1
|
Shahidzadeh Yazdi Z, Streeten EA, Whitlatch HB, Montasser ME, Beitelshees AL, Taylor SI. Critical Role for 24-Hydroxylation in Homeostatic Regulation of Vitamin D Metabolism. J Clin Endocrinol Metab 2024:dgae156. [PMID: 38481375 DOI: 10.1210/clinem/dgae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/24/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
CONTEXT The body has evolved homeostatic mechanisms to maintain free levels of Ca+2 and 1,25-dihydroxyvitamin D [1,25(OH)2D] within narrow physiological ranges. Clinical guidelines emphasize important contributions of PTH in maintaining this homeostasis. OBJECTIVE To investigate mechanisms of homeostatic regulation of vitamin D (VitD) metabolism and to apply mechanistic insights to improve clinical assessment of VitD status. DESIGN Crossover clinical trial studying participants before and after VitD3-supplementation. SETTING Community. PARTICIPANTS 11 otherwise healthy individuals with VitD-deficiency (25-hydroxyvitamin D [25(OH)D] ≤20 ng/mL). INTERVENTIONS VitD3-supplements (50,000 IU once or twice a week depending on BMI, for 4-6 weeks) were administered to achieve 25(OH)D≥30 ng/mL. RESULTS VitD3-supplementation significantly increased mean 25(OH)D by 2.7-fold and 24,25-dihydroxyvitamin D [24,25(OH)2D] by 4.3-fold. In contrast, mean levels of PTH, FGF23, and 1,25(OH)2D did not change. Mathematical modeling suggested that 24-hydroxylase activity was maximal for 25(OH)D≥50 ng/mL and achieved a minimum (∼90% suppression) with 25(OH)D<10-20 ng/mL. The 1,25(OH)2D/24,25(OH)2D ratio better predicted modeled 24-hydroxylase activity (h) (ρ=-0.85; p=0.001) compared to total plasma 25(OH)D (ρ=0.51; p=0.01) and the 24,25(OH)2D/25(OH)D ratio (ρ=0.37; p=0.3). CONCLUSIONS Suppression of 24-hydroxylase provides a first line of defense against symptomatic VitD-deficiency by decreasing metabolic clearance of 1,25(OH)2D. The 1,25(OH)2D/24,25(OH)2D ratio provides a useful index of VitD status since it incorporates 24,25(OH)2D levels and therefore, provides insight into 24-hydroxylase activity. When VitD availability is limited, this suppresses 24-hydroxylase activity - thereby decreasing the level of 24,25(OH)2D and increasing the 1,25(OH)2D/24,25(OH)2D ratio. Thus, an increased 1,25(OH)2D/24,25(OH)2D ratio signifies triggering of homeostatic regulation, which occurs at early stages of VitD-deficiency.
Collapse
Affiliation(s)
- Zhinous Shahidzadeh Yazdi
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Elizabeth A Streeten
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hilary B Whitlatch
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
| | - May E Montasser
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amber L Beitelshees
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Simeon I Taylor
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Jung YL, Zhao W, Li I, Jain D, Epstein CB, Bernstein BE, Parangi S, Sherwood R, Robinson-Cohen C, Hsu YH, Park PJ, Mannstadt M. Epigenetic profiling reveals key genes and cis-regulatory networks specific to human parathyroids. Nat Commun 2024; 15:2106. [PMID: 38453887 PMCID: PMC10920874 DOI: 10.1038/s41467-024-46181-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
In all terrestrial vertebrates, the parathyroid glands are critical regulators of calcium homeostasis and the sole source of parathyroid hormone (PTH). Hyperparathyroidism and hypoparathyroidism are clinically important disorders affecting multiple organs. However, our knowledge regarding regulatory mechanisms governing the parathyroids has remained limited. Here, we present the comprehensive maps of the chromatin landscape of the human parathyroid glands, identifying active regulatory elements and chromatin interactions. These data allow us to define regulatory circuits and previously unidentified genes that play crucial roles in parathyroid biology. We experimentally validate candidate parathyroid-specific enhancers and demonstrate their integration with GWAS SNPs for parathyroid-related diseases and traits. For instance, we observe reduced activity of a parathyroid-specific enhancer of the Calcium Sensing Receptor gene, which contains a risk allele associated with higher PTH levels compared to the wildtype allele. Our datasets provide a valuable resource for unraveling the mechanisms governing parathyroid gland regulation in health and disease.
Collapse
Affiliation(s)
- Youngsook Lucy Jung
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
| | - Wenping Zhao
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ian Li
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dhawal Jain
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | | | - Bradley E Bernstein
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
| | - Sareh Parangi
- Department of Surgery, Newton Wellesley Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard Sherwood
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA, USA
| | - Cassianne Robinson-Cohen
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yi-Hsiang Hsu
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew Senior Life, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Michael Mannstadt
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Perwad F, Akwo EA, Vartanian N, Suva LJ, Friedman PA, Robinson-Cohen C. Multi-trait Analysis of GWAS for circulating FGF23 Identifies Novel Network Interactions Between HRG-HMGB1 and Cardiac Disease in CKD. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.04.24303051. [PMID: 38496593 PMCID: PMC10942519 DOI: 10.1101/2024.03.04.24303051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background Genome-wide association studies (GWAS) have identified numerous genetic loci associated with mineral metabolism (MM) markers but have exclusively focused on single-trait analysis. In this study, we performed a multi-trait analysis of GWAS (MTAG) of MM, exploring overlapping genetic architecture between traits, to identify novel genetic associations for fibroblast growth factor 23 (FGF23). Methods We applied MTAG to genetic variants common to GWAS of 5 genetically correlated MM markers (calcium, phosphorus, FGF23, 25-hydroxyvitamin D (25(OH)D) and parathyroid hormone (PTH)) in European-ancestry subjects. We integrated information from UKBioBank GWAS for blood levels for phosphate, 25(OH)D and calcium (n=366,484), and CHARGE GWAS for PTH (n=29,155) and FGF23 (n=16,624). We then used functional genomics to model interactive and dynamic networks to identify novel associations between genetic traits and circulating FGF23. Results MTAG increased the effective sample size for all MM markers to n=50,325 for FGF23. After clumping, MTAG identified independent genome-wide significant SNPs for all traits, including 62 loci for FGF23. Many of these loci have not been previously reported in single-trait analyses. Through functional genomics we identified Histidine-rich glycoprotein (HRG) and high mobility group box 1(HMGB1) genes as master regulators of downstream canonical pathways associated with FGF23. HRG-HMGB1 network interactions were also highly enriched in left ventricular heart tissue of a cohort of deceased hemodialysis patients. Conclusion Our findings highlight the importance of MTAG analysis of MM markers to boost the number of genome-wide significant loci for FGF23 to identify novel genetic traits. Functional genomics revealed novel networks that inform unique cellular functions and identified HRG-HMGB1 as key master regulators of FGF23 and cardiovascular disease in CKD. Future studies will provide a deeper understanding of genetic signatures associated with FGF23 and its role in health and disease.
Collapse
Affiliation(s)
- Farzana Perwad
- University of California San Francisco, San Francisco, CA
| | - Elvis A Akwo
- Vanderbilt University Medical Center, Nashville, TN
| | | | | | | | | |
Collapse
|
4
|
Liu M, Wu J, Gao M, Li Y, Xia W, Zhang Y, Chen J, Chen Z, Zhu Z, Chen H. Lifestyle factors, serum parameters, metabolic comorbidities, and the risk of kidney stones: a Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1240171. [PMID: 37810889 PMCID: PMC10560039 DOI: 10.3389/fendo.2023.1240171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Background and objective The early identification of modifiable risk factors is important for preventing kidney stones but determining causal associations can be difficult with epidemiological data. We aimed to genetically assess the causality between modifiable factors (lifestyle factors, serum parameters, and metabolic comorbidities) and the risk of kidney stones. Additionally, we aimed to explore the causal impact of education on kidney stones and its potential mediating pathways. Methods We conducted a two-sample Mendelian randomization (MR) study to explore the causal association between 44 modifiable risk factors and kidney stones. The FinnGen dataset initially explored the causal relationship of risk factors with kidney stones and the UK Biobank dataset was used as the validation set. Then, a meta-analysis was conducted by combining discovery and validation datasets. We used two-step MR to assess potential mediators and their mediation proportions between education and kidney stones. Results The combined results indicated that previous exposures may increase the risk of kidney stones, including sedentary behavior, urinary sodium, the urinary sodium/potassium ratio, the urinary sodium/creatinine ratio, serum calcium, 25-hydroxyvitamin D (25OHD), the estimated creatinine-based glomerular filtration rate (eGFRcrea), GFR estimated by serum cystatin C (eGFRcys), body mass index (BMI), waist circumference, type 2 diabetes mellitus (T2DM), fasting insulin, glycated hemoglobin, and hypertension. Coffee intake, plasma caffeine levels, educational attainment, and the urinary potassium/creatinine ratio may decrease the risk of kidney stones. Ranked by mediation proportion, the effect of education on the risk of kidney stones was mediated by five modifiable risk factors, including sedentary behavior (mediation proportion, 25.7%), smoking initiation (10.2%), BMI (8.2%), T2DM (5.8%), and waist circumference (3.2%). Conclusion This study provides MR evidence supporting causal associations of many modifiable risk factors with kidney stones. Sedentary lifestyles, obesity, smoking, and T2DM are mediating factors in the causal relationship between educational attainment and kidney stones. Our results suggest more attention should be paid to these modifiable factors to prevent kidney stones.
Collapse
Affiliation(s)
- Minghui Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Wu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Meng Gao
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yongchao Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Weiping Xia
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Youjie Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiyong Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zewu Zhu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Internal Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, United States
| | - Hequn Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Lederer E. Understanding renal phosphate handling: unfinished business. Curr Opin Nephrol Hypertens 2023; 32:394-400. [PMID: 37070493 PMCID: PMC11441352 DOI: 10.1097/mnh.0000000000000889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to highlight the publications from the prior 12-18 months that have contributed significant advances in the field of renal phosphate handling. RECENT FINDINGS The discoveries include new mechanisms for the trafficking and expression of the sodium phosphate cotransporters; direct link between phosphate uptake and intracellular metabolic pathways; interdependence between proximal tubule transporters; and the persistent renal expression of phosphate transporters in chronic kidney disease. SUMMARY Discovery of new mechanisms for trafficking and regulation of expression of phosphate transporters suggest new targets for the therapy of disorders of phosphate homeostasis. Demonstration of stimulation of glycolysis by phosphate transported into a proximal tubule cell expands the scope of function for the type IIa sodium phosphate transporter from merely a mechanism to reclaim filtered phosphate to a regulator of cell metabolism. This observation opens the door to new therapies for preserving kidney function through alteration in transport. The evidence for persistence of active renal phosphate transport even with chronic kidney disease upends our assumptions of how expression of these transporters is regulated, suggests the possibility of alternative functions for the transporters, and raises the possibility of new therapies for phosphate retention.
Collapse
Affiliation(s)
- Eleanor Lederer
- Assistant Chief Medical Services, Co-Director NODES Program, Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Division of Nephrology, University of Texas Southwestern Medical Center, Medical Services for Research, NODES Program, VA North Texas Healthcare Services, Dallas, Texas, USA
| |
Collapse
|
6
|
Zhang Z, Yuan S, Larsson SC, Wang M, Liu X. Serum Calcium, 25-Hydroxyvitamin D, and Parathyroid Hormone Levels in Relation to Aneurysmal Subarachnoid Hemorrhage. Mol Neurobiol 2023; 60:3004-3009. [PMID: 36764983 DOI: 10.1007/s12035-023-03254-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/02/2023] [Indexed: 02/12/2023]
Abstract
Elevated serum calcium (S-Ca), 25-hydroxyvitamin D (S-25OHD), and parathyroid hormone (S-PTH) levels have been associated with risk of aneurysmal subarachnoid hemorrhage (SAH) in observational studies. However, whether these associations are causal is unclear. The objective of the present study was to determine whether genetically predicted S-Ca, S-25OHD, and S-PTH levels are causally associated with aneurysmal SAH using a Mendelian randomization design. Analyses were performed using summary-level data for genetic variants associated with S-Ca, S-25OHD, and S-PTH concentrations. Summary data for aneurysmal SAH were adopted from a genome-wide association study (GWAS) on intracranial aneurysm (n = 79,429 individuals, 69% of the cases had aneurysmal SAH). The inverse variance-weighted approach was adopted as the primary analyses. For sensitivity analyses, the weighted median and MR-Egger approaches were adopted. Genetically predicted S-Ca and S-PTH levels were associated with aneurysmal SAH in the primary analyses. The odds ratios (ORs) of aneurysmal SAH were 1.96 (95% CI: 1.003-3.812; P = 0.049) and 1.495 (95% CI: 1.058-2.114; P = 0.023) for one SD increase of genetically predicted S-Ca and S-PTH levels, respectively. Genetically predicted S-25OHD concentration was not associated with aneurysmal SAH (per 1 SD increase in S-25OHD: OR = 0.92; 95% CI, 0.78-1.09; P = 0.332). Sensitivity analysis yielded similar results, and no evidence of pleiotropy was observed. Our results indicated that higher genetically predicted S-Ca and S-PTH levels may increase the risk of aneurysmal SAH.
Collapse
Affiliation(s)
- Zhizhong Zhang
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mengmeng Wang
- Department of Neurology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
7
|
Sarría-Santamera A, Mukhtarova K, Baizhaxynova A, Kanatova K, Zhumambayeva S, Akilzhanova A, Azizan A. Association of CYP24A1 Gene rs6127099 (A > T) Polymorphism with Lower Risk to COVID-19 Infection in Kazakhstan. Genes (Basel) 2023; 14:307. [PMID: 36833234 PMCID: PMC9957291 DOI: 10.3390/genes14020307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023] Open
Abstract
In December 2019, SARS-CoV-2 was identified in Wuhan, China. Infection by SARS-CoV-2 causes coronavirus disease 2019 (COVID-19), which is characterized by fever, cough, dyspnea, anosmia, and myalgia in many cases. There are discussions about the association of vitamin D levels with COVID-19 severity. However, views are conflicting. The aim of the study was to examine associations of vitamin D metabolism pathway gene polymorphisms with symptomless COVID-19 susceptibility in Kazakhstan. The case-control study examined the association between asymptomatic COVID-19 and vitamin D metabolism pathway gene polymorphisms in 185 participants, who previously reported not having COVID-19, were PCR negative at the moment of data collection, and were not vaccinated. A dominant mutation in rs6127099 (CYP24A1) was found to be protective of asymptomatic COVID-19. Additionally, the G allele of rs731236 TaqI (VDR), dominant mutation in rs10877012 (CYP27B1), recessive rs1544410 BsmI (VDR), and rs7041 (GC) are worth consideration since they were statistically significant in bivariate analysis, although their independent effect was not found in the adjusted multivariate logistic regression model.
Collapse
Affiliation(s)
| | - Kymbat Mukhtarova
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| | | | - Kaznagul Kanatova
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| | - Saule Zhumambayeva
- Department of Propedeutics of Children Disease, Astana Medical University, Astana 010000, Kazakhstan
| | - Ainur Akilzhanova
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Azliyati Azizan
- College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, USA
| |
Collapse
|
8
|
Soto-Pedre E, Newey PJ, Srinivasan S, Siddiqui MK, Palmer CNA, Leese GP. Identification of 4 New Loci Associated With Primary Hyperparathyroidism (PHPT) and a Polygenic Risk Score for PHPT. J Clin Endocrinol Metab 2022; 107:3302-3308. [PMID: 36102151 PMCID: PMC9693767 DOI: 10.1210/clinem/dgac527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 12/30/2022]
Abstract
CONTEXT A hypothesis-free genetic association analysis has not been reported for patients with primary hyperparathyroidism (PHPT). OBJECTIVE We aimed to investigate genetic associations with PHPT using both genome-wide association study (GWAS) and candidate gene approaches. METHODS A cross-sectional study was conducted among patients of European White ethnicity recruited in Tayside (Scotland, UK). Electronic medical records were used to identify PHPT cases and controls, and linked to genetic biobank data. Genetic associations were performed by logistic regression models and odds ratios (ORs). The combined effect of the genotypes was researched by genetic risk score (GRS) analysis. RESULTS We identified 15 622 individuals for the GWAS that yielded 34 top single-nucleotide variations (formerly single-nucleotide polymorphisms), and LPAR3-rs147672681 reached genome-wide statistical significance (P = 1.2e-08). Using a more restricted PHPT definition, 8722 individuals with data on the GWAS-identified loci were found. Age- and sex-adjusted ORs for the effect alleles of SOX9-rs11656269, SLITRK5-rs185436526, and BCDIN3D-AS1-rs2045094 showed statistically significant increased risks (P < 1.5e-03). GRS analysis of 5482 individuals showed an OR of 2.51 (P = 1.6e-04), 3.78 (P = 4.0e-08), and 7.71 (P = 5.3e-17) for the second, third, and fourth quartiles, respectively, compared to the first, and there was a statistically significant linear trend across quartiles (P < 1.0e-04). Results were similar when stratifying by sex. CONCLUSION Using genetic loci discovered in a GWAS of PHPT carried out in a Scottish population, this study suggests new evidence for the involvement of genetic variants at SOX9, SLITRK5, LPAR3, and BCDIN3D-AS1. It also suggests that male and female carriers of greater numbers of PHPT-risk alleles both have a statistically significant increased risk of PHPT.
Collapse
Affiliation(s)
- Enrique Soto-Pedre
- Correspondence: Enrique Soto-Pedre, MBBS, MSc, MPH, Division of Population Health & Genomics, School of Medicine, Level 5, Mailbox 12, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK.
| | - Paul J Newey
- Division of Population Health & Genomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
- Department of Endocrinology and Diabetes, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Sundararajan Srinivasan
- Division of Population Health & Genomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Moneeza K Siddiqui
- Division of Population Health & Genomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Colin N A Palmer
- Division of Population Health & Genomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
- Centre for Pharmacogenetics and Pharmacogenomics, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| | | |
Collapse
|
9
|
Giontella A, Lotta LA, Baras A, Minuz P, Gill D, Melander O, Fava C. Calcium, Its Regulatory Hormones, and Their Causal Role on Blood Pressure: A Two-Sample Mendelian Randomization Study. J Clin Endocrinol Metab 2022; 107:3080-3085. [PMID: 36062972 DOI: 10.1210/clinem/dgac501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Vitamin D (Vit-D), parathyroid hormone (PTH), and fibroblast growth factor 23 (FGF23) are the major calciotropic hormones involved in the regulation of blood calcium levels from the intestine, kidney, and bone through a tight endocrine feedback loop system. Altered levels of calcium itself or through the effect of its regulatory hormones could affect blood pressure (BP), but the exact mechanisms remain unclear. OBJECTIVE To evaluate whether a causal relationship exists between serum calcium level and/or the regulatory hormones involved in its homeostasis with BP, we performed a two-sample Mendelian randomization (MR) study. METHODS From 4 large genome-wide association studies (GWAS) we obtained independent (r2 < 0.001) single nucleotide polymorphisms (SNPs) associated with serum calcium (119 SNPs), Vit-D (78 SNPs), PTH (5 SNPs), and FGF23 (5 SNPs), to investigate through MR their association with systolic BP (SBP) and diastolic BP (DBP) in a Swedish urban-based study, the Malmö Diet and Cancer study (n = 29 298). Causality was evaluated by the inverse variance weighted method (IVW) and weighted median, while MR Egger and MR-PRESSO were used as sensitivity analyses. RESULTS Genetically predicted serum calcium level was found to be associated with DBP (IVW: beta = 0.10, SE = 0.04, P = 0.007) and SBP (IVW: beta = 0.07, SE = 0.04, P = 0.04). Genetically predicted Vit-D and PTH showed no association with the traits, while FGF23 was inversely associated with SBP (IVW: beta = -0.11, SE = 0.04, P = 0.01), although this association lost statistical significance in sensitivity analysis. CONCLUSION Our study shows a direct association between genetically predicted calcium level and DBP, and a weaker association with SBP. No such clear association was found for genetically predicted calciotropic hormone levels. It is of interest to detect which target genes involved in calcium homeostasis mediate the effect of calcium on BP, particularly for improving personalized intervention strategies.
Collapse
Affiliation(s)
- Alice Giontella
- Department of Medicine, University of Verona, Verona 37124, Italy
- Department of Clinical Sciences, Clinical Research Center, Lund University, Malmö 21428, Sweden
| | - Luca A Lotta
- Regeneron Genetics Center, Tarrytown, NY 10591, USA
| | - Aris Baras
- Regeneron Genetics Center, Tarrytown, NY 10591, USA
| | - Pietro Minuz
- Department of Medicine, University of Verona, Verona 37124, Italy
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, Imperial College London, London SW72AZ, UK
- Novo Nordisk Research Centre Oxford, Old Road Campus OX37FZ, UK
| | - Olle Melander
- Department of Clinical Sciences, Clinical Research Center, Lund University, Malmö 21428, Sweden
- Department of Emergency and Internal Medicine, Skåne University Hospital, Malmö 21428, Sweden
| | - Cristiano Fava
- Department of Medicine, University of Verona, Verona 37124, Italy
- Department of Clinical Sciences, Clinical Research Center, Lund University, Malmö 21428, Sweden
| |
Collapse
|
10
|
Minisola S, Arnold A, Belaya Z, Brandi ML, Clarke BL, Hannan FM, Hofbauer LC, Insogna KL, Lacroix A, Liberman U, Palermo A, Pepe J, Rizzoli R, Wermers R, Thakker RV. Epidemiology, Pathophysiology, and Genetics of Primary Hyperparathyroidism. J Bone Miner Res 2022; 37:2315-2329. [PMID: 36245271 PMCID: PMC10092691 DOI: 10.1002/jbmr.4665] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 11/11/2022]
Abstract
In this narrative review, we present data gathered over four decades (1980-2020) on the epidemiology, pathophysiology and genetics of primary hyperparathyroidism (PHPT). PHPT is typically a disease of postmenopausal women, but its prevalence and incidence vary globally and depend on a number of factors, the most important being the availability to measure serum calcium and parathyroid hormone levels for screening. In the Western world, the change in presentation to asymptomatic PHPT is likely to occur, over time also, in Eastern regions. The selection of the population to be screened will, of course, affect the epidemiological data (ie, general practice as opposed to tertiary center). Parathyroid hormone has a pivotal role in regulating calcium homeostasis; small changes in extracellular Ca++ concentrations are detected by parathyroid cells, which express calcium-sensing receptors (CaSRs). Clonally dysregulated overgrowth of one or more parathyroid glands together with reduced expression of CaSRs is the most important pathophysiologic basis of PHPT. The spectrum of skeletal disease reflects different degrees of dysregulated bone remodeling. Intestinal calcium hyperabsorption together with increased bone resorption lead to increased filtered load of calcium that, in addition to other metabolic factors, predispose to the appearance of calcium-containing kidney stones. A genetic basis of PHPT can be identified in about 10% of all cases. These may occur as a part of multiple endocrine neoplasia syndromes (MEN1-MEN4), or the hyperparathyroidism jaw-tumor syndrome, or it may be caused by nonsyndromic isolated endocrinopathy, such as familial isolated PHPT and neonatal severe hyperparathyroidism. DNA testing may have value in: confirming the clinical diagnosis in a proband; eg, by distinguishing PHPT from familial hypocalciuric hypercalcemia (FHH). Mutation-specific carrier testing can be performed on a proband's relatives and identify where the proband is a mutation carrier, ruling out phenocopies that may confound the diagnosis; and potentially prevention via prenatal/preimplantation diagnosis. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Salvatore Minisola
- Department of Clinical, Internal, Anaesthesiologic and Cardiovascular Sciences, 'Sapienza', Rome University, Rome, Italy
| | - Andrew Arnold
- Center for Molecular Oncology and Division of Endocrinology & Metabolism, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Zhanna Belaya
- Department of Neuroendocrinology and Bone Disease, The National Medical Research Centre for Endocrinology, Moscow, Russia
| | - Maria Luisa Brandi
- F.I.R.M.O. Italian Foundation for the Research on Bone Diseases, Florence, Italy
| | - Bart L Clarke
- Mayo Clinic Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - Fadil M Hannan
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Oxford, UK.,Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Lorenz C Hofbauer
- Division of Endocrinology, Diabetes, and Bone Diseases & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Karl L Insogna
- Yale Bone Center Yale School of Medicine, Yale University, New Haven, CT, USA
| | - André Lacroix
- Division of Endocrinology, Department of Medicine and Research Center, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Canada
| | - Uri Liberman
- Department of Physiology and Pharmacology, Tel Aviv University School of Medicine, Tel Aviv, Israel
| | - Andrea Palermo
- Unit of Metabolic Bone and Thyroid Disorders, Fondazione Policlinico Universitario Campus Bio-Medico and Unit of Endocrinology and Diabetes, Campus Bio-Medico University, Rome, Italy
| | - Jessica Pepe
- Department of Clinical, Internal, Anaesthesiologic and Cardiovascular Sciences, 'Sapienza', Rome University, Rome, Italy
| | - René Rizzoli
- Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Robert Wermers
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition and Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Oxford, UK.,Oxford National Institute for Health Research (NIHR) Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
11
|
Laster ML, Rowan B, Chen HC, Schwantes-An TH, Sheng X, Friedman PA, Ikizler TA, Sinshiemer JS, Ix JH, Susztak K, de Boer IH, Kestenbaum B, Hung A, Moe SM, Perwad F, Robinson-Cohen C. Genetic Variants Associated With Mineral Metabolism Traits in Chronic Kidney Disease. J Clin Endocrinol Metab 2022; 107:e3866-e3876. [PMID: 35587600 PMCID: PMC9387704 DOI: 10.1210/clinem/dgac318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Indexed: 02/01/2023]
Abstract
CONTEXT Chronic kidney disease (CKD) causes multiple interrelated disturbances in mineral metabolism. Genetic studies in the general population have identified common genetic variants associated with circulating phosphate, calcium, parathyroid hormone (PTH), and fibroblast growth factor 23 (FGF23). OBJECTIVE In this study we aimed to discover genetic variants associated with circulating mineral markers in CKD. METHODS We conducted candidate single-nucleotide variation (SNV) analysis in 3027 participants in the multiethnic Chronic Renal Insufficiency Cohort (CRIC) to determine the associations between SNVs and circulating levels of mineral markers. RESULTS SNVs adjacent to or within genes encoding the regulator of G protein-coupled signaling 14 (RGS14) and the calcium-sensing receptor (CASR) were associated with levels of mineral metabolites. The strongest associations (P < .001) were at rs4074995 (RGS14) for phosphate (0.09 mg/dL lower per minor allele) and FGF23 (8.6% lower), and at rs1801725 (CASR) for calcium (0.12 mg/dL higher). In addition, the prevalence of hyperparathyroidism differed by rs4074995 (RGS14) genotype (chi-square P < .0001). Differential inheritance by race was noted for the minor allele of RGS14. Expression quantitative loci (eQTL) analysis showed that rs4074995 was associated with lower RGS14 gene expression in glomeruli (P = 1.03 × 10-11) and tubules (P = 4.0 × 10-4). CONCLUSION We evaluated genetic variants associated with mineral metabolism markers in a CKD population. Participants with CKD and the minor allele of rs4074995 (RGS14) had lower phosphorus, lower plasma FGF23, and lower prevalence of hyperparathyroidism. The minor allele of RGS14 was also associated with lower gene expression in the kidney. Further studies are needed to elucidate the effect of rs4074995 on the pathogenesis of disordered mineral metabolism in CKD.
Collapse
Affiliation(s)
- Marciana L Laster
- Correspondence: Marciana L. Laster, MD, UCLA Department of Pediatrics, Division of Pediatric Nephrology, 10833 Le Conte Ave, MDCC A2-383, Los Angeles, CA 90095-1752, USA.
| | - Bryce Rowan
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Hua-Chang Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Tae-Hwi Schwantes-An
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Xin Sheng
- Department of Medicine and Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Peter A Friedman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - T Alp Ikizler
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt O’Brien Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Janet S Sinshiemer
- Department of Human Genetics and Computational Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1752, USA
- Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, California 90095-1752, USA
| | - Joachim H Ix
- Department of Medicine, University of California, San Diego, San Diego, California 92161, USA
| | - Katalin Susztak
- Department of Medicine and Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ian H de Boer
- Department of Medicine, University of Washington, Seattle, Washington 98195-6420, USA
| | - Bryan Kestenbaum
- Kidney Research Institute, University of Washington, Seattle, Washington 98195-6420, USA
| | - Adriana Hung
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sharon M Moe
- Clinical Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
12
|
Akwo E, Pike MM, Ertuglu LA, Vartanian N, Farber-Eger E, Lipworth L, Perwad F, Siew E, Hung A, Bansal N, de Boer I, Kestenbaum B, Cox NJ, Ikizler TA, Wells Q, Robinson-Cohen C. Association of Genetically Predicted Fibroblast Growth Factor-23 with Heart Failure: A Mendelian Randomization Study. Clin J Am Soc Nephrol 2022; 17:1183-1193. [PMID: 35902130 PMCID: PMC9435988 DOI: 10.2215/cjn.00960122] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/31/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Elevated fibroblast growth factor-23 (FGF23) has been consistently associated with heart failure, particularly heart failure with preserved ejection fraction, among patients with CKD and in the general population. FGF23 may directly induce cardiac remodeling and heart failure. However, biases affecting observational studies impede robust causal inferences. Mendelian randomization leverages genetic determinants of a risk factor to examine causality. We performed a two-sample Mendelian randomization to assess causal associations between FGF23 and heart failure. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Genetic instruments were genome-wide significant genetic variants associated with FGF23, including variants near PIP5K1B, RGS14, LINC01229, and CYP24A1. We analyzed data from the Heart Failure Molecular Epidemiology for Therapeutic Targets and BioVU biobanks to examine associations of the four variants with overall heart failure, heart failure with preserved ejection fraction, and heart failure with reduced and mid-range ejection fraction. We developed an eGFR polygenic risk score using summary statistics from the Chronic Kidney Disease Genetics Consortium (CKDGen) genome-wide association study of eGFR in >1 million individuals and performed stratified analyses across eGFR polygenic risk score strata. RESULTS Genetically determined FGF23 was not associated with overall heart failure in the Heart Failure Molecular Epidemiology for Therapeutic Targets consortium (odds ratio, 1.13; 95% confidence interval, 0.89 to 1.42 per unit higher genetically predicted log FGF23) and the full BioVU sample (odds ratio, 1.32; 95% confidence interval, 0.95 to 1.84). In stratified analyses in BioVU, higher FGF23 was associated with overall heart failure (odds ratio, 3.09; 95% confidence interval, 1.38 to 6.91) among individuals with low eGFR-polygenic risk score (<1 SD below the mean), but not those with high eGFR-polygenic risk score (P interaction = 0.02). Higher FGF23 was also associated with heart failure with preserved ejection fraction among all BioVU participants (odds ratio, 1.47; 95% confidence interval, 1.01 to 2.14) and individuals with low eGFR-polygenic risk score (odds ratio, 7.20; 95% confidence interval, 2.80 to 18.49), but not those high eGFR-polygenic risk score (P interaction = 2.25 × 10-4). No significant associations were observed with heart failure with reduced and midrange ejection fraction. CONCLUSION We found no association between genetically predicted FGF23 and heart failure in the Heart Failure Molecular Epidemiology for Therapeutic Targets consortium. In BioVU, genetically elevated FGF23 was associated with higher heart failure risk, specifically heart failure with preserved ejection fraction, particularly among individuals with low genetically predicted eGFR. PODCAST This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2022_07_28_CJN00960122.mp3.
Collapse
Affiliation(s)
- Elvis Akwo
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mindy M. Pike
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee,Division of Cardiovascular Medicine, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lale A. Ertuglu
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nicholas Vartanian
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eric Farber-Eger
- Division of Cardiovascular Medicine, Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, Tennessee,Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Loren Lipworth
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee,Division of Cardiovascular Medicine, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Farzana Perwad
- Division of Pediatric Nephrology, University of California San Francisco, San Francisco, California
| | - Edward Siew
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee,Division of Nephrology, Vanderbilt Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Adriana Hung
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee,Division of Nephrology, Vanderbilt Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Nisha Bansal
- Division of Nephrology, Vanderbilt Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Ian de Boer
- Division of Nephrology, University of Washington, Seattle, Washington
| | - Bryan Kestenbaum
- Division of Nephrology, University of Washington, Seattle, Washington
| | - Nancy J. Cox
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - T. Alp Ikizler
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Quinn Wells
- Division of Cardiovascular Medicine, Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, Tennessee,Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | |
Collapse
|
13
|
Friedman PA, Sneddon WB, Mamonova T, Montanez-Miranda C, Ramineni S, Harbin NH, Squires KE, Gefter JV, Magyar CE, Emlet DR, Hepler JR. RGS14 regulates PTH- and FGF23-sensitive NPT2A-mediated renal phosphate uptake via binding to the NHERF1 scaffolding protein. J Biol Chem 2022; 298:101836. [PMID: 35307350 PMCID: PMC9035407 DOI: 10.1016/j.jbc.2022.101836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
Phosphate homeostasis, mediated by dietary intake, renal absorption, and bone deposition, is incompletely understood because of the uncharacterized roles of numerous implicated protein factors. Here, we identified a novel role for one such element, regulator of G protein signaling 14 (RGS14), suggested by genome-wide association studies to associate with dysregulated Pi levels. We show that human RGS14 possesses a carboxy-terminal PDZ ligand required for sodium phosphate cotransporter 2a (NPT2A) and sodium hydrogen exchanger regulatory factor-1 (NHERF1)-mediated renal Pi transport. In addition, we found using isotope uptake measurements combined with bioluminescence resonance energy transfer assays, siRNA knockdown, pull-down and overlay assays, and molecular modeling that secreted proteins parathyroid hormone (PTH) and fibroblast growth factor 23 inhibited Pi uptake by inducing dissociation of the NPT2A-NHERF1 complex. PTH failed to affect Pi transport in cells expressing RGS14, suggesting that it suppresses hormone-sensitive but not basal Pi uptake. Interestingly, RGS14 did not affect PTH-directed G protein activation or cAMP formation, implying a postreceptor site of action. Further pull-down experiments and direct binding assays indicated that NPT2A and RGS14 bind distinct PDZ domains on NHERF1. We showed that RGS14 expression in human renal proximal tubule epithelial cells blocked the effects of PTH and fibroblast growth factor 23 and stabilized the NPT2A-NHERF1 complex. In contrast, RGS14 genetic variants bearing mutations in the PDZ ligand disrupted RGS14 binding to NHERF1 and subsequent PTH-sensitive Pi transport. In conclusion, these findings identify RGS14 as a novel regulator of hormone-sensitive Pi transport. The results suggest that changes in RGS14 function or abundance may contribute to the hormone resistance and hyperphosphatemia observed in kidney diseases.
Collapse
Affiliation(s)
- Peter A Friedman
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | - W Bruce Sneddon
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Tatyana Mamonova
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Carolina Montanez-Miranda
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Suneela Ramineni
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nicholas H Harbin
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Katherine E Squires
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Julia V Gefter
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Clara E Magyar
- Department of Pathology and Laboratory Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - David R Emlet
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John R Hepler
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
14
|
Ullah I, Murtaza K, Ammara H, Misbah, Bhinder MA, Riaz A, Shehzad W, Zahoor MY. Association study of CLDN14 variations in patients with kidney stones. Open Life Sci 2022; 17:81-92. [PMID: 35291565 PMCID: PMC8886595 DOI: 10.1515/biol-2021-0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 11/28/2022] Open
Abstract
Claudin-14 protein plays an essential role in regulating calcium ions in the kidney and ear. Two phenotypes, hearing loss and kidney stones, were reportedly associated with variations in the CLDN14 gene. This study aimed to understand CLDN14 mutations’ contribution to hearing loss and renal stone formation in a Pakistani cohort. We analyzed CLDN14 sequence variations in 100 patients, along with healthy individuals, to assess whether specific polymorphisms were associated with the disease. Also, we performed an in silico analysis using a mutation database and protein annotation. The rs219779’s genotype CT (p = 0.0020) and rs219780’s genotype AG (p = 0.0012) were significantly associated with kidney stones. We also found that a novel haplotype, “TA” associated with kidney stone formation, has moderate linkage disequilibrium. The TA haplotype was significantly correlated with a kidney stone risk formation of 3.76-fold (OR (CI 95%) = 3.76 (1.83–7.72)) and p = 0.0016 compared to other haplotypes. In silico analysis revealed that mutations associated with hearing loss were not correlated with renal stone formation but affected claudin-14 protein stability. We structurally mapped a novel TA haplotype of CLDN14 that, based on our analysis, likely contributes to the pathogenesis of renal stones.
Collapse
Affiliation(s)
- Ihsan Ullah
- Molecular Biology and Biotechnology Section, Institute of Biochemistry & Biotechnology, University of Veterinary & Animal Sciences , Syed Abdul Qadir Jillani (Out Fall) Road , Lahore 54000 , Pakistan
| | - Khadijah Murtaza
- Molecular Biology and Biotechnology Section, Institute of Biochemistry & Biotechnology, University of Veterinary & Animal Sciences , Syed Abdul Qadir Jillani (Out Fall) Road , Lahore 54000 , Pakistan
| | - Hafiza Ammara
- Molecular Biology and Biotechnology Section, Institute of Biochemistry & Biotechnology, University of Veterinary & Animal Sciences , Syed Abdul Qadir Jillani (Out Fall) Road , Lahore 54000 , Pakistan
| | - Misbah
- Department of Medicine, Services Hospital , Lahore 54000 , Pakistan
| | - Munir Ahmad Bhinder
- Department of Human Genetics and Molecular Biology, University of Health Sciences , Lahore 54000 , Pakistan
| | - Amjad Riaz
- Department of Theriogenology, University of Veterinary & Animal Sciences , Lahore 54000 , Pakistan
| | - Wasim Shehzad
- Molecular Biology and Biotechnology Section, Institute of Biochemistry & Biotechnology, University of Veterinary & Animal Sciences , Syed Abdul Qadir Jillani (Out Fall) Road , Lahore 54000 , Pakistan
| | - Muhammad Yasir Zahoor
- Molecular Biology and Biotechnology Section, Institute of Biochemistry & Biotechnology, University of Veterinary & Animal Sciences , Syed Abdul Qadir Jillani (Out Fall) Road , Lahore 54000 , Pakistan
| |
Collapse
|
15
|
Environmental Factors That Affect Parathyroid Hormone and Calcitonin Levels. Int J Mol Sci 2021; 23:ijms23010044. [PMID: 35008468 PMCID: PMC8744774 DOI: 10.3390/ijms23010044] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/23/2022] Open
Abstract
Calciotropic hormones, parathyroid hormone (PTH) and calcitonin are involved in the regulation of bone mineral metabolism and maintenance of calcium and phosphate homeostasis in the body. Therefore, an understanding of environmental and genetic factors influencing PTH and calcitonin levels is crucial. Genetic factors are estimated to account for 60% of variations in PTH levels, while the genetic background of interindividual calcitonin variations has not yet been studied. In this review, we analyzed the literature discussing the influence of environmental factors (lifestyle factors and pollutants) on PTH and calcitonin levels. Among lifestyle factors, smoking, body mass index (BMI), diet, alcohol, and exercise were analyzed; among pollutants, heavy metals and chemicals were analyzed. Lifestyle factors that showed the clearest association with PTH levels were smoking, BMI, exercise, and micronutrients taken from the diet (vitamin D and calcium). Smoking, vitamin D, and calcium intake led to a decrease in PTH levels, while higher BMI and exercise led to an increase in PTH levels. In terms of pollutants, exposure to cadmium led to a decrease in PTH levels, while exposure to lead increased PTH levels. Several studies have investigated the effect of chemicals on PTH levels in humans. Compared to PTH studies, a smaller number of studies analyzed the influence of environmental factors on calcitonin levels, which gives great variability in results. Only a few studies have analyzed the influence of pollutants on calcitonin levels in humans. The lifestyle factor with the clearest relationship with calcitonin was smoking (smokers had increased calcitonin levels). Given the importance of PTH and calcitonin in maintaining calcium and phosphate homeostasis and bone mineral metabolism, additional studies on the influence of environmental factors that could affect PTH and calcitonin levels are crucial.
Collapse
|
16
|
de Alarcón R, Alburquerque-González B, Fernández-Valera Á, Molina-Nuñez M, Álvarez Fernandez G, Consuegra-Sánchez L, Luengo-Gil G, Conesa-Zamora P. Pharmacogenetic role of vitamin D-binding protein and vitamin D receptor polymorphisms in the treatment response of dialysis patients with secondary hyperparathyroidism. Nephrol Dial Transplant 2021; 37:792-795. [PMID: 34888693 DOI: 10.1093/ndt/gfab353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Rosa de Alarcón
- Nephrology Department, Santa Lucia University Hospital, Cartagena, Spain
| | | | | | | | | | | | - Ginés Luengo-Gil
- Pathology Department. Santa Lucía General University Hospital (HGUSL), Cartagena, Spain.,Group of Molecular Pathology and Pharmacogenetics, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Universitario Santa Lucía, Cartagena, Spain.,Clinical Analysis Department, Santa Lucia University Hospital, Cartagena, Spain
| | - Pablo Conesa-Zamora
- Facultad de Ciencias de la Salud, Universidad Católica de Murcia (UCAM), Guadalupe, Spain.,Group of Molecular Pathology and Pharmacogenetics, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Universitario Santa Lucía, Cartagena, Spain.,Clinical Analysis Department, Santa Lucia University Hospital, Cartagena, Spain
| |
Collapse
|
17
|
Chen S, Yang F, Xu T, Wang Y, Zhang K, Fu G, Zhang W. The impact of serum 25-hydroxyvitamin D, calcium, and parathyroid hormone levels on the risk of coronary artery disease in patients with diabetes: a Mendelian randomization study. Nutr J 2021; 20:82. [PMID: 34602077 PMCID: PMC8489084 DOI: 10.1186/s12937-021-00735-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 08/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To investigate the causal association between serum 25-hydroxyvitamin D (25OHD), calcium (Ca), and parathyroid hormone (PTH) levels and the risk of coronary artery disease (CAD) in patients with diabetes using a Mendelian randomization approach. METHODS Genetic signatures associated with serum 25OHD, Ca, and PTH levels were extracted from recently published genome-wide association study (GWAS), including 79,366, 39,400, 29,155 individuals, respectively. Genetic association estimates for CAD in patients with diabetes were obtained from a GWAS of 15,666 individuals with diabetes (3,968 CAD cases, 11,696 controls). The inverse-variance-weighted method was employed for the primary analysis, and other robust methods were applied for sensitivity analyses. RESULTS Six, seven and five single nucleotide polymorphisms were identified as instrumental variables for serum 25OHD, Ca and PTH levels, respectively. There was no significant association between genetically predicted serum 25OHD levels and the risk of CAD in patients with diabetes (odds ratio (OR) = 1.04, 95% confidence interval (CI): 0.58 - 1.87, P = 0.888). Similarly, genetically predicted serum Ca (OR = 1.83, 95% CI: 0.62 - 5.35, P = 0.273) and PTH levels (OR = 1.27, 95% CI: 0.67 - 2.44, P = 0.464) were not significantly associated with the risk of CAD in patients with diabetes. These findings were robust in sensitivity analyses. CONCLUSIONS/INTERPRETATION Serum 25OHD, Ca and PTH levels may not be causally associated with the risk of CAD in patients with diabetes.
Collapse
Affiliation(s)
- Songzan Chen
- Department of Cardiology, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Fangkun Yang
- Department of Cardiology, Ningbo First Hospital, School of Medicine, Zhejiang University, Ningbo, 315010, China
| | - Tian Xu
- Department of Cardiology, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Yao Wang
- Department of Cardiology, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Kaijie Zhang
- Department of Cardiology, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Guosheng Fu
- Department of Cardiology, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.
| | - Wenbin Zhang
- Department of Cardiology, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.
| |
Collapse
|
18
|
A Mendelian randomization study on the role of serum parathyroid hormone and 25-hydroxyvitamin D in osteoarthritis. Osteoarthritis Cartilage 2021; 29:1282-1290. [PMID: 33975017 DOI: 10.1016/j.joca.2021.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Serum parathyroid hormone (PTH) and 25-hydroxyvitamin D [25(OH)D] have been demonstrated to be associated with pathogenesis and progression of osteoarthritis (OA). This study aimed to determine the potential causal relationship between serum PTH and 25(OH)D levels and risk of OA. DESIGN We applied the two-sample Mendelian randomization (MR) approach to estimate the causal roles of serum PTH and 25(OH)D on OA. The instrumental variables for serum PTH and 25(OH)D were derived from two large genome-wide association studies (GWAS), which included 29,155 and 79,366 individuals, respectively. Summary-level data for overall, hip and knee OA were extracted from a GWAS meta-analysis, including 455,221 individuals. All participants included in this study were from the European population. RESULTS An inverse association was observed between serum PTH levels and risk of OA (random-effects: Effect = 0.71; 95% CI: 0.54 to 0.92; fixed-effects: Effect = 0.71; 95% CI: 0.61 to 0.82). Stratified by site, serum PTH levels were found to be inversely associated with knee OA (random-effects: Effect = 0.53; 95% CI: 0.41 to 0.68; fixed-effects: Effect = 0.53; 95% CI: 0.41 to 0.68). However, there was no evidence of the causal effect of serum 25(OH)D levels on OA. CONCLUSIONS The present study indicates an inverse causal relationship between serum PTH concentrations and development of OA. Moreover, a site-specific association was also observed between serum PTH levels and knee OA. The potential mechanisms by which serum PTH affects OA need to be further investigated.
Collapse
|
19
|
Ma K, Peng J, Rong H, Jiang Y, Zhang H, Zhu J, Xiao B, Tang P, He JT, Yu Z. RSPH14 regulates the proliferation, cell cycle progression and apoptosis of non-small cell lung cancer cells. FEBS Open Bio 2021; 11:2715-2726. [PMID: 34351079 PMCID: PMC8487038 DOI: 10.1002/2211-5463.13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/05/2021] [Accepted: 08/03/2021] [Indexed: 11/11/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common subtype of lung cancer and it is characterized by a high incidence. It is important to understand the molecular mechanisms that determine the progression and metastasis of NSCLC in order to develop more effective therapies and identify novel diagnostic indicators of NSCLC. RSPH14 has been reported to be related to multiple human diseases, including duodenal adenocarcinoma and meningiomas, but the role of RSPH14 in NSCLC remains unclear. The present study aimed to investigate the molecular function and clinical significance of RSPH14 in NSCLC. Analyses of public datasets and clinical samples demonstrated that RSPH14 expression was upregulated in NSCLC samples compared with normal samples. In addition, high RSPH14 expression was associated with a shorter overall survival time in patients with NSCLC. Notably, RSPH14 knockdown suppressed the proliferation and cell cycle progression, and enhanced the apoptosis of NSCLC cells. Mechanically, Tandem Mass Tag analysis demonstrated that RSPH14 can affect multiple processes, including the AMPK signaling pathway, calcium ion import regulation, glucose transmembrane transporter activity, and glucose transmembrane transport. Taken together, the results of the present study suggest that RSPH14 may be a promising prognostic factor and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Ke Ma
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin, China.,Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Peng
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Rong
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanhua Jiang
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huachuan Zhang
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiang Zhu
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Xiao
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Peng Tang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin, China
| | - Jin Tao He
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhentao Yu
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin, China
| |
Collapse
|
20
|
Huang G, Zhong Y, Li W, Liao W, Wu P. Causal Relationship Between Parathyroid Hormone and the Risk of Osteoarthritis: A Mendelian Randomization Study. Front Genet 2021; 12:686939. [PMID: 34381493 PMCID: PMC8352559 DOI: 10.3389/fgene.2021.686939] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Background Previous studies have demonstrated an inverse association between parathyroid hormone (PTH) and the risk of osteoarthritis (OA). However, it remains unknown whether such association reflects causality. We aimed to apply a Mendelian randomization (MR) approach to investigate the causal association between PTH and OA. Materials and Methods We performed a two-sample MR analysis using summary statistics from 13 cohorts (PTH, N = 29,155) and a recent genome-wide association study meta-analysis (OA, N = 455,221) by the UK Biobank and Arthritis Research UK OA Genetics (arcOGEN). MR analyses were carried out mainly using the inverse-variance-weighted method. Sensitivity analyses were performed to test the robustness of the associations using the weighted median method, the MR-Egger method, and "leave-one-out" analysis. Analyses were performed again to test whether the associations remained statistically significant after excluding any outlier variants that were detected using the MR-PRESSO (Mendelian Randomization Pleiotropy RESidual Sum and Outlier) test. Results Five single-nucleotide polymorphisms (SNPs) were selected as instrumental variables at the genome-wide significance threshold (p < 5 × 10-8). The causal effect between PTH and OA was genetically predicted using the inverse-variance-weighted method (odds ratio = 0.67, 95% confidence interval: 0.50-0.90; p = 0.008). This result was borne out using the weighted median method (odds ratio = 0.73, 95% confidence interval: 0.60-0.90; p = 0.004). The causality remained robust after discarding the outlier variants as well as SNPs associated with confounding factors. Conclusion MR analysis supported a potential causative relationship between decreased serum circulating PTH and a higher risk of hip and knee OA.
Collapse
Affiliation(s)
- Guiwu Huang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Yanlin Zhong
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Wenchang Li
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Weiming Liao
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Peihui Wu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
RGS14 Regulation of Post-Synaptic Signaling and Spine Plasticity in Brain. Int J Mol Sci 2021; 22:ijms22136823. [PMID: 34201943 PMCID: PMC8268017 DOI: 10.3390/ijms22136823] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
The regulator of G-protein signaling 14 (RGS14) is a multifunctional signaling protein that regulates post synaptic plasticity in neurons. RGS14 is expressed in the brain regions essential for learning, memory, emotion, and stimulus-induced behaviors, including the basal ganglia, limbic system, and cortex. Behaviorally, RGS14 regulates spatial and object memory, female-specific responses to cued fear conditioning, and environmental- and psychostimulant-induced locomotion. At the cellular level, RGS14 acts as a scaffolding protein that integrates G protein, Ras/ERK, and calcium/calmodulin signaling pathways essential for spine plasticity and cell signaling, allowing RGS14 to naturally suppress long-term potentiation (LTP) and structural plasticity in hippocampal area CA2 pyramidal cells. Recent proteomics findings indicate that RGS14 also engages the actomyosin system in the brain, perhaps to impact spine morphogenesis. Of note, RGS14 is also a nucleocytoplasmic shuttling protein, where its role in the nucleus remains uncertain. Balanced nuclear import/export and dendritic spine localization are likely essential for RGS14 neuronal functions as a regulator of synaptic plasticity. Supporting this idea, human genetic variants disrupting RGS14 localization also disrupt RGS14’s effects on plasticity. This review will focus on the known and unexplored roles of RGS14 in cell signaling, physiology, disease and behavior.
Collapse
|
22
|
Palmer ND, Lu L, Register TC, Lenchik L, Carr JJ, Hicks PJ, Smith SC, Xu J, Dimitrov L, Keaton J, Guan M, Ng MCY, Chen YDI, Hanley AJ, Engelman CD, Norris JM, Langefeld CD, Wagenknecht LE, Bowden DW, Freedman BI, Divers J. Genome-wide association study of vitamin D concentrations and bone mineral density in the African American-Diabetes Heart Study. PLoS One 2021; 16:e0251423. [PMID: 34014961 PMCID: PMC8136717 DOI: 10.1371/journal.pone.0251423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/26/2021] [Indexed: 12/29/2022] Open
Abstract
Relative to European Americans, African Americans have lower 25-hydroxyvitamin D (25OHD) and vitamin D binding protein (VDBP) concentrations, higher 1,25-dihydroxyvitamin D (1,25(OH)2D3) concentrations and bone mineral density (BMD), and paradoxically reduced burdens of calcified atherosclerotic plaque (subclinical atherosclerosis). To identify genetic factors contributing to vitamin D and BMD measures, association analysis of >14M variants was conducted in a maximum of 697 African American-Diabetes Heart Study participants with type 2 diabetes (T2D). The most significant association signals were detected for VDBP on chromosome 4; variants rs7041 (β = 0.44, SE = 0.019, P = 9.4x10-86) and rs4588 (β = 0.17, SE = 0.021, P = 3.5x10-08) in the group-specific component (vitamin D binding protein) gene (GC). These variants were found to be independently associated. In addition, rs7041 was also associated with bioavailable vitamin D (BAVD; β = 0.16, SE = 0.02, P = 3.3x10-19). Six rare variants were significantly associated with 25OHD, including a non-synonymous variant in HSPG2 (rs116788687; β = -1.07, SE = 0.17, P = 2.2x10-10) and an intronic variant in TNIK (rs143555701; β = -1.01, SE = 0.18, P = 9.0x10-10), both biologically related to bone development. Variants associated with 25OHD failed to replicate in African Americans from the Insulin Resistance Atherosclerosis Family Study (IRASFS). Evaluation of vitamin D metabolism and bone mineral density phenotypes in an African American population enriched for T2D could provide insight into ethnic specific differences in vitamin D metabolism and bone mineral density.
Collapse
Affiliation(s)
- Nicholette D. Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
- * E-mail: (NDP); (BIF)
| | - Lingyi Lu
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Thomas C. Register
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Leon Lenchik
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - J. Jeffrey Carr
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Pamela J. Hicks
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - S. Carrie Smith
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Jianzhao Xu
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Latchezar Dimitrov
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Jacob Keaton
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
- Molecular Genetics and Genomics Program, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Meijian Guan
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Maggie C. Y. Ng
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Yii-der I. Chen
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | - Anthony J. Hanley
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Corinne D. Engelman
- Department of Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Jill M. Norris
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, United States of America
| | - Carl D. Langefeld
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Lynne E. Wagenknecht
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Donald W. Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Barry I. Freedman
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
- Department of Internal Medicine-Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
- * E-mail: (NDP); (BIF)
| | - Jasmin Divers
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| |
Collapse
|
23
|
Qu Z, Yang F, Hong J, Wang W, Yan S. Parathyroid Hormone and Bone Mineral Density: A Mendelian Randomization Study. J Clin Endocrinol Metab 2020; 105:5896008. [PMID: 32827441 DOI: 10.1210/clinem/dgaa579] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Accumulating evidence implicates parathyroid hormone (PTH) in the development of osteoporosis. However, the causal effect of PTH on bone mineral density (BMD) remains unclear. Thus, this study is aimed at exploring the association between the concentrations of serum PTH and BMD. METHODS The instrumental variables for PTH were selected from a large-scale genome-wide association study (GWAS; n = 29 155). Outcomes included BMD of the forearm (FA; n = 8143), femoral neck (FN; n = 33 297), lumbar spine (LS; n = 32 735), heel (HL; n = 394 929), and risk of fractures in these bones (n = 361 194). Furthermore, the BMD of 5 different age groups: 15 years or younger (n = 11 807), 15-30 (n = 4180), 30-45 (n = 10 062), 45-60 (n = 18 805), and 60 years or older (n = 22 504) were extracted from a GWAS meta-analysis study. The analyses were performed using the 2-sample Mendelian randomization method. RESULTS Mendelian randomization analysis revealed that the level of serum PTH was inversely associated with BMD of FA (95% CI: -0.763 to -0.016), FN (95% CI: -0.669 to -0.304), and LS (95% CI: -0.667 to -0.243). A causal relationship between serum PTH levels and BMD was observed in individuals aged 30-45 (95% CI: -0.888 to -0.166), 45-60 (95% CI: -0.758 to -0.232), and over 60 years (95% CI: -0.649 to -0.163). MAIN CONCLUSIONS This study demonstrated that the concentrations of serum PTH is inversely associated with BMD of several bones. Further analysis revealed site- and age-specific correlations between serum PTH levels and BMD, which implies that the levels of serum PTH contribute to the development of osteoporosis.
Collapse
Affiliation(s)
- Zihao Qu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Fangkun Yang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianqiao Hong
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Shigui Yan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Jamshidi M, Mohammadi Pour S, Mahmoudian-Sani MR. Single Nucleotide Variants Associated with Colorectal Cancer Among Iranian Patients: A Narrative Review. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2020; 13:167-180. [PMID: 32581566 PMCID: PMC7280057 DOI: 10.2147/pgpm.s248349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/19/2020] [Indexed: 12/31/2022]
Abstract
Colorectal cancer has been considered as one of the complicated multi-stage processes after adenoma-carcinoma sequence. Therefore, studies of the molecular dysregulation basis could present information on the recognition of the potent biomarkers and treatment targets for this disease. Even though outcomes of the patients with colorectal cancer have been improved largely with current annual screening plans, it is necessary to have reliable prognostic biomarkers because of the disease heterogeneity. There is a significant relationship between SNP in IL1RN* 2 (IL1ra), −509 C/T (TGFB1), rs11556218 T>G and rs4778889 T/C (IL16), miRNA-binding site polymorphisms in IL16, rs4464148 (SMAD7), rs6983267 (EGF), GSTT1, TACG haplotype (CTLA4), 1793G> A (MTHFR), Leu/Leu genotype of (EXO1), −137 G/C (IL18), C/T genotype (XRCC3), I3434T (XRCC7), MGMT, C3435T (MDR1), ff genotype of FokI, 677CT+TT (MTHFR), G2677T/A (MDR1) and CRC. Increased risk has been observed in VDR ApaI genotype “aa”. Finally, the protective effect has been explored in the TACA haplotype (CTLA4). According to the findings, the genetic polymorphisms in the immunity-associated genes are related to the CRC amongst the Iranian patients. Therefore, more large-scale functional investigations are necessary for confirming the results.
Collapse
Affiliation(s)
- Mohammad Jamshidi
- Department of Laboratory Sciences, School of Allied Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Somayeh Mohammadi Pour
- Department of Obstetrics and Gynecology, School of Medicine Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammad-Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
25
|
Genetic variants of mineral metabolism in health and disease. Curr Opin Nephrol Hypertens 2020; 29:387-393. [PMID: 32427690 DOI: 10.1097/mnh.0000000000000612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Disturbances in mineral metabolism are common among individuals with chronic kidney disease and have consistently been associated with cardiovascular and bone disease. The current review aims to describe the current knowledge of the genetic aspects of mineral metabolism disturbances and to suggest directions for future studies to uncover the cause and pathogenesis of chronic kidney disease - mineral bone disorder. RECENT FINDINGS The most severe disorders of mineral metabolism are caused by highly penetrant, rare, single-gene disruptive mutations. More recently, genome-wide association studies (GWAS) have made an important contribution to our understanding of the genetic determinants of circulating levels of 25-hydroxyvitamin D, calcium, phosphorus, fibroblast growth factor-23, parathyroid hormone, fetuin-A and osteoprotegerin. Although the majority of these genes are known members of mineral homeostasis pathways, GWAS with larger sample sizes have enabled the discovery of many genes not known to be involved in the regulation of mineral metabolism. SUMMARY GWAS have enabled remarkable developments in our ability to discover the genetic basis of mineral metabolism disturbances. Although we are far from using these findings to inform clinical practice, we are gaining understanding of novel biological mechanisms and providing insight into ethnic variation in these traits.
Collapse
|
26
|
Abstract
Phosphate is an essential nutrient for life and is a critical component of bone formation, a major signaling molecule, and structural component of cell walls. Phosphate is also a component of high-energy compounds (i.e., AMP, ADP, and ATP) and essential for nucleic acid helical structure (i.e., RNA and DNA). Phosphate plays a central role in the process of mineralization, normal serum levels being associated with appropriate bone mineralization, while high and low serum levels are associated with soft tissue calcification. The serum concentration of phosphate and the total body content of phosphate are highly regulated, a process that is accomplished by the coordinated effort of two families of sodium-dependent transporter proteins. The three isoforms of the SLC34 family (SLC34A1-A3) show very restricted tissue expression and regulate intestinal absorption and renal excretion of phosphate. SLC34A2 also regulates the phosphate concentration in multiple lumen fluids including milk, saliva, pancreatic fluid, and surfactant. Both isoforms of the SLC20 family exhibit ubiquitous expression (with some variation as to which one or both are expressed), are regulated by ambient phosphate, and likely serve the phosphate needs of the individual cell. These proteins exhibit similarities to phosphate transporters in nonmammalian organisms. The proteins are nonredundant as mutations in each yield unique clinical presentations. Further research is essential to understand the function, regulation, and coordination of the various phosphate transporters, both the ones described in this review and the phosphate transporters involved in intracellular transport.
Collapse
Affiliation(s)
- Nati Hernando
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| | - Kenneth Gagnon
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| | - Eleanor Lederer
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| |
Collapse
|
27
|
Li GHY, Robinson-Cohen C, Sahni S, Au PCM, Tan KCB, Kung AWC, Cheung CL. Association of Genetic Variants Related to Serum Calcium Levels with Reduced Bone Mineral Density. J Clin Endocrinol Metab 2020; 105:5606940. [PMID: 31650181 PMCID: PMC7453037 DOI: 10.1210/clinem/dgz088] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022]
Abstract
CONTEXT The role of serum calcium in bone metabolism is unknown, even though calcium/vitamin D supplementations have been widely used and are expected to improve bone health. We aim to determine the independent role of serum calcium in bone mineral density (BMD). DESIGN AND SETTING Two epidemiological analyses with 5478 and 5556 participants from the National Health and Nutrition Examination Survey (NHANES) 2003 to 2006 and the Hong Kong Osteoporosis Study (HKOS) to evaluate the cross-sectional association of serum calcium with BMD. Two-sample Mendelian randomization (MR) studies using genetic variations as instrumental variables to infer causality. Summary statistics of genome-wide association study of serum calcium (N = 39 400) and lifelong whole-body BMD (N = 66 628) were used. MAIN OUTCOME MEASURE BMD measured by dual-energy X-ray absorptiometry. RESULTS In NHANES 2003-6 and HKOS, each standard deviation (SD) increase in serum calcium was significantly associated with 0.036-0.092 SD decrease in BMD at various sites (all P < .05). In multivariable inverse-variance weighted MR analysis, genetic predisposition to higher serum calcium level was inversely associated with whole-body BMD after adjustment for serum parathyroid hormone, vitamin D, and phosphate (-0.431 SD per SD increase in serum calcium; 95% CI: -0.773 to -0.089, P = .014). Similar estimates were obtained in sensitivity analyses. CONCLUSIONS Our study reveals that genetic predisposition to higher serum calcium level per se may have a negative impact on bone metabolism. Whether increased serum calcium caused by calcium/vitamin D supplementations would have the same negative effect on bone remains unknown, which warrants further investigation. In addition to other adverse clinical outcomes, careful use of high-dose supplementations is required.
Collapse
Affiliation(s)
- Gloria Hoi-Yee Li
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Cassianne Robinson-Cohen
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shivani Sahni
- Marcus Institute, Hebrew SeniorLife, Harvard Medical School, Boston, Massachusetts
| | - Philip Chun-Ming Au
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Kathryn Choon-Beng Tan
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Annie Wai-Chee Kung
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Ching-Lung Cheung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
- Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
- Correspondence and Reprint Requests: Ching-Lung Cheung, Assistant Professor, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China. E-mail:
| |
Collapse
|
28
|
Bao Q, Wang D, Zhang Y, Bao L, Jia H. The Impact of CYP24A1 Polymorphisms on Hypertension Susceptibility. Kidney Blood Press Res 2020; 45:28-37. [PMID: 31918428 DOI: 10.1159/000503925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/04/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hypertension is one of the leading causes of human death and disability. CYP24A1 regulates vitamin D activity and is closely linked to hypertension. However, the relationship between CYP24A1polymorphisms and hypertension risk remains unclear. METHODS This case-control study included 503 hypertensive patients and 498 healthy controls from the Chinese Han population. The genotypes of CYP24A1polymorphisms were detected using the Agena MassARRAY method. The association between genetic variations of CYP24A1and hypertension risk was evaluated with odds ratios (OR) and 95% confidence intervals (CI) in genetic models. RESULTS We found that rs56229249 of CYP24A1significantlydecreased the hypertension risk in homozygote (OR 0.51, 95% CI 0.29-0.91, p = 0.022) and recessive models (OR 0.51, 95% CI 0.29-0.91, p = 0.023). Further stratification analyses indicated that hypertension risk is related to age and sex, rs2762934 polymorphism increases hypertension risk among younger subjects (<61 years), and rs1977297 influences the risk of hypertension among older subjects (≥61 years). In addition, rs2762940 is related to hypertension risk in men, and rs56229249 is a protective factor against hypertension in women. CONCLUSIONS Our study suggests that genetic variations of the CYP24A1gene were significantly associated with susceptibility to hypertension in the Chinese population.
Collapse
Affiliation(s)
- Qiuhong Bao
- Gerontological Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Dan Wang
- Gerontological Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yong Zhang
- Gerontological Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Lili Bao
- Gerontological Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Haiyu Jia
- Gerontological Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China,
| |
Collapse
|
29
|
Yuan S, Jiang X, Michaëlsson K, Larsson SC. Genetic Prediction of Serum 25-Hydroxyvitamin D, Calcium, and Parathyroid Hormone Levels in Relation to Development of Type 2 Diabetes: A Mendelian Randomization Study. Diabetes Care 2019; 42:2197-2203. [PMID: 31548248 DOI: 10.2337/dc19-1247] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/02/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We conducted a Mendelian randomization study to investigate the associations of genetically predicted serum 25-hydroxyvitamin D (S-25OHD), calcium (S-Ca), and parathyroid hormone (S-PTH) levels with type 2 diabetes (T2DM). RESEARCH DESIGN AND METHODS Seven, six, and five single nucleotide polymorphisms (SNPs) associated with S-25OHD, S-Ca, and S-PTH levels, respectively, were used as instrumental variables. Data on T2DM were available for 74,124 case subjects with T2DM and 824,006 control subjects. The inverse variance-weighted method was used for the primary analyses, and the weighted median and Mendelian randomization (MR)-Egger methods were used for supplementary analyses. RESULTS Genetically predicted S-25OHD but not S-Ca and S-PTH levels were associated with T2DM in the primary analyses. For 1 SD increment of S-25OHD levels, the odds ratio (OR) of T2DM was 0.94 (95% CI 0.88-0.99; P = 0.029) in an analysis based on all seven SNPs and 0.90 (95% CI 0.83-0.98; P = 0.011) in an analysis based on three SNPs within or near genes involved in vitamin D synthesis. Only the association based on the SNPs involved in vitamin D synthesis remained in the weighted median analysis, and no pleiotropy was detected (P = 0.153). Pleiotropy was detected in the analysis of S-Ca (P = 0.013). After correcting for this bias using MR-Egger regression, the OR of T2DM per 1 SD increment of S-Ca levels was 1.41 (95% CI 1.12-1.77; P = 0.003). CONCLUSIONS Modest lifelong higher S-25OHD levels were associated with reduced odds of T2DM, but the association was only robust for SNPs in the vitamin D synthesis pathway. The possible role of S-Ca levels for T2DM development requires further research.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Xia Jiang
- Unit of Translational Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, MA
| | - Karl Michaëlsson
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Susanna C Larsson
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden .,Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
30
|
Melhus H, Michaëlsson K, Larsson SC. Serum Parathyroid Hormone and Risk of Coronary Artery Disease: Exploring Causality Using Mendelian Randomization. J Clin Endocrinol Metab 2019; 104:5595-5600. [PMID: 31310319 DOI: 10.1210/jc.2019-01063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/10/2019] [Indexed: 02/13/2023]
Abstract
CONTEXT Elevated circulating parathyroid hormone concentrations have been associated with increased risk of cardiovascular disease in observational studies, but whether the association is causal is unknown. OBJECTIVE We used the Mendelian randomization design to test whether genetically increased serum parathyroid hormone (S-PTH) concentrations are associated with coronary artery disease (CAD). DESIGN, SETTING, AND PARTICIPANTS Five single-nucleotide polymorphisms robustly associated with S-PTH concentrations were used as instrumental variables to estimate the association of genetically higher S-PTH concentrations with CAD. Summary statistics data for CAD were obtained from a genetic consortium with data from 184,305 individuals (60,801 CAD cases and 123,504 noncases). MAIN OUTCOME MEASURE OR of CAD per genetically predicted one SD increase of S-PTH concentrations. RESULTS Genetically higher S-PTH concentration was not associated with CAD as a whole or myocardial infarction specifically (∼70% of total cases). The ORs per genetically predicted one SD increase in S-PTH concentration were 1.01 (95% CI: 0.93 to 1.09; P = 0.88) for CAD and 1.02 (95% CI: 0.94 to 1.10; P = 0.64) for myocardial infarction. The lack of association remained in various sensitivity analyses. CONCLUSION Genetic predisposition to higher S-PTH concentrations does not appear to be an independent risk factor for CAD.
Collapse
Affiliation(s)
- Håkan Melhus
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Karl Michaëlsson
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Susanna C Larsson
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
31
|
Cerani A, Zhou S, Forgetta V, Morris JA, Trajanoska K, Rivadeneira F, Larsson SC, Michaëlsson K, Richards JB. Genetic predisposition to increased serum calcium, bone mineral density, and fracture risk in individuals with normal calcium levels: mendelian randomisation study. BMJ 2019; 366:l4410. [PMID: 31371314 PMCID: PMC6669416 DOI: 10.1136/bmj.l4410] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To determine if genetically increased serum calcium levels are associated with improved bone mineral density and a reduction in osteoporotic fractures. DESIGN Mendelian randomisation study. SETTING Cohorts used included: the UK Biobank cohort, providing genotypic and estimated bone mineral density data; 25 cohorts from UK, USA, Europe, and China, providing genotypic and fracture data; and 17 cohorts from Europe, providing genotypic and serum calcium data (summary level statistics). PARTICIPANTS A genome-wide association meta-analysis of serum calcium levels in up to 61 079 individuals was used to identify genetic determinants of serum calcium levels. The UK Biobank study was used to assess the association of genetic predisposition to increased serum calcium with estimated bone mineral density derived from heel ultrasound in 426 824 individuals who had, on average, calcium levels in the normal range. A fracture genome-wide association meta-analysis comprising 24 cohorts and the UK Biobank including a total of 76 549 cases and 470 164 controls, who, on average, also had calcium levels in the normal range was then performed. RESULTS A standard deviation increase in genetically derived serum calcium (0.13 mmol/L or 0.51 mg/dL) was not associated with increased estimated bone mineral density (0.003 g/cm2, 95% confidence interval -0.059 to 0.066; P=0.92) or a reduced risk of fractures (odds ratio 1.01, 95% confidence interval 0.89 to 1.15; P=0.85) in inverse-variance weighted mendelian randomisation analyses. Sensitivity analyses did not provide evidence of pleiotropic effects. CONCLUSIONS Genetic predisposition to increased serum calcium levels in individuals with normal calcium levels is not associated with an increase in estimated bone mineral density and does not provide clinically relevant protection against fracture. Whether such predisposition mimics the effect of short term calcium supplementation is not known. Given that the same genetically derived increase in serum calcium is associated with an increased risk of coronary artery disease, widespread calcium supplementation in the general population could provide more risk than benefit.
Collapse
Affiliation(s)
- Agustin Cerani
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 3755 Côte Ste-Catherine Road, Suite H-413, Montréal, Québec, H3T 1E2, Canada
| | - Sirui Zhou
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 3755 Côte Ste-Catherine Road, Suite H-413, Montréal, Québec, H3T 1E2, Canada
| | - Vincenzo Forgetta
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - John A Morris
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - Katerina Trajanoska
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Susanna C Larsson
- Unit of Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karl Michaëlsson
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - J Brent Richards
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 3755 Côte Ste-Catherine Road, Suite H-413, Montréal, Québec, H3T 1E2, Canada
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
| |
Collapse
|
32
|
Ratnadiwakara M, Rooke M, Ohms SJ, French HJ, Williams RBH, Li RW, Zhang D, Lucas RM, Blackburn AC. The SuprMam1 breast cancer susceptibility locus disrupts the vitamin D/ calcium/ parathyroid hormone pathway and alters bone structure in congenic mice. J Steroid Biochem Mol Biol 2019; 188:48-58. [PMID: 30529760 DOI: 10.1016/j.jsbmb.2018.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 01/08/2023]
Abstract
Breast cancer is a complex disease, and approximately 30% of cases are considered to be hereditary or familial, with a large fraction of this being polygenic. However, it is difficult to demonstrate the functional importance of genes of small effect in population studies, and these genes are not always easily targeted for prevention. The SuprMam (suppressor of mammary tumour) breast cancer susceptibility alleles were previously identified as contributors to spontaneous mammary tumour development in Trp53+/- mice. In this study, we have generated and characterised congenic mice that contain the BALB/c SuprMam1 (susceptibility) locus on a C57BL/6 (resistant) background and discovered a subtle impairment in the vitamin D/ calcium/ parathyroid hormone (PTH) pathway. This was evident as altered gene expression in the mammary glands of key players in this pathway. Further functional analysis of the mice revealed elevated PTH levels, reduced Cyp27b1 expression in kidneys, and reduced trabecular bone volume/ tissue volume percentage. Plasma 25(OH)D and serum calcium were unchanged. This impairment was a result of genetic differences and occurred only in females, but the elevated PTH levels could be overcome with either calcium or vitamin D dietary supplementation. Either low levels of active vitamin D (1,25(OH)2D) or chronically elevated PTH levels may contribute to increased breast cancer susceptibility. These indicators are not easily measured in human population studies, but either mechanism may be preventable with dietary calcium or vitamin D supplements. Therefore, SuprMam congenic mice could serve as a valuable model for studying the role of gene-hormone-environment interactions of the vitamin D/ calcium/ PTH pathway in cancer and other diseases and for testing preventive interventions.
Collapse
Affiliation(s)
- Madara Ratnadiwakara
- Cancer Metabolism and Genetics Group, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Melissa Rooke
- Cancer Metabolism and Genetics Group, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Stephen J Ohms
- ACRF Biomolecular Resource Facility, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Hugh J French
- Molecular Systems Biology Group, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Rohan B H Williams
- Molecular Systems Biology Group, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Rachel W Li
- Trauma and Orthopaedic Research Laboratory, The Medical School, The Australian National University, Canberra, ACT, 2601, Australia
| | - Donghai Zhang
- Trauma and Orthopaedic Research Laboratory, The Medical School, The Australian National University, Canberra, ACT, 2601, Australia
| | - Robyn M Lucas
- National Centre for Epidemiology and Population Health, Research School of Population Health, The Australian National University, Canberra, ACT, 2601, Australia
| | - Anneke C Blackburn
- Cancer Metabolism and Genetics Group, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
33
|
Sieber KB, Batorsky A, Siebenthall K, Hudkins KL, Vierstra JD, Sullivan S, Sur A, McNulty M, Sandstrom R, Reynolds A, Bates D, Diegel M, Dunn D, Nelson J, Buckley M, Kaul R, Sampson MG, Himmelfarb J, Alpers CE, Waterworth D, Akilesh S. Integrated Functional Genomic Analysis Enables Annotation of Kidney Genome-Wide Association Study Loci. J Am Soc Nephrol 2019; 30:421-441. [PMID: 30760496 PMCID: PMC6405142 DOI: 10.1681/asn.2018030309] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 12/26/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Linking genetic risk loci identified by genome-wide association studies (GWAS) to their causal genes remains a major challenge. Disease-associated genetic variants are concentrated in regions containing regulatory DNA elements, such as promoters and enhancers. Although researchers have previously published DNA maps of these regulatory regions for kidney tubule cells and glomerular endothelial cells, maps for podocytes and mesangial cells have not been available. METHODS We generated regulatory DNA maps (DNase-seq) and paired gene expression profiles (RNA-seq) from primary outgrowth cultures of human glomeruli that were composed mainly of podocytes and mesangial cells. We generated similar datasets from renal cortex cultures, to compare with those of the glomerular cultures. Because regulatory DNA elements can act on target genes across large genomic distances, we also generated a chromatin conformation map from freshly isolated human glomeruli. RESULTS We identified thousands of unique regulatory DNA elements, many located close to transcription factor genes, which the glomerular and cortex samples expressed at different levels. We found that genetic variants associated with kidney diseases (GWAS) and kidney expression quantitative trait loci were enriched in regulatory DNA regions. By combining GWAS, epigenomic, and chromatin conformation data, we functionally annotated 46 kidney disease genes. CONCLUSIONS We demonstrate a powerful approach to functionally connect kidney disease-/trait-associated loci to their target genes by leveraging unique regulatory DNA maps and integrated epigenomic and genetic analysis. This process can be applied to other kidney cell types and will enhance our understanding of genome regulation and its effects on gene expression in kidney disease.
Collapse
Affiliation(s)
| | - Anna Batorsky
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | | | | | - Jeff D Vierstra
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | | | - Aakash Sur
- Phase Genomics Inc., Seattle, Washington
- Department of Biomedical and Health Informatics, and
| | - Michelle McNulty
- Division of Pediatric Nephrology, Department of Pediatrics, University of Michigan School of Medicine, Ann Arbor, Michigan; and
| | | | - Alex Reynolds
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Daniel Bates
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Morgan Diegel
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Douglass Dunn
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Jemma Nelson
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Michael Buckley
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Rajinder Kaul
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Matthew G Sampson
- Division of Pediatric Nephrology, Department of Pediatrics, University of Michigan School of Medicine, Ann Arbor, Michigan; and
| | - Jonathan Himmelfarb
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
- Kidney Research Institute, Seattle, Washington
| | - Charles E Alpers
- Department of Anatomic Pathology
- Kidney Research Institute, Seattle, Washington
| | | | - Shreeram Akilesh
- Department of Anatomic Pathology,
- Kidney Research Institute, Seattle, Washington
| |
Collapse
|
34
|
Lederer E, Wagner CA. Clinical aspects of the phosphate transporters NaPi-IIa and NaPi-IIb: mutations and disease associations. Pflugers Arch 2018; 471:137-148. [DOI: 10.1007/s00424-018-2246-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022]
|
35
|
Kim OY, Kwak SY, Lim H, Shin MJ. Genotype effects of glucokinase regulator on lipid profiles and glycemic status are modified by circulating calcium levels: results from the Korean Genome and Epidemiology Study. Nutr Res 2018; 60:96-105. [PMID: 30527264 DOI: 10.1016/j.nutres.2018.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/23/2018] [Accepted: 09/27/2018] [Indexed: 11/29/2022]
Abstract
Single nucleotide polymorphisms (SNPs) in the glucokinase regulator (GCKR) are associated with major cardiovascular risk factors (ie, lipid profile and glycemic status). Recently, GCKR was shown to be related to circulating calcium levels involved in lipid and glycemic controls. Therefore, we hypothesized that GCKR SNPs are associated with major cardiovascular risk factors in the Korean population, and the association is modified by circulating calcium levels. Epidemiological data and GCKR SNPs (rs780093T>C, rs780094 T>C, and rs1260326 T>C) were collected from a subset of Ansung-Ansan cohort in the Korean Genome and Epidemiology Study (n = 7815). Consistent with the results of previous studies, GCKR SNPs were significantly associated with decreased total cholesterol and triglyceride levels and increased glucose levels and insulin resistance. Minor C allele carriers, particularly CC homozygotes, had lower serum calcium levels than TT homozygotes for all 3 SNPs. Particularly, the effect of GCKR SNPs on total cholesterol, triglyceride, fasting glucose, and insulin resistance was apparent when serum calcium levels were in normal range (8.8-10.1 mg/dL). When serum calcium levels were high (≥10.2 mg/dL), CC homozygotes also had significantly lower triglyceride and higher fasting glucose than TT homozygotes. However, the associations were not observed when serum calcium levels were low (<8.8 mg/dL). In conclusion, GCKR SNPs are associated with lipid profiles and glycemic status in the Korean population, and the genetic effect is modified by basal circulating calcium levels, particularly in normal or high ranges. It provides important information for individualized prevention and management of cardiovascular risk associated with GCKR SNPs.
Collapse
Affiliation(s)
- Oh Yoen Kim
- Department of Food Science and Nutrition, Dong-A University, Busan 604-714, Republic of Korea
| | - So-Young Kwak
- Department of Public Health Sciences, BK21PLUS Program in Embodiment, Health-Society Interaction, Graduate School, Korea University, Seoul 136-701, Republic of Korea
| | - Hyunjung Lim
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Min-Jeong Shin
- Department of Public Health Sciences, BK21PLUS Program in Embodiment, Health-Society Interaction, Graduate School, Korea University, Seoul 136-701, Republic of Korea; Korea University Guro Hospital, Korea University, Seoul 152-703, Republic of Korea.
| |
Collapse
|
36
|
Squires KE, Montañez-Miranda C, Pandya RR, Torres MP, Hepler JR. Genetic Analysis of Rare Human Variants of Regulators of G Protein Signaling Proteins and Their Role in Human Physiology and Disease. Pharmacol Rev 2018; 70:446-474. [PMID: 29871944 DOI: 10.1124/pr.117.015354] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regulators of G protein signaling (RGS) proteins modulate the physiologic actions of many neurotransmitters, hormones, and other signaling molecules. Human RGS proteins comprise a family of 20 canonical proteins that bind directly to G protein-coupled receptors/G protein complexes to limit the lifetime of their signaling events, which regulate all aspects of cell and organ physiology. Genetic variations account for diverse human traits and individual predispositions to disease. RGS proteins contribute to many complex polygenic human traits and pathologies such as hypertension, atherosclerosis, schizophrenia, depression, addiction, cancers, and many others. Recent analysis indicates that most human diseases are due to extremely rare genetic variants. In this study, we summarize physiologic roles for RGS proteins and links to human diseases/traits and report rare variants found within each human RGS protein exome sequence derived from global population studies. Each RGS sequence is analyzed using recently described bioinformatics and proteomic tools for measures of missense tolerance ratio paired with combined annotation-dependent depletion scores, and protein post-translational modification (PTM) alignment cluster analysis. We highlight selected variants within the well-studied RGS domain that likely disrupt RGS protein functions and provide comprehensive variant and PTM data for each RGS protein for future study. We propose that rare variants in functionally sensitive regions of RGS proteins confer profound change-of-function phenotypes that may contribute, in newly appreciated ways, to complex human diseases and/or traits. This information provides investigators with a valuable database to explore variation in RGS protein function, and for targeting RGS proteins as future therapeutic targets.
Collapse
Affiliation(s)
- Katherine E Squires
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Carolina Montañez-Miranda
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Rushika R Pandya
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Matthew P Torres
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - John R Hepler
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| |
Collapse
|
37
|
Abstract
Chronic kidney disease mineral and bone disorder (MBD) encompasses changes in mineral ion and vitamin D metabolism that are widespread in the setting of chronic kidney disease and end-stage renal disease. MBD components associate with cardiovascular disease in many epidemiologic studies. Through impacts on hypertension, activation of the renin-angiotensin-aldosterone system, vascular calcification, endothelial function, and cardiac remodeling and conduction, MBD may be a direct and targetable cause of cardiovascular disease. However, assessment and treatment of MBD is rife with challenges owing to biological tensions between its many components, such as calcium and phosphorus with their regulatory hormones fibroblast growth factor 23 and parathyroid hormone; fibroblast growth factor 23 with its co-receptor klotho; and vitamin D with control of calcium and phosphorus. These complex interactions between MBD components hinder the simple translation to clinical trials, which ultimately are needed to prove the benefits of treating MBD. Deeper investigation using precision medicine tools and principles, including genomics and individualized risk assessment and therapy, may help move the field closer toward clinical applications. This review provides a high-level overview of conventional and precision epidemiology in MBD, potential mechanisms of cardiovascular disease pathogenesis, and guiding therapeutic principles for established and emerging treatments.
Collapse
Affiliation(s)
- Joseph Lunyera
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Julia J Scialla
- Department of Medicine, Duke University School of Medicine, Durham, NC; Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC; Department of Medicine, Durham Veterans Affairs Medical Center, Durham, NC.
| |
Collapse
|
38
|
Robinson-Cohen C, Bartz TM, Lai D, Ikizler TA, Peacock M, Imel EA, Michos ED, Foroud TM, Akesson K, Taylor KD, Malmgren L, Matsushita K, Nethander M, Eriksson J, Ohlsson C, Mellström D, Wolf M, Ljunggren O, McGuigan F, Rotter JI, Karlsson M, Econs MJ, Ix JH, Lutsey PL, Psaty BM, de Boer IH, Kestenbaum BR. Genetic Variants Associated with Circulating Fibroblast Growth Factor 23. J Am Soc Nephrol 2018; 29:2583-2592. [PMID: 30217807 PMCID: PMC6171267 DOI: 10.1681/asn.2018020192] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/06/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Fibroblast growth factor 23 (FGF23), a bone-derived hormone that regulates phosphorus and vitamin D metabolism, contributes to the pathogenesis of mineral and bone disorders in CKD and is an emerging cardiovascular risk factor. Central elements of FGF23 regulation remain incompletely understood; genetic variation may help explain interindividual differences. METHODS We performed a meta-analysis of genome-wide association studies of circulating FGF23 concentrations among 16,624 participants of European ancestry from seven cohort studies, excluding participants with eGFR<30 ml/min per 1.73 m2 to focus on FGF23 under normal conditions. We evaluated the association of single-nucleotide polymorphisms (SNPs) with natural log-transformed FGF23 concentration, adjusted for age, sex, study site, and principal components of ancestry. A second model additionally adjusted for BMI and eGFR. RESULTS We discovered 154 SNPs from five independent regions associated with FGF23 concentration. The SNP with the strongest association, rs17216707 (P=3.0×10-24), lies upstream of CYP24A1, which encodes the primary catabolic enzyme for 1,25-dihydroxyvitamin D and 25-hydroxyvitamin D. Each additional copy of the T allele at this locus is associated with 5% higher FGF23 concentration. Another locus strongly associated with variations in FGF23 concentration is rs11741640, within RGS14 and upstream of SLC34A1 (a gene involved in renal phosphate transport). Additional adjustment for BMI and eGFR did not materially alter the magnitude of these associations. Another top locus (within ABO, the ABO blood group transferase gene) was no longer statistically significant at the genome-wide level. CONCLUSIONS Common genetic variants located near genes involved in vitamin D metabolism and renal phosphate transport are associated with differences in circulating FGF23 concentrations.
Collapse
Affiliation(s)
- Cassianne Robinson-Cohen
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Departments of Biostatistics and Medicine
| | - Dongbing Lai
- Departments of Medical and Molecular Genetics and
| | - T Alp Ikizler
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Erik A Imel
- Medicine, Indiana University, Indianapolis, Indiana
| | - Erin D Michos
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | | | - Kristina Akesson
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Science Malmö, Lund University, Malmö, Sweden
- Department of Orthopaedics, Skåne University Hospital, Malmö, Sweden
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles Medical Center, Torrance, California
| | - Linnea Malmgren
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Science Malmö, Lund University, Malmö, Sweden
- Department of Orthopaedics, Skåne University Hospital, Malmö, Sweden
| | - Kunihiro Matsushita
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, and
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland
| | | | - Joel Eriksson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Mellström
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Myles Wolf
- Division of Nephrology, Department of Medicine, and Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
| | - Osten Ljunggren
- Department of Medical Sciences, Endocrinology and Mineral Metabolism, Uppsala University, Uppsala, Sweden
| | - Fiona McGuigan
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Science Malmö, Lund University, Malmö, Sweden
- Department of Orthopaedics, Skåne University Hospital, Malmö, Sweden
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles Medical Center, Torrance, California
| | - Magnus Karlsson
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Science Malmö, Lund University, Malmö, Sweden
- Department of Orthopaedics, Skåne University Hospital, Malmö, Sweden
| | - Michael J Econs
- Departments of Medical and Molecular Genetics and
- Medicine, Indiana University, Indianapolis, Indiana
| | - Joachim H Ix
- Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, San Diego, California
- Nephrology Section, Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Pamela L Lutsey
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Epidemiology, Health Services and Medicine, and
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington
| | - Ian H de Boer
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| | - Bryan R Kestenbaum
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
39
|
Serum Parathyroid Hormone, 25-Hydroxyvitamin D, and Risk of Alzheimer's Disease: A Mendelian Randomization Study. Nutrients 2018; 10:nu10091243. [PMID: 30200567 PMCID: PMC6165184 DOI: 10.3390/nu10091243] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 08/31/2018] [Accepted: 09/04/2018] [Indexed: 12/21/2022] Open
Abstract
We conducted Mendelian randomization analyses to investigate the associations of serum parathyroid hormone (S-PTH) and serum 25-hydroxyvitamin D (S-25OHD) concentrations with Alzheimer’s disease (AD). Five and seven single nucleotide polymorphisms associated with S-PTH and S-25OHD concentrations, respectively, were used as instrumental variables. Data for AD were acquired from the International Genomics of Alzheimer’s Project (17,008 AD cases and 37,154 controls). Genetically higher S-PTH concentrations were not associated with AD (odds ratio per standard deviation increase in S-PTH = 1.11; 95% CI 0.97–1.26; p = 0.12). In contrast, all seven 25OHD-increasing alleles were inversely associated with AD and two of the associations were statistically significant (p < 0.05). The odds ratio of AD per genetically-predicted one standard deviation increase in S-25OHD was 0.86 (95% CI 0.78–0.94; p = 0.002). This study provides evidence that vitamin D may play a role in AD but found no significant association between S-PTH and AD.
Collapse
|
40
|
Jovanovich A, Kendrick J. Personalized Management of Bone and Mineral Disorders and Precision Medicine in End-Stage Kidney Disease. Semin Nephrol 2018; 38:397-409. [PMID: 30082059 PMCID: PMC6615060 DOI: 10.1016/j.semnephrol.2018.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chronic kidney disease mineral bone disorder (CKD-MBD) is common in end-stage renal disease and is associated with an increased risk of cardiovascular morbidity and mortality. Mainstays of treatment include decreasing serum phosphorus level toward the normal range with dietary interventions and phosphate binders and treating increased parathyroid hormone levels with activated vitamin D and/or calcimimetics. There is significant variation in serum levels of mineral metabolism markers, intestinal absorption of phosphorus, and therapeutic response among individual patients and subgroups of patients with end-stage renal disease. This variation may be partly explained by polymorphisms in genes associated with calcium and phosphorus homeostasis such as the calcium-sensing receptor gene, the vitamin D-binding receptor gene, and genes associated with vascular calcification. In this review, we discuss how personalized medicine may be used for the management of CKD-MBD and how it ultimately may lead to improved clinical outcomes. Although genetic variants may seem attractive targets to tailor CKD-MBD therapy, complete understanding of how these polymorphisms function and their clinical utility and applicability to personalized medicine need to be determined.
Collapse
MESH Headings
- Bone Diseases, Metabolic/etiology
- Bone Diseases, Metabolic/genetics
- Bone Diseases, Metabolic/metabolism
- Bone Diseases, Metabolic/therapy
- Calcium/metabolism
- Cardiovascular Diseases
- Humans
- Hyperparathyroidism, Secondary/etiology
- Hyperparathyroidism, Secondary/metabolism
- Hyperparathyroidism, Secondary/therapy
- Intestinal Absorption
- Kidney Failure, Chronic/complications
- Kidney Failure, Chronic/metabolism
- Kidney Failure, Chronic/therapy
- Parathyroid Hormone/metabolism
- Phosphorus/metabolism
- Polymorphism, Genetic
- Precision Medicine
- Receptors, Calcium-Sensing/genetics
- Vascular Calcification/etiology
- Vascular Calcification/metabolism
- Vitamin D/metabolism
- Vitamin D-Binding Protein/genetics
Collapse
Affiliation(s)
- Anna Jovanovich
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO.; VA Eastern Colorado Healthcare System, Denver, CO
| | - Jessica Kendrick
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO..
| |
Collapse
|
41
|
Grzegorzewska AE, Bednarski D, Świderska M, Mostowska A, Jagodziński PP. The Calcium-Sensing Receptor Gene Polymorphism rs1801725 and Calcium-Related Phenotypes in Hemodialysis Patients. Kidney Blood Press Res 2018; 43:719-734. [PMID: 29763933 DOI: 10.1159/000489747] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/03/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The calcium-sensing receptor gene (CASR) rs1801725 variant is responsible for a non-conservative amino-acid change (A986S) in the calcium-sensing receptor cytoplasmic tail. We hypothesized that rs1801725 polymorphism might be helpful in understanding Ca-related abnormalities in HD patients. METHODS In 1215 subjects (245 on cinacalcet), we determined the associations of rs1801725 with secondary hyperparathyroidism (sHPT)-related laboratory parameters, PTH-decreasing effect of cinacalcet hydrochloride, coronary artery disease (CAD), myocardial infarction (MI), nephrolithiasis-related ESRD, and mortality. CASR rs7652589(AT) haplotypes and rs1801725 epistatic interactions with vitamin D signaling pathway genes were examined for associations with selected phenotypes. RESULTS The rs1801725 variant allele showed an increasing independent effect on plasma PTH (Pcorrected = 0.009). CASR rs7652589_rs1801725 AT haplotype was associated with 1.7-fold higher frequency of PTH levels over 437 pg/mL than the reference haplotype GG (P = 0.001). CASR rs7652589_rs1801725 AG haplotype was 1.5-fold more frequent in nephrolithiasis-related ESRD than the GG haplotype (P = 0.004). There were no significant associations between rs1801725, CAD, MI, and response to cinacalcet. Variant homozygosity of rs1801725 correlated independently with higher infection-related mortality compared with heterozygosity (HR 7.95, 95%CI 2.15 - 29.37, P = 0.003) and major homozygosity (HR 5.89, 95%CI 1.69 - 20.55, P = 0.040). CASR rs1801725 did not show epistatic interactions with vitamin D signaling pathway genes concerning tested associations. CONCLUSION The variant allele of CASR rs1801725 solely and together with the variant allele of rs7652589 increases risk of more advanced sHPT. Homozygosity of the rs1801725 variant allele contributes to infection-related mortality in HD patients.
Collapse
Affiliation(s)
- Alicja E Grzegorzewska
- Department of Nephrology, Transplantology and Internal Diseases, Poznan University of Medical Sciences, Poznań, Poland,
| | - Dariusz Bednarski
- Student Nephrology Research Group, Department of Nephrology, Transplantology and Internal Diseases, Poznan University of Medical Sciences, Poznań, Poland
| | - Monika Świderska
- Department of Nephrology, Transplantology and Internal Diseases, Poznan University of Medical Sciences, Poznań, Poland
| | - Adrianna Mostowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznań, Poland
| | - Paweł P Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
42
|
Matana A, Brdar D, Torlak V, Boutin T, Popović M, Gunjača I, Kolčić I, Boraska Perica V, Punda A, Polašek O, Barbalić M, Hayward C, Zemunik T. Genome-wide meta-analysis identifies novel loci associated with parathyroid hormone level. Mol Med 2018; 24:15. [PMID: 30134803 PMCID: PMC6016867 DOI: 10.1186/s10020-018-0018-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/02/2018] [Indexed: 02/08/2023] Open
Abstract
Background Parathyroid hormone (PTH) is one of the principal regulators of calcium homeostasis. Although serum PTH level is mostly accounted by genetic factors, genetic background underlying PTH level is insufficiently known. Therefore, the aim of this study was to identify novel genetic variants associated with PTH levels. Methods We performed GWAS meta-analysis within two genetically isolated Croatian populations followed by replication analysis in a Croatian mainland population and we also combined results across all three analyzed populations. The analyses included 2596 individuals. A total of 7,411,206 variants, imputed using the 1000 Genomes reference panel, were analysed for the association. In addition, a sex-specific GWAS meta-analyses were performed. Results Polymorphisms with the lowest P-values were located on chromosome 4 approximately 84 kb of the 5′ of RASGEF1B gene. The most significant SNP was rs11099476 (P = 1.15 × 10−8). Sex-specific analysis identified genome-wide significant association of the variant rs77178854, located within DPP10 gene in females only (P = 2.21 × 10− 9). There were no genome-wide significant findings in the meta-analysis of males. Conclusions We identified two biologically plausible novel loci associated with PTH levels, providing us with further insights into the genetics of this complex trait. Electronic supplementary material The online version of this article (10.1186/s10020-018-0018-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Antonela Matana
- Department of Medical Biology, University of Split, School of Medicine, Šoltanska 2, Split, Croatia
| | - Dubravka Brdar
- Department of Nuclear Medicine, University Hospital Split, Spinciceva 1, Split, Croatia
| | - Vesela Torlak
- Department of Nuclear Medicine, University Hospital Split, Spinciceva 1, Split, Croatia
| | - Thibaud Boutin
- MRC Human Genetics Unit, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Marijana Popović
- Department of Medical Biology, University of Split, School of Medicine, Šoltanska 2, Split, Croatia
| | - Ivana Gunjača
- Department of Medical Biology, University of Split, School of Medicine, Šoltanska 2, Split, Croatia
| | - Ivana Kolčić
- Department of Public Health, University of Split, School of Medicine Split, Šoltanska 2, Split, Croatia
| | - Vesna Boraska Perica
- Department of Medical Biology, University of Split, School of Medicine, Šoltanska 2, Split, Croatia
| | - Ante Punda
- Department of Nuclear Medicine, University Hospital Split, Spinciceva 1, Split, Croatia
| | - Ozren Polašek
- Department of Public Health, University of Split, School of Medicine Split, Šoltanska 2, Split, Croatia
| | - Maja Barbalić
- Department of Medical Biology, University of Split, School of Medicine, Šoltanska 2, Split, Croatia
| | - Caroline Hayward
- MRC Human Genetics Unit, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Tatijana Zemunik
- Department of Medical Biology, University of Split, School of Medicine, Šoltanska 2, Split, Croatia.
| |
Collapse
|
43
|
Jukic AMZ, Hoofnagle AN, Lutsey PL. Measurement of Vitamin D for Epidemiologic and Clinical Research: Shining Light on a Complex Decision. Am J Epidemiol 2018; 187:879-890. [PMID: 29020155 DOI: 10.1093/aje/kwx297] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/03/2017] [Indexed: 01/08/2023] Open
Abstract
Vitamin D is a fat-soluble vitamin that is synthesized in the skin with exposure to sunlight or is ingested from dietary supplements or food. There has been a dramatic increase in research on vitamin D, linking it with health outcomes as varied as reproductive function, infection, cardiovascular disease, and cancer. The study of vitamin D has generated much excitement, partly because there is an ideal intervention: Low levels may be common and can be remedied with widely available supplements. Determination of vitamin D status is complex and has advanced dramatically in the past 5 years. In this paper, we begin by describing important considerations for measurement of total 25-hydroxyvitamin D (25(OH)D), the biomarker traditionally assessed in epidemiologic studies. While 25(OH)D remains the most commonly measured biomarker, emerging evidence suggests that other related analytes may contribute to the characterization of an individual's vitamin D status (e.g., vitamin D-binding protein, bioavailable and free 25(OH)D, the C-3 epimer of 25(OH)D, 1,25-dihydroxyvitamin D, and 24,25-dihydroxyvitamin D). The measurement of these analytes is also complex, and there are important considerations for deciding whether their measurement is warranted in new research studies. Herein we discuss these issues and provide the reader with an up-to-date synthesis of research on vitamin D measurement options and considerations.
Collapse
Affiliation(s)
- Anne Marie Z Jukic
- Department of Chronic Disease Epidemiology, Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, Connecticut
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine, School of Medicine, University of Washington, Seattle, Washington
| | - Pamela L Lutsey
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
44
|
Cheng YB, Guo QH, Zhang DY, Wang Y, Huang QF, Sheng CS, Wang JG, Staessen JA, Li Y. Association of pulse wave velocity with single nucleotide polymorphisms related to parathyroid hormone. Blood Press 2018; 27:222-230. [PMID: 29504807 DOI: 10.1080/08037051.2018.1445961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVE Carotid-femoral pulse wave velocity (cfPWV) was associated with serum parathyroid hormone (PTH) in untreated Chinese. We investigated in the same cohort whether cfPWV, brachial-ankle (baPWV) and heart-brachial (hbPWV) pulse wave velocity (PWV) were associated with rs6127099 (CYP24A1) and rs4074995 (RGS14). A previously published genome-wide association study demonstrated that each additional copy of the T (rs6127099) or G (rs4074995) allele was associated with a 7% or 3% higher serum PTH, respectively. METHODS In 1601 untreated Chinese patients (mean age, 51.0 years; 51.9% women), we measured cfPWV by tonometry (SphygmoCor) and baPWV and hbPWV by combined oscillometry and plethysmography (VP-2000 PWV/ABI analyser), serum PTH by an immunoassay, and genotypes by the SNapShot method. RESULTS cfPWV, baPWV and hbPWV averaged 7.9, 14.6 and 5.5 m/s and serum PTH 65.7 pg/mL. Genotype frequencies were in Hardy-Weinberg equilibrium, amounting to 41.7% (AA), 44.9% (AT) and 13.4% (TT) for rs6127099 and to 70.7% (GG), 26.9% (GA) and 2.3% (AA) for rs4074995. With adjustments applied for sex, age, body mass index, heart rate and season, hbPWV was 0.05 m/s (p = .042) lower with each additional copy of the minor allele (T) of rs6127099. In similarly adjusted analyses of 157 normotensive participants younger than 50 years, cfPWV was 0.32 m/s (p = .004) higher per additional copy of the T allele. Sensitivity analyses additionally accounting for the total-to-HDL serum cholesterol ratio, plasma glucose, glomerular filtration rate and 24 h systolic blood pressure were consistent. No other association of PWV with the genetic variants reached significance. CONCLUSIONS With an increasing number of rs6127099 T alleles, arterial stiffness, as exemplified by PWV, was lower in all participants in a muscular artery (hbPWV), but higher in young normotensive participants in an elastic artery (cfPWV).
Collapse
Affiliation(s)
- Yi-Bang Cheng
- a Center for Epidemiological Studies and Clinical Trials and Center for Vascular Evaluations , Shanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Qian-Hui Guo
- a Center for Epidemiological Studies and Clinical Trials and Center for Vascular Evaluations , Shanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Dong-Yan Zhang
- a Center for Epidemiological Studies and Clinical Trials and Center for Vascular Evaluations , Shanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Ying Wang
- a Center for Epidemiological Studies and Clinical Trials and Center for Vascular Evaluations , Shanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Qi-Fang Huang
- a Center for Epidemiological Studies and Clinical Trials and Center for Vascular Evaluations , Shanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Chang-Sheng Sheng
- a Center for Epidemiological Studies and Clinical Trials and Center for Vascular Evaluations , Shanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Ji-Guang Wang
- a Center for Epidemiological Studies and Clinical Trials and Center for Vascular Evaluations , Shanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Jan A Staessen
- b Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences , University of Leuven , Leuven , Belgium.,c Cardiovascular Research Institute Maastricht (CARIM) , Maastricht University , Maastricht , The Netherlands
| | - Yan Li
- a Center for Epidemiological Studies and Clinical Trials and Center for Vascular Evaluations , Shanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| |
Collapse
|
45
|
Ginsberg C, Katz R, de Boer IH, Kestenbaum BR, Chonchol M, Shlipak MG, Sarnak MJ, Hoofnagle AN, Rifkin DE, Garimella PS, Ix JH. The 24,25 to 25-hydroxyvitamin D ratio and fracture risk in older adults: The cardiovascular health study. Bone 2018; 107:124-130. [PMID: 29155243 PMCID: PMC5794222 DOI: 10.1016/j.bone.2017.11.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 11/29/2022]
Abstract
25-hydroxyvitamin D [25(OH)D] may not optimally indicate vitamin D receptor activity. Higher concentrations of its catabolic product 24,25-dihydroxyvitmin D [24,25(OH)2D] and a higher ratio of 24,25(OH)2D to 25(OH)D (the vitamin D metabolite ratio [VMR]) may provide additional information on receptor activity. We compared the strength of associations of these markers with serum PTH concentrations, hip bone mineral density (BMD), and risk of incident hip fracture in community-living older participants in the Cardiovascular Health Study. Among 890 participants, the mean age was 78years, 60% were women, and the mean 25(OH)D was 28±11ng/ml. In cross-sectional analysis, the strength of association of each vitamin D measure with PTH was similar; a 1% higher 25(OH)D, 24,25(OH)2D, and VMR were associated with 0.32%, 0.25%, and 0.26% lower PTH, respectively (p<0.05 for all). Among 358 participants with available BMD data, we found no associations of 25(OH)D or VMR with BMD, whereas higher 24,25(OH)2D was modestly associated with greater hip BMD (1% higher 24,25(OH)2D associated with 0.04% [95% CI 0.01-0.08%] higher BMD). Risk of incident hip fracture risk was evaluated using a case-cohort design. There were 289 hip fractures during a mean follow up time of 8.4years. Both higher 24,25(OH)2D and VMR were associated with lower risk of hip fracture (HR per SD higher, 0.73 [0.61, 0.87] and 0.74 [0.61, 0.88], respectively) whereas 25(OH)D was not associated with hip fracture (HR 0.93 [0.79, 1.10]). We conclude that evaluating vitamin D status by incorporating assessment of 24,25(OH)D and the VMR provides information on bone health above and beyond 25(OH)D alone.
Collapse
Affiliation(s)
- Charles Ginsberg
- Nephrology Section, Veterans Affairs San Diego Healthcare System, San Diego, CA and Division of Nephrology-Hypertension, University of California, San Diego, San Diego, CA, United States.
| | - Ronit Katz
- Kidney Research Institute, University of Washington, Seattle, WA, United States
| | - Ian H de Boer
- Division of Nephrology and Kidney Research Institute, University of Washington, Seattle, WA, United States
| | - Bryan R Kestenbaum
- Kidney Research Institute, University of Washington, Seattle, WA, United States
| | - Michel Chonchol
- Division of Renal Diseases and Hypertension, University of Anschutz Medical Center, Aurora, CO, United States
| | - Michael G Shlipak
- Kidney Health Research Collaborative, Veterans Affairs Medical Center, San Francisco, CA and University of California, San Francisco, CA
| | - Mark J Sarnak
- Department of Medicine, Division of Nephrology, Tufts Medical Center, Boston, MA, United States
| | - Andrew N Hoofnagle
- Departments of Laboratory Medicine and Medicine, Kidney Research Institute, University of Washington, Seattle, WA, United States
| | - Dena E Rifkin
- Nephrology Section, Veterans Affairs San Diego Healthcare System, San Diego, CA and Division of Nephrology-Hypertension, University of California, San Diego, San Diego, CA, United States
| | - Pranav S Garimella
- Division of Nephrology-Hypertension, University of California, San Diego, San Diego, CA, United States
| | - Joachim H Ix
- Nephrology Section, Veterans Affairs San Diego Healthcare System, San Diego, CA and Division of Nephrology-Hypertension, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
46
|
Moe SM, Wetherill L, Decker BS, Lai D, Abdalla S, Long J, Vatta M, Foroud TM, Chertow GM. Calcium-Sensing Receptor Genotype and Response to Cinacalcet in Patients Undergoing Hemodialysis. Clin J Am Soc Nephrol 2017; 12:1128-1138. [PMID: 28630081 PMCID: PMC5498355 DOI: 10.2215/cjn.11141016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/23/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVES We tested the hypothesis that single nucleotide polymorphisms (SNPs) in the calcium-sensing receptor (CASR) alter the response to the calcimimetic cinacalcet. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We analyzed DNA samples in the Evaluation of Cinacalcet HCl Therapy to Lower Cardiovascular Events (EVOLVE) trial, a randomized trial comparing cinacalcet to placebo on a background of usual care. Of the 3883 patients randomized, 1919 (49%) consented to DNA collection, and samples from 1852 participants were genotyped for 18 CASR polymorphisms. The European ancestry (EA; n=1067) and African ancestry (AfAn; n=405) groups were assessed separately. SNPs in CASR were tested for their association with biochemical measures of mineral metabolism at baseline, percent change from baseline to 20 weeks, and risk of clinical fracture as dependent variables. RESULTS There were modest associations of CASR SNPs with increased baseline serum parathyroid hormone and bone alkaline phosphatase primarily with the minor allele in the EA group (all P≤0.03), but not in the AfAn sample. In contrast, there was a modest association of decreased baseline serum calcium and FGF23 with CASR SNPs (P=0.04) primarily with the minor allele in the AfAn but not in the EA sample. The minor allele of two SNPs was associated with decreased percent reduction in parathyroid hormone from baseline to 20 weeks in the EA population (P<0.04) and this was not altered with cinacalcet. In both EA and AfAn, the same SNP (rs9740) was associated with decreased calcium with cinacalcet treatment (EA and AfAn P≤0.03). Three SNPs in high linkage disequilibrium were associated with a higher risk of clinical fracture that was attenuated by cinacalcet treatment in the EA sample (P<0.04). CONCLUSIONS These modest associations, if validated, may provide explanations for differences in CKD-mineral bone disorder observed in EA and AfAn populations, and for differential biochemical responses to calcimimetics.
Collapse
Affiliation(s)
- Sharon M. Moe
- Division of Nephrology, Department of Medicine and
- Department of Medicine, Roudebush Veterans Administration Medical Center, Indianapolis, Indiana; and
| | - Leah Wetherill
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Safa Abdalla
- Division of Nephrology, Department of Medicine, Stanford School of Medicine, Stanford, California
| | - Jin Long
- Division of Nephrology, Department of Medicine, Stanford School of Medicine, Stanford, California
| | - Matteo Vatta
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Tatiana M. Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Glenn M. Chertow
- Division of Nephrology, Department of Medicine, Stanford School of Medicine, Stanford, California
| |
Collapse
|
47
|
Parathyroid hormone controls paracellular Ca 2+ transport in the thick ascending limb by regulating the tight-junction protein Claudin14. Proc Natl Acad Sci U S A 2017; 114:E3344-E3353. [PMID: 28373577 DOI: 10.1073/pnas.1616733114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Renal Ca2+ reabsorption is essential for maintaining systemic Ca2+ homeostasis and is tightly regulated through the parathyroid hormone (PTH)/PTHrP receptor (PTH1R) signaling pathway. We investigated the role of PTH1R in the kidney by generating a mouse model with targeted deletion of PTH1R in the thick ascending limb of Henle (TAL) and in distal convoluted tubules (DCTs): Ksp-cre;Pth1rfl/fl Mutant mice exhibited hypercalciuria and had lower serum calcium and markedly increased serum PTH levels. Unexpectedly, proteins involved in transcellular Ca2+ reabsorption in DCTs were not decreased. However, claudin14 (Cldn14), an inhibitory factor of the paracellular Ca2+ transport in the TAL, was significantly increased. Analyses by flow cytometry as well as the use of Cldn14-lacZ knock-in reporter mice confirmed increased Cldn14 expression and promoter activity in the TAL of Ksp-cre;Pth1rfl/fl mice. Moreover, PTH treatment of HEK293 cells stably transfected with CLDN14-GFP, together with PTH1R, induced cytosolic translocation of CLDN14 from the tight junction. Furthermore, mice with high serum PTH levels, regardless of high or low serum calcium, demonstrated that PTH/PTH1R signaling exerts a suppressive effect on Cldn14. We therefore conclude that PTH1R signaling directly and indirectly regulates the paracellular Ca2+ transport pathway by modulating Cldn14 expression in the TAL. Finally, systemic deletion of Cldn14 completely rescued the hypercalciuric and lower serum calcium phenotype in Ksp-cre;Pth1rfl/fl mice, emphasizing the importance of PTH in inhibiting Cldn14. Consequently, suppressing CLDN14 could provide a potential treatment to correct urinary Ca2+ loss, particularly in patients with hypoparathyroidism.
Collapse
|