1
|
Schofield LG, Endacott SK, Delforce SJ, Lumbers ER, Pringle KG. Importance of the (Pro)renin Receptor in Activating the Renin-Angiotensin System During Normotensive and Preeclamptic Pregnancies. Curr Hypertens Rep 2024; 26:483-495. [PMID: 39093387 PMCID: PMC11455731 DOI: 10.1007/s11906-024-01316-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE OF REVIEW For a healthy pregnancy to occur, a controlled interplay between the maternal circulating renin-angiotensin-aldosterone system (RAAS), placental renin-angiotensin system (RAS) and intrarenal renin-angiotensin system (iRAS) is necessary. Functionally, both the RAAS and iRAS interact to maintain blood pressure and cardiac output, as well as fluid and electrolyte balance. The placental RAS is important for placental development while also influencing the maternal circulating RAAS and iRAS. This narrative review concentrates on the (pro)renin receptor ((P)RR) and its soluble form (s(P)RR) in the context of the hypertensive pregnancy pathology, preeclampsia. RECENT FINDINGS The (P)RR and the s(P)RR have become of particular interest as not only can they activate prorenin and renin, thus influencing levels of angiotensin II (Ang II), but s(P)RR has now been shown to directly interact with and stimulate the Angiotensin II type 1 receptor (AT1R). Levels of both placental (P)RR and maternal circulating s(P)RR are elevated in patients with preeclampsia. Furthermore, s(P)RR has been shown to increase blood pressure in non-pregnant and pregnant rats and mice. In preeclamptic pregnancies, which are characterised by maternal hypertension and impaired placental development and function, we propose that there is enhanced secretion of s(P)RR from the placenta into the maternal circulation. Due to its ability to both activate prorenin and act as an AT1R agonist, excess maternal circulating s(P)RR can act on both the maternal vasculature, and the kidney, leading to RAS over-activation. This results in dysregulation of the maternal circulating RAAS and overactivation of the iRAS, contributing to maternal hypertension, renal damage, and secondary changes to neurohumoral regulation of fluid and electrolyte balance, ultimately contributing to the pathophysiology of preeclampsia.
Collapse
Affiliation(s)
- Lachlan G Schofield
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, N.S.W, 2308, Australia
- Womens Health Research Program, Hunter Medical Research Institute, New Lambton Heights, N.S.W, 2305, Australia
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton, N.S.W, 2305, Australia
| | - Saije K Endacott
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, N.S.W, 2308, Australia
- Womens Health Research Program, Hunter Medical Research Institute, New Lambton Heights, N.S.W, 2305, Australia
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton, N.S.W, 2305, Australia
| | - Sarah J Delforce
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, N.S.W, 2308, Australia
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton, N.S.W, 2305, Australia
| | - Eugenie R Lumbers
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, N.S.W, 2308, Australia
- Womens Health Research Program, Hunter Medical Research Institute, New Lambton Heights, N.S.W, 2305, Australia
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton, N.S.W, 2305, Australia
| | - Kirsty G Pringle
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, N.S.W, 2308, Australia.
- Womens Health Research Program, Hunter Medical Research Institute, New Lambton Heights, N.S.W, 2305, Australia.
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton, N.S.W, 2305, Australia.
| |
Collapse
|
2
|
Larenas PE, Cárdenas P, Aguirre-Delgadillo M, Moris C, Casarini DE, Vallotton Z, Prieto MC, Gonzalez AA. GLUT1 and prorenin receptor mediate differential regulation of TGF-β and CTGF in renal inner medullary collecting duct cells during high glucose conditions. Biol Res 2024; 57:81. [PMID: 39506854 DOI: 10.1186/s40659-024-00560-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND During diabetes, prorenin is highly produced by the renal collecting ducts. The binding of prorenin to (pro)renin receptor (PRR) on the apical plasma membrane triggers intracellular profibrotic genes, including TGF-β and CTGF. However, the underlying mechanisms contributing to the stimulation of these pathways remain unclear. Hence, we hypothesize that the glucose transporter-1 (GLUT1) favors the PRR-dependent stimulation of TGF-β and CTGF in the distal nephron segments during high glucose (HG) conditions. METHODS To test this hypothesis, primary cultured renal inner medullary collecting duct (IMCD) cells were treated with normal glucose (NG, 5 mM) or high glucose (HG, 25 mM) for 48 h in the presence or absence of the GLUT1-specific inhibitor BAY 876 (2 nM). Additionally, IMCD cells were treated with the PRR antagonist PRO20. The expression of TGF-β and CTGF was quantified by immunoblot and qRT-PCR. RESULTS HG increased GLUT1 mRNA and protein abundance, while BAY 876 inhibited these responses. HG treatment upregulated PRR, but the concomitant treatment with BAY 876 partially prevented this effect. TGF-β and CTGF expressions were augmented in IMCD cells treated with HG. However, PRO20 prevented the increases in TGF-β but not those of CTGF. GLUT1 inhibition partially prevented the increases in reactive oxygen species (ROS) during HG while PRO20 did not. ROS scavenging impaired CTGF upregulation during HG conditions. Additionally, long-term exposure to HG increases lipid peroxidation and reduced cell viability. CONCLUSIONS The data indicate that glucose transportation via GLUT1 is implicated in the PRR-dependent upregulation of TGF-β while CTGF is mediated mainly via a mechanism depending on ROS formation in renal medullary collecting duct cells.
Collapse
Affiliation(s)
- Paulina E Larenas
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Pilar Cárdenas
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | - Carlos Moris
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Dulce E Casarini
- Departamento de Medicina, Disciplina de Nefrología, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Zoe Vallotton
- Department of Physiology and Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, USA
| | - Minolfa C Prieto
- Department of Physiology and Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
3
|
Luo R, Yang KT, Wang F, Zheng H, Yang T. Collecting Duct Pro(Renin) Receptor Contributes to Unilateral Ureteral Obstruction-Induced Kidney Injury via Activation of the Intrarenal RAS. Hypertension 2024; 81:2152-2161. [PMID: 39171392 PMCID: PMC11410543 DOI: 10.1161/hypertensionaha.123.21740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 05/10/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Although the concept of the intrarenal renin-angiotensin system (RAS) in renal disease is well-described in the literature, the precise pathogenic role and mechanism of this local system have not been directly assessed in the absence of confounding influence from the systemic RAS. The present study used novel mouse models of collecting duct (CD)-specific deletion of (pro)renin receptor (PRR) or renin together with pharmacological inhibition of soluble PRR production to unravel the precise contribution of the intrarenal RAS to renal injury induced by unilateral ureteral obstruction. METHODS We examined the impact of CD-specific deletion of PRR, CD-specific deletion of renin, and S1P (site-1 protease) inhibitor PF429242 treatment on renal fibrosis and inflammation and the indices of the intrarenal RAS in a mouse model of unilateral ureteral obstruction. RESULTS After 3 days of unilateral ureteral obstruction, the indices of the intrarenal RAS including the renal medullary renin content, activity and mRNA expression, and Ang (angiotensin) II content in obstructed kidneys of floxed mice were all increased. That effect was reversed with CD-specific deletion of PRR, CD-specific deletion of renin, and PF429242 treatment, accompanied by consistent improvement in renal fibrosis and inflammation. On the other hand, renal cortical renin levels were unaffected by unilateral ureteral obstruction, irrespective of the genotype. Similar results were obtained via pharmacological inhibition of S1P, the key protease for the generation of soluble PRR. CONCLUSIONS Our results reveal that PRR-dependent/soluble PRR-dependent activation of CD renin represents a key determinant of the intrarenal RAS and, thus, obstruction-induced renal inflammation and fibrosis.
Collapse
Affiliation(s)
- Renfei Luo
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Kevin T. Yang
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Fei Wang
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Huaqing Zheng
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| |
Collapse
|
4
|
Xu C, Yi X, Tang L, Wang H, Chu S, Yu J. Differential regulation of autophagy on urine-concentrating capability through modulating the renal AQP2 expression and renin-angiotensin system in mice. Am J Physiol Renal Physiol 2023; 325:F503-F518. [PMID: 37589054 DOI: 10.1152/ajprenal.00018.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023] Open
Abstract
Autophagy, a cellular process of "self-eating," plays an essential role in renal pathophysiology. However, the effect of autophagy on urine-concentrating ability in physiological conditions is still unknown. This study aimed to determine the relevance and mechanisms of autophagy for maintaining urine-concentrating capability during antidiuresis. The extent of the autophagic response to water deprivation (WD) was different between the renal cortex and medulla in mice. Autophagy activity levels in the renal cortex were initially suppressed and then stimulated by WD in a time-dependent manner. During 48 h WD, the urine-concentrating capability of mice was impaired by rapamycin (Rapa) but not by 3-methyladenine (3-MA), accompanied by suppressed renal aquaporin 2 (AQP2), V2 receptor (V2R), renin, and angiotensin-converting enzyme (ACE) expression, and levels of prorenin/renin, angiotensin II (ANG II), and aldosterone in the plasma and urine. In contrast, 3-MA and chloroquine (CQ) suppressed the urine-concentrating capability in WD72 mice, accompanied by downregulation of AQP2 and V2R expression in the renal cortex. 3-MA and CQ further increased AQP2 and V2R expression in the renal medulla of WD72 mice. Compared with 3-MA and CQ, Rapa administration yielded completely opposite results on the above parameters in WD72 mice. In addition, 3-MA and CQ abolished the upregulation of prorenin/renin, ANG II, and aldosterone levels in the plasma and urine in WD72 mice. Taken together, our study demonstrated that autophagy regulated urine-concentrating capability through differential regulation of renal AQP2/V2R and ACE/ANG II signaling during WD.NEW & NOTEWORTHY Autophagy exhibits a double-edged effect on cell survival and plays an essential role in renal pathophysiology. We for the first time reported a novel function of autophagy that controls the urine-concentrating capability in physiological conditions. We found that water deprivation (WD) differentially regulated autophagy in the kidneys of mice in a time-dependent manner and autophagy regulates the urine-concentrating capability mainly by regulating AQP2/V2R and ACE/ANG II signaling in the renal cortex in WD mice.
Collapse
Affiliation(s)
- Chuanming Xu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, People's Republic of China
| | - Xiaoli Yi
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, People's Republic of China
| | - Le Tang
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, People's Republic of China
| | - Hui Wang
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, People's Republic of China
| | - Shuhan Chu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, People's Republic of China
| | - Jun Yu
- Center for Metabolic Disease Research and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
5
|
Nwia SM, Leite APO, Li XC, Zhuo JL. Sex differences in the renin-angiotensin-aldosterone system and its roles in hypertension, cardiovascular, and kidney diseases. Front Cardiovasc Med 2023; 10:1198090. [PMID: 37404743 PMCID: PMC10315499 DOI: 10.3389/fcvm.2023.1198090] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/06/2023] [Indexed: 07/06/2023] Open
Abstract
Cardiovascular disease is a pathology that exhibits well-researched biological sex differences, making it possible for physicians to tailor preventative and therapeutic approaches for various diseases. Hypertension, which is defined as blood pressure greater than 130/80 mmHg, is the primary risk factor for developing coronary artery disease, stroke, and renal failure. Approximately 48% of American men and 43% of American women suffer from hypertension. Epidemiological data suggests that during reproductive years, women have much lower rates of hypertension than men. However, this protective effect disappears after the onset of menopause. Treatment-resistant hypertension affects approximately 10.3 million US adults and is unable to be controlled even after implementing ≥3 antihypertensives with complementary mechanisms. This indicates that other mechanisms responsible for modulating blood pressure are still unclear. Understanding the differences in genetic and hormonal mechanisms that lead to hypertension would allow for sex-specific treatment and an opportunity to improve patient outcomes. Therefore, this invited review will review and discuss recent advances in studying the sex-specific physiological mechanisms that affect the renin-angiotensin system and contribute to blood pressure control. It will also discuss research on sex differences in hypertension management, treatment, and outcomes.
Collapse
Affiliation(s)
- Sarah M. Nwia
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Ana Paula O. Leite
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Xiao Chun Li
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jia Long Zhuo
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
6
|
Fang H, Yang T, Zhou B, Li X. (Pro)Renin Receptor Decoy Peptide PRO20 Protects against Oxidative Renal Damage Induced by Advanced Oxidation Protein Products. Molecules 2023; 28:molecules28073017. [PMID: 37049779 PMCID: PMC10096258 DOI: 10.3390/molecules28073017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Chronic kidney disease (CKD) is associated with advanced oxidation protein products (AOPPs). A recent study has shown that AOPP-induced renal tubular injury is mediated by the (pro)renin receptor (PRR). However, it is unclear whether the PRR decoy inhibitor PRO20 can protect against renal damage related to AOPPs in vivo. In this study, we examined the role of the PRR in rats with AOPP-induced renal oxidative damage. Male SD rats were subjected to unilateral nephrectomy, and after a four-day recuperation period, they were randomly divided into four groups (n = 6/group) for four weeks: control (CTR), unmodified rat serum albumin (RSA, 50 mg/kg/day via tail-vein injection), AOPPs-RSA (50 mg/kg/day via tail-vein injection), and AOPPs-RSA + PRO20 (50 mg/kg/day via tail-vein injection + 500 μg/kg/day via subcutaneous injection) groups. PRO20 was administered 3 days before AOPPs-RSA injection. Renal histopathology evaluation was performed by periodic acid–Schiff (PAS) staining, and biochemical parameters related to renal injury and oxidative stress biomarkers were evaluated. The expression of related indicators was quantified by RT-qPCR and immunoblotting analysis. In the results, rats in the AOPPs-RSA group exhibited higher levels of albuminuria, inflammatory cell infiltration, and tubular dilation, along with upregulation of oxidative stress, profibrotic and proinflammatory factors, and elevation of AOPP levels. Meanwhile, in the PRO20 group, these were significantly reduced. Moreover, the levels of almost all components of the renin-angiotensin system (RAS) and Nox4-dependent H2O2 production in urine and the kidneys were elevated by AOPPs-RSA, while they were suppressed by PRO20. Furthermore, AOPPs-RSA rats showed elevated kidney expression of the PRR and soluble PRR (sPRR) and increased renal excretion of sPRR. In summary, these findings suggest that PRR inhibition may serve as a protective mechanism against AOPP-induced nephropathy by inhibiting the intrarenal RAS and Nox4-derived H2O2 mechanisms.
Collapse
|
7
|
Wang B, Jie H, Wang S, Dong B, Zou Y. The role of (pro)renin receptor and its soluble form in cardiovascular diseases. Front Cardiovasc Med 2023; 10:1086603. [PMID: 36824459 PMCID: PMC9941963 DOI: 10.3389/fcvm.2023.1086603] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
The renin-angiotensin system (RAS) is a major classic therapeutic target for cardiovascular diseases. In addition to the circulating RAS, local tissue RAS has been identified in various tissues and plays roles in tissue inflammation and tissue fibrosis. (Pro)renin receptor (PRR) was identified as a new member of RAS in 2002. Studies have demonstrated the effects of PRR and its soluble form in local tissue RAS. Moreover, as an important part of vacuolar H+-ATPase, it also contributes to normal lysosome function and cell survival. Evidently, PRR participates in the pathogenesis of cardiovascular diseases and may be a potential therapeutic target of cardiovascular diseases. This review focuses on the effects of PRR and its soluble form on the physiological state, hypertension, myocardial ischemia reperfusion injury, heart failure, metabolic cardiomyopathy, and atherosclerosis. We aimed to investigate the possibilities and challenges of PRR and its soluble form as a new therapeutic target in cardiovascular diseases.
Collapse
Affiliation(s)
- Boyang Wang
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Department of Cardiology, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haipeng Jie
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuangxi Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China,Shuangxi Wang,
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Department of Cardiology, Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Bo Dong,
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China,Yunzeng Zou,
| |
Collapse
|
8
|
Yang T. Potential of soluble (pro)renin receptor in kidney disease: can it go beyond a biomarker? Am J Physiol Renal Physiol 2022; 323:F507-F514. [PMID: 36074917 PMCID: PMC9602801 DOI: 10.1152/ajprenal.00202.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 12/14/2022] Open
Abstract
(Pro)renin receptor (PRR), also termed ATPase H+-transporting accessory protein 2 (ATP6AP2), is a type I transmembrane receptor and is capable of binding and activating prorenin and renin. Apart from its association with the renin-angiotensin system, PRR has been implicated in diverse developmental, physiological, and pathophysiological processes. Within the kidney, PRR is predominantly expressed in the distal nephron, particularly the intercalated cells, and activation of renal PRR contributes to renal injury in various rodent models of chronic kidney disease. Moreover, recent evidence demonstrates that PRR is primarily cleaved by site-1 protease to produce 28-kDa soluble PRR (sPRR). sPRR seems to mediate most of the known pathophysiological functions of renal PRR through modulating the activity of the intrarenal renin-angiotensin system and provoking proinflammatory and profibrotic responses. Not only does sPRR activate renin, but it also directly binds and activates the angiotensin II type 1 receptor. This review summarizes recent advances in understanding the roles and mechanisms of sPRR in the context of renal pathophysiology.
Collapse
Affiliation(s)
- Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| |
Collapse
|
9
|
Yang T, Song C, Ralph DL, Andrews P, Sparks MA, Koller BH, McDonough AA, Coffman TM. Cell-Specific Actions of the Prostaglandin E-Prostanoid Receptor 4 Attenuating Hypertension: A Dominant Role for Kidney Epithelial Cells Compared With Macrophages. J Am Heart Assoc 2022; 11:e026581. [PMID: 36172956 PMCID: PMC9673718 DOI: 10.1161/jaha.122.026581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background A beneficial role for prostanoids in hypertension is suggested by clinical studies showing nonsteroidal anti-inflammatory drugs, which block the production of all prostanoids, cause sodium retention and exacerbate hypertension. Among prostanoids, prostaglandin E2 and its E-prostanoid receptor 4 receptor (EP4R) have been implicated in blood pressure control. Our previous study found that conditional deletion of EP4R from all tissues in adult mice exacerbates angiotensin II-dependent hypertension, suggesting a powerful effect of EP4R to resist blood pressure elevation. We also found that elimination of EP4R from vascular smooth muscle cells did not affect the severity of hypertension, suggesting nonvascular targets of prostaglandin E mediate this antihypertensive effect. Methods and Results Here we generated mice with cell-specific deletion of EP4R from macrophage-specific EP4 receptor knockouts or kidney epithelial cells (KEKO) to assess the contributions of EP4R in these cells to hypertension pathogenesis. Macrophage-specific EP4 receptor knockouts showed similar blood pressure responses to alterations in dietary sodium or chronic angiotensin II infusion as Controls. By contrast, angiotensin II-dependent hypertension was significantly augmented in KEKOs (mean arterial pressure: 146±3 mm Hg) compared with Controls (137±4 mm Hg; P=0.02), which was accompanied by impaired natriuresis in KEKOs. Because EP4R expression in the kidney is enriched in the collecting duct, we compared responses to amiloride in angiotensin II-infused KEKOs and Controls. Blockade of the epithelial sodium channel with amiloride caused exaggerated natriuresis in KEKOs compared with Controls (0.21±0.01 versus 0.15±0.02 mmol/24 hour per 20 g; P=0.015). Conclusions Our data suggest EP4R in kidney epithelia attenuates hypertension. This antihypertension effect of EP4R may be mediated by reducing the activity of the epithelial sodium channel, thereby promoting natriuresis.
Collapse
Affiliation(s)
- Ting Yang
- Division of Nephrology‐Department of MedicineDuke UniversityDurhamNC
| | - Chengcheng Song
- Division of Nephrology‐Department of MedicineDuke UniversityDurhamNC,Department of AnesthesiologyTianjin Medical University General HospitalTianjinChina
| | - Donna L. Ralph
- Department of Physiology and NeuroscienceKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA
| | - Portia Andrews
- Division of Nephrology‐Department of MedicineDuke UniversityDurhamNC
| | - Matthew A. Sparks
- Division of Nephrology‐Department of MedicineDuke UniversityDurhamNC
| | | | - Alicia A. McDonough
- Department of Physiology and NeuroscienceKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA
| | - Thomas M. Coffman
- Division of Nephrology‐Department of MedicineDuke UniversityDurhamNC,Cardiovascular and Metabolic Disorders Research ProgramDuke‐National University of Singapore Graduate Medical SchoolSingapore
| |
Collapse
|
10
|
Yang T. Soluble (Pro)Renin Receptor in Hypertension. Nephron Clin Pract 2022; 147:234-243. [PMID: 35871512 PMCID: PMC9867785 DOI: 10.1159/000525635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/27/2022] [Indexed: 01/26/2023] Open
Abstract
The (pro)renin receptor (PRR) was originally cloned as a specific single-transmembrane receptor for prorenin and renin and has now emerged as a multifunctional protein implicated in a wide variety of developmental and physiopathological processes. Activation of PRR in the kidney causes Na+ and water retention, contributing to elevation of blood pressure in response to various hypertensive stimuli. Part of the renal action of PRR depends on activation of intrarenal renin-angiotensin system. In recent years, accumulating evidence suggests that the prohypertensive action of renal PRR was largely mediated by production of the 28-kDa soluble (pro)renin receptor through protease-mediated cleavage of the extracellular domain of PRR. The generation of multiple isoforms of PRR due to the protease-mediated cleavage partially explains diversified actions of PRR. The current review will summarize recent advances in understanding the roles of sPPR in animal models of hypertension.
Collapse
Affiliation(s)
- Tianxin Yang
- Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| |
Collapse
|
11
|
Lin H, Geurts F, Hassler L, Batlle D, Mirabito Colafella KM, Denton KM, Zhuo JL, Li XC, Ramkumar N, Koizumi M, Matsusaka T, Nishiyama A, Hoogduijn MJ, Hoorn EJ, Danser AHJ. Kidney Angiotensin in Cardiovascular Disease: Formation and Drug Targeting. Pharmacol Rev 2022; 74:462-505. [PMID: 35710133 PMCID: PMC9553117 DOI: 10.1124/pharmrev.120.000236] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The concept of local formation of angiotensin II in the kidney has changed over the last 10-15 years. Local synthesis of angiotensinogen in the proximal tubule has been proposed, combined with prorenin synthesis in the collecting duct. Binding of prorenin via the so-called (pro)renin receptor has been introduced, as well as megalin-mediated uptake of filtered plasma-derived renin-angiotensin system (RAS) components. Moreover, angiotensin metabolites other than angiotensin II [notably angiotensin-(1-7)] exist, and angiotensins exert their effects via three different receptors, of which angiotensin II type 2 and Mas receptors are considered renoprotective, possibly in a sex-specific manner, whereas angiotensin II type 1 (AT1) receptors are believed to be deleterious. Additionally, internalized angiotensin II may stimulate intracellular receptors. Angiotensin-converting enzyme 2 (ACE2) not only generates angiotensin-(1-7) but also acts as coronavirus receptor. Multiple, if not all, cardiovascular diseases involve the kidney RAS, with renal AT1 receptors often being claimed to exert a crucial role. Urinary RAS component levels, depending on filtration, reabsorption, and local release, are believed to reflect renal RAS activity. Finally, both existing drugs (RAS inhibitors, cyclooxygenase inhibitors) and novel drugs (angiotensin receptor/neprilysin inhibitors, sodium-glucose cotransporter-2 inhibitors, soluble ACE2) affect renal angiotensin formation, thereby displaying cardiovascular efficacy. Particular in the case of the latter three, an important question is to what degree they induce renoprotection (e.g., in a renal RAS-dependent manner). This review provides a unifying view, explaining not only how kidney angiotensin formation occurs and how it is affected by drugs but also why drugs are renoprotective when altering the renal RAS. SIGNIFICANCE STATEMENT: Angiotensin formation in the kidney is widely accepted but little understood, and multiple, often contrasting concepts have been put forward over the last two decades. This paper offers a unifying view, simultaneously explaining how existing and novel drugs exert renoprotection by interfering with kidney angiotensin formation.
Collapse
Affiliation(s)
- Hui Lin
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Frank Geurts
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Luise Hassler
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Daniel Batlle
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Katrina M Mirabito Colafella
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Kate M Denton
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Jia L Zhuo
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Xiao C Li
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Nirupama Ramkumar
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Masahiro Koizumi
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Taiji Matsusaka
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Akira Nishiyama
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Martin J Hoogduijn
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Ewout J Hoorn
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| |
Collapse
|
12
|
Yang T. Revisiting the relationship between (Pro)Renin receptor and the intrarenal RAS: focus on the soluble receptor. Curr Opin Nephrol Hypertens 2022; 31:351-357. [PMID: 35703290 PMCID: PMC9286065 DOI: 10.1097/mnh.0000000000000806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The (pro)renin receptor (PRR), also termed as ATPase H+ transporting accessory protein 2 (ATP6AP2), was originally cloned as a specific receptor for prorenin and renin [together called (pro)renin]. Given the wide tissue distribution of PRR, PRR was further postulated to act as a regulator of tissue renin. However, assigning a physiological role of PRR within the renin-angiotensin system (RAS) has been challenging largely due to its pleotropic functions in regulation of embryogenesis, autophagy, and H+ transport. The current review will summarize recent advances in understanding the roles of sPPR within the intrarenal RAS as well as those outside this local system. RECENT FINDINGS Site-1 protease (S1P) is a predominant source of sPPR at least in the kidney. So far most of the known physiological functions of PRR including renal handling of electrolytes and fluid and blood pressure are mediated by sPRR. In particular, sPRR serves as a positive regulator of collecting duct renin to activate the intrarenal RAS during water deprivation or angiotensin-II (AngII) infusion. However, PRR/sPRR can act in renin-independent manner under other circumstances. SUMMARY S1P-derived sPRR has emerged as a key regulator of kidney function and blood pressure and its relationship with the intrarenal RAS depends on the physiological context.
Collapse
Affiliation(s)
- Tianxin Yang
- Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| |
Collapse
|
13
|
Xu C, Yang G, Fu Z, Chen Y, Xie S, Wang F, Yang T. Na +-Retaining Action of COX-2 (Cyclooxygenase-2)/EP 1 Pathway in the Collecting Duct via Activation of Intrarenal Renin-Angiotensin-Aldosterone System and Epithelial Sodium Channel. Hypertension 2022; 79:1190-1202. [PMID: 35296155 DOI: 10.1161/hypertensionaha.121.17245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The collecting duct (CD) is a major site of both biosynthesis and action of prostaglandin E2 as highlighted by the predominant expression of COX-2 (cyclooxygenase-2) and some E-prostanoid (EP) subtypes at this nephron site. The purpose of this study was to determine the relevance and mechanism of CD COX-2/prostaglandin E2/EP1 signaling for the regulation of Na+ hemostasis during Na+ depletion. METHODS Mice with Aqp2Cre-driven deletion of COX-2 (COX-2fl/flAqp2Cre+) or the EP1 subtype (EP1fl/flAqp2Cre+) were generated and the Na+-wasting phenotype of these mice during low-salt (LS) intake was examined. EP subtypes responsible for prostaglandin E2-induced local renin response were analyzed in primary cultured mouse inner medullary CD cells. RESULTS Following 28-day LS intake, COX-2fl/flAqp2Cre+ mice exhibited a higher urinary Na+ excretion and lower cumulative Na+ balance, accompanied with suppressed intrarenal renin, AngII (angiotensin II), and aldosterone, expression of CYP11B2 (cytochrome P450 family 11 subfamily B member 2), and blunted expression of epithelial sodium channel subunits compared to floxed controls (COX-2fl/flAqp2Cre-), whereas no differences were observed for indices of systemic renin-angiotensin-aldosterone system. In cultured CD cells, exposure to prostaglandin E2 stimulated release of soluble (pro)renin receptor, prorenin/renin and aldosterone and the stimulation was more sensitive to antagonism of EP1 as compared other EP subtypes. Subsequently, EP1fl/flAqp2Cre+ mice largely recapitulated Na+-wasting phenotype seen in COX-2fl/flAqp2Cre+ mice. CONCLUSIONS The study for the first time reports that CD COX-2/EP1 pathway might play a key role in maintenance of Na+ homeostasis in the face of Na+ depletion, at least in part, through activation of intrarenal renin-angiotensin-aldosterone-system and epithelial sodium channel.
Collapse
Affiliation(s)
- Chuanming Xu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City
| | - Guangrui Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City
| | - Ziwei Fu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City
| | - Yanting Chen
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City
| | - Shiying Xie
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City
| | - Fei Wang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City
| |
Collapse
|
14
|
Xu C, Liu C, Xiong J, Yu J. Cardiovascular aspects of the (pro)renin receptor: Function and significance. FASEB J 2022; 36:e22237. [PMID: 35226776 DOI: 10.1096/fj.202101649rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases (CVDs), including all types of disorders related to the heart or blood vessels, are the major public health problems and the leading causes of mortality globally. (Pro)renin receptor (PRR), a single transmembrane protein, is present in cardiomyocytes, vascular smooth muscle cells, and endothelial cells. PRR plays an essential role in cardiovascular homeostasis by regulating the renin-angiotensin system and several intracellular signals such as mitogen-activated protein kinase signaling and wnt/β-catenin signaling in various cardiovascular cells. This review discusses the current evidence for the pathophysiological roles of the cardiac and vascular PRR. Activation of PRR in cardiomyocytes may contribute to myocardial ischemia/reperfusion injury, cardiac hypertrophy, diabetic or alcoholic cardiomyopathy, salt-induced heart damage, and heart failure. Activation of PRR promotes vascular smooth muscle cell proliferation, endothelial cell dysfunction, neovascularization, and the progress of vascular diseases. In addition, phenotypes of animals transgenic for PRR and the hypertensive actions of PRR in the brain and kidney and the soluble PRR are also discussed. Targeting PRR in local tissues may offer benefits for patients with CVDs, including heart injury, atherosclerosis, and hypertension.
Collapse
Affiliation(s)
- Chuanming Xu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Chunju Liu
- Department of Clinical Laboratory, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jianhua Xiong
- Department of Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jun Yu
- Center for Metabolic Disease Research and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Lu A, Pu M, Mo S, Su J, Hu J, Li C, Wang W, Yang T. (Pro)renin Receptor Regulates Phosphate Homeostasis in Rats via Releasing Fibroblast Growth Factor-23. Front Physiol 2022; 13:784521. [PMID: 35222071 PMCID: PMC8874195 DOI: 10.3389/fphys.2022.784521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphate (Pi) is one of the basic necessities required for sustenance of life and its metabolism largely relies on excretory function of the kidney, a process chiefly under the endocrine control of bone-derived fibroblast growth factor 23 (FGF23). However, knowledge gap exists in understanding the regulatory loop responsible for eliciting phophaturic response to Pi treatment. Here, we reported a novel role of (pro)renin receptor (PRR) in mediating phosphaturic response to Pi treatment via upregulation of FGF23 production. Male Sprague-Dawley rats were pretreated for 5 days via osmotic pump-driven infusion of a PRR antagonist PRO20 or vehicle, and then treated with high Pi (HP) solution as drinking fluid for the last 24 h. PRO20 reduced HP-induced Pi excretion by 42%, accompanied by blunted upregulation of circulating FGF23 and parathyroid hormone (PTH) and downregulation of renal Na/Pi-IIa expression. In cultured osteoblast cells, exposure to HP induced a 1.56-fold increase in FGF23 expression, which was blunted by PRO20 or siRNA against PRR. Together, these results suggest that activation of PRR promotes phosphaturic response through stimulation of FGF23 production and subsequent downregulation of renal Na/Pi-IIa expression.
Collapse
Affiliation(s)
- Aihua Lu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Min Pu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shiqi Mo
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiahui Su
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiajia Hu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, UT, United States
- *Correspondence: Tianxin Yang,
| |
Collapse
|
16
|
Hu J, Tan Y, Chen Y, Mo S, Hekking B, Su J, Pu M, Lu A, Symons JD, Yang T. Role of (Pro)Renin Receptor in Cyclosporin A-Induced Nephropathy. Am J Physiol Renal Physiol 2022; 322:F437-F448. [PMID: 35073210 PMCID: PMC9662808 DOI: 10.1152/ajprenal.00332.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Calcineurin inhibitors (CNIs) such as cyclosporin A (CsA) have been widely used to improve graft survival following solid-organ transplantation. However, the clinical use of CsA is often limited by its nephrotoxicity. The present study tested the hypothesis that activation of (pro)renin receptor (PRR) contributes to CsA-induced nephropathy by activating the renin-angiotensin system (RAS). Renal injury in male Sprague-Dawley rats was induced by a low-salt diet combined with CsA as evidenced by elevated plasma creatinine and BUN levels, decreased creatinine clearance and induced renal inflammation, apoptosis as well as interstitial fibrosis, elevated urinary N-acetyl-β-D-glucosaminidase activity and urinary kidney injury molecular 1 content. Each index of renal injury was attenuated following a 2-wk treatment with a PRR decoy inhibitor PRO20. While CsA rats with kidney injury displayed increased renal sPRR abundance, plasma sPRR, renin activity, Ang II, and heightened urinary total prorenin/renin content; RAS activation was attenuated by PRO20. Exposure of cultured human renal proximal tubular HK-2 cells to CsA induced expression of fibronectin and sPRR production, but the fibrotic response was attenuated by PRO20 and siRNA-mediated PRR knockdown. These findings support the hypothesis that activation of PRR contributes to CsA-induced nephropathy by activating the RAS in rats. Of importance, we provide strong proof of concept that targeting PRR offers a novel therapeutic strategy to limit nephotoxic effects of immunosuppressant drugs.
Collapse
Affiliation(s)
- Jiajia Hu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yandan Tan
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yanting Chen
- Department of Internal Medicine, University of Utah School of Medicine and Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Shiqi Mo
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Brittin Hekking
- Department of Internal Medicine, University of Utah School of Medicine and Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Jiahui Su
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Min Pu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Aihua Lu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - J. David Symons
- Department of Nutrition and Integrative Physiology; Division of Endocrinology, Metabolism, and Diabetes, Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, Utah
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah School of Medicine and Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| |
Collapse
|
17
|
Wang L, Wu Y, Jia Z, Yu J, Huang S. Roles of EP Receptors in the Regulation of Fluid Balance and Blood Pressure. Front Endocrinol (Lausanne) 2022; 13:875425. [PMID: 35813612 PMCID: PMC9262144 DOI: 10.3389/fendo.2022.875425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/23/2022] [Indexed: 11/23/2022] Open
Abstract
Prostaglandin E2 (PGE2) is an important prostanoid expressing throughout the kidney and cardiovascular system. Despite the diverse effects on fluid metabolism and blood pressure, PGE2 is implicated in sustaining volume and hemodynamics homeostasis. PGE2 works through four distinct E-prostanoid (EP) receptors which are G protein-coupled receptors. To date, pharmacological specific antagonists and agonists of all four subtypes of EP receptors and genetic targeting knockout mice for each subtype have helped in uncoupling the diverse functions of PGE2 and discriminating the respective characteristics of each receptor. In this review, we summarized the functions of individual EP receptor subtypes in the renal and blood vessels and the molecular mechanism of PGE2-induced fluid metabolism and blood pressure homeostasis.
Collapse
Affiliation(s)
- Lu Wang
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yiqian Wu
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Yu
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Songming Huang, ; Jing Yu,
| | - Songming Huang
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Songming Huang, ; Jing Yu,
| |
Collapse
|
18
|
Souza LA, Earley YF. (Pro)renin Receptor and Blood Pressure Regulation: A Focus on the Central Nervous System. Curr Hypertens Rev 2022; 18:101-116. [PMID: 35086455 PMCID: PMC9662243 DOI: 10.2174/1570162x20666220127105655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/02/2021] [Accepted: 12/06/2021] [Indexed: 01/27/2023]
Abstract
The renin-angiotensin system (RAS) is classically described as a hormonal system in which angiotensin II (Ang II) is one of the main active peptides. The action of circulating Ang II on its cognate Ang II type-1 receptor (AT1R) in circumventricular organs has important roles in regulating the autonomic nervous system, blood pressure (BP) and body fluid homeostasis, and has more recently been implicated in cardiovascular metabolism. The presence of a local or tissue RAS in various tissues, including the central nervous system (CNS), is well established. However, because the level of renin, the rate-limiting enzyme in the systemic RAS, is very low in the brain, how endogenous angiotensin peptides are generated in the CNS-the focus of this review-has been the subject of considerable debate. Notable in this context is the identification of the (pro)renin receptor (PRR) as a key component of the brain RAS in the production of Ang II in the CNS. In this review, we highlight cellular and anatomical locations of the PRR in the CNS. We also summarize studies using gain- and loss-of function approaches to elucidate the functional importance of brain PRR-mediated Ang II formation and brain RAS activation, as well as PRR-mediated Ang II-independent signaling pathways, in regulating BP. We further discuss recent developments in PRR involvement in cardiovascular and metabolic diseases and present perspectives for future directions.
Collapse
Affiliation(s)
- Lucas A.C. Souza
- Departments of Pharmacology and Physiology & Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA,Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, NV, USA
| | - Yumei Feng Earley
- Departments of Pharmacology and Physiology & Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA,Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, NV, USA
| |
Collapse
|
19
|
Culver SA, Akhtar S, Rountree-Jablin C, Keller SR, Cathro HP, Gildea JJ, Siragy HM. Knockout of Nephron ATP6AP2 Impairs Proximal Tubule Function and Prevents High-Fat Diet-Induced Obesity in Male Mice. Endocrinology 2021; 162:bqab200. [PMID: 34534267 PMCID: PMC8489432 DOI: 10.1210/endocr/bqab200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 12/24/2022]
Abstract
ATP6AP2 expression is increased in the nephron during high-fat diet (HFD) and its knockout (ATP6AP2 KO) reduces body weight (WT) in mice. We evaluated the contribution of ATP6AP2 to urinary glucose (UG) and albumin (Ualb) handling during HFD. We hypothesized that nephron ATP6AP2 KO increases UG and Ualb and minimizes HFD-induced obesity. Eight-week-old male C57BL/6J mice with inducible nephron-specific ATP6AP2 KO and noninduced controls were fed either normal diet (ND, 12% kcal fat) or HFD (45% kcal fat) for 6 months. ATP6AP2 KO mice on ND had 20% (P < 0.01) lower WT compared with controls. HFD-fed mice had 41% (P < 0.05) greater WT than ND-fed control mice. In contrast, ATP6AP2 KO abrogated the increase in WT induced by HFD by 40% (P < 0.05). Mice on HFD had less caloric intake compared with ND controls (P < 0.01). There were no significant differences in metabolic rate between all groups. UG and Ualb was significantly increased in ATP6AP2 KO mice on both ND and HFD. ATP6AP2 KO showed greater levels of proximal tubule apoptosis and histologic evidence of proximal tubule injury. In conclusion, our results demonstrate that nephron-specific ATP6AP2 KO is associated with glucosuria and albuminuria, most likely secondary to renal proximal tubule injury and/or dysfunction. Urinary loss of nutrients may have contributed to the reduced WT of knockout mice on ND and lack of WT gain in response to HFD. Future investigation should elucidate the mechanisms by which loss of renal ATP6AP2 causes proximal tubule injury and dysfunction.
Collapse
Affiliation(s)
- Silas A Culver
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Safia Akhtar
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Callie Rountree-Jablin
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Susanna R Keller
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Helen P Cathro
- Department of Pathology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - John J Gildea
- Department of Pathology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Helmy M Siragy
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| |
Collapse
|
20
|
Mansley MK, Niklas C, Nacken R, Mandery K, Glaeser H, Fromm MF, Korbmacher C, Bertog M. Prostaglandin E2 stimulates the epithelial sodium channel (ENaC) in cultured mouse cortical collecting duct cells in an autocrine manner. J Gen Physiol 2021; 152:151804. [PMID: 32442241 PMCID: PMC7398144 DOI: 10.1085/jgp.201912525] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 03/30/2020] [Accepted: 04/21/2020] [Indexed: 12/26/2022] Open
Abstract
Prostaglandin E2 (PGE2) is the most abundant prostanoid in the kidney, affecting a wide range of renal functions. Conflicting data have been reported regarding the effects of PGE2 on tubular water and ion transport. The amiloride-sensitive epithelial sodium channel (ENaC) is rate limiting for transepithelial sodium transport in the aldosterone-sensitive distal nephron. The aim of the present study was to explore a potential role of PGE2 in regulating ENaC in cortical collecting duct (CCD) cells. Short-circuit current (ISC) measurements were performed using the murine mCCDcl1 cell line known to express characteristic properties of CCD principal cells and to be responsive to physiological concentrations of aldosterone and vasopressin. PGE2 stimulated amiloride-sensitive ISC via basolateral prostaglandin E receptors type 4 (EP4) with an EC50 of ∼7.1 nM. The rapid stimulatory effect of PGE2 on ISC resembled that of vasopressin. A maximum response was reached within minutes, coinciding with an increased abundance of β-ENaC at the apical plasma membrane and elevated cytosolic cAMP levels. The effects of PGE2 and vasopressin were nonadditive, indicating similar signaling cascades. Exposing mCCDcl1 cells to aldosterone caused a much slower (∼2 h) increase of the amiloride-sensitive ISC. Interestingly, the rapid effect of PGE2 was preserved even after aldosterone stimulation. Furthermore, application of arachidonic acid also increased the amiloride-sensitive ISC involving basolateral EP4 receptors. Exposure to arachidonic acid resulted in elevated PGE2 in the basolateral medium in a cyclooxygenase 1 (COX-1)–dependent manner. These data suggest that in the cortical collecting duct, locally produced and secreted PGE2 can stimulate ENaC-mediated transepithelial sodium transport.
Collapse
Affiliation(s)
- Morag K Mansley
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Niklas
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Regina Nacken
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Kathrin Mandery
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Hartmut Glaeser
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Korbmacher
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Marko Bertog
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
21
|
Xu C, Chen Y, Wang F, Xie S, Yang T. Soluble (Pro)Renin Receptor as a Negative Regulator of NCC (Na +-Cl - Cotransporter) Activity. Hypertension 2021; 78:1027-1038. [PMID: 34495675 PMCID: PMC9212213 DOI: 10.1161/hypertensionaha.121.16981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Chuanming Xu
- Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, the United States
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Yanting Chen
- Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, the United States
| | - Fei Wang
- Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, the United States
| | - Shiying Xie
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Tianxin Yang
- Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, the United States
| |
Collapse
|
22
|
Qin M, Xu C, Yu J. The Soluble (Pro)Renin Receptor in Health and Diseases: Foe or Friend? J Pharmacol Exp Ther 2021; 378:251-261. [PMID: 34158404 DOI: 10.1124/jpet.121.000576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022] Open
Abstract
The (pro)renin receptor (PRR) is a single-transmembrane protein that regulates the local renin-angiotensin system and participates in various intracellular signaling pathways, thus exhibiting a significant physiopathologic relevance in cellular homeostasis. A soluble form of PRR (sPRR) is generated through protease-mediated cleavage of the full-length PRR and secreted into extracellular spaces. Accumulating evidence indicates pivotal biologic functions of sPRR in various physiopathological processes. sPRR may be a novel biomarker for multiple diseases. SIGNIFICANCE STATEMENT: Circulating sPRR concentrations are elevated in patients and animals under various physiopathological conditions. This minireview highlights recent advances in sPRR functions in health and pathophysiological conditions. Results suggest that sPRR may be a novel biomarker for multiple diseases, but further studies are needed to determine the diagnostic value of sPRR.
Collapse
Affiliation(s)
- Manman Qin
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China (M.Q., C.X.), and Center for Metabolic Disease Research and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania (J.Y.)
| | - Chuanming Xu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China (M.Q., C.X.), and Center for Metabolic Disease Research and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania (J.Y.)
| | - Jun Yu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China (M.Q., C.X.), and Center for Metabolic Disease Research and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania (J.Y.)
| |
Collapse
|
23
|
Prieto MC, Gonzalez AA, Visniauskas B, Navar LG. The evolving complexity of the collecting duct renin-angiotensin system in hypertension. Nat Rev Nephrol 2021; 17:481-492. [PMID: 33824491 PMCID: PMC8443079 DOI: 10.1038/s41581-021-00414-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
The intrarenal renin-angiotensin system is critical for the regulation of tubule sodium reabsorption, renal haemodynamics and blood pressure. The excretion of renin in urine can result from its increased filtration, the inhibition of renin reabsorption by megalin in the proximal tubule, or its secretion by the principal cells of the collecting duct. Modest increases in circulating or intrarenal angiotensin II (ANGII) stimulate the synthesis and secretion of angiotensinogen in the proximal tubule, which provides sufficient substrate for collecting duct-derived renin to form angiotensin I (ANGI). In models of ANGII-dependent hypertension, ANGII suppresses plasma renin, suggesting that urinary renin is not likely to be the result of increased filtered load. In the collecting duct, ANGII stimulates the synthesis and secretion of prorenin and renin through the activation of ANGII type 1 receptor (AT1R) expressed primarily by principal cells. The stimulation of collecting duct-derived renin is enhanced by paracrine factors including vasopressin, prostaglandin E2 and bradykinin. Furthermore, binding of prorenin and renin to the prorenin receptor in the collecting duct evokes a number of responses, including the non-proteolytic enzymatic activation of prorenin to produce ANGI from proximal tubule-derived angiotensinogen, which is then converted into ANGII by luminal angiotensin-converting enzyme; stimulation of the epithelial sodium channel (ENaC) in principal cells; and activation of intracellular pathways linked to the upregulation of cyclooxygenase 2 and profibrotic genes. These findings suggest that dysregulation of the renin-angiotensin system in the collecting duct contributes to the development of hypertension by enhancing sodium reabsorption and the progression of kidney injury.
Collapse
Affiliation(s)
- Minolfa C. Prieto
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA.,Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, USA.,
| | - Alexis A. Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Bruna Visniauskas
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA
| | - L. Gabriel Navar
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA.,Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
24
|
Wang Y, Wang Y, Xue K, Wang H, Zhou J, Gao F, Li C, Yang T, Fang H. (Pro)renin receptor antagonist PRO20 attenuates nephrectomy-induced nephropathy in rats via inhibition of intrarenal RAS and Wnt/β-catenin signaling. Physiol Rep 2021; 9:e14881. [PMID: 34057312 PMCID: PMC8165733 DOI: 10.14814/phy2.14881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/25/2022] Open
Abstract
Introduction (Pro)renin receptor has emerged as a new member of the renin‐angiotensin system implicated in the pathogenesis of chronic kidney disease (CKD). Herein we report characterization of the therapeutic potential of (pro)renin receptor (PRR) antagonist PRO20 in 5/6 nephrectomy (5/6Nx) rats. Methods Male Wistar rats underwent 5/6Nx followed by treatment with vehicle or received daily injections of a PRR inhibitor PRO20 (700 μg/kg) via the 3 s.c. Sham group served as a control. Results As compared with the sham control, the 5/6Nx rats exhibited significant increases in proteinuria, glomerulosclerosis, tubular injury, and interstitial inflammation in the remnant kidneys. Treatment with PRO20 significantly attenuated these abnormalities, as evidenced by reduced expression of fibronectin, α‐SMA, collagen 1, TGF‐β1, IL‐6, IL‐8, IL‐1β, MCP‐1 and increased expression of E‐cadherin. Increased urinary/renal levels of renin activity, angiotensinogen (AGT), and Angiotensin II (Ang II) by 5/6Nx, which were all ameliorated by PRO20. Renal PRR, the secreted proteolytic fragment of PRR (sPRR) in renal and urinary, were all elevated in 5/6Nx rats. Moreover, our results revealed that renal Wnt3A and β‐catenin expression were upregulated during 5/6Nx, which were all attenuated by PRO20. Conclusions Overall we conclude that in vivo antagonism of PRR with PRO20 will improve 5/6Nx‐induced CKD mainly through inhibition of intrarenal RAS and Wnt/β‐catenin signaling pathway.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Yurong Wang
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Kai Xue
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Huaijie Wang
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Jingjing Zhou
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Feng Gao
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Chengde Li
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Hui Fang
- Key Laboratory of Applied Pharmacology in Universities of Shandong, Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
25
|
Chen Y, Xu C, Hu J, Deng M, Qiu Q, Mo S, Du Y, Yang T. Diuretic Action of Apelin-13 Mediated by Inhibiting cAMP/PKA/sPRR Pathway. Front Physiol 2021; 12:642274. [PMID: 33868005 PMCID: PMC8044521 DOI: 10.3389/fphys.2021.642274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
Emerging evidence is showing that apelin plays an important role in regulating salt and water balance by counteracting the antidiuretic action of vasopressin (AVP). However, the underlying mechanism remains unknown. Here, we hypothesized that (pro) renin receptor (PRR)/soluble prorenin receptor (sPRR) might mediate the diuretic action of apelin in the distal nephron. During water deprivation (WD), the urine concentrating capability was impaired by an apelin peptide, apelin-13, accompanied by the suppression of the protein expression of aquaporin 2 (AQP2), NKCC2, PRR/sPRR, renin and nuclear β-catenin levels in the kidney. The upregulated expression of AQP2 or PRR/sPRR both induced by AVP and 8-Br-cAMP was blocked by apelin-13, PKA inhibitor (H89), or β-catenin inhibitor (ICG001). Interestingly, the blockage of apelin-13 on AVP-induced AQP2 protein expression was reversed by exogenous sPRR. Together, the present study has defined the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/sPRR pathway in the CD as the molecular target of the diuretic action of apelin.
Collapse
Affiliation(s)
- Yanting Chen
- Zhongshan School of Medicine, Institute of Hypertension, Sun Yat-sen University, Guangzhou, China
| | - Chuanming Xu
- Zhongshan School of Medicine, Institute of Hypertension, Sun Yat-sen University, Guangzhou, China.,Center for Translational Medicine, Jiangxi University of Traditional Chinese, Nanchang, China
| | - Jiajia Hu
- Zhongshan School of Medicine, Institute of Hypertension, Sun Yat-sen University, Guangzhou, China
| | - Mokan Deng
- Zhongshan School of Medicine, Institute of Hypertension, Sun Yat-sen University, Guangzhou, China
| | - Qixiang Qiu
- Zhongshan School of Medicine, Institute of Hypertension, Sun Yat-sen University, Guangzhou, China
| | - Shiqi Mo
- Zhongshan School of Medicine, Institute of Hypertension, Sun Yat-sen University, Guangzhou, China
| | - Yanhua Du
- Department of Pharmacology, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, UT, United States
| |
Collapse
|
26
|
Arthur G, Osborn JL, Yiannikouris FB. (Pro)renin receptor in the kidney: function and significance. Am J Physiol Regul Integr Comp Physiol 2021; 320:R377-R383. [PMID: 33470188 DOI: 10.1152/ajpregu.00259.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
(Pro)renin receptor (PRR), a 350-amino acid receptor initially thought of as a receptor for the binding of renin and prorenin, is multifunctional. In addition to its role in the renin-angiotensin system (RAS), PRR transduces several intracellular signaling molecules and is a component of the vacuolar H+-ATPase that participates in autophagy. PRR is found in the kidney and particularly in great abundance in the cortical collecting duct. In the kidney, PRR participates in water and salt balance, acid-base balance, and autophagy and plays a role in development and progression of hypertension, diabetic retinopathy, and kidney fibrosis. This review highlights the role of PRR in the development and function of the kidney, namely, the macula densa, podocyte, proximal and distal convoluted tubule, and the principal cells of the collecting duct, and focuses on PRR function in body fluid volume homeostasis, blood pressure regulation, and acid-base balance. This review also explores new advances in the molecular mechanism involving PRR in normal renal health and pathophysiological states.
Collapse
Affiliation(s)
- Gertrude Arthur
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| | - Jeffrey L Osborn
- Department of Biology, University of Kentucky, Lexington, Kentucky
| | | |
Collapse
|
27
|
Luo R, Yang K, Wang F, Xu C, Yang T. (Pro)renin receptor decoy peptide PRO20 protects against adriamycin-induced nephropathy by targeting the intrarenal renin-angiotensin system. Am J Physiol Renal Physiol 2020; 319:F930-F940. [PMID: 32865014 PMCID: PMC7701266 DOI: 10.1152/ajprenal.00279.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 11/22/2022] Open
Abstract
Adriamycin (ADR) administration in susceptible rodents such as the BALB/c mouse strain produces injury to the glomerulus mimicking human chronic kidney disease due to primary focal segmental glomerulosclerosis. The goal of the present study was to use this model to investigate antiproteinuric actions of the (pro)renin receptor decoy inhibitor PRO20. BALB/c mice were pretreated for 1 day with PRO20 at 500 μg·kg-1·day-1 via an osmotic minipump followed by a single injection of vehicle or ADR (10 mg/kg) via the tail vein. Albuminuria and renal function were analyzed at the fourth week post-ADR administration. ADR-treated mice exhibited severe proteinuria, hypoalbuminemia and hyperlipidemia, glomerulosclerosis, podocyte loss, tubulointerstitial fibrosis, and oxidative stress, accompanied by elevated urinary neutrophil gelatinase-associated lipocalin and kidney injury molecule-1, all of which were significantly attenuated by PRO20. Urinary and renal renin activity and angiotensin II were elevated by ADR and suppressed by PRO20. In parallel, urinary and renal H2O2 levels and renal NADPH oxidase 4 (Nox4) and transient receptor potential channel C6 (TRPC6) expression in response to ADR were all similarly suppressed. Taken together, the results of the present study provide the first evidence that PRO20 can protect against podocyte damage and interstitial fibrosis in ADR nephropathy by preventing activation of the intrarenal renin-angiotensin system and upregulation of Nox4 and TRPC6 expression. PRO20 may have a potential application in the treatment of ADR nephropathy.
Collapse
Affiliation(s)
- Renfei Luo
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Kevin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Fei Wang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Chuanming Xu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| |
Collapse
|
28
|
Chapman CL, Johnson BD, Parker MD, Hostler D, Pryor RR, Schlader Z. Kidney physiology and pathophysiology during heat stress and the modification by exercise, dehydration, heat acclimation and aging. Temperature (Austin) 2020; 8:108-159. [PMID: 33997113 PMCID: PMC8098077 DOI: 10.1080/23328940.2020.1826841] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
The kidneys' integrative responses to heat stress aid thermoregulation, cardiovascular control, and water and electrolyte regulation. Recent evidence suggests the kidneys are at increased risk of pathological events during heat stress, namely acute kidney injury (AKI), and that this risk is compounded by dehydration and exercise. This heat stress related AKI is believed to contribute to the epidemic of chronic kidney disease (CKD) occurring in occupational settings. It is estimated that AKI and CKD affect upwards of 45 million individuals in the global workforce. Water and electrolyte disturbances and AKI, both of which are representative of kidney-related pathology, are the two leading causes of hospitalizations during heat waves in older adults. Structural and physiological alterations in aging kidneys likely contribute to this increased risk. With this background, this comprehensive narrative review will provide the first aggregation of research into the integrative physiological response of the kidneys to heat stress. While the focus of this review is on the human kidneys, we will utilize both human and animal data to describe these responses to passive and exercise heat stress, and how they are altered with heat acclimation. Additionally, we will discuss recent studies that indicate an increased risk of AKI due to exercise in the heat. Lastly, we will introduce the emerging public health crisis of older adults during extreme heat events and how the aging kidneys may be more susceptible to injury during heat stress.
Collapse
Affiliation(s)
- Christopher L. Chapman
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Blair D. Johnson
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Mark D. Parker
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - David Hostler
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA
| | - Riana R. Pryor
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA
| | - Zachary Schlader
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN, USA
| |
Collapse
|
29
|
Wang F, Sun Y, Luo R, Lu X, Yang B, Yang T. COX-2-independent activation of renal (pro)renin receptor contributes to DOCA-salt hypertension in rats. Am J Physiol Renal Physiol 2020; 319:F647-F653. [PMID: 32799674 PMCID: PMC7642891 DOI: 10.1152/ajprenal.00112.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/21/2022] Open
Abstract
It has been shown that cyclooxygenase (COX)-2-dependent activation of renal (pro)renin receptor (PRR) contributes to angiotensin II (ANG II)-induced hypertension. However, less is known about the involvement of this mechanism in ANG II-independent hypertension. The goal of the present study was to test whether or not COX-2-dependent upregulation of PRR serves as a universal mechanism contributing to ANG II-dependent and -independent hypertension. Here, we examined the association between renal COX-2 and PRR during deoxycorticosterone acetate (DOCA)-salt hypertension in rats. By immunoblot analysis and immunofluorescence, renal protein expression of PRR was remarkably upregulated by DOCA-salt treatment. Surprisingly, this upregulation of renal PRR expression was unaffected by a COX-2 inhibitor, celecoxib. To address the role of renal PRR to the pathogenesis of DOCA-salt hypertension, a decoy PRR inhibitor, PRO20, was infused to the renal medulla of uninephrectomized Sprague-Dawley rats for 14 days. Radiotelemetry demonstrated effective attenuation of DOCA-salt hypertension by intramedullary infusion of a PRR inhibitor, PRO20. In parallel, DOCA-salt-induced hypertrophy in the heart and kidney as well as proteinuria were improved, accompanied with blunted polydipsia and polyuria. In contrast, intravenous infusion of PRO20 was less effective in attenuating DOCA-salt hypertension and cardiorenal injury. Together, these results suggest that COX-2-independent activation of renal PRR contributes to DOCA-salt hypertension.
Collapse
Affiliation(s)
- Fei Wang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Ying Sun
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Renfei Luo
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Xiaohan Lu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| |
Collapse
|
30
|
Norel X, Sugimoto Y, Ozen G, Abdelazeem H, Amgoud Y, Bouhadoun A, Bassiouni W, Goepp M, Mani S, Manikpurage HD, Senbel A, Longrois D, Heinemann A, Yao C, Clapp LH. International Union of Basic and Clinical Pharmacology. CIX. Differences and Similarities between Human and Rodent Prostaglandin E 2 Receptors (EP1-4) and Prostacyclin Receptor (IP): Specific Roles in Pathophysiologic Conditions. Pharmacol Rev 2020; 72:910-968. [PMID: 32962984 PMCID: PMC7509579 DOI: 10.1124/pr.120.019331] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Prostaglandins are derived from arachidonic acid metabolism through cyclooxygenase activities. Among prostaglandins (PGs), prostacyclin (PGI2) and PGE2 are strongly involved in the regulation of homeostasis and main physiologic functions. In addition, the synthesis of these two prostaglandins is significantly increased during inflammation. PGI2 and PGE2 exert their biologic actions by binding to their respective receptors, namely prostacyclin receptor (IP) and prostaglandin E2 receptor (EP) 1-4, which belong to the family of G-protein-coupled receptors. IP and EP1-4 receptors are widely distributed in the body and thus play various physiologic and pathophysiologic roles. In this review, we discuss the recent advances in studies using pharmacological approaches, genetically modified animals, and genome-wide association studies regarding the roles of IP and EP1-4 receptors in the immune, cardiovascular, nervous, gastrointestinal, respiratory, genitourinary, and musculoskeletal systems. In particular, we highlight similarities and differences between human and rodents in terms of the specific roles of IP and EP1-4 receptors and their downstream signaling pathways, functions, and activities for each biologic system. We also highlight the potential novel therapeutic benefit of targeting IP and EP1-4 receptors in several diseases based on the scientific advances, animal models, and human studies. SIGNIFICANCE STATEMENT: In this review, we present an update of the pathophysiologic role of the prostacyclin receptor, prostaglandin E2 receptor (EP) 1, EP2, EP3, and EP4 receptors when activated by the two main prostaglandins, namely prostacyclin and prostaglandin E2, produced during inflammatory conditions in human and rodents. In addition, this comparison of the published results in each tissue and/or pathology should facilitate the choice of the most appropriate model for the future studies.
Collapse
Affiliation(s)
- Xavier Norel
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Yukihiko Sugimoto
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Gulsev Ozen
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Heba Abdelazeem
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Yasmine Amgoud
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Amel Bouhadoun
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Wesam Bassiouni
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Marie Goepp
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Salma Mani
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Hasanga D Manikpurage
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Amira Senbel
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Dan Longrois
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Akos Heinemann
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Chengcan Yao
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Lucie H Clapp
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| |
Collapse
|
31
|
Chen Y, Xu C. The interaction partners of (pro)renin receptor in the distal nephron. FASEB J 2020; 34:14136-14149. [PMID: 32975331 DOI: 10.1096/fj.202001711r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/11/2022]
Abstract
The (pro)renin receptor (PRR), a key regulator of intrarenal renin-angiotensin system (RAS), is predominantly presented in podocytes, proximal tubules, distal convoluted tubules, and the apical membrane of collecting duct A-type intercalated cells, and plays a crucial role in hypertension, cardiovascular disease, kidney disease, and fluid homeostasis. In addition to its well-known renin-regulatory function, increasing evidence suggests PRR can also act in a variety of intracellular signaling cascades independently of RAS in the renal medulla, including Wnt/β-catenin signaling, cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2 ) signaling, and the apelinergic system, and work as a component of the vacuolar H+ -ATPase. PRR and these pathways regulate the expression/activity of each other that controlling blood pressure and renal functions. In this review, we highlight recent findings regarding the antagonistic interaction between PRR and ELABELA/apelin, the mutually stimulatory relationship between PRR and COX-2/PGE2 or Wnt/β-catenin signaling in the renal medulla, and their involvement in the regulation of intrarenal RAS thereby control blood pressure, renal injury, and urine concentrating ability in health and patho-physiological conditions. We also highlight the latest progress in the involvement of PRR for the vacuolar H+ -ATPase activity.
Collapse
Affiliation(s)
- Yanting Chen
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China.,Internal Medicine, Division of Nephrology and Hypertension, University of Utah and Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Chuanming Xu
- Internal Medicine, Division of Nephrology and Hypertension, University of Utah and Veterans Affairs Medical Center, Salt Lake City, UT, USA.,Center for Translational Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
32
|
Xu C, Wang F, Chen Y, Xie S, Sng D, Reversade B, Yang T. ELABELA antagonizes intrarenal renin-angiotensin system to lower blood pressure and protects against renal injury. Am J Physiol Renal Physiol 2020; 318:F1122-F1135. [PMID: 32174138 DOI: 10.1152/ajprenal.00606.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Emerging evidence has demonstrated that (pro)renin receptor (PRR)-mediated activation of intrarenal renin-angiotensin system (RAS) plays an essential role in renal handling of Na+ and water balance and blood pressure. The present study tested the possibility that the intrarenal RAS served as a molecular target for the protective action of ELABELA (ELA), a novel endogenous ligand of apelin receptor, in the distal nephron. By RNAscope and immunofluorescence, mRNA and protein expression of endogenous ELA was consistently localized to the collecting duct (CD). Apelin was also found in the medullary CDs as assessed by immunofluorescence. In cultured CD-derived M1 cells, exogenous ELA induced parallel decreases of full-length PRR (fPRR), soluble PRR (sPRR), and prorenin/renin protein expression as assessed by immunoblotting and medium sPRR and prorenin/renin levels by ELISA, all of which were reversed by 8-bromoadenosine 3',5'-cyclic monophosphate. Conversely, deletion of PRR in the CD or nephron in mice elevated Apela and Apln mRNA levels as well as urinary ELA and apelin excretion, supporting the antagonistic relationship between the two systems. Administration of exogenous ELA-32 infusion (1.5 mg·kg-1·day-1, minipump) to high salt (HS)-loaded Dahl salt-sensitive (SS) rats significantly lowered mean arterial pressure, systolic blood pressure, diastolic blood pressure, and albuminuria, accompanied with a reduction of urinary sPRR, angiotensin II, and prorenin/renin excretion. HS upregulated renal medullary protein expression of fPRR, sPRR, prorenin, and renin in Dahl SS rats, all of which were significantly blunted by exogenous ELA-32 infusion. Additionally, HS-induced upregulation of inflammatory cytokines (IL-1β, IL-2, IL-6, IL-17A, IFN-γ, VCAM-1, ICAM-1, and MCP-1), fibrosis markers (TGF-β1, FN, Col1A1, PAI-1, and TIMP-1), and kidney injury markers (NGAL, Kim-1, albuminuria, and urinary NGAL excretion) were markedly blocked by exogenous ELA infusion. Together, these results support the antagonistic interaction between ELA and intrarenal RAS in the distal nephron that appears to exert a major impact on blood pressure regulation.
Collapse
Affiliation(s)
- Chuanming Xu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Fei Wang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Yanting Chen
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah.,Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Shiying Xie
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah.,Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Danielle Sng
- Institute of Medical Biology, A*STAR, 8A Biomedical Grove, Immunos, Singapore
| | - Bruno Reversade
- Institute of Medical Biology, A*STAR, 8A Biomedical Grove, Immunos, Singapore
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah.,Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| |
Collapse
|
33
|
Wang F, Luo R, Peng K, Liu X, Xu C, Lu X, Soodvilai S, Yang T. Soluble (pro)renin receptor regulation of ENaC involved in aldosterone signaling in cultured collecting duct cells. Am J Physiol Renal Physiol 2020; 318:F817-F825. [PMID: 31841392 PMCID: PMC7099505 DOI: 10.1152/ajprenal.00436.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/18/2019] [Accepted: 12/11/2019] [Indexed: 11/22/2022] Open
Abstract
We have previously shown that activation of (pro)renin receptor (PRR) induces epithelial Na+ channel (ENaC) activity in cultured collecting duct cells. Here, we examined the role of soluble PRR (sPRR), the cleavage product of PRR in ENaC regulation, and further tested its relevance to aldosterone signaling. In cultured mpkCCD cells, administration of recombinant histidine-tagged sPRR (sPRR-His) at 10 nM within minutes induced a significant and transient increase in the amiloride-sensitive short-circuit current as assessed using the Ussing chamber technique. The acute ENaC activation was blocked by the NADPH oxidase 1/4 inhibitor GKT137892 and siRNA against Nox4 but not the β-catenin inhibitor ICG-001. In primary rat inner medullary collecting duct cells, administration of sPRR-His at 10 nM for 24 h induced protein expression of the α-subunit but not β- or γ-subunits of ENaC, in parallel with upregulation of mRNA expression as well as promoter activity of the α-subunit. The transcriptional activation of α-ENaC was dependent on β-catenin signaling. Consistent results obtained by epithelial volt ohmmeter measurement of equivalent current and Ussing chamber determination of short-circuit current showed that aldosterone-induced transepithelial Na+ transport was inhibited by the PRR decoy inhibitor PRO20 and PF-429242, an inhibitor of sPRR-generating enzyme site-1 protease, and the response was restored by the addition of sPRR-His. Medium sPRR was elevated by aldosterone and inhibited by PF-429242. Taken together, these results demonstrate that sPRR induces two phases of ENaC activation via distinct mechanisms and functions as a mediator of the natriferic action of aldosterone.
Collapse
Affiliation(s)
- Fei Wang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Renfei Luo
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Kexin Peng
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiyang Liu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chuanming Xu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Xiaohan Lu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Sunhapas Soodvilai
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| |
Collapse
|
34
|
Abstract
The (pro)renin receptor ((P)RR) was first identified as a single-transmembrane receptor in human kidneys and initially attracted attention owing to its potential role as a regulator of the tissue renin-angiotensin system (RAS). Subsequent studies found that the (P)RR is widely distributed in organs throughout the body, including the kidneys, heart, brain, eyes, placenta and the immune system, and has multifaceted functions in vivo. The (P)RR has roles in various physiological processes, such as the cell cycle, autophagy, acid-base balance, energy metabolism, embryonic development, T cell homeostasis, water balance, blood pressure regulation, cardiac remodelling and maintenance of podocyte structure. These roles of the (P)RR are mediated by its effects on important biological systems and pathways including the tissue RAS, vacuolar H+-ATPase, Wnt, partitioning defective homologue (Par) and tyrosine phosphorylation. In addition, the (P)RR has been reported to contribute to the pathogenesis of diseases such as fibrosis, hypertension, pre-eclampsia, diabetic microangiopathy, acute kidney injury, cardiovascular disease, cancer and obesity. Current evidence suggests that the (P)RR has key roles in the normal development and maintenance of vital organs and that dysfunction of the (P)RR is associated with diseases that are characterized by a disruption of the homeostasis of physiological functions.
Collapse
|
35
|
Reyes-Martinez C, Nguyen QM, Kassan M, Gonzalez AA. (Pro)renin Receptor-Dependent Induction of Profibrotic Factors Is Mediated by COX-2/EP4/NOX-4/Smad Pathway in Collecting Duct Cells. Front Pharmacol 2019; 10:803. [PMID: 31396082 PMCID: PMC6664006 DOI: 10.3389/fphar.2019.00803] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 06/21/2019] [Indexed: 12/24/2022] Open
Abstract
The binding of prorenin to the (pro)renin receptor (PRR) triggers the activation of MAPK/ERK1/2 pathway, induction of cyclooxygenase-2 (COX-2), NOX-4-dependent production of reactive oxygen species (ROS), and the induction of transforming growth factor β (TGF-β) and profibrotic factors connecting tissue growth factor (CTGF) and plasminogen activator inhibitor (PAI-I) in collecting duct (CD) cells. However, the role of COX-2 and the intracellular pathways involved are not clear. We hypothesized that the PRR activation increases profibrotic factors through COX-2-mediated PGE2 activation of E prostanoid receptor 4 (EP4), upregulation of NOX-4/ROS production, and activation of Smad pathway in mouse CD cells. Recombinant prorenin increased ROS production and protein levels of CTGF, PAI-I, and TGF-β in M-1 CD cell line. Inhibition of MAPK, NOX-4, and COX-2 prevented this effect. Inhibition of MEK, COX-2, and EP4 also prevented the upregulation of NOX-4. Because TGF-β activates Smad pathway, we evaluate the phosphorylation of Smad2 and 3. COX-2 inhibition or EP4 antagonism significantly prevented phosphorylation of Smad 2/3. Mice that were infused with recombinant prorenin showed an induction in the expression of CTGF, PAI-I, TGF-β, fibronectin, and collagen I in isolated collecting ducts as well as the expression of alpha smooth muscle actin (α-SMA) in renal tissues. COX-2 inhibition prevented this induction. These results indicate that the induction of TGF-β, CTGF, PAI-I, and ROS occurs through PRR-dependent activation of MAPK and NOX-4; however, this mechanism depends on COX-2-derived PGE2 production and the activation of EP4 and Smad pathway.
Collapse
Affiliation(s)
| | - Quynh My Nguyen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, United States
| | - Modar Kassan
- Cardiovascular Division, Department of Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| |
Collapse
|
36
|
Chen L, Clark JZ, Nelson JW, Kaissling B, Ellison DH, Knepper MA. Renal-Tubule Epithelial Cell Nomenclature for Single-Cell RNA-Sequencing Studies. J Am Soc Nephrol 2019; 30:1358-1364. [PMID: 31253652 DOI: 10.1681/asn.2019040415] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Jevin Z Clark
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Jonathan W Nelson
- Division of Nephrology and Hypertension, Oregon Health & Science University, Portland, Oregon; and
| | | | - David H Ellison
- Division of Nephrology and Hypertension, Oregon Health & Science University, Portland, Oregon; and
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland;
| |
Collapse
|
37
|
Wang F, Xu C, Luo R, Peng K, Ramkumar N, Xie S, Lu X, Zhao L, Zuo CJ, Kohan DE, Yang T. Site-1 protease-derived soluble (pro)renin receptor targets vasopressin receptor 2 to enhance urine concentrating capability. JCI Insight 2019; 4:124174. [PMID: 30944256 PMCID: PMC6483716 DOI: 10.1172/jci.insight.124174] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023] Open
Abstract
The antidiuretic hormone vasopressin (AVP), acting through its type 2 receptor (V2R) in the collecting duct (CD), critically controls urine concentrating capability. Here, we report that site-1 protease-derived (S1P-derived) soluble (pro)renin receptor (sPRR) participates in regulation of fluid homeostasis via targeting V2R. In cultured inner medullary collecting duct (IMCD) cells, AVP-induced V2R expression was blunted by a PRR antagonist, PRO20; a PRR-neutralizing antibody; or a S1P inhibitor, PF-429242. In parallel, sPRR release was increased by AVP and reduced by PF-429242. Administration of histidine-tagged sPRR, sPRR-His, stimulated V2R expression and also reversed the inhibitory effect of PF-429242 on the expression induced by AVP. PF-429242 treatment in C57/BL6 mice impaired urine concentrating capability, which was rescued by sPRR-His. This observation was recapitulated in mice with renal tubule-specific deletion of S1P. During the pharmacological or genetic manipulation of S1P alone or in combination with sPRR-His, the changes in urine concentration were paralleled with renal expression of V2R and aquaporin-2 (AQP2). Together, these results support that S1P-derived sPRR exerts a key role in determining renal V2R expression and, thus, urine concentrating capability.
Collapse
Affiliation(s)
- Fei Wang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chuanming Xu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Renfei Luo
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Kexin Peng
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Nirupama Ramkumar
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Shiying Xie
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaohan Lu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Long Zhao
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Chang-Jiang Zuo
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Donald E. Kohan
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Hypertension and Renal Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
38
|
Fu Z, Hu J, Zhou L, Chen Y, Deng M, Liu X, Su J, Lu A, Fu X, Yang T. (Pro)renin receptor contributes to pregnancy-induced sodium-water retention in rats via activation of intrarenal RAAS and α-ENaC. Am J Physiol Renal Physiol 2019; 316:F530-F538. [PMID: 30379098 PMCID: PMC6459302 DOI: 10.1152/ajprenal.00411.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/11/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023] Open
Abstract
The (pro)renin receptor (PRR) is a new component of the renin-angiotensin-aldosterone system (RAAS) and regulates renin activity. The objective of the present study was to test potential roles of the renal PRR and intrarenal RAAS in the physiological status of late pregnancy. Late pregnant Sprague-Dawley rats were studied 19-21 days after sperm was observed in vaginal smears. Experiments were performed using age-matched virgin rats and late pregnant rats treated with the specific PRR inhibitor PRO20 (700 μg·kg-1·day-1 sc for 14 days, 3 times/day for every 8 h) or vehicle. The indices of RAAS, including PRR, renin, angiotensin II, and aldosterone levels, were examined by immunoblotting, qRT-PCR, or ELISA. Further analyses of renal epithelial sodium channel (ENaC) expression, sodium-water retention, and plasma volume were performed. We first present evidence for the activation of intrarenal RAAS in late pregnant rats, including increases in urinary renin activity, active and total renin content, and prorenin content, angiotensin II and aldosterone excretion, in parallel with increased renal PRR expression and urinary soluble PRR excretion. Functional evidence demonstrated that PRR antagonism with PRO20 effectively suppressed the indices of intrarenal RAAS in late pregnant rats. In addition, our results revealed that renal α-ENaC expression, sodium-water retention, and plasma volume were elevated during late pregnancy, which were all attenuated by PRO20. In summary, the present study examined the renal mechanism of sodium-water retention and plasma volume expansion in late pregnant rats and identified a novel role of PRR in regulation of intrarenal RAAS and α-ENaC and thus sodium and fluid retention associated with pregnancy.
Collapse
Affiliation(s)
- Ziwei Fu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China
| | - Jiajia Hu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China
| | - Li Zhou
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China
| | - Yanting Chen
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China
| | - Mokan Deng
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China
| | - Xiyang Liu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China
| | - Jiahui Su
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China
| | - Aihua Lu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China
| | - Xiaodong Fu
- Guangzhou Institute of Cardiovascular Diseases, The Second Affiliated Hospital; Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Tianxin Yang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center , Salt Lake City, Utah
| |
Collapse
|
39
|
Ramkumar N, Kohan DE. The (pro)renin receptor: an emerging player in hypertension and metabolic syndrome. Kidney Int 2019; 95:1041-1052. [PMID: 30819554 DOI: 10.1016/j.kint.2018.10.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/17/2018] [Accepted: 10/23/2018] [Indexed: 12/17/2022]
Abstract
The (pro)renin receptor (PRR) is a multifunctional protein that is expressed in multiple organs. Binding of prorenin/renin to the PRR activates angiotensin II-dependent and angiotensin II-independent pathways. The PRR is also involved in autophagy and Wnt/ß catenin signaling, functions that are not contingent on prorenin binding. Emerging evidence suggests that the PRR plays an important role in blood pressure regulation and glucose and lipid metabolism. Herein, we review PRR function in health and disease, with particular emphasis on hypertension and the metabolic syndrome.
Collapse
Affiliation(s)
- Nirupama Ramkumar
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA.
| | - Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA; Salt Lake Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| |
Collapse
|
40
|
Electrolyte transport in the renal collecting duct and its regulation by the renin-angiotensin-aldosterone system. Clin Sci (Lond) 2019; 133:75-82. [PMID: 30622159 DOI: 10.1042/cs20180194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/29/2018] [Accepted: 12/17/2018] [Indexed: 01/13/2023]
Abstract
Distal nephron of the kidney plays key roles in fluid volume and electrolyte homeostasis by tightly regulating reabsorption and excretion of Na+, K+, and Cl- Studies to date demonstrate the detailed electrolyte transport mechanisms in principal cells of the cortical collecting duct, and their regulation by renin-angiotensin-aldosterone system (RAAS). In recent years, however, accumulating data indicate that intercalated cells, another cell type that is present in the cortical collecting duct, also play active roles in the regulation of blood pressure. Notably, pendrin in β-intercalated cells not only controls acid/base homeostasis, but is also one of the key components controlling salt and K+ transport in distal nephron. We have recently shown that pendrin is regulated by the co-ordinated action of angiotensin II (AngII) and aldosterone, and at the downstream of AngII, mammalian target of rapamycin (mTOR) signaling regulates pendrin through inhibiting the kinase unc51-like-kinase 1 and promoting dephosphorylation of mineralocorticoid receptor (MR). In this review, we summarize recent advances in the current knowledge on the salt transport mechanisms in the cortical collecting duct, and their regulation by the RAAS.
Collapse
|
41
|
Abstract
Body fluid homeostasis is essential for normal life. In the maintenance of water balance, the most important factor and regulated process is the excretory function of the kidneys. The kidneys are capable to compensate not only the daily fluctuations of water intake but also the consequences of fluid loss (respiration, perspiration, sweating, hemorrhage). The final volume and osmolality of the excreted urine is set in the collecting duct via hormonal regulation. The hormone of water conservation is the vasopressin (AVP), and a large volume of urine is produced and excreted in the absence of AVP secretion or if AVP is ineffective in the kidneys. The aquaporin-2 water channel (AQP2) is expressed in the principal cells, and it plays an essential role in the reabsorption of water in the collecting ducts via type 2 vasopressin receptor (V2R)-mediated mechanism. If neural or hormonal regulation fails to operate the normal function of AVP-V2R-AQP2 system, it can result in various diseases such as diabetes insipidus (DI) or nephrogenic syndrome of inappropriate diuresis (NSIAD). The DI is characterized by excessive production of hyposmotic urine ("insipidus" means tasteless) due to the inability of the kidneys to concentrate urine. In this chapter, we focus and discuss the pathophysiology of nephrogenic DI (NDI) and the potential therapeutic interventions in the light of the current experimental data.
Collapse
Affiliation(s)
- András Balla
- Faculty of Medicine, Department of Physiology, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - László Hunyady
- Faculty of Medicine, Department of Physiology, Semmelweis University, Budapest, Hungary.
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
42
|
Nawata CM, Pannabecker TL. Mammalian urine concentration: a review of renal medullary architecture and membrane transporters. J Comp Physiol B 2018; 188:899-918. [PMID: 29797052 PMCID: PMC6186196 DOI: 10.1007/s00360-018-1164-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/23/2018] [Accepted: 05/14/2018] [Indexed: 01/10/2023]
Abstract
Mammalian kidneys play an essential role in balancing internal water and salt concentrations. When water needs to be conserved, the renal medulla produces concentrated urine. Central to this process of urine concentration is an osmotic gradient that increases from the corticomedullary boundary to the inner medullary tip. How this gradient is generated and maintained has been the subject of study since the 1940s. While it is generally accepted that the outer medulla contributes to the gradient by means of an active process involving countercurrent multiplication, the source of the gradient in the inner medulla is unclear. The last two decades have witnessed advances in our understanding of the urine-concentrating mechanism. Details of medullary architecture and permeability properties of the tubules and vessels suggest that the functional and anatomic relationships of these structures may contribute to the osmotic gradient necessary to concentrate urine. Additionally, we are learning more about the membrane transporters involved and their regulatory mechanisms. The role of medullary architecture and membrane transporters in the mammalian urine-concentrating mechanism are the focus of this review.
Collapse
Affiliation(s)
- C Michele Nawata
- Department of Physiology, Banner University Medical Center, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ, 85724-5051, USA.
| | - Thomas L Pannabecker
- Department of Physiology, Banner University Medical Center, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ, 85724-5051, USA
| |
Collapse
|
43
|
Aringer I, Artinger K, Kirsch AH, Schabhüttl C, Jandl K, Bärnthaler T, Mooslechner AA, Herzog SA, Uhlig M, Kirsch A, Frank S, Banas M, Pollheimer M, Eller P, Rosenkranz AR, Heinemann A, Eller K. Blockade of prostaglandin E 2 receptor 4 ameliorates nephrotoxic serum nephritis. Am J Physiol Renal Physiol 2018; 315:F1869-F1880. [PMID: 30332316 DOI: 10.1152/ajprenal.00113.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Prostaglandin E2 (PGE2) signaling is known to modulate inflammation and vascular resistance. Receptors of PGE2 [E-type prostanoid receptors (EP)] might be an attractive pharmacological target in immune-mediated diseases such as glomerulonephritis. We hypothesized that selective EP4 antagonism improves nephrotoxic serum nephritis (NTS) by its anti-inflammatory properties. Mice were subjected to NTS and treated with the EP4 antagonist ONO AE3-208 (10 mg·kg body wt-1·day-1] or vehicle starting from disease initiation. In one set of experiments, treatment was started 4 days after NTS induction. Tubular epithelial cells were evaluated in vitro under starving conditions. EP4 antagonist treatment significantly improved the NTS phenotype without affecting blood pressure levels. Remarkably, the improved NTS phenotype was also observed when treatment was started 4 days after NTS induction. EP4 antagonism decreased tubular chemokine (C-X-C motif) ligand ( Cxcl) 1 and Cxcl-5 expression and thereby subsequently reduced interstitial neutrophil infiltration into the kidney. In vitro, tubular epithelial cells increasingly expressed Cxcl-5 mRNA and Cxcl-5 protein when treated with PGE2 or an EP4 agonist under starving conditions, which was blunted by EP4 antagonist treatment. Together, EP4 antagonism improves the NTS phenotype, probably by decreasing mainly Cxcl-5 production in tubular cells, thereby reducing renal neutrophil infiltration.
Collapse
Affiliation(s)
- Ida Aringer
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.,Division of Pharmacology, Otto Loewi Research Center, BioTechMed Graz, Medical University of Graz , Graz , Austria
| | - Katharina Artinger
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Alexander H Kirsch
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Corinna Schabhüttl
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.,Intensive Care Unit, Department of Internal Medicine, Medical University of Graz , Graz , Austria
| | - Katharina Jandl
- Division of Pharmacology, Otto Loewi Research Center, BioTechMed Graz, Medical University of Graz , Graz , Austria.,Ludwig Boltzmann Institute for Lung Vascular Research , Graz , Austria
| | - Thomas Bärnthaler
- Division of Pharmacology, Otto Loewi Research Center, BioTechMed Graz, Medical University of Graz , Graz , Austria
| | - Agnes A Mooslechner
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Sereina A Herzog
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz , Graz , Austria
| | - Moritz Uhlig
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Andrijana Kirsch
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz , Graz , Austria
| | - Saša Frank
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz , Graz , Austria
| | - Miriam Banas
- Clinical Division of Nephrology, Department of Internal Medicine, University Hospital Regensburg , Regensburg , Germany
| | | | - Philipp Eller
- Ludwig Boltzmann Institute for Lung Vascular Research , Graz , Austria
| | - Alexander R Rosenkranz
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Division of Pharmacology, Otto Loewi Research Center, BioTechMed Graz, Medical University of Graz , Graz , Austria
| | - Kathrin Eller
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
44
|
Abstract
Renin-expressing cells have been conserved through evolution and maintain blood pressure and fluid homeostasis. Lack of availability of tools to study the specifics of renin regulation has limited advances in this field. In the current issue of the Journal of Clinical Investigation, Martinez and colleagues used the genome-wide assessment of the chromatin status of cells and uncovered a unique set of super-enhancers that determine the identity of renin cells. The renin super-enhancers play a key role in the molecular memory of renin cell function, a mechanism at the core of preserving homeostasis.
Collapse
|
45
|
Ramkumar N, Stuart D, Mironova E, Abraham N, Gao Y, Wang S, Lakshmipathi J, Stockand JD, Kohan DE. Collecting duct principal, but not intercalated, cell prorenin receptor regulates renal sodium and water excretion. Am J Physiol Renal Physiol 2018; 315:F607-F617. [PMID: 29790390 PMCID: PMC6172572 DOI: 10.1152/ajprenal.00122.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 12/21/2022] Open
Abstract
The collecting duct is the predominant nephron site of prorenin and prorenin receptor (PRR) expression. We previously demonstrated that the collecting duct PRR regulates epithelial Na+ channel (ENaC) activity and water transport; however, which cell type is involved remains unclear. Herein, we examined the effects of principal cell (PC) or intercalated cell (IC) PRR deletion on renal Na+ and water handling. PC or IC PRR knockout (KO) mice were obtained by crossing floxed PRR mice with mice harboring Cre recombinase under the control of the AQP2 or B1 subunit of the H+ ATPase promoters, respectively. PC KO mice had reduced renal medullary ENaC-α abundance and increased urinary Na+ losses on a low-Na+ diet compared with controls. Conversely, IC KO mice had no apparent differences in Na+ balance or ENaC abundance compared with controls. Acute treatment with prorenin increased ENaC channel number and open probability in acutely isolated cortical collecting ducts from control and IC PRR KO, but not PC PRR KO, mice. Furthermore, compared with controls, PC KO, but not IC KO mice, had increased urine volume, reduced urine osmolality, and reduced abundance of renal medullary AQP2. Taken together, these findings indicate that PC, but not IC, PRR modulates ENaC activity, urinary Na+ excretion, and water transport.
Collapse
Affiliation(s)
- Nirupama Ramkumar
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center , Salt Lake City, Utah
| | - Deborah Stuart
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center , Salt Lake City, Utah
| | - Elena Mironova
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center , San Antonio, Texas
| | - Nikita Abraham
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center , Salt Lake City, Utah
| | - Yang Gao
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center , Salt Lake City, Utah
| | - Shuping Wang
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center , Salt Lake City, Utah
| | - Jayalakshmi Lakshmipathi
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center , Salt Lake City, Utah
| | - James D Stockand
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center , San Antonio, Texas
| | - Donald E Kohan
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center , Salt Lake City, Utah
- Department of Veterans Affairs Medical Center , Salt Lake City, Utah
| |
Collapse
|
46
|
Enzymatic sources and physio-pathological functions of soluble (pro)renin receptor. Curr Opin Nephrol Hypertens 2018; 27:77-82. [PMID: 29346132 DOI: 10.1097/mnh.0000000000000396] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW (Pro)renin receptor (PRR) belongs to type I transmembrane receptor family and binds both prorenin and renin, representing a potential regulator of the activity of the renin-angiotensin system. Soluble form of PRR (sPRR) is generated by intracellular protease-mediated cleavage of full-length PRR. The purpose of this review is to highlight recent advances in understanding the mechanisms of action and production of sPRR. RECENT FINDINGS It has recently been demonstrated that site-1-protease (S1P) plays a dominant role in the generation of sPRR. New evidence is also emerging to support a biological function of sPRR in the physiological regulation of fluid homeostasis as well as pathogenesis of chronic kidney disease. SUMMARY sPRR is a 28 kDa product of PRR cleavage via S1P-mediated protease activity. Not only does sPRR regulate renal tubular water transport, but it also mediates pathogenic responses to renal cellular injury. sPRR is likely involved in a wide range of physio-pathological processes.
Collapse
|
47
|
Yang KT, Yang T, Symons JD. Soluble (pro)renin receptor as a potential therapy for diabetes insipidus. Am J Physiol Renal Physiol 2018; 315:F1416-F1421. [PMID: 30019932 DOI: 10.1152/ajprenal.00266.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The antidiuretic hormone vasopressin (VP) is produced by the hypothalamus and is stored and secreted from the posterior pituitary. VP acts via VP type 2 receptors (V2Rs) on the basolateral membrane of principal cells of the collecting duct (CD) to regulate fluid permeability. The VP-evoked endocrine pathway is essential in determining urine concentrating capability. For example, a defect in any component of the VP signaling pathway can result in polyuria, polydipsia, and hypotonic urine, collectively termed diabetes insipidus (DI). A lack of VP production precipitates central diabetes insipidus (CDI), which can be managed effectively by VP supplementation. A majority of cases of nephrogenic diabetes insipidus (NDI) result from V2R mutations that impair receptor sensitivity. No specific therapy is currently available for management of NDI. Evidence is evolving that (pro)renin receptor (PRR), a newly identified member of the renin-angiotensin system, is capable of regulating VP production and action. As such, PRR should be considered strongly as a therapeutic target for treating CDI and NDI. The current review will summarize recent advances in understanding the physiology of renal and central PRR as it relates to the two types of DI.
Collapse
Affiliation(s)
- Kevin T Yang
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah.,College of Health, University of Utah , Salt Lake City, Utah.,Molecular Medicine Program, University of Utah , Salt Lake City, Utah
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah.,Research Service, Veterans Affairs Medical Center , Salt Lake City, Utah.,Institute of Hypertension, Sun Yat-sen University Zhongshan School of Medicine , Guangzhou , China
| | - J David Symons
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah.,College of Health, University of Utah , Salt Lake City, Utah.,Molecular Medicine Program, University of Utah , Salt Lake City, Utah
| |
Collapse
|
48
|
Fang H, Deng M, Zhang L, Lu A, Su J, Xu C, Zhou L, Wang L, Ou JS, Wang W, Yang T. Role of (pro)renin receptor in albumin overload-induced nephropathy in rats. Am J Physiol Renal Physiol 2018; 315:F1759-F1768. [PMID: 29846109 DOI: 10.1152/ajprenal.00071.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Proteinuria is not only a common feature of chronic kidney diseases (CKD) but also an independent risk factor promoting CKD progression to end-stage renal failure. However, the underlying molecular mechanisms for protein overload-induced renal injury remain elusive. The present study examined the role of (pro)renin receptor (PRR) in pathogenesis of albumin overload (AO)-induced nephropathy and activation of the intrarenal renin-angiotensin system (RAS) in rats. Wistar rats underwent unilateral nephrectomy and were treated for 7 wk with vehicle, bovine serum albumin (5 g·kg-1·day-1 via a single ip injection), alone or in conjunction with the PRR decoy inhibitor PRO20 (500 μg·kg-1·day-1 via 3 sc injections). The AO rat model exhibited severe proteinuria, tubular necrosis, and interstitial fibrosis, oxidative stress, and inflammation, accompanied by elevated urinary N-acetyl-β-d-glucosaminidase activity and urinary β2-microglobulin secretion, all of which were significantly attenuated by PRO20. Urinary and renal levels of renin, angiotensinogen, and ANG II were elevated by AO and suppressed by PRO20, contrasting to largely unaltered plasma levels of the RAS parameters. The AO model also showed increased renal expression of full-length PRR and soluble PRR (sPRR) and urinary excretion of sPRR. Taken together, we conclude that PRR antagonism with PRO20 alleviates AO-induced nephropathy via inhibition of intrarenal RAS.
Collapse
Affiliation(s)
- Hui Fang
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Mokan Deng
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Linlin Zhang
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Aihua Lu
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Jiahui Su
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Chuanming Xu
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China.,Internal Medicine, University of Utah and Veterans Affairs Medical Center , Salt Lake City, Utah
| | - Li Zhou
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Lei Wang
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Jing-Song Ou
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University , Guangzhou , China
| | - Weidong Wang
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China
| | - Tianxin Yang
- Institute of Hypertension, Sun Yat-sen University zhongshan School of Medicine , Guangzhou , China.,Internal Medicine, University of Utah and Veterans Affairs Medical Center , Salt Lake City, Utah
| |
Collapse
|
49
|
Li Y, Xia W, Zhao F, Wen Z, Zhang A, Huang S, Jia Z, Zhang Y. Prostaglandins in the pathogenesis of kidney diseases. Oncotarget 2018; 9:26586-26602. [PMID: 29899878 PMCID: PMC5995175 DOI: 10.18632/oncotarget.25005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/14/2018] [Indexed: 12/11/2022] Open
Abstract
Prostaglandins (PGs) are important lipid mediators produced from arachidonic acid via the sequential catalyzation of cyclooxygenases (COXs) and specific prostaglandin synthases. There are five subtypes of PGs, namely PGE2, PGI2, PGD2, PGF2α, and thromboxane A2 (TXA2). PGs exert distinct roles by combining to a diverse family of membrane-spanning G protein-coupled prostanoid receptors. The distribution of these PGs, their specific synthases and receptors vary a lot in the kidney. This review summarized the recent findings of PGs together with the COXs and their specific synthases and receptors in regulating renal function and highlighted the insights into their roles in the pathogenesis of various kidney diseases.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Weiwei Xia
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Fei Zhao
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Zhaoying Wen
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Songming Huang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Zhanjun Jia
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Yue Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| |
Collapse
|
50
|
RAMKUMAR N, STUART D, ABRAHAM N, KOHAN DE. Nephron Prorenin Receptor Deficiency Alters Renal Medullary Endothelin-1 and Endothelin Receptor Expression. Physiol Res 2018; 67:S127-S136. [DOI: 10.33549/physiolres.933809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The endothelin (ET) and prorenin/renin/prorenin receptor (PRR) systems have opposing physiological effects on collecting duct (CD) salt and water reabsorption. It is unknown if the CD ET and renin/PRR systems interact, hence we examined the effects of deleting CD renin or nephron PRR on CD ET system components. PRR knockout (KO) mice were polyuric and had markedly increased urinary ET-1 and inner medullary CD (IMCD) ET-1 mRNA. PRR KO mice had greatly increased IMCD ETA receptor mRNA and protein, while ETB mRNA and protein were decreased. Water loaded wild-type mice with similar polyuria as PRR KO mice had modestly increased urinary ET-1 excretion and inner medullary ET-1 mRNA, while inner medullary ETA and ETB mRNA or protein expression were unaffected. In contrast to PRR KO, CD prorenin/renin KO did not alter ET system components. Taken together, these results suggest that the nephron PRR is involved in regulating CD ET system expression, but this effect may be independent of CD-derived renin.
Collapse
Affiliation(s)
| | | | | | - D. E. KOHAN
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| |
Collapse
|