1
|
Ng MSY, Kaur G, Francis RS, Hawley CM, Johnson DW. Drug repurposing for glomerular diseases: an underutilized resource. Nat Rev Nephrol 2024; 20:707-721. [PMID: 39085415 DOI: 10.1038/s41581-024-00864-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 08/02/2024]
Abstract
Drug repurposing in glomerular disease can deliver opportunities for steroid-free regimens, enable personalized multi-target options for resistant or relapsing disease and enhance treatment options for understudied populations (for example, children) and in resource-limited settings. Identification of drug-repurposing candidates can be data driven, which utilizes existing data on disease pathobiology, drug features and clinical outcomes, or experimental, which involves high-throughput drug screens. Information from databases of approved drugs, clinical trials and PubMed registries suggests that at least 96 drugs on the market cover 49 targets with immunosuppressive potential that could be candidates for drug repurposing in glomerular disease. Furthermore, evidence to support drug repurposing is available for 191 immune drug target-glomerular disease pairs. Non-immunological drug repurposing includes strategies to reduce haemodynamic overload, podocyte injury and kidney fibrosis. Recommended strategies to expand drug-repurposing capacity in glomerular disease include enriching drug databases with glomeruli-specific information, enhancing the accessibility of primary clinical trial data, biomarker discovery to improve participant selection into clinical trials and improve surrogate outcomes and initiatives to reduce patent, regulatory and organizational hurdles.
Collapse
Affiliation(s)
- Monica Suet Ying Ng
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, Queensland, Australia.
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, Queensland, Australia.
| | - Gursimran Kaur
- Department of Rheumatology, Saint Vincent's Hospital, Sydney, New South Wales, Australia
- Saint Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Rheumatology Department, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
| | - Ross S Francis
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Carmel M Hawley
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, Queensland, Australia
- Translational Research Institute, Brisbane, Queensland, Australia
- Centre for Kidney Disease Research, University of Queensland, Brisbane, Queensland, Australia
| | - David W Johnson
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, Queensland, Australia
- Translational Research Institute, Brisbane, Queensland, Australia
- Centre for Kidney Disease Research, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Prendecki M, Gurung A, Pisacano N, Pusey CD. The role of neutrophils in ANCA-associated vasculitis. Immunol Lett 2024; 270:106933. [PMID: 39362307 DOI: 10.1016/j.imlet.2024.106933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Anti-neutrophil cytoplasm antibody (ANCA)-associated vasculitis (AAV) is a group of rare systemic autoimmune diseases characterised by necrotising inflammation of small blood vessels and usually associated with circulating ANCA. The pathophysiology of AAV is complex, involving many aspects of the innate and adaptive immune system. Neutrophils are central to the pathogenesis of AAV as they are both the target of the autoantibody and effector cells mediating vascular injury. We describe mechanisms for ANCA induced activation of neutrophils, the pathogenic mechanisms by which this leads to endothelial cell injury, and how neutrophil crosstalk modulates other aspects of the immune system in AAV.
Collapse
Affiliation(s)
- Maria Prendecki
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom.
| | - Angila Gurung
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Noelle Pisacano
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Charles D Pusey
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| |
Collapse
|
3
|
Chen X, Lou Y, Zhou F, Shi D, Liu X, Tao F. Identification of novel indolinone derivatives as CTSC inhibitors to treat inflammatory bowel disease by modulating inflammatory factors. Eur J Med Chem 2024; 280:116914. [PMID: 39383651 DOI: 10.1016/j.ejmech.2024.116914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/11/2024]
Abstract
Novel inflammatory bowel disease (IBD) therapeutic drugs, mainly biologics that neutralize pro-inflammatory factors and janus kinase inhibitors that inhibit cytokine-mediated signal transduction, face problems including low efficacy rates, limited therapeutic benefits, and infection risks. It is an important task to find proteins that broadly regulate a variety of cytokines and to develop corresponding drugs. Cathepsin C (CTSC) mediates neutrophil-related inflammatory, participates in the recruitment and activation of inflammatory cells, and regulates cytokines levels, and is considered an ideal target for IBD treatment. In this study, starting from the in-house molecule, through medicinal chemistry and target-based design, a novel CTSC inhibitor B22 with IBD therapeutic efficacy was discovered. In vitro target verification and mechanism study indicated that B22 inhibit CTSC activity by binding to S2 pocket and S1 site, further inhibiting downstream serine protease activity. In addition, B22 exhibited anti-inflammatory activity and regulated various cytokines levels. In vivo studies highlighted B22 bears acceptable toxicity and suitable pharmacokinetic properties, and displays anti-inflammatory activity in IBD model. In conclusion, B22 is a potential anti-inflammatory molecule for IBD by targeting CTSC and deserves further research.
Collapse
Affiliation(s)
- Xing Chen
- School of Public Health, Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032, PR China
| | - Yan Lou
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, PR China
| | - Feilong Zhou
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, PR China
| | - Daxing Shi
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, PR China
| | - Xinhua Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, PR China.
| | - Fangbiao Tao
- School of Public Health, Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032, PR China.
| |
Collapse
|
4
|
Amsler J, Everts-Graber J, Martin KR, Roccabianca A, Lopes C, Tourneur L, Mocek J, Karras A, Naccache JM, Bonnotte B, Samson M, Hanslik T, Puéchal X, Terrier B, Guillevin L, Néel A, Mouthon L, Witko-Sarsat V. Dysregulation of neutrophil oxidant production and interleukin-1-related cytokines in granulomatosis with polyangiitis. Rheumatology (Oxford) 2024; 63:2249-2258. [PMID: 37947315 DOI: 10.1093/rheumatology/kead578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVES Neutrophils play a key role in ANCA-associated vasculitis, both as targets of autoimmunity and as facilitators of vascular damage. In granulomatosis with polyangiitis (GPA), the data regarding the production of reactive oxygen species (ROS) in neutrophils are unclear. Further, recent data suggests that ROS production could have an anti-inflammatory effect through the regulation of inflammasomes and IL-1-related cytokines. We aimed to analyse ROS production in neutrophils from patients with GPA and investigate its association with IL-1-related cytokines and the autoantigen PR3. METHODS Seventy-two GPA patients with disease flare were included in the NEUTROVASC prospective cohort study. ROS production in whole blood of patients with active GPA was evaluated and compared with that in the same patients in remission or healthy controls. Associations between ROS production, PR3 membrane expression on neutrophils, serum levels of IL-1-related cytokines as well as inflammasome-related proteins were analysed. RESULTS We observed a robust defect in ROS production by neutrophils from patients with active GPA compared with healthy controls, independent of glucocorticoid treatment. Serum levels of IL-1-related cytokines were significantly increased in GPA patients, particularly in patients with kidney involvement, and levels of these cytokines returned to normal after patients achieved remission. Further, inflammasome-related proteins were significantly dysregulated in the cytosol of neutrophils as well as the serum from GPA patients. CONCLUSION Our data suggests that ROS production and regulation of inflammasomes in neutrophils from patients with GPA are disturbed and may be a potential therapeutic target. TRIAL REGISTRATION ClinicalTrials.gov, https://www.clinicaltrials.gov, NCT01862068.
Collapse
Affiliation(s)
- Jennifer Amsler
- INSERM U1016, Institut Cochin, CNRS UMR 8104, Paris, France
- Université Paris Cité, Paris, France
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Judith Everts-Graber
- INSERM U1016, Institut Cochin, CNRS UMR 8104, Paris, France
- Université Paris Cité, Paris, France
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Katherine R Martin
- INSERM U1016, Institut Cochin, CNRS UMR 8104, Paris, France
- Université Paris Cité, Paris, France
- Inflammation Division, WEHI, and Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Arnaud Roccabianca
- INSERM U1016, Institut Cochin, CNRS UMR 8104, Paris, France
- Université Paris Cité, Paris, France
| | - Chloé Lopes
- INSERM U1016, Institut Cochin, CNRS UMR 8104, Paris, France
- Université Paris Cité, Paris, France
| | - Léa Tourneur
- INSERM U1016, Institut Cochin, CNRS UMR 8104, Paris, France
- Université Paris Cité, Paris, France
| | - Julie Mocek
- INSERM U1016, Institut Cochin, CNRS UMR 8104, Paris, France
- Université Paris Cité, Paris, France
| | - Alexandre Karras
- Department of Nephrology, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jean-Marc Naccache
- Department of Pulmonology-Allergology-Thoracic Oncology, Groupe Hospitalier Paris Saint Joseph, Paris, France
| | - Bernard Bonnotte
- Service de Médecine Interne et Immunologie Clinique, CHU Dijon, Dijon, France
| | - Maxime Samson
- Service de Médecine Interne et Immunologie Clinique, CHU Dijon, Dijon, France
| | - Thomas Hanslik
- Service de Médecine Interne, Hôpital Ambroise-Paré, AP-HP, Boulogne Billancourt, France
| | - Xavier Puéchal
- INSERM U1016, Institut Cochin, CNRS UMR 8104, Paris, France
- Université Paris Cité, Paris, France
- Department of Internal Medicine, Centre de Référence pour les Maladies Systémiques Autoimmunes Rares d'Ile de France, Cochin Hospital, AP-HP, Paris, France
| | - Benjamin Terrier
- INSERM U1016, Institut Cochin, CNRS UMR 8104, Paris, France
- Université Paris Cité, Paris, France
- Department of Internal Medicine, Centre de Référence pour les Maladies Systémiques Autoimmunes Rares d'Ile de France, Cochin Hospital, AP-HP, Paris, France
| | - Loïc Guillevin
- INSERM U1016, Institut Cochin, CNRS UMR 8104, Paris, France
- Université Paris Cité, Paris, France
- Department of Internal Medicine, Centre de Référence pour les Maladies Systémiques Autoimmunes Rares d'Ile de France, Cochin Hospital, AP-HP, Paris, France
| | - Antoine Néel
- Service de Médecine Interne, CHU Nantes, Nantes, France
- CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes Université, Nantes, France
| | - Luc Mouthon
- INSERM U1016, Institut Cochin, CNRS UMR 8104, Paris, France
- Université Paris Cité, Paris, France
- Department of Internal Medicine, Centre de Référence pour les Maladies Systémiques Autoimmunes Rares d'Ile de France, Cochin Hospital, AP-HP, Paris, France
| | - Véronique Witko-Sarsat
- INSERM U1016, Institut Cochin, CNRS UMR 8104, Paris, France
- Université Paris Cité, Paris, France
| |
Collapse
|
5
|
Yu J, Fu Y, Gao J, Zhang Q, Zhang N, Zhang Z, Jiang X, Chen C, Wen Z. Cathepsin C from extracellular histone-induced M1 alveolar macrophages promotes NETosis during lung ischemia-reperfusion injury. Redox Biol 2024; 74:103231. [PMID: 38861835 PMCID: PMC11209641 DOI: 10.1016/j.redox.2024.103231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024] Open
Abstract
Primary graft dysfunction (PGD) is a severe form of acute lung injury resulting from lung ischemia/reperfusion injury (I/R) in lung transplantation (LTx), associated with elevated post-transplant morbidity and mortality rates. Neutrophils infiltrating during reperfusion are identified as pivotal contributors to lung I/R injury by releasing excessive neutrophil extracellular traps (NETs) via NETosis. While alveolar macrophages (AMs) are involved in regulating neutrophil chemotaxis and infiltration, their role in NETosis during lung I/R remains inadequately elucidated. Extracellular histones constitute the main structure of NETs and can activate AMs. In this study, we confirmed the significant involvement of extracellular histone-induced M1 phenotype of AMs (M1-AMs) in driving NETosis during lung I/R. Using secretome analysis, public protein databases, and transwell co-culture models of AMs and neutrophils, we identified Cathepsin C (CTSC) derived from AMs as a major mediator in NETosis. Further elucidating the molecular mechanisms, we found that CTSC induced NETosis through a pathway dependent on NADPH oxidase-mediated production of reactive oxygen species (ROS). CTSC could significantly activate p38 MAPK, resulting in the phosphorylation of the NADPH oxidase subunit p47phox, thereby facilitating the trafficking of cytoplasmic subunits to the cell membrane and activating NADPH oxidase. Moreover, CTSC up-regulated and activated its substrate membrane proteinase 3 (mPR3), resulting in an increased release of NETosis-related inflammatory factors. Inhibiting CTSC revealed great potential in mitigating NETosis-related injury during lung I/R. These findings suggests that CTSC from AMs may be a crucial factor in mediating NETosis during lung I/R, and targeting CTSC inhition may represent a novel intervention for PGD in LTx.
Collapse
Affiliation(s)
- Jing Yu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Yu Fu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiameng Gao
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qingqing Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Nan Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhiyuan Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuemei Jiang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Zongmei Wen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
6
|
Ahmed MA, Kamel EO, Abd-Eldayem AM. Role of cAMP/pCREB and GSK-3β/NF-κB p65 signaling pathways in the renoprotective effect of mirabegron against renal ischemia-reperfusion injury in rats. Eur J Pharmacol 2024; 974:176617. [PMID: 38679120 DOI: 10.1016/j.ejphar.2024.176617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Acute kidney injury and other renal disorders are thought to be primarily caused by renal ischemia-reperfusion (RIR). Cyclic adenosine monophosphate (cAMP) has plenty of physiological pleiotropic effects and preserves tissue integrity and functions. This research aimed to examine the potential protective effects of the β3-adrenergic receptors agonist mirabegron in a rat model of RIR and its underlying mechanisms. Male rats enrolled in this work were given an oral dose of 30 mg/kg mirabegron for two days before surgical induction of RIR. Renal levels of kidney injury molecule-1 (KIM-1), monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), Interleukin-10 (IL-10), cAMP, cAMP-responsive element binding protein (pCREB), and glycogen synthase kinase-3 beta (GSK-3β) were assessed along with blood urea nitrogen and serum creatinine. Additionally, caspase-3 and nuclear factor-kappa B (NF-κB) p65 were explored by immunohistochemical analysis. Renal specimens were inspected for histopathological changes. RIR led to renal tissue damage with elevated blood urea nitrogen and serum creatinine levels. The renal KIM-1, MCP-1, TNF-α, and GSK-3β were significantly increased, while IL-10, cAMP, and pCREB levels were reduced. Moreover, upregulation of caspase-3 and NF-κB p65 protein expression was seen in RIR rats. Mirabegron significantly reduced kidney dysfunction, histological abnormalities, inflammation, and apoptosis in the rat renal tissues. Mechanistically, mirabegron mediated these effects via modulation of cAMP/pCREB and GSK-3β/NF-κB p65 signaling pathways. Mirabegron administration could protect renal tissue and maintain renal function against RIR.
Collapse
Affiliation(s)
- Marwa A Ahmed
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Esam O Kamel
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Ahmed M Abd-Eldayem
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt; Department of Pharmacology, Faculty of Medicine, Merit University, Sohag, Egypt.
| |
Collapse
|
7
|
Matt SM, Nolan R, Manikandan S, Agarwal Y, Channer B, Oteju O, Daniali M, Canagarajah JA, LuPone T, Mompho K, Runner K, Nickoloff-Bybel E, Li B, Niu M, Schlachetzki JCM, Fox HS, Gaskill PJ. Dopamine-driven Increase in IL-1β in Myeloid Cells is Mediated by Differential Dopamine Receptor Expression and Exacerbated by HIV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598137. [PMID: 38915663 PMCID: PMC11195146 DOI: 10.1101/2024.06.09.598137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The catecholamine neurotransmitter dopamine is classically known for regulation of central nervous system (CNS) functions such as reward, movement, and cognition. Increasing evidence also indicates that dopamine regulates critical functions in peripheral organs and is an important immunoregulatory factor. We have previously shown that dopamine increases NF-κB activity, inflammasome activation, and the production of inflammatory cytokines such as IL-1β in human macrophages. As myeloid lineage cells are central to the initiation and resolution of acute inflammatory responses, dopamine-mediated dysregulation of these functions could both impair the innate immune response and exacerbate chronic inflammation. However, the exact pathways by which dopamine drives myeloid inflammation are not well defined, and studies in both rodent and human systems indicate that dopamine can impact the production of inflammatory mediators through both D1-like dopamine receptors (DRD1, DRD5) and D2-like dopamine receptors (DRD2, DRD3, and DRD4). Therefore, we hypothesized that dopamine-mediated production of IL-1β in myeloid cells is regulated by the ratio of different dopamine receptors that are activated. Our data in primary human monocyte-derived macrophages (hMDM) indicate that DRD1 expression is necessary for dopamine-mediated increases in IL-1β, and that changes in the expression of DRD2 and other dopamine receptors can alter the magnitude of the dopamine-mediated increase in IL-1β. Mature hMDM have a high D1-like to D2-like receptor ratio, which is different relative to monocytes and peripheral blood mononuclear cells (PBMCs). We further confirm in human microglia cell lines that a high ratio of D1-like to D2-like receptors promotes dopamine-induced increases in IL-1β gene and protein expression using pharmacological inhibition or overexpression of dopamine receptors. RNA-sequencing of dopamine-treated microglia shows that genes encoding functions in IL-1β signaling pathways, microglia activation, and neurotransmission increased with dopamine treatment. Finally, using HIV as an example of a chronic inflammatory disease that is substantively worsened by comorbid substance use disorders (SUDs) that impact dopaminergic signaling, we show increased effects of dopamine on inflammasome activation and IL-1β in the presence of HIV in both human macrophages and microglia. These data suggest that use of addictive substances and dopamine-modulating therapeutics could dysregulate the innate inflammatory response and exacerbate chronic neuroimmunological conditions like HIV. Thus, a detailed understanding of dopamine-mediated changes in inflammation, in particular pathways regulating IL-1β, will be critical to effectively tailor medication regimens.
Collapse
|
8
|
Aghdassi AA, Pham C, Zierke L, Mariaule V, Korkmaz B, Rhimi M. Cathepsin C role in inflammatory gastroenterological, renal, rheumatic, and pulmonary disorders. Biochimie 2024; 216:175-180. [PMID: 37758158 DOI: 10.1016/j.biochi.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/27/2023] [Accepted: 09/16/2023] [Indexed: 10/03/2023]
Abstract
Cathepsin C (CatC, syn. Dipeptidyl peptidase I) is a lysosomal cysteine proteinase expressed in several tissues including inflammatory cells. This enzyme is important for maintaining multiple cellular functions and for processing immune cell-derived proteases. While mutations in the CatC gene were reported in Papillon-Lefèvre syndrome, a rare autosomal recessive disorder featuring hyperkeratosis and periodontitis, evidence from clinical and preclinical studies points toward pro-inflammatory effects of CatC in various disease processes that are mainly mediated by the activation of neutrophil serine proteinases. Moreover, tumor-promoting effects were ascribed to CatC. The aim of this review is to highlight current knowledge of the CatC as a potential therapeutic target in inflammatory disorders.
Collapse
Affiliation(s)
- Ali A Aghdassi
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Christine Pham
- Division of Rheumatology, Washington University in St. Louis, St. Louis, MO, USA
| | - Lukas Zierke
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Vincent Mariaule
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, University of Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Brice Korkmaz
- INSERM UMR-1100, "Research Center for Respiratory Diseases" and University of Tours, 37032, Tours, France
| | - Moez Rhimi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, University of Paris-Saclay, INRAE, Jouy-en-Josas, France.
| |
Collapse
|
9
|
Chalmers JD, Kettritz R, Korkmaz B. Dipeptidyl peptidase 1 inhibition as a potential therapeutic approach in neutrophil-mediated inflammatory disease. Front Immunol 2023; 14:1239151. [PMID: 38162644 PMCID: PMC10755895 DOI: 10.3389/fimmu.2023.1239151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024] Open
Abstract
Neutrophils have a critical role in the innate immune response to infection and the control of inflammation. A key component of this process is the release of neutrophil serine proteases (NSPs), primarily neutrophil elastase, proteinase 3, cathepsin G, and NSP4, which have essential functions in immune modulation and tissue repair following injury. Normally, NSP activity is controlled and modulated by endogenous antiproteases. However, disruption of this homeostatic relationship can cause diseases in which neutrophilic inflammation is central to the pathology, such as chronic obstructive pulmonary disease (COPD), alpha-1 antitrypsin deficiency, bronchiectasis, and cystic fibrosis, as well as many non-pulmonary pathologies. Although the pathobiology of these diseases varies, evidence indicates that excessive NSP activity is common and a principal mediator of tissue damage and clinical decline. NSPs are synthesized as inactive zymogens and activated primarily by the ubiquitous enzyme dipeptidyl peptidase 1, also known as cathepsin C. Preclinical data confirm that inactivation of this protease reduces activation of NSPs. Thus, pharmacological inhibition of dipeptidyl peptidase 1 potentially reduces the contribution of aberrant NSP activity to the severity and/or progression of multiple inflammatory diseases. Initial clinical data support this view. Ongoing research continues to explore the role of NSP activation by dipeptidyl peptidase 1 in different disease states and the potential clinical benefits of dipeptidyl peptidase 1 inhibition.
Collapse
Affiliation(s)
- James D. Chalmers
- Department of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Ralph Kettritz
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
| | - Brice Korkmaz
- INSERM UMR-1100, Research Center for Respiratory Diseases, University of Tours, Tours, France
| |
Collapse
|
10
|
Hegazy MT, Fayed A, Nuzzolese R, Sota J, Ragab G. Autoinflammatory diseases and the kidney. Immunol Res 2023; 71:578-587. [PMID: 36991303 PMCID: PMC10425501 DOI: 10.1007/s12026-023-09375-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/16/2023] [Indexed: 03/31/2023]
Abstract
The kidney represents an important target of systemic inflammation. Its involvement in monogenic and multifactorial autoinflammatory diseases (AIDs) vary from peculiar and relatively frequent manifestations to some rare but severe features that may end up requiring transplantation. The pathogenetic background is also very heterogeneous ranging from amyloidosis to non-amyloid related damage rooted in inflammasome activation. Kidney involvement in monogenic and polygenic AIDs may present as renal amyloidosis, IgA nephropathy, and more rarely as various forms of glomerulonephritis (GN), namely segmental glomerulosclerosis, collapsing glomerulopathy, fibrillar, or membranoproliferative GN. Vascular disorders such as thrombosis or renal aneurysms and pseudoaneurysms may be encountered in patients with Behcet's disease. Patients with AIDs should be routinely assessed for renal involvement. Screening with urinalysis, serum creatinine, 24-h urinary protein, microhematuria, and imaging studies should be carried out for early diagnosis. Awareness of drug-induced nephrotoxicity, drug-drug interactions as well as addressing the issue of proper renal adjustment of drug doses deserve a special mention and should always be considered when dealing with patients affected by AIDs. Finally, we will explore the role of IL-1 inhibitors in AIDs patients with renal involvement. Targeting IL-1 may indeed have the potential to successfully manage kidney disease and improve long-term prognosis of AIDs patients.
Collapse
Affiliation(s)
- Mohamed Tharwat Hegazy
- Rheumatology and Clinical Immunology Unit, Internal Medicine Department, Cairo University, Cairo, Egypt
- School of Medicine, Newgiza University (NGU), Giza, Egypt
| | - Ahmed Fayed
- Nephrology Unit, Internal Medicine Department, Cairo University, Cairo, Egypt
| | - Rossana Nuzzolese
- Research Center of Systemic Autoinflammatory Diseases and Behçet's Disease Clinic, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Jurgen Sota
- Research Center of Systemic Autoinflammatory Diseases and Behçet's Disease Clinic, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Gaafar Ragab
- Rheumatology and Clinical Immunology Unit, Internal Medicine Department, Cairo University, Cairo, Egypt.
- School of Medicine, Newgiza University (NGU), Giza, Egypt.
| |
Collapse
|
11
|
Chen Y, Liu S, Wu L, Liu Y, Du J, Luo Z, Xu J, Guo L, Liu Y. Epigenetic regulation of chemokine (CC-motif) ligand 2 in inflammatory diseases. Cell Prolif 2023:e13428. [PMID: 36872292 DOI: 10.1111/cpr.13428] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/18/2023] [Accepted: 02/06/2023] [Indexed: 03/07/2023] Open
Abstract
Appropriate responses to inflammation are conducive to pathogen elimination and tissue repair, while uncontrolled inflammatory reactions are likely to result in the damage of tissues. Chemokine (CC-motif) Ligand 2 (CCL2) is the main chemokine and activator of monocytes, macrophages, and neutrophils. CCL2 played a key role in amplifying and accelerating the inflammatory cascade and is closely related to chronic non-controllable inflammation (cirrhosis, neuropathic pain, insulin resistance, atherosclerosis, deforming arthritis, ischemic injury, cancer, etc.). The crucial regulatory roles of CCL2 may provide potential targets for the treatment of inflammatory diseases. Therefore, we presented a review of the regulatory mechanisms of CCL2. Gene expression is largely affected by the state of chromatin. Different epigenetic modifications, including DNA methylation, post-translational modification of histones, histone variants, ATP-dependent chromatin remodelling, and non-coding RNA, could affect the 'open' or 'closed' state of DNA, and then significantly affect the expression of target genes. Since most epigenetic modifications are proven to be reversible, targeting the epigenetic mechanisms of CCL2 is expected to be a promising therapeutic strategy for inflammatory diseases. This review focuses on the epigenetic regulation of CCL2 in inflammatory diseases.
Collapse
Affiliation(s)
- Yingyi Chen
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Siyan Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Lili Wu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zhenhua Luo
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, People's Republic of China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
12
|
Senjor E, Kos J, Nanut MP. Cysteine Cathepsins as Therapeutic Targets in Immune Regulation and Immune Disorders. Biomedicines 2023; 11:biomedicines11020476. [PMID: 36831012 PMCID: PMC9953096 DOI: 10.3390/biomedicines11020476] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Cysteine cathepsins, as the most abundant proteases found in the lysosomes, play a vital role in several processes-such as protein degradation, changes in cell signaling, cell morphology, migration and proliferation, and energy metabolism. In addition to their lysosomal function, they are also secreted and may remain functional in the extracellular space. Upregulation of cathepsin expression is associated with several pathological conditions including cancer, neurodegeneration, and immune-system dysregulation. In this review, we present an overview of cysteine-cathepsin involvement and possible targeting options for mitigation of aberrant function in immune disorders such as inflammation, autoimmune diseases, and immune response in cancer.
Collapse
Affiliation(s)
- Emanuela Senjor
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Milica Perišić Nanut
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
13
|
Florez-Barros F, Bearder S, Kull B, Freeman A, Mócsai A, Robson MG. Myeloid expression of the anti-apoptotic protein Mcl1 is required in anti-myeloperoxidase vasculitis but myeloperoxidase inhibition is not protective. Kidney Int 2023; 103:134-143. [PMID: 36154801 PMCID: PMC10166712 DOI: 10.1016/j.kint.2022.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 01/10/2023]
Abstract
Antibodies to neutrophil and monocyte myeloperoxidase and proteinase 3 are a feature of anti-neutrophil cytoplasmic antibody vasculitis, a disease with significant morbidity for which new treatments are needed. Mice with a myeloid-specific deletion of the anti-apoptotic protein Mcl1 have reduced numbers of circulating neutrophils. Here, we assessed if myeloid-specific Mcl1 was required in murine anti-myeloperoxidase vasculitis and whether inhibition of myeloperoxidase was protective. In a murine model of anti-neutrophil cytoplasmic antibody vasculitis, induced by anti-myeloperoxidase antibody, mice with a myeloid-specific deletion of Mcl1 were protected from disease. They had fewer crescents, neutrophils, and macrophages in the glomeruli, lower serum creatinine levels and reduced albuminuria compared with controls. At baseline and day six after disease induction they had fewer circulating neutrophils than controls. At day six there were also fewer circulating monocytes. Myeloperoxidase inhibition with AZD5904 had no effect on histological or biochemical parameters of disease, and there was also no reduction in albuminuria at day one, two, five or seven after disease induction. These findings persisted when disease was induced without granulocyte-colony stimulating factor, which increases disease severity. A second myeloperoxidase inhibitor, AZM198, also showed no evidence of an effect, although both AZD5904 and AZM198 inhibited human neutrophil extracellular trap formation in vitro. Thus, our results show that while myeloid-specific Mcl1 is required in this model of anti-myeloperoxidase vasculitis, myeloperoxidase inhibition is not protective.
Collapse
Affiliation(s)
- Fernanda Florez-Barros
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Siobhan Bearder
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Bengt Kull
- Research and Early Development, AstraZeneca, Gothenburg, Sweden
| | | | - Attila Mócsai
- Department of Physiology, Semmelweis University, School of Medicine, Budapest, Hungary
| | - Michael G Robson
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
14
|
Role of neutrophil extracellular traps in inflammatory evolution in severe acute pancreatitis. Chin Med J (Engl) 2022; 135:2773-2784. [PMID: 36729096 PMCID: PMC9945416 DOI: 10.1097/cm9.0000000000002359] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Indexed: 02/03/2023] Open
Abstract
ABSTRACT Severe acute pancreatitis (SAP) is a life-threatening acute abdominal disease with two peaks of death: the first in the early stage, characterized by systemic inflammatory response-associated organ failure; and the second in the late stage, characterized by infectious complications. Neutrophils are the main immune cells participating in the whole process of SAP. In addition to the traditional recognition of neutrophils as the origination of chemokine and cytokine cascades or phagocytosis and degranulation of pathogens, neutrophil extracellular traps (NETs) also play an important roles in inflammatory reactions. We reviewed the role of NETs in the occurrence and development of SAP and its fatal complications, including multiple organs injury, infected pancreatic necrosis, and thrombosis. This review provides novel insights into the involvement of NETs throughout the entire process of SAP, showing that targeting NETs might be a promising strategy in SAP treatment. However, precision therapeutic options targeting NETs in different situations require further investigation.
Collapse
|
15
|
Hu J, Huang Z, Yu M, Zhang P, Xia Z, Gao C. Caspase-8 activation in neutrophils facilitates autoimmune kidney vasculitis through regulating CD4 + effector memory T cells. Front Immunol 2022; 13:1038134. [PMID: 36505410 PMCID: PMC9732547 DOI: 10.3389/fimmu.2022.1038134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/14/2022] [Indexed: 11/26/2022] Open
Abstract
Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAVs) are closely associated with neutrophil recruitment and activation, but the impact of the neutrophil apoptosis process in autoimmune disease has been rarely explained. Here, by integrating and analyzing single-cell transcriptome datasets, we found that the caspase-8-associated pathway in neutrophils was highly activated in the kidney rather than in the blood. To verify the function of caspase-8 in neutrophils on AAVs progression, we constructed neutrophil-specific caspase-8 knockout mice combined with an AAVs model induced by human ANCA from AAVs patients, a rapid and powerful model developed in this study. Our results show that caspase-8 activation of neutrophils up-regulates the expression of several inflammatory and immunoregulatory factors, especially IL23A, regulating the activation and differentiation of tissue-resident CD4+ effector memory T cells. This study reveals that the activation of caspase-8 in neutrophils can worsen glomerulonephritis of AAVs by regulating inflammation and immunity.
Collapse
Affiliation(s)
- Jian Hu
- Department of Pediatrics, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhen Huang
- State Key Laboratory of Biotherapy, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Min Yu
- Department of Pediatrics, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pei Zhang
- Department of Pediatrics, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Zhengkun Xia
- Department of Pediatrics, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China,*Correspondence: Zhengkun Xia, ; Chunlin Gao,
| | - Chunlin Gao
- Department of Pediatrics, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China,*Correspondence: Zhengkun Xia, ; Chunlin Gao,
| |
Collapse
|
16
|
Aymonnier K, Amsler J, Lamprecht P, Salama A, Witko‐Sarsat V. The neutrophil: A key resourceful agent in immune‐mediated vasculitis. Immunol Rev 2022; 314:326-356. [PMID: 36408947 DOI: 10.1111/imr.13170] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The term "vasculitis" refers to a group of rare immune-mediated diseases characterized by the dysregulated immune system attacking blood vessels located in any organ of the body, including the skin, lungs, and kidneys. Vasculitides are classified according to the size of the vessel that is affected. Although this observation is not specific to small-, medium-, or large-vessel vasculitides, patients show a high circulating neutrophil-to-lymphocyte ratio, suggesting the direct or indirect involvement of neutrophils in these diseases. As first responders to infection or inflammation, neutrophils release cytotoxic mediators, including reactive oxygen species, proteases, and neutrophil extracellular traps. If not controlled, this dangerous arsenal can injure the vascular system, which acts as the main transport route for neutrophils, thereby amplifying the initial inflammatory stimulus and the recruitment of immune cells. This review highlights the ability of neutrophils to "set the tone" for immune cells and other cells in the vessel wall. Considering both their long-established and newly described roles, we extend their functions far beyond their direct host-damaging potential. We also review the roles of neutrophils in various types of primary vasculitis, including immune complex vasculitis, anti-neutrophil cytoplasmic antibody-associated vasculitis, polyarteritis nodosa, Kawasaki disease, giant cell arteritis, Takayasu arteritis, and Behçet's disease.
Collapse
Affiliation(s)
- Karen Aymonnier
- INSERM U1016, Institut Cochin, Université Paris Cité, CNRS 8104 Paris France
| | - Jennifer Amsler
- INSERM U1016, Institut Cochin, Université Paris Cité, CNRS 8104 Paris France
| | - Peter Lamprecht
- Department of Rheumatology and Clinical Immunology University of Lübeck Lübeck Germany
| | - Alan Salama
- Department of Renal Medicine, Royal Free Hospital University College London London UK
| | | |
Collapse
|
17
|
Brieske C, Lamprecht P, Kerstein-Staehle A. Immunogenic cell death as driver of autoimmunity in granulomatosis with polyangiitis. Front Immunol 2022; 13:1007092. [PMID: 36275673 PMCID: PMC9583010 DOI: 10.3389/fimmu.2022.1007092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Cell death and dysregulated clearance of dead cells play essential roles in the induction of chronic inflammatory processes and autoimmune diseases. Granulomatosis with polyangiitis (GPA), a neutrophil-driven autoimmune disorder, is characterized by necrotizing inflammation predominantly of the respiratory tract and an anti-neutrophil cytoplasmic autoantibody (ANCA)-associated systemic necrotizing vasculitis. Defective regulation of neutrophil homeostasis and cell death mechanisms have been demonstrated in GPA. Disturbed efferocytosis (i.e., phagocytosis of apoptotic neutrophils by macrophages) as well as cell death-related release of damage-associated molecular patterns (DAMP) such as high mobility group box 1 (HMGB1) contribute to chronic non-resolving inflammation in GPA. DAMP have been shown to induce innate as well as adaptive cellular responses thereby creating a prerequisite for the development of pathogenic autoimmunity. In this review, we discuss factors contributing to as well as the impact of regulated cell death (RCD) accompanied by DAMP-release as early drivers of the granulomatous tissue inflammation and autoimmune responses in GPA.
Collapse
|
18
|
Effects and Action Mechanism of Huoxue Tongluo Formula on the Formation of Neutrophil Extracellular Traps. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1240967. [PMID: 36034958 PMCID: PMC9410787 DOI: 10.1155/2022/1240967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 12/03/2022]
Abstract
Excessive infiltration and uncontrolled activation of neutrophil extracellular traps (NETs) are likely to destroy normal tissue architecture and cause uncontrolled inflammation. The present research attempted to screen potential signaling pathways of Huoxue Tongluo Formula (HXTLF) affecting the formation of NETs using network pharmacology technique. Active chemical components of HXTLF and therapeutic targets related to vasculitis were screened, and a chemical components-targets network diagram of HXTLF was constructed by Cytoscape. Finally, the inhibitory effect and mechanism of HXTLF on the formation of NETs were explored in vitro using LPS-induced NETs. Immunofluorescence and Western blot were conducted to determine the protein fluorescence intensity and relative expression. The experimental results illustrated that HXTLF mediated the expression levels of H3Cit and myeloperoxidase (MPO) protein in neutrophils activated by LPS, inhibited NETs formation, and reduced the concentration of interleukin- (IL-) 1β, a proinflammatory factor in cells. Additionally, we activated and inhibited the AKT1 signaling pathway using the corresponding activator and inhibitor to explore the regulatory mechanism of HXTLF on AKT1 and other molecules in the treatment of vasculitis. The results demonstrated that HXTLF could inhibit the phosphorylation of AKT1, IKK, and NF-κB proteins, inhibit NETs formation, and reduce IL-1β concentration, indicating that AKT1 exerts a vital role in the treatment of vasculitis after HXTLF administration. The current study initially revealed the pharmacological mechanism of HXTLF for vasculitis management using network pharmacology techniques and tests in vitro, which is expected to provide important theoretical basis for elucidating the molecular mechanism of HXTLF and promoting its clinical application.
Collapse
|
19
|
Prendecki M, McAdoo SP, Turner‐Stokes T, Garcia‐Diaz A, Orriss I, Woollard KJ, Behmoaras J, Cook HT, Unwin R, Pusey CD, Aitman TJ, Tam FWK. Glomerulonephritis and autoimmune vasculitis are independent of P2RX7 but may depend on alternative inflammasome pathways. J Pathol 2022; 257:300-313. [PMID: 35239186 PMCID: PMC9322550 DOI: 10.1002/path.5890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 11/09/2022]
Abstract
P2RX7, an ionotropic receptor for extracellular adenosine triphosphate (ATP), is expressed on immune cells, including macrophages, monocytes, and dendritic cells and is upregulated on nonimmune cells following injury. P2RX7 plays a role in many biological processes, including production of proinflammatory cytokines such as interleukin (IL)-1β via the canonical inflammasome pathway. P2RX7 has been shown to be important in inflammation and fibrosis and may also play a role in autoimmunity. We have developed and phenotyped a novel P2RX7 knockout (KO) inbred rat strain and, taking advantage of the human-resembling unique histopathological features of rat models of glomerulonephritis, we induced three models of disease: nephrotoxic nephritis, experimental autoimmune glomerulonephritis, and experimental autoimmune vasculitis. We found that deletion of P2RX7 does not protect rats from models of experimental glomerulonephritis or the development of autoimmunity. Notably, treatment with A-438079, a P2RX7 antagonist, was equally protective in WKY WT and P2RX7 KO rats, revealing its 'off-target' properties. We identified a novel ATP/P2RX7/K+ efflux-independent and caspase-1/8-dependent pathway for the production of IL-1β in rat dendritic cells, which was absent in macrophages. Taken together, these results comprehensively establish that inflammation and autoimmunity in glomerulonephritis is independent of P2RX7 and reveals the off-target properties of drugs previously known as selective P2RX7 antagonists. Rat mononuclear phagocytes may be able to utilise an 'alternative inflammasome' pathway to produce IL-1β independently of P2RX7, which may account for the susceptibility of P2RX7 KO rats to inflammation and autoimmunity in glomerulonephritis. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Maria Prendecki
- Centre for Inflammatory Disease, Department of Immunology and InflammationImperial College London, Hammersmith CampusLondonUK
| | - Stephen P McAdoo
- Centre for Inflammatory Disease, Department of Immunology and InflammationImperial College London, Hammersmith CampusLondonUK
| | - Tabitha Turner‐Stokes
- Centre for Inflammatory Disease, Department of Immunology and InflammationImperial College London, Hammersmith CampusLondonUK
| | - Ana Garcia‐Diaz
- Centre for Inflammatory Disease, Department of Immunology and InflammationImperial College London, Hammersmith CampusLondonUK
| | - Isabel Orriss
- Department of Comparative Biomedical SciencesRoyal Veterinary CollegeLondonUK
| | - Kevin J Woollard
- Centre for Inflammatory Disease, Department of Immunology and InflammationImperial College London, Hammersmith CampusLondonUK,Present address:
Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZenecaCambridgeUK
| | - Jacques Behmoaras
- Centre for Inflammatory Disease, Department of Immunology and InflammationImperial College London, Hammersmith CampusLondonUK,Programme in Cardiovascular and Metabolic Disorders and Centre for Computational Biology, Duke‐NUS Medical School SingaporeSingapore
| | - H Terence Cook
- Centre for Inflammatory Disease, Department of Immunology and InflammationImperial College London, Hammersmith CampusLondonUK
| | - Robert Unwin
- Department of Renal Medicine, Division of MedicineUniversity College LondonLondonUK,Present address:
Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZenecaCambridgeUK
| | - Charles D Pusey
- Centre for Inflammatory Disease, Department of Immunology and InflammationImperial College London, Hammersmith CampusLondonUK
| | - Timothy J Aitman
- Centre for Genomic & Experimental MedicineInstitute of Genetics and Molecular Medicine, University of EdinburghEdinburghUK
| | - Frederick WK Tam
- Centre for Inflammatory Disease, Department of Immunology and InflammationImperial College London, Hammersmith CampusLondonUK
| |
Collapse
|
20
|
Hendra H, Salama AD. Steroids as treatment for glomerulonephritis: time for a rethink. Nephrol Dial Transplant 2022; 37:1212-1217. [DOI: 10.1093/ndt/gfaa267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Indexed: 11/14/2022] Open
Abstract
Abstract
Glucocorticoids have been a cornerstone of treatment for inflammatory and autoimmune kidney diseases for almost 70 years, yet it is fair to say, we still do not know how ‘best’ to use them. Significant adverse events are associated with their continued use, which contribute to premature patient mortality. Steroid avoidance or minimization is possible and has been tested in various glomerular diseases, as a result of novel agents or innovative regimens using established therapeutics. It is now time to seriously address our use of steroids and educate physicians on better ways of managing inflammatory kidney diseases.
Collapse
Affiliation(s)
- Heidy Hendra
- UCL Department of Renal Medicine, Royal Free Hospital , London, UK
| | - Alan D Salama
- UCL Department of Renal Medicine, Royal Free Hospital , London, UK
| |
Collapse
|
21
|
Chen X, Yan Y, Du J, Shen X, He C, Pan H, Zhu J, Liu X. Non-peptidyl non-covalent cathepsin C inhibitoEEr bearing a unique thiophene-substituted pyridine: Design, structure-activity relationship and anti-inflammatory activity in vivo. Eur J Med Chem 2022; 236:114368. [DOI: 10.1016/j.ejmech.2022.114368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/20/2022] [Accepted: 04/05/2022] [Indexed: 11/04/2022]
|
22
|
Rousselle A, Sonnemann J, Amann K, Mildner A, Lodka D, Kling L, Bieringer M, Schneider U, Leutz A, Enghard P, Kettritz R, Schreiber A. CSF2-dependent monocyte education in the pathogenesis of ANCA-induced glomerulonephritis. Ann Rheum Dis 2022; 81:1162-1172. [PMID: 35418479 PMCID: PMC9279749 DOI: 10.1136/annrheumdis-2021-221984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/01/2022] [Indexed: 12/15/2022]
Abstract
Objectives Myeloid cell activation by antineutrophil cytoplasmic antibody (ANCA) is pivotal for necrotising vasculitis, including necrotising crescentic glomerulonephritis (NCGN). In contrast to neutrophils, the contribution of classical monocyte (CM) and non-classical monocyte (NCM) remains poorly defined. We tested the hypothesis that CMs contribute to antineutrophil cytoplasmic antibody-associated vasculitis (AAV) and that colony-stimulating factor-2 (CSF2, granulocyte-macrophage colony-stimulating factor (GM-CSF)) is an important monocyte-directed disease modifier. Methods Myeloperoxidase (MPO)-immunised MPO−/− mice were transplanted with haematopoietic cells from wild-type (WT) mice, C–C chemokine receptor 2 (CCR2)−/− mice to abrogate CM, or transcription factor CCAAT–enhancer-binding protein beta (C/EBPβ)−/− mice to reduce NCM, respectively. Monocytes were stimulated with CSF2, and CSF2 receptor subunit beta (CSF2rb)-deficient mice were used. Urinary monocytes and CSF2 were quantified and kidney Csf2 expression was analysed. CSF2-blocking antibody was used in the nephrotoxic nephritis (NTN) model. Results Compared with WT mice, CCR2−/− chimeric mice showed reduced circulating CM and were protected from NCGN. C/EBPβ−/− chimeric mice lacked NCM but developed NCGN similar to WT chimeric mice. Kidney and urinary CSF2 were upregulated in AAV mice. CSF2 increased the ability of ANCA-stimulated monocytes to generate interleukin-1β and to promote TH17 effector cell polarisation. CSF2rb−/− chimeric mice harboured reduced numbers of kidney TH17 cells and were protected from NCGN. CSF2 neutralisation reduced renal damage in the NTN model. Finally, patients with active AAV displayed increased urinary CM numbers, CSF2 levels and expression of GM-CSF in infiltrating renal cells. Conclusions CMs but not NCMs are important for inducing kidney damage in AAV. CSF2 is a crucial pathological factor by modulating monocyte proinflammatory functions and thereby TH17 cell polarisation.
Collapse
Affiliation(s)
- Anthony Rousselle
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Janis Sonnemann
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kerstin Amann
- Department of Nephropathology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Alexander Mildner
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Dörte Lodka
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lovis Kling
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Bieringer
- Department of Cardiology and Nephrology, HELIOS Klinik Berlin-Buch, Berlin, Germany
| | - Udo Schneider
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Achim Leutz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Philipp Enghard
- Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ralph Kettritz
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Adrian Schreiber
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany .,Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
23
|
Anton-Pampols P, Diaz-Requena C, Martinez-Valenzuela L, Gomez-Preciado F, Fulladosa X, Vidal-Alabro A, Torras J, Lloberas N, Draibe J. The Role of Inflammasomes in Glomerulonephritis. Int J Mol Sci 2022; 23:ijms23084208. [PMID: 35457026 PMCID: PMC9029880 DOI: 10.3390/ijms23084208] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023] Open
Abstract
The inflammasome is an immune multiprotein complex that activates pro-caspase 1 in response to inflammation-inducing stimuli and it leads to IL-1β and IL-18 proinflammatory cytokine production. NLRP1 and NLRP3 inflammasomes are the best characterized and they have been related to several autoimmune diseases. It is well known that the kidney expresses inflammasome genes, which can influence the development of some glomerulonephritis, such as lupus nephritis, ANCA glomerulonephritis, IgA nephropathy and anti-GBM nephropathy. Polymorphisms of these genes have also been described to play a role in autoimmune and kidney diseases. In this review, we describe the main characteristics, activation mechanisms, regulation and functions of the different inflammasomes. Moreover, we discuss the latest findings about the role of the inflammasome in several glomerulonephritis from three different points of view: in vitro, animal and human studies.
Collapse
Affiliation(s)
- Paula Anton-Pampols
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain; (P.A.-P.); (L.M.-V.); (F.G.-P.); (X.F.); (J.D.)
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
| | - Clara Diaz-Requena
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
| | - Laura Martinez-Valenzuela
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain; (P.A.-P.); (L.M.-V.); (F.G.-P.); (X.F.); (J.D.)
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
| | - Francisco Gomez-Preciado
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain; (P.A.-P.); (L.M.-V.); (F.G.-P.); (X.F.); (J.D.)
| | - Xavier Fulladosa
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain; (P.A.-P.); (L.M.-V.); (F.G.-P.); (X.F.); (J.D.)
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
- Clinical Sciences Department, Campus de Bellvitge, Barcelona University, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Anna Vidal-Alabro
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
| | - Joan Torras
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain; (P.A.-P.); (L.M.-V.); (F.G.-P.); (X.F.); (J.D.)
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
- Clinical Sciences Department, Campus de Bellvitge, Barcelona University, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Correspondence:
| | - Núria Lloberas
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
- Department of Physiological Sciences, Campus de Bellvitge, Barcelona University, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Juliana Draibe
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain; (P.A.-P.); (L.M.-V.); (F.G.-P.); (X.F.); (J.D.)
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
| |
Collapse
|
24
|
The Interleukin-1 (IL-1) Superfamily Cytokines and Their Single Nucleotide Polymorphisms (SNPs). J Immunol Res 2022; 2022:2054431. [PMID: 35378905 PMCID: PMC8976653 DOI: 10.1155/2022/2054431] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/24/2022] [Accepted: 03/08/2022] [Indexed: 12/19/2022] Open
Abstract
Interleukins (ILs)—which are important members of cytokines—consist of a vast group of molecules, including a wide range of immune mediators that contribute to the immunological responses of many cells and tissues. ILs are immune-glycoproteins, which directly contribute to the growth, activation, adhesion, differentiation, migration, proliferation, and maturation of immune cells; and subsequently, they are involved in the pro and anti-inflammatory responses of the body, by their interaction with a wide range of receptors. Due to the importance of immune system in different organisms, the genes belonging to immune elements, such as ILs, have been studied vigorously. The results of recent investigations showed that the genes pertaining to the immune system undergo progressive evolution with a constant rate. The occurrence of any mutation or polymorphism in IL genes may result in substantial changes in their biology and function and may be associated with a wide range of diseases and disorders. Among these abnormalities, single nucleotide polymorphisms (SNPs) can represent as important disruptive factors. The present review aims at concisely summarizing the current knowledge available on the occurrence, properties, role, and biological consequences of SNPs within the IL-1 family members.
Collapse
|
25
|
Jerke U, Eulenberg-Gustavus C, Rousselle A, Nicklin P, Kreideweiss S, Grundl MA, Eickholz P, Nickles K, Schreiber A, Korkmaz B, Kettritz R. Targeting Cathepsin C in PR3-ANCA Vasculitis. J Am Soc Nephrol 2022; 33:936-947. [PMID: 35292437 PMCID: PMC9063889 DOI: 10.1681/asn.2021081112] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/02/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The ANCA autoantigens proteinase 3 (PR3) and myeloperoxidase (MPO) are exclusively expressed by neutrophils and monocytes. ANCA-mediated activation of these cells is the key driver of the vascular injury process in ANCA-associated vasculitis (AAV), and neutrophil serine proteases (NSPs) are disease mediators. Cathepsin C (CatC) from zymogens activates the proteolytic function of NSPs, including PR3. Lack of NSP zymogen activation results in neutrophils with strongly reduced NSP proteins. METHODS To explore AAV-relevant consequences of blocking NSP zymogen activation by CatC, we used myeloid cells from patients with Papillon-Lefèvre syndrome, a genetic deficiency of CatC, to assess NSPs and NSP-mediated endothelial cell injury. We also examined pharmacologic CatC inhibition in neutrophil-differentiated human hematopoietic stem cells, primary human umbilical vein cells, and primary glomerular microvascular endothelial cells. RESULTS Patients with Papillon-Lefèvre syndrome showed strongly reduced NSPs in neutrophils and monocytes. Neutrophils from these patients produced a negative PR3-ANCA test, presented less PR3 on the surface of viable and apoptotic cells, and caused significantly less damage in human umbilical vein cells. These findings were recapitulated in human stem cells, in which a highly specific CatC inhibitor, but not prednisolone, reduced NSPs without affecting neutrophil differentiation, reduced membrane PR3, and diminished neutrophil activation upon PR3-ANCA but not MPO-ANCA stimulation. Compared with healthy controls, neutrophils from patients with Papillon-Lefèvre syndrome transferred less proteolytically active NSPs to glomerular microvascular endothelial cells, the cell type targeted in ANCA-induced necrotizing crescentic glomerulonephritis. Finally, both genetic CatC deficiency and pharmacologic inhibition, but not prednisolone, reduced neutrophil-induced glomerular microvascular endothelial cell damage. CONCLUSIONS These findings may offer encouragement for clinical studies of adjunctive CatC inhibitor in patients with PR3-AAV.
Collapse
Affiliation(s)
- Uwe Jerke
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Claudia Eulenberg-Gustavus
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Anthony Rousselle
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Paul Nicklin
- Boehringer Ingelheim Pharma GmbH & Co., KG, Biberach, Germany
| | | | - Marc A Grundl
- Boehringer Ingelheim Pharma GmbH & Co., KG, Biberach, Germany
| | - Peter Eickholz
- Peridontology, Johann Wolfgang Goethe-University Frankfurt, Frankfurt/Main, Germany
| | - Katrin Nickles
- Peridontology, Johann Wolfgang Goethe-University Frankfurt, Frankfurt/Main, Germany
| | - Adrian Schreiber
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Ralph Kettritz
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany .,Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
26
|
Zhao H, Lu Z, Lu Y. The potential of probiotics in the amelioration of hyperuricemia. Food Funct 2022; 13:2394-2414. [PMID: 35156670 DOI: 10.1039/d1fo03206b] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hyperuricemia is a common disease caused by metabolic disorders or the excessive intake of high-purine foods. Persistent hyperuricemia in extreme cases induces gout, and asymptomatic hyperuricemia is probably linked to other metabolic diseases, such as hypertension. The typical damage caused by asymptomatic hyperuricemia includes inflammation, oxidative stress and gut dysbiosis. Probiotics have broad potential applications as food additives, not as drug therapies, in the amelioration of hyperuricemia. In this review, we describe novel methods for potential hyperuricemia amelioration with probiotics. The pathways through which probiotics may ameliorate hyperuricemia are discussed, including the decrease in uric acid production through purine assimilation and XOD (xanthine oxidase) inhibition as well as enhanced excretion of uric acid production by promoting ABCG2 (ATP binding cassette subfamily G member 2) activity, respectively. Three possible probiotic-related therapeutic pathways for alleviating the syndrome of hyperuricemia are also summarized. The first mechanism is to alleviate the oxidation and inflammation induced by hyperuricemia through the inhibition of NLRP3 inflammasome, the second is to restore damaged intestinal epithelium barriers and prevent gut microbiota dysbiosis, and the third is to enhance the innate immune system by increasing the secretion of immunoglobulin A (sIgA) to resist the stimulus by hyperuricemia. We propose that future research should focus on superior strain resource isolation and insight into the cause-effect mechanisms of probiotics for hyperuricemia amelioration. The safety and effects of the application of probiotics in clinical use also need verification.
Collapse
Affiliation(s)
- Hongyuan Zhao
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhaoxin Lu
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yingjian Lu
- College of Food Science & Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
27
|
Antonelou M, Evans RDR, Henderson SR, Salama AD. Neutrophils are key mediators in crescentic glomerulonephritis and targets for new therapeutic approaches. Nephrol Dial Transplant 2022; 37:230-238. [PMID: 33057680 DOI: 10.1093/ndt/gfaa206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Indexed: 12/26/2022] Open
Abstract
Crescentic glomerulonephritis (CGN) results from a diverse set of diseases associated with immune dysregulation and the breakdown of self-tolerance to a wide range of autoantigens, some known and some that remain unknown. Experimental data demonstrate that neutrophils have an important role in the pathogenesis of CGN. Upon activation, neutrophils generate reactive oxygen species, release serine proteases and form neutrophil extracellular traps (NETs), all of which can induce direct tissue damage. In addition, serine proteases such as myeloperoxidase and proteinase 3, presented on NETs, can be processed and recognized as autoantigens, leading to the generation and maintenance of autoimmune responses in susceptible individuals. The basis of the specificity of autoimmune responses in different patients to NET proteins is unclear, but relates at least in part to differences in human leucocyte antigen expression. Conditions associated with CGN are often characterized by aberrant neutrophil activation and NETosis and, in some, impaired NET degradation. Targeting neutrophil degranulation and NETosis is now possible using a variety of novel compounds and may provide a promising therapeutic alternative to glucocorticoid use, which has been a mainstay of management in CGN for decades and is associated with significant adverse effects. In this review, we discuss the evidence supporting the role of neutrophils in the development of CGN and the pathways identified in neutrophil degranulation and NETosis that may translate to novel therapeutic applications.
Collapse
Affiliation(s)
- Marilina Antonelou
- University College London, Department of Renal Medicine, Royal Free Hospital, London, UK
| | - Rhys D R Evans
- University College London, Department of Renal Medicine, Royal Free Hospital, London, UK
| | - Scott R Henderson
- University College London, Department of Renal Medicine, Royal Free Hospital, London, UK
| | - Alan D Salama
- University College London, Department of Renal Medicine, Royal Free Hospital, London, UK
| |
Collapse
|
28
|
Competitively disrupting the neutrophil-specific receptor-autoantigen CD177:proteinase 3 membrane complex reduces anti-PR3 antibody-induced neutrophil activation. J Biol Chem 2022; 298:101598. [PMID: 35063507 PMCID: PMC8857647 DOI: 10.1016/j.jbc.2022.101598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 01/15/2023] Open
Abstract
CD177 is a neutrophil-specific receptor presenting the proteinase 3 (PR3) autoantigen on the neutrophil surface. CD177 expression is restricted to a neutrophil subset, resulting in CD177pos/mPR3high and CD177neg/mPR3low populations. The CD177pos/mPR3high subset has implications for antineutrophil cytoplasmic autoantibody (ANCA)-associated autoimmune vasculitis, wherein patients harbor PR3-specific ANCAs that activate neutrophils for degranulation. Here, we generated high-affinity anti-CD177 monoclonal antibodies, some of which interfered with PR3 binding to CD177 (PR3 "blockers") as determined by surface plasmon resonance spectroscopy and used them to test the effect of competing PR3 from the surface of CD177pos neutrophils. Because intact anti-CD177 antibodies also caused neutrophil activation, we prepared nonactivating Fab fragments of a PR3 blocker and nonblocker that bound specifically to CD177pos neutrophils. We observed that Fab blocker clone 40, but not nonblocker clone 80, dose-dependently reduced anti-PR3 antibody binding to CD177pos neutrophils. Importantly, preincubation with clone 40 significantly reduced respiratory burst in primed neutrophils challenged with either monoclonal antibodies to PR3 or PR3-ANCA immunoglobulin G from ANCA-associated autoimmune vasculitis patients. After separating the two CD177/mPR3 neutrophil subsets from individual donors by magnetic sorting, we found that PR3-ANCAs provoked significantly more superoxide production in CD177pos/mPR3high than in CD177neg/mPR3low neutrophils, and that anti-CD177 Fab clone 40 reduced the superoxide production of CD177pos cells to the level of the CD177neg cells. Our data demonstrate the importance of the CD177:PR3 membrane complex in maintaining a high ANCA epitope density and thereby underscore the contribution of CD177 to the severity of PR3-ANCA diseases.
Collapse
|
29
|
Human Renal Fibroblasts, but Not Renal Epithelial Cells, Induce IL-1β Release during a Uropathogenic Escherichia coli Infection In Vitro. Cells 2021; 10:cells10123522. [PMID: 34944029 PMCID: PMC8700040 DOI: 10.3390/cells10123522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding how uropathogenic Escherichia coli (UPEC) modulates the immune response in the kidney is essential to prevent UPEC from reaching the bloodstream and causing urosepsis. The purpose of this study was to elucidate if renal fibroblasts can release IL-1β during a UPEC infection and to investigate the mechanism behind the IL-1β release. We found that the UPEC strain CFT073 induced an increased IL-1β and LDH release from renal fibroblasts, but not from renal epithelial cells. The UPEC-induced IL-1β release was found to be NLRP3, caspase-1, caspase-4, ERK 1/2, cathepsin B and serine protease dependent in renal fibroblasts. We also found that the UPEC virulence factor α-hemolysin was necessary for IL-1β release. Conditioned medium from caspase-1, caspase-4 and NLRP3-deficient renal fibroblasts mediated an increased reactive oxygen species production from neutrophils, but reduced UPEC phagocytosis. Taken together, our study demonstrates that renal fibroblasts, but not renal epithelial cells, release IL-1β during a UPEC infection. This suggest that renal fibroblasts are vital immunoreactive cells and not only structural cells that produce and regulate the extracellular matrix.
Collapse
|
30
|
Shen XB, Chen X, Zhang ZY, Wu FF, Liu XH. Cathepsin C inhibitors as anti-inflammatory drug discovery: Challenges and opportunities. Eur J Med Chem 2021; 225:113818. [PMID: 34492551 DOI: 10.1016/j.ejmech.2021.113818] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Cathepsin C, an important lysosomal cysteine protease, mediates the maturation process of neutrophil serine proteases, and participates in the inflammation and immune regulation process associated with polymorphonuclear neutrophils. Therefore, cathepsin C is considered to be an attractive target for treating inflammatory diseases. With INS1007 (trade name: brensocatib) being granted a breakthrough drug designation by FDA for the treatment of Adult Non-cystic Fibrosis Bronchiectasis and Coronavirus Disease 2019, the development of cathepsin C inhibitor will attract attentions from medicinal chemists in the future soon. Here, we summarized the research results of cathepsin C as a therapeutic target, focusing on the development of cathepsin C inhibitor, and provided guidance and reference opinions for the upcoming development boom of cathepsin C inhibitor.
Collapse
Affiliation(s)
- Xiao Bao Shen
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, 236037, PR China
| | - Xing Chen
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Zhao Yan Zhang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Fu Fang Wu
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, 236037, PR China.
| | - Xin Hua Liu
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, 236037, PR China; School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
31
|
Korkmaz B, Lamort AS, Domain R, Beauvillain C, Gieldon A, Yildirim AÖ, Stathopoulos GT, Rhimi M, Jenne DE, Kettritz R. Cathepsin C inhibition as a potential treatment strategy in cancer. Biochem Pharmacol 2021; 194:114803. [PMID: 34678221 DOI: 10.1016/j.bcp.2021.114803] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 02/08/2023]
Abstract
Epidemiological studies established an association between chronic inflammation and higher risk of cancer. Inhibition of proteolytic enzymes represents a potential treatment strategy for cancer and prevention of cancer metastasis. Cathepsin C (CatC) is a highly conserved lysosomal cysteine dipeptidyl aminopeptidase required for the activation of pro-inflammatory neutrophil serine proteases (NSPs, elastase, proteinase 3, cathepsin G and NSP-4). NSPs are locally released by activated neutrophils in response to pathogens and non-infectious danger signals. Activated neutrophils also release neutrophil extracellular traps (NETs) that are decorated with several neutrophil proteins, including NSPs. NSPs are not only NETs constituents but also play a role in NET formation and release. Although immune cells harbor large amounts of CatC, additional cell sources for this protease exists. Upregulation of CatC expression was observed in different tissues during carcinogenesis and correlated with metastasis and poor patient survival. Recent mechanistic studies indicated an important interaction of tumor-associated CatC, NSPs, and NETs in cancer development and metastasis and suggested CatC as a therapeutic target in a several cancer types. Cancer cell-derived CatC promotes neutrophil recruitment in the inflammatory tumor microenvironment. Because the clinical consequences of genetic CatC deficiency in humans resulting in the elimination of NSPs are mild, small molecule inhibitors of CatC are assumed as safe drugs to reduce the NSP burden. Brensocatib, a nitrile CatC inhibitor is currently tested in a phase 3 clinical trial as a novel anti-inflammatory therapy for patients with bronchiectasis. However, recently developed CatC inhibitors possibly have protective effects beyond inflammation. In this review, we describe the pathophysiological function of CatC and discuss molecular mechanisms substantiating pharmacological CatC inhibition as a potential strategy for cancer treatment.
Collapse
Affiliation(s)
- Brice Korkmaz
- INSERM UMR-1100, "Research Center for Respiratory Diseases" and University of Tours, 37032 Tours, France.
| | - Anne-Sophie Lamort
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Helmholtz Center Munich-German Research Center for Environmental Health (HMGU) and Ludwig-Maximilian-University (LMU), Munich, Bavaria 81377, Germany(2)
| | - Roxane Domain
- INSERM UMR-1100, "Research Center for Respiratory Diseases" and University of Tours, 37032 Tours, France
| | - Céline Beauvillain
- University of Angers, University of Nantes, Angers University Hospital, INSERM UMR-1232, CRCINA, Innate Immunity and Immunotherapy, SFR ICAT, 49000 Angers, France
| | - Artur Gieldon
- Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Helmholtz Center Munich-German Research Center for Environmental Health (HMGU) and Ludwig-Maximilian-University (LMU), Munich, Bavaria 81377, Germany(2)
| | - Georgios T Stathopoulos
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Helmholtz Center Munich-German Research Center for Environmental Health (HMGU) and Ludwig-Maximilian-University (LMU), Munich, Bavaria 81377, Germany(2)
| | - Moez Rhimi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Dieter E Jenne
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Helmholtz Center Munich-German Research Center for Environmental Health (HMGU) and Ludwig-Maximilian-University (LMU), Munich, Bavaria 81377, Germany(2); Max Planck Institute of Neurobiology, 82152 Planegg-Martinsried, Germany
| | - Ralph Kettritz
- Experimental and Clinical Research Center, Charité und Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC), Berlin, Germany; Nephrology and Intensive Care Medicine, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
32
|
Chen X, Yan Y, Zhang Z, Zhang F, Liu M, Du L, Zhang H, Shen X, Zhao D, Shi JB, Liu X. Discovery and In Vivo Anti-inflammatory Activity Evaluation of a Novel Non-peptidyl Non-covalent Cathepsin C Inhibitor. J Med Chem 2021; 64:11857-11885. [PMID: 34374541 DOI: 10.1021/acs.jmedchem.1c00104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cathepsin C (Cat C) participates in inflammation and immune regulation by affecting the activation of neutrophil serine proteases (NSPs). Therefore, cathepsin C is an attractive target for treatment of NSP-related inflammatory diseases. Here, the complete discovery process of the first potent "non-peptidyl non-covalent cathepsin C inhibitor" was described with hit finding, structure optimization, and lead discovery. Starting with hit 14, structure-based optimization and structure-activity relationship study were comprehensively carried out, and lead compound 54 was discovered as a potent drug-like cathepsin C inhibitor both in vivo and in vitro. Also, compound 54 (with cathepsin C Enz IC50 = 57.4 nM) exhibited effective anti-inflammatory activity in an animal model of chronic obstructive pulmonary disease. These results confirmed that the non-peptidyl and non-covalent derivative could be used as an effective cathepsin C inhibitor and encouraged us to continue further drug discovery on the basis of this finding.
Collapse
Affiliation(s)
- Xing Chen
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Yaoyao Yan
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Zhaoyan Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Faming Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Mingming Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Leran Du
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Haixia Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Xiaobao Shen
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Dahai Zhao
- Affiliated Hospital 2, Anhui Medical University, Hefei 230601, P. R. China
| | - Jing Bo Shi
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Xinhua Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| |
Collapse
|
33
|
Li L, Zhang YL, Liu XY, Meng X, Zhao RQ, Ou LL, Li BZ, Xing T. Periodontitis Exacerbates and Promotes the Progression of Chronic Kidney Disease Through Oral Flora, Cytokines, and Oxidative Stress. Front Microbiol 2021; 12:656372. [PMID: 34211440 PMCID: PMC8238692 DOI: 10.3389/fmicb.2021.656372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/01/2021] [Indexed: 12/25/2022] Open
Abstract
Periodontitis is a type of systemic immune inflammation that is caused by the complex infection of a variety of microorganisms in the subgingival plaque and the imbalance of the microbial ecological environment in the mouth. Periodontitis and chronic kidney disease (CKD) share many risk factors, such as obesity, smoking, and age. A growing body of data supports a strong correlation between periodontitis and kidney disease. Evidence supports the role of periodontal inflammation and elevated serum inflammatory mediators in renal atherosclerosis, renal deterioration, and end-stage renal disease (ESRD) development. Periodontitis is a risk factor for kidney disease. However, to our knowledge, there are few studies detailing the possible link between periodontitis and CKD. This review summarizes the possible mechanisms underlying periodontitis and CKD. More importantly, it highlights novel and potential pathogenic factors for CKD, including bacteria, pro-inflammatory mediators and oxidative stress. However, most research on the relationship between periodontitis and systemic disease has not determined causality, and these diseases are largely linked by bidirectional associations. Future research will focus on exploring these links to contribute to new treatments for CKD.
Collapse
Affiliation(s)
- Ling Li
- School of Stomatology, Anhui Medical University, Hefei, China
| | - Ya-Li Zhang
- School of Stomatology, Anhui Medical University, Hefei, China
| | - Xing-Yu Liu
- School of Stomatology, Anhui Medical University, Hefei, China
| | - Xiang Meng
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Rong-Quan Zhao
- School of Stomatology, Anhui Medical University, Hefei, China
| | - Lin-Lin Ou
- School of Stomatology, Anhui Medical University, Hefei, China
| | - Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Tian Xing
- School of Stomatology, Anhui Medical University, Hefei, China
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| |
Collapse
|
34
|
Xiao Y, Cong M, Li J, He D, Wu Q, Tian P, Wang Y, Yang S, Liang C, Liang Y, Wen J, Liu Y, Luo W, Lv X, He Y, Cheng DD, Zhou T, Zhao W, Zhang P, Zhang X, Xiao Y, Qian Y, Wang H, Gao Q, Yang QC, Yang Q, Hu G. Cathepsin C promotes breast cancer lung metastasis by modulating neutrophil infiltration and neutrophil extracellular trap formation. Cancer Cell 2021; 39:423-437.e7. [PMID: 33450198 DOI: 10.1016/j.ccell.2020.12.012] [Citation(s) in RCA: 282] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/08/2020] [Accepted: 12/10/2020] [Indexed: 12/30/2022]
Abstract
Lung metastasis is the major cause of breast cancer-related mortality. The neutrophil-associated inflammatory microenvironment aids tumor cells in metastatic colonization in lungs. Here, we show that tumor-secreted protease cathepsin C (CTSC) promotes breast-to-lung metastasis by regulating recruitment of neutrophils and formation of neutrophil extracellular traps (NETs). CTSC enzymatically activates neutrophil membrane-bound proteinase 3 (PR3) to facilitate interleukin-1β (IL-1β) processing and nuclear factor κB activation, thus upregulating IL-6 and CCL3 for neutrophil recruitment. In addition, the CTSC-PR3-IL-1β axis induces neutrophil reactive oxygen species production and formation of NETs, which degrade thrombospondin-1 and support metastatic growth of cancer cells in the lungs. CTSC expression and secretion are associated with NET formation and lung metastasis in human breast tumors. Importantly, targeting CTSC with compound AZD7986 effectively suppresses lung metastasis of breast cancer in a mouse model. Overall, our findings reveal a mechanism of how tumor cells regulate neutrophils in metastatic niches and support CTSC-targeting approaches for cancer treatment.
Collapse
Affiliation(s)
- Yansen Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Min Cong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China; Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jiatao Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dasa He
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qiuyao Wu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Pu Tian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shuaixi Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China
| | - Chenxi Liang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yajun Liang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jili Wen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yingjie Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenqian Luo
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xianzhe Lv
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yunfei He
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dong-Dong Cheng
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Tianhao Zhou
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Wenjing Zhao
- Department of Breast Surgery, Qilu Hospital of Shandong University, Ji'nan, 250012, China
| | - Peiyuan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xue Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Youcun Qian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hongxia Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China
| | - Qing-Cheng Yang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Ji'nan, 250012, China
| | - Guohong Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China; Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
35
|
Leacy E, Brady G, Little MA. Pathogenesis of ANCA-associated vasculitis: an emerging role for immunometabolism. Rheumatology (Oxford) 2021; 59:iii33-iii41. [PMID: 32348520 DOI: 10.1093/rheumatology/keaa023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/02/2020] [Indexed: 12/16/2022] Open
Abstract
ANCA-associated vasculitis (AAV) is a severe systemic autoimmune disease. A key feature of AAV is the presence of Anti-Neutrophil Cytoplasmic Antibodies (ANCA) directed against myeloperoxidase (MPO) or proteinase-3 (PR3). ANCA are key to the pathogenesis of AAV, where they activate innate immune cells to drive inflammation. Pre-activation or 'priming' of immune cells appears to be important for complete cellular activation in AAV. The burgeoning field of immunometabolism has illuminated the governance of immune cell function by distinct metabolic pathways. There is ample evidence that the priming events synonymous with AAV alter immune cell metabolism. In this review we discuss the pathogenesis of AAV and its intersection with recent insights into immune cell metabolism.
Collapse
Affiliation(s)
- Emma Leacy
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Gareth Brady
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Mark A Little
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
36
|
Prendecki M, McAdoo SP. New Therapeutic Targets in Antineutrophil Cytoplasm Antibody–Associated Vasculitis. Arthritis Rheumatol 2021; 73:361-370. [DOI: 10.1002/art.41407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/12/2020] [Indexed: 12/11/2022]
|
37
|
Tyrkalska SD, Candel S, Mulero V. The neutrophil inflammasome. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103874. [PMID: 32987011 DOI: 10.1016/j.dci.2020.103874] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Since inflammasomes were discovered in the early 21st century, knowledge about their biology has multiplied exponentially. These cytosolic multiprotein complexes alert the immune system about the presence of infection or tissue damage, and regulate the subsequent inflammatory responses. As inflammasome dysregulation is increasingly associated with numerous autoinflammatory disorders, there is an urgent need for further research into the inflammasome's involvement in the pathogenesis of such diseases in order to identify novel therapeutic targets and treatments. The zebrafish has become a widely used animal model to study human diseases in recent years, and has already provided relevant findings in the field of inflammasome biology including the identification of new components and pathways. We provide a detailed analysis of current knowledge on neutrophil inflammasome biology and compare its features with those of the better known macrophage inflammasome, focusing on its contribution to innate immunity and its relevance for human health. Importantly, a large body of evidence points to a link between neutrophil inflammasome dysfunction and many neutrophil-mediated human diseases, but the real contribution of the neutrophil inflammasome to the pathogenesis of these disorders is largely unknown. Although neutrophils have remained in the shadow of macrophages and monocytes in the field of inflammasome research since the discovery of these multiprotein platforms, recent studies strongly suggest that the importance of the neutrophil inflammasome has been underestimated.
Collapse
Affiliation(s)
- Sylwia D Tyrkalska
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain.
| | - Sergio Candel
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain.
| | - Victoriano Mulero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain.
| |
Collapse
|
38
|
The Protective Effect of Anthocyanins Extracted from Aronia Melanocarpa Berry in Renal Ischemia-Reperfusion Injury in Mice. Mediators Inflamm 2021; 2021:7372893. [PMID: 33551679 PMCID: PMC7846408 DOI: 10.1155/2021/7372893] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/25/2020] [Accepted: 01/08/2021] [Indexed: 12/26/2022] Open
Abstract
Background Our previous research showed the antioxidant activity of anthocyanins extracted from Aronia melanocarpa of black chokeberry in vitro. Ischemia acute kidney injury is a significant risk in developing progressive and deterioration of renal function leading to clinic chronic kidney disease. There were many attempts to protect the kidney against this progression of renal damage. Current study was designed to examine the effect of pretreatment with three anthocyanins named cyanidin-3-arabinoside, cyanidin-3-glucodise, and cyaniding-3-galactoside against acute ischemia-reperfusion injury in mouse kidney. Methods Acute renal injury model was initiated by 30 min clamping bilateral renal pedicle and followed by 24-hour reperfusion in C57Bl/6J mice. Four groups of mice were orally pretreated in 50 mg/g/12 h for two weeks with cyanidin-3-arabinoside, cyanidin-3-glucodise, and cyaniding-3-galactoside and anthocyanins (three-cyanidin mixture), respectively, sham-control group and the renal injury-untreated groups only with saline. Results The model resulted in renal dysfunction with high serum creatinine, blood urea nitrogen, and changes in proinflammatory cytokines (TNF-ɑ, IL-1β, IL-6, and MCP-1), renal oxidative stress (SOD, GSH, and CAT), lipid peroxidation (TBARS and MDA), and apoptosis (caspase-9). Pretreatment of two weeks resulted in different extent amelioration of renal dysfunction and tubular damage and suppression of proinflammatory cytokines, oxidative stress, lipid peroxidation, and apoptosis, thus suggesting that cyanidins are potentially effective in acute renal ischemia by the decrease of inflammation, oxidative stress, and lipid peroxidation, as well as apoptosis. Conclusion the current study provided the first attempt to investigate the role of anthocyanins purified from Aronia melanocarpa berry in amelioration of acute renal failure via antioxidant and cytoprotective effects.
Collapse
|
39
|
Activation of NLRP3 by uropathogenic Escherichia coli is associated with IL-1β release and regulation of antimicrobial properties in human neutrophils. Sci Rep 2020; 10:21837. [PMID: 33318544 PMCID: PMC7736892 DOI: 10.1038/s41598-020-78651-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
The NLRP3 inflammasome and IL-1β have recently been linked to the severity of uropathogenic Escherichia coli (UPEC)-mediated urinary tract infection (UTI). However, not much is known about the contribution of NLRP3 to the antimicrobial properties of neutrophils and the release of IL-1β during UPEC infection. The purpose of this study was to elucidate the mechanisms behind UPEC-induced IL-1β release from human neutrophils, and to investigate the contribution of the NLRP3 inflammasome in neutrophil-mediated inhibition of UPEC growth. We found that the UPEC strain CFT073 increased the expression of NLRP3 and increased caspase-1 activation and IL-1β release from human neutrophils. The IL-1β release was mediated by the NLRP3 inflammasome and by serine proteases in an NF-κB-and cathepsin B-dependent manner. The UPEC virulence factors α-hemolysin, type-1 fimbriae and p-fimbriae were all shown to contribute to UPEC mediated IL-1β release from neutrophils. Furthermore, inhibition of caspase-1 and NLRP3 activation increased neutrophil ROS-production, phagocytosis and the ability of neutrophils to suppress UPEC growth. In conclusion, this study demonstrates that UPEC can induce NLRP3 and serine protease-dependent release of IL-1β from human neutrophils and that NLRP3 and caspase-1 can regulate the antimicrobial activity of human neutrophils against UPEC.
Collapse
|
40
|
Kawasaki A, Namba N, Sada KE, Hirano F, Kobayashi S, Nagasaka K, Sugihara T, Ono N, Fujimoto T, Kusaoi M, Tamura N, Yamagata K, Sumida T, Hashimoto H, Ozaki S, Makino H, Arimura Y, Harigai M, Tsuchiya N. Association of TERT and DSP variants with microscopic polyangiitis and myeloperoxidase-ANCA positive vasculitis in a Japanese population: a genetic association study. Arthritis Res Ther 2020; 22:246. [PMID: 33076992 PMCID: PMC7574242 DOI: 10.1186/s13075-020-02347-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/06/2020] [Indexed: 12/01/2022] Open
Abstract
Background Interstitial lung disease (ILD) is a severe complication with poor prognosis in anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). Prevalence of AAV-associated ILD (AAV-ILD) in Japan is considerably higher than that in Europe. Recently, we reported that a MUC5B variant rs35705950, the strongest susceptibility variant to idiopathic pulmonary fibrosis (IPF), was strikingly increased in AAV-ILD patients but not in AAV patients without ILD; however, due to the low allele frequency in the Japanese population, the MUC5B variant alone cannot account for the high prevalence of AAV-ILD in Japan. In this study, we examined whether other IPF susceptibility alleles in TERT and DSP genes are associated with susceptibility to AAV subsets and AAV-ILD. Methods Five hundred and forty-four Japanese patients with AAV and 5558 controls were analyzed. Among the AAV patients, 432 were positive for myeloperoxidase (MPO)-ANCA (MPO-AAV). A total of 176 MPO-AAV patients were positive and 216 were negative for ILD based on CT or high-resolution CT. Genotypes of TERT and DSP variants were determined by TaqMan SNP Genotyping Assay, and their association was tested by chi-square test. Results When the frequencies of the IPF risk alleles TERT rs2736100A and DSP rs2076295G were compared between AAV subsets and healthy controls, both alleles were significantly increased in microscopic polyangiitis (MPA) (TERT P = 2.3 × 10−4, Pc = 0.0023, odds ratio [OR] 1.38; DSP P = 6.9 × 10−4, Pc = 0.0069, OR 1.32) and MPO-AAV (TERT P = 1.5 × 10−4, Pc = 0.0015, OR 1.33; DSP P = 0.0011, Pc = 0.011, OR 1.26). On the other hand, no significant association was detected when the allele frequencies were compared between MPO-AAV patients with and without ILD. Conclusions Unexpectedly, TERT and DSP IPF risk alleles were found to be associated with MPA and MPO-AAV, regardless of the presence of ILD. These findings suggest that TERT and DSP may be novel susceptibility genes to MPA/MPO-AAV and also that some susceptibility genes may be shared between IPF and MPA/MPO-AAV.
Collapse
Affiliation(s)
- Aya Kawasaki
- Molecular and Genetic Epidemiology Laboratory, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan. .,School of Medical Sciences, University of Tsukuba, Tsukuba, Japan.
| | - Natsumi Namba
- Molecular and Genetic Epidemiology Laboratory, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan.,School of Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ken-Ei Sada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.,Department of Clinical Epidemiology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Fumio Hirano
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Lifetime Clinical Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigeto Kobayashi
- Department of Internal Medicine, Juntendo University Koshigaya Hospital, Koshigaya, Japan
| | - Kenji Nagasaka
- Department of Rheumatology, Ome Municipal General Hospital, Ome, Japan
| | - Takahiko Sugihara
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Lifetime Clinical Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nobuyuki Ono
- Department of Rheumatology, Saga University, Saga, Japan
| | - Takashi Fujimoto
- The Center for Rheumatic Diseases, Nara Medical University, Kashihara, Japan
| | - Makio Kusaoi
- Department of Internal Medicine and Rheumatology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Naoto Tamura
- Department of Internal Medicine and Rheumatology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Kunihiro Yamagata
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takayuki Sumida
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | | | - Shoichi Ozaki
- Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | | | - Yoshihiro Arimura
- Department of Nephrology and Rheumatology, Kyorin University School of Medicine, Mitaka, Japan.,Department of Internal Medicine, Kichijoji Asahi Hospital, Musashino, Japan
| | - Masayoshi Harigai
- Department of Rheumatology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Naoyuki Tsuchiya
- Molecular and Genetic Epidemiology Laboratory, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan. .,School of Medical Sciences, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
41
|
O'Brien EC, White CA, Wyse J, Leacy E, Porter RK, Little MA, Hickey FB. Pro-inflammatory Stimulation of Monocytes by ANCA Is Linked to Changes in Cellular Metabolism. Front Med (Lausanne) 2020; 7:553. [PMID: 33015103 PMCID: PMC7509421 DOI: 10.3389/fmed.2020.00553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/03/2020] [Indexed: 01/09/2023] Open
Abstract
Clinical and experimental data suggest that pathogenesis in anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis is driven by ANCA-mediated activation of neutrophils and monocytes. While the role of neutrophils has been extensively investigated, the function of monocytes remains relatively understudied. We have previously demonstrated that stimulation of monocytes with anti-myeloperoxidase (MPO), but not anti-proteinase-3 (PR3), antibodies results in production of the pro-inflammatory cytokine IL-1β. Changes in cellular metabolism, particularly a switch to glycolysis, have recently been linked to activation of immune cells and production of IL-1β. Therefore, we investigated the metabolic profile of monocytes following ANCA stimulation. We found a significant increase in glucose uptake in anti-MPO stimulated monocytes. Interestingly, both anti-MPO and anti-PR3 stimulation resulted in an immediate increase in glycolysis, measured by Seahorse extracellular flux analysis. However, this increase in glycolysis was sustained (for up to 4 h) in anti-MPO- but not anti-PR3-treated cells. In addition, only anti-MPO-treated cells exhibited increased oxidative phosphorylation, a metabolic response that correlated with IL-1β production. These data indicate that monocyte metabolism is altered by ANCA, with divergent responses to anti-MPO and anti-PR3 antibodies. These metabolic changes may underlie pathologic immune activation in ANCA associated vasculitis, as well as potentially contributing to the differing clinical phenotype between PR3- and MPO-ANCA positive patients. These metabolic pathways may therefore be potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Eóin C O'Brien
- Department of Clinical Medicine, Trinity Health Kidney Centre, Trinity College Dublin, Dublin, Ireland
| | - Carla A White
- Department of Clinical Medicine, Trinity Health Kidney Centre, Trinity College Dublin, Dublin, Ireland
| | - Jason Wyse
- Discipline of Statistics and Information Systems, School of Computer Science and Statistics, Trinity College Dublin, Dublin, Ireland
| | - Emma Leacy
- Department of Clinical Medicine, Trinity Health Kidney Centre, Trinity College Dublin, Dublin, Ireland
| | - Richard K Porter
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
| | - Mark A Little
- Department of Clinical Medicine, Trinity Health Kidney Centre, Trinity College Dublin, Dublin, Ireland
| | - Fionnuala B Hickey
- Department of Clinical Medicine, Trinity Health Kidney Centre, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
42
|
Schreiber A, Rousselle A, Klocke J, Bachmann S, Popovic S, Bontscho J, Schmidt-Ott KM, Siffrin V, Jerke U, Ashraf MI, Panzer U, Kettritz R. Neutrophil Gelatinase-Associated Lipocalin Protects from ANCA-Induced GN by Inhibiting T H17 Immunity. J Am Soc Nephrol 2020; 31:1569-1584. [PMID: 32487561 DOI: 10.1681/asn.2019090879] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/14/2020] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Neutrophil gelatinase-associated lipocalin (NGAL) is a diagnostic marker of intrinsic kidney injury produced by damaged renal cells and by neutrophils. ANCA-associated vasculitis features necrotizing crescentic GN (NCGN), and ANCA-activated neutrophils contribute to NCGN. Whether NGAL plays a mechanistic role in ANCA-associated vasculitis is unknown. METHODS We measured NGAL in patients with ANCA-associated vasculitis and mice with anti-myeloperoxidase (anti-MPO) antibody-induced NCGN. We compared kidney histology, neutrophil functions, T cell proliferation and polarization, renal infiltrating cells, and cytokines in wild-type and NGAL-deficient chimeric mice with anti-MPO antibody-induced NCGN. To assess the role of TH17 immunity, we transplanted irradiated MPO-immunized MPO-deficient mice with bone marrow from either wild-type or NGAL-deficient mice; we also transplanted irradiated MPO-immunized MPO/IL-17A double-deficient mice with bone marrow from either IL-17A-deficient or NGAL/IL-17A double-deficient mice. RESULTS Mice and patients with active ANCA-associated vasculitis demonstrated strongly increased serum and urinary NGAL levels. ANCA-stimulated neutrophils released NGAL. Mice with NGAL-deficient bone marrow developed worsened MPO-ANCA-induced NCGN. Intrinsic neutrophil functions were similar in NGAL-deficient and wild-type neutrophils, whereas T cell immunity was increased in chimeric mice with NGAL-deficient neutrophils with more renal infiltrating TH17 cells. NGAL-expressing neutrophils and CD3+ T cells were in close proximity in kidney and spleen. CD4+ T cells showed no intrinsic difference in proliferation and polarization in vitro, whereas iron siderophore-loaded NGAL suppressed TH17 polarization. We found significantly attenuated NCGN in IL-17A-deficient chimeras compared with MPO-deficient mice receiving wild-type bone marrow, as well as in NGAL/IL-17A-deficient chimeras compared with NGAL-deficient chimeras. CONCLUSIONS Our findings support that bone marrow-derived, presumably neutrophil, NGAL protects from ANCA-induced NCGN by downregulating TH17 immunity.
Collapse
Affiliation(s)
- Adrian Schreiber
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Berlin University of Medicine, Corporate Member of Free University of Berlin, Humboldt University of Berlin, Berlin Institute of Health, Berlin, Germany .,Nephrology and Medical Intensive Care Medicine, Charité - Berlin University of Medicine, Berlin, Germany
| | - Anthony Rousselle
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Berlin University of Medicine, Corporate Member of Free University of Berlin, Humboldt University of Berlin, Berlin Institute of Health, Berlin, Germany
| | - Jan Klocke
- Nephrology and Medical Intensive Care Medicine, Charité - Berlin University of Medicine, Berlin, Germany
| | - Sebastian Bachmann
- Institute of Vegetative Anatomy, Charité - Berlin University of Medicine, Berlin, Germany
| | - Suncica Popovic
- Institute of Vegetative Anatomy, Charité - Berlin University of Medicine, Berlin, Germany
| | - Julia Bontscho
- Nephrology and Medical Intensive Care Medicine, Charité - Berlin University of Medicine, Berlin, Germany
| | - Kai M Schmidt-Ott
- Nephrology and Medical Intensive Care Medicine, Charité - Berlin University of Medicine, Berlin, Germany
| | - Volker Siffrin
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Berlin University of Medicine, Corporate Member of Free University of Berlin, Humboldt University of Berlin, Berlin Institute of Health, Berlin, Germany
| | - Uwe Jerke
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Berlin University of Medicine, Corporate Member of Free University of Berlin, Humboldt University of Berlin, Berlin Institute of Health, Berlin, Germany
| | - Muhammad Imtiaz Ashraf
- Department of Surgery, Campus Charité Mitte I Campus Virchow Klinikum, Charité - Berlin University of Medicine, Berlin, Germany
| | - Ulf Panzer
- III. Medical Clinic, Division of Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralph Kettritz
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Berlin University of Medicine, Corporate Member of Free University of Berlin, Humboldt University of Berlin, Berlin Institute of Health, Berlin, Germany.,Nephrology and Medical Intensive Care Medicine, Charité - Berlin University of Medicine, Berlin, Germany
| |
Collapse
|
43
|
Shochet L, Holdsworth S, Kitching AR. Animal Models of ANCA Associated Vasculitis. Front Immunol 2020; 11:525. [PMID: 32373109 PMCID: PMC7179669 DOI: 10.3389/fimmu.2020.00525] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/09/2020] [Indexed: 01/05/2023] Open
Abstract
Anti-neutrophil cytoplasmic antibody (ANCA) associated vasculitis (AAV) is a rare and severe autoimmune multisystemic disease. Its pathogenesis involves multiple arms of the immune system, as well as complex interactions between immune cells and target organs. Experimental animal models of disease can provide the crucial link from human disease to translational research into new therapies. This is particularly true in AAV, due to low disease incidence and substantial disease heterogeneity. Animal models allow for controlled environments in which disease mechanisms can be defined, without the clinical confounders of environmental and lifestyle factors. To date, multiple animal models have been developed, each of which shed light on different disease pathways. Results from animal studies of AAV have played a crucial role in enhancing our understanding of disease mechanisms, and have provided direction toward newer targeted therapies. This review will summarize our understanding of AAV pathogenesis as has been gleaned from currently available animal models, as well as address their strengths and limitations. We will also discuss the potential for current and new animal models to further our understanding of this important condition.
Collapse
Affiliation(s)
- Lani Shochet
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia.,Department of Nephrology, Monash Health, Clayton, VIC, Australia
| | - Stephen Holdsworth
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia.,Department of Nephrology, Monash Health, Clayton, VIC, Australia.,Department of Immunology, Monash Health, Clayton, VIC, Australia
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia.,Department of Nephrology, Monash Health, Clayton, VIC, Australia.,Department of Pediatric Nephrology, Monash Health, Clayton, VIC, Australia
| |
Collapse
|
44
|
Vizovišek M, Vidak E, Javoršek U, Mikhaylov G, Bratovš A, Turk B. Cysteine cathepsins as therapeutic targets in inflammatory diseases. Expert Opin Ther Targets 2020; 24:573-588. [PMID: 32228244 DOI: 10.1080/14728222.2020.1746765] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Cysteine cathepsins are involved in the development and progression of numerous inflammation-associated diseases such as cancer, arthritis, bone and immune disorders. Consequently, there is a drive to progress research efforts focused on cathepsin use in diagnostics and as therapeutic targets in disease.Areas covered: This review discusses the potential of cysteine cathepsins as therapeutic targets in inflammation-associated diseases and recent advances in preclinical and clinical research. We describe direct targeting of cathepsins for treatment purposes and their indirect use in diagnostics.Expert opinion: The targeting of cysteine cathepsins has not translated into the clinic; this failure is attributed to off- and on-target side effects and/or the lack of companion biomarkers. This field now embraces developments in diagnostic imaging, the activation of prodrugs and antibody-drug conjugates for targeted drug delivery. The future lies in improved molecular tools and therapeutic concepts that will find a wide spectrum of uses in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Matej Vizovišek
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Eva Vidak
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Urban Javoršek
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Georgy Mikhaylov
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Andreja Bratovš
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
45
|
Catz SD, McLeish KR. Therapeutic targeting of neutrophil exocytosis. J Leukoc Biol 2020; 107:393-408. [PMID: 31990103 PMCID: PMC7044074 DOI: 10.1002/jlb.3ri0120-645r] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of neutrophil activation causes disease in humans. Neither global inhibition of neutrophil functions nor neutrophil depletion provides safe and/or effective therapeutic approaches. The role of neutrophil granule exocytosis in multiple steps leading to recruitment and cell injury led each of our laboratories to develop molecular inhibitors that interfere with specific molecular regulators of secretion. This review summarizes neutrophil granule formation and contents, the role granule cargo plays in neutrophil functional responses and neutrophil-mediated diseases, and the mechanisms of granule release that provide the rationale for development of our exocytosis inhibitors. We present evidence for the inhibition of granule exocytosis in vitro and in vivo by those inhibitors and summarize animal data indicating that inhibition of neutrophil exocytosis is a viable therapeutic strategy.
Collapse
Affiliation(s)
- Sergio D. Catz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Kenneth R. McLeish
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY
| |
Collapse
|
46
|
Joosten LAB, Crişan TO, Bjornstad P, Johnson RJ. Asymptomatic hyperuricaemia: a silent activator of the innate immune system. Nat Rev Rheumatol 2020; 16:75-86. [PMID: 31822862 PMCID: PMC7075706 DOI: 10.1038/s41584-019-0334-3] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2019] [Indexed: 12/22/2022]
Abstract
Asymptomatic hyperuricaemia affects ~20% of the general population in the USA, with variable rates in other countries. Historically, asymptomatic hyperuricaemia was considered a benign laboratory finding with little clinical importance in the absence of gout or kidney stones. Yet, increasing evidence suggests that asymptomatic hyperuricaemia can predict the development of hypertension, obesity, diabetes mellitus and chronic kidney disease and might contribute to disease by stimulating inflammation. Although urate has been classically viewed as an antioxidant with beneficial effects, new data suggest that both crystalline and soluble urate activate various pro-inflammatory pathways. This Review summarizes what is known about the role of urate in the inflammatory response. Further research is needed to define the role of asymptomatic hyperuricaemia in these pro-inflammatory pathways.
Collapse
Affiliation(s)
- Leo A B Joosten
- Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Tania O Crişan
- Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Petter Bjornstad
- Department of Medicine of the University of Colorado School of Medicine of the University Hospital, Aurora, CO, USA
| | - Richard J Johnson
- Department of Medicine of the University of Colorado School of Medicine of the University Hospital, Aurora, CO, USA.
| |
Collapse
|
47
|
Abstract
The kidney harbours different types of endothelia, each with specific structural and functional characteristics. The glomerular endothelium, which is highly fenestrated and covered by a rich glycocalyx, participates in the sieving properties of the glomerular filtration barrier and in the maintenance of podocyte structure. The microvascular endothelium in peritubular capillaries, which is also fenestrated, transports reabsorbed components and participates in epithelial cell function. The endothelium of large and small vessels supports the renal vasculature. These renal endothelia are protected by regulators of thrombosis, inflammation and complement, but endothelial injury (for example, induced by toxins, antibodies, immune cells or inflammatory cytokines) or defects in factors that provide endothelial protection (for example, regulators of complement or angiogenesis) can lead to acute or chronic renal injury. Moreover, renal endothelial cells can transition towards a mesenchymal phenotype, favouring renal fibrosis and the development of chronic kidney disease. Thus, the renal endothelium is both a target and a driver of kidney and systemic cardiovascular complications. Emerging therapeutic strategies that target the renal endothelium may lead to improved outcomes for both rare and common renal diseases.
Collapse
|
48
|
Hernandez-Santana YE, Giannoudaki E, Leon G, Lucitt MB, Walsh PT. Current perspectives on the interleukin-1 family as targets for inflammatory disease. Eur J Immunol 2019; 49:1306-1320. [PMID: 31250428 DOI: 10.1002/eji.201848056] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/15/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022]
Abstract
Since the first description of interleukin-1 (IL-1) and the genesis of the field of cytokine biology, the understanding of how IL-1 and related cytokines play central orchestrating roles in the inflammatory response has been an area of intense investigation. As a consequence of these endeavours, specific strategies have been developed to target the function of the IL-1 family in human disease realizing significant impacts for patients. While the most significant advances to date have been associated with inhibition of the prototypical family members IL-1α/β, approaches to target more recently identified family members such as IL-18, IL-33 and the IL-36 subfamily are now beginning to come to fruition. This review summarizes current knowledge surrounding the roles of the IL-1 family in human disease and describes the rationale and strategies which have been developed to target these cytokines to inhibit the pathogenesis of a wide range of diseases in which inflammation plays a centrally important role.
Collapse
Affiliation(s)
- Yasmina E Hernandez-Santana
- Trinity Translational Medicine Institute, Department of Clinical Medicine, School of Medicine, Trinity College, Dublin.,National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin
| | - Eirini Giannoudaki
- Trinity Translational Medicine Institute, Department of Clinical Medicine, School of Medicine, Trinity College, Dublin.,National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin
| | - Gemma Leon
- Trinity Translational Medicine Institute, Department of Clinical Medicine, School of Medicine, Trinity College, Dublin.,National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin
| | - Margaret B Lucitt
- Department of Pharmacology and Therapeutics, School of Medicine, Trinity College, Dublin
| | - Patrick T Walsh
- Trinity Translational Medicine Institute, Department of Clinical Medicine, School of Medicine, Trinity College, Dublin.,National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin
| |
Collapse
|
49
|
Hou W, Sun H, Ma Y, Liu C, Zhang Z. Identification and Optimization of Novel Cathepsin C Inhibitors Derived from EGFR Inhibitors. J Med Chem 2019; 62:5901-5919. [DOI: 10.1021/acs.jmedchem.9b00631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Weijie Hou
- National Institute of Biological Sciences (NIBS), 7 Science Park Road, ZGC Life Science Park, Beijing 102206, China
| | - Huan Sun
- National Institute of Biological Sciences (NIBS), 7 Science Park Road, ZGC Life Science Park, Beijing 102206, China
| | - Yongfen Ma
- National Institute of Biological Sciences (NIBS), 7 Science Park Road, ZGC Life Science Park, Beijing 102206, China
| | - Chunyan Liu
- National Institute of Biological Sciences (NIBS), 7 Science Park Road, ZGC Life Science Park, Beijing 102206, China
| | - Zhiyuan Zhang
- National Institute of Biological Sciences (NIBS), 7 Science Park Road, ZGC Life Science Park, Beijing 102206, China
| |
Collapse
|
50
|
Jourde-Chiche N, Fakhouri F, Dou L, Bellien J, Burtey S, Frimat M, Jarrot PA, Kaplanski G, Le Quintrec M, Pernin V, Rigothier C, Sallée M, Fremeaux-Bacchi V, Guerrot D, Roumenina LT. Endothelium structure and function in kidney health and disease. Nat Rev Nephrol 2019. [PMID: 30607032 DOI: 10.1038/s4158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
The kidney harbours different types of endothelia, each with specific structural and functional characteristics. The glomerular endothelium, which is highly fenestrated and covered by a rich glycocalyx, participates in the sieving properties of the glomerular filtration barrier and in the maintenance of podocyte structure. The microvascular endothelium in peritubular capillaries, which is also fenestrated, transports reabsorbed components and participates in epithelial cell function. The endothelium of large and small vessels supports the renal vasculature. These renal endothelia are protected by regulators of thrombosis, inflammation and complement, but endothelial injury (for example, induced by toxins, antibodies, immune cells or inflammatory cytokines) or defects in factors that provide endothelial protection (for example, regulators of complement or angiogenesis) can lead to acute or chronic renal injury. Moreover, renal endothelial cells can transition towards a mesenchymal phenotype, favouring renal fibrosis and the development of chronic kidney disease. Thus, the renal endothelium is both a target and a driver of kidney and systemic cardiovascular complications. Emerging therapeutic strategies that target the renal endothelium may lead to improved outcomes for both rare and common renal diseases.
Collapse
Affiliation(s)
- Noemie Jourde-Chiche
- Aix-Marseille University, Centre de Nephrologie et Transplantation Renale, AP-HM Hopital de la Conception, Marseille, France.
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France.
| | - Fadi Fakhouri
- Centre de Recherche en Transplantation et Immunologie, INSERM, Université de Nantes and Department of Nephrology, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Laetitia Dou
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France
| | - Jeremy Bellien
- Department of Pharmacology, Rouen University Hospital and INSERM, Normandy University, Université de Rouen Normandie, Rouen, France
| | - Stéphane Burtey
- Aix-Marseille University, Centre de Nephrologie et Transplantation Renale, AP-HM Hopital de la Conception, Marseille, France
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France
| | - Marie Frimat
- Université de Lille, INSERM, Centre Hospitalier Universitaire de Lille, U995, Lille Inflammation Research International Center (LIRIC), Lille, France
- Nephrology Department, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Pierre-André Jarrot
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Service de Médecine Interne et d'Immunologie Clinique, Hôpital de La Conception, Marseille, France
| | - Gilles Kaplanski
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Service de Médecine Interne et d'Immunologie Clinique, Hôpital de La Conception, Marseille, France
| | - Moglie Le Quintrec
- Centre Hospitalier Universitaire de Lapeyronie, Département de Néphrologie Dialyse et Transplantation Rénale, Montpellier, France
- Institute for Regenerative Medicine and Biotherapy (IRMB), Montpellier, France
| | - Vincent Pernin
- Centre Hospitalier Universitaire de Lapeyronie, Département de Néphrologie Dialyse et Transplantation Rénale, Montpellier, France
- Institute for Regenerative Medicine and Biotherapy (IRMB), Montpellier, France
| | - Claire Rigothier
- Tissue Bioengineering, Université de Bordeaux, Bordeaux, France
- Service de Néphrologie Transplantation, Dialyse et Aphérèse, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Marion Sallée
- Aix-Marseille University, Centre de Nephrologie et Transplantation Renale, AP-HM Hopital de la Conception, Marseille, France
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France
| | - Veronique Fremeaux-Bacchi
- Assistance Publique-Hôpitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
| | - Dominique Guerrot
- Normandie Université, Université de Rouen Normandie, Rouen University Hospital, Department of Nephrology, Rouen, France
| | - Lubka T Roumenina
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France.
- Sorbonne Universités, Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|