1
|
Lan Q, Li J, Zhang H, Zhou Z, Fang Y, Yang B. Mechanistic complement of autosomal dominant polycystic kidney disease: the role of aquaporins. J Mol Med (Berl) 2024; 102:773-785. [PMID: 38668786 DOI: 10.1007/s00109-024-02446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/21/2024]
Abstract
Autosomal dominant polycystic kidney disease is a genetic kidney disease caused by mutations in the genes PKD1 or PKD2. Its course is characterized by the formation of progressively enlarged cysts in the renal tubules bilaterally. The basic genetic explanation for autosomal dominant polycystic kidney disease is the double-hit theory, and many of its mechanistic issues can be explained by the cilia doctrine. However, the precise molecular mechanisms underpinning this condition's occurrence are still not completely understood. Experimental evidence suggests that aquaporins, a class of transmembrane channel proteins, including aquaporin-1, aquaporin-2, aquaporin-3, and aquaporin-11, are involved in the mechanism of autosomal dominant polycystic kidney disease. Aquaporins are either a potential new target for the treatment of autosomal dominant polycystic kidney disease, and further study into the physiopathological role of aquaporins in autosomal dominant polycystic kidney disease will assist to clarify the disease's pathophysiology and increase the pool of potential treatment options. We primarily cover pertinent findings on aquaporins in autosomal dominant polycystic kidney disease in this review.
Collapse
Affiliation(s)
- Qiumei Lan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Jie Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Hanqing Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Zijun Zhou
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Yaxuan Fang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Bo Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
- Department of Nephrology, The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, No.88, Changling Road, Xiqing District, Tianjin, 300193, China.
| |
Collapse
|
2
|
Clearman KR, Haycraft CJ, Croyle MJ, Collawn JF, Yoder BK. Functions of the primary cilium in the kidney and its connection with renal diseases. Curr Top Dev Biol 2023; 155:39-94. [PMID: 38043952 DOI: 10.1016/bs.ctdb.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The nonmotile primary cilium is a sensory structure found on most mammalian cell types that integrates multiple signaling pathways involved in tissue development and postnatal function. As such, mutations disrupting cilia activities cause a group of disorders referred to as ciliopathies. These disorders exhibit a wide spectrum of phenotypes impacting nearly every tissue. In the kidney, primary cilia dysfunction caused by mutations in polycystin 1 (Pkd1), polycystin 2 (Pkd2), or polycystic kidney and hepatic disease 1 (Pkhd1), result in polycystic kidney disease (PKD), a progressive disorder causing renal functional decline and end-stage renal disease. PKD affects nearly 1 in 1000 individuals and as there is no cure for PKD, patients frequently require dialysis or renal transplantation. Pkd1, Pkd2, and Pkhd1 encode membrane proteins that all localize in the cilium. Pkd1 and Pkd2 function as a nonselective cation channel complex while Pkhd1 protein function remains uncertain. Data indicate that the cilium may act as a mechanosensor to detect fluid movement through renal tubules. Other functions proposed for the cilium and PKD proteins in cyst development involve regulation of cell cycle and oriented division, regulation of renal inflammation and repair processes, maintenance of epithelial cell differentiation, and regulation of mitochondrial structure and metabolism. However, how loss of cilia or cilia function leads to cyst development remains elusive. Studies directed at understanding the roles of Pkd1, Pkd2, and Pkhd1 in the cilium and other locations within the cell will be important for developing therapeutic strategies to slow cyst progression.
Collapse
Affiliation(s)
- Kelsey R Clearman
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Courtney J Haycraft
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mandy J Croyle
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James F Collawn
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bradley K Yoder
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
3
|
Yashchenko A, Bland SJ, Song CJ, Ahmed UKB, Sharp R, Darby IG, Cordova AM, Smith ME, Lever JM, Li Z, Aloria EJ, Khan S, Maryam B, Liu S, Crowley MR, Jones KL, Zenewicz LA, George JF, Mrug M, Crossman DK, Hopp K, Stavrakis S, Humphrey MB, Ginhoux F, Zimmerman KA. Cx3cr1 controls kidney resident macrophage heterogeneity. Front Immunol 2023; 14:1082078. [PMID: 37256130 PMCID: PMC10225589 DOI: 10.3389/fimmu.2023.1082078] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Kidney macrophages are comprised of both monocyte-derived and tissue resident populations; however, the heterogeneity of kidney macrophages and factors that regulate their heterogeneity are poorly understood. Herein, we performed single cell RNA sequencing (scRNAseq), fate mapping, and parabiosis to define the cellular heterogeneity of kidney macrophages in healthy mice. Our data indicate that healthy mouse kidneys contain four major subsets of monocytes and two major subsets of kidney resident macrophages (KRM) including a population with enriched Ccr2 expression, suggesting monocyte origin. Surprisingly, fate mapping data using the newly developed Ms4a3Cre Rosa Stopf/f TdT model indicate that less than 50% of Ccr2+ KRM are derived from Ly6chi monocytes. Instead, we find that Ccr2 expression in KRM reflects their spatial distribution as this cell population is almost exclusively found in the kidney cortex. We also identified Cx3cr1 as a gene that governs cortex specific accumulation of Ccr2+ KRM and show that loss of Ccr2+ KRM reduces the severity of cystic kidney disease in a mouse model where cysts are mainly localized to the kidney cortex. Collectively, our data indicate that Cx3cr1 regulates KRM heterogeneity and niche-specific disease progression.
Collapse
Affiliation(s)
- Alex Yashchenko
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Sarah J. Bland
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Cheng J. Song
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ummey Khalecha Bintha Ahmed
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rachel Sharp
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Isabella G. Darby
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Audrey M. Cordova
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Morgan E. Smith
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jeremie M. Lever
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Surgery, Division of Cardiothoracic Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zhang Li
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ernald J. Aloria
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Shuja Khan
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Bibi Maryam
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Shanrun Liu
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Michael R. Crowley
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kenneth L. Jones
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Lauren A. Zenewicz
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - James F. George
- Department of Surgery, Division of Cardiothoracic Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Michal Mrug
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Veterans Affairs Medical Center, Birmingham, AL, United States
| | - David K. Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Katharina Hopp
- Department of Medicine, Division of Renal Diseases and Hypertension, Polycystic Kidney Disease Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Stavros Stavrakis
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Mary B. Humphrey
- Department of Internal Medicine, Division of Rheumatology, Immunology, and Allergy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Veterans Affairs Medical Center, Oklahoma City, OK, United States
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore, Singapore
| | - Kurt A. Zimmerman
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
4
|
Luo L, Roy S, Li L, Ma M. Polycystic kidney disease: novel insights into polycystin function. Trends Mol Med 2023; 29:268-281. [PMID: 36805211 DOI: 10.1016/j.molmed.2023.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/17/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a life-threatening monogenic disease caused by mutations in PKD1 and PKD2 that encode polycystin 1 (PC1) and polycystin 2 (PC2). PC1/2 localize to cilia of renal epithelial cells, and their function is believed to embody an inhibitory activity that suppresses the cilia-dependent cyst activation (CDCA) signal. Consequently, PC deficiency results in activation of CDCA and stimulates cyst growth. Recently, re-expression of PCs in established cysts has been shown to reverse PKD. Thus, the mode of action of PCs resembles a 'counterbalance in cruise control' to maintain lumen diameter within a designated range. Herein we review recent studies that point to novel arenas for future PC research with therapeutic potential for ADPKD.
Collapse
Affiliation(s)
- Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, 400715, China
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119288, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Li Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, 400715, China; Research Center of Stem cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Ming Ma
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
5
|
Mechanism of cystogenesis by Cd79a-driven, conditional mTOR activation in developing mouse nephrons. Sci Rep 2023; 13:508. [PMID: 36627370 PMCID: PMC9832032 DOI: 10.1038/s41598-023-27766-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Polycystic kidney disease (PKD) is a common genetic disorder arising from developmental and postnatal processes. Defects in primary cilia and their signaling (eg, mTOR) underlie the pathogenesis. However, how mTOR regulates tubular integrity remains unclear. The paucity of faithful models has limited our understanding of pathogenesis and, therefore, the refinement of therapeutic targets. To understand the role of mTOR in early cystogenesis, we studied an in-house mouse model, Cd79a-Cre;Tsc1ff. (Cd79a-Tsc1 KO hereafter), recapitulating human autosomal-dominant PKD histology. Cre-mediated Tsc1 depletion driven by the promoter for Cd79a, a known B-cell receptor, activated mTORC1 exclusively along the distal nephron from embryonic day 16 onward. Cysts appeared in the distal nephron at 1 weeks of age and mice developed definite PKD by 4 weeks. Cd79a-Tsc1 KO tubule cells proliferated at a rate comparable to controls after birth but continued to divide even after postnatal day 14 when tubulogenesis is normally completed. Apoptosis occurred only after 9 weeks. During postnatal days 7-11, pre-cystic Cd79a-Tsc1 KO tubule cells showed cilia elongation, aberrant cell intercalation, and mitotic division, suggesting that defective cell planar polarity (PCP) may underlie cystogenesis. mTORC1 was activated in a portion of cyst-lining cells and occasionally even when Tsc1 was not depleted, implying a non-autonomous mechanism. Our results indicate that mTORC1 overactivation in developing distal tubules impairs their postnatal narrowing by disrupting morphogenesis, which orients an actively proliferating cell toward the elongating axis. The interplay between mTOR and cilium signaling, which coordinate cell proliferation with PCP, may be essential for cystogenesis.
Collapse
|
6
|
Li Z, Zimmerman KA, Cherakara S, Chumley PH, Collawn JF, Wang J, Haycraft CJ, Song CJ, Chacana T, Andersen RS, Croyle MJ, Aloria EJ, Hombal RP, Thomas IN, Chweih H, Simanyi KL, George JF, Parant JM, Mrug M, Yoder BK. A kidney resident macrophage subset is a candidate biomarker for renal cystic disease in preclinical models. Dis Model Mech 2023; 16:dmm049810. [PMID: 36457161 PMCID: PMC9884121 DOI: 10.1242/dmm.049810] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
Although renal macrophages have been shown to contribute to cyst development in polycystic kidney disease (PKD) animal models, it remains unclear whether there is a specific macrophage subpopulation involved. Here, we analyzed changes in macrophage populations during renal maturation in association with cystogenesis rates in conditional Pkd2 mutant mice. We observed that CD206+ resident macrophages were minimal in a normal adult kidney but accumulated in cystic areas in adult-induced Pkd2 mutants. Using Cx3cr1 null mice, we reduced macrophage number, including CD206+ macrophages, and showed that this significantly reduced cyst severity in adult-induced Pkd2 mutant kidneys. We also found that the number of CD206+ resident macrophage-like cells increased in kidneys and in the urine from autosomal-dominant PKD (ADPKD) patients relative to the rate of renal functional decline. These data indicate a direct correlation between CD206+ resident macrophages and cyst formation, and reveal that the CD206+ resident macrophages in urine could serve as a biomarker for renal cystic disease activity in preclinical models and ADPKD patients. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Zhang Li
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kurt A. Zimmerman
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 732104, USA
| | - Sreelakshmi Cherakara
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Phillip H. Chumley
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Veterans Affairs Medical Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - James F. Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jun Wang
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Courtney J. Haycraft
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Cheng J. Song
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Teresa Chacana
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Reagan S. Andersen
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mandy J. Croyle
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ernald J. Aloria
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Raksha P. Hombal
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Isis N. Thomas
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hanan Chweih
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kristin L. Simanyi
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - James F. George
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John M. Parant
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michal Mrug
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Veterans Affairs Medical Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Bradley K. Yoder
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
7
|
Wang J, Thomas HR, Thompson RG, Waldrep SC, Fogerty J, Song P, Li Z, Ma Y, Santra P, Hoover JD, Yeo NC, Drummond IA, Yoder BK, Amack JD, Perkins B, Parant JM. Variable phenotypes and penetrance between and within different zebrafish ciliary transition zone mutants. Dis Model Mech 2022; 15:dmm049568. [PMID: 36533556 PMCID: PMC9844136 DOI: 10.1242/dmm.049568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/04/2022] [Indexed: 12/23/2022] Open
Abstract
Meckel syndrome, nephronophthisis, Joubert syndrome and Bardet-Biedl syndrome are caused by mutations in proteins that localize to the ciliary transition zone (TZ). The phenotypically distinct syndromes suggest that these TZ proteins have differing functions. However, mutations in a single TZ gene can result in multiple syndromes, suggesting that the phenotype is influenced by modifier genes. We performed a comprehensive analysis of ten zebrafish TZ mutants, including mks1, tmem216, tmem67, rpgrip1l, cc2d2a, b9d2, cep290, tctn1, nphp1 and nphp4, as well as mutants in ift88 and ift172. Our data indicate that variations in phenotypes exist between different TZ mutants, supporting different tissue-specific functions of these TZ genes. Further, we observed phenotypic variations within progeny of a single TZ mutant, reminiscent of multiple disease syndromes being associated with mutations in one gene. In some mutants, the dynamics of the phenotype became complex with transitory phenotypes that are corrected over time. We also demonstrated that multiple-guide-derived CRISPR/Cas9 F0 'crispant' embryos recapitulate zygotic null phenotypes, and rapidly identified ciliary phenotypes in 11 cilia-associated gene candidates (ankfn1, ccdc65, cfap57, fhad1, nme7, pacrg, saxo2, c1orf194, ttc26, zmynd12 and cfap52).
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Holly R. Thomas
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Robert G. Thompson
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Stephanie C. Waldrep
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Joseph Fogerty
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Ping Song
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Zhang Li
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, AL 35294, USA
| | - Yongjie Ma
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Peu Santra
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jonathan D. Hoover
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Nan Cher Yeo
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Iain A. Drummond
- Davis Center for Aging and Regeneration, Mount Desert Island Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609, USA
| | - Bradley K. Yoder
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, AL 35294, USA
| | - Jeffrey D. Amack
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Brian Perkins
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - John M. Parant
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| |
Collapse
|
8
|
Parnell SC, Raman A, Zhang Y, Daniel EA, Dai Y, Khanna A, Reif GA, Vivian JL, Fields TA, Wallace DP. Expression of active B-Raf proto-oncogene in kidney collecting ducts induces cyst formation in normal mice and accelerates cyst growth in mice with polycystic kidney disease. Kidney Int 2022; 102:1103-1114. [PMID: 35760151 PMCID: PMC9588601 DOI: 10.1016/j.kint.2022.05.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
Abstract
Polycystic kidney disease (PKD) is characterized by the formation and progressive enlargement of fluid-filled cysts due to abnormal cell proliferation. Cyclic AMP agonists, including arginine vasopressin, stimulate ERK-dependent proliferation of cystic cells, but not normal kidney cells. Previously, B-Raf proto-oncogene (BRAF), a MAPK kinase kinase that activates MEK-ERK signaling, was shown to be a central intermediate in the cAMP mitogenic response. However, the role of BRAF on cyst formation and enlargement in vivo had not been demonstrated. To determine if active BRAF induces kidney cyst formation, we generated transgenic mice that conditionally express BRAFV600E, a common activating mutation, and bred them with Pkhd1-Cre mice to express active BRAF in the collecting ducts, a predominant site for cyst formation. Collecting duct expression of BRAFV600E (BRafCD) caused kidney cyst formation as early as three weeks of age. There were increased levels of phosphorylated ERK (p-ERK) and proliferating cell nuclear antigen, a marker for cell proliferation. BRafCD mice developed extensive kidney fibrosis and elevated blood urea nitrogen, indicating a decline in kidney function, by ten weeks of age. BRAFV600E transgenic mice were also bred to Pkd1RC/RC and pcy/pcy mice, well-characterized slowly progressive PKD models. Collecting duct expression of active BRAF markedly increased kidney weight/body weight, cyst number and size, and total cystic area. There were increased p-ERK levels and proliferating cells, immune cell infiltration, interstitial fibrosis, and a decline in kidney function in both these models. Thus, our findings demonstrate that active BRAF is sufficient to induce kidney cyst formation in normal mice and accelerate cystic disease in PKD mice.
Collapse
Affiliation(s)
- Stephen C Parnell
- Department of Biochemistry and Molecular Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Archana Raman
- Department of Molecular and Integrative Physiology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Yan Zhang
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Emily A Daniel
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Yuqiao Dai
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Aditi Khanna
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Gail A Reif
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jay L Vivian
- Department of Pathology and Laboratory Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Timothy A Fields
- Department of Pathology and Laboratory Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Darren P Wallace
- Department of Molecular and Integrative Physiology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA; Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
9
|
Rockwell DM, O’Connor AK, Bentley-Ford MR, Haycraft CJ, Croyle MJ, Brewer KM, Berbari NF, Kesterson RA, Yoder BK. A transgenic Alx4-CreER mouse to analyze anterior limb and nephric duct development. Dev Dyn 2022; 251:1524-1534. [PMID: 33728725 PMCID: PMC8931671 DOI: 10.1002/dvdy.328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Genetic tools to study gene function and the fate of cells in the anterior limb bud are very limited. RESULTS We describe a transgenic mouse line expressing CreERT2 from the Aristaless-like 4 (Alx4) promoter that induces recombination in the anterior limb. Cre induction at embryonic day 8.5 revealed that Alx4-CreERT2 labeled cells using the mTmG Cre reporter contributed to anterior digits I to III as well as the radius of the forelimb. Cre activity is expanded further along the AP axis in the hindlimb than in the forelimb resulting in some Cre reporter cells contributing to digit IV. Induction at later time points labeled cells that become progressively restricted to more anterior digits and proximal structures. Comparison of Cre expression from the Alx4 promoter transgene with endogenous Alx4 expression reveals Cre expression is slightly expanded posteriorly relative to the endogenous Alx4 expression. Using Alx4-CreERT2 to induce loss of intraflagellar transport 88 (Ift88), a gene required for ciliogenesis, hedgehog signaling, and limb patterning, did not cause overt skeletal malformations. However, the efficiency of deletion, time needed for Ift88 protein turnover, and for cilia to regress may hinder using this approach to analyze cilia in the limb. Alx4-CreERT2 is also active in the mesonephros and nephric duct that contribute to the collecting tubules and ducts of the adult nephron. Embryonic activation of the Alx4-CreERT2 in the Ift88 conditional line results in cyst formation in the collecting tubules/ducts. CONCLUSION Overall, the Alx4-CreERT2 line will be a new tool to assess cell fates and analyze gene function in the anterior limb, mesonephros, and nephric duct.
Collapse
Affiliation(s)
- Devan M. Rockwell
- Department of Cell, Development, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Amber K. O’Connor
- Department of Cell, Development, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham Medical School, Birmingham, Alabama
| | - Melissa R. Bentley-Ford
- Department of Cell, Development, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Courtney J. Haycraft
- Department of Cell, Development, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mandy J. Croyle
- Department of Cell, Development, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kathryn M. Brewer
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Nicolas F. Berbari
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Robert A. Kesterson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Bradley K. Yoder
- Department of Cell, Development, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
10
|
Song CJ, Li Z, Ahmed UKB, Bland SJ, Yashchenko A, Liu S, Aloria EJ, Lever JM, Gonzalez NM, Bickel MA, Giles CB, Georgescu C, Wren JD, Lang ML, Benveniste EN, Harrington LE, Tsiokas L, George JF, Jones KL, Crossman DK, Agarwal A, Mrug M, Yoder BK, Hopp K, Zimmerman KA. A Comprehensive Immune Cell Atlas of Cystic Kidney Disease Reveals the Involvement of Adaptive Immune Cells in Injury-Mediated Cyst Progression in Mice. J Am Soc Nephrol 2022; 33:747-768. [PMID: 35110364 PMCID: PMC8970461 DOI: 10.1681/asn.2021030278] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 01/16/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Inducible disruption of cilia-related genes in adult mice results in slowly progressive cystic disease, which can be greatly accelerated by renal injury. METHODS To identify in an unbiased manner modifier cells that may be influencing the differential rate of cyst growth in injured versus non-injured cilia mutant kidneys at a time of similar cyst severity, we generated a single-cell atlas of cystic kidney disease. We conducted RNA-seq on 79,355 cells from control mice and adult-induced conditional Ift88 mice (hereafter referred to as cilia mutant mice) that were harvested approximately 7 months post-induction or 8 weeks post 30-minute unilateral ischemia reperfusion injury. RESULTS Analyses of single-cell RNA-seq data of CD45+ immune cells revealed that adaptive immune cells differed more in cluster composition, cell proportion, and gene expression than cells of myeloid origin when comparing cystic models with one another and with non-cystic controls. Surprisingly, genetic deletion of adaptive immune cells significantly reduced injury-accelerated cystic disease but had no effect on cyst growth in non-injured cilia mutant mice, independent of the rate of cyst growth or underlying genetic mutation. Using NicheNet, we identified a list of candidate cell types and ligands that were enriched in injured cilia mutant mice compared with aged cilia mutant mice and non-cystic controls that may be responsible for the observed dependence on adaptive immune cells during injury-accelerated cystic disease. CONCLUSIONS Collectively, these data highlight the diversity of immune cell involvement in cystic kidney disease.
Collapse
Affiliation(s)
- Cheng J. Song
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zhang Li
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ummey Khalecha Bintha Ahmed
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Sarah J. Bland
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Alex Yashchenko
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Shanrun Liu
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ernald J. Aloria
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jeremie M. Lever
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Nancy M. Gonzalez
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Marisa A. Bickel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Cory B. Giles
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Constantin Georgescu
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jonathan D. Wren
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Mark L. Lang
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Etty N. Benveniste
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Laurie E. Harrington
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Leo Tsiokas
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - James F. George
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kenneth L. Jones
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - David K. Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Michal Mrug
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Veterans Affairs Medical Center, Birmingham, Alabama
| | - Bradley K. Yoder
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Katharina Hopp
- Polycystic Kidney Disease Program, Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kurt A. Zimmerman
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
11
|
Yu SS, Wang E, Chiang CY, Cheng PH, Yeh YS, Wu YY, Chiou YY, Jiang ST. Large deletion of Wdr19 in developing renal tubules disrupts primary ciliogenesis leading to polycystic kidney disease in mice. J Pathol 2022; 257:5-16. [PMID: 35007346 DOI: 10.1002/path.5863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/03/2021] [Accepted: 01/06/2022] [Indexed: 11/11/2022]
Abstract
WD repeat domain 19 (Wdr19) is a major component of the intraflagellar transport (IFT) machinery, which is involved in the function of primary cilia. However, the effects of Wdr19 on primary cilia formation, cystogenesis, and polycystic kidney disease (PKD) progression remain unclear. To study these effects, we generated three lines of kidney-specific conditional knockout mice: Wdr19-knockout (Wdr19-KO, Wdr19f/- ::Cdh16-CreTg/0 ), Pkd1-knockout (Pkd1-KO, Pkd1f/- ::Cdh16-CreTg/0 ), and Wdr19/Pkd1-double knockout (Wdr19&Pkd1-dKO, Wdr19f/- ;Pkd1f/- ::Cdh16-CreTg/0 ) mice. Ultrastructural analysis using transmission electron microscopy (TEM) indicated that the primary cilia were almost absent at postnatal day 10 in Wdr19-KO mice compared with Pkd1-KO and wild-type (WT) mice. However, the primary cilia appeared structurally normal even if malfunctional in Pkd1-deficient cysts. The Pkd1-KO mice had the most severe PKD progression, including the shortest lifespan (14 days) and the largest renal cysts, among the three knockout lines. Thus, the molecular mechanism of renal cystogenesis in Wdr19-KO mice (primary cilia abrogation) was different from that in Pkd1-KO mice (primary cilia malfunction). In summary, Wdr19 deficiency leads to primary cilia abrogation and renal cyst formation. Wdr19 is primarily proposed to participate in retrograde IFT and to be crucial for the construction of primary cilia, which are critical organelles for tubulogenesis in the developing kidneys. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shang-Shiuan Yu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70457, Taiwan.,National Laboratory Animal Center, National Applied Research Laboratories, Tainan, 74147, Taiwan
| | - Ellian Wang
- Department of Physiology, National Cheng Kung University Medical College, Tainan, 70101, Taiwan
| | - Chih-Ying Chiang
- National Laboratory Animal Center, National Applied Research Laboratories, Tainan, 74147, Taiwan
| | - Po-Hao Cheng
- National Laboratory Animal Center, National Applied Research Laboratories, Tainan, 74147, Taiwan
| | - Yu-Shan Yeh
- National Laboratory Animal Center, National Applied Research Laboratories, Tainan, 74147, Taiwan
| | - Ying-Ying Wu
- National Laboratory Animal Center, National Applied Research Laboratories, Tainan, 74147, Taiwan
| | - Yuan-Yow Chiou
- National Laboratory Animal Center, National Applied Research Laboratories, Tainan, 74147, Taiwan.,Division of Pediatric Nephrology, Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
| | - Si-Tse Jiang
- National Laboratory Animal Center, National Applied Research Laboratories, Tainan, 74147, Taiwan
| |
Collapse
|
12
|
Zhou K, Zhou Y, Yang D, Chen T, Liu X, Li S, Wang Z. The type 3 adenylyl cyclase is crucial for intestinal mucosal neural network in the gut lamina propria. Neurogastroenterol Motil 2021; 33:e14140. [PMID: 33939232 DOI: 10.1111/nmo.14140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 02/13/2021] [Accepted: 03/02/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The type 3 adenylyl cyclase (AC3) enzyme is involved in the synthesis of cyclic adenosine monophosphate (cAMP). It is primarily expressed in the central nervous system (CNS) and plays a crucial role in neurogenesis and neural dendritic arborization. However, the AC3's functional role in the gastrointestinal tract remains ambiguous. METHODS AC3 expression in enteric tissue of AC3+/+ mice was investigated using immunohistochemistry and RT-PCR. AC3 knock-out mice (AC3-/- ) were used to examine the effect of AC3 on the enteric nervous system (ENS) function and the number of cilia and apoptotic cells. Additionally, total gastrointestinal transit time and colonic motility were compared between the AC3-/- and AC3+/+ groups of mice. KEY RESULTS AC3 was predominately expressed in the myenteric plexus of the large intestine. Colonic-bead expulsion analysis showed accelerated propulsion in the large intestine of the AC3-/- mice. The AC3-/- mice demonstrated reduced nerve fibers and enteric glial cells count in colonic mucosa compared to the AC3+/+ mice. Furthermore, AC3-/- mice exhibited increased cellular apoptosis and reduced ARL13B+ cilium cells in the colonic lamina propria compared to the AC3+/+ mice. CONCLUSIONS In AC3-/- mice, innervation of the lamina propria in the colonic mucosa was reduced and colonic propulsion was accelerated. AC3 is crucial for the development and function of the adult neural network of ENS. AC3 deficiency caused atrophy in the colonic mucosal neural network of mice.
Collapse
Affiliation(s)
- Kang Zhou
- College of Life Science, Hebei University, Baoding, China
| | - Yanfen Zhou
- College of Life Science, Hebei University, Baoding, China
| | - Dong Yang
- College of Life Science, Hebei University, Baoding, China
| | - Tingrong Chen
- College of Life Science, Hebei University, Baoding, China
| | - Xinxia Liu
- College of Life Science, Hebei University, Baoding, China.,Medical College, Hebei University, Baoding, China
| | - Shujuan Li
- College of Life Science, Hebei University, Baoding, China
| | - Zhenshan Wang
- College of Life Science, Hebei University, Baoding, China
| |
Collapse
|
13
|
Aloria EJG, Song CJ, Li Z, Croyle MJ, Mrug M, Zimmerman KA, Yoder BK. Ly6c hi Infiltrating Macrophages Promote Cyst Progression in Injured Conditional Ift88 Mice. ACTA ACUST UNITED AC 2021; 2:989-995. [PMID: 34396149 PMCID: PMC8359900 DOI: 10.34067/kid.0000882021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ernald Jules G Aloria
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Cheng J Song
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zhang Li
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mandy J Croyle
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Michal Mrug
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Veterans Affairs Medical Center, Birmingham, Alabama
| | - Kurt A Zimmerman
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama.,Division of Nephrology, Department of Internal Medicine, The University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Bradley K Yoder
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
14
|
Duong Phu M, Bross S, Burkhalter MD, Philipp M. Limitations and opportunities in the pharmacotherapy of ciliopathies. Pharmacol Ther 2021; 225:107841. [PMID: 33771583 DOI: 10.1016/j.pharmthera.2021.107841] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/11/2021] [Indexed: 01/10/2023]
Abstract
Ciliopathies are a family of rather diverse conditions, which have been grouped based on the finding of altered or dysfunctional cilia, potentially motile, small cellular antennae extending from the surface of postmitotic cells. Cilia-related disorders include embryonically arising conditions such as Joubert, Usher or Kartagener syndrome, but also afflictions with a postnatal or even adult onset phenotype, i.e. autosomal dominant polycystic kidney disease. The majority of ciliopathies are syndromic rather than affecting only a single organ due to cilia being found on almost any cell in the human body. Overall ciliopathies are considered rare diseases. Despite that, pharmacological research and the strive to help these patients has led to enormous therapeutic advances in the last decade. In this review we discuss new treatment options for certain ciliopathies, give an outlook on promising future therapeutic strategies, but also highlight the limitations in the development of therapeutic approaches of ciliopathies.
Collapse
Affiliation(s)
- Max Duong Phu
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Stefan Bross
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany.
| |
Collapse
|
15
|
Abstract
Interstitial inflammation is an important feature of cystic kidney disease. Renal macrophages are the most well-studied inflammatory cell in the kidney, and their involvement in cyst formation has been reported in different animal models and patients with cystic kidney disease. Originally, it was believed that renal macrophages were maintained from a constant supply of bone marrow-derived circulating monocytes, and could be recruited to the kidney in response to local inflammation. However, this idea has been challenged using fate-mapping methods, by showing that at least two distinct developmental origins of macrophages are present in the adult mouse kidney. The first type, infiltrating macrophages, are recruited from circulating monocytes and gradually develop macrophage properties on entering the kidney. The second, resident macrophages, predominantly originate from embryonic precursors, colonize the kidney during its development, and proliferate in situ to maintain their population throughout adulthood. Infiltrating and resident macrophages work together to maintain homeostasis and properly respond to pathologic conditions, such as AKI, cystic kidney disease, or infection. This review will briefly summarize current knowledge of resident macrophages in cystic kidney disease.
Collapse
Affiliation(s)
- Zhang Li
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kurt A. Zimmerman
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Bradley K. Yoder
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
16
|
Bonucci M, Kuperwasser N, Barbe S, Koka V, de Villeneuve D, Zhang C, Srivastava N, Jia X, Stokes MP, Bienaimé F, Verkarre V, Lopez JB, Jaulin F, Pontoglio M, Terzi F, Delaval B, Piel M, Pende M. mTOR and S6K1 drive polycystic kidney by the control of Afadin-dependent oriented cell division. Nat Commun 2020; 11:3200. [PMID: 32581239 PMCID: PMC7314806 DOI: 10.1038/s41467-020-16978-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
mTOR activation is essential and sufficient to cause polycystic kidneys in Tuberous Sclerosis Complex (TSC) and other genetic disorders. In disease models, a sharp increase of proliferation and cyst formation correlates with a dramatic loss of oriented cell division (OCD). We find that OCD distortion is intrinsically due to S6 kinase 1 (S6K1) activation. The concomitant loss of S6K1 in Tsc1-mutant mice restores OCD but does not decrease hyperproliferation, leading to non-cystic harmonious hyper growth of kidneys. Mass spectrometry-based phosphoproteomics for S6K1 substrates revealed Afadin, a known component of cell-cell junctions required to couple intercellular adhesions and cortical cues to spindle orientation. Afadin is directly phosphorylated by S6K1 and abnormally decorates the apical surface of Tsc1-mutant cells with E-cadherin and α-catenin. Our data reveal that S6K1 hyperactivity alters centrosome positioning in mitotic cells, affecting oriented cell division and promoting kidney cysts in conditions of mTOR hyperactivity.
Collapse
Affiliation(s)
- Martina Bonucci
- Institut Necker-Enfants Malades, 14 rue Maria Helena Vieira Da Silva, CS, 61431, Paris, France.,Inserm, U1151, Paris, F-75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Nicolas Kuperwasser
- Institut Necker-Enfants Malades, 14 rue Maria Helena Vieira Da Silva, CS, 61431, Paris, France.,Inserm, U1151, Paris, F-75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Serena Barbe
- Institut Necker-Enfants Malades, 14 rue Maria Helena Vieira Da Silva, CS, 61431, Paris, France.,Inserm, U1151, Paris, F-75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Vonda Koka
- Institut Necker-Enfants Malades, 14 rue Maria Helena Vieira Da Silva, CS, 61431, Paris, France.,Inserm, U1151, Paris, F-75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Delphine de Villeneuve
- Institut Necker-Enfants Malades, 14 rue Maria Helena Vieira Da Silva, CS, 61431, Paris, France.,Inserm, U1151, Paris, F-75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Chi Zhang
- Institut Necker-Enfants Malades, 14 rue Maria Helena Vieira Da Silva, CS, 61431, Paris, France.,Inserm, U1151, Paris, F-75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Nishit Srivastava
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005, Paris, France
| | - Xiaoying Jia
- Cell Signaling Technology INC, 3 Trask Lane, Danvers, MA, 01923, USA
| | - Matthew P Stokes
- Cell Signaling Technology INC, 3 Trask Lane, Danvers, MA, 01923, USA
| | - Frank Bienaimé
- Institut Necker-Enfants Malades, 14 rue Maria Helena Vieira Da Silva, CS, 61431, Paris, France.,Inserm, U1151, Paris, F-75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Virginie Verkarre
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, F-75015, Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP centre), Hôpital Européen Georges Pompidou, Département d'anatomo-pathologie, F-75015, Paris, France
| | | | | | - Marco Pontoglio
- Institut Necker-Enfants Malades, 14 rue Maria Helena Vieira Da Silva, CS, 61431, Paris, France.,Inserm, U1151, Paris, F-75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Fabiola Terzi
- Institut Necker-Enfants Malades, 14 rue Maria Helena Vieira Da Silva, CS, 61431, Paris, France.,Inserm, U1151, Paris, F-75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Benedicte Delaval
- CRBM, CNRS, Univ. Montpellier, Centrosome, cilia and pathologies Lab, 1919 Route de Mende, 34293, Montpellier, France
| | - Matthieu Piel
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005, Paris, France
| | - Mario Pende
- Institut Necker-Enfants Malades, 14 rue Maria Helena Vieira Da Silva, CS, 61431, Paris, France. .,Inserm, U1151, Paris, F-75014, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
17
|
Zimmerman KA, Huang J, He L, Revell DZ, Li Z, Hsu JS, Fitzgibbon WR, Hazard ES, Hardiman G, Mrug M, Bell PD, Yoder BK, Saigusa T. Interferon Regulatory Factor-5 in Resident Macrophage Promotes Polycystic Kidney Disease. ACTA ACUST UNITED AC 2020; 1:179-190. [PMID: 33490963 DOI: 10.34067/kid.0001052019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Autosomal dominant polycystic kidney disease is caused by genetic mutations in PKD1 or PKD2. Macrophages and their associated inflammatory cytokines promote cyst progression; however, transcription factors within macrophages that control cytokine production and cystic disease are unknown. Methods In these studies, we used conditional Pkd1 mice to test the hypothesis that macrophage-localized interferon regulatory factor-5 (IRF5), a transcription factor associated with production of cyst-promoting cytokines (TNFα, IL-6), is required for accelerated cyst progression in a unilateral nephrectomy (1K) model. Analyses of quantitative real-time PCR (qRT-PCR) and flow-cytometry data 3 weeks post nephrectomy, a time point before the onset of severe cystogenesis, indicate an accumulation of inflammatory infiltrating and resident macrophages in 1K Pkd1 mice compared with controls. qRT-PCR data from FACS cells at this time demonstrate that macrophages from 1K Pkd1 mice have increased expression of Irf5 compared with controls. To determine the importance of macrophage-localized Irf5 in cyst progression, we injected scrambled or IRF5 antisense oligonucleotide (ASO) in 1K Pkd1 mice and analyzed the effect on macrophage numbers, cytokine production, and renal cystogenesis 6 weeks post nephrectomy. Results Analyses of qRT-PCR and IRF5 ASO treatment significantly reduced macrophage numbers, Irf5 expression in resident-but not infiltrating-macrophages, and the severity of cystic disease. In addition, IRF5 ASO treatment in 1K Pkd1 mice reduced Il6 expression in resident macrophages, which was correlated with reduced STAT3 phosphorylation and downstream p-STAT3 target gene expression. Conclusions These data suggest that Irf5 promotes inflammatory cytokine production in resident macrophages resulting in accelerated cystogenesis.
Collapse
Affiliation(s)
- Kurt A Zimmerman
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jifeng Huang
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lan He
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Dustin Z Revell
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zhang Li
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jung-Shan Hsu
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Wayne R Fitzgibbon
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - E Starr Hazard
- Academic Affairs Faculty and Computational Biology Resource Center, Medical University of South Carolina, Charleston, South Carolina
| | - Gary Hardiman
- School of Biological Sciences, Institute for Global Food Security, Queens University Belfast, Belfast, United Kingdom
| | - Michal Mrug
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - P Darwin Bell
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Bradley K Yoder
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Takamitsu Saigusa
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
18
|
Uytingco CR, Green WW, Martens JR. Olfactory Loss and Dysfunction in Ciliopathies: Molecular Mechanisms and Potential Therapies. Curr Med Chem 2019; 26:3103-3119. [PMID: 29303074 DOI: 10.2174/0929867325666180105102447] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/08/2017] [Accepted: 12/20/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Ciliopathies are a class of inherited pleiotropic genetic disorders in which alterations in cilia assembly, maintenance, and/or function exhibit penetrance in the multiple organ systems. Olfactory dysfunction is one such clinical manifestation that has been shown in both patients and model organisms. Existing therapies for ciliopathies are limited to the treatment or management of symptoms. The last decade has seen an increase in potential curative therapeutic options including small molecules and biologics. Recent work in multiciliated olfactory sensory neurons has demonstrated the capacity of targeted gene therapy to restore ciliation in terminally differentiated cells and rescue olfactory function. This review will discuss the current understanding of the penetrance of ciliopathies in the olfactory system. Importantly, it will highlight both pharmacological and biological approaches, and their potential therapeutic value in the olfactory system and other ciliated tissues. METHODS We undertook a structured and comprehensive search of peer-reviewed research literature encompassing in vitro, in vivo, model organism, and clinical studies. From these publications, we describe the olfactory system, and discuss the penetrance of ciliopathies and impact of cilia loss on olfactory function. In addition, we outlined the developing therapies for ciliopathies across different organ and cell culture systems, and discussed their potential therapeutic application to the mammalian olfactory system. RESULTS One-hundred sixty-one manuscripts were included in the review, centering on the understanding of olfactory penetrance of ciliopathies, and discussing the potential therapeutic options for ciliopathies in the context of the mammalian olfactory system. Forty-four manuscripts were used to generate a table listing the known congenital causes of olfactory dysfunction, with the first ten listed are linked to ciliopathies. Twenty-three manuscripts were used to outline the potential of small molecules for the olfactory system. Emphasis was placed on HDAC6 inhibitors and lithium, both of which were shown to stabilize microtubule structures, contributing to ciliogenesis and cilia lengthening. Seventy-five manuscripts were used to describe gene therapy and gene therapeutic strategies. Included were the implementation of adenoviral, adeno-associated virus (AAV), and lentiviral vectors to treat ciliopathies across different organ systems and application toward the olfactory system. Thus far, adenoviral and AAVmeditated ciliary restoration demonstrated successful proof-of-principle preclinical studies. In addition, gene editing, ex vivo gene therapy, and transplantation could serve as alternative therapeutic and long-term approaches. But for all approaches, additional assessment of vector immunogenicity, specificity, and efficacy need further investigation. Currently, ciliopathy treatments are limited to symptomatic management with no curative options. However, the accessibility and amenability of the olfactory system to treatment would facilitate development and advancement of a viable therapy. CONCLUSION The findings of this review highlight the contribution of ciliopathies to a growing list of congenial olfactory dysfunctions. Promising results from other organ systems imply the feasibility of biologics, with results from gene therapies proving to be a viable therapeutic option for ciliopathies and olfactory dysfunction.
Collapse
Affiliation(s)
- Cedric R Uytingco
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, United States.,University of Florida Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, United States
| | - Warren W Green
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, United States.,University of Florida Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, United States
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, United States.,University of Florida Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, United States
| |
Collapse
|
19
|
Zimmerman KA, Song CJ, Li Z, Lever JM, Crossman DK, Rains A, Aloria EJ, Gonzalez NM, Bassler JR, Zhou J, Crowley MR, Revell DZ, Yan Z, Shan D, Benveniste EN, George JF, Mrug M, Yoder BK. Tissue-Resident Macrophages Promote Renal Cystic Disease. J Am Soc Nephrol 2019; 30:1841-1856. [PMID: 31337691 DOI: 10.1681/asn.2018080810] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 05/26/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Mutations affecting cilia proteins have an established role in renal cyst formation. In mice, the rate of cystogenesis is influenced by the age at which cilia dysfunction occurs and whether the kidney has been injured. Disruption of cilia function before postnatal day 12-14 results in rapid cyst formation; however, cyst formation is slower when cilia dysfunction is induced after postnatal day 14. Rapid cyst formation can also be induced in conditional adult cilia mutant mice by introducing renal injury. Previous studies indicate that macrophages are involved in cyst formation, however the specific role and type of macrophages responsible has not been clarified. METHODS We analyzed resident macrophage number and subtypes during postnatal renal maturation and after renal injury in control and conditional Ift88 cilia mutant mice. We also used a pharmacological inhibitor of resident macrophage proliferation and accumulation to determine the importance of these cells during rapid cyst formation. RESULTS Our data show that renal resident macrophages undergo a phenotypic switch from R2b (CD11clo) to R2a (CD11chi) during postnatal renal maturation. The timing of this switch correlates with the period in which cyst formation transitions from rapid to slow following induction of cilia dysfunction. Renal injury induces the reaccumulation of juvenile-like R2b resident macrophages in cilia mutant mice and restores rapid cystogenesis. Loss of primary cilia in injured conditional Ift88 mice results in enhanced epithelial production of membrane-bound CSF1, a cytokine that promotes resident macrophage proliferation. Inhibiting CSF1/CSF1-receptor signaling with a CSF1R kinase inhibitor reduces resident macrophage proliferation, R2b resident macrophage accumulation, and renal cyst formation in two mouse models of cystic disease. CONCLUSIONS These data uncover an important pathogenic role for resident macrophages during rapid cyst progression.
Collapse
Affiliation(s)
| | - Cheng J Song
- Departments of Cell, Developmental, and Integrative Biology
| | - Zhang Li
- Departments of Cell, Developmental, and Integrative Biology
| | | | | | - Addison Rains
- Departments of Cell, Developmental, and Integrative Biology
| | | | | | | | | | | | | | - Zhaoqi Yan
- Departments of Cell, Developmental, and Integrative Biology
| | - Dan Shan
- Divisions of Nephrology and.,Medicine
| | | | - James F George
- Biostatistics, and.,Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Michal Mrug
- Divisions of Nephrology and.,Medicine.,Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Bradley K Yoder
- Departments of Cell, Developmental, and Integrative Biology,
| |
Collapse
|
20
|
Livingston S, Carlton C, Sharma M, Kearns D, Baybutt R, Vanden Heuvel GB. Cux1 regulation of the cyclin kinase inhibitor p27 kip1 in polycystic kidney disease is attenuated by HDAC inhibitors. Gene 2019; 721S:100007. [PMID: 31396588 PMCID: PMC6687066 DOI: 10.1016/j.gene.2019.100007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/01/2019] [Indexed: 01/19/2023]
Abstract
Cux1 is a homeodomain protein involved in cell cycle regulation and kidney development. Cux1 represses the cyclin kinase inhibitor p27 during early kidney development, promoting cell proliferation in the nephrogenic zone. Promoter reporter analysis of p27 revealed that Cux1 represses p27 in a concentration dependent manner, and immunoprecipitation showed that Cux1 interacts with the co-repressor Grg4 and the histone deacetylases HDAC1 and HDAC3. Chromatin immunoprecipitation (ChIP) identified the interaction of Cux1, Grg4, HDAC1, and HDAC3 at two different sites in the p27 promoter. To determine whether there was an interaction between these two loci in the developing kidney, we performed chromatin conformation capture (3C) assay. Analysis of newborn kidney tissue with 3C and ChIP-loop showed that the p27 promoter forms a loop intersecting at these two loci and that Cux1 bridges these two sites. To determine whether HDACs are required for Cux1 repression of p27 we analyzed p27 promoter activity in the presence of the HDAC inhibitor trichostatin A (TSA). TSA treatment completely relieved the repression of p27 by Cux1 and Grg4, demonstrating that Cux1 represses p27 in an HDAC dependent manner. To begin to test whether HDAC inhibitors could be used to target Cux1 repression of p27 for the treatment of PKD, we treated Pkd1 targeted pregnant mice with TSA or vehicle beginning at embryonic day 10.5 until embryonic day 18.5. Newborn Pkd1 mutant mice that received vehicle exhibited extensive collecting duct cysts, while newborn Pkd1 mutant mice that received TSA showed a significant reduction in cysts. Moreover, p27 expression was upregulated in TSA treated Pkd1 mice. Taken together, these results suggest that HDACs are required for cyst growth, and further support studies indicating that HDAC inhibitors may be an effective treatment for PKD. Cux1 simultaneously interacts with two separate sites in the p27 promoter forming a loop in the p27 regulatory region. Cux1 repression of p27 is dependent on HDAC activity. Treatment of PKD mice with HDAC inhibitors attenuates Cux1 repression of p27 resulting in reduced cyst growth.
Collapse
Affiliation(s)
| | - Carol Carlton
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Madhulika Sharma
- Department of Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Donovan Kearns
- Department of Biology, Wheaton College, Wheaton, IL 60187, USA
| | - Richard Baybutt
- Department of Nutrition Science, East Carolina University, Greenville, NC 27834, USA
| | - Gregory B Vanden Heuvel
- Department of Biomedical Sciences, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI 49008, USA
| |
Collapse
|
21
|
Lewis WR, Bales KL, Revell DZ, Croyle MJ, Engle SE, Song CJ, Malarkey EB, Uytingco CR, Shan D, Antonellis PJ, Nagy TR, Kesterson RA, Mrug MM, Martens JR, Berbari NF, Gross AK, Yoder BK. Mks6 mutations reveal tissue- and cell type-specific roles for the cilia transition zone. FASEB J 2018; 33:1440-1455. [PMID: 30133325 PMCID: PMC6355093 DOI: 10.1096/fj.201801149r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The transition zone (TZ) is a domain at the base of the cilium that is involved in maintaining ciliary compartment-specific sensory and signaling activity by regulating cilia protein composition. Mutations in TZ proteins result in cilia dysfunction, often causing pleiotropic effects observed in a group of human diseases classified as ciliopathies. The purpose of this study is to describe the importance of the TZ component Meckel-Grüber syndrome 6 ( Mks6) in several organ systems and tissues regarding ciliogenesis and cilia maintenance using congenital and conditional mutant mouse models. Similar to MKS, congenital loss of Mks6 is embryonic lethal, displaying cilia loss and altered cytoskeletal microtubule modifications but only in specific cell types. Conditional Mks6 mutants have a variable cystic kidney phenotype along with severe retinal degeneration with mislocalization of phototransduction cascade proteins. However, other phenotypes, such as anosmia and obesity, which are typically associated with cilia and TZ dysfunction, were not evident. These data indicate that despite Mks6 being a core TZ component, it has tissue- or cell type-specific functions important for cilia formation and cilia sensory and signaling activities. Lewis, W. R., Bales, K. L., Revell, D. Z., Croyle, M. J., Engle, S. E., Song, C. J., Malarkey, E. B., Uytingco, C. R., Shan, D., Antonellis, P. J., Nagy, T. R., Kesterson, R. A., Mrug, M. M., Martens, J. R., Berbari, N. F., Gross, A. K., Yoder, B. K. Mks6 mutations reveal tissue- and cell type-specific roles for the cilia transition zone.
Collapse
Affiliation(s)
- Wesley R Lewis
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Katie L Bales
- Department of Optometry and Vision Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Dustin Z Revell
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mandy J Croyle
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Staci E Engle
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Cheng Jack Song
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Erik B Malarkey
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Cedric R Uytingco
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Dan Shan
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Patrick J Antonellis
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Tim R Nagy
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA; and
| | - Robert A Kesterson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michal M Mrug
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Nicolas F Berbari
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Alecia K Gross
- Department of Optometry and Vision Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Bradley K Yoder
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
22
|
Shigeta M, Kanazawa H, Yokoyama T. Tubular cell loss in early inv/nphp2 mutant kidneys represents a possible homeostatic mechanism in cortical tubular formation. PLoS One 2018; 13:e0198580. [PMID: 29889867 PMCID: PMC5995398 DOI: 10.1371/journal.pone.0198580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/22/2018] [Indexed: 11/25/2022] Open
Abstract
Inversion of embryonic turning (inv) cystic mice develop multiple renal cysts and are a model for type II nephronophthisis (NPHP2). The defect of planar cell polarity (PCP) by oriented cell division was proposed as the underlying cellular phenotype, while abnormal cell proliferation and apoptosis occur in some polycystic kidney disease models. However, how these cystogenic phenotypes are linked and what is most critical for cystogenesis remain largely unknown. In particular, in early cortical cytogenesis in the inv mutant cystic model, it remains uncertain whether the increased proliferation index results from changes in cell cycle length or cell fate determination. To address tubular cell kinetics, doubling time and total number of tubular cells, as well as amount of genomic DNA (gDNA), were measured in mutant and normal control kidneys. Despite a significantly higher bromodeoxyuridine (BrdU)-proliferation index in the mutant, total tubular cell number and doubling time were unaffected. Unexpectedly, the mutant had tubular cell loss, characterized by a temporal decrease in tubular cells incorporating 5-ethynyl-2´-deoxyuridine (EdU) and significantly increased nuclear debris. Based on current data we established a new multi-population shift model in postnatal renal development, indicating that a few restricted tubular cell populations contribute to cortical tubular formation. As in the inv mutant phenotype, the model simulation revealed a large population of tubular cells with rapid cell cycling and tubular cell loss. The proposed cellular kinetics suggest not only the underlying mechanism of the inv mutant phenotype but also a possible renal homeostatic mechanism for tubule formation.
Collapse
Affiliation(s)
- Masaki Shigeta
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto Prefectural of Medicine, Kyoto, Japan
- * E-mail:
| | - Hirotaka Kanazawa
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto Prefectural of Medicine, Kyoto, Japan
| | - Takahiko Yokoyama
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto Prefectural of Medicine, Kyoto, Japan
| |
Collapse
|
23
|
Flowers EM, Sudderth J, Zacharias L, Mernaugh G, Zent R, DeBerardinis RJ, Carroll TJ. Lkb1 deficiency confers glutamine dependency in polycystic kidney disease. Nat Commun 2018; 9:814. [PMID: 29483507 PMCID: PMC5827653 DOI: 10.1038/s41467-018-03036-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/15/2018] [Indexed: 12/17/2022] Open
Abstract
Polycystic kidney disease (PKD) is a common genetic disorder characterized by the growth of fluid-filled cysts in the kidneys. Several studies reported that the serine-threonine kinase Lkb1 is dysregulated in PKD. Here we show that genetic ablation of Lkb1 in the embryonic ureteric bud has no effects on tubule formation, maintenance, or growth. However, co-ablation of Lkb1 and Tsc1, an mTOR repressor, results in an early developing, aggressive form of PKD. We find that both loss of Lkb1 and loss of Pkd1 render cells dependent on glutamine for growth. Metabolomics analysis suggests that Lkb1 mutant kidneys require glutamine for non-essential amino acid and glutathione metabolism. Inhibition of glutamine metabolism in both Lkb1/Tsc1 and Pkd1 mutant mice significantly reduces cyst progression. Thus, we identify a role for Lkb1 in glutamine metabolism within the kidney epithelia and suggest that drugs targeting glutamine metabolism may help reduce cyst number and/or size in PKD. Polycystic kidney disease (PKD) is characterized by the formation of large fluid-filled cysts. Here Flowers and colleagues show that loss of Lkb1, downregulated in PKD, renders kidney cells dependent on glutamine for growth, and suggest that inhibition of glutamine metabolism may prevent cyst development in PKD.
Collapse
Affiliation(s)
- Ebony M Flowers
- Departments of Molecular Biology and Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jessica Sudderth
- Children's Medical Center Research Institute at UTSW, Eugene McDermott Center for Human Growth & Development, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lauren Zacharias
- Children's Medical Center Research Institute at UTSW, Eugene McDermott Center for Human Growth & Development, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Glenda Mernaugh
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Veteran Affairs Hospital Nashville, Nashville, TN, 37232, USA
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute at UTSW, Eugene McDermott Center for Human Growth & Development, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Thomas J Carroll
- Departments of Molecular Biology and Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
24
|
Puri P, Schaefer CM, Bushnell D, Taglienti ME, Kreidberg JA, Yoder BK, Bates CM. Ectopic Phosphorylated Creb Marks Dedifferentiated Proximal Tubules in Cystic Kidney Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:84-94. [PMID: 29107072 PMCID: PMC5745541 DOI: 10.1016/j.ajpath.2017.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/18/2017] [Accepted: 09/11/2017] [Indexed: 01/25/2023]
Abstract
Ectopic cAMP signaling is pathologic in polycystic kidney disease; however, its spatiotemporal actions are unclear. We characterized the expression of phosphorylated Creb (p-Creb), a target and mediator of cAMP signaling, in developing and cystic kidney models. We also examined tubule-specific effects of cAMP analogs in cystogenesis in embryonic kidney explants. In wild-type mice, p-Creb marked nephron progenitors (NP), early epithelial NP derivatives, ureteric bud, and cortical stroma; p-Creb was present in differentiated thick ascending limb of Henle, collecting duct, and stroma; however, it disappeared in mature NP-derived proximal tubules. In Six2cre;Frs2αFl/Fl mice, a renal cystic model, ectopic p-Creb stained proximal tubule-derived cystic segments that lost the differentiation marker lotus tetragonolobus lectin. Furthermore, lotus tetragonolobus lectin-negative/p-Creb-positive cyst segments (re)-expressed Ncam1, Pax2, and Sox9 markers of immature nephron structures and dedifferentiated proximal tubules after acute kidney injury. These dedifferentiation markers were co-expressed with p-Creb in renal cysts in Itf88 knockout mice subjected to ischemia and Six2cre;Pkd1Fl/Fl mice, other renal cystogenesis models. 8-Br-cAMP addition to wild-type embryonic kidney explants induced proximal tubular cystogenesis and p-Creb expression; these effects were blocked by co-addition of protein kinase A inhibitor. Thus p-Creb/cAMP signaling is appropriate in NP and early nephron derivatives, but disappears in mature proximal tubules. Moreover, ectopic p-Creb expression/cAMP signaling marks dedifferentiated proximal tubular cystic segments. Furthermore, proximal tubules are predisposed to become cystic after cAMP stimulation.
Collapse
Affiliation(s)
- Pawan Puri
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Caitlin M Schaefer
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Daniel Bushnell
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Mary E Taglienti
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts; Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Jordan A Kreidberg
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts; Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Bradley K Yoder
- Department of Pediatrics, Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Carlton M Bates
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Division of Nephrology, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| |
Collapse
|
25
|
Ma M, Gallagher AR, Somlo S. Ciliary Mechanisms of Cyst Formation in Polycystic Kidney Disease. Cold Spring Harb Perspect Biol 2017; 9:a028209. [PMID: 28320755 PMCID: PMC5666631 DOI: 10.1101/cshperspect.a028209] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is a disease of defective tissue homeostasis resulting in active remodeling of nephrons and bile ducts to form fluid-filled sacs called cysts. The causal genes PKD1 and PKD2 encode transmembrane proteins polycystin 1 (PC1) and polycystin 2 (PC2), respectively. Together, the polycystins localize to the solitary primary cilium that protrudes from the apical surface of most kidney tubule cells and is thought to function as a privileged compartment that the cell uses for signal integration of sensory inputs. It has been proposed that PC1 and PC2 form a receptor-channel complex that detects external stimuli and transmit a local calcium-mediated signal, which may control a multitude of cellular processes by an as-yet unknown mechanism. Genetic studies using mouse models of cilia and polycystin dysfunction have shown that polycystins regulate an unknown cilia-dependent signal that is normally part of the homeostatic maintenance of nephron structure. ADPKD ensues when this pathway is dysregulated by absence of polycystins from intact cilia, but disruption of cilia also disrupts this signaling mechanism and ameliorates ADPKD even in the absence of polycystins. Understanding the role of cilia and ciliary signaling in ADPKD is challenging, but success will provide saltatory advances in our understanding of how tubule structure is maintained in healthy kidneys and how disruption of polycystin or cilia function leads to the pathological tissue remodeling process underlying ADPKD.
Collapse
Affiliation(s)
- Ming Ma
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8029
| | - Anna-Rachel Gallagher
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8029
| | - Stefan Somlo
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8029
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520-8029
| |
Collapse
|
26
|
Porath B, Livingston S, Andres EL, Petrie AM, Wright JC, Woo AE, Carlton CG, Baybutt R, Vanden Heuvel GB. Cux1 promotes cell proliferation and polycystic kidney disease progression in an ADPKD mouse model. Am J Physiol Renal Physiol 2017; 313:F1050-F1059. [PMID: 28701314 PMCID: PMC5668583 DOI: 10.1152/ajprenal.00380.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 06/20/2017] [Accepted: 07/05/2017] [Indexed: 01/19/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common monogenic hereditary disorders in humans characterized by fluid-filled cysts, primarily in the kidneys. Cux1, a cell cycle regulatory gene highly expressed during kidney development, is elevated in the cyst-lining cells of Pkd1 mutant mice, and in human ADPKD cells. However, forced expression of Cux1 is insufficient to induce cystic disease in transgenic mice or to induce rapid cyst formation after cilia disruption in the kidneys of adult mice. Here we report a double mutant mouse model that has a conditional deletion of the Pkd1 gene in the renal collecting ducts together with a targeted mutation in the Cux1 gene (Pkd1CD;Cux1tm2Ejn). While kidneys isolated from newborn Pkd1CD mice exhibit cortical and medullary cysts, kidneys isolated from newborn Pkd1CD;Cux1tm2Ejn-/- mice did not show any cysts. Because Cux1tm2Ejn-/- are perinatal lethal, we evaluated Pkd1CD mice that were heterozygote for the Cux1 mutation. Similar to the newborn Pkd1CD;Cux1tm2Ejn-/- mice, newborn Pkd1CD;Cux1tm2Ejn+/- mice did not show any cysts. Comparison of Pkd1CD and Pkd1CD;Cux1tm2Ejn+/- mice at later stages of development showed a reduction in the severity of PKD in the Pkd1CD;Cux1tm2Ejn+/- mice. Moreover, we observed an increase in expression of the cyclin kinase inhibitor p27, a target of Cux1 repression, in the rescued collecting ducts. Taken together, our results suggest that Cux1 expression in PKD is not directly involved in cystogenesis but promotes cell proliferation required for expansion of existing cysts, primarily by repression of p27.
Collapse
Affiliation(s)
- Binu Porath
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Erica L Andres
- Department of Biology, Wheaton College, Wheaton, Illinois
| | | | | | - Anna E Woo
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Carol G Carlton
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas
| | - Richard Baybutt
- Department of Applied Health Sciences, Wheaton College, Wheaton, Illinois; and
| | - Gregory B Vanden Heuvel
- Department of Biology, Wheaton College, Wheaton, Illinois;
- Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan
| |
Collapse
|
27
|
Song CJ, Zimmerman KA, Henke SJ, Yoder BK. Inflammation and Fibrosis in Polycystic Kidney Disease. Results Probl Cell Differ 2017; 60:323-344. [PMID: 28409351 PMCID: PMC7875307 DOI: 10.1007/978-3-319-51436-9_12] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Polycystic kidney disease (PKD) is a commonly inherited disorder characterized by cyst formation and fibrosis (Wilson, N Engl J Med 350:151-164, 2004) and is caused by mutations in cilia or cilia-related proteins, such as polycystin 1 or 2 (Oh and Katsanis, Development 139:443-448, 2012; Kotsis et al., Nephrol Dial Transplant 28:518-526, 2013). A major pathological feature of PKD is the development of interstitial inflammation and fibrosis with an associated accumulation of inflammatory cells (Grantham, N Engl J Med 359:1477-1485, 2008; Zeier et al., Kidney Int 42:1259-1265, 1992; Ibrahim, Sci World J 7:1757-1767, 2007). It is unclear whether inflammation is a driving force for cyst formation or a consequence of the pathology (Ta et al., Nephrology 18:317-330, 2013) as in some murine models cysts are present prior to the increase in inflammatory cells (Phillips et al., Kidney Blood Press Res 30:129-144, 2007; Takahashi et al., J Am Soc Nephrol JASN 1:980-989, 1991), while in other models the increase in inflammatory cells is present prior to or coincident with cyst initiation (Cowley et al., Kidney Int 43:522-534, 1993, Kidney Int 60:2087-2096, 2001). Additional support for inflammation as an important contributor to cystic kidney disease is the increased expression of many pro-inflammatory cytokines in murine models and human patients with cystic kidney disease (Karihaloo et al., J Am Soc Nephrol JASN 22:1809-1814, 2011; Swenson-Fields et al., Kidney Int, 2013; Li et al., Nat Med 14:863-868, 2008a). Based on these data, an emerging model in the field is that disruption of primary cilia on tubule epithelial cells leads to abnormal cytokine cross talk between the epithelium and the inflammatory cells contributing to cyst growth and fibrosis (Ta et al., Nephrology 18:317-330, 2013). These cytokines are produced by interstitial fibroblasts, inflammatory cells, and tubule epithelial cells and activate multiple pathways including the JAK-STAT and NF-κB signaling (Qin et al., J Am Soc Nephrol JASN 23:1309-1318, 2012; Park et al., Am J Nephrol 32:169-178, 2010; Bhunia et al., Cell 109:157-168, 2002). Indeed, inflammatory cells are responsible for producing several of the pro-fibrotic growth factors observed in PKD patients with fibrosis (Nakamura et al., Am J Nephrol 20:32-36, 2000; Wilson et al., J Cell Physiol 150:360-369, 1992; Song et al., Hum Mol Genet 18:2328-2343, 2009; Schieren et al., Nephrol Dial Transplant 21:1816-1824, 2006). These growth factors trigger epithelial cell proliferation and myofibroblast activation that stimulate the production of extracellular matrix (ECM) genes including collagen types 1 and 3 and fibronectin, leading to reduced glomerular function with approximately 50% of ADPKD patients progressing to end-stage renal disease (ESRD). Therefore, treatments designed to reduce inflammation and slow the rate of fibrosis are becoming important targets that hold promise to improve patient life span and quality of life. In fact, recent studies in several PKD mouse models indicate that depletion of macrophages reduces cyst severity. In this chapter, we review the potential mechanisms of interstitial inflammation in PKD with a focus on ADPKD and discuss the role of interstitial inflammation in progression to fibrosis and ESRD.
Collapse
Affiliation(s)
- Cheng Jack Song
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kurt A Zimmerman
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Scott J Henke
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bradley K Yoder
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
28
|
Leonhard WN, Happe H, Peters DJM. Variable Cyst Development in Autosomal Dominant Polycystic Kidney Disease: The Biologic Context. J Am Soc Nephrol 2016; 27:3530-3538. [PMID: 27493259 PMCID: PMC5118495 DOI: 10.1681/asn.2016040425] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Patients with autosomal dominant polycystic kidney disease (ADPKD) typically carry a mutation in either the PKD1 or PKD2 gene, which leads to massive cyst formation in both kidneys. However, the large intrafamilial variation in the progression rate of ADPKD suggests involvement of additional factors other than the type of mutation. The identification of these factors will increase our understanding of ADPKD and could ultimately help in the development of a clinically relevant therapy. Our review addresses the mechanisms by which various biologic processes influence cyst formation and cyst growth, thereby explaining an important part of the inter- and intrafamilial variability in ADPKD. Numerous studies from many laboratories provide compelling evidence for the influence on cyst formation by spatiotemporal gene inactivation, the genetic context, the metabolic status, the presence of existing cysts, and whether the kidneys were challenged by renal injury. Collectively, a solid basis is provided for the concept that the probability of cyst formation is determined by functional PKD protein levels and the biologic context. We model these findings in a graphic representation called the cystic probability landscape, providing a robust conceptual understanding of why cells sometimes do or do not form cysts.
Collapse
Affiliation(s)
- Wouter N Leonhard
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Hester Happe
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
29
|
Six2creFrs2α knockout mice are a novel model of renal cystogenesis. Sci Rep 2016; 6:36736. [PMID: 27853247 PMCID: PMC5113122 DOI: 10.1038/srep36736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/14/2016] [Indexed: 01/06/2023] Open
Abstract
Six2cre-mediated deletion of Frs2α (Six2creFrs2αKO), a major fibroblast growth factor receptor (Fgfr) docking protein in mouse nephron progenitors results in perinatal renal hypoplasia; however, postnatal Six2creFrs2αKO kidneys develop cysts. We sought to determine the pathogenesis of Six2creFrs2αKO cyst formation. We performed histological assays, Western blots, and quantitative PCR (qPCR). While embryonic day (E) 18.5 Six2Frs2αKO kidneys were hypoplastic and not cystic, postnatal day (P) 7 mutants had proximal tubular-derived cysts that nearly replaced the renal parenchyma by P21. Mutants had high proximal tubular proliferation rates and interstitial fibrosis, similar to known polycystic kidney disease (PKD) models. Six2creFrs2αKO kidneys also had upregulation of Wnt/βcatenin signaling, macrophage infiltration and chemokine production (e.g. ectopic Ccl2 in non-dilated proximal tubules), and augmented hedgehog signaling, features also seen in other PKD models. We saw increased Gli1 (hedgehog readout) in postnatal Six2creFrs2αKO interstitium and ectopic sonic hedgehog (Shh) in subsets of non-dilated P7 mutant proximal tubules (likely driving the stromal Gli expression). As ectopic tubular Shh and Ccl2 expression is seen after acute kidney injury (AKI), we interrogated another bone fide AKI marker, Kim1 and noted ectopic expression in P7 non-dilated proximal tubules. These observations suggest that aberrantly activated “AKI” pathways may drive pathogenesis in PKD.
Collapse
|
30
|
Belmonte JM, Clendenon SG, Oliveira GM, Swat MH, Greene EV, Jeyaraman S, Glazier JA, Bacallao RL. Virtual-tissue computer simulations define the roles of cell adhesion and proliferation in the onset of kidney cystic disease. Mol Biol Cell 2016; 27:3673-3685. [PMID: 27193300 PMCID: PMC5221598 DOI: 10.1091/mbc.e16-01-0059] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/10/2016] [Indexed: 12/15/2022] Open
Abstract
Virtual-tissue modeling is used to model emergent cyst growth in polycystic kidney disease. Model predictions, confirmed experimentally, show that decreased cell adhesion is necessary to produce stalk cysts, and loss of contact inhibition causes saccular cysts. Virtual-tissue modeling can be used to fully explore cell- and tissue-based behaviors. In autosomal dominant polycystic kidney disease (ADPKD), cysts accumulate and progressively impair renal function. Mutations in PKD1 and PKD2 genes are causally linked to ADPKD, but how these mutations drive cell behaviors that underlie ADPKD pathogenesis is unknown. Human ADPKD cysts frequently express cadherin-8 (cad8), and expression of cad8 ectopically in vitro suffices to initiate cystogenesis. To explore cell behavioral mechanisms of cad8-driven cyst initiation, we developed a virtual-tissue computer model. Our simulations predicted that either reduced cell–cell adhesion or reduced contact inhibition of proliferation triggers cyst induction. To reproduce the full range of cyst morphologies observed in vivo, changes in both cell adhesion and proliferation are required. However, only loss-of-adhesion simulations produced morphologies matching in vitro cad8-induced cysts. Conversely, the saccular cysts described by others arise predominantly by decreased contact inhibition, that is, increased proliferation. In vitro experiments confirmed that cell–cell adhesion was reduced and proliferation was increased by ectopic cad8 expression. We conclude that adhesion loss due to cadherin type switching in ADPKD suffices to drive cystogenesis. Thus, control of cadherin type switching provides a new target for therapeutic intervention.
Collapse
Affiliation(s)
- Julio M Belmonte
- Biocomplexity Institute, Physics Department, Indiana University, Bloomington, IN 47405
| | - Sherry G Clendenon
- Biocomplexity Institute, Physics Department, Indiana University, Bloomington, IN 47405
| | - Guilherme M Oliveira
- Biocomplexity Institute, Physics Department, Indiana University, Bloomington, IN 47405
| | - Maciej H Swat
- Biocomplexity Institute, Physics Department, Indiana University, Bloomington, IN 47405
| | - Evan V Greene
- Division of Nephrology, Richard L. Roudebush VA Medical Center, and Indiana University School of Medicine, Indianapolis, IN 46202
| | - Srividhya Jeyaraman
- Biocomplexity Institute, Physics Department, Indiana University, Bloomington, IN 47405
| | - James A Glazier
- Biocomplexity Institute, Physics Department, Indiana University, Bloomington, IN 47405
| | - Robert L Bacallao
- Division of Nephrology, Richard L. Roudebush VA Medical Center, and Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
31
|
Pema M, Drusian L, Chiaravalli M, Castelli M, Yao Q, Ricciardi S, Somlo S, Qian F, Biffo S, Boletta A. mTORC1-mediated inhibition of polycystin-1 expression drives renal cyst formation in tuberous sclerosis complex. Nat Commun 2016; 7:10786. [PMID: 26931735 PMCID: PMC4778067 DOI: 10.1038/ncomms10786] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/20/2016] [Indexed: 01/07/2023] Open
Abstract
Previous studies report a cross-talk between the polycystic kidney disease (PKD) and tuberous sclerosis complex (TSC) genes. mTOR signalling is upregulated in PKD and rapamycin slows cyst expansion, whereas renal inactivation of the Tsc genes causes cysts. Here we identify a new interplay between the PKD and TSC genes, with important implications for the pathophysiology of both diseases. Kidney-specific inactivation of either Pkd1 or Tsc1 using an identical Cre (KspCre) results in aggressive or very mild PKD, respectively. Unexpectedly, we find that mTORC1 negatively regulates the biogenesis of polycystin-1 (PC-1) and trafficking of the PC-1/2 complex to cilia. Genetic interaction studies reveal an important role for PC-1 downregulation by mTORC1 in the cystogenesis of Tsc1 mutants. Our data potentially explain the severe renal manifestations of the TSC/PKD contiguous gene syndrome and open new perspectives for the use of mTOR inhibitors in autosomal dominant PKD caused by hypomorphic or missense PKD1 mutations. Polycystic kidney disease (PKD) is a ciliopathy resulting from defective localization of membrane proteins such as PC-1 to the primary cilium, resulting in renal cysts, and is associated with another cystic genetic disease called tuberous sclerosis complex (TSC). Here the authors use kidney-specific Tsc1 and Pkd1 mice to show that mTORC1 signalling inhibits PC-1 biogenesis as a potential mechanism of TSC/PKD contiguous gene syndrome.
Collapse
Affiliation(s)
- Monika Pema
- Division of Genetics and Cell Biology, Dibit San Raffaele Scientific Institute, Via Olgettina, 58, Milano 20132, Italy.,PhD Program in Biology and Biotherapy of Cancer, Università Vita-Salute San Raffaele, Via Olgettina, 58, Milano 20132, Italy
| | - Luca Drusian
- Division of Genetics and Cell Biology, Dibit San Raffaele Scientific Institute, Via Olgettina, 58, Milano 20132, Italy.,PhD Program in Biology and Biotherapy of Cancer, Università Vita-Salute San Raffaele, Via Olgettina, 58, Milano 20132, Italy
| | - Marco Chiaravalli
- Division of Genetics and Cell Biology, Dibit San Raffaele Scientific Institute, Via Olgettina, 58, Milano 20132, Italy
| | - Maddalena Castelli
- Division of Genetics and Cell Biology, Dibit San Raffaele Scientific Institute, Via Olgettina, 58, Milano 20132, Italy
| | - Qin Yao
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | - Stefan Somlo
- Department of Internal Medicine and Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520-8029, USA
| | - Feng Qian
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Stefano Biffo
- INGM, Via Sforza 28, Milano 20122, Italy.,Department of Biosciences, University of Milan, Via Celoria, 26, Milano 20133, Italy
| | - Alessandra Boletta
- Division of Genetics and Cell Biology, Dibit San Raffaele Scientific Institute, Via Olgettina, 58, Milano 20132, Italy
| |
Collapse
|
32
|
Abstract
UNLABELLED The olfactory epithelium (OE) is one of the few tissues to undergo constitutive neurogenesis throughout the mammalian lifespan. It is composed of multiple cell types including olfactory sensory neurons (OSNs) that are readily replaced by two populations of basal stem cells, frequently dividing globose basal cells and quiescent horizontal basal cells (HBCs). However, the precise mechanisms by which these cells mediate OE regeneration are unclear. Here, we show for the first time that the HBC subpopulation of basal stem cells uniquely possesses primary cilia that are aligned in an apical orientation in direct apposition to sustentacular cell end feet. The positioning of these cilia suggests that they function in the detection of growth signals and/or differentiation cues. To test this idea, we generated an inducible, cell type-specific Ift88 knock-out mouse line (K5rtTA;tetOCre;Ift88(fl/fl)) to disrupt cilia formation and maintenance specifically in HBCs. Surprisingly, the loss of HBC cilia did not affect the maintenance of the adult OE but dramatically impaired the regeneration of OSNs following lesion. Furthermore, the loss of cilia during development resulted in a region-specific decrease in neurogenesis, implicating HBCs in the establishment of the OE. Together, these results suggest a novel role for primary cilia in HBC activation, proliferation, and differentiation. SIGNIFICANCE STATEMENT We show for the first time the presence of primary cilia on a quiescent population of basal stem cells, the horizontal basal cells (HBCs), in the olfactory epithelium (OE). Importantly, our data demonstrate that cilia on HBCs are necessary for regeneration of the OE following injury. Moreover, the disruption of HBC cilia alters neurogenesis during the development of the OE, providing evidence that HBCs participate in the establishment of this tissue. These data suggest that the mechanisms of penetrance for ciliopathies in the OE extend beyond that of defects in olfactory sensory neurons and may include alterations in OE maintenance and regeneration.
Collapse
|
33
|
Raghavan V, Weisz OA. Discerning the role of mechanosensors in regulating proximal tubule function. Am J Physiol Renal Physiol 2015; 310:F1-5. [PMID: 26662200 DOI: 10.1152/ajprenal.00373.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
All cells in the body experience external mechanical forces such as shear stress and stretch. These forces are sensed by specialized structures in the cell known as mechanosensors. Cells lining the proximal tubule (PT) of the kidney are continuously exposed to variations in flow rates of the glomerular ultrafiltrate, which manifest as changes in axial shear stress and radial stretch. Studies suggest that these cells respond acutely to variations in flow by modulating their ion transport and endocytic functions to maintain glomerulotubular balance. Conceptually, changes in the axial shear stress in the PT could be sensed by three known structures, namely, the microvilli, the glycocalyx, and primary cilia. The orthogonal component of the force produced by flow exhibits as radial stretch and can cause expansion of the tubule. Forces of stretch are transduced by integrins, by stretch-activated channels, and by cell-cell contacts. This review summarizes our current understanding of flow sensing in PT epithelia, discusses challenges in dissecting the role of individual flow sensors in the mechanosensitive responses, and identifies potential areas of opportunity for new study.
Collapse
Affiliation(s)
- Venkatesan Raghavan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ora A Weisz
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
34
|
Abstract
UNLABELLED The olfactory epithelium (OE) is one of the few tissues to undergo constitutive neurogenesis throughout the mammalian lifespan. It is composed of multiple cell types including olfactory sensory neurons (OSNs) that are readily replaced by two populations of basal stem cells, frequently dividing globose basal cells and quiescent horizontal basal cells (HBCs). However, the precise mechanisms by which these cells mediate OE regeneration are unclear. Here, we show for the first time that the HBC subpopulation of basal stem cells uniquely possesses primary cilia that are aligned in an apical orientation in direct apposition to sustentacular cell end feet. The positioning of these cilia suggests that they function in the detection of growth signals and/or differentiation cues. To test this idea, we generated an inducible, cell type-specific Ift88 knock-out mouse line (K5rtTA;tetOCre;Ift88(fl/fl)) to disrupt cilia formation and maintenance specifically in HBCs. Surprisingly, the loss of HBC cilia did not affect the maintenance of the adult OE but dramatically impaired the regeneration of OSNs following lesion. Furthermore, the loss of cilia during development resulted in a region-specific decrease in neurogenesis, implicating HBCs in the establishment of the OE. Together, these results suggest a novel role for primary cilia in HBC activation, proliferation, and differentiation. SIGNIFICANCE STATEMENT We show for the first time the presence of primary cilia on a quiescent population of basal stem cells, the horizontal basal cells (HBCs), in the olfactory epithelium (OE). Importantly, our data demonstrate that cilia on HBCs are necessary for regeneration of the OE following injury. Moreover, the disruption of HBC cilia alters neurogenesis during the development of the OE, providing evidence that HBCs participate in the establishment of this tissue. These data suggest that the mechanisms of penetrance for ciliopathies in the OE extend beyond that of defects in olfactory sensory neurons and may include alterations in OE maintenance and regeneration.
Collapse
|
35
|
Franco I, Margaria JP, De Santis MC, Ranghino A, Monteyne D, Chiaravalli M, Pema M, Campa CC, Ratto E, Gulluni F, Perez-Morga D, Somlo S, Merlo GR, Boletta A, Hirsch E. Phosphoinositide 3-Kinase-C2α Regulates Polycystin-2 Ciliary Entry and Protects against Kidney Cyst Formation. J Am Soc Nephrol 2015; 27:1135-44. [PMID: 26271513 DOI: 10.1681/asn.2014100967] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 07/14/2015] [Indexed: 12/12/2022] Open
Abstract
Signaling from the primary cilium regulates kidney tubule development and cyst formation. However, the mechanism controlling targeting of ciliary components necessary for cilium morphogenesis and signaling is largely unknown. Here, we studied the function of class II phosphoinositide 3-kinase-C2α (PI3K-C2α) in renal tubule-derived inner medullary collecting duct 3 cells and show that PI3K-C2α resides at the recycling endosome compartment in proximity to the primary cilium base. In this subcellular location, PI3K-C2α controlled the activation of Rab8, a key mediator of cargo protein targeting to the primary cilium. Consistently, partial reduction of PI3K-C2α was sufficient to impair elongation of the cilium and the ciliary transport of polycystin-2, as well as to alter proliferation signals linked to polycystin activity. In agreement, heterozygous deletion of PI3K-C2α in mice induced cilium elongation defects in kidney tubules and predisposed animals to cyst development, either in genetic models of polycystin-1/2 reduction or in response to ischemia/reperfusion-induced renal damage. These results indicate that PI3K-C2α is required for the transport of ciliary components such as polycystin-2, and partial loss of this enzyme is sufficient to exacerbate the pathogenesis of cystic kidney disease.
Collapse
Affiliation(s)
- Irene Franco
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Jean Piero Margaria
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Maria Chiara De Santis
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Andrea Ranghino
- Renal Transplantation Center "A. Vercellone", Division of Nephrology, Dialysis and Transplantation, Department of Medical Sciences, Città della Salute e della Scienza, Hospital and Research Center for Experimental Medicine (CeRMS) and Center for Molecular Biotechnology, University of Torino, Turin, Italy
| | - Daniel Monteyne
- Laboratoire de Parasitologie Moléculaire, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, Gosselies, Charleroi, Belgium
| | - Marco Chiaravalli
- Division of Genetics and Cell Biology, Dibit San Raffaele Scientific Institute, Milan, Italy
| | - Monika Pema
- Division of Genetics and Cell Biology, Dibit San Raffaele Scientific Institute, Milan, Italy
| | - Carlo Cosimo Campa
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Edoardo Ratto
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Federico Gulluni
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - David Perez-Morga
- Laboratoire de Parasitologie Moléculaire, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, Gosselies, Charleroi, Belgium; Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, Gosselies, Belgium; and
| | - Stefan Somlo
- Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut
| | - Giorgio R Merlo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Alessandra Boletta
- Division of Genetics and Cell Biology, Dibit San Raffaele Scientific Institute, Milan, Italy
| | - Emilio Hirsch
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy;
| |
Collapse
|
36
|
Leonhard WN, Zandbergen M, Veraar K, van den Berg S, van der Weerd L, Breuning M, de Heer E, Peters DJM. Scattered Deletion of PKD1 in Kidneys Causes a Cystic Snowball Effect and Recapitulates Polycystic Kidney Disease. J Am Soc Nephrol 2015; 26:1322-33. [PMID: 25361818 PMCID: PMC4446864 DOI: 10.1681/asn.2013080864] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 07/23/2014] [Indexed: 12/21/2022] Open
Abstract
In total, 1 in 1000 individuals carries a germline mutation in the PKD1 or PKD2 gene, which leads to autosomal dominant polycystic kidney disease (ADPKD). Cysts can form early in life and progressively increase in number and size during adulthood. Extensive research has led to the presumption that somatic inactivation of the remaining allele initiates the formation of cysts, and the progression is further accelerated by renal injury. However, this hypothesis is primarily on the basis of animal studies, in which the gene is inactivated simultaneously in large percentages of kidney cells. To mimic human ADPKD in mice more precisely, we reduced the percentage of Pkd1-deficient kidney cells to 8%. Notably, no pathologic changes occurred for 6 months after Pkd1 deletion, and additional renal injury increased the likelihood of cyst formation but never triggered rapid PKD. In mildly affected mice, cysts were not randomly distributed throughout the kidney but formed in clusters, which could be explained by increased PKD-related signaling in not only cystic epithelial cells but also, healthy-appearing tubules near cysts. In the majority of mice, these changes preceded a rapid and massive onset of severe PKD that was remarkably similar to human ADPKD. Our data suggest that initial cysts are the principal trigger for a snowball effect driving the formation of new cysts, leading to the progression of severe PKD. In addition, this approach is a suitable model for mimicking human ADPKD and can be used for preclinical testing.
Collapse
Affiliation(s)
| | | | | | | | - Louise van der Weerd
- Departments of Human Genetics, Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | |
Collapse
|
37
|
Ravichandran K, Ozkok A, Wang Q, Mullick AE, Edelstein CL. Antisense-mediated angiotensinogen inhibition slows polycystic kidney disease in mice with a targeted mutation in Pkd2. Am J Physiol Renal Physiol 2014; 308:F349-57. [PMID: 25537744 DOI: 10.1152/ajprenal.00478.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Renal cyst enlargement is associated with the activation of both the circulating and intrarenal renin-angiotensin systems. Angiotensinogen (AGT) is the substrate for renin. The aim of the present study was to determine the effect of AGT inhibition on renal cyst enlargement. An AGT antisense oligonucleotide (ASO) that selectively inhibits AGT mRNA was injected once weekly in PKD2WS25 mice [an orthologous model of human autosmal dominant polycystic kidney disease (PKD) involving mutation of the Pkd2 gene] from 4 to 16 wk of age. The AGT ASO resulted in a 40% decrease in AGT RNA in the kidney, a 60% decrease in AGT RNA in the liver, and a significant decrease in AGT protein in the kidney and serum. The AGT ASO resulted in a significant decrease in kidney size, cyst volume density, and blood urea nitrogen. The AGT ASO resulted in a significant decrease in transforming growth factor-β and interstitial fibrosis in the kidney. Mice treated with the AGT ASO had a significant decrease in proinflammatory cytokines [chemokine (C-X-C motif) ligand (CXCL)1 and IL-12] in the kidney. Cluster of differentiation (CD)36 is a scavenger receptor found on tubular cells that can activate the renin-angiotensin system. Administration of a CD36 ASO had no effect on PKD and kidney function, suggesting that the effect of the AGT ASO is independent of CD36. In summary, AGT inhibition resulted in significant decreases in kidney size and cyst volume and an improvement in kidney function in PKD mice. The AGT ASO resulted in a decrease in transforming growth factor-β, interstitial fibrosis, and the proinflammatory cytokines CXCL1 and IL-12 in the kidney.
Collapse
Affiliation(s)
- Kameswaran Ravichandran
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Aurora, Colorado; and
| | - Abdullah Ozkok
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Aurora, Colorado; and
| | - Qian Wang
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Aurora, Colorado; and
| | | | - Charles L Edelstein
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Aurora, Colorado; and
| |
Collapse
|
38
|
|
39
|
Paul BM, Vanden Heuvel GB. Kidney: polycystic kidney disease. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 3:465-87. [PMID: 25186187 DOI: 10.1002/wdev.152] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 07/14/2014] [Accepted: 07/29/2014] [Indexed: 12/22/2022]
Abstract
Polycystic kidney disease (PKD) is a life-threatening genetic disorder characterized by the presence of fluid-filled cysts primarily in the kidneys. PKD can be inherited as autosomal recessive (ARPKD) or autosomal dominant (ADPKD) traits. Mutations in either the PKD1 or PKD2 genes, which encode polycystin 1 and polycystin 2, are the underlying cause of ADPKD. Progressive cyst formation and renal enlargement lead to renal insufficiency in these patients, which need to be managed by lifelong dialysis or renal transplantation. While characteristic features of PKD are abnormalities in epithelial cell proliferation, fluid secretion, extracellular matrix and differentiation, the molecular mechanisms underlying these events are not understood. Here we review the progress that has been made in defining the function of the polycystins, and how disruption of these functions may be involved in cystogenesis.
Collapse
Affiliation(s)
- Binu M Paul
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
40
|
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in PKD1 or PKD2, which encode polycystin-1 and polycystin-2, respectively. Rodent models are available to study the pathogenesis of polycystic kidney disease (PKD) and for preclinical testing of potential therapies-either genetically engineered models carrying mutations in Pkd1 or Pkd2 or models of renal cystic disease that do not have mutations in these genes. The models are characterized by age at onset of disease, rate of disease progression, the affected nephron segment, the number of affected nephrons, synchronized or unsynchronized cyst formation and the extent of fibrosis and inflammation. Mouse models have provided valuable mechanistic insights into the pathogenesis of PKD; for example, mutated Pkd1 or Pkd2 cause renal cysts but additional factors are also required, and the rate of cyst formation is increased in the presence of renal injury. Animal studies have also revealed complex genetic and functional interactions among various genes and proteins associated with PKD. Here, we provide an update on the preclinical models commonly used to study the molecular pathogenesis of ADPKD and test potential therapeutic strategies. Progress made in understanding the pathophysiology of human ADPKD through these animal models is also discussed.
Collapse
Affiliation(s)
- Hester Happé
- Department of Human Genetics, Leiden University Medical Center, S4-P, PO Box 9600, Albinusdreef 2, Leiden, 2333 ZA Leiden, Netherlands
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, S4-P, PO Box 9600, Albinusdreef 2, Leiden, 2333 ZA Leiden, Netherlands
| |
Collapse
|
41
|
Abstract
Mutations inactivating the cilia-localized Pkd1 protein result in autosomal dominant polycystic kidney disease (ADPKD), a serious inherited syndrome affecting ∼ 1 in 500 people, in which accumulation of renal cysts eventually destroys kidney function. Severity of ADPKD varies throughout the population, for reasons thought to involve differences both in intragenic Pkd1 mutations and in modifier alleles. The scaffolding protein NEDD9, commonly dysregulated during cancer progression, interacts with Aurora-A (AURKA) kinase to control ciliary resorption, and with Src and other partners to influence proliferative signaling pathways often activated in ADPKD. We here demonstrate Nedd9 expression is deregulated in human ADPKD and a mouse ADPKD model. Although genetic ablation of Nedd9 does not independently influence cystogenesis, constitutive absence of Nedd9 strongly promotes cyst formation in the tamoxifen-inducible Pkd1fl/fl;Cre/Esr1(+) mouse model of ADPKD. This cystogenic effect is associated with striking morphological defects in the cilia of Pkd1(-/-);Nedd9(-/-) mice, associated with specific loss of ciliary localization of adenylase cyclase III in the doubly mutant genotype. Ciliary phenotypes imply a failure of Aurora-A activation: Compatible with this idea, Pkd1(-/-);Nedd9(-/-) mice had ciliary resorption defects, and treatment of Pkd1(-/-) mice with a clinical Aurora-A kinase inhibitor exacerbated cystogenesis. In addition, activation of the ADPKD-associated signaling effectors Src, Erk, and the mTOR effector S6 was enhanced, and Ca(2+) response to external stimuli was reduced, in Pkd1(-/-);Nedd9(-/-) versus Pkd1(-/-) mice. Together, these results indicated an important modifier action of Nedd9 on ADPKD pathogenesis involving failure to activate Aurora-A.
Collapse
|
42
|
Ruppersburg CC, Hartzell HC. The Ca2+-activated Cl- channel ANO1/TMEM16A regulates primary ciliogenesis. Mol Biol Cell 2014; 25:1793-807. [PMID: 24694595 PMCID: PMC4038505 DOI: 10.1091/mbc.e13-10-0599] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Ca2+-activated Cl− channel ANO1/TMEM16A is located in the primary cilium, and blocking it pharmacologically or knocking it down with shRNA interferes with ciliogenesis. Before ciliogenesis, the channel is organized into a torus-shaped structure (the “nimbus”) enriched in proteins required for ciliogenesis. Many cells possess a single, nonmotile, primary cilium highly enriched in receptors and sensory transduction machinery that plays crucial roles in cellular morphogenesis. Although sensory transduction requires ion channels, relatively little is known about ion channels in the primary cilium (with the exception of TRPP2). Here we show that the Ca2+-activated Cl− channel anoctamin-1 (ANO1/TMEM16A) is located in the primary cilium and that blocking its channel function pharmacologically or knocking it down with short hairpin RNA interferes with ciliogenesis. Before ciliogenesis, the channel becomes organized into a torus-shaped structure (“the nimbus”) enriched in proteins required for ciliogenesis, including the small GTPases Cdc42 and Arl13b and the exocyst complex component Sec6. The nimbus excludes F-actin and coincides with a ring of acetylated microtubules. The nimbus appears to form before, or independent of, apical docking of the mother centriole. Our data support a model in which the nimbus provides a scaffold for staging of ciliary components for assembly very early in ciliogenesis and chloride transport by ANO1/TMEM16A is required for the genesis or maintenance of primary cilia.
Collapse
Affiliation(s)
| | - H Criss Hartzell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
43
|
Fedeles SV, Gallagher AR, Somlo S. Polycystin-1: a master regulator of intersecting cystic pathways. Trends Mol Med 2014; 20:251-60. [PMID: 24491980 DOI: 10.1016/j.molmed.2014.01.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/04/2014] [Accepted: 01/07/2014] [Indexed: 12/13/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common potentially lethal monogenic disorder, with more than 12 million cases worldwide. The two causative genes for ADPKD, PKD1 and PKD2, encode protein products polycystin-1 (PC1) and polycystin-2 (PC2 or TRPP2), respectively. Recent data have shed light on the role of PC1 in regulating the severity of the cystic phenotypes in ADPKD, autosomal recessive polycystic kidney disease (ARPKD), and isolated autosomal dominant polycystic liver disease (ADPLD). These studies showed that the rate for cyst growth was a regulated trait, a process that can be either sped up or slowed down by alterations in functional PC1. These findings redefine the previous understanding that cyst formation occurs as an 'on-off' process. Here, we review these and other related studies with an emphasis on their translational implications for polycystic diseases.
Collapse
Affiliation(s)
- Sorin V Fedeles
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - Anna-Rachel Gallagher
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Stefan Somlo
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
44
|
Ma M, Tian X, Igarashi P, Pazour GJ, Somlo S. Loss of cilia suppresses cyst growth in genetic models of autosomal dominant polycystic kidney disease. Nat Genet 2013; 45:1004-12. [PMID: 23892607 PMCID: PMC3758452 DOI: 10.1038/ng.2715] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 07/02/2013] [Indexed: 12/14/2022]
Abstract
Kidney cysts occur following inactivation of polycystins in otherwise intact cilia or following complete removal of cilia by inactivation of intraflagellar transport-related proteins. We investigated the mechanisms of cyst formation in these two distinct processes by combining conditional inactivation of polycystins with concomitant ablation of cilia in developing and adult kidney and liver. We found that loss of intact cilia suppresses cyst growth following inactivation of polycystins and that the severity of cystic disease was directly related to the length of time between the initial loss of the polycystin proteins and the subsequent involution of cilia. This cilia-dependent cyst growth was not explained by activation of the MAPK/ERK, mTOR or cAMP pathways and is likely to be distinct from the mechanism of cyst growth following complete loss of cilia. The data establish the existence of a novel pathway defined by polycystin-dependent inhibition and cilia-dependent activation that promotes rapid cyst growth.
Collapse
Affiliation(s)
- Ming Ma
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | |
Collapse
|