1
|
Panzade G, Srivastava T, Heruth DP, Rezaiekhaligh MH, Zhou J, Lyu Z, Sharma M, Joshi T. Employing Multi-Omics Analyses to Understand Changes during Kidney Development in Perinatal Interleukin-6 Animal Model. Cells 2024; 13:1667. [PMID: 39404429 PMCID: PMC11476440 DOI: 10.3390/cells13191667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Chronic kidney disease (CKD) is a leading cause of morbidity and mortality globally. Maternal obesity during pregnancy is linked to systemic inflammation and elevated levels of the pro-inflammatory cytokine interleukin-6 (IL-6). In our previous work, we demonstrated that increased maternal IL-6 during gestation impacts intrauterine development in mice. We hypothesized that IL-6-induced inflammation alters gene expression in the developing fetus. To test this, pregnant mice were administered IL-6 or saline during mid-gestation. Newborn mouse kidneys were analyzed using mRNA-seq, miRNA-seq and whole-genome bisulfite-seq (WGBS). A multi-omics approach was employed to quantify mRNA gene expression, miRNA expression and DNA methylation, using advanced bioinformatics and data integration techniques. Our analysis identified 19 key genes present in multiple omics datasets, regulated by epigenetics and miRNAs. We constructed a regulatory network for these genes, revealing disruptions in pathways such as Mannose type O-glycan biosynthesis, the cell cycle, apoptosis and FoxO signaling. Notably, the Atp7b gene was regulated by DNA methylation and miR-223 targeting, whereas the Man2a1 gene was controlled by DNA methylation affecting energy metabolism. These findings suggest that these genes may play a role in fetal programming, potentially leading to CKD later in life due to gestational inflammation.
Collapse
Affiliation(s)
- Ganesh Panzade
- Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO 65211, USA;
| | - Tarak Srivastava
- Section of Nephrology, Children’s Mercy Hospital and University of Missouri at Kansas City, 2401 Gillham Road, Kansas City, MO 64108, USA; (T.S.); (M.H.R.)
- Midwest Veterans’ Biomedical Research Foundation (MVBRF), Kansas City, MO 64128, USA;
| | - Daniel P. Heruth
- Children’s Mercy Research Institute, Children’s Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO 64108, USA;
| | - Mohammad H. Rezaiekhaligh
- Section of Nephrology, Children’s Mercy Hospital and University of Missouri at Kansas City, 2401 Gillham Road, Kansas City, MO 64108, USA; (T.S.); (M.H.R.)
| | - Jianping Zhou
- Midwest Veterans’ Biomedical Research Foundation (MVBRF), Kansas City, MO 64128, USA;
- Kansas City VA Medical Center, Kansas City, MO 64128, USA
| | - Zhen Lyu
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO 65211, USA;
| | - Mukut Sharma
- Midwest Veterans’ Biomedical Research Foundation (MVBRF), Kansas City, MO 64128, USA;
| | - Trupti Joshi
- Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO 65211, USA;
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO 65211, USA;
- Department of Biomedical Informatics, Biostatistics and Medical Epidemiology, University of Missouri-Columbia, Columbia, MO 65211, USA
- MU Institute for Data Science and Informatics, University of Missouri-Columbia, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Vendrig LM, Ten Hoor MAC, König BH, Lekkerkerker I, Renkema KY, Schreuder MF, van der Zanden LFM, van Eerde AM, Groen In 't Woud S, Mulder J, Westland R. Translational strategies to uncover the etiology of congenital anomalies of the kidney and urinary tract. Pediatr Nephrol 2024:10.1007/s00467-024-06479-2. [PMID: 39373868 DOI: 10.1007/s00467-024-06479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 10/08/2024]
Abstract
While up to 50% of children requiring kidney replacement therapy have congenital anomalies of the kidney and urinary tract (CAKUT), they represent only a fraction of the total patient population with CAKUT. The extreme variability in clinical outcome underlines the fundamental need to devise personalized clinical management strategies for individuals with CAKUT. Better understanding of the pathophysiology of abnormal kidney and urinary tract development provides a framework for precise diagnoses and prognostication of patients, the identification of biomarkers and disease modifiers, and, thus, the development of personalized strategies for treatment. In this review, we provide a state-of-the-art overview of the currently known genetic causes, including rare variants in kidney and urinary tract development genes, genomic disorders, and common variants that have been attributed to CAKUT. Furthermore, we discuss the impact of environmental factors and their interactions with developmental genes in kidney and urinary tract malformations. Finally, we present multi-angle translational modalities to validate candidate genes and environmental factors and shed light on future strategies to better understand the molecular underpinnings of CAKUT.
Collapse
Affiliation(s)
- Lisanne M Vendrig
- Department of Pediatric Nephrology, Amsterdam UMC-Emma Children's Hospital, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Mayke A C Ten Hoor
- Division of Nephrology, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Benthe H König
- IQ Health Science Department, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Iris Lekkerkerker
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kirsten Y Renkema
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Sander Groen In 't Woud
- IQ Health Science Department, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jaap Mulder
- Division of Nephrology, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
- Division of Nephrology, Department of Pediatrics, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Rik Westland
- Department of Pediatric Nephrology, Amsterdam UMC-Emma Children's Hospital, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Yu M, Ju H, Ye N, Chen J, Sun L, Wu X, Xu H, Shen Q. Vitamin A Deficiency Disturbs Ret Expression and Induces Urinary Tract Developmental Abnormalities in Mice. Am J Nephrol 2024:1-11. [PMID: 39397601 DOI: 10.1159/000541289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024]
Abstract
INTRODUCTION Moderate vitamin A levels during pregnancy are strongly related to normal embryonic development in both animal models and population studies. Abnormal development of urinary tract system is linked to either an excess or a shortage of vitamin A. The relationships among maternal vitamin A deficiency prior to conception, moderate vitamin A supplementation during pregnancy, and abnormal urinary system development in offspring are unclear. METHODS By creating preconception and preconception + pregnancy vitamin A insufficiency mouse models, we investigated whether moderate vitamin A treatment during pregnancy may reduce the prevalence of CAKUT and increase distant vitamin A levels in offspring, as well as any potential pathways involved. RESULTS We effectively established a prepregnancy vitamin A-deficient mouse model by providing a particular diet with or without vitamin A for 4 weeks. The offspring of the hypovitaminosis A model group presented a greater proportion of neonatal urinary tract developmental malformations. Abnormalities in ureteral bud emergence and key molecules during renal development, such as p-Plcγ and Ret, may be the primary causes of offspring development of CAKUT as a result of mothers' hypovitaminosis A. Normal vitamin A diets, on the other hand, may help mitigate the teratogenic consequences of prepregnancy hypovitaminosis A, as well as defects produced by ureteral budding and major molecular changes. CONCLUSION In contrast, the administration of normal vitamin A feeds during pregnancy may ameliorate the teratogenic effects of prepregnancy hypovitaminosis A to a certain extent and may also ameliorate the abnormalities associated with ureteral budding and key molecular changes.
Collapse
Affiliation(s)
- Minghui Yu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Haixin Ju
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Ningli Ye
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Jing Chen
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Lei Sun
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaohui Wu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong Xu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- National Key Laboratory of Kidney Diseases, Beijing, China
| | - Qian Shen
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- National Key Laboratory of Kidney Diseases, Beijing, China
| |
Collapse
|
4
|
Francis A, Harhay MN, Ong ACM, Tummalapalli SL, Ortiz A, Fogo AB, Fliser D, Roy-Chaudhury P, Fontana M, Nangaku M, Wanner C, Malik C, Hradsky A, Adu D, Bavanandan S, Cusumano A, Sola L, Ulasi I, Jha V. Chronic kidney disease and the global public health agenda: an international consensus. Nat Rev Nephrol 2024; 20:473-485. [PMID: 38570631 DOI: 10.1038/s41581-024-00820-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 04/05/2024]
Abstract
Early detection is a key strategy to prevent kidney disease, its progression and related complications, but numerous studies show that awareness of kidney disease at the population level is low. Therefore, increasing knowledge and implementing sustainable solutions for early detection of kidney disease are public health priorities. Economic and epidemiological data underscore why kidney disease should be placed on the global public health agenda - kidney disease prevalence is increasing globally and it is now the seventh leading risk factor for mortality worldwide. Moreover, demographic trends, the obesity epidemic and the sequelae of climate change are all likely to increase kidney disease prevalence further, with serious implications for survival, quality of life and health care spending worldwide. Importantly, the burden of kidney disease is highest among historically disadvantaged populations that often have limited access to optimal kidney disease therapies, which greatly contributes to current socioeconomic disparities in health outcomes. This joint statement from the International Society of Nephrology, European Renal Association and American Society of Nephrology, supported by three other regional nephrology societies, advocates for the inclusion of kidney disease in the current WHO statement on major non-communicable disease drivers of premature mortality.
Collapse
Affiliation(s)
- Anna Francis
- Department of Nephrology, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - Meera N Harhay
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, Philadelphia, PA, USA
| | - Albert C M Ong
- Academic Nephrology Unit, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Sri Lekha Tummalapalli
- Division of Healthcare Delivery Science & Innovation, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
- Division of Nephrology & Hypertension, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alberto Ortiz
- IIS-Fundacion Jimenez Diaz UAM, RICORS2040, Madrid, Spain
| | - Agnes B Fogo
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Danilo Fliser
- Department of Internal Medicine IV, Renal and Hypertensive Disease & Transplant Centre, Saarland University Medical Centre, Homburg, Germany
| | - Prabir Roy-Chaudhury
- Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, Department of Hemodialysis and Apheresis, The University of Tokyo Hospital, Tokyo, Japan
| | - Christoph Wanner
- Department of Clinical Research and Epidemiology, Renal Research Unit, University Hospital of Würzburg, Würzburg, Germany
| | - Charu Malik
- International Society of Nephrology, Brussels, Belgium
| | - Anne Hradsky
- International Society of Nephrology, Brussels, Belgium
| | - Dwomoa Adu
- Department of Medicine and Therapeutics, University of Ghana Medical School, Accra, Ghana
| | - Sunita Bavanandan
- Department of Nephrology, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia
| | - Ana Cusumano
- Instituto de Nefrologia Pergamino, Pergamino City, Argentina
| | - Laura Sola
- Centro de Hemodiálisis Crónica CASMU-IAMPP, Montevideo, Uruguay
| | - Ifeoma Ulasi
- Renal Unit, Department of Medicine, University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu, Enugu State, Nigeria
| | - Vivekanand Jha
- George Institute for Global Health, University of New South Wales, New Delhi, India.
- School of Public Health, Imperial College, London, UK.
- Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
5
|
Liu J, Chen X, Liu J, Peng C, Wang F, Huang X, Li S, Liu Y, Shou W, Cao D, Li X. Prenatal Inflammatory Exposure Predisposes Offspring to Chronic Kidney Diseases Via the Activation of the eIF2α-ATF4 Pathway. Inflammation 2024:10.1007/s10753-024-02084-5. [PMID: 38913145 DOI: 10.1007/s10753-024-02084-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
It has recently become more recognized that renal diseases in adults can originate from adverse intrauterine (maternal) environmental exposures. Previously, we found that prenatal lipopolysaccharide (LPS) exposure can result in chronic renal inflammation, which leads to renal damage in older offspring rats. To test whether prenatal inflammatory exposure predisposes offspring to renal damage, a mouse model of oral adenine consumption-induced chronic kidney disease (CKD) was applied to offspring from prenatal LPS-treated mothers (offspring-pLPS) and age-matched control offspring of prenatal saline-treated mothers (offspring-pSaline). We found that offspring-pLPS mice presented with more severe renal collagen deposition and renal dysfunction after 4 weeks of adenine consumption than sex- and treatment-matched offspring-pSaline controls. To illustrate the underlying molecular mechanism, we subjected offspring-pLPS and offspring-pSaline kidneys to genome-wide transcriptomic analysis. Bioinformatic analysis of the sequencing data, together with further experimental confirmation, revealed a strong activation of the PERK-eIF2α-ATF4-mediated unfolded protein response (UPR) in offspring-pLPS kidneys, which likely contributed to the CKD predisposition seen in offspring-pLPS mice. More importantly, the specific eIF2α-ATF4 signaling inhibitor ISIRB was able to prevent adenine-induced CKD in the offspring-pLPS mice. Our findings suggest that the eIF2α-ATF4-mediated UPR, but not PERK, is likely the major disease-causing pathway in prenatal inflammatory exposure-induced CKD predisposition. Our study also suggests that targeting this signaling pathway is a potentially promising approach for CKD treatment.
