1
|
Schwalm S, Manaila R, Oftring A, Schaefer L, von Gunten S, Pfeilschifter J. The contribution of the sphingosine 1-phosphate signaling pathway to chronic kidney diseases: recent findings and new perspectives. Pflugers Arch 2024:10.1007/s00424-024-03029-5. [PMID: 39384640 DOI: 10.1007/s00424-024-03029-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Chronic kidney disease (CKD) is a multifactorial condition with diverse etiologies, such as diabetes mellitus, hypertension, and genetic disorders, often culminating in end-stage renal disease (ESRD). A hallmark of CKD progression is kidney fibrosis, characterized by the excessive accumulation of extracellular matrix components, for which there is currently no effective anti-fibrotic therapy. Recent literature highlights the critical role of sphingosine 1-phosphate (S1P) signaling in CKD pathogenesis and renal fibrosis. This review provides an in-depth analysis of the latest findings on S1P metabolism and signaling in renal fibrosis and in specific CKDs, including diabetic nephropathy (DN), lupus nephritis (LN), focal segmental glomerulosclerosis (FSGS), Fabry disease (FD), and IgA nephropathy (IgAN). Emerging studies underscore the therapeutic potential of modulating S1P signaling with receptor modulators and inhibitors, such as fingolimod (FTY720) and more selective agents like ozanimod and cenerimod. Additionally, the current knowledge about the effects of established kidney protective therapies such as glucocorticoids and SGLT2 and ACE inhibitors on S1P signaling will be summarized. Furthermore, the review highlights the potential role of S1P as a biomarker for disease progression in CKD models, particularly in Fabry disease and diabetic nephropathy. Advanced technologies, including spatial transcriptomics, are further refining our understanding of S1P's role within specific kidney compartments. Collectively, these insights emphasize the need for continued research into S1P signaling pathways as promising targets for CKD treatment strategies.
Collapse
Affiliation(s)
- Stephanie Schwalm
- Institut für Allgemeine Pharmakologie und Toxikologie, Goethe-Universität Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.
| | - Roxana Manaila
- Institut für Pharmakologie, Universität Bern, Inselspital, INO-F, CH-3011, Bern, Switzerland
| | - Anke Oftring
- Institut für Allgemeine Pharmakologie und Toxikologie, Goethe-Universität Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Liliana Schaefer
- Institut für Allgemeine Pharmakologie und Toxikologie, Goethe-Universität Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Stephan von Gunten
- Institut für Pharmakologie, Universität Bern, Inselspital, INO-F, CH-3011, Bern, Switzerland
| | - Josef Pfeilschifter
- Institut für Allgemeine Pharmakologie und Toxikologie, Goethe-Universität Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| |
Collapse
|
2
|
Al-Diab O, Sünkel C, Blanc E, Catar RA, Ashraf MI, Zhao H, Wang P, Rinschen MM, Fritsche-Guenther R, Grahammer F, Bachmann S, Beule D, Kirwan JA, Rajewsky N, Huber TB, Gürgen D, Kusch A. Sex-specific molecular signature of mouse podocytes in homeostasis and in response to pharmacological challenge with rapamycin. Biol Sex Differ 2024; 15:72. [PMID: 39278930 PMCID: PMC11404044 DOI: 10.1186/s13293-024-00647-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/30/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Sex differences exist in the prevalence and progression of major glomerular diseases. Podocytes are the essential cell-type in the kidney which maintain the physiological blood-urine barrier, and pathological changes in podocyte homeostasis are critical accelerators of impairment of kidney function. However, sex-specific molecular signatures of podocytes under physiological and stress conditions remain unknown. This work aimed at identifying sexual dimorphic molecular signatures of podocytes under physiological condition and pharmacologically challenged homeostasis with mechanistic target of rapamycin (mTOR) inhibition. mTOR is a crucial regulator involved in a variety of physiological and pathological stress responses in the kidney and inhibition of this pathway may therefore serve as a general stress challenger to get fundamental insights into sex differences in podocytes. METHODS The genomic ROSAmT/mG-NPHS2 Cre mouse model was used which allows obtaining highly pure podocyte fractions for cell-specific molecular analyses, and vehicle or pharmacologic treatment with the mTOR inhibitor rapamycin was performed for 3 weeks. Subsequently, deep RNA sequencing and proteomics were performed of the isolated podocytes to identify intrinsic sex differences. Studies were supplemented with metabolomics from kidney cortex tissues. RESULTS Although kidney function and morphology remained normal in all experimental groups, RNA sequencing, proteomics and metabolomics revealed strong intrinsic sex differences in the expression levels of mitochondrial, translation and structural transcripts, protein abundances and regulation of metabolic pathways. Interestingly, rapamycin abolished prominent sex-specific clustering of podocyte gene expression and induced major changes only in male transcriptome. Several sex-biased transcription factors could be identified as possible upstream regulators of these sexually dimorphic responses. Concordant to transcriptomics, metabolomic changes were more prominent in males. Remarkably, high number of previously reported kidney disease genes showed intrinsic sexual dimorphism and/or different response patterns towards mTOR inhibition. CONCLUSIONS Our results highlight remarkable intrinsic sex-differences and sex-specific response patterns towards pharmacological challenged podocyte homeostasis which might fundamentally contribute to sex differences in kidney disease susceptibilities and progression. This work provides rationale and an in-depth database for novel targets to be tested in specific kidney disease models to advance with sex-specific treatment strategies.
Collapse
Affiliation(s)
- Ola Al-Diab
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Christin Sünkel
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115, Berlin, Germany
| | - Eric Blanc
- Core Unit Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Rusan Ali Catar
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Muhammad Imtiaz Ashraf
- Department of Surgery, Experimental Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Hongfan Zhao
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Pinchao Wang
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Markus M Rinschen
- III. Department of Medicine, University Hospital Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Raphaela Fritsche-Guenther
- Metabolomics Platform, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Lindenberger Weg 80, 10117, Berlin, Germany
| | - Florian Grahammer
- III. Department of Medicine, University Hospital Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Sebastian Bachmann
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Jennifer A Kirwan
- Metabolomics Platform, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Lindenberger Weg 80, 10117, Berlin, Germany
| | - Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Hospital Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Dennis Gürgen
- Experimental Pharmacology & Oncology Berlin-Buch GmbH, 13125 Berlin-Buch, Germany
| | - Angelika Kusch
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- BIH Biomedical Innovation Academy (BIA), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
3
|
Del Gaudio I, Nitzsche A, Boyé K, Bonnin P, Poulet M, Nguyen TQ, Couty L, Ha HTT, Nguyen DT, Cazenave-Gassiot A, Ben Alaya K, Thérond P, Chun J, Wenk MR, Proia RL, Henrion D, Nguyen LN, Eichmann A, Camerer E. Zonation, ligand and dose dependence of S1PR1 signalling in blood and lymphatic vasculature. Cardiovasc Res 2024:cvae168. [PMID: 39086170 DOI: 10.1093/cvr/cvae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 08/02/2024] Open
Abstract
AIMS Circulating levels of sphingosine 1-phosphate (S1P), an HDL-associated ligand for endothelial cell (EC) protective S1P receptor-1 (S1PR1), are reduced in disease states associated with endothelial dysfunction. Yet as S1PR1 has high affinity for S1P and can be activated by ligand-independent mechanisms and EC-autonomous S1P production, it is unclear if relative reductions in circulating S1P impact endothelial function. It is also unclear how EC S1PR1 insufficiency, whether induced by ligand deficiency or by S1PR1-directed immunosuppressive therapy, affects different vascular subsets. METHODS AND RESULTS We here fine-map the zonation of S1PR1 signalling in the murine blood and lymphatic vasculature, superimpose cell type-specific and relative deficiencies in S1P production to define ligand source- and dose-dependence, and correlate receptor engagement to essential functions. In naïve blood vessels, despite broad expression, EC S1PR1 engagement was restricted to resistance-size arteries, lung capillaries and high-endothelial venules (HEV). Similar zonation was observed for albumin extravasation in EC S1PR1 deficient mice, and brain extravasation was reproduced with arterial EC-selective S1pr1 deletion. In lymphatic EC, S1PR1 engagement was high in collecting vessels and lymph nodes and low in terminal capillaries that drain tissue fluids. While EC S1P production sustained S1PR1 signaling in lymphatics and HEV, hematopoietic cells provided ∼90% of plasma S1P and sustained signaling in resistance arteries and lung capillaries. S1PR1 signaling and endothelial function were both surprisingly sensitive to reductions in plasma S1P with apparent saturation around 50% of normal levels. S1PR1 engagement did not depend on sex or age, but modestly increased in arteries in hypertension and diabetes. Sphingosine kinase (Sphk)-2 deficiency also increased S1PR1 engagement selectively in arteries, which could be attributed to Sphk1-dependent S1P release from perivascular macrophages. CONCLUSIONS This study highlights vessel subtype-specific S1PR1 functions and mechanisms of engagement and supports the relevance of S1P as circulating biomarker for endothelial function.
Collapse
Affiliation(s)
- Ilaria Del Gaudio
- Université de Paris, Paris Cardiovascular Research Centre, INSERM U970, Paris, France
| | - Anja Nitzsche
- Université de Paris, Paris Cardiovascular Research Centre, INSERM U970, Paris, France
| | - Kevin Boyé
- Université de Paris, Paris Cardiovascular Research Centre, INSERM U970, Paris, France
| | - Philippe Bonnin
- Assistance Publique-Hôpitaux de Paris (AP-HP), Physiologie Clinique, Hôpital Lariboisière, Paris France
- Université Paris Cité, INSERM U1144, UFR de Pharmacie, Paris, France
| | - Mathilde Poulet
- Université de Paris, Paris Cardiovascular Research Centre, INSERM U970, Paris, France
| | - Toan Quoc Nguyen
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Ludovic Couty
- Université de Paris, Paris Cardiovascular Research Centre, INSERM U970, Paris, France
| | - Hoa T T Ha
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Dat T Nguyen
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Amaury Cazenave-Gassiot
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Khaoula Ben Alaya
- Université de Paris, Paris Cardiovascular Research Centre, INSERM U970, Paris, France
| | - Patrice Thérond
- Assistance Publique-Hôpitaux de Paris (AP-HP), Service de Biochimie, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
- UFR de Pharmacie, EA 4529, Châtenay-Malabry, France
| | - Jerold Chun
- Neuroscience Drug Discovery, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Markus R Wenk
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Richard L Proia
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Institutes of Health, Bethesda, MD, USA
| | - Daniel Henrion
- Angers University, MitoVasc Department, Team 2 (CarMe), Angers University Hospital (CHU of Angers), CNRS, INSERM U1083, Angers, France
| | - Long N Nguyen
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Anne Eichmann
- Université de Paris, Paris Cardiovascular Research Centre, INSERM U970, Paris, France
- Yale University School of Medicine, Department of Internal Medicine and Cellular and Molecular Physiology, New Haven, USA
| | - Eric Camerer
- Université de Paris, Paris Cardiovascular Research Centre, INSERM U970, Paris, France
| |
Collapse
|
4
|
Müller T, Krieg N, Lange-Polovinkin AI, Wissuwa B, Gräler MH, Dennhardt S, Coldewey SM. Deletion of Sphingosine Kinase 2 Attenuates Acute Kidney Injury in Mice with Hemolytic-Uremic Syndrome. Int J Mol Sci 2024; 25:7683. [PMID: 39062926 PMCID: PMC11277509 DOI: 10.3390/ijms25147683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Typical hemolytic uremic syndrome (HUS) can occur as a severe systemic complication of infections with Shiga toxin (Stx)-producing Escherichia coli. Its pathology can be induced by Stx types, resulting in toxin-mediated damage to renal barriers, inflammation, and the development of acute kidney injury (AKI). Two sphingosine kinase (SphK) isozymes, SphK1 and SphK2, have been shown to be involved in barrier maintenance and renal inflammatory diseases. Therefore, we sought to determine their role in the pathogenesis of HUS. Experimental HUS was induced by the repeated administration of Stx2 in wild-type (WT) and SphK1 (SphK1-/-) or SphK2 (SphK2-/-) null mutant mice. Disease severity was evaluated by assessing clinical symptoms, renal injury and dysfunction, inflammatory status and sphingolipid levels on day 5 of HUS development. Renal inflammation and injury were found to be attenuated in the SphK2-/- mice, but exacerbated in the SphK1-/- mice compared to the WT mice. The divergent outcome appeared to be associated with oppositely altered sphingolipid levels. This study represents the first description of the distinct roles of SphK1-/- and SphK2-/- in the pathogenesis of HUS. The identification of sphingolipid metabolism as a potential target for HUS therapy represents a significant advance in the field of HUS research.
Collapse
Affiliation(s)
- Tina Müller
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07743 Jena, Germany; (T.M.); (N.K.)
- ZIK Septomics Research Center, Jena University Hospital, 07743 Jena, Germany
| | - Nadine Krieg
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07743 Jena, Germany; (T.M.); (N.K.)
- ZIK Septomics Research Center, Jena University Hospital, 07743 Jena, Germany
| | - Antonia I. Lange-Polovinkin
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07743 Jena, Germany; (T.M.); (N.K.)
- ZIK Septomics Research Center, Jena University Hospital, 07743 Jena, Germany
| | - Bianka Wissuwa
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07743 Jena, Germany; (T.M.); (N.K.)
- ZIK Septomics Research Center, Jena University Hospital, 07743 Jena, Germany
| | - Markus H. Gräler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07743 Jena, Germany; (T.M.); (N.K.)
- Center for Molecular Biomedicine (CMB) and Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07743 Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07743 Jena, Germany
| | - Sophie Dennhardt
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07743 Jena, Germany; (T.M.); (N.K.)
- ZIK Septomics Research Center, Jena University Hospital, 07743 Jena, Germany
| | - Sina M. Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07743 Jena, Germany; (T.M.); (N.K.)
- ZIK Septomics Research Center, Jena University Hospital, 07743 Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07743 Jena, Germany
| |
Collapse
|
5
|
Hu X, Gan L, Tang Z, Lin R, Liang Z, Li F, Zhu C, Han X, Zheng R, Shen J, Yu J, Luo N, Peng W, Tan J, Li X, Fan J, Wen Q, Wang X, Li J, Zheng X, Liu Q, Guo J, Shi G, Mao H, Chen W, Yin S, Zhou Y. A Natural Small Molecule Mitigates Kidney Fibrosis by Targeting Cdc42-mediated GSK-3β/β-catenin Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307850. [PMID: 38240457 PMCID: PMC10987128 DOI: 10.1002/advs.202307850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/08/2024] [Indexed: 04/04/2024]
Abstract
Kidney fibrosis is a common fate of chronic kidney diseases (CKDs), eventually leading to renal dysfunction. Yet, no effective treatment for this pathological process has been achieved. During the bioassay-guided chemical investigation of the medicinal plant Wikstroemia chamaedaphne, a daphne diterpenoid, daphnepedunin A (DA), is characterized as a promising anti-renal fibrotic lead. DA shows significant anti-kidney fibrosis effects in cultured renal fibroblasts and unilateral ureteral obstructed mice, being more potent than the clinical trial drug pirfenidone. Leveraging the thermal proteome profiling strategy, cell division cycle 42 (Cdc42) is identified as the direct target of DA. Mechanistically, DA targets to reduce Cdc42 activity and down-regulates its downstream phospho-protein kinase Cζ(p-PKCζ)/phospho-glycogen synthase kinase-3β (p-GSK-3β), thereby promoting β-catenin Ser33/37/Thr41 phosphorylation and ubiquitin-dependent proteolysis to block classical pro-fibrotic β-catenin signaling. These findings suggest that Cdc42 is a promising therapeutic target for kidney fibrosis, and highlight DA as a potent Cdc42 inhibitor for combating CKDs.
Collapse
Affiliation(s)
- Xinrong Hu
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Lu Gan
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Ziwen Tang
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Ruoni Lin
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Zhou Liang
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Feng Li
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Changjian Zhu
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Xu Han
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Ruilin Zheng
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Jiani Shen
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Jing Yu
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Ning Luo
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Wenxing Peng
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Jiaqing Tan
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Xiaoyan Li
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Jinjin Fan
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Qiong Wen
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Xin Wang
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Jianbo Li
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Xunhua Zheng
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Qinghua Liu
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Jianping Guo
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Guo‐Ping Shi
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Haiping Mao
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Wei Chen
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| | - Sheng Yin
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Yi Zhou
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologySun Yat‐Sen UniversityGuangzhou510080China
| |
Collapse
|
6
|
Inoue T, Umene R, Sung SSJ, Tanaka S, Huang L, Yao J, Hashimoto N, Wu CH, Nakamura Y, Nishino T, Ye H, Rosin DL, Ishihara K, Okusa MD. Bone marrow stromal cell antigen-1 deficiency protects from acute kidney injury. Am J Physiol Renal Physiol 2024; 326:F167-F177. [PMID: 37969103 DOI: 10.1152/ajprenal.00175.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/16/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023] Open
Abstract
This study aimed to investigate the role of bone marrow stromal cell antigen-1 (Bst1; also known as CD157) in acute kidney injury (AKI). Bst1 is a cell surface molecule with various enzymatic activities and downstream intracellular signaling pathways that modulate the immune response. Previous research has linked Bst1 to diseases such as ovarian cancer, Parkinson's disease, and rheumatoid arthritis. We used bilateral ischemia-reperfusion injury (IRI) as an AKI model and created bone marrow chimeric mice to evaluate the role of Bst1 in bone marrow-derived cells. We also used flow cytometry to identify Bst1/CD157 expression in hematopoietic cells and evaluate immune cell dynamics in the kidney. The findings showed that Bst1-deficient (Bst1-/-) mice were protected against renal bilateral IRI. Bone marrow chimera experiments revealed that Bst1 expression on hematopoietic cells, but not parenchymal cells, induced renal IRI. Bst1 was mainly found in B cells and neutrophils by flow cytometry of the spleen and bone marrow. In vitro, migration of neutrophils from Bst1-/- mice was suppressed, and adoptive transfer of neutrophils from wild-type Bst1+/+ mice abolished the renal protective effect in Bst1 knockout mice. In conclusion, the study demonstrated that Bst1-/- mice are protected against renal IRI and that Bst1 expression in neutrophils plays a crucial role in inducing renal IRI. These findings suggest that targeting Bst1 in neutrophils could be a potential therapeutic strategy for AKI.NEW & NOTEWORTHY Acute kidney injury (AKI), a serious disease for which there is no effective Federal Drug Administration-approved treatment, is associated with high mortality rates. Bone marrow stromal cell antigen-1 (Bst1) is a cell surface molecule that can cause kidney fibrosis, but its role in AKI is largely unknown. Our study showed that Bst1-/- mice revealed a protective effect against renal bilateral ischemia-reperfusion injury (IRI). Adoptive transfer studies confirmed that Bst1 expression in hematopoietic cells, especially neutrophils, contributed to renal bilateral IRI.
Collapse
Affiliation(s)
- Tsuyoshi Inoue
- Division of Nephrology, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, United States
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Ryusuke Umene
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Nephrology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Sun-Sang J Sung
- Division of Nephrology, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, United States
| | - Shinji Tanaka
- Division of Nephrology, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, United States
| | - Liping Huang
- Division of Nephrology, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, United States
| | - Junlan Yao
- Division of Nephrology, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, United States
| | - Noritatsu Hashimoto
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Chia-Hsien Wu
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yasuna Nakamura
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tomoya Nishino
- Department of Nephrology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hong Ye
- Division of Nephrology, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, United States
| | - Diane L Rosin
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, United States
| | - Katsuhiko Ishihara
- Department of Design for Medical and Health Care, Faculty of Health and Welfare Services Administration, Kawasaki University of Medical Welfare, Okayama, Japan
| | - Mark D Okusa
- Division of Nephrology, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, United States
| |
Collapse
|
7
|
Maines LW, Keller SN, Smith CD. Opaganib (ABC294640) Induces Immunogenic Tumor Cell Death and Enhances Checkpoint Antibody Therapy. Int J Mol Sci 2023; 24:16901. [PMID: 38069222 PMCID: PMC10706694 DOI: 10.3390/ijms242316901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Antibody-based cancer drugs that target the checkpoint proteins CTLA-4, PD-1 and PD-L1 provide marked improvement in some patients with deadly diseases such as lung cancer and melanoma. However, most patients are either unresponsive or relapse following an initial response, underscoring the need for further improvement in immunotherapy. Certain drugs induce immunogenic cell death (ICD) in tumor cells in which the dying cells promote immunologic responses in the host that may enhance the in vivo activity of checkpoint antibodies. Sphingolipid metabolism is a key pathway in cancer biology, in which ceramides and sphingosine 1-phosphate (S1P) regulate tumor cell death, proliferation and drug resistance, as well as host inflammation and immunity. In particular, sphingosine kinases are key sites for manipulation of the ceramide/S1P balance that regulates tumor cell proliferation and sensitivity to radiation and chemotherapy. We and others have demonstrated that inhibition of sphingosine kinase-2 by the small-molecule investigational drug opaganib (formerly ABC294640) kills tumor cells and increases their sensitivities to other drugs and radiation. Because sphingolipids have been shown to regulate ICD, opaganib may induce ICD and improve the efficacy of checkpoint antibodies for cancer therapy. This was demonstrated by showing that in vitro treatment with opaganib increases the surface expression of the ICD marker calreticulin on a variety of tumor cell types. In vivo confirmation was achieved using the gold standard immunization assay in which B16 melanoma, Lewis lung carcinoma (LLC) or Neuro-2a neuroblastoma cells were treated with opaganib in vitro and then injected subcutaneously into syngeneic mice, followed by implantation of untreated tumor cells 7 days later. In all cases, immunization with opaganib-treated cells strongly suppressed the growth of subsequently injected tumor cells. Interestingly, opaganib treatment induced crossover immunity in that opaganib-treated B16 cells suppressed the growth of both untreated B16 and LLC cells and opaganib-treated LLC cells inhibited the growth of both untreated LLC and B16 cells. Next, the effects of opaganib in combination with a checkpoint antibody on tumor growth in vivo were assessed. Opaganib and anti-PD-1 antibody each slowed the growth of B16 tumors and improved mouse survival, while the combination of opaganib plus anti-PD-1 strongly suppressed tumor growth and improved survival (p < 0.0001). Individually, opaganib and anti-CTLA-4 antibody had modest effects on the growth of LLC tumors and mouse survival, whereas the combination of opaganib with anti-CTLA-4 substantially inhibited tumor growth and increased survival (p < 0.001). Finally, the survival of mice bearing B16 tumors was only marginally improved by opaganib or anti-PD-L1 antibody alone but was nearly doubled by the drugs in combination (p < 0.005). Overall, these studies demonstrate the ability of opaganib to induce ICD in tumor cells, which improves the antitumor activity of checkpoint antibodies.
Collapse
Affiliation(s)
| | | | - Charles D. Smith
- Apogee Biotechnology Corporation, 1214 Research Blvd, Suite 2015, Hummelstown, PA 17036, USA; (L.W.M.)
| |
Collapse
|
8
|
Yang W, Zhang M, Li J, Qu S, Zhou F, Liu M, Li L, Liu Z, Zen K. YTHDF1 mitigates acute kidney injury via safeguarding m 6A-methylated mRNAs in stress granules of renal tubules. Redox Biol 2023; 67:102921. [PMID: 37857002 PMCID: PMC10587769 DOI: 10.1016/j.redox.2023.102921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
Acute kidney injury (AKI) presents a daunting challenge with limited therapeutic options. To explore the contribution of N6-methyladenosine (m6A) in AKI development, we have investigated m6A-modified mRNAs within renal tubular cells subjected to injuries induced by diverse stressors. Notably, while the overall level of m6A-modified RNA remains unaltered in renal tubular cells facing stress, a distinct phenomenon emerges-mRNAs bearing m6A methylation exhibit a pronounced tendency to accumulate within stress granules (SGs), structures induced in response to these challenges. Cumulation of m6A-modified mRNA in SGs is orchestrated by YTHDF1, a m6A 'reader' closely associated with SGs. Strikingly, AKI patients and various mouse AKI models showcase elevated levels of renal tubular YTHDF1. Depleting YTHDF1 within renal tubular cells leads to a marked reduction in m6A-modified mRNA accumulation within SGs, accompanied by an escalation in cell apoptosis under stress challenges. The significance of YTHDF1's protective role is further underscored by findings in AKI mouse models triggered by cisplatin or renal ischemia-reperfusion treatments. In particular, renal tubular-specific YTHDF1 knockout mice exhibit heightened AKI severity when contrasted with their wild-type counterparts. Mechanistic insights reveal that YTHDF1 fulfills a crucial function by safeguarding m6A-modified mRNAs that favor cell survival-exemplified by SHPK1-within SGs amid stress-challenged renal tubular cells. Our findings collectively shed light on the pivotal role of YTHDF1 in shielding renal tubules against AKI, through its adeptness in recruiting and preserving m6A-modified mRNAs within stress-induced SGs.
Collapse
Affiliation(s)
- Wenwen Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, Jiangsu, 210046, China
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, 210002, China
| | - Jiacheng Li
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, Jiangsu, 210046, China
| | - Shuang Qu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Fenglian Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, Jiangsu, 210046, China
| | - Minghui Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Limin Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, 210002, China.
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, Jiangsu, 210046, China.
| |
Collapse
|
9
|
Sarapura Martinez VJ, Buonincontro B, Cassarino C, Bernatowiez J, Colado A, Cordini G, Custidiano MDR, Mahuad C, Pavlovsky MA, Bezares RF, Favale NO, Vermeulen M, Borge M, Giordano M, Gamberale R. Venetoclax resistance induced by activated T cells can be counteracted by sphingosine kinase inhibitors in chronic lymphocytic leukemia. Front Oncol 2023; 13:1143881. [PMID: 37020867 PMCID: PMC10067719 DOI: 10.3389/fonc.2023.1143881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
The treatment of chronic lymphocytic leukemia (CLL) patients with venetoclax-based regimens has demonstrated efficacy and a safety profile, but the emergence of resistant cells and disease progression is a current complication. Therapeutic target of sphingosine kinases (SPHK) 1 and 2 has opened new opportunities in the treatment combinations of cancer patients. We previously reported that the dual SPHK1/2 inhibitor, SKI-II enhanced the in vitro cell death triggered by fludarabine, bendamustine or ibrutinib and reduced the activation and proliferation of chronic lymphocytic leukemia (CLL) cells. Since we previously showed that autologous activated T cells from CLL patients favor the activation of CLL cells and the generation of venetoclax resistance due to the upregulation of BCL-XL and MCL-1, we here aim to determine whether SPHK inhibitors affect this process. To this aim we employed the dual SPHK1/2 inhibitor SKI-II and opaganib, a SPHK2 inhibitor that is being studied in clinical trials. We found that SPHK inhibitors reduce the activation of CLL cells and the generation of venetoclax resistance induced by activated T cells mainly due to a reduced upregulation of BCL-XL. We also found that SPHK2 expression was enhanced in CLL cells by activated T cells of the same patient and the presence of venetoclax selects resistant cells with high levels of SPHK2. Of note, SPHK inhibitors were able to re-sensitize already resistant CLL cells to a second venetoclax treatment. Our results highlight the therapeutic potential of SPHK inhibitors in combination with venetoclax as a promising treatment option for the patients.
Collapse
Affiliation(s)
- Valeria J. Sarapura Martinez
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Academia Nacional de Medicina (ANM), Buenos Aires, Argentina
| | - Brenda Buonincontro
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Academia Nacional de Medicina (ANM), Buenos Aires, Argentina
| | - Chiara Cassarino
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Academia Nacional de Medicina (ANM), Buenos Aires, Argentina
| | - Juliana Bernatowiez
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Academia Nacional de Medicina (ANM), Buenos Aires, Argentina
| | - Ana Colado
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Academia Nacional de Medicina (ANM), Buenos Aires, Argentina
| | - Gregorio Cordini
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Academia Nacional de Medicina (ANM), Buenos Aires, Argentina
- Servicio de Hematología, Hospital de Clínicas, José de San Martín, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Maria del Rosario Custidiano
- Departamento de Hematología y Unidad de Trasplante Hematopoyético, Instituto Alexander Fleming, Buenos Aires, Argentina
| | - Carolina Mahuad
- Servicio de Hematología, Hospital Alemán, Buenos Aires, Argentina
| | | | | | - Nicolás O. Favale
- Cátedra de Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas “Profesor Dr. Alejandro C. Paladini” (IQUIFIB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mónica Vermeulen
- Laboratorio de Células Presentadoras de Antígeno y Respuesta Inflamatoria, IMEX-CONICET-ANM, Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, UBA, Buenos Aires, Argentina
| | - Mercedes Borge
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Academia Nacional de Medicina (ANM), Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, UBA, Buenos Aires, Argentina
| | - Mirta Giordano
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Academia Nacional de Medicina (ANM), Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, UBA, Buenos Aires, Argentina
| | - Romina Gamberale
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Academia Nacional de Medicina (ANM), Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, UBA, Buenos Aires, Argentina
- *Correspondence: Romina Gamberale,
| |
Collapse
|
10
|
Inoue T, Nakamura Y, Tanaka S, Kohro T, Li LX, Huang L, Yao J, Kawamura S, Inoue R, Nishi H, Fukaya D, Uni R, Hasegawa S, Inagi R, Umene R, Wu CH, Ye H, Bajwa A, Rosin DL, Ishihara K, Nangaku M, Wada Y, Okusa MD. Bone marrow stromal cell antigen-1 (CD157) regulated by sphingosine kinase 2 mediates kidney fibrosis. Front Med (Lausanne) 2022; 9:993698. [PMID: 36267620 PMCID: PMC9576863 DOI: 10.3389/fmed.2022.993698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Chronic kidney disease is a progressive disease that may lead to end-stage renal disease. Interstitial fibrosis develops as the disease progresses. Therapies that focus on fibrosis to delay or reverse progressive renal failure are limited. We and others showed that sphingosine kinase 2-deficient mice (Sphk2 -/-) develop less fibrosis in mouse models of kidney fibrosis. Sphingosine kinase2 (SphK2), one of two sphingosine kinases that produce sphingosine 1-phosphate (S1P), is primarily located in the nucleus. S1P produced by SphK2 inhibits histone deacetylase (HDAC) and changes histone acetylation status, which can lead to altered target gene expression. We hypothesized that Sphk2 epigenetically regulates downstream genes to induce fibrosis, and we performed a comprehensive analysis using the combination of RNA-seq and ChIP-seq. Bst1/CD157 was identified as a gene that is regulated by SphK2 through a change in histone acetylation level, and Bst1 -/- mice were found to develop less renal fibrosis after unilateral ischemia-reperfusion injury, a mouse model of kidney fibrosis. Although Bst1 is a cell-surface molecule that has a wide variety of functions through its varied enzymatic activities and downstream intracellular signaling pathways, no studies on the role of Bst1 in kidney diseases have been reported previously. In the current study, we demonstrated that Bst1 is a gene that is regulated by SphK2 through epigenetic change and is critical in kidney fibrosis.
Collapse
Affiliation(s)
- Tsuyoshi Inoue
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States,Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yasuna Nakamura
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shinji Tanaka
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| | - Takahide Kohro
- Department of Clinical Informatics/Cardiology, Jichi Medical University, Tochigi, Japan
| | - Lisa X. Li
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| | - Liping Huang
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| | - Junlan Yao
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| | - Suzuka Kawamura
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| | - Reiko Inoue
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Nishi
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daichi Fukaya
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rie Uni
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sho Hasegawa
- Division of Chronic Kidney Disease Pathophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Reiko Inagi
- Division of Chronic Kidney Disease Pathophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryusuke Umene
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Chia-Hsien Wu
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hong Ye
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| | - Amandeep Bajwa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| | - Diane L. Rosin
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States
| | - Katsuhiko Ishihara
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Okayama, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Mark D. Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States,*Correspondence: Mark D. Okusa,
| |
Collapse
|
11
|
Xie D, Hu G, Chen C, Ahmadinejad F, Wang W, Li PL, Gewirtz DA, Li N. Loss of sphingosine kinase 2 protects against cisplatin-induced kidney injury. Am J Physiol Renal Physiol 2022; 323:F322-F334. [PMID: 35834271 PMCID: PMC9394771 DOI: 10.1152/ajprenal.00229.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 06/23/2022] [Accepted: 07/07/2022] [Indexed: 01/01/2023] Open
Abstract
Cisplatin is an established chemotherapeutic drug for treatment of solid-organ cancers and is the primary drug used in the treatment of head and neck cancer; however, cisplatin-induced nephrotoxicity largely limits its clinical use. Inhibition of sphingosine kinase 2 (SphK2) has been demonstrated to alleviate various kidney diseases. Therefore, we hypothesized that inhibition of SphK2 could also protect against cisplatin-induced nephrotoxicity. Results from the present study showed that the SphK2 inhibitor ABC294640 or knockdown of SphK2 by siRNA blocked the cisplatin-induced increase of cellular injury markers (neutrophil gelatinase-associated lipocalin, kidney injury molecule-1, and cleaved caspase-3) by Western blot analysis in HK-2 cells, a human renal tubular cell line. In addition, SphK2 inhibition blocked cisplatin-induced activation of NF-κB by Western blot analysis and immunostaining analysis. Furthermore, SphK2 inhibition suppressed cisplatin-induced increases of proinflammatory markers (NLR family pyrin domain containing 3, interleukin-1β, and interleukin-6). Genetic deletion of the SphK2 gene in mice further confirmed that inhibition of SphK2 protected against cisplatin-induced kidney damage in vivo. Compared with wild-type mice, SphK2 knockout mice exhibited less renal dysfunction and reduced promotion of kidney injury markers, inflammatory factors, tubular morphology damage, and fibrotic staining. At the same time, the SphK2 inhibitor ABC294640 failed to interfere with the activity of cisplatin or radiation in two cell culture models of head and neck cancer. It is concluded that inhibition of Sphk2 protects against cisplatin-induced kidney injury. SphK2 may be used as a potential therapeutic target for the prevention or treatment of cisplatin-induced kidney injury.NEW & NOTEWORTHY The present study provides new findings that sphingosine kinase 2 (SphK2) is highly expressed in renal tubules, cisplatin treatment increases the expression of SphK2 in proximal tubular cells and kidneys, and inhibition of SphK2 alleviates cisplatin-induced kidney injury by suppressing the activation of NF-κB, production of inflammatory factors, and apoptosis. SphK2 may serve as a potential therapeutic target for the prevention or treatment of cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Dengpiao Xie
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gaizun Hu
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Chaoling Chen
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Fereshteh Ahmadinejad
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Weili Wang
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Ningjun Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
12
|
Idowu TO, Parikh SM. A new chapter in lipid signaling and kidney fibrosis. Sci Transl Med 2022; 14:eadd2826. [PMID: 35976995 DOI: 10.1126/scitranslmed.add2826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The perivascular sphingosine 1-phosphate signaling axis may be an emerging therapeutic target for treating chronic kidney disease (Tanaka et al.).
Collapse
Affiliation(s)
- Temitayo O Idowu
- Division of Nephrology, Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical School, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Samir M Parikh
- Division of Nephrology, Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical School, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| |
Collapse
|
13
|
Tanaka S, Zheng S, Kharel Y, Fritzemeier RG, Huang T, Foster D, Poudel N, Goggins E, Yamaoka Y, Rudnicka KP, Lipsey JE, Radel HV, Ryuh SM, Inoue T, Yao J, Rosin DL, Schwab SR, Santos WL, Lynch KR, Okusa MD. Sphingosine 1-phosphate signaling in perivascular cells enhances inflammation and fibrosis in the kidney. Sci Transl Med 2022; 14:eabj2681. [PMID: 35976996 PMCID: PMC9873476 DOI: 10.1126/scitranslmed.abj2681] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chronic kidney disease (CKD), characterized by sustained inflammation and progressive fibrosis, is highly prevalent and can eventually progress to end-stage kidney disease. However, current treatments to slow CKD progression are limited. Sphingosine 1-phosphate (S1P), a product of sphingolipid catabolism, is a pleiotropic mediator involved in many cellular functions, and drugs targeting S1P signaling have previously been studied particularly for autoimmune diseases. The primary mechanism of most of these drugs is functional antagonism of S1P receptor-1 (S1P1) expressed on lymphocytes and the resultant immunosuppressive effect. Here, we documented the role of local S1P signaling in perivascular cells in the progression of kidney fibrosis using primary kidney perivascular cells and several conditional mouse models. S1P was predominantly produced by sphingosine kinase 2 in kidney perivascular cells and exported via spinster homolog 2 (Spns2). It bound to S1P1 expressed in perivascular cells to enhance production of proinflammatory cytokines/chemokines upon injury, leading to immune cell infiltration and subsequent fibrosis. A small-molecule Spns2 inhibitor blocked S1P transport, resulting in suppression of inflammatory signaling in human and mouse kidney perivascular cells in vitro and amelioration of kidney fibrosis in mice. Our study provides insight into the regulation of inflammation and fibrosis by S1P and demonstrates the potential of Spns2 inhibition as a treatment for CKD and potentially other inflammatory and fibrotic diseases that avoids the adverse events associated with systemic modulation of S1P receptors.
Collapse
Affiliation(s)
- Shinji Tanaka
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA.,Division of Nephrology and Endocrinology, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| | - Shuqiu Zheng
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Russell G. Fritzemeier
- Department of Chemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Tao Huang
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Daniel Foster
- Department of Chemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Nabin Poudel
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Eibhlin Goggins
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Yusuke Yamaoka
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Kinga P. Rudnicka
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Jonathan E. Lipsey
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Hope V. Radel
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Sophia M. Ryuh
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Tsuyoshi Inoue
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Junlan Yao
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Diane L. Rosin
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Susan R. Schwab
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, NY, New York 10016, USA
| | - Webster L. Santos
- Department of Chemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Kevin R. Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Mark D. Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia 22903, USA.,Corresponding author.
| |
Collapse
|
14
|
Smith CD, Maines LW, Keller SN, Katz Ben-Yair V, Fathi R, Plasse TF, Levitt ML. Recent Progress in the Development of Opaganib for the Treatment of Covid-19. Drug Des Devel Ther 2022; 16:2199-2211. [PMID: 35855741 PMCID: PMC9288228 DOI: 10.2147/dddt.s367612] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/02/2022] [Indexed: 12/15/2022] Open
Abstract
The Covid-19 pandemic driven by the SARS-CoV-2 virus continues to exert extensive humanitarian and economic stress across the world. Although antivirals active against mild disease have been identified recently, new drugs to treat moderate and severe Covid-19 patients are needed. Sphingolipids regulate key pathologic processes, including viral proliferation and pathologic host inflammation. Opaganib (aka ABC294640) is a first-in-class clinical drug targeting sphingolipid metabolism for the treatment of cancer and inflammatory diseases. Recent work demonstrates that opaganib also has antiviral activity against several viruses including SARS-CoV-2. A recently completed multinational Phase 2/3 clinical trial of opaganib in patients hospitalized with Covid-19 demonstrated that opaganib can be safely administered to these patients, and more importantly, resulted in a 62% decrease in mortality in a large subpopulation of patients with moderately severe Covid-19. Furthermore, acceleration of the clearance of the virus was observed in opaganib-treated patients. Understanding the biochemical mechanism for the anti-SARS-CoV-2 activity of opaganib is essential for optimizing Covid-19 treatment protocols. Opaganib inhibits three key enzymes in sphingolipid metabolism: sphingosine kinase-2 (SK2); dihydroceramide desaturase (DES1); and glucosylceramide synthase (GCS). Herein, we describe a tripartite model by which opaganib suppresses infection and replication of SARS-CoV-2 by inhibiting SK2, DES1 and GCS. The potential impact of modulation of sphingolipid signaling on multi-organ dysfunction in Covid-19 patients is also discussed.
Collapse
Affiliation(s)
- Charles D Smith
- Apogee Biotechnology Corporation, Hummelstown, PA, USA
- Correspondence: Charles D Smith, Apogee Biotechnology Corporation, 1214 Research Blvd, Suite 2015, Hummelstown, PA, 17036, USA, Tel +1 843 814 9257, Email
| | - Lynn W Maines
- Apogee Biotechnology Corporation, Hummelstown, PA, USA
| | | | | | | | | | | |
Collapse
|
15
|
Sphk1 and Sphk2 Differentially Regulate Erythropoietin Synthesis in Mouse Renal Interstitial Fibroblast-like Cells. Int J Mol Sci 2022; 23:ijms23115882. [PMID: 35682566 PMCID: PMC9180811 DOI: 10.3390/ijms23115882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Erythropoietin (Epo) is a crucial hormone regulating red blood cell number and consequently the hematocrit. Epo is mainly produced in the kidney by interstitial fibroblast-like cells. Previously, we have shown that in cultures of the immortalized mouse renal fibroblast-like cell line FAIK F3-5, sphingosine 1-phosphate (S1P), by activating S1P1 and S1P3 receptors, can stabilize hypoxia-inducible factor (HIF)-2α and upregulate Epo mRNA and protein synthesis. In this study, we have addressed the role of intracellular iS1P derived from sphingosine kinases (Sphk) 1 and 2 on Epo synthesis in F3-5 cells and in mouse primary cultures of renal fibroblasts. We show that stable knockdown of Sphk2 in F3-5 cells increases HIF-2α protein and Epo mRNA and protein levels, while Sphk1 knockdown leads to a reduction of hypoxia-stimulated HIF-2α and Epo protein. A similar effect was obtained using primary cultures of renal fibroblasts isolated from wildtype mice, Sphk1−/−, or Sphk2−/− mice. Furthermore, selective Sphk2 inhibitors mimicked the effect of genetic Sphk2 depletion and also upregulated HIF-2α and Epo protein levels. The combined blockade of Sphk1 and Sphk2, using Sphk2−/− renal fibroblasts treated with the Sphk1 inhibitor PF543, resulted in reduced HIF-2α and Epo compared to the untreated Sphk2−/− cells. Exogenous sphingosine (Sph) enhanced HIF-2α and Epo, and this was abolished by the combined treatment with the selective S1P1 and S1P3 antagonists NIBR-0213 and TY52156, suggesting that Sph was taken up by cells and converted to iS1P and exported to then act in an autocrine manner through S1P1 and S1P3. The upregulation of HIF-2α and Epo synthesis by Sphk2 knockdown was confirmed in the human hepatoma cell line Hep3B, which is well-established to upregulate Epo production under hypoxia. In summary, these data show that sphingolipids have diverse effects on Epo synthesis. While accumulation of intracellular Sph reduces Epo synthesis, iS1P will be exported to act through S1P1+3 to enhance Epo synthesis. Furthermore, these data suggest that selective inhibition of Sphk2 is an attractive new option to enhance Epo synthesis and thereby to reduce anemia development in chronic kidney disease.
Collapse
|
16
|
Mallela SK, Merscher S, Fornoni A. Implications of Sphingolipid Metabolites in Kidney Diseases. Int J Mol Sci 2022; 23:ijms23084244. [PMID: 35457062 PMCID: PMC9025012 DOI: 10.3390/ijms23084244] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/18/2022] Open
Abstract
Sphingolipids, which act as a bioactive signaling molecules, are involved in several cellular processes such as cell survival, proliferation, migration and apoptosis. An imbalance in the levels of sphingolipids can be lethal to cells. Abnormalities in the levels of sphingolipids are associated with several human diseases including kidney diseases. Several studies demonstrate that sphingolipids play an important role in maintaining proper renal function. Sphingolipids can alter the glomerular filtration barrier by affecting the functioning of podocytes, which are key cellular components of the glomerular filtration barrier. This review summarizes the studies in our understanding of the regulation of sphingolipid signaling in kidney diseases, especially in glomerular and tubulointerstitial diseases, and the potential to target sphingolipid pathways in developing therapeutics for the treatment of renal diseases.
Collapse
Affiliation(s)
- Shamroop kumar Mallela
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence: (S.M.); (A.F.); Tel.: +1-305-243-6567 (S.M.); +1-305-243-3583 (A.F.); Fax: +1-305-243-3209 (S.M.); +1-305-243-3506 (A.F.)
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence: (S.M.); (A.F.); Tel.: +1-305-243-6567 (S.M.); +1-305-243-3583 (A.F.); Fax: +1-305-243-3209 (S.M.); +1-305-243-3506 (A.F.)
| |
Collapse
|
17
|
Ueda N. A Rheostat of Ceramide and Sphingosine-1-Phosphate as a Determinant of Oxidative Stress-Mediated Kidney Injury. Int J Mol Sci 2022; 23:ijms23074010. [PMID: 35409370 PMCID: PMC9000186 DOI: 10.3390/ijms23074010] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) modulate sphingolipid metabolism, including enzymes that generate ceramide and sphingosine-1-phosphate (S1P), and a ROS-antioxidant rheostat determines the metabolism of ceramide-S1P. ROS induce ceramide production by activating ceramide-producing enzymes, leading to apoptosis, while they inhibit S1P production, which promotes survival by suppressing sphingosine kinases (SphKs). A ceramide-S1P rheostat regulates ROS-induced mitochondrial dysfunction, apoptotic/anti-apoptotic Bcl-2 family proteins and signaling pathways, leading to apoptosis, survival, cell proliferation, inflammation and fibrosis in the kidney. Ceramide inhibits the mitochondrial respiration chain and induces ceramide channel formation and the closure of voltage-dependent anion channels, leading to mitochondrial dysfunction, altered Bcl-2 family protein expression, ROS generation and disturbed calcium homeostasis. This activates ceramide-induced signaling pathways, leading to apoptosis. These events are mitigated by S1P/S1P receptors (S1PRs) that restore mitochondrial function and activate signaling pathways. SphK1 promotes survival and cell proliferation and inhibits inflammation, while SphK2 has the opposite effect. However, both SphK1 and SphK2 promote fibrosis. Thus, a ceramide-SphKs/S1P rheostat modulates oxidant-induced kidney injury by affecting mitochondrial function, ROS production, Bcl-2 family proteins, calcium homeostasis and their downstream signaling pathways. This review will summarize the current evidence for a role of interaction between ROS-antioxidants and ceramide-SphKs/S1P and of a ceramide-SphKs/S1P rheostat in the regulation of oxidative stress-mediated kidney diseases.
Collapse
Affiliation(s)
- Norishi Ueda
- Department of Pediatrics, Public Central Hospital of Matto Ishikawa, 3-8 Kuramitsu, Hakusan 924-8588, Japan
| |
Collapse
|
18
|
Baranwal G, Creed HA, Black LM, Auger A, Quach AM, Vegiraju R, Eckenrode HE, Agarwal A, Rutkowski JM. Expanded renal lymphatics improve recovery following kidney injury. Physiol Rep 2021; 9:e15094. [PMID: 34806312 PMCID: PMC8606868 DOI: 10.14814/phy2.15094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/14/2022] Open
Abstract
Acute kidney injury (AKI) is a major cause of patient mortality and a major risk multiplier for the progression to chronic kidney disease (CKD). The mechanism of the AKI to CKD transition is complex but is likely mediated by the extent and length of the inflammatory response following the initial injury. Lymphatic vessels help to maintain tissue homeostasis through fluid, macromolecule, and immune modulation. Increased lymphatic growth, or lymphangiogenesis, often occurs during inflammation and plays a role in acute and chronic disease processes. What roles renal lymphatics and lymphangiogenesis play in AKI recovery and CKD progression remains largely unknown. To determine if the increased lymphatic density is protective in the response to kidney injury, we utilized a transgenic mouse model with inducible, kidney-specific overexpression of the lymphangiogenic protein vascular endothelial growth factor-D to expand renal lymphatics. "KidVD" mouse kidneys were injured using inducible podocyte apoptosis and proteinuria (POD-ATTAC) or bilateral ischemia reperfusion. In the acute injury phase of both models, KidVD mice demonstrated a similar loss of function measured by serum creatinine and glomerular filtration rate compared to their littermates. While the initial inflammatory response was similar, KidVD mice demonstrated a shift toward more CD4+ and fewer CD8+ T cells in the kidney. Reduced collagen deposition and improved functional recovery over time was also identified in KidVD mice. In KidVD-POD-ATTAC mice, an increased number of podocytes were counted at 28 days post-injury. These data demonstrate that increased lymphatic density prior to injury alters the injury recovery response and affords protection from CKD progression.
Collapse
Affiliation(s)
- Gaurav Baranwal
- Division of Lymphatic BiologyDepartment of Medical PhysiologyTexas A&M University College of MedicineBryanTexasUSA
| | - Heidi A. Creed
- Division of Lymphatic BiologyDepartment of Medical PhysiologyTexas A&M University College of MedicineBryanTexasUSA
| | - Laurence M. Black
- Department of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Nephrology Research and Training CenterUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Alexa Auger
- Division of Lymphatic BiologyDepartment of Medical PhysiologyTexas A&M University College of MedicineBryanTexasUSA
| | - Alexander M. Quach
- Division of Lymphatic BiologyDepartment of Medical PhysiologyTexas A&M University College of MedicineBryanTexasUSA
| | - Rahul Vegiraju
- Division of Lymphatic BiologyDepartment of Medical PhysiologyTexas A&M University College of MedicineBryanTexasUSA
| | - Han E. Eckenrode
- Department of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Nephrology Research and Training CenterUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Anupam Agarwal
- Department of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Nephrology Research and Training CenterUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Department of Veterans AffairsBirmingham Veterans Administration Medical CenterBirminghamAlabamaUSA
| | - Joseph M. Rutkowski
- Division of Lymphatic BiologyDepartment of Medical PhysiologyTexas A&M University College of MedicineBryanTexasUSA
| |
Collapse
|
19
|
Zhou Y, Luo Z, Liao C, Cao R, Hussain Z, Wang J, Zhou Y, Chen T, Sun J, Huang Z, Liu B, Zhang X, Guan Y, Deng T. MHC class II in renal tubules plays an essential role in renal fibrosis. Cell Mol Immunol 2021; 18:2530-2540. [PMID: 34556823 PMCID: PMC8545940 DOI: 10.1038/s41423-021-00763-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023] Open
Abstract
Immunomodulation is considered a potential therapeutic approach for chronic kidney disease (CKD). Although it has been previously reported that CD4+ T cells contribute to the development of renal fibrosis, the role of MHC class II (MHCII) in the development of renal fibrosis remains largely unknown. The present study reports that the expression of MHCII molecules in renal cortical tubules is upregulated in mouse renal fibrosis models generated by unilateral ureter obstruction (UUO) and folic acid (FA). Proximal tubule epithelial cells (PTECs) are functional antigen-presenting cells that promote the proliferation of CD4+ T cells in an MHCII-dependent manner. PTECs from mice with renal fibrosis had a stronger ability to induce T cell proliferation and cytokine production than control cells. Global or renal tubule-specific ablation of H2-Ab1 significantly alleviated renal fibrosis following UUO or FA treatment. Renal expression of profibrotic genes showed a consistent reduction in H2-Ab1 gene-deficient mouse lines. Moreover, there was a marked increase in renal tissue CD4+ T cells after UUO or FA treatment and a significant decrease following renal tubule-specific ablation of H2-Ab1. Furthermore, renal tubule-specific H2-Ab1 gene knockout mice exhibited higher proportions of regulatory T cells (Tregs) and lower proportions of Th2 cells in the UUO- or FA-treated kidneys. Finally, Immunohistochemistry (IHC) studies showed increased renal expression of MHCII and the profibrotic gene α smooth muscle actin (α-SMA) in CKD patients. Together, our human and mouse data demonstrate that renal tubular MHCII plays an important role in the pathogenesis of renal fibrosis.
Collapse
Affiliation(s)
- Yunfeng Zhou
- grid.263488.30000 0001 0472 9649Department of Physiology, Medical Research Center, Shenzhen University, Shenzhen, China
| | - Zhaokang Luo
- grid.263488.30000 0001 0472 9649Department of Physiology, Medical Research Center, Shenzhen University, Shenzhen, China
| | - Chenghui Liao
- grid.263488.30000 0001 0472 9649Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University, Shenzhen, China
| | - Rong Cao
- grid.263488.30000 0001 0472 9649Department of Nephrology, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zain Hussain
- grid.416992.10000 0001 2179 3554Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX USA
| | - Jie Wang
- Department of Internal Medicine, Shenzhen Guangming Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Yeting Zhou
- grid.263488.30000 0001 0472 9649School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, China
| | - Tie Chen
- grid.263488.30000 0001 0472 9649School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, China
| | - Jie Sun
- grid.263488.30000 0001 0472 9649Department of Biochemistry and Molecular Biology, Medical Research Center, Shenzhen University, Shenzhen, China
| | - Zhong Huang
- grid.263488.30000 0001 0472 9649Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University, Shenzhen, China
| | - Baohua Liu
- grid.263488.30000 0001 0472 9649Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Medical Research Center, Shenzhen University, Shenzhen, China
| | - Xiaoyan Zhang
- grid.411971.b0000 0000 9558 1426Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Advanced Institute of Medical Sciences, Dalian Medical University, Dalian, China
| | - Youfei Guan
- grid.411971.b0000 0000 9558 1426Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Advanced Institute of Medical Sciences, Dalian Medical University, Dalian, China
| | - Tuo Deng
- grid.452708.c0000 0004 1803 0208National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China ,Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, China ,grid.216417.70000 0001 0379 7164Metabolic Syndrome Research Center, Clinical Immunology Center, Central South University, Changsha, China
| |
Collapse
|
20
|
Tian J, Huang T, Chang S, Wang Y, Fan W, Ji H, Wang J, Yang J, Kang J, Zhou Y. Role of sphingosine-1-phosphate mediated signalling in systemic lupus erythematosus. Prostaglandins Other Lipid Mediat 2021; 156:106584. [PMID: 34352381 DOI: 10.1016/j.prostaglandins.2021.106584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 07/02/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022]
Abstract
Systemic lupus erythematosus (SLE) is a highly prevalent autoimmune disease characterized by the malfunction of the immune system and the persistent presence of an inflammatory environment. Multiple organs can be affected during SLE, leading to heterogeneous manifestations, which eventually result in the death of patients. Due to the lack of understanding regarding the pathogenesis of SLE, the currently available treatments remain suboptimal. Sphingosine-1-phosphate (S1P) is a central bioactive lipid of sphingolipid metabolism, which serves a pivotal role in regulating numerous physiological and pathological processes. As a well-recognized regulator of lymphocyte trafficking, S1P has been shown to be closely associated with autoimmune diseases, including SLE. Importantly, S1P levels have been found to be elevated in patients with SLE. In murine models of lupus, the increased levels of S1P also contribute to disease activity and organ impairment. Moreover, data from several studies also support the hypothesis that S1P receptors and its producer-sphingosine kinases (SPHK) may serve as the potential targets for the treatment of SLE and its co-morbidities. Given the significant success that intervening with S1P signaling has achieved in treating multiple sclerosis, further exploration of its role in SLE is necessary. Therefore, the aim of the present review is to summarize the recent advances in understanding the potential mechanism by which S1P influences SLE, with a primary focus on its role in immune regulation and inflammatory responses.
Collapse
Affiliation(s)
- Jihua Tian
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Taiping Huang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Sijia Chang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weiping Fan
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - He Ji
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Juanjuan Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jia Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Kang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yun Zhou
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute, Taiyuan, Shanxi, China.
| |
Collapse
|
21
|
Hafizi R, Imeri F, Wenger RH, Huwiler A. S1P Stimulates Erythropoietin Production in Mouse Renal Interstitial Fibroblasts by S1P 1 and S1P 3 Receptor Activation and HIF-2α Stabilization. Int J Mol Sci 2021; 22:ijms22179467. [PMID: 34502385 PMCID: PMC8430949 DOI: 10.3390/ijms22179467] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
Erythropoietin (Epo) is the critical hormone for erythropoiesis. In adults, Epo is mainly produced by a subset of interstitial fibroblasts in the kidney, with minor amounts being produced in the liver and the brain. In this study, we used the immortalized renal interstitial fibroblast cell line FAIK F3-5 to investigate the ability of the bioactive sphingolipid sphingosine 1-phosphate (S1P) to stimulate Epo production and to reveal the mechanism involved. Stimulation of cells with exogenous S1P under normoxic conditions (21% O2) led to a dose-dependent increase in Epo mRNA and protein levels and subsequent release of Epo into the medium. S1P also enhanced the stabilization of HIF-2α, a key transcription factor for Epo expression. S1P-stimulated Epo mRNA and protein expression was abolished by HIF-2α mRNA knockdown or by the HIF-2 inhibitor compound 2. Furthermore, the approved S1P receptor modulator FTY720, and its active form FTY720-phosphate, both exerted a similar effect on Epo expression as S1P. The effect of S1P on Epo was antagonized by the selective S1P1 and S1P3 antagonists NIBR-0213 and TY-52156, but not by the S1P2 antagonist JTE-013. Moreover, inhibitors of the classical MAPK/ERK, the p38-MAPK, and inhibitors of protein kinase (PK) C and D all blocked the effect of S1P on Epo expression. Finally, the S1P and FTY720 effects were recapitulated in the Epo-producing human neuroblastoma cell line Kelly, suggesting that S1P receptor-dependent Epo synthesis is of general relevance and not species-specific. In summary, these data suggest that, in renal interstitial fibroblasts, which are the primary source of plasma Epo, S1P1 and 3 receptor activation upregulates Epo under normoxic conditions. This may have a therapeutic impact on disease situations such as chronic kidney disease, where Epo production is impaired, causing anemia, but it may also have therapeutic value as Epo can mediate additional tissue-protective effects in various organs.
Collapse
Affiliation(s)
- Redona Hafizi
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland; (R.H.); (F.I.)
| | - Faik Imeri
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland; (R.H.); (F.I.)
| | - Roland H. Wenger
- Institute of Physiology, University of Zürich, CH-8057 Zürich, Switzerland;
| | - Andrea Huwiler
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland; (R.H.); (F.I.)
- Correspondence: ; Tel.: +41-316-323-214
| |
Collapse
|
22
|
Rapamycin Alternatively Modifies Mitochondrial Dynamics in Dendritic Cells to Reduce Kidney Ischemic Reperfusion Injury. Int J Mol Sci 2021; 22:ijms22105386. [PMID: 34065421 PMCID: PMC8160749 DOI: 10.3390/ijms22105386] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) are unique immune cells that can link innate and adaptive immune responses and Immunometabolism greatly impacts their phenotype. Rapamycin is a macrolide compound that has immunosuppressant functions and is used to prevent graft loss in kidney transplantation. The current study evaluated the therapeutic potential of ex-vivo rapamycin treated DCs to protect kidneys in a mouse model of acute kidney injury (AKI). For the rapamycin single (S) treatment (Rapa-S-DC), Veh-DCs were treated with rapamycin (10 ng/mL) for 1 h before LPS. In contrast, rapamycin multiple (M) treatment (Rapa-M-DC) were exposed to 3 treatments over 7 days. Only multiple ex-vivo rapamycin treatments of DCs induced a persistent reprogramming of mitochondrial metabolism. These DCs had 18-fold more mitochondria, had almost 4-fold higher oxygen consumption rates, and produced more ATP compared to Veh-DCs (Veh treated control DCs). Pathway analysis showed IL10 signaling as a major contributing pathway to the altered immunophenotype after Rapamycin treatment compared to vehicle with significantly lower cytokines Tnfa, Il1b, and Il6, while regulators of mitochondrial content Pgc1a, Tfam, and Ho1 remained elevated. Critically, adoptive transfer of rapamycin-treated DCs to WT recipients 24 h before bilateral kidney ischemia significantly protected the kidneys from injury with a significant 3-fold improvement in kidney function. Last, the infusion of DCs containing higher mitochondria numbers (treated ex-vivo with healthy isolated mitochondria (10 µg/mL) one day before) also partially protected the kidneys from IRI. These studies demonstrate that pre-emptive infusion of ex-vivo reprogrammed DCs that have higher mitochondria content has therapeutic capacity to induce an anti-inflammatory regulatory phenotype to protect kidneys from injury.
Collapse
|
23
|
Imeri F, Stepanovska Tanturovska B, Schwalm S, Saha S, Zeng-Brouwers J, Pavenstädt H, Pfeilschifter J, Schaefer L, Huwiler A. Loss of sphingosine kinase 2 enhances Wilm's tumor suppressor gene 1 and nephrin expression in podocytes and protects from streptozotocin-induced podocytopathy and albuminuria in mice. Matrix Biol 2021; 98:32-48. [PMID: 34015468 DOI: 10.1016/j.matbio.2021.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022]
Abstract
The sphingosine 1-phosphate (S1P) is a bioactive sphingolipid that is now appreciated as key regulatory factor for various cellular functions in the kidney, including matrix remodeling. It is generated by two sphingosine kinases (Sphk), Sphk1 and Sphk2, which are ubiquitously expressed, but have distinct enzymatic activities and subcellular localizations. In this study, we have investigated the role of Sphk2 in podocyte function and its contribution to diabetic nephropathy. We show that streptozotocin (STZ)-induced nephropathy and albuminuria in mice is prevented by genetic depletion of Sphk2. This protection correlated with an increased protein expression of the transcription factor Wilm's tumor suppressor gene 1 (WT1) and its target gene nephrin, and a reduced macrophage infiltration in immunohistochemical renal sections of STZ-treated Sphk2-/- mice compared to STZ-treated wildtype mice. To investigate changes on the cellular level, we used an immortalized human podocyte cell line and generated a stable knockdown of Sphk2 (Sphk2-kd) by a lentiviral transduction method. These Sphk2-kd cells accumulated sphingosine as a consequence of the knockdown, and showed enhanced nephrin and WT1 mRNA and protein expressions similar to the finding in Sphk2 knockout mice. Treatment of wildtype podocytes with the highly selective Sphk2 inhibitor SLM6031434 caused a similar upregulation of nephrin and WT1 expression. Furthermore, exposing cells to the profibrotic mediator transforming growth factor β (TGFβ) resulted on the one side in reduced nephrin and WT1 expression, but on the other side, in upregulation of various profibrotic marker proteins, including connective tissue growth factor (CTGF), fibronectin (FN) and plasminogen activator inhibitor (PAI) 1. All these effects were reverted by Sphk2-kd and SLM6031434. Mechanistically, the protection by Sphk2-kd may depend on accumulated sphingosine and inhibited PKC activity, since treatment of cells with exogenous sphingosine not only reduced the phosphorylation pattern of PKC substrates, but also increased WT1 protein expression. Moreover, the selective stable knockdown of PKCδ increased WT1 expression, suggesting the involvement of this PKC isoenzyme in WT1 regulation. The glucocorticoid dexamethasone, which is a treatment option in many glomerular diseases and is known to mediate a nephroprotection, not only downregulated Sphk2 and enhanced cellular sphingosine, but also enhanced WT1 and nephrin expressions, thus, suggesting that parts of the nephroprotective effect of dexamethasone is mediated by Sphk2 downregulation. Altogether, our data demonstrated that loss of Sphk2 is protective in diabetes-induced podocytopathy and can prevent proteinuria, which is a hallmark of many glomerular diseases. Thus, Sphk2 could serve as a new attractive pharmacological target to treat proteinuric kidney diseases.
Collapse
Affiliation(s)
- Faik Imeri
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, Bern CH-3010, Switzerland
| | | | - Stephanie Schwalm
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt am Main D-60590, Germany
| | - Sarbari Saha
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt am Main D-60590, Germany
| | - Jinyang Zeng-Brouwers
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt am Main D-60590, Germany
| | - Herrmann Pavenstädt
- Medizinische Klinik D, University Hospital Münster, Münster D-48149, Germany
| | - Josef Pfeilschifter
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt am Main D-60590, Germany
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt am Main D-60590, Germany.
| | - Andrea Huwiler
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, Bern CH-3010, Switzerland.
| |
Collapse
|
24
|
Abdel-Hamed EF, Ibrahim MN, Mostafa NE, Moawad HSF, Elgammal NE, Darwiesh EM, El-Rafey DS, ElBadawy NE, Al-Khoufi EA, Hindawi SI. Role of interferon gamma in SARS-CoV-2-positive patients with parasitic infections. Gut Pathog 2021; 13:29. [PMID: 33947467 PMCID: PMC8096133 DOI: 10.1186/s13099-021-00427-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/29/2021] [Indexed: 12/25/2022] Open
Abstract
Background By 27 June 2020, almost half a million people had died due to COVID-19 infections. The susceptibility and severity of infection vary significantly across nations. The contribution of chronic viral and parasitic infections to immune homeostasis remains a concern. By investigating the role of interferon (IFN)-γ, we conducted this study to understand the connection between the decrease in numbers and severity of COVID-19 cases within parasitic endemic regions. Our research included 375 patients referred to hospitals for diagnosis of COVID-19 infection. Patients were subjected to full investigations, in particular severe acute respiratory syndrome coronavirus-2 nucleic acid and Toxoplasma IgM and IgG antibody detection, stool examination, and quantitative IFN-γ measurement. Results The majority of the studied cases had chest manifestation either alone (54.7%) or in association with gastrointestinal (GIT) manifestations (19.7%), whereas 25.6% had GIT symptoms. We reported parasitic infections in 72.8% of mild COVID-19 cases and 20.7% of severe cases. Toxoplasma gondii, Cryptosporidium, Blastocyst, and Giardia were the most common parasitic infections among the COVID-19 cases studied. Conclusion The remarkable adaptation of human immune response to COVID-19 infection by parasitic infections with high levels of IFN-γ was observed in moderate cases compared with low levels in extreme cases. The potential therapeutic efforts aimed at the role of parasitic infection in immune system modulation are needed if this hypothesis is confirmed.
Collapse
Affiliation(s)
- Enas Fakhry Abdel-Hamed
- Medical Parasitology Department, Faculty of Medicine, Zagazig University, El Kawmia Square, Zagazig, 44511, Sharkia Governorate, Egypt.
| | - Mohamed N Ibrahim
- Clinical Laboratories Department, College of Applied Medical Sciences, Jouf University, Al-Jouf, 77451, Saudi Arabia
| | - Nahed E Mostafa
- Medical Parasitology Department, Faculty of Medicine, Zagazig University, El Kawmia Square, Zagazig, 44511, Sharkia Governorate, Egypt
| | - Howayda S F Moawad
- Medical Parasitology Department, Faculty of Medicine, Zagazig University, El Kawmia Square, Zagazig, 44511, Sharkia Governorate, Egypt
| | - Nahla E Elgammal
- Tropical Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Ehab M Darwiesh
- Tropical Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Dina S El-Rafey
- Community, Environmental and Occupational Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Nissreen E ElBadawy
- Microbiology Department, Faculty of Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Emad Ali Al-Khoufi
- Internal Medicine Department, College of Medicine, King Faisal University, 31982, Al-Ahsa, Saudi Arabia
| | - Salwa I Hindawi
- Haematology and Transfusion Medicine, King Abdulaziz University, Jeddah, 21577, Saudi Arabia
| |
Collapse
|
25
|
Saraswati S, Martínez P, Graña-Castro O, Blasco MA. Short and dysfunctional telomeres sensitize the kidneys to develop fibrosis. ACTA ACUST UNITED AC 2021; 1:269-283. [PMID: 37118410 DOI: 10.1038/s43587-021-00040-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 02/02/2021] [Indexed: 02/08/2023]
Abstract
Accumulation of short telomeres is a hallmark of aging. Mutations in telomerase or telomere-binding proteins lead to telomere shortening or dysfunction and are at the origin of human pathologies known as 'telomere syndromes', which are characterized by loss of the regenerative capacity of tissues and fibrotic pathologies. Here, we generated two mouse models of kidney fibrosis, either by combining telomerase deficiency to induce telomere shortening and a low dose of folic acid, or by conditionally deleting Trf1, a component of the shelterin telomere protective complex, from the kidneys. We find that short telomeres sensitize the kidneys to develop fibrosis in response to folic acid and exacerbate the epithelial-to-mesenchymal transition (EMT) program. Trf1 deletion in kidneys led to fibrosis and EMT activation. Our findings suggest that telomere shortening or dysfunction may contribute to pathological, age-associated renal fibrosis by influencing the EMT program.
Collapse
|
26
|
Zhou S, Guo J, Zhao L, Liao Y, Zhou Q, Cui Y, Hu W, Chen J, Ren X, Wei Q, Jiang S, Zheng Y, Li L, Wilcox CS, Persson PB, Patzak A, Tian J, Yin Lai E. ADAMTS13 inhibits oxidative stress and ameliorates progressive chronic kidney disease following ischaemia/reperfusion injury. Acta Physiol (Oxf) 2021; 231:e13586. [PMID: 33226724 DOI: 10.1111/apha.13586] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 10/27/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022]
Abstract
AIMS Reduced A Disintegrin And Metalloproteinase with a ThromboSpondin type 1 motif member 13 (ADAMTS13) levels are observed in kidney disease. We test whether recombinant human ADAMTS13 (rhADAMTS13) mitigates renal injury in chronic kidney disease (CKD) and the potential mechanisms. METHODS CKD was established 3 months after ischaemia/reperfusion (IR). ADAMTS13 and von Willebrand factor (vWF) levels, renal function and morphological changes were analysed. Afferent arteriolar responses to angiotensin II (Ang II) and acetylcholine (ACh) were measured. Oxidative stress-related molecules were detected. RESULTS Higher vWF and lower ADAMTS13 levels were observed in CKD mice, which were markedly attenuated by rhADAMTS13. rhADAMTS13 alleviated renal dysfunction, as documented by decreased blood urea nitrogen (BUN), serum creatinine, kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) levels in CKD mice. Moreover, rhADAMTS13 attenuated transforming growth factor (TGF)-β1/Smad3 activation. Plasma vWF: ADAMTS13 ratio showed positive correlations with malondialdehyde (MDA), hydrogen peroxide (H2 O2 ) and proteinuria, and correlated inversely with superoxide dismutase (SOD) and catalase (CAT). Finally, rhADAMTS13 inhibited reactive oxygen species (ROS) levels and improved microvascular functional disorders, accompanied by the inhibition of glycogen synthase kinase (GSK) 3β hyperactivity and upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) expression. CONCLUSIONS Acute kidney injury (AKI) reduces the expression of ADAMTS13 that contributes to progressive CKD, microvascular dysfunction, oxidative stress, inhibition of Nrf2 activity and renal histopathological damage. All of which can be alleviated by administration of rhADAMTS13.
Collapse
Affiliation(s)
- Suhan Zhou
- Kidney Disease Center of First Affiliated Hospital, and Department of Physiology, School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Jie Guo
- Kidney Disease Center of First Affiliated Hospital, and Department of Physiology, School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Liang Zhao
- Kidney Disease Center of First Affiliated Hospital, and Department of Physiology, School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
- Institute of Vegetative Physiology Charité–Universitätsmedizin Berlincorporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of Health Berlin Germany
- Department of Physiology School of Basic Medical Sciences Guangzhou Medical University Guangzhou China
| | - Yixin Liao
- Department of Obstetrics and Gynecology Nanfang HospitalSouthern Medical University Guangzhou China
| | - Qin Zhou
- Kidney Disease Center of First Affiliated Hospital, and Department of Physiology, School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Yu Cui
- Kidney Disease Center of First Affiliated Hospital, and Department of Physiology, School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Weipeng Hu
- Kidney Disease Center of First Affiliated Hospital, and Department of Physiology, School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Jianghua Chen
- Kidney Disease Center of First Affiliated Hospital, and Department of Physiology, School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Xiaoqiu Ren
- Department of Radiation Oncology Second Affiliated HospitalZhejiang University School of Medicine Hangzhou China
| | - Qichun Wei
- Department of Radiation Oncology Second Affiliated HospