-cell analysis revealed four monocyte clusters common to blood and kidneys, including an HLA-DR hi IM-like cluster that was enriched in kidneys versus blood. Migration toward CCL5 and CX3CL1 and adhesion to primary endothelial cell layers were increased in monocyte subpopulations in individuals with CKD compared with HVs. Monocyte adhesion to endothelial cells was partly dependent on CX3CR1/CX3CL1 interaction. CONCLUSIONS CKD is associated with an increased number of a distinctive proinflammatory IM subpopulation and abnormalities of monocyte migration and endothelial adhesion. Dysregulated monocyte maturation and function may represent targetable factors contributing to accelerated CVD in CKD.
Collapse
Affiliation(s)
- Sarah Cormican
- CÚRAM Centre for Research in Medical Devices, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Nephrology Department, Galway University Hospitals, Saolta University Health Care Group, Galway, Ireland
| | - Neema Negi
- CÚRAM Centre for Research in Medical Devices, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Serika D. Naicker
- CÚRAM Centre for Research in Medical Devices, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Md Nahidul Islam
- CÚRAM Centre for Research in Medical Devices, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Barbara Fazekas
- CÚRAM Centre for Research in Medical Devices, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Rachael Power
- CÚRAM Centre for Research in Medical Devices, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Tomás P. Griffin
- CÚRAM Centre for Research in Medical Devices, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - M. Conall Dennedy
- Department of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
| | - Briain MacNeill
- Cardiology Department, Galway University Hospitals, Saolta University Health Care Group, Galway, Ireland
| | - Andrew F. Malone
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Matthew D. Griffin
- CÚRAM Centre for Research in Medical Devices, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Nephrology Department, Galway University Hospitals, Saolta University Health Care Group, Galway, Ireland
| |
Collapse
|
25
|
Baaten CCFMJ, Vondenhoff S, Noels H. Endothelial Cell Dysfunction and Increased Cardiovascular Risk in Patients With Chronic Kidney Disease. Circ Res 2023; 132:970-992. [PMID: 37053275 PMCID: PMC10097498 DOI: 10.1161/circresaha.123.321752] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
The endothelium is considered to be the gatekeeper of the vessel wall, maintaining and regulating vascular integrity. In patients with chronic kidney disease, protective endothelial cell functions are impaired due to the proinflammatory, prothrombotic and uremic environment caused by the decline in kidney function, adding to the increase in cardiovascular complications in this vulnerable patient population. In this review, we discuss endothelial cell functioning in healthy conditions and the contribution of endothelial cell dysfunction to cardiovascular disease. Further, we summarize the phenotypic changes of the endothelium in chronic kidney disease patients and the relation of endothelial cell dysfunction to cardiovascular risk in chronic kidney disease. We also review the mechanisms that underlie endothelial changes in chronic kidney disease and consider potential pharmacological interventions that can ameliorate endothelial health.
Collapse
Affiliation(s)
- Constance C F M J Baaten
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany (C.C.F.M.J.B., S.V., H.N.)
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands (C.C.F.M.J.B., H.N.)
| | - Sonja Vondenhoff
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany (C.C.F.M.J.B., S.V., H.N.)
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany (C.C.F.M.J.B., S.V., H.N.)
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands (C.C.F.M.J.B., H.N.)
| |
Collapse
|
26
|
Albarrán V, Villamayor ML, Pozas J, Chamorro J, Rosero DI, San Román M, Guerrero P, Pérez de Aguado P, Calvo JC, García de Quevedo C, González C, Vaz MÁ. Current Landscape of Immunotherapy for Advanced Sarcoma. Cancers (Basel) 2023; 15:2287. [PMID: 37190214 PMCID: PMC10136499 DOI: 10.3390/cancers15082287] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
There is substantial heterogeneity between different subtypes of sarcoma regarding their biological behavior and microenvironment, which impacts their responsiveness to immunotherapy. Alveolar soft-part sarcoma, synovial sarcoma and undifferentiated pleomorphic sarcoma show higher immunogenicity and better responses to checkpoint inhibitors. Combination strategies adding immunotherapy to chemotherapy and/or tyrosine-kinase inhibitors globally seem superior to single-agent schemes. Therapeutic vaccines and different forms of adoptive cell therapy, mainly engineered TCRs, CAR-T cells and TIL therapy, are emerging as new forms of immunotherapy for advanced solid tumors. Tumor lymphocytic infiltration and other prognostic and predictive biomarkers are under research.
Collapse
Affiliation(s)
- Víctor Albarrán
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Nanodrugs alleviate acute kidney injury: Manipulate RONS at kidney. Bioact Mater 2023; 22:141-167. [PMID: 36203963 PMCID: PMC9526023 DOI: 10.1016/j.bioactmat.2022.09.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/12/2022] [Accepted: 09/19/2022] [Indexed: 02/06/2023] Open
Abstract
Currently, there are no clinical drugs available to treat acute kidney injury (AKI). Given the high prevalence and high mortality rate of AKI, the development of drugs to effectively treat AKI is a huge unmet medical need and a research hotspot. Although existing evidence fully demonstrates that reactive oxygen and nitrogen species (RONS) burst at the AKI site is a major contributor to AKI progression, the heterogeneity, complexity, and unique physiological structure of the kidney make most antioxidant and anti-inflammatory small molecule drugs ineffective because of the lack of kidney targeting and side effects. Recently, nanodrugs with intrinsic kidney targeting through the control of size, shape, and surface properties have opened exciting prospects for the treatment of AKI. Many antioxidant nanodrugs have emerged to address the limitations of current AKI treatments. In this review, we systematically summarized for the first time about the emerging nanodrugs that exploit the pathological and physiological features of the kidney to overcome the limitations of traditional small-molecule drugs to achieve high AKI efficacy. First, we analyzed the pathological structural characteristics of AKI and the main pathological mechanism of AKI: hypoxia, harmful substance accumulation-induced RONS burst at the renal site despite the multifactorial initiation and heterogeneity of AKI. Subsequently, we introduced the strategies used to improve renal targeting and reviewed advances of nanodrugs for AKI: nano-RONS-sacrificial agents, antioxidant nanozymes, and nanocarriers for antioxidants and anti-inflammatory drugs. These nanodrugs have demonstrated excellent therapeutic effects, such as greatly reducing oxidative stress damage, restoring renal function, and low side effects. Finally, we discussed the challenges and future directions for translating nanodrugs into clinical AKI treatment. AKI is a common clinical acute syndrome with high morbidity and mortality but without effective clinical drug available. Hypoxia and accumulation of toxic substances are key pathological features of various heterogeneous AKI. Excessive RONS is the core of the pathological mechanism of AKI. The development of nanodrugs is expected to achieve successful treatment in AKI.
Collapse
|
28
|
Intracellular DAMPs in Neurodegeneration and Their Role in Clinical Therapeutics. Mol Neurobiol 2023; 60:3600-3616. [PMID: 36859688 DOI: 10.1007/s12035-023-03289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/21/2023] [Indexed: 03/03/2023]
Abstract
Neuroinflammation is the major implication of neurodegeneration. This is a complex process which initiates from the cellular injury triggering the innate immune system which gives rise to damage-associated molecular patterns (DAMPs) which are also recognized as endogenous danger indicators. These originate from various compartments of the cell under pathological stimulus. These are very popular candidates having their origin in the intracellular compartments and organelles of the cell and may have their site of action itself in the intracellular or at the extracellular spaces. Under the influence of the pathological stimuli, they interact with the pattern-recognition receptor to initiate their pro-inflammatory cascade followed by the cytokine release. This provides a good opportunity for diagnostic and therapeutic interventions creating better conditions for repair and reversal. Since the major contributors arise from the intracellular compartment, in this review, we have attempted to focus on the DAMP molecules arising from the intracellular compartments and their specific roles in the neurodegenerative events explaining their downstream mediators and signaling. Moreover, we have tried to cover the latest interventions in terms of DAMPs as clinical biomarkers which can assist in detecting the disease and also target it to reduce the innate-immune activation response which can help in reducing the sterile neuroinflammation having an integral role in the neurodegenerative processes.
Collapse
|
29
|
Intravital microscopy for real-time monitoring of drug delivery and nanobiological processes. Adv Drug Deliv Rev 2022; 189:114528. [PMID: 36067968 DOI: 10.1016/j.addr.2022.114528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/10/2022] [Accepted: 08/30/2022] [Indexed: 01/24/2023]
Abstract
Intravital microscopy (IVM) expands our understanding of cellular and molecular processes, with applications ranging from fundamental biology to (patho)physiology and immunology, as well as from drug delivery to drug processing and drug efficacy testing. In this review, we highlight modalities, methods and model organisms that make up today's IVM landscape, and we present how IVM - via its high spatiotemporal resolution - enables analysis of metabolites, small molecules, nanoparticles, immune cells, and the (tumor) tissue microenvironment. We furthermore present examples of how IVM facilitates the elucidation of nanomedicine kinetics and targeting mechanisms, as well as of biological processes such as immune cell death, host-pathogen interactions, metabolic states, and disease progression. We conclude by discussing the prospects of IVM clinical translation and examining the integration of machine learning in future IVM practice.
Collapse
|
30
|
Immunopathogenesis of Sjogren's syndrome: Current state of DAMPs. Semin Arthritis Rheum 2022; 56:152062. [PMID: 35803061 DOI: 10.1016/j.semarthrit.2022.152062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/17/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022]
|
31
|
Giuliani KTK, Grivei A, Nag P, Wang X, Rist M, Kildey K, Law B, Ng MS, Wilkinson R, Ungerer J, Forbes JM, Healy H, Kassianos AJ. Hypoxic human proximal tubular epithelial cells undergo ferroptosis and elicit an NLRP3 inflammasome response in CD1c + dendritic cells. Cell Death Dis 2022; 13:739. [PMID: 36030251 PMCID: PMC9420140 DOI: 10.1038/s41419-022-05191-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 01/21/2023]
Abstract
Inflammasomes are multiprotein platforms responsible for the release of pro-inflammatory cytokines interleukin (IL)-1β and IL-18. Mouse studies have identified inflammasome activation within dendritic cells (DC) as pivotal for driving tubulointerstitial fibrosis and inflammation, the hallmarks of chronic kidney disease (CKD). However, translation of this work to human CKD remains limited. Here, we examined the complex tubular cell death pathways mediating inflammasome activation in human kidney DC and, thus, CKD progression. Ex vivo patient-derived proximal tubular epithelial cells (PTEC) cultured under hypoxic (1% O2) conditions modelling the CKD microenvironment showed characteristics of ferroptotic cell death, including mitochondrial dysfunction, reductions in the lipid repair enzyme glutathione peroxidase 4 (GPX4) and increases in lipid peroxidation by-product 4-hydroxynonenal (4-HNE) compared with normoxic PTEC. The addition of ferroptosis inhibitor, ferrostatin-1, significantly reduced hypoxic PTEC death. Human CD1c+ DC activated in the presence of hypoxic PTEC displayed significantly increased production of inflammasome-dependent cytokines IL-1β and IL-18. Treatment of co-cultures with VX-765 (caspase-1/4 inhibitor) and MCC950 (NLRP3 inflammasome inhibitor) significantly attenuated IL-1β/IL-18 levels, supporting an NLRP3 inflammasome-dependent DC response. In line with these in vitro findings, in situ immunolabelling of human fibrotic kidney tissue revealed a significant accumulation of tubulointerstitial CD1c+ DC containing active inflammasome (ASC) specks adjacent to ferroptotic PTEC. These data establish ferroptosis as the primary pattern of PTEC necrosis under the hypoxic conditions of CKD. Moreover, this study identifies NLRP3 inflammasome signalling driven by complex tubulointerstitial PTEC-DC interactions as a key checkpoint for therapeutic targeting in human CKD.
Collapse
Affiliation(s)
- Kurt T. K. Giuliani
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia ,grid.1003.20000 0000 9320 7537Faculty of Medicine, University of Queensland, Brisbane, QLD Australia
| | - Anca Grivei
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia
| | - Purba Nag
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia
| | - Xiangju Wang
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia
| | - Melissa Rist
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia
| | - Katrina Kildey
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia
| | - Becker Law
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia ,grid.1024.70000000089150953Institute of Health and Biomedical Innovation/School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD Australia
| | - Monica S. Ng
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia ,grid.1003.20000 0000 9320 7537Faculty of Medicine, University of Queensland, Brisbane, QLD Australia ,grid.1003.20000 0000 9320 7537Institute of Molecular Biosciences, University of Queensland, Brisbane, QLD Australia ,grid.412744.00000 0004 0380 2017Department of Nephrology, Princess Alexandra Hospital, Brisbane, QLD Australia
| | - Ray Wilkinson
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia ,grid.1003.20000 0000 9320 7537Faculty of Medicine, University of Queensland, Brisbane, QLD Australia ,grid.1024.70000000089150953Institute of Health and Biomedical Innovation/School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD Australia
| | - Jacobus Ungerer
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.1003.20000 0000 9320 7537Faculty of Medicine, University of Queensland, Brisbane, QLD Australia
| | - Josephine M. Forbes
- grid.1003.20000 0000 9320 7537Faculty of Medicine, University of Queensland, Brisbane, QLD Australia ,grid.1003.20000 0000 9320 7537Mater Research Institute, University of Queensland, Brisbane, QLD Australia
| | - Helen Healy
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia ,grid.1003.20000 0000 9320 7537Faculty of Medicine, University of Queensland, Brisbane, QLD Australia
| | - Andrew J. Kassianos
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia ,grid.1003.20000 0000 9320 7537Faculty of Medicine, University of Queensland, Brisbane, QLD Australia ,grid.1024.70000000089150953Institute of Health and Biomedical Innovation/School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD Australia
| |
Collapse
|
32
|
DeWolf SE, Kasimsetty SG, Hawkes AA, Stocks LM, Kurian SM, McKay DB. DAMPs Released From Injured Renal Tubular Epithelial Cells Activate Innate Immune Signals in Healthy Renal Tubular Epithelial Cells. Transplantation 2022; 106:1589-1599. [PMID: 34954736 PMCID: PMC9218002 DOI: 10.1097/tp.0000000000004038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Renal ischemia-reperfusion injury (IRI) predictably causes acute kidney injury after shock and major cardiovascular procedures in all kidneys procured for transplantation. The earliest events of IRI are triggered by molecules released from injured cells, damage-associated molecular patterns (DAMPs), that bind pattern recognition receptors (PRRs) constitutively expressed on many cells within the kidney. Activation of PRR signaling leads to production of proinflammatory molecules, which incite a cascade of inflammatory events leading to acute kidney injury. Renal tubular epithelial cells (RTECs) are particularly susceptible to ischemic injury, and proximal RTEC injury is pathognomonic of renal IRI. To better understand how injured RTECs contribute to the cycle of deleterious inflammation in the setting of renal IRI, this study asked whether DAMPs released from injured RTECs induced PRR signals in healthy RTECs. METHODS Human RTECs were necrosed ex vivo to release intracellular DAMPs and resulting necrotic supernatant used to stimulate healthy RTECs, T lymphocytes, and monocytes. RESULTS DAMPs released from necrosed RTECs upregulated PRRs known to be associated with renal IRI and activated mitogen-activated protein kinase signaling pathways. Proinflammatory cytokines were upregulated in response to necrotic supernatant, and this upregulation was abrogated by MEK-1 inhibition. The RTEC-derived DAMPs were also potent inducers of T-cell activation/proliferation and monocyte migration. CONCLUSIONS This is the first study to our knowledge to show that endogenous DAMPs released from injured RTECs directly activate PRR signaling in healthy RTECs. These findings provide new insights directed to therapeutics for renal IRI.
Collapse
Affiliation(s)
- Sean E DeWolf
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
- Department of Pulmonary and Critical Care Medicine, University of California San Diego, San Diego, CA
| | - Sashi G Kasimsetty
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Alana A Hawkes
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Lisa M Stocks
- LifeSharing Organ Procurement Organization, San Diego, CA
| | - Sunil M Kurian
- Division of Cell and Organ Transplantion, Scripps Clinic and Green Hospital, La Jolla, CA
| | - Dianne B McKay
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
- Division of Cell and Organ Transplantion, Scripps Clinic and Green Hospital, La Jolla, CA
| |
Collapse
|
33
|
Deus CM, Tavares H, Beatriz M, Mota S, Lopes C. Mitochondrial Damage-Associated Molecular Patterns Content in Extracellular Vesicles Promotes Early Inflammation in Neurodegenerative Disorders. Cells 2022; 11:2364. [PMID: 35954208 PMCID: PMC9367540 DOI: 10.3390/cells11152364] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation is a common hallmark in different neurodegenerative conditions that share neuronal dysfunction and a progressive loss of a selectively vulnerable brain cell population. Alongside ageing and genetics, inflammation, oxidative stress and mitochondrial dysfunction are considered key risk factors. Microglia are considered immune sentinels of the central nervous system capable of initiating an innate and adaptive immune response. Nevertheless, the pathological mechanisms underlying the initiation and spread of inflammation in the brain are still poorly described. Recently, a new mechanism of intercellular signalling mediated by small extracellular vesicles (EVs) has been identified. EVs are nanosized particles (30-150 nm) with a bilipid membrane that carries cell-specific bioactive cargos that participate in physiological or pathological processes. Damage-associated molecular patterns (DAMPs) are cellular components recognised by the immune receptors of microglia, inducing or aggravating neuroinflammation in neurodegenerative disorders. Diverse evidence links mitochondrial dysfunction and inflammation mediated by mitochondrial-DAMPs (mtDAMPs) such as mitochondrial DNA, mitochondrial transcription factor A (TFAM) and cardiolipin, among others. Mitochondrial-derived vesicles (MDVs) are a subtype of EVs produced after mild damage to mitochondria and, upon fusion with multivesicular bodies are released as EVs to the extracellular space. MDVs are particularly enriched in mtDAMPs which can induce an immune response and the release of pro-inflammatory cytokines. Importantly, growing evidence supports the association between mitochondrial dysfunction, EV release and inflammation. Here, we describe the role of extracellular vesicles-associated mtDAMPS in physiological conditions and as neuroinflammation activators contributing to neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Sandra Mota
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; (C.M.D.); (H.T.); (M.B.)
| | - Carla Lopes
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; (C.M.D.); (H.T.); (M.B.)
| |
Collapse
|
34
|
Deng J, Wu Z, He Y, Lin L, Tan W, Yang J. Interaction Between Intrinsic Renal Cells and Immune Cells in the Progression of Acute Kidney Injury. Front Med (Lausanne) 2022; 9:954574. [PMID: 35872775 PMCID: PMC9300888 DOI: 10.3389/fmed.2022.954574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022] Open
Abstract
A growing number of studies have confirmed that immune cells play various key roles in the pathophysiology of acute kidney injury (AKI) development. After the resident immune cells and intrinsic renal cells are damaged by ischemia and hypoxia, drugs and toxins, more immune cells will be recruited to infiltrate through the release of chemokines, while the intrinsic cells promote macrophage polarity conversion, and the immune cells will promote various programmed deaths, phenotypic conversion and cycle arrest of the intrinsic cells, ultimately leading to renal impairment and fibrosis. In the complex and dynamic immune microenvironment of AKI, the bidirectional interaction between immune cells and intrinsic renal cells affects the prognosis of the kidney and the progression of fibrosis, and determines the ultimate fate of the kidney.
Collapse
Affiliation(s)
- Junhui Deng
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhifen Wu
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun He
- The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Lirong Lin
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Tan
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jurong Yang
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Jurong Yang ;
| |
Collapse
|
35
|
Abstract
Sepsis-associated AKI is a life-threatening complication that is associated with high morbidity and mortality in patients who are critically ill. Although it is clear early supportive interventions in sepsis reduce mortality, it is less clear that they prevent or ameliorate sepsis-associated AKI. This is likely because specific mechanisms underlying AKI attributable to sepsis are not fully understood. Understanding these mechanisms will form the foundation for the development of strategies for early diagnosis and treatment of sepsis-associated AKI. Here, we summarize recent laboratory and clinical studies, focusing on critical factors in the pathophysiology of sepsis-associated AKI: microcirculatory dysfunction, inflammation, NOD-like receptor protein 3 inflammasome, microRNAs, extracellular vesicles, autophagy and efferocytosis, inflammatory reflex pathway, vitamin D, and metabolic reprogramming. Lastly, identifying these molecular targets and defining clinical subphenotypes will permit precision approaches in the prevention and treatment of sepsis-associated AKI.
Collapse
Affiliation(s)
- Shuhei Kuwabara
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Eibhlin Goggins
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
36
|
Alam MI, Quasimi H, Kumar A, Alam A, Bhagat S, Alam MS, Khan GA, Dhulap A, Ahmad Ansari M. Protective effects of novel diazepinone derivatives in snake venom induced sterile inflammation in experimental animals. Eur J Pharmacol 2022; 928:175095. [PMID: 35728626 DOI: 10.1016/j.ejphar.2022.175095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 11/03/2022]
Abstract
Snake envenomation leads to the formation of damage-associated molecular patterns (DAMPs), which are mediated by endogenous intracellular molecules. These are recognized by pattern-recognition receptors (PRRs) and can induce sterile inflammation. AIMS In the present study, we aim at understanding the mechanisms involved in DAMPs induced sterile inflammation to unravel the novel therapeutic strategies for treating snake bites. The potential of benzodiazepinone derivatives to act against snake venom induced inflammation has been explored in the present investigation. MAIN METHODS Three compounds VA 17, VA 43 and PA 03 were taken from our library of synthetic compounds. Oxidative stress markers such as lipid peroxidation, superoxide and nitric oxide were measured along with the analysis of DAMPs (IL6, HMGB1, vWF, S100b and HSP70). These compounds have been docked using molecular docking against the snake venom PLA2 structure (PDB code: 1OXL). KEY FINDINGS The compounds have been found to effectively neutralize viper and cobra venoms induced lethal activity both ex vivo and in vivo. The compounds have also neutralized the viper venom induced hemorrhagic, coagulant, anticoagulant reactions as well as inflammation. The fold of protection have always been found to be higher in case of ex vivo than in in vivo. These compounds have neutralized the venom induced DAMPs as exhibited by IL6, HMGB1, vWF, S100b and HSP70. The fold of neutralization is found to be higher in VA 43. SIGNIFICANCE The identified compounds could be used as potential candidates for developing treatment of snakebites in areas where antiserums are not yet available.
Collapse
Affiliation(s)
- M I Alam
- Department of Physiology, Hamdard Institute of Medical Sciences & Research, Jamia Hamdard (Deemed University), New Delhi, India.
| | - Huma Quasimi
- Department of Physiology, Hamdard Institute of Medical Sciences & Research, Jamia Hamdard (Deemed University), New Delhi, India
| | - Amit Kumar
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Aftab Alam
- Department of Clinical Neurosciences, Cambridge University Hospital, Cambridge, United Kingdom
| | - Saumya Bhagat
- Department of Physiology, Hamdard Institute of Medical Sciences & Research, Jamia Hamdard (Deemed University), New Delhi, India
| | - M Sarwar Alam
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India.
| | - G A Khan
- Department of Clinical Nutrition, College of Applied Medical Sciences, King Faisal University, Alhasa, Saudi Arabia
| | - Abhijeet Dhulap
- CSIR Unit for Research and Development of Information Products, Pune, India
| | | |
Collapse
|
37
|
Maamar M, Artime A, Pariente E, Fierro P, Ruiz Y, Gutiérrez S, Tobalina M, Díaz-Salazar S, Ramos C, Olmos JM, Hernández JL. Post-COVID-19 syndrome, low-grade inflammation and inflammatory markers: a cross-sectional study. Curr Med Res Opin 2022; 38:901-909. [PMID: 35166141 PMCID: PMC8935459 DOI: 10.1080/03007995.2022.2042991] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Post-COVID syndrome (PCS) is a poorly known entity. An underlying chronic, low-grade inflammation (LGI) has been theorized as a pathophysiological mechanism. Available data on biomarkers in PCS show conflicting results. Our aim was to know whether subjects with PCS present higher levels of inflammatory markers, after a mild COVID-19. METHODS Analytical cross-sectional study. Cases of mild COVID-19 in a community setting were included. We collected epidemiological data (age, sex, BMI, smoking, comorbidities), variables of the acute COVID-19 (duration, symptoms), and data at 3 months after the acute phase (symptoms and laboratory test). Serum C-reactive protein (CRP), neutrophil and lymphocyte counts, neutrophil/lymphocyte ratio (NLR), lactate dehydrogenase, ferritin, fibrinogen, and D-dimer levels were analysed. LGI was defined as CRP >0.3 and <1.0 mg/dL. A subject was classified as PCS + if presented signs and symptoms >12 weeks after an infection consistent with COVID-19. Five composite indices (C1-C5) were developed, combining the upper ranges of biomarkers distributions. Multivariate analyses were performed. RESULTS We analysed 121 mild COVID-19 cases (mean age = 45.7 years, 56.2% women). Among the acute symptoms, women presented a higher frequency of fatigue (54.4% vs 30.2%; p = .008). PCS affected 35.8% of women and 20.8% of men (p = .07), and the most reported symptoms were fatigue (42.8%), anosmia (40%), ageusia (22.8%), dyspnea (17.1%) and myalgia (11.4%). Neutrophil count, NLR, CRP and fibrinogen showed the best correlations with PCS and were selected to develop the indices. In women PCS+, C1, C3 and C4 indices were more frequently met, while in men PCS+, C2, C5 and CRP were in the range of LGI. Anosmia, ageusia and fatigue were related to higher neutrophil counts, with sex differences. Fibrinogen levels were higher in persistent myalgia (510 ± 82 mg/dL vs 394 ± 87; p = .013). In multivariable analysis, a woman with a neutrophil count above the median, or with fibrinogen level or NLR in the highest tertile, had a 4-5-fold increased risk of prevalent PCS. A man with CRP in the range of LGI, or fibrinogen level or a neutrophil count in the highest tertile, had a 10-17-fold increased risk of prevalent PCS. CONCLUSIONS The data obtained in the present cross-sectional study seems to demonstrate a consistent association between PCS and upper ranges of the neutrophil count, NLR, fibrinogen, and CRP in the LGI range. Furthermore, composite indices appear useful in detecting relationships between slight elevations of biomarkers and PCS, and our study identifies relevant sex differences in symptoms and markers regarding the PCS.
Collapse
Affiliation(s)
- Meryam Maamar
- Emergency Service. Osakidetza, Servicio Vasco de Salud, Bilbao, País Vasco, Spain
| | - Arancha Artime
- El Llano - Primary Health Care Center, SESPA - Servicio Asturiano de Salud, Gijón Asturias, Spain
| | - Emilio Pariente
- Camargo Interior - Primary Health Care Center, Servicio Cántabro de Salud, Muriedas, Cantabria, Spain
- Depto. de Medicina y Psiquiatría, Universidad de Cantabria, Santander, Cantabria, Spain
- CONTACT Emilio Pariente “Camargo Interior” Primary Care Center, Associate Professor, University of Cantabria, Avda Bilbao, s/n. 39600-Muriedas, Cantabria, Spain
| | - Patricia Fierro
- Camargo Interior - Primary Health Care Center, Servicio Cántabro de Salud, Muriedas, Cantabria, Spain
| | - Yolanda Ruiz
- Camargo Interior - Primary Health Care Center, Servicio Cántabro de Salud, Muriedas, Cantabria, Spain
| | - Silvia Gutiérrez
- Camargo Interior - Primary Health Care Center, Servicio Cántabro de Salud, Muriedas, Cantabria, Spain
| | - Marian Tobalina
- Camargo Interior - Primary Health Care Center, Servicio Cántabro de Salud, Muriedas, Cantabria, Spain
| | - Sara Díaz-Salazar
- Camargo Interior - Primary Health Care Center, Servicio Cántabro de Salud, Muriedas, Cantabria, Spain
| | - Carmen Ramos
- Depto. de Medicina y Psiquiatría, Universidad de Cantabria, Santander, Cantabria, Spain
- Camargo Costa - Primary Health Care Center, Servicio Cántabro de Salud, Maliaño, Cantabria, Spain
| | - José M. Olmos
- Depto. de Medicina y Psiquiatría, Universidad de Cantabria, Santander, Cantabria, Spain
- Servicio de Medicina Interna, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Valdecilla (IDIVAL), Santander, Cantabria, Spain
| | - José L. Hernández
- Depto. de Medicina y Psiquiatría, Universidad de Cantabria, Santander, Cantabria, Spain
- Servicio de Medicina Interna, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Valdecilla (IDIVAL), Santander, Cantabria, Spain
| |
Collapse
|
38
|
Krupa A, Krupa MM, Pawlak K. Indoleamine 2,3 Dioxygenase 1-The Potential Link between the Innate Immunity and the Ischemia-Reperfusion-Induced Acute Kidney Injury? Int J Mol Sci 2022; 23:6176. [PMID: 35682852 PMCID: PMC9181334 DOI: 10.3390/ijms23116176] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/30/2022] [Indexed: 12/13/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is of the most common causes of acute kidney injury (AKI); nevertheless, the mechanisms responsible for both early kidney injury and the reparative phase are not fully recognised. The inflammatory response following ischemia is characterised by the crosstalk between cells belonging to the innate immune system-dendritic cells (DCs), macrophages, neutrophils, natural killer (NK) cells, and renal tubular epithelial cells (RTECs). A tough inflammatory response can damage the renal tissue; it may also have a protective effect leading to the repair after IRI. Indoleamine 2,3 dioxygenase 1 (IDO1), the principal enzyme of the kynurenine pathway (KP), has a broad spectrum of immunological activity from stimulation to immunosuppressive activity in inflamed areas. IDO1 expression occurs in cells of the innate immunity and RTECs during IRI, resulting in local tryptophan (TRP) depletion and generation of kynurenines, and both of these mechanisms contribute to the immunosuppressive effect. Nonetheless, it is unknown if the above mechanism can play a harmful or preventive role in IRI-induced AKI. Despite the scarcity of literature in this field, the current review attempts to present a possible role of IDO1 activation in the regulation of the innate immune system in IRI-induced AKI.
Collapse
Affiliation(s)
- Anna Krupa
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland;
| | - Mikolaj M. Krupa
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
| |
Collapse
|
39
|
An Update on Advancements and Challenges in Inhalational Drug Delivery for Pulmonary Arterial Hypertension. Molecules 2022; 27:molecules27113490. [PMID: 35684428 PMCID: PMC9182169 DOI: 10.3390/molecules27113490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 12/17/2022] Open
Abstract
A lethal condition at the arterial–alveolar juncture caused the exhaustive remodeling of pulmonary arterioles and persistent vasoconstriction, followed by a cumulative augmentation of resistance at the pulmonary vascular and, consequently, right-heart collapse. The selective dilation of the pulmonary endothelium and remodeled vasculature can be achieved by using targeted drug delivery in PAH. Although 12 therapeutics were approved by the FDA for PAH, because of traditional non-specific targeting, they suffered from inconsistent drug release. Despite available inhalation delivery platforms, drug particle deposition into the microenvironment of the pulmonary vasculature and the consequent efficacy of molecules are influenced by pathophysiological conditions, the characteristics of aerosolized mist, and formulations. Uncertainty exists in peripheral hemodynamics outside the pulmonary vasculature and extra-pulmonary side effects, which may be further exacerbated by underlying disease states. The speedy improvement of arterial pressure is possible via the inhalation route because it has direct access to pulmonary arterioles. Additionally, closed particle deposition and accumulation in diseased tissues benefit the restoration of remolded arterioles by reducing fallacious drug deposition in other organs. This review is designed to decipher the pathological changes that should be taken into account when targeting the underlying pulmonary endothelial vasculature, especially with regard to inhaled particle deposition in the alveolar vasculature and characteristic formulations.
Collapse
|
40
|
Jin L, Yu B, Liu G, Nie W, Wang J, Chen J, Xiao L, Xia H, Han F, Yang Y. Mitophagy induced by UMI-77 preserves mitochondrial fitness in renal tubular epithelial cells and alleviates renal fibrosis. FASEB J 2022; 36:e22342. [PMID: 35524750 DOI: 10.1096/fj.202200199rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/09/2022] [Accepted: 04/25/2022] [Indexed: 12/27/2022]
Abstract
Renal fibrosis is the final common outcome of chronic kidney disease (CKD), which remains a huge challenge due to a lack of targeted treatment. Growing evidence suggests that during the process of CKD, the integrity and function of mitochondria in renal tubular epithelial cells (TECs) are generally impaired and strongly connected with the progression of renal fibrosis. Mitophagy, a selective form of autophagy, could remove aberrant mitochondria to maintain mitochondrial homeostasis. Deficiency of mitophagy has been reported to aggravate renal fibrosis. However, whether induction of mitophagy could alleviate renal fibrosis has not been stated. In this study, we explored the effect of mitophagy activation by UMI-77, a compound recently verified to induce mitophagy, on murine CKD model of unilateral ureteral obstruction (UUO) in vivo and TECs in vitro. In UUO mice, we found the changes of mitochondrial damage, ROS production, transforming growth factor (TGF)-β1/Smad pathway activation, as well as epithelial-mesenchymal transition phenotype and renal fibrosis, and these changes were ameliorated by mitophagy enhancement using UMI-77. Moreover, TEC apoptosis, nuclear factor (NF)-κB signaling activation, and interstitial inflammation after UUO were significantly mitigated by augmented mitophagy. Then, we found UMI-77 could effectively and safely induce mitophagy in TECs in vitro, and reduced TGF-β1/Smad signaling and downstream profibrotic responses in TGF-β1-treated TECs. These changes were restored by a mitophagy inhibitor. In conclusion, we demonstrated that mitophagy activation protected against renal fibrosis through improving mitochondrial fitness, downregulating TGF-β1/Smad signaling and alleviating TEC injuries and inflammatory infiltration in kidneys.
Collapse
Affiliation(s)
- Lini Jin
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, Institute of Nephrology, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Binfeng Yu
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, Institute of Nephrology, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Guangjun Liu
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, Institute of Nephrology, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Wanyun Nie
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, Institute of Nephrology, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Junni Wang
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, Institute of Nephrology, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianghua Chen
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, Institute of Nephrology, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Liang Xiao
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, Institute of Nephrology, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongguang Xia
- Liangzhu Laboratory, Zhejiang University Medical Center, Department of Biochemistry & Research Center of Clinical Pharmacy of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Han
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, Institute of Nephrology, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Yang
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, Institute of Nephrology, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Ryu S, Shin JW, Kwon S, Lee J, Kim YC, Bae YS, Bae YS, Kim DK, Kim YS, Yang SH, Kim HY. Siglec-F-expressing neutrophils are essential for creating a pro-fibrotic microenvironment in the renal fibrosis. J Clin Invest 2022; 132:156876. [PMID: 35482420 PMCID: PMC9197522 DOI: 10.1172/jci156876] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
The roles of neutrophils in renal inflammation are currently unclear. On examining these cells in the unilateral ureteral obstruction murine model of chronic kidney disease, we found that the injured kidney bore a large and rapidly expanding population of neutrophils that expressed the eosinophil marker Siglec-F. We first confirmed that these cells were neutrophils. Siglec-F+ neutrophils were recently detected for the first time by several studies on other disease contexts. We then showed that (i) these cells were derived from conventional neutrophils in the renal vasculature by TGF-β1 and GM-CSF, (ii) they differed from their parent cells by more frequent hypersegmentation, higher expression of pro-fibrotic inflammatory cytokines, and, notably, expression of Collagen 1, and (iii) their depletion reduced collagen deposition and disease progression, but adoptive transfer increased renal fibrosis. These findings have thus unveiled a subtype of neutrophils that participate in renal fibrosis and maybe a new therapeutic target in chronic kidney disease.
Collapse
Affiliation(s)
- Seungwon Ryu
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Jae Woo Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Soie Kwon
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea, Republic of
| | - Jiwon Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea, Republic of
| | - Yong Chul Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea, Republic of
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea, Republic of
| | - Yong-Soo Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea, Republic of
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Yon Su Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Seung Hee Yang
- Kidney Research Institute, Seoul National University, Seoul, Korea, Republic of
| | - Hye Young Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea, Republic of
| |
Collapse
|
42
|
Ye X, Song G, Huang S, Liang Q, Fang Y, Lian L, Zhu S. Caspase-1: A Promising Target for Preserving Blood–Brain Barrier Integrity in Acute Stroke. Front Mol Neurosci 2022; 15:856372. [PMID: 35370546 PMCID: PMC8971909 DOI: 10.3389/fnmol.2022.856372] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/18/2022] [Indexed: 12/24/2022] Open
Abstract
The blood–brain barrier (BBB) acts as a physical and biochemical barrier that plays a fundamental role in regulating the blood-to-brain influx of endogenous and exogenous components and maintaining the homeostatic microenvironment of the central nervous system (CNS). Acute stroke leads to BBB disruption, blood substances extravasation into the brain parenchyma, and the consequence of brain edema formation with neurological impairment afterward. Caspase-1, one of the evolutionary conserved families of cysteine proteases, which is upregulated in acute stroke, mainly mediates pyroptosis and compromises BBB integrity via lytic cellular death and inflammatory cytokines release. Nowadays, targeting caspase-1 has been proven to be effective in decreasing the occurrence of hemorrhagic transformation (HT) and in attenuating brain edema and secondary damages during acute stroke. However, the underlying interactions among caspase-1, BBB, and stroke still remain ill-defined. Hence, in this review, we are concerned about the roles of caspase-1 activation and its associated mechanisms in stroke-induced BBB damage, aiming at providing insights into the significance of caspase-1 inhibition on stroke treatment in the near future.
Collapse
|
43
|
Salvadori M, Tsalouchos A. Innovative immunosuppression in kidney transplantation: A challenge for unmet needs. World J Transplant 2022; 12:27-41. [PMID: 35433332 PMCID: PMC8968476 DOI: 10.5500/wjt.v12.i3.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/27/2022] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
Due to the optimal results obtained in kidney transplantation and to the lack of interest of the industries, new innovative drugs in kidney transplantation are difficult to be encountered. The best strategy to find the new drugs recently developed or under development is to search in the sections of kidney transplantation still not completely covered by the drugs on the market. These unmet needs are the prevention of delayed graft function (DGF), the protection of the graft over the long time and the desensitization of preformed anti human leukocyte antigen antibodies and the treatment of the acute antibody-mediated rejection. These needs are particularly relevant due to the expansion of some kind of kidney transplantation as transplantation from non-heart beating donor and in the case of antibody-incompatible grafts. The first are particularly exposed to DGF, the latter need a safe desensitization and a safe treatments of the antibody mediated rejections that often occur. Particular caution is needed in treating these drugs. First, they are described in very recent studies and the follow-up of their effect is of course rather short. Second, some of these drugs are still in an early phase of study, even if in well-conducted randomized controlled trials. Particular caution and a careful check need to be used in trials launched 2 or 3 years ago. Indeed, is always necessary to verify whether the study is still going on or whether and why the study itself was abandoned.
Collapse
Affiliation(s)
- Maurizio Salvadori
- Department of Renal Transplantation, Careggi University Hospital, Florence 50139, Italy
| | - Aris Tsalouchos
- Division of Nephrology, Santa Maria Annunziata Hospital, Florence 50012, Italy
| |
Collapse
|
44
|
Zhou X, Venigalla M, Raju R, Münch G. Pharmacological considerations for treating neuroinflammation with curcumin in Alzheimer's disease. J Neural Transm (Vienna) 2022; 129:755-771. [PMID: 35294663 DOI: 10.1007/s00702-022-02480-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 12/14/2022]
Abstract
Prof. Dr. Peter Riederer, the former Head of the Neurochemistry Department of the Psychiatry and Psychotherapy Clinic at the University of Würzburg (Germany), has been one of the pioneers of research into oxidative stress in Parkinson's and Alzheimer's disease (AD). This review will outline how his scientific contribution to the field has opened a new direction for AD treatment beyond "plaques and tangles". In the 1990s, Prof. Riederer was one of the first scientists who proposed oxidative stress and neuroinflammation as one of the major contributors to Alzheimer's disease, despite the overwhelming support for the "amyloid-only" hypothesis at the time, which postulated that the sole and only cause of AD is β-amyloid. His group also highlighted the role of advanced glycation end products, sugar and dicarbonyl-derived protein modifications, which crosslink proteins into insoluble aggregates and potent pro-inflammatory activators of microglia. For the treatment of chronic neuroinflammation, he and his group suggested that the most appropriate drug class would be cytokine-suppressive anti-inflammatory drugs (CSAIDs) which have a broader anti-inflammatory action range than conventional non-steroidal anti-inflammatory drugs. One of the most potent CSAIDs is curcumin, but it suffers from a variety of pharmacokinetic disadvantages including low bioavailability, which might have tainted many human clinical trials. Although a variety of oral formulations with increased bioavailability have been developed, curcumin's absorption after oral delivery is too low to reach therapeutic concentrations in the micromolar range in the systemic circulation and the brain. This review will conclude with evidence that rectally applied suppositories might be the best alternatives to oral medications, as this route will be able to evade first-pass metabolism in the liver and achieve high concentrations of curcumin in plasma and tissues, including the brain.