Collapse
Affiliation(s)
- Jie Liu
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, PR China
| | - Xin Chen
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, PR China
| | - Jie Liu
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, PR China
| | - Cuiping Peng
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, PR China
| | - Fangjie Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoyong Huang
- Institute of Immunology, PLA, Army Medical University, Chongqing, China
| | - Shuhui Li
- Department of Clinical Biochemistry, College of Pharmacy, Army Medical University, Chongqing, China
| | - Ying Liu
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Weinian Shou
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dayan Cao
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, PR China.
| | - Xiaohui Li
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, PR China.
| |
Collapse
|
6
|
Chou HH, Huang LC, Shen SP, Tsai ML, Chang YC, Lin HC. Neonatal jaundice is associated with increased risks of congenital anomalies of the kidney and urinary tract and concomitant urinary tract infection. Sci Rep 2024; 14:9520. [PMID: 38664452 PMCID: PMC11045864 DOI: 10.1038/s41598-024-59943-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The link between neonatal jaundice and urinary tract infection (UTI) remains debated, with congenital kidney and urinary tract anomalies (CAKUT) potentially playing a role. This population-based study aimed to analyze the correlations between neonatal jaundice, CAKUT, and concomitant UTI. The study cohort consisted of 2,078,122 live births from 2004 to 2014. We linked several population-based datasets in Taiwan to identify infants with unexplained neonatal jaundice and their mothers. The primary outcome was the rate of CAKUT occurring within 3 years after delivery, and the presence of concomitant UTI during neonatal jaundice hospitalization. Infants with neonatal jaundice had a significantly higher risk of CAKUT (adjusted odds ratio [aOR] 1.24, 95% confidence interval [CI] 1.11-1.39) during early childhood. Among the subtypes of CAKUT, obstructive uropathy, vesicoureteral reflux and other CAKUT were associated with an increased risk of neonatal jaundice. Infants who underwent intensive phototherapy, had a late diagnosis (> 14 days of postnatal age) or underwent a prolonged duration of phototherapy (> 3 days) exhibited a higher risk of concomitant UTI compared to other infants with jaundice. Our findings indicate a notable association between neonatal jaundice and increased risks of UTIs in the context of CAKUT. This study underscore the importance of vigilant monitoring and timely interventions for neonates presenting with jaundice, while acknowledging the complexity and variability in the progression of CAKUT and its potential connection to UTIs.
Collapse
Affiliation(s)
- Hsin-Hsu Chou
- Department of Pediatrics, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Lin-Chih Huang
- Department of Pediatrics, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Shang-Po Shen
- Division of Neonatology, China Medical University Children's Hospital, China Medical University, No. 2 Yuh Der Road, Taichung, 404, Taiwan
| | - Ming-Luen Tsai
- Division of Neonatology, China Medical University Children's Hospital, China Medical University, No. 2 Yuh Der Road, Taichung, 404, Taiwan
| | - Yu-Chia Chang
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, No. 500, Lioufeng Road., Wufeng, Taichung, 41354, Taiwan.
- Department of Long-Term Care, College of Health and Nursing, National Quemoy University, Kinmen County, Taiwan.
| | - Hung-Chi Lin
- Division of Neonatology, China Medical University Children's Hospital, China Medical University, No. 2 Yuh Der Road, Taichung, 404, Taiwan.
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan.
- Asia University Hospital, Asia University, Taichung, Taiwan.
| |
Collapse
|
7
|
Chou HH, Chen CC, Tsai CF, Kuo PL, Chiou YY. Associations between maternal chronic diseases and congenital anomalies of the kidney and urinary tract in offspring: a population-based cohort study. Clin Kidney J 2023; 16:2652-2660. [PMID: 38046024 PMCID: PMC10689185 DOI: 10.1093/ckj/sfad217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 12/05/2023] Open
Abstract
Background The relationship between maternal chronic diseases and congenital anomalies of the kidneys and urinary tract (CAKUT) in offspring still needs elucidation. This study aimed to comprehensively evaluate the associations between maternal chronic disease and CAKUT in their offspring. Methods Data of mothers and children were extracted from the Taiwan Maternal and Child Health Database and National Health Insurance Research Database. The concept of developmental origins of health and disease (DOHaD) was used to select maternal chronic diseases. Results The study cohort included 1 196 175 mothers and 1 628 706 offspring. Analysis showed that maternal chronic diseases, especially type 1 diabetes, type 2 diabetes, gestational diabetes, connective tissue disorders and CAKUT were highly associated with CAKUT in the offspring. Higher maternal age, abnormal birthweight (>3500 g or <2500 g), gestational age <36 weeks and birth order <2 were all associated with a higher risk of CAKUT. Maternal chronic hypertension and taking angiotensin-related drugs increased the odds ratios of obstructive kidney disease in the offspring. Offspring tended to have the same type of CAKUT as their mothers. Conclusion Maternal chronic diseases, older maternal age and abnormal birthweight are risk factors for CAKUT. Also, a percentage of patients with CAKUT were not full-term newborns. Results support prenatal counselling and health management of pregnant women with chronic diseases and extra care for infants with a high risk of anomalies. It is strongly recommended that prevention of CAKUT in offspring should start with care of the mothers' prenatal chronic diseases.
Collapse
Affiliation(s)
- Hsin-Hsu Chou
- Department of Pediatrics, Ditmanson Medical Foundation Chiayi Christian Hospital, Chia-Yi City, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City, Taiwan
| | - Chih-Chia Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
- Department of Pediatrics, Division of Pediatric Nephrology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Ching-Fang Tsai
- Department of Medical Research, Clinical Data Center, Ditmanson Medical Foundation Chiayi Christian Hospital, Chia-Yi City, Taiwan
| | - Pao-Lin Kuo
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Yuan-Yow Chiou
- Department of Pediatrics, Division of Pediatric Nephrology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| |
Collapse
|
8
|
ÇELEĞEN K, ÖZGÜL E, YEŞİLDAĞ Z, ÇAMIRCI EY, ÇELEĞEN M, BÜKÜLMEZ A. Risk factors of congenital anomalies of the kidney and urinary tract (CAKUT): Exposure to mobile phones during pregnancy. Turk J Med Sci 2023; 54:291-300. [PMID: 38812630 PMCID: PMC11031154 DOI: 10.55730/1300-0144.5790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 02/15/2024] [Accepted: 11/18/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim Congenital anomalies of the kidney and urinary tract(CAKUT) are the leading causes of childhood chronic kidney disease (CKD). The etiology of most of the cases is thought to be multifactorial. In this study, risk factors for CAKUT and the effect of mobile phone-related electromagnetic field (EMF) exposure during pregnancy were investigated. Materials and methods Fifty-seven cases and 57 healthy controls under 2 years of age were included and their mothers were subjected to a questionnaire. Groups were compared for parents' demographics, pregestational (chronic disease, body mass index, use of the folic acid supplements) and antenatal variables (gestational disease, weight gain during pregnancy,) and exposures during pregnancy. To assess mobile phone-related radiation exposure, all participants were asked about their daily call time, the proximity of the phone when not in use, and the models of their mobile phones. The specific absorption rate (SAR) of the mobile phones and the effective SAR value (SAR × call time) as an indicator of EMF exposure were recorded. Results Excess weight gain according to BMI during pregnancy was related to an increased risk of CAKUT (p=0.012). Folic acid use before pregnancy was protective for CAKUT (p = 0.028). The call time of mothers of the CAKUT group was significantly longer than the control (p = 0.001). An association was observed between higher effective SAR values and increased risk of CAKUT (p = 0.03). However the proximity of the mobile phone to the mother's body when not in use was not found as a risk factor. Conclusion The etiology of CAKUT is multifactorial. Our results suggest that prolonged phone call and higher EMF exposure during pregnancy increases the risk of CAKUT in the offspring.
Collapse
Affiliation(s)
- Kübra ÇELEĞEN
- Division of Pediatric Nephrology, Department of Pediatrics, Afyonkarahisar Health Sciences University Faculty of Medicine, Afyonkarahisar,
Turkiye
| | - Esra ÖZGÜL
- Department of Radiology, Afyonkarahisar Health Sciences University Faculty of Medicine, Afyonkarahisar,
Turkiye
| | - Zeynep YEŞİLDAĞ
- Department of Pediatrics, Afyonkarahisar Health Sciences University Faculty of Medicine, Afyonkarahisar,
Turkiye
| | - Erdem Yusuf ÇAMIRCI
- Department of Radiology, Afyonkarahisar Health Sciences University Faculty of Medicine, Afyonkarahisar,
Turkiye
| | - Mehmet ÇELEĞEN
- Department of Pediatrics, Afyonkarahisar Health Sciences University Faculty of Medicine, Afyonkarahisar,
Turkiye
| | - Aysegül BÜKÜLMEZ
- Department of Pediatrics, Afyonkarahisar Health Sciences University Faculty of Medicine, Afyonkarahisar,
Turkiye
| |
Collapse
|
9
|
Kolvenbach CM, Shril S, Hildebrandt F. The genetics and pathogenesis of CAKUT. Nat Rev Nephrol 2023; 19:709-720. [PMID: 37524861 DOI: 10.1038/s41581-023-00742-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2023] [Indexed: 08/02/2023]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) comprise a large variety of malformations that arise from defective kidney or urinary tract development and frequently lead to kidney failure. The clinical spectrum ranges from severe malformations, such as renal agenesis, to potentially milder manifestations, such as vesicoureteral reflux. Almost 50% of cases of chronic kidney disease that manifest within the first three decades of life are caused by CAKUT. Evidence suggests that a large number of CAKUT are genetic in origin. To date, mutations in ~54 genes have been identified as monogenic causes of CAKUT, contributing to 12-20% of the aetiology of the disease. Pathogenic copy number variants have also been shown to cause CAKUT and can be detected in 4-11% of patients. Furthermore, environmental and epigenetic factors can increase the risk of CAKUT. The discovery of novel CAKUT-causing genes is challenging owing to variable expressivity, incomplete penetrance and variable genotype-phenotype correlation. However, such a discovery could ultimately lead to improvements in the accurate molecular genetic diagnosis, assessment of prognosis and multidisciplinary clinical management of patients with CAKUT, potentially including personalized therapeutic approaches.
Collapse
Affiliation(s)
- Caroline M Kolvenbach
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shirlee Shril
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
10
|
Fang NW, Huang YS, Yin CH, Chen JS, Chiou YH. Maternal risk factors in offspring with congenital anomalies of the kidney and urinary tract in Asian women. Pediatr Nephrol 2023; 38:3065-3070. [PMID: 37052690 DOI: 10.1007/s00467-023-05954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Congenital anomalies of the kidney and urinary tract (CAKUT) are the primary cause of pediatric chronic kidney disease. Maternal body mass index (BMI) before pregnancy, pregestational diabetic mellitus (DM), and gestational diabetic mellitus (GDM) are potential modifiable risk factors for CAKUT in offspring. METHODS In this case control study, 4619 neonates were enrolled during 2012-2020 from Kaohsiung Veterans General Hospital in Taiwan. Maternal risk factors before and during pregnancy were compared in children with and without CAKUT. The yearly incidence of CAKUT in offspring and maternal overweight were recorded. RESULTS In total, 73 (1.6%) cases of CAKUT in offspring were identified. Maternal overweight before pregnancy (BMI ≥ 24 kg/m2) was an independent risk factor for CAKUT in offspring. No associations of pregestational DM and GDM with CAKUT in offspring were observed. The incidence rates of CAKUT and maternal obesity have increased in the past 10 years. CONCLUSIONS Maternal obesity before pregnancy is associated with CAKUT in offspring and should be addressed to ensure better outcomes. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Nai-Wen Fang
- Division of Pediatric Nephrology, Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Pediatrics, Pingtung Veterans General Hospital, Pingtung, Taiwan
| | - Yu-Shan Huang
- Division of Pediatric Nephrology, Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chun-Hao Yin
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Jin-Shuen Chen
- Department of Administration, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yee-Hsuan Chiou
- Division of Pediatric Nephrology, Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung, Taiwan.
| |
Collapse
|
11
|
Tain YL, Hsu CN. The NOS/NO System in Renal Programming and Reprogramming. Antioxidants (Basel) 2023; 12:1629. [PMID: 37627624 PMCID: PMC10451971 DOI: 10.3390/antiox12081629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Nitric oxide (NO) is a gaseous signaling molecule with renoprotective properties. NO can be produced in NO synthase (NOS)-dependent or -independent manners. NO deficiency plays a decisive role in chronic kidney disease (CKD). Kidney development can be affected in response to adverse intrauterine conditions that induce renal programming, thereby raising the risk of developing CKD in adulthood. Conversely, detrimental programming processes could be postponed or halted prior to the onset of CKD by early treatments, namely reprogramming. The current review provides an overview of the NOS/NO research performed in the context of renal programming and reprogramming. NO deficiency has been increasingly found to interact with the different mechanisms behind renal programming, such as oxidative stress, aberrant function of the renin-angiotensin system, disturbed nutrient-sensing mechanisms, dysregulated hydrogen sulfide signaling, and gut microbiota dysbiosis. The supplementation of NOS substrates, the inhibition of asymmetric dimethylarginine (ADMA), the administration of NO donors, and the enhancement of NOS during gestation and lactation have shown beneficial effects against renal programming in preclinical studies. Although human data on maternal NO deficiency and offspring kidney disease are scarce, experimental data indicate that targeting NO could be a promising reprogramming strategy in the setting of renal programming.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
12
|
Wang L, O'Kane AM, Zhang Y, Ren J. Maternal obesity and offspring health: Adapting metabolic changes through autophagy and mitophagy. Obes Rev 2023:e13567. [PMID: 37055041 DOI: 10.1111/obr.13567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/08/2022] [Accepted: 03/25/2023] [Indexed: 04/15/2023]
Abstract
Maternal obesity leads to obstetric complications and a high prevalence of metabolic anomalies in the offspring. Among various contributing factors for maternal obesity-evoked health sequelae, developmental programming is considered as one of the leading culprit factors for maternal obesity-associated chronic comorbidities. Although a unified theory is still lacking to systematically address multiple unfavorable postnatal health sequelae, a cadre of etiological machineries have been put forward, including lipotoxicity, inflammation, oxidative stress, autophagy/mitophagy defect, and cell death. Hereinto, autophagy and mitophagy play an essential housekeeping role in the clearance of long-lived, damaged, and unnecessary cell components to maintain and restore cellular homeostasis. Defective autophagy/mitophagy has been reported in maternal obesity and negatively impacts fetal development and postnatal health. This review will provide an update on metabolic disorders in fetal development and postnatal health issues evoked by maternal obesity and/or intrauterine overnutrition and discuss the possible contribution of autophagy/mitophagy in metabolic diseases. Moreover, relevant mechanisms and potential therapeutic strategies will be discussed in an effort to target autophagy/mitophagy and metabolic disturbances in maternal obesity.
Collapse
Affiliation(s)
- Litao Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Aislinn M O'Kane
- Department of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Yingmei Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| |
Collapse
|
13
|
Sutherland MR, Black MJ. The impact of intrauterine growth restriction and prematurity on nephron endowment. Nat Rev Nephrol 2023; 19:218-228. [PMID: 36646887 DOI: 10.1038/s41581-022-00668-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2022] [Indexed: 01/18/2023]
Abstract
In humans born at term, maximal nephron number is reached by the time nephrogenesis is completed - at approximately 36 weeks' gestation. The number of nephrons does not increase further and subsequently remains stable until loss occurs through ageing or disease. Nephron endowment is key to the functional capacity of the kidney and its resilience to disease; hence, any processes that impair kidney development in the developing fetus can have lifelong adverse consequences for renal health and, consequently, for quality and length of life. The timing of nephrogenesis underlies the vulnerability of developing human kidneys to adverse early life exposures. Indeed, exposure of the developing fetus to a suboptimal intrauterine environment during gestation - resulting in intrauterine growth restriction (IUGR) - and/or preterm birth can impede kidney development and lead to reduced nephron endowment. Furthermore, emerging research suggests that IUGR and/or preterm birth is associated with an elevated risk of chronic kidney disease in later life. The available data highlight the important role of early life development in the aetiology of kidney disease and emphasize the need to develop strategies to optimize nephron endowment in IUGR and preterm infants.
Collapse
Affiliation(s)
- Megan R Sutherland
- Department of Anatomy and Developmental Biology and Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Mary Jane Black
- Department of Anatomy and Developmental Biology and Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
14
|
Good PI, Li L, Hurst HA, Serrano Herrera I, Xu K, Rao M, Bateman DA, Al-Awqati Q, D’Agati VD, Costantini F, Lin F. Low nephron endowment increases susceptibility to renal stress and chronic kidney disease. JCI Insight 2023; 8:e161316. [PMID: 36626229 PMCID: PMC9977438 DOI: 10.1172/jci.insight.161316] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Preterm birth results in low nephron endowment and increased risk of acute kidney injury (AKI) and chronic kidney disease (CKD). To understand the pathogenesis of AKI and CKD in preterm humans, we generated potentially novel mouse models with a 30%-70% reduction in nephron number by inhibiting or deleting Ret tyrosine kinase in the developing ureteric bud. These mice developed glomerular and tubular hypertrophy, followed by the transition to CKD, recapitulating the renal pathological changes seen in humans born preterm. We injected neonatal mice with gentamicin, a ubiquitous nephrotoxic exposure in preterm infants, and detected more severe proximal tubular injury in mice with low nephron number compared with controls with normal nephron number. Mice with low nephron number had reduced proliferative repair with more rapid development of CKD. Furthermore, mice had more profound inflammation with highly elevated levels of MCP-1 and CXCL10, produced in part by damaged proximal tubules. Our study directly links low nephron endowment with postnatal renal hypertrophy, which in this model is maladaptive and results in CKD. Underdeveloped kidneys are more susceptible to gentamicin-induced AKI, suggesting that AKI in the setting of low nephron number is more severe and further increases the risk of CKD in this vulnerable population.
Collapse
Affiliation(s)
| | - Ling Li
- Department of Pediatrics and
| | | | | | - Katherine Xu
- Department of Internal Medicine, Columbia University Vagelos College of Physicians and Surgeons New York, New York, USA
| | - Meenakshi Rao
- Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston Massachusetts, USA
| | | | - Qais Al-Awqati
- Department of Internal Medicine, Columbia University Vagelos College of Physicians and Surgeons New York, New York, USA
| | - Vivette D. D’Agati
- Department of Pathology and Cellular Biology at Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Frank Costantini
- Department of Genetics and Development at Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | | |
Collapse
|
15
|
Phengpol N, Thongnak L, Lungkaphin A. The programming of kidney injury in offspring affected by maternal overweight and obesity: role of lipid accumulation, inflammation, oxidative stress, and fibrosis in the kidneys of offspring. J Physiol Biochem 2023; 79:1-17. [PMID: 36264422 DOI: 10.1007/s13105-022-00927-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/05/2022] [Indexed: 11/29/2022]
Abstract
Maternal overweight and obesity are considered important factors affecting fetal development with many potential consequences for offspring after delivery, including the increased risk of obesity and diabetes mellitus. Maternal obesity promotes adiposity in the offspring by increasing fat deposition and expansion in the body of the offspring. The expansion of adipose tissue changes adipokine levels, including a decrease in adiponectin and an increase in leptin. In addition to changes in adipokine levels, there are also increases in pro-inflammatory cytokines, pro-fibrotic cytokines, and reactive oxygen species, leading to oxidative stress in the offspring. These contribute to the promotion of insulin resistance in offspring, which is associated with kidney injury. Interestingly, maternal obesity can also promote renal lipid accumulation, which could activate inflammatory processes and promote renal oxidative stress and renal fibrosis. These alterations in the kidneys of the offspring imply that a mother being overweight/obese can program the development of kidney disease in offspring. This review will discuss the effects of a mother being overweight or obese on their offspring and the consequences with regard to the kidneys of their offspring. With a focus on the molecular mechanisms, including renal inflammation, renal oxidative stress, renal fibrosis, and renal lipid metabolism in offspring born to overweight and obese mothers, the causative mechanisms and perspective of these conditions will be included.
Collapse
Affiliation(s)
- Nichakorn Phengpol
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Laongdao Thongnak
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Functional Food Research Center for Well-Being, Chiang Mai University, Chiang Mai, Thailand. .,Functional Foods for Health and Disease, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand. .,Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
16
|
Ji B, Gong Y, Zhang Y, Li Y, Zhai Y, Sun Y, Wang X, Jia L, Xu H, Shen Q. Analysis of the operational status of the three-level referral system for urologic ultrasound screening and risk factors for renal pelvic dilatation in high-risk children. Front Pediatr 2023; 11:1162952. [PMID: 37168804 PMCID: PMC10164980 DOI: 10.3389/fped.2023.1162952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/04/2023] [Indexed: 05/13/2023] Open
Abstract
Background Congenital Anomalies of the Kidney and Urinary Tract (CAKUT) are the primary cause of end-stage renal disease in children, early diagnosis and treatment can significantly improve the kidney function. Among CAKUT, renal pelvis dilatation (RPD) due to various causes has the highest detection rate, which can be detected early by postnatal ultrasound screening. Since 2010, the Children's Hospital of Fudan University (CHFU), together with the Minhang District Maternal and Child Health Hospital (MCH) and Community Health Centres (CHCs) of Minhang District has created a three-level referral system for urological ultrasound screening. This study aims to describe the operation of a three-level referral system for ultrasound screening of CAKUT and to select risk factors of RPD in high-risk children. Methods The operation of the three-level referral system was assessed by analyzing the screening volume, screening rate, referral rate, and follow-up rate; risk factors of RPD in high-risk children were selected by chi-square test and multivariate logistic regression. Results A total of 16,468 high-risk children were screened in ten years, and the screening volume was maintained at about 1,500 cases per year; the screening rate showed a linear increase, from 36.8% in 2010 to 98.2% in 2019; the referral rate from the CHCs to the MCH was 89.9% significantly higher after 2015 than that of 84.7% from 2010 to 2015; the follow-up rate after 2015 was 71.0% significantly higher than that of 46.3% from 2010 to 2015. Multivariate logistic regression analysis showed that the risk of RPD was 1.966 times higher in males than in females, and the risk of moderate to severe RPD was 2.570 times higher in males than in females; the risk of RPD in preterm children was 1.228 times higher than that of full-term children; and the risk of RPD was 1.218 times higher in twins than in singles. Conclusions The screening volume of the three-level referral system has remained stable over a decade, with significantly higher screening, referral, and follow-up rates. Males, preterm, and twins are risk factors of RPD in high-risk children; males are also risk factors for moderate to severe RPD in high-risk children.
Collapse
Affiliation(s)
- Baowei Ji
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai, China
| | - Yinv Gong
- Department of Rheumatology, Children’s Hospital of Fudan University, Shanghai, China
| | - Ying Zhang
- Department of Child Health, Minhang Maternal and Child Health Hospital, Shanghai, China
| | - Yun Li
- Department of Child Health, Minhang Maternal and Child Health Hospital, Shanghai, China
| | - Yihui Zhai
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai, China
| | - Yinghua Sun
- Department of Ultrasonography, Children’s Hospital of Fudan University, Shanghai, China
| | - Xiang Wang
- Department of Urology, Children’s Hospital of Fudan University, Shanghai, China
| | - Lishan Jia
- Department of Pediatrics, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, China
| | - Hong Xu
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai, China
- Correspondence: Hong Xu
| | - Qian Shen
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai, China
| |
Collapse
|
17
|
van der Zanden LFM, Groen in ‘t Woud S, van Rooij IALM, Quaedackers JSLT, Steffens M, de Wall LLL, Schreuder MF, Feitz WFJ, Roeleveld N. Maternal risk factors for posterior urethral valves. Front Pediatr 2023; 11:1110117. [PMID: 37187579 PMCID: PMC10175587 DOI: 10.3389/fped.2023.1110117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction Posterior urethral valves (PUV) is a congenital disorder causing an obstruction of the lower urinary tract that affects approximately 1 in 4,000 male live births. PUV is considered a multifactorial disorder, meaning that both genetic and environmental factors are involved in its development. We investigated maternal risk factors for PUV. Methods We included 407 PUV patients and 814 controls matched on year of birth from the AGORA data- and biobank and three participating hospitals. Information on potential risk factors (family history of congenital anomalies of the kidney and urinary tract (CAKUT), season of conception, gravidity, subfertility, and conception using assisted reproductive techniques (ART), plus maternal age, body mass index, diabetes, hypertension, smoking, and use of alcohol and folic acid) was derived from maternal questionnaires. After multiple imputation, adjusted odds ratios (aORs) were estimated using conditional logistic regression corrected for minimally sufficient sets of confounders determined using directed acyclic graphs. Results A positive family history and low maternal age (<25 years) were associated with PUV development [aORs: 3.3 and 1.7 with 95% confidence intervals (95% CI) 1.4-7.7 and 1.0-2.8, respectively], whereas higher maternal age (>35 years) was associated with a lower risk (aOR: 0.7 95% CI: 0.4-1.0). Maternal preexisting hypertension seemed to increase PUV risk (aOR: 2.1 95% CI: 0.9-5.1), while gestational hypertension seemed to decrease this risk (aOR: 0.6 95% CI: 0.3-1.0). Concerning use of ART, the aORs for the different techniques were all above one, but with very wide 95% CIs including one. None of the other factors studied were associated with PUV development. Conclusion Our study showed that family history of CAKUT, low maternal age, and potentially preexisting hypertension were associated with PUV development, whereas higher maternal age and gestational hypertension seemed to be associated with a lower risk. Maternal age and hypertension as well as the possible role of ART in the development of PUV require further research.
Collapse
Affiliation(s)
- Loes F. M. van der Zanden
- Department for Health Evidence, Radboud university medical center, Nijmegen, Netherlands
- Correspondence: Loes F. M. van der Zanden
| | | | | | | | | | - Liesbeth L. L. de Wall
- Division of Pediatric Urology, Department of Urology, Amalia Children's Hospital, Radboud university medical center, Nijmegen, Netherlands
| | - Michiel F. Schreuder
- Department of Pediatric Nephrology, Amalia Children's Hospital, Radboud university medical center, Nijmegen, Netherlands
| | - Wout F. J. Feitz
- Division of Pediatric Urology, Department of Urology, Amalia Children's Hospital, Radboud university medical center, Nijmegen, Netherlands
| | - Nel Roeleveld
- Department for Health Evidence, Radboud university medical center, Nijmegen, Netherlands
| |
Collapse
|
18
|
Boato RT, Aguiar MB, Mak RH, Colosimo EA, Simões E Silva AC, Oliveira EA. Maternal risk factors for congenital anomalies of the kidney and urinary tract: A case-control study. J Pediatr Urol 2022; 19:199.e1-199.e11. [PMID: 36535837 DOI: 10.1016/j.jpurol.2022.11.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/17/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Congenital anomalies of the kidney and urinary tract (CAKUT) are significant causes of pediatric morbidity and mortality. The spectrum of CAKUT can be part of a syndrome, but most of these abnormalities occur as isolated and sporadic forms. The etiology of human CAKUT is unknown in the majority of cases. This case-control study aimed to investigate the association between maternal characteristics and the occurrence of CAKUT and specific CAKUT phenotypes. METHODS In this case-control study, 29,653 newborns were evaluated consecutively in a tertiary neonatal unit using the Latin American Collaborative Study of Congenital Malformations (ECLAMC) registry. Newborns without congenital anomalies were matched to CAKUT cases by sex, date, and place of birth at a ratio of 3:1. For analysis purposes, the cases were stratified into four subgroups: upper tract abnormalities (UTA), including ureteropelvic junction obstruction, vesicoureteral reflux, primary megaureter and others (n = 239), lower urinary tract obstruction (LUTO) (n = 79), cystic diseases (n = 59) and agenesis/hypodysplasia (n = 28). Multivariable logistic regression analyses were used to calculate crude and adjusted odds ratios (ORs) with 95% confidence intervals (CIs) for associations between the maternal risk factors and the presence of CAKUT. RESULTS The prevalence of non-syndromic CAKUT in our sample was 13 per 1000 live births. Data records allowed the analysis of 405 cases and 1208 controls. After adjustment by the binary regression logistic, three covariates remained associated as risk factors for the entire spectrum of CAKUT: consanguinity (Odds ratio [OR], 7.1, 95%CI, 2.4-20.4), family history of CAKUT (OR, 6.4, 95%CI, 1.9-21.3), and maternal chronic hypertension (OR, 14.69, 95%CI, 3.2-67.5) (Figure). These risk factors persisted consistently across the various CAKUT phenotypes with minor variations. Consanguinity was the only factor consistently associated with almost all CAKUT phenotypes. Maternal hypertension was associated with all phenotypes except for the agenesis/hypodysplasia group. The prevalence of CAKUT cases was 15 times higher in hypertensive mothers (3%) compared to normotensive mothers (0.2%). CONCLUSION Our study suggests that an increased risk of CAKUT is associated with consanguinity, a positive family history of CAKUT, and maternal hypertension. However, the prevalence of these risk factors in our cohort was rare and most cases presented as sporadic forms.
Collapse
Affiliation(s)
- Raíssa T Boato
- Division of Genetics, Department of Pediatrics, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Marcos B Aguiar
- Division of Genetics, Department of Pediatrics, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Robert H Mak
- Division of Pediatric Nephrology, Rady Children's Hospital San Diego, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Eduardo A Oliveira
- Pediatric Nephrology Unit, Department of Pediatrics, UFMG Belo Horizonte, Brazil
| |
Collapse
|
19
|
Manfellotto D, Cortinovis M, Perico N, Remuzzi G. Low birth weight, nephron number and chronic kidney disease. ITALIAN JOURNAL OF MEDICINE 2022. [DOI: 10.4081/itjm.2022.1538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Chronic kidney diseases have a significant impact on morbidity and mortality worldwide. Low birth weight, fetal growth restriction and prematurity are indicators of fetal growth and development disorders associated with a congenital reduction in nephron number, which predisposes to an increased risk for chronic kidney disease. On an individual basis, a small nephron number at birth is not always enough to determine the onset of chronic kidney disease, but it decreases the ability of the kidneys to resist any insults to renal tissue that may occur later in life, such as exposure to nephrotoxic drugs or episodes of acute kidney injury. The high incidence of low birth weight and preterm birth globally suggests that, at the population level, the impact of alterations in fetal development on the subsequent onset of chronic kidney disease could be significant. The implementation of strategies aimed at reducing the incidence of prematurity, fetal growth restriction, as well as other conditions that lead to low birth weight and a reduced nephron number at birth, provides an opportunity to prevent the development of chronic kidney disease in adulthood. For these purposes the coordinated intervention of several specialists, including obstetricians, gynecologists, neonatologists, nephrologists, and family doctors, is necessary. Such strategies can be particularly useful in resource-poor countries, which are simultaneously burdened by maternal, fetal and child malnutrition; poor health; epidemics caused by communicable diseases; and little access to screening and primary care.
Collapse
|
20
|
Mohr Lytsen R, Taageby Nielsen S, Kongsgaard Hansen M, Strandkjær N, Juul Rasmussen I, Axelsson Raja A, Vøgg RO, Sillesen AS, Kamstrup PR, Schmidt IM, Iversen K, Bundgaard H, Frikke-Schmidt R. Markers of Kidney Function in Early Childhood and Association With Maternal Comorbidity. JAMA Netw Open 2022; 5:e2243146. [PMID: 36409493 PMCID: PMC9679880 DOI: 10.1001/jamanetworkopen.2022.43146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
IMPORTANCE Kidney functional capacity is low at birth but doubles during the first 2 weeks of life and reaches near-adult levels at age 1 to 2 years. Existing reference intervals for markers of kidney function in newborns are mostly based on preterm newborns, newborns with illness, or small cohorts of term newborns, and the consequences of maternal comorbidities for newborn kidney function are sparsely described. OBJECTIVE To establish robust reference intervals for creatinine and urea in healthy children in early childhood and to assess whether maternal comorbidity is associated with newborn creatinine and urea concentrations. DESIGN, SETTING, AND PARTICIPANTS This multicenter, prospective, population-based cohort study assessed data and umbilical cord blood samples from participants in the Copenhagen Baby Heart Study (CBHS) who were born between April 1, 2016, and October 31, 2018, and venous blood samples from a subsample of CBHS participants who were enrolled in the COMPARE study between May 3, 2017, and November 4, 2018. Cord blood samples of 13 354 newborns from the CBHS and corresponding venous blood samples of 444 of those newborns from the COMPARE study were included. Blood samples were collected at birth, age 2 months, and age 14 to 16 months, with follow-up completed on February 12, 2020. Healthy nonadmitted term newborns from maternity wards at 3 hospitals in the Capital Region of Denmark were included. EXPOSURES Maternal comorbidity. MAIN OUTCOMES AND MEASURES Creatinine and urea concentrations. RESULTS Among 13 354 newborns in the CBHS cohort, characteristics of 12 938 children were stratified by sex and gestational age (GA). Of those, 6567 children (50.8%) were male; 5259 children (40.6%) were born at 37 to 39 weeks' GA, and 7679 children (59.4%) were born at 40 to 42 weeks' GA. Compared with children born at 40 to 42 weeks' GA, those born at 37 to 39 weeks' GA had lower birth weight, Apgar scores at 5 minutes, placental weight, and placental-fetal weight ratio. Children born at 37 to 39 weeks' GA vs those born at 40 to 42 weeks' GA were more frequently small for GA at birth and more likely to have placental insufficiency and exposure to maternal preeclampsia, maternal diabetes, maternal kidney disease, and maternal hypertension. Among children born at 37 to 39 weeks' GA, reference intervals were 0.54 to 1.08 mg/dL for creatinine and 5.32 to 14.67 mg/dL for urea; among children born at 40 to 42 weeks' GA, reference intervals were 0.57 to 1.19 mg/dL for creatinine and 5.60 to 14.85 mg/dL for urea. At birth, multifactorially adjusted odds ratios among children exposed to preeclampsia were 9.40 (95% CI, 1.68-52.54) for a venous creatinine concentration higher than the upper reference limit, 4.29 (95% CI, 1.32-13.93) for a venous creatinine concentration higher than the 90th percentile, and 3.10 (95% CI, 1.14-8.46) for a venous creatinine concentration higher than the 80th percentile. CONCLUSIONS AND RELEVANCE In this study, improved reference intervals for creatinine and urea concentrations were generated. Preeclampsia was associated with an increased risk of high newborn creatinine concentrations, suggesting that newborns of mothers with preeclampsia need closer observation of their kidney function.
Collapse
Affiliation(s)
- Rikke Mohr Lytsen
- Department of Clinical Biochemistry, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
| | - Sofie Taageby Nielsen
- Department of Clinical Biochemistry, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
| | - Malene Kongsgaard Hansen
- Department of Cardiology, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital–Herlev-Gentofte, Copenhagen, Denmark
| | - Nina Strandkjær
- Department of Cardiology, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital–Herlev-Gentofte, Copenhagen, Denmark
| | - Ida Juul Rasmussen
- Department of Clinical Biochemistry, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
| | - Anna Axelsson Raja
- Department of Cardiology, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital–Herlev-Gentofte, Copenhagen, Denmark
| | - R. Ottilia Vøgg
- Department of Cardiology, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital–Herlev-Gentofte, Copenhagen, Denmark
| | - Anne-Sophie Sillesen
- Department of Cardiology, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital–Herlev-Gentofte, Copenhagen, Denmark
| | - Pia R. Kamstrup
- Department of Clinical Biochemistry, Copenhagen University Hospital–Herlev-Gentofte, Copenhagen, Denmark
| | - Ida Maria Schmidt
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
| | - Kasper Iversen
- Department of Cardiology, Copenhagen University Hospital–Herlev-Gentofte, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Henning Bundgaard
- Department of Cardiology, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Connaughton DM, Hildebrandt F. Disease mechanisms of monogenic congenital anomalies of the kidney and urinary tract American Journal of Medical Genetics Part C. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:325-343. [PMID: 36208064 PMCID: PMC9618346 DOI: 10.1002/ajmg.c.32006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/14/2022] [Accepted: 09/16/2022] [Indexed: 11/05/2022]
Abstract
Congenital Anomalies of the Kidney and Urinary Tract (CAKUT) is a developmental disorder of the kidney and/or genito-urinary tract that results in end stage kidney disease (ESKD) in up to 50% of children. Despite the congenital nature of the disease, CAKUT accounts for almost 10% of adult onset ESKD. Multiple lines of evidence suggest that CAKUT is a Mendelian disorder, including the observation of familial clustering of CAKUT. Pathogenesis in CAKUT is embryonic in origin, with disturbances of kidney and urinary tract development resulting in a heterogeneous range of disease phenotypes. Despite polygenic and environmental factors being implicated, a significant proportion of CAKUT is monogenic in origin, with studies demonstrating single gene defects in 10%-20% of patients with CAKUT. Here, we review monogenic disease causation with emphasis on the etiological role of gene developmental pathways in CAKUT.
Collapse
Affiliation(s)
- Dervla M Connaughton
- Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Medicine, Division of Nephrology, London Health Sciences Centre, London, Ontario, Canada
| | - Friedhelm Hildebrandt
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Geylis M, Coreanu T, Novack V, Landau D. Risk factors for childhood chronic kidney disease: a population-based study. Pediatr Nephrol 2022; 38:1569-1576. [PMID: 36018434 DOI: 10.1007/s00467-022-05714-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND The population-based prevalence and risk factors of childhood chronic kidney disease (CKD) are not well-defined. We ascertained childhood CKD epidemiology and perinatal risk factors, based on a large computerized medical record database that covers most of southern Israel's population. METHODS Pre- and post-natal records of 79,374 eligible children (with at least one serum creatinine test) born during 2001-2015 were analyzed. "Ever-CKD" was defined as ≥ 2 estimated glomerular filtration rate (eGFR) values < 60 ml/min/1.73 m2 beyond age 2 years, more than 3 months apart. The last CKD status was determined on March 2019. RESULTS Of 82 (0.1%) patients with ever-CKD, 35 (42.7%) had their first abnormal eGFR identified already at age 2 years. In multiple logistic regression analysis, congenital anomalies of kidney and urinary tract (CAKUT)-related diagnoses, glomerulopathy, maternal oligohydramnios, small for gestational age, prematurity (under 34 weeks), post-term delivery, and small for gestational age at birth were significant risk factors for ever-CKD (odds ratio (95% confidence interval): 44.34(26.43-74.39), 64.60(32.42-128.70), 5.54(3.01-10.19), 2.02(1.25-3.28), 4.45(2.13-9.28), 2.96(1.28-6.86 and 2.02(1.25-3.28), respectively). Seventy children with ever-CKD (85.4%) had a depressed eGFR (< 90 ml/min/1.73 m2) on the last assessment (current-CKD), yielding a prevalence of 882/million. CONCLUSIONS CKD is more prevalent among children in southern Israel than previously reported, even after excluding those with aborted-CKD. Prenatal conditions increase the risk to develop CKD in childhood. Graphical abstract A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Michael Geylis
- Department of Pediatrics, Soroka University Medical Center, 151 Rager Boulevard, 84101, Beer-Sheva, Israel. .,Faculty of Health Sciences, Ben Gurion University, Beer Sheva, Israel.
| | - Tara Coreanu
- Clinical Research Center, Soroka University Medical Center, Beer-Sheva, Israel
| | - Victor Novack
- Faculty of Health Sciences, Ben Gurion University, Beer Sheva, Israel.,Clinical Research Center, Soroka University Medical Center, Beer-Sheva, Israel
| | - Daniel Landau
- Department of Nephrology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
23
|
Programming by maternal obesity: a pathway to poor cardiometabolic health in the offspring. Proc Nutr Soc 2022; 81:227-242. [DOI: 10.1017/s0029665122001914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is an ever increasing prevalence of maternal obesity worldwide such that in many populations over half of women enter pregnancy either overweight or obese. This review aims to summarise the impact of maternal obesity on offspring cardiometabolic outcomes. Maternal obesity is associated with increased risk of adverse maternal and pregnancy outcomes. However, beyond this exposure to maternal obesity during development also increases the risk of her offspring developing long-term adverse cardiometabolic outcomes throughout their adult life. Both human studies and those in experimental animal models have shown that maternal obesity can programme increased risk of offspring developing obesity and adipose tissue dysfunction; type 2 diabetes with peripheral insulin resistance and β-cell dysfunction; CVD with impaired cardiac structure and function and hypertension via impaired vascular and kidney function. As female offspring themselves are therefore likely to enter pregnancy with poor cardiometabolic health this can lead to an inter-generational cycle perpetuating the transmission of poor cardiometabolic health across generations. Maternal exercise interventions have the potential to mitigate some of the adverse effects of maternal obesity on offspring health, although further studies into long-term outcomes and how these translate to a clinical context are still required.
Collapse
|
24
|
Viroel FJM, Laurino LF, Caetano ÉLA, Jozala AF, Spim SRV, Pickler TB, Sercundes MK, Gomes MC, Hataka A, Grotto D, Gerenutti M. Ganoderma lucidum Modulates Glucose, Lipid Peroxidation and Hepatic Metabolism in Streptozotocin-Induced Diabetic Pregnant Rats. Antioxidants (Basel) 2022; 11:1035. [PMID: 35739932 PMCID: PMC9219838 DOI: 10.3390/antiox11061035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
The consumption of functional foods, such as mushrooms, apparently influences Gestational Diabetes Mellitus (GDM), and brings benefits to maternal-fetal health. Ganoderma lucidum contains a variety of bioactive compounds, such as polysaccharides, proteins and polyphenols that are able to control blood glucose and be used in anti-cancer therapy. We aimed to evaluate the effects of the consumption of Ganoderma lucidum (Gl) on maternal-fetal outcomes in streptozotocin-induced GDM (GDM-STZ). Pregnant rats were exposed to Gl (100 mg/kg/day) before and after the induction of GDM-STZ (single dose 40 mg/kg) on the eighth pregnancy day. Biochemical and oxidative stress parameters, reproductive performance and morphometry of fetuses were assessed. Gl reduced the glycemic response in the oral glucose tolerance test. Moreover, Gl decreased AST and ALT activities. GDM increased lipid peroxidation, which was reverted by Gl. Catalase and glutathione peroxidase activities were decreased in GDM and the administered Gl after the fetus implantation increased catalase activity. Measurements of the fetal head, thorax, craniocaudal and tail showed greater values in fetuses from rats exposed to Gl compared to GDM. Ganoderma lucidum has an encouraging nutritional and medicinal potential against GDM, since it modifies glucose metabolism, reduces lipid peroxidation, and has protective effects in fetuses born from GDM dams.
Collapse
Affiliation(s)
- Fabia Judice Marques Viroel
- Department of Pharmacy, University of Sorocaba, Sorocaba 18023-000, Brazil; (F.J.M.V.); (L.F.L.); (É.L.A.C.); (A.F.J.); (S.R.V.S.); (T.B.P.); (M.K.S.)
| | - Leticia Favara Laurino
- Department of Pharmacy, University of Sorocaba, Sorocaba 18023-000, Brazil; (F.J.M.V.); (L.F.L.); (É.L.A.C.); (A.F.J.); (S.R.V.S.); (T.B.P.); (M.K.S.)
| | - Érika Leão Ajala Caetano
- Department of Pharmacy, University of Sorocaba, Sorocaba 18023-000, Brazil; (F.J.M.V.); (L.F.L.); (É.L.A.C.); (A.F.J.); (S.R.V.S.); (T.B.P.); (M.K.S.)
| | - Angela Faustino Jozala
- Department of Pharmacy, University of Sorocaba, Sorocaba 18023-000, Brazil; (F.J.M.V.); (L.F.L.); (É.L.A.C.); (A.F.J.); (S.R.V.S.); (T.B.P.); (M.K.S.)
| | - Sara Rosicler Vieira Spim
- Department of Pharmacy, University of Sorocaba, Sorocaba 18023-000, Brazil; (F.J.M.V.); (L.F.L.); (É.L.A.C.); (A.F.J.); (S.R.V.S.); (T.B.P.); (M.K.S.)
| | - Thaisa Borim Pickler
- Department of Pharmacy, University of Sorocaba, Sorocaba 18023-000, Brazil; (F.J.M.V.); (L.F.L.); (É.L.A.C.); (A.F.J.); (S.R.V.S.); (T.B.P.); (M.K.S.)
| | - Michelle Klein Sercundes
- Department of Pharmacy, University of Sorocaba, Sorocaba 18023-000, Brazil; (F.J.M.V.); (L.F.L.); (É.L.A.C.); (A.F.J.); (S.R.V.S.); (T.B.P.); (M.K.S.)
| | - Marcela C. Gomes
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18610-307, Brazil; (M.C.G.); (A.H.)
| | - Alessandre Hataka
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18610-307, Brazil; (M.C.G.); (A.H.)
| | - Denise Grotto
- Department of Pharmacy, University of Sorocaba, Sorocaba 18023-000, Brazil; (F.J.M.V.); (L.F.L.); (É.L.A.C.); (A.F.J.); (S.R.V.S.); (T.B.P.); (M.K.S.)
| | - Marli Gerenutti
- Departament of Biomaterials and Regenerative Medicine, School of Medicine, Pontifical Catholic University of São Paulo–PUC SP, Sorocaba 18030-070, Brazil;
| |
Collapse
|
25
|
Iyengar A, Bonilla-Félix M. Effects of Prematurity and Growth Restriction on Adult Blood Pressure and Kidney Volume. Adv Chronic Kidney Dis 2022; 29:243-250. [PMID: 36084971 DOI: 10.1053/j.ackd.2022.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/11/2022] [Accepted: 02/15/2022] [Indexed: 11/11/2022]
Abstract
Gaining insight into the complex cycle of renal programming and its early-life clinical associations is essential to understand the origins of kidney disease. Prematurity and intrauterine growth restriction are associated with low nephron endowment. This increases the risk of developing hypertension and chronic kidney disease later in life. There is appreciable evidence to support mechanistic links between low nephron endowment secondary to intrauterine events and kidney size, kidney function, and blood pressure in postnatal life. A clear understanding of the cycle of developmental programming and consequences of fetal insults on the kidney is critical. In addition, the impact of events in the early postnatal period (accelerated postnatal growth, development of obesity, exposure to nephrotoxins) on the cardiovascular system and blood pressure of individuals born prematurely or with low birth weight is discussed. In summary, this review draws attention to the concepts of renal programming and nephron endowment and underscores the associations between intrauterine growth restriction, prematurity, and its clinical consequences in adult life.
Collapse
Affiliation(s)
- Arpana Iyengar
- Department of Pediatric Nephrology, St John's Medical College Hospital, Bangalore, India
| | | |
Collapse
|
26
|
Ozisik O, Ehrhart F, Evelo CT, Mantovani A, Baudot A. Overlap of vitamin A and vitamin D target genes with CAKUT-related processes. F1000Res 2022; 10:395. [PMID: 35528959 PMCID: PMC9051587 DOI: 10.12688/f1000research.51018.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2022] [Indexed: 11/20/2022] Open
Abstract
Congenital Anomalies of the Kidney and Urinary Tract (CAKUT) are a group of abnormalities affecting the kidneys and their outflow tracts. CAKUT patients display a large clinical variability as well as a complex aetiology. Only 5% to 20% of the cases have a monogenic origin. It is thereby suspected that interactions of both genetic and environmental factors contribute to the disease. Vitamins are among the environmental factors that are considered for CAKUT aetiology. In this study, we aimed to investigate whether vitamin A or vitamin D could have a role in CAKUT aetiology. For this purpose we collected vitamin A and vitamin D target genes and computed their overlap with CAKUT-related gene sets. We observed limited overlap between vitamin D targets and CAKUT-related gene sets. We however observed that vitamin A target genes significantly overlap with multiple CAKUT-related gene sets, including CAKUT causal and differentially expressed genes, and genes involved in renal system development. Overall, these results indicate that an excess or deficiency of vitamin A might be relevant to a broad range of urogenital abnormalities.
Collapse
Affiliation(s)
- Ozan Ozisik
- Aix Marseille University, Inserm, MMG, Marseille, 13385, France
| | - Friederike Ehrhart
- Department of Bioinformatics - BiGCaT, Maastricht University, Maastricht, 6200 MD, The Netherlands
- Department of Bioinformatics, NUTRIM/MHeNs, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Chris T. Evelo
- Department of Bioinformatics - BiGCaT, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | | | - Anaïs Baudot
- Aix Marseille University, Inserm, MMG, Marseille, 13385, France
- Barcelona Supercomputing Center (BSC), Barcelona, 08034, Spain
| |
Collapse
|
27
|
Hsu CN, Tain YL. Chronic Kidney Disease and Gut Microbiota: What Is Their Connection in Early Life? Int J Mol Sci 2022; 23:3954. [PMID: 35409313 PMCID: PMC9000069 DOI: 10.3390/ijms23073954] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
The gut-kidney interaction implicating chronic kidney disease (CKD) has been the focus of increasing interest in recent years. Gut microbiota-targeted therapies could prevent CKD and its comorbidities. Considering that CKD can originate in early life, its treatment and prevention should start in childhood or even earlier in fetal life. Therefore, a better understanding of how the early-life gut microbiome impacts CKD in later life and how to develop ideal early interventions are unmet needs to reduce CKD. The purpose of the current review is to summarize (1) the current evidence on the gut microbiota dysbiosis implicated in pediatric CKD; (2) current knowledge supporting the impact of the gut-kidney axis in CKD, including inflammation, immune response, alterations of microbiota compositions, short-chain fatty acids, and uremic toxins; and (3) an overview of the studies documenting early gut microbiota-targeted interventions in animal models of CKD of developmental origins. Treatment options include prebiotics, probiotics, postbiotics, etc. To accelerate the transition of gut microbiota-based therapies for early prevention of CKD, an extended comprehension of gut microbiota dysbiosis implicated in renal programming is needed, as well as a greater focus on pediatric CKD for further clinical translation.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
28
|
Voggel J, Mohr J, Nüsken KD, Dötsch J, Nüsken E, Alejandre Alcazar MA. Translational insights into mechanisms and preventive strategies after renal injury in neonates. Semin Fetal Neonatal Med 2022; 27:101245. [PMID: 33994314 DOI: 10.1016/j.siny.2021.101245] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Adverse perinatal circumstances can cause acute kidney injury (AKI) and contribute to chronic kidney disease (CKD). Accumulating evidence indicate that a wide spectrum of perinatal conditions interferes with normal kidney development and ultimately leads to aberrant kidney structure and function later in life. The present review addresses the lack of mechanistic knowledge with regard to perinatal origins of CKD and provides a comprehensive overview of pre- and peri-natal insults, including genetic predisposition, suboptimal nutritional supply, obesity and maternal metabolic disorders as well as placental insufficiency leading to intrauterine growth restriction (IUGR), prematurity, infections, inflammatory processes, and the need for life-saving treatments (e.g. oxygen supplementation, mechanical ventilation, medications) in neonates. Finally, we discuss future preventive, therapeutic, and regenerative directions. In summary, this review highlights the perinatal vulnerability of the kidney and the early origins of increased susceptibility toward AKI and CKD during postnatal life. Promotion of kidney health and prevention of disease require the understanding of perinatal injury in order to optimize perinatal micro- and macro-environments and enable normal kidney development.
Collapse
Affiliation(s)
- Jenny Voggel
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Department of Pediatric and Adolescent Medicine, Germany; University of Cologne, Faculty of Medicine, University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Germany
| | - Jasmine Mohr
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Translational Experimental Pediatrics - Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, Germany; University of Cologne, Faculty of Medicine, University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Germany
| | - Kai-Dietrich Nüsken
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Department of Pediatric and Adolescent Medicine, Germany
| | - Jörg Dötsch
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Department of Pediatric and Adolescent Medicine, Germany
| | - Eva Nüsken
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Department of Pediatric and Adolescent Medicine, Germany
| | - Miguel A Alejandre Alcazar
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Translational Experimental Pediatrics - Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, Germany; University of Cologne, Faculty of Medicine, University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Germany; Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Faculty of Medicine, University Hospital Cologne Cologne, Germany; Institute for Lung Health, University of Giessen and Marburg Lung Centre (UGMLC), Member of the German Centre for Lung Research (DZL), Gießen, Germany.
| |
Collapse
|
29
|
Assessment and management of obesity and metabolic syndrome in children with CKD stages 2-5 on dialysis and after kidney transplantation-clinical practice recommendations from the Pediatric Renal Nutrition Taskforce. Pediatr Nephrol 2022; 37:1-20. [PMID: 34374836 PMCID: PMC8674169 DOI: 10.1007/s00467-021-05148-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/04/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022]
Abstract
Obesity and metabolic syndrome (O&MS) due to the worldwide obesity epidemic affects children at all stages of chronic kidney disease (CKD) including dialysis and after kidney transplantation. The presence of O&MS in the pediatric CKD population may augment the already increased cardiovascular risk and contribute to the loss of kidney function. The Pediatric Renal Nutrition Taskforce (PRNT) is an international team of pediatric renal dietitians and pediatric nephrologists who develop clinical practice recommendations (CPRs) for the nutritional management of children with kidney diseases. We present CPRs for the assessment and management of O&MS in children with CKD stages 2-5, on dialysis and after kidney transplantation. We address the risk factors and diagnostic criteria for O&MS and discuss their management focusing on non-pharmacological treatment management, including diet, physical activity, and behavior modification in the context of age and CKD stage. The statements have been graded using the American Academy of Pediatrics grading matrix. Statements with a low grade or those that are opinion-based must be carefully considered and adapted to individual patient needs based on the clinical judgment of the treating physician and dietitian. Research recommendations are provided. The CPRs will be periodically audited and updated by the PRNT.
Collapse
|
30
|
Awazu M. Structural and functional changes in the kidney caused by adverse fetal and neonatal environments. Mol Biol Rep 2021; 49:2335-2344. [PMID: 34817775 DOI: 10.1007/s11033-021-06967-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022]
Abstract
Health and disease risk in the adulthood are known to be affected by the early developmental environment. Kidney diseases are one of these diseases, and kidneys are altered both structurally and functionally by adverse pre- and perinatal events. The most known structural change is low nephron number seen in subjects born low birth weight and/or preterm. In various animal models of intrauterine growth restriction (IUGR), one of the causes of low birth weight, the mechanism of low nephron number was investigated. While apoptosis of metanephric mesenchyme has been suggested to be the cause, I showed that suppression of ureteric branching, global DNA methylation, and caspase-3 activity also contributes to the mechanism. Other structural changes caused by adverse fetal and neonatal environments include peritubular and glomerular capillary rarefaction and low podocyte endowment. These are aggravated by postnatal development of focal glomerulosclerosis and tubulointerstitial fibrosis that result from low nephron number. Functional changes can be seen in tubules, endothelium, renin-angiotensin system, sympathetic nervous system, oxidative stress, and others. As an example, I reported that aggravated nitrosative stress in a rat IUGR model resulted in more severe tubular necrosis and tubulointerstitial fibrosis after unilateral ureteral obstruction. The mechanism of various functional changes needs to be clarified but may be explained by epigenetic modifications.
Collapse
Affiliation(s)
- Midori Awazu
- Department of Pediatrics, Tokyo Metropolitan Ohtsuka Hospital, Tokyo, Japan.
| |
Collapse
|
31
|
Cwiek A, Suzuki M, deRonde K, Conaway M, Bennett KM, El Dahr S, Reidy KJ, Charlton JR. Premature differentiation of nephron progenitor cell and dysregulation of gene pathways critical to kidney development in a model of preterm birth. Sci Rep 2021; 11:21667. [PMID: 34737344 PMCID: PMC8569166 DOI: 10.1038/s41598-021-00489-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/05/2021] [Indexed: 12/31/2022] Open
Abstract
Preterm birth is a leading cause of neonatal morbidity. Survivors have a greater risk for kidney dysfunction and hypertension. Little is known about the molecular changes that occur in the kidney of individuals born preterm. Here, we demonstrate that mice delivered two days prior to full term gestation undergo premature cessation of nephrogenesis, resulting in a lower glomerular density. Kidneys from preterm and term groups exhibited differences in gene expression profiles at 20- and 27-days post-conception, including significant differences in the expression of fat-soluble vitamin-related genes. Kidneys of the preterm mice exhibited decreased proportions of endothelial cells and a lower expression of genes promoting angiogenesis compared to the term group. Kidneys from the preterm mice also had altered nephron progenitor subpopulations, early Six2 depletion, and altered Jag1 expression in the nephrogenic zone, consistent with premature differentiation of nephron progenitor cells. In conclusion, preterm birth alone was sufficient to shorten the duration of nephrogenesis and cause premature differentiation of nephron progenitor cells. These candidate genes and pathways may provide targets to improve kidney health in preterm infants.
Collapse
Affiliation(s)
- Aleksandra Cwiek
- Division of Nephrology, Department of Pediatrics, University of Virginia, Box 800386, Charlottesville, VA, 22903, USA
- Cell & Developmental Biology Graduate Program, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Masako Suzuki
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Kimberly deRonde
- Division of Nephrology, Department of Pediatrics, University of Virginia, Box 800386, Charlottesville, VA, 22903, USA
| | - Mark Conaway
- University of Virginia Health System, Charlottesville, VA, USA
- Division of Translational Research and Applied Statistics, Department of Public Health Sciences, University of Virginia School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Kevin M Bennett
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Samir El Dahr
- Department of Pediatrics, Tulane University School of Medicine and Children's Hospital of New Orleans, New Orleans, LA, USA
| | - Kimberly J Reidy
- Division of Nephrology, Department of Pediatrics, Children's Hospital at Montefiore, New York, NY, USA
| | - Jennifer R Charlton
- Division of Nephrology, Department of Pediatrics, University of Virginia, Box 800386, Charlottesville, VA, 22903, USA.
| |
Collapse
|
32
|
Hsu CN, Tain YL. Adverse Impact of Environmental Chemicals on Developmental Origins of Kidney Disease and Hypertension. Front Endocrinol (Lausanne) 2021; 12:745716. [PMID: 34721300 PMCID: PMC8551449 DOI: 10.3389/fendo.2021.745716] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/27/2021] [Indexed: 01/09/2023] Open
Abstract
Chronic kidney disease (CKD) and hypertension are becoming a global health challenge, despite developments in pharmacotherapy. Both diseases can begin in early life by so-called "developmental origins of health and disease" (DOHaD). Environmental chemical exposure during pregnancy can affect kidney development, resulting in renal programming. Here, we focus on environmental chemicals that pregnant mothers are likely to be exposed, including dioxins, bisphenol A (BPA), phthalates, per- and polyfluoroalkyl substances (PFAS), polycyclic aromatic hydrocarbons (PAH), heavy metals, and air pollution. We summarize current human evidence and animal models that supports the link between prenatal exposure to environmental chemicals and developmental origins of kidney disease and hypertension, with an emphasis on common mechanisms. These include oxidative stress, renin-angiotensin system, reduced nephron numbers, and aryl hydrocarbon receptor signaling pathway. Urgent action is required to identify toxic chemicals in the environment, avoid harmful chemicals exposure during pregnancy and lactation, and continue to discover other potentially harmful chemicals. Innovation is also needed to identify kidney disease and hypertension in the earliest stage, as well as translating effective reprogramming interventions from animal studies into clinical practice. Toward DOHaD approach, prohibiting toxic chemical exposure and better understanding of underlying mechanisms, we have the potential to reduce global burden of kidney disease and hypertension.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
33
|
Yim HE, Yoo KH. Obesity and chronic kidney disease: prevalence, mechanism, and management. Clin Exp Pediatr 2021; 64:511-518. [PMID: 33831296 PMCID: PMC8498012 DOI: 10.3345/cep.2021.00108] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/19/2021] [Indexed: 11/27/2022] Open
Abstract
The prevalence of childhood obesity is increasing worldwide at an alarming rate. While obesity is known to increase a variety of cardiovascular and metabolic diseases, it also acts as a risk factor for the development and progression of chronic kidney disease (CKD). During childhood and adolescence, severe obesity is associated with an increased prevalence and incidence of the early stages of kidney disease. Importantly, children born to obese mothers are also at increased risk of developing obesity and CKD later in life. The potential mechanisms underlying the association between obesity and CKD include hemodynamic factors, metabolic effects, and lipid nephrotoxicity. Weight reduction via increased physical activity, caloric restriction, treatment with angiotensin-converting enzyme inhibitors, and judicious bariatric surgery can be used to control obesity and obesity-related kidney disease. Preventive strategies to halt the obesity epidemic in the healthcare community are needed to reduce the widespread deleterious consequences of obesity including CKD development and progression.
Collapse
Affiliation(s)
- Hyung Eun Yim
- Department of Pediatrics, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Kee Hwan Yoo
- Department of Pediatrics, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
34
|
Srivastava T, Joshi T, Heruth DP, Rezaiekhaligh MH, Garola RE, Zhou J, Boinpelly VC, Ali MF, Alon US, Sharma M, Vanden Heuvel GB, Mahajan P, Priya L, Jiang Y, McCarthy ET, Savin VJ, Sharma R, Sharma M. A mouse model of prenatal exposure to Interleukin-6 to study the developmental origin of health and disease. Sci Rep 2021; 11:13260. [PMID: 34168254 PMCID: PMC8225793 DOI: 10.1038/s41598-021-92751-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic inflammation in pregnant obese women is associated with 1.5- to 2-fold increase in serum Interleukin-6 (IL-6) and newborns with lower kidney/body weight ratio but the role of IL-6 in increased susceptibility to chronic kidney (CKD) in adult progeny is not known. Since IL-6 crosses the placental barrier, we administered recombinant IL-6 (10 pg/g) to pregnant mice starting at mid-gestation yielded newborns with lower body (p < 0.001) and kidney (p < 0.001) weights. Histomorphometry indicated decreased nephrogenic zone width (p = 0.039) with increased numbers of mature glomeruli (p = 0.002) and pre-tubular aggregates (p = 0.041). Accelerated maturation in IL-6 newborns was suggested by early expression of podocyte-specific protein podocin in glomeruli, increased 5-methyl-cytosine (LC–MS analysis for CpG DNA methylation) and altered expression of certain genes of cell-cycle and apoptosis (RT-qPCR array-analysis). Western blotting showed upregulated pJAK2/pSTAT3. Thus, treating dams with IL-6 as a surrogate provides newborns to study effects of maternal systemic inflammation on future susceptibility to CKD in adulthood.
Collapse
Affiliation(s)
- Tarak Srivastava
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA. .,Midwest Veterans' Biomedical Research Foundation (MVBRF), Kansas City, MO, USA. .,Department of Oral and Craniofacial Sciences, University of Missouri at Kansas City-School of Dentistry, Kansas City, MO, USA.
| | - Trupti Joshi
- Department of Health Management and Informatics and MU Informatics Institute, University of Missouri, Columbia, MO, USA.,Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,MU Data Science and Informatics Institute, University of Missouri, Columbia, MO, USA
| | - Daniel P Heruth
- Children's Mercy Research Institute, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO, USA
| | - Mohammad H Rezaiekhaligh
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Robert E Garola
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO, USA
| | - Jianping Zhou
- Midwest Veterans' Biomedical Research Foundation (MVBRF), Kansas City, MO, USA.,Kansas City VA Medical Center, Kansas City, MO, USA
| | - Varun C Boinpelly
- Midwest Veterans' Biomedical Research Foundation (MVBRF), Kansas City, MO, USA.,Kansas City VA Medical Center, Kansas City, MO, USA
| | - Mohammed Farhan Ali
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Uri S Alon
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Madhulika Sharma
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Gregory B Vanden Heuvel
- Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Pramod Mahajan
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Drake University, Des Moines, IA, USA
| | - Lakshmi Priya
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Yuexu Jiang
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Ellen T McCarthy
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Virginia J Savin
- Kansas City VA Medical Center, Kansas City, MO, USA.,Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ram Sharma
- Kansas City VA Medical Center, Kansas City, MO, USA
| | - Mukut Sharma
- Midwest Veterans' Biomedical Research Foundation (MVBRF), Kansas City, MO, USA.,Kansas City VA Medical Center, Kansas City, MO, USA.,Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
35
|
Fédou C, Camus M, Lescat O, Feuillet G, Mueller I, Ross B, Buléon M, Neau E, Alves M, Goudounéche D, Breuil B, Boizard F, Bardou Q, Casemayou A, Tack I, Dreux S, Batut J, Blader P, Burlet-Schiltz O, Decramer S, Wirth B, Klein J, Saulnier-Blache JS, Buffin-Meyer B, Schanstra JP. Mapping of the amniotic fluid proteome of fetuses with congenital anomalies of the kidney and urinary tract identifies plastin 3 as a protein involved in glomerular integrity. J Pathol 2021; 254:575-588. [PMID: 33987838 DOI: 10.1002/path.5703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 11/07/2022]
Abstract
Congenital anomalies of the kidney and the urinary tract (CAKUT) are the first cause of chronic kidney disease in childhood. Several genetic and environmental origins are associated with CAKUT, but most pathogenic pathways remain elusive. Considering the amniotic fluid (AF) composition as a proxy for fetal kidney development, we analyzed the AF proteome from non-severe CAKUT (n = 19), severe CAKUT (n = 14), and healthy control (n = 22) fetuses using LC-MS/MS. We identified 471 significant proteins that discriminated the three AF groups with 81% precision. Among them, eight proteins independent of gestational age (CSPG4, LMAN2, ENDOD1, ANGPTL2, PRSS8, NGFR, ROBO4, PLS3) were associated with both the presence and the severity of CAKUT. Among those, five were part of a protein-protein interaction network involving proteins previously identified as being potentially associated with CAKUT. The actin-bundling protein PLS3 (plastin 3) was the only protein displaying a gradually increased AF abundance from control, via non-severe, to severe CAKUT. Immunohistochemistry experiments showed that PLS3 was expressed in the human fetal as well as in both the fetal and the postnatal mouse kidney. In zebrafish embryos, depletion of PLS3 led to a general disruption of embryonic growth including reduced pronephros development. In postnatal Pls3-knockout mice, kidneys were macroscopically normal, but the glomerular ultrastructure showed thickening of the basement membrane and fusion of podocyte foot processes. These structural changes were associated with albuminuria and decreased expression of podocyte markers including Wilms' tumor-1 protein, nephrin, and podocalyxin. In conclusion, we provide the first map of the CAKUT AF proteome that will serve as a reference for future studies. Among the proteins strongly associated with CAKUT, PLS3 did surprisingly not specifically affect nephrogenesis but was found as a new contributor in the maintenance of normal kidney function, at least in part through the control of glomerular integrity. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Camille Fédou
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Mylène Camus
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Ophélie Lescat
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Guylène Feuillet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Ilka Mueller
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Bryony Ross
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Marie Buléon
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Eric Neau
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Melinda Alves
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Dominique Goudounéche
- Centre de Microscopie Electronique Appliquée à la Biologie (CMEAB), Faculté de Médecine Rangueil, University of Toulouse, Toulouse, France
| | - Benjamin Breuil
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Franck Boizard
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Quentin Bardou
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Audrey Casemayou
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France.,Département de Néphrologie et Transplantation d'Organes, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Ivan Tack
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Sophie Dreux
- Unité de Biochimie Fœto-Placentaire, Laboratoire de Biochimie - Hormonologie CHU Robert Debré, AP-HP, Paris, France
| | - Julie Batut
- Molecular, Cellular and Developmental Biology Unit (MCD, UMR5077), Centre de Biologie Intégrative (CBI, FR3743), Université de Toulouse, Toulouse, France
| | - Patrick Blader
- Molecular, Cellular and Developmental Biology Unit (MCD, UMR5077), Centre de Biologie Intégrative (CBI, FR3743), Université de Toulouse, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Stéphane Decramer
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France.,Service de Néphrologie Pédiatrique, Hôpital des Enfants, CHU Toulouse, Toulouse, France.,Centre De Référence des Maladies Rénales Rares du Sud-Ouest (SORARE), Toulouse, France
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Julie Klein
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Jean Sébastien Saulnier-Blache
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Bénédicte Buffin-Meyer
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Joost P Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| |
Collapse
|
36
|
Childhood risk factors for adulthood chronic kidney disease. Pediatr Nephrol 2021; 36:1387-1396. [PMID: 32500249 DOI: 10.1007/s00467-020-04611-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/03/2020] [Accepted: 05/11/2020] [Indexed: 12/25/2022]
Abstract
Chronic kidney disease (CKD) is a major public health challenge, affecting as much as 8 to 18% of the world population. Identifying childhood risk factors for future CKD may help clinicians make early diagnoses and initiation of preventive interventions for CKD and its attendant comorbidities as well as monitoring for complications. The purpose of this review is to describe childhood risk factors that may predict development of overt kidney disease later in life. Currently, there are multiple childhood risk factors associated with future onset and progression of CKD. These risk factors can be grouped into five categories: genetic factors (e.g., monogenic or risk alleles), perinatal factors (e.g., low birth weight and prematurity), childhood kidney diseases (e.g., congenital anomalies, glomerular diseases, and renal cystic ciliopathies), childhood onset of chronic conditions (e.g., cancer, diabetes, hypertension, dyslipidemia, and obesity), and different lifestyle factors (e.g., physical activity, diet, and factors related to socioeconomic status). The available published information suggests that the lifelong risk for CKD can be attributed to multiple factors that appear already during childhood. However, results are conflicting on the effects of childhood physical activity, diet, and dyslipidemia on future renal function. On the other hand, there is consistent evidence to support follow-up of high-risk groups.
Collapse
|
37
|
Ozisik O, Ehrhart F, Evelo CT, Mantovani A, Baudot A. Overlap of vitamin A and vitamin D target genes with CAKUT-related processes. F1000Res 2021; 10:395. [PMID: 35528959 PMCID: PMC9051587 DOI: 10.12688/f1000research.51018.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2022] [Indexed: 08/24/2023] Open
Abstract
Congenital Anomalies of the Kidney and Urinary Tract (CAKUT) are a group of abnormalities affecting the kidneys and their outflow tracts. CAKUT patients display a large clinical variability as well as a complex aetiology. Only 5% to 20% of the cases have a monogenic origin. It is thereby suspected that interactions of both genetic and environmental factors contribute to the disease. Vitamins are among the environmental factors that are considered for CAKUT aetiology. In this study, we aimed to investigate whether vitamin A or vitamin D could have a role in CAKUT aetiology. For this purpose we collected vitamin A and vitamin D target genes and computed their overlap with CAKUT-related gene sets. We observed limited overlap between vitamin D targets and CAKUT-related gene sets. We however observed that vitamin A target genes significantly overlap with multiple CAKUT-related gene sets, including CAKUT causal and differentially expressed genes, and genes involved in renal system development. Overall, these results indicate that an excess or deficiency of vitamin A might be relevant to a broad range of urogenital abnormalities.
Collapse
Affiliation(s)
- Ozan Ozisik
- Aix Marseille University, Inserm, MMG, Marseille, 13385, France
| | - Friederike Ehrhart
- Department of Bioinformatics - BiGCaT, Maastricht University, Maastricht, 6200 MD, The Netherlands
- Department of Bioinformatics, NUTRIM/MHeNs, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Chris T. Evelo
- Department of Bioinformatics - BiGCaT, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | | | - Anaïs Baudot
- Aix Marseille University, Inserm, MMG, Marseille, 13385, France
- Barcelona Supercomputing Center (BSC), Barcelona, 08034, Spain
| |
Collapse
|
38
|
Preventive Aspects of Early Resveratrol Supplementation in Cardiovascular and Kidney Disease of Developmental Origins. Int J Mol Sci 2021; 22:ijms22084210. [PMID: 33921641 PMCID: PMC8072983 DOI: 10.3390/ijms22084210] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/08/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
The increase in the incidence of cardiovascular diseases (CVDs) and kidney disease has stimulated research for strategies that could prevent, rather than just treat, both interconnected disorders. Resveratrol, a polyphenolic compound with pleiotropic biofunctions, has shown health benefits. Emerging epidemiological data supports that early life environmental insults are regarded as increased risks of developing CVDs and kidney disease in adulthood. Conversely, both disorders could be reversed or postponed by shifting interventions from adulthood to earlier stage by so-called reprogramming. The purpose of this review is first to highlight current epidemiological studies linking cardiovascular and renal programming to resulting CVD and kidney disease of developmental origins. This will be followed by a summary of how resveratrol could exert a positive influence on CVDs and kidney disease. This review also presents an overview of the evidence documenting resveratrol as a reprogramming agent to protect against CVD and kidney disease of developmental origins from animal studies and to outline the advances in understanding the underlying molecular mechanisms. Overall, this review reveals the need for future research to further clarify the reprogramming effects of resveratrol before clinical translation.
Collapse
|
39
|
Charlton JR, Baldelomar EJ, Hyatt DM, Bennett KM. Nephron number and its determinants: a 2020 update. Pediatr Nephrol 2021; 36:797-807. [PMID: 32350665 PMCID: PMC7606355 DOI: 10.1007/s00467-020-04534-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/29/2020] [Accepted: 03/05/2020] [Indexed: 12/30/2022]
Abstract
Studies of human nephron number have been conducted for well over a century and have uncovered a large variability in nephron number. However, the mechanisms influencing nephron endowment and loss, along with the etiology for the wide range among individuals are largely unknown. Advances in imaging technology have allowed investigators to revisit the principles of renal structure and physiology and their roles in the progression of kidney disease. Here, we will review the latest data on the influences impacting nephron number, innovations made over the last 6 years to understand and integrate renal structure and function, and new developments in the tools used to count nephrons in vivo.
Collapse
Affiliation(s)
- Jennifer R. Charlton
- University of Virginia School of Medicine, Department of Pediatrics, Division of Nephrology, Charlottesville, VA, USA
| | - Edwin J. Baldelomar
- Washington University in St. Louis, Department of Radiology, St. Louis, MO, USA
| | - Dylan M. Hyatt
- University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - Kevin M. Bennett
- Washington University in St. Louis, Department of Radiology, St. Louis, MO, USA
| |
Collapse
|
40
|
Abstract
The kidney plays an integral role in filtering the blood-removing metabolic by-products from the body and regulating blood pressure. This requires the establishment of large numbers of efficient and specialized blood filtering units (nephrons) that incorporate a system for vascular exchange and nutrient reabsorption as well as a collecting duct system to remove waste (urine) from the body. Kidney development is a dynamic process which generates these structures through a delicately balanced program of self-renewal and commitment of nephron progenitor cells that inhabit a constantly evolving cellular niche at the tips of a branching ureteric "tree." The former cells build the nephrons and the latter the collecting duct system. Maintaining these processes across fetal development is critical for establishing the normal "endowment" of nephrons in the kidney and perturbations to this process are associated both with mutations in integral genes and with alterations to the fetal environment.
Collapse
Affiliation(s)
- Ian M Smyth
- Department of Anatomy and Developmental Biology, Department of Biochemistry and Molecular Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
41
|
Westland R, Renkema KY, Knoers NV. Clinical Integration of Genome Diagnostics for Congenital Anomalies of the Kidney and Urinary Tract. Clin J Am Soc Nephrol 2021; 16:128-137. [PMID: 32312792 PMCID: PMC7792653 DOI: 10.2215/cjn.14661119] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Revolutions in genetics, epigenetics, and bioinformatics are currently changing the outline of diagnostics and clinical medicine. From a nephrologist's perspective, individuals with congenital anomalies of the kidney and urinary tract (CAKUT) are an important patient category: not only is CAKUT the predominant cause of kidney failure in children and young adults, but the strong phenotypic and genotypic heterogeneity of kidney and urinary tract malformations has hampered standardization of clinical decision making until now. However, patients with CAKUT may benefit from precision medicine, including an integrated diagnostics trajectory, genetic counseling, and personalized management to improve clinical outcomes of developmental kidney and urinary tract defects. In this review, we discuss the present understanding of the molecular etiology of CAKUT and the currently available genome diagnostic modalities in the clinical care of patients with CAKUT. Finally, we discuss how clinical integration of findings from large-scale genetic, epigenetic, and gene-environment interaction studies may improve the prognosis of all individuals with CAKUT.
Collapse
Affiliation(s)
- Rik Westland
- Department of Pediatric Nephrology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Kirsten Y. Renkema
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nine V.A.M. Knoers
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands,Department of Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
42
|
Hsu CN, Tain YL. Developmental Origins of Kidney Disease: Why Oxidative Stress Matters? Antioxidants (Basel) 2020; 10:E33. [PMID: 33396856 PMCID: PMC7823649 DOI: 10.3390/antiox10010033] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
The "developmental origins of health and disease" theory indicates that many adult-onset diseases can originate in the earliest stages of life. The developing kidney has emerged as being particularly vulnerable to adverse in utero conditions leading to morphological and functional changes, namely renal programming. Emerging evidence indicates oxidative stress, an imbalance between reactive oxygen/nitrogen species (ROS/RNS) and antioxidant systems, plays a pathogenetic role in the developmental programming of kidney disease. Conversely, perinatal use of antioxidants has been implemented to reverse programming processes and prevent adult-onset diseases. We have termed this reprogramming. The focus of this review is twofold: (1) To summarize the current knowledge on oxidative stress implicated in renal programming and kidney disease of developmental origins; and (2) to provide an overview of reprogramming effects of perinatal antioxidant therapy on renal programming and how this may prevent adult-onset kidney disease. Although early-life oxidative stress is implicated in mediating renal programming and adverse offspring renal outcomes, and animal models provide promising results to allow perinatal antioxidants applied as potential reprogramming interventions, it is still awaiting clinical translation. This presents exciting new challenges and areas for future research.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
43
|
Fédou C, Lescat O, Feuillet G, Buléon M, Neau E, Breuil B, Alvès M, Batut J, Blader P, Decramer S, Saulnier-Blache JS, Klein J, Buffin-Meyer B, Schanstra JP. The low affinity p75 neurotrophin receptor is down-regulated in congenital anomalies of the kidney and the urinary tract: Possible involvement in early nephrogenesis. Biochem Biophys Res Commun 2020; 533:786-791. [PMID: 32988586 DOI: 10.1016/j.bbrc.2020.09.084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 09/20/2020] [Indexed: 12/14/2022]
Abstract
Congenital Anomalies of the Kidney and of the Urinary Tract (CAKUT) cover a broad range of disorders including abnormal kidney development caused by defective nephrogenesis. Here we explored the possible involvement of the low affinity p75 neurotrophin receptor (p75NTR) in CAKUT and nephrogenesis. In mouse, p75NTR was highly expressed in fetal kidney, located within cortical early nephrogenic bodies, and decreased rapidly after birth. In human control fetal kidney, p75NTR was also located within the early nephrogenic bodies as well as in the mature glomeruli, presumably in the mesangium. In CAKUT fetal kidneys, the kidney cortical structure and the localization of p75NTR were often disorganized, and quantification of p75NTR in amniotic fluid revealed a significant reduction in CAKUT compared to control. Finally, invalidation of p75NTR in zebrafish embryo with an antisense morpholino significantly altered pronephros development. Our results indicate that renal p75NTR is altered in CAKUT fetuses, and could participate to early nephrogenesis.
Collapse
Affiliation(s)
- Camille Fédou
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut of Cardiovascular and Metabolic Disease, Toulouse, France; Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Ophélie Lescat
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut of Cardiovascular and Metabolic Disease, Toulouse, France; Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Guylène Feuillet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut of Cardiovascular and Metabolic Disease, Toulouse, France; Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Marie Buléon
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut of Cardiovascular and Metabolic Disease, Toulouse, France; Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Eric Neau
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut of Cardiovascular and Metabolic Disease, Toulouse, France; Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Benjamin Breuil
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut of Cardiovascular and Metabolic Disease, Toulouse, France; Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Mélinda Alvès
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut of Cardiovascular and Metabolic Disease, Toulouse, France; Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Julie Batut
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI, FR3743), Université de Toulouse, Toulouse, France
| | - Patrick Blader
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI, FR3743), Université de Toulouse, Toulouse, France
| | - Stéphane Decramer
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut of Cardiovascular and Metabolic Disease, Toulouse, France; Université Toulouse III Paul-Sabatier, Toulouse, France; Service de Néphrologie Pédiatrique, Hôpital des Enfants, CHU Toulouse, Toulouse, France; Centre De Référence des Maladies Rénales Rares du Sud-Ouest (SORARE), Toulouse, France
| | - Jean Sébastien Saulnier-Blache
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut of Cardiovascular and Metabolic Disease, Toulouse, France; Université Toulouse III Paul-Sabatier, Toulouse, France.
| | - Julie Klein
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut of Cardiovascular and Metabolic Disease, Toulouse, France; Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Bénédicte Buffin-Meyer
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut of Cardiovascular and Metabolic Disease, Toulouse, France; Université Toulouse III Paul-Sabatier, Toulouse, France.
| | - Joost P Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut of Cardiovascular and Metabolic Disease, Toulouse, France; Université Toulouse III Paul-Sabatier, Toulouse, France.
| |
Collapse
|
44
|
Wang Y, Weng P, Wan H, Zhang W, Chen C, Chen Y, Cai Y, Guo M, Xia F, Wang N, Lu Y. Economic Status Moderates the Association Between Early-Life Famine Exposure and Hyperuricemia in Adulthood. J Clin Endocrinol Metab 2020; 105:5891935. [PMID: 32789437 DOI: 10.1210/clinem/dgaa523] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022]
Abstract
CONTEXT The double burden of malnutrition (DBM), undernutrition in early life and an obesogenic environment later on, influences later risk of chronic disorders. The Great Famine in China from 1959 to1962 and remarkable economic development from the 1980s provided such a burden for a large number of people in their 60s. OBJECTIVE We aimed to analyze the effect of economic status on the association between famine exposure in early life and hyperuricemia in adulthood. DESIGN AND SETTING Participants numbering 12 666 were enrolled in China based on the Survey on Prevalence in East China for Metabolic Diseases and Risk Factors (SPECT-China) Study from 2014 to 2016. PARTICIPANTS Participants with fetal or childhood famine exposure (birth year 1949-1962) formed the exposure group. MAIN OUTCOME MEASURE Hyperuricemia was defined as uric acid (UA) > 420 μmol/L for men and > 360 μmol/L for women. The association of famine with hyperuricemia was assessed via regression analyses. RESULTS Early-life famine exposure was negatively associated with UA levels (P = .045) but was not associated with hyperuricemia (P = .226) in the whole study population. Economic status could moderate the association of famine exposure with UA and hyperuricemia (P ≤ .001). In participants with high economic status, early-life famine exposure was positively associated with UA levels (unstandardized coefficients 7.61, 95% CI 3.63-11.59, P < .001), and with hyperuricemia (odds ratio 1.47, 95% CI 1.19-1.81, P < .001). CONCLUSIONS Economic status could moderate the association between exposure to famine in early life and hyperuricemia in adulthood, indicating that the DBM might affect hyperuricemia in an opposite direction of the effects of undernutrition in early life alone.
Collapse
Affiliation(s)
- Yuying Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Pan Weng
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Heng Wan
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Wen Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yan Cai
- Department of Endocrinology, the Fifth Affiliated Hospital of Kunming Medical University, Yunnan Honghe Prefecture Central Hospital (Ge Jiu People's Hospital), Yunnan, China
| | - Minghao Guo
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Fangzhen Xia
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
45
|
Abstract
Importance The pandemic of obesity during pregnancy now afflicts 1 out of every 2 pregnant women in the United States. Even though unintended pregnancy has decreased to 45% of all pregnancies, 50% of those unintended pregnancies occur in obese women. Objective This study aims to identify why current lifestyle interventions for obese pregnancy are not effective and what the newer complications are for obesity during pregnancy. Evidence Acquisition Available literatures on current treatments for maternal obesity were reviewed for effectiveness. Emerging maternal and infant complications from obesity during pregnancy were examined for significance. Results Limitations in successful interventions fell into 3 basic categories to include the following: (1) preconception weight loss; (2) bariatric surgery before pregnancy; and (3) prevention of excessive gestational weight gain during pregnancy. Emerging significant physiological changes from maternal obesity is composed of inflammation (placenta and human milk), metabolism (hormones, microbiome, fatty acids), and offspring outcomes (body composition, congenital malformations, chronic kidney disease, asthma, neurodevelopment, and behavior). Conclusions and Relevance Are current prepregnancy lifestyle and behavioral interventions feasible to prevent maternal obesity complications? Epigenetic and metabolomic research will be critical to determine what is needed to blunt the effects of maternal obesity and to discover successful treatment.
Collapse
|
46
|
Congenital Anomalies of the Kidney and Urinary Tract (CAKUT): An Emerging Relationship With Pregestational Diabetes Mellitus Among First Nations and Non-First Nations People in Saskatchewan-Results From the DIP: ORRIIGENSS Project. Can J Diabetes 2020; 45:346-354.e1. [PMID: 33308984 DOI: 10.1016/j.jcjd.2020.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Because congenital anomalies of the kidneys and urinary tract (CAKUT) represent a frequent cause of end stage renal disease (ESRD) in the young, we explored the epidemiology of CAKUT and the role of diabetes in pregnancy. METHODS This was a retrospective cohort study of CAKUT, by maternal diabetes status, from among all 1980‒2009 births in Saskatchewan First Nations (FN) and non-First Nations (non-FN) people. We determined frequencies, predictors and complications of CAKUT, as well as cumulative survival (to 2014) of affected persons until ESRD and death. RESULTS Of the 411,055 babies (204,167 mothers) in the Saskatchewan maternal-infant database, 2,540 had CAKUT (391 FN and 2,149 non-FN). Overall annual CAKUT incidence was 0.63% for non-FN and 0.57% for FN (p=0.082), but 5-year CAKUT incidence only increased among FN (0.40% in 1980‒1984 and 0.76% in 2005‒2009, p<0.0001) and was highest among offspring of FN mothers with pregestational diabetes (pre-G/DM) (0% before 1995, 2.51% in 2000‒2004 and 1.66% in 2005-2009). Pre-G/DM, but not gestational diabetes mellitus (GDM), was an independent predictor of CAKUT in non-FN (odds ratio, 1.79; 95% confidence interval, 1.20 to 2.69), and in FN interacting with maternal history of stillbirth (odds ratio, 7.90; 95% confidence interval, 1.14 to 54.6). ESRD was >100-fold more likely among offspring with CAKUT compared with all other offspring and was responsible for 40% of ESRD cases in young FN and non-FN people. CONCLUSIONS In Saskatchewan, pre-G/DM is an emerging cause of CAKUT, accounting for 40% of ESRD cases in FN/non-FN children and young adults. Because pre-G/DM‒related CAKUT is potentially preventable with optimal glycemic management, increased recognition of this serious complication is required.
Collapse
|
47
|
Parvin N, Charlton JR, Baldelomar EJ, Derakhshan JJ, Bennett KM. Mapping vascular and glomerular pathology in a rabbit model of neonatal acute kidney injury using MRI. Anat Rec (Hoboken) 2020; 303:2716-2728. [PMID: 32445514 PMCID: PMC7680718 DOI: 10.1002/ar.24419] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/30/2020] [Accepted: 03/03/2020] [Indexed: 12/27/2022]
Abstract
Acute kidney injury (AKI) in premature neonates is common due to the administration of life-saving therapies. The impact of AKI on renal morphology and susceptibility to further renal damage is poorly understood. Recent advances in radiological imaging have allowed integration of soft tissue morphology in the intact organ, facilitating a more complete understanding of changes in tissue microstructure associated with pathology. Here, we applied magnetic resonance imaging (MRI) to detect both glomerular and vascular changes in a rabbit model of neonatal AKI, induced by indomethacin and gentamicin. Using combined spin-echo MRI and cationic ferritin enhanced gradient-echo MRI (CFE-MRI), we observed (a) an increased cortical arterial diameter in the AKI cohort compared to healthy controls, and (b) focal loss of vascular density and glomerular loss in a circumferential band ~1 mm from the cortical surface. This combined use of vascular and glomerular imaging may give insight into the etiology of AKI and its impact on renal health later in life.
Collapse
Affiliation(s)
- Neda Parvin
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jennifer R Charlton
- University of Virginia Children's Hospital, Department of Pediatrics, Charlottesville, Virginia, USA
| | - Edwin J Baldelomar
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jamal J Derakhshan
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kevin M Bennett
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
48
|
Jackson AR, Ching CB, McHugh KM, Becknell B. Roles for urothelium in normal and aberrant urinary tract development. Nat Rev Urol 2020; 17:459-468. [PMID: 32647226 DOI: 10.1038/s41585-020-0348-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUTs) represent the leading cause of chronic kidney disease and end-stage kidney disease in children. Increasing evidence points to critical roles for the urothelium in the developing urinary tract and in the genesis of CAKUTs. The involvement of the urothelium in patterning the urinary tract is supported by evidence that CAKUTs can arise as a result of abnormal urothelial development. Emerging evidence indicates that congenital urinary tract obstruction triggers urothelial remodelling that stabilizes the obstructed kidney and limits renal injury. Finally, the diagnostic potential of radiological findings and urinary biomarkers derived from the urothelium of patients with CAKUTs might aid their contribution to clinical care.
Collapse
Affiliation(s)
- Ashley R Jackson
- Nephrology and Urology Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Christina B Ching
- Nephrology and Urology Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Division of Pediatric Urology, Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kirk M McHugh
- Nephrology and Urology Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Anatomy, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Brian Becknell
- Nephrology and Urology Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA. .,Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA. .,Nephrology Division, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
49
|
Abstract
Chronic kidney disease increasingly is being recognized as an important global public health problem. Interindividual susceptibility to kidney disease is high and likely is dependent on risk modulation through genetics, fetal and early childhood development, environmental circumstances, and comorbidities. Traditionally, the chronic kidney disease burden has been ascribed largely to hypertension and diabetes. Increasingly, evidence is accumulating that nontraditional risk factors may predominate in some regions and populations, contributing to epidemics of kidney disease. Such nontraditional risk factors include environmental exposures, traditional medicines, fetal and maternal factors, infections, kidney stones, and acute kidney injury. Genetic factors may predispose patients to chronic kidney disease in some populations. Chronic kidney disease of unknown origin has its epicenters in Central America and South Asia. Such clustering of CKD may represent either genetic or environmentally driven kidney disease, or combinations of both. Developmental conditions impacting kidney development often are related to poverty and structural factors that persist throughout life. In this article, we explore the possibilities that genetic and developmental factors may be important contributors to the epidemics in these regions and suggest that optimization of factors impacting kidney development hold promise to reduce the risk of kidney disease in future generations.
Collapse
Affiliation(s)
- David Friedman
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Valerie A Luyckx
- Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Institute for Biomedical Ethics and History of Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
50
|
Ahn YH, Lee C, Kim NKD, Park E, Kang HG, Ha IS, Park WY, Cheong HI. Targeted Exome Sequencing Provided Comprehensive Genetic Diagnosis of Congenital Anomalies of the Kidney and Urinary Tract. J Clin Med 2020; 9:jcm9030751. [PMID: 32164334 PMCID: PMC7141392 DOI: 10.3390/jcm9030751] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/28/2020] [Accepted: 03/08/2020] [Indexed: 12/13/2022] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of chronic kidney disease in children. The search for genetic causes of CAKUT has led to genetic diagnosis in approximately 5-20 % of CAKUT patients from Western countries. In this study, genetic causes of CAKUT in Korean children were sought using targeted exome sequencing (TES) of 60 genes reported to cause CAKUT in human or murine models. We identified genetic causes in 13.8% of the 94 recruited patients. Pathogenic single nucleotide variants of five known disease-causing genes, HNF1B, PAX2, EYA1, UPK3A, and FRAS1 were found in 7 cases. Pathogenic copy number variations of 6 patients were found in HNF1B, EYA1, and CHD1L. Genetic abnormality types did not significantly differ according to CAKUT phenotypes. Patients with pathogenic variants of targeted genes had syndromic features more frequently than those without (p < 0.001). This is the first genetic analysis study of Korean patients with CAKUT. Only one-seventh of patients were found to have pathogenic mutations in known CAKUT-related genes, indicating that there are more CAKUT-causing genes or environmental factors to discover.
Collapse
Affiliation(s)
- Yo Han Ahn
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.H.A.); (E.P.); (I.-S.H.); (H.I.C.)
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul 03080, Korea
| | - Chung Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea; (C.L.); (N.K.D.K.); (W.-Y.P.)
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Korea
| | - Nayoung K. D. Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea; (C.L.); (N.K.D.K.); (W.-Y.P.)
| | - Eujin Park
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.H.A.); (E.P.); (I.-S.H.); (H.I.C.)
- Department of Pediatrics, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441, Korea
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.H.A.); (E.P.); (I.-S.H.); (H.I.C.)
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul 03080, Korea
- Kidney Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
- Correspondence:
| | - Il-Soo Ha
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.H.A.); (E.P.); (I.-S.H.); (H.I.C.)
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul 03080, Korea
- Kidney Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea; (C.L.); (N.K.D.K.); (W.-Y.P.)
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Korea
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Hae Il Cheong
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.H.A.); (E.P.); (I.-S.H.); (H.I.C.)
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul 03080, Korea
- Kidney Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|