Collapse
Affiliation(s)
- Xian Zhou
- NICM Health Research Institute, Western Sydney University, 158-160 Hawkesbury Rd, Westmead, NSW, 2145, Australia
| | - Madhuri Venigalla
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Ritesh Raju
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Gerald Münch
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia.
| |
Collapse
|
45
|
Dajsakdipon T, Siripoon T, Ngamphaiboon N, Ativitavas T, Dejthevaporn T. Immunotherapy and Biomarkers in Sarcoma. Curr Treat Options Oncol 2022; 23:415-438. [PMID: 35262852 DOI: 10.1007/s11864-022-00944-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2021] [Indexed: 01/05/2023]
Abstract
OPINION STATEMENT Sarcoma describes a rare and heterogeneous group of diseases. Current treatment options for metastatic sarcoma are quite limited. Conventional treatments with chemotherapy or anti-angiogenic agents result in a non-durable response and a survival rate of approximately 12 to 18 months. In addition, the benefits of such treatments remain limited in some sarcoma subtypes only. Immunotherapy is an emerging treatment for several cancer types with promising outcomes. Studies at the cellular level have shown a relatively high immunogenicity in some subtypes of sarcoma. It is therefore hypothesized that sarcoma may respond to immunotherapy. However, sarcoma is a heterogeneous disease and differences in terms of immunogenicity exist. A multitude of immune-based treatment approaches for sarcoma have been explored. This includes immune checkpoint inhibitors, therapeutic vaccines, and adoptive cell therapy. Single-agent immunotherapy has exhibited efficacy against some sarcoma subtypes, including alveolar soft-part sarcoma, angiosarcoma, and undifferentiated pleomorphic sarcoma. Combination immunotherapy appears superior to single-agent immunotherapy in terms of response, and several ongoing studies of immunotherapy using single/combination immune checkpoint inhibitors and combination with anti-angiogenesis have begun to report beneficial results. Predictive and prognostic biomarkers are also under active investigations, with particular interest in tumor-infiltrating lymphocytes or high tumor mutational burden levels. However, the information is still limited and further studies are needed.
Collapse
Affiliation(s)
- Thanate Dajsakdipon
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Room 620 Queen Sirikit Medical Center, 270 Rama VI Road, Rajthevi, Bangkok, 10400, Thailand
| | - Teerada Siripoon
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Room 620 Queen Sirikit Medical Center, 270 Rama VI Road, Rajthevi, Bangkok, 10400, Thailand
| | - Nuttapong Ngamphaiboon
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Room 620 Queen Sirikit Medical Center, 270 Rama VI Road, Rajthevi, Bangkok, 10400, Thailand
| | - Touch Ativitavas
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Room 620 Queen Sirikit Medical Center, 270 Rama VI Road, Rajthevi, Bangkok, 10400, Thailand
| | - Thitiya Dejthevaporn
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Room 620 Queen Sirikit Medical Center, 270 Rama VI Road, Rajthevi, Bangkok, 10400, Thailand.
| |
Collapse
|
46
|
Koval M, Cwiek A, Carr T, Good ME, Lohman AW, Isakson BE. Pannexin 1 as a driver of inflammation and ischemia-reperfusion injury. Purinergic Signal 2021; 17:521-531. [PMID: 34251590 PMCID: PMC8273370 DOI: 10.1007/s11302-021-09804-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
Pannexin 1 (Panx1) is a ubiquitously expressed protein forming large conductance channels that are central to many distinct inflammation and injury responses. There is accumulating evidence showing ATP released from Panx1 channels, as well as metabolites, provide effective paracrine and autocrine signaling molecules that regulate different elements of the injury response. As channels with a broad range of permselectivity, Panx1 channels mediate the secretion and uptake of multiple solutes, ranging from calcium to bacterial derived molecules. In this review, we describe how Panx1 functions in response to different pro-inflammatory stimuli, focusing mainly on signaling coordinated by the vasculature. How Panx1 mediates ATP release by injured cells is also discussed. The ability of Panx1 to serve as a central component of many diverse physiologic responses has proven to be critically dependent on the context of expression, post-translational modification, interacting partners, and the mode of stimulation.
Collapse
Affiliation(s)
- Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, 205 Whitehead Building, 615 Michael Street, Atlanta, GA, 30322, USA.
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Aleksandra Cwiek
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Thomas Carr
- Department of Cell Biology and Anatomy, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Miranda E Good
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Alexander W Lohman
- Department of Cell Biology and Anatomy, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, PO Box 801394, Charlottesville, VA, 22908, USA.
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|
47
|
Lee SI, Park H, Kim SJ, Lee KW, Shin DY, Son JK, Hong JH, Kim SH, Cho HJ, Park JB, Kim TM. Circulating RNA Profiling in Postreperfusion Plasma From Kidney Transplant Recipients. Transplant Proc 2021; 53:2853-2865. [PMID: 34772491 DOI: 10.1016/j.transproceed.2021.09.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/30/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Ischemia/reperfusion injury (IRI) is inevitable in kidney transplantation (KT) and may lead to impaired tubular epithelial cell function and reduce graft function and survival. Renal IRI is a complex cellular and molecular event; therefore, investigating the genetic or molecular pathways associated with the early phase of KT would improve our understanding of IRI in KT. MicroRNAs (miRNAs) play a critical role in various pathologic events associated with IRI. METHODS We compared the expression profile of miRNAs extracted from 2 blood plasma samples, 1 from periphery and the other form gonadal veins immediately after reperfusion, in a total 5 cases of KT. RESULTS We observed that the total RNA yield was higher in postreperfusion plasma and that a subset of miRNAs was upregulated (miR-let-7a-3p, miR-143-3p, and miR-214-3p) or downregulated (let-7d-3p, let-7d-3p, miR-1246, miR-1260b, miR-1290, and miR-130b-3p) in postreperfusion plasma. Gene ontology analyses revealed that these subsets target different biological functions. Twenty-four predicted genes were commonly targeted by the upregulated miRNAs, and gene ontology enrichment and pathway analyses revealed that these were associated with various cellular activities such as signal transduction or with components such as exosomes and membranous organelles. CONCLUSION We present 2 subsets of miRNAs that were differentially upregulated or downregulated in postreperfusion plasma. Our findings may enhance our understanding of miRNA-mediated early molecular events related to IRI in KT.
Collapse
Affiliation(s)
- Sang In Lee
- Department of Animal Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do, Republic of Korea
| | - Hyojun Park
- School of Medicine, Sungkyunkwan University, Gangnam-gu, Seoul, Republic of Korea
| | - Sung Joo Kim
- School of Medicine, Sungkyunkwan University, Gangnam-gu, Seoul, Republic of Korea; Gennbio Co Ltd, Gangnam-gu, Seoul, Republic of Korea
| | - Kyo Won Lee
- Department of Surgery, Samsung Medical Center, Seoul, Republic of Korea
| | - Du Yeon Shin
- Transplantation Research Center, Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Jin Kyung Son
- Department of Surgery, Samsung Medical Center, Seoul, Republic of Korea
| | - Ju Hee Hong
- Department of Health Sciences & Technology, Samsung Advanced Institute for Health Sciences & Technology, Graduate School, Sungkyunkwan University, Seoul, Republic of Korea
| | - Seung Han Kim
- Gennbio Co Ltd, Gangnam-gu, Seoul, Republic of Korea
| | - Hye Jin Cho
- Graduate School of International Agricultural Technology, Seoul National University, Gangwon-do, Republic of Korea
| | - Jae Berm Park
- Department of Surgery, Samsung Medical Center, Seoul, Republic of Korea
| | - Tae Min Kim
- Graduate School of International Agricultural Technology, Seoul National University, Gangwon-do, Republic of Korea.
| |
Collapse
|
48
|
Schaeffer HD, Sharp NE, Jaap K, Semian J, Alaparthi M, Sun H, Young A, Factor M. Acute Kidney Injury After Large Ventral Hernia Repair Requiring Transversus Abdominis Release. Am Surg 2021; 88:628-632. [PMID: 34730442 DOI: 10.1177/00031348211050841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Acute kidney injury (AKI) is a known postoperative complication of open ventral hernia repair contributing to increased costs, hospital length of stay, and mortality. The aim of this study was to identify whether the muscle injury that occurs in a posterior separation of components via transversus abdominis release (TAR) contributes to a higher incidence of postoperative AKI. METHODS A retrospective cohort study of patients who underwent open retrorectus ventral hernia repair with and without TAR at a single institution between 2012 and 2019 was performed. Patients who underwent a separation of components via either unilateral or bilateral transversus abdominis release were compared to those who did not undergo TAR as part of their hernia repair (non-TAR). The outcome of interest was the development of postoperative AKI. Acute kidney injury was defined as an increase in creatinine of greater than 50% of the preoperative baseline. Univariate and multivariate analyses were performed to determine the influence of TAR on the development of AKI. RESULTS There were 523 patients who met inclusion criteria, of which 159 (30.4%) had a TAR as part of their retrorectus hernia repair. No differences were found in preoperative characteristics between the TAR and non-TAR group including age, gender, history of kidney disease, or history of diabetes. By contrast, the TAR group had significantly greater median estimated blood loss (100 mL vs 75 mL, P < .01), mean positive intraoperative fluid balance (2255 mL vs 1887 mL, P < .01), and operative duration (321 min vs 269 min, P < .001). The rate of AKI in the TAR group was 11% (n = 18) vs 6% (n = 23, P = .0503) in the non-TAR group. On multivariate analysis controlling for patient characteristics and intraoperative factors, TAR was the only factor with a significantly increased odds of AKI (OR 1.97, 95% CI 0.994-3.905, P = .0521). CONCLUSIONS In patients with large ventral hernias requiring retrorectus repair, performing a TAR is associated with a nearly 2-fold increase in the development of postoperative AKI. These findings suggest that these patients should be optimized perioperatively with emphasis on fluid resuscitation, limiting nephrotoxic medications and monitoring urine output.
Collapse
Affiliation(s)
- H David Schaeffer
- Department of General Surgery, 21599Geisinger Medical Center, Danville, PA, USA
| | - Nicole E Sharp
- Department of General Surgery, 21599Geisinger Medical Center, Danville, PA, USA
| | - Kathryn Jaap
- Department of General Surgery, 21599Geisinger Medical Center, Danville, PA, USA
| | - John Semian
- Department of General Surgery, 21599Geisinger Medical Center, Danville, PA, USA
| | - Mohanbabu Alaparthi
- Department of General Surgery, 21599Geisinger Medical Center, Danville, PA, USA
| | - Haiyan Sun
- Department of General Surgery, 21599Geisinger Medical Center, Danville, PA, USA
| | - Amanda Young
- Department of General Surgery, 21599Geisinger Medical Center, Danville, PA, USA
| | - Matthew Factor
- Department of General Surgery, 21599Geisinger Medical Center, Danville, PA, USA
| |
Collapse
|
49
|
Abu N, Rus Bakarurraini NAA, Nasir SN. Extracellular Vesicles and DAMPs in Cancer: A Mini-Review. Front Immunol 2021; 12:740548. [PMID: 34721407 PMCID: PMC8554306 DOI: 10.3389/fimmu.2021.740548] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
Certain cancer therapy has been shown to induce immunogenic cell death in cancer cells and may promote tumor progression instead. The external stress or stimuli may induce cell death and contribute toward the secretion of pro inflammatory molecules. The release of damage-associated molecular patterns (DAMPs) upon induction of therapy or cell death has been shown to induce an inflammatory response. Nevertheless, the mechanism as to how the DAMPs are released and engage in such activity needs further in-depth investigation. Interestingly, some studies have shown that DAMPs can be released through extracellular vesicles (EVs) and can bind to receptors such as toll-like receptors (TCRs). Ample pre-clinical studies have shown that cancer-derived EVs are able to modulate immune responses within the tumor microenvironment. However, the information on the presence of such DAMPs within EVs is still elusive. Therefore, this mini-review attempts to summarize and appraise studies that have shown the presence of DAMPs within cancer-EVs and how it affects the downstream cellular process.
Collapse
Affiliation(s)
- Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | | | - Siti Nurmi Nasir
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
50
|
Li Y, Xu B, Yang J, Wang L, Tan X, Hu X, Sun L, Chen S, Zhu L, Chen X, Chen G. Liraglutide protects against lethal renal ischemia-reperfusion injury by inhibiting high-mobility group box 1 nuclear-cytoplasmic translocation and release. Pharmacol Res 2021; 173:105867. [PMID: 34481074 DOI: 10.1016/j.phrs.2021.105867] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022]
Abstract
Liraglutide, a glucagon-like peptide-1 receptor (GLP-1R) agonist, has been reported to exert protective effects against myocardial, hepatic, and gastric ischemia-reperfusion injury (IRI), but whether it can protect against renal IRI remains unknown. Here, a lethal renal IRI model was established with a 100% mortality rate in untreated mice. Treatment with liraglutide involving a regimen of multiple doses resulted in 100% survival, remarkable preservation of renal function, a significant reduction in pathological damage, and blunted upregulation of TNF-α, IL-1β, IL-6, MCP-1, TLR-2, TLR-4, and RAGE mRNA. We found that liraglutide treatment dramatically inhibited ischemia-induced nucleocytoplasmic translocation and release of HMGB1. This inhibition was associated with a marked decrease (~ 60%) in nuclear histone acetyltransferase activity. In addition, the protective effects of liraglutide on renal IRI were largely abolished by the administration of exogenous HMGB1. When the GLP-1R antagonist exendin (9-39) was given to mice before each liraglutide administration, or GLP-1R-/- mice were used for the renal IRI experiments, the protective effect of liraglutide on renal IRI was partially reversed. Moreover, liraglutide pretreatment significantly inhibited HMGB1 nucleocytoplasmic translocation during hypoxic culture of HK-2 cells in vitro, but the addition of exendin (9-39) significantly eliminated this inhibition. We demonstrate here that liraglutide can exert a strong protective effect on lethal renal IRI in mice. This protection appears to be related to the inhibition of HMGB1 nuclear-cytoplasmic translocation and release and partially depends on GLP-1R. Thus, liraglutide may be therapeutically useful for the clinical prevention and treatment of organ IRI.
Collapse
Affiliation(s)
- Yakun Li
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Bingyang Xu
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Yang
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; Key Laboratory of Organ Transplantation, Ministry of Public Health, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Lu Wang
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; Key Laboratory of Organ Transplantation, Ministry of Public Health, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Xiaosheng Tan
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofan Hu
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lingjuan Sun
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Song Chen
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; Key Laboratory of Organ Transplantation, Ministry of Public Health, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Lan Zhu
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; Key Laboratory of Organ Transplantation, Ministry of Public Health, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| | - Xiaoping Chen
- Key Laboratory of Organ Transplantation, Ministry of Education, China; Key Laboratory of Organ Transplantation, Ministry of Public Health, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China.
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; Key Laboratory of Organ Transplantation, Ministry of Public Health, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China.
| |
Collapse
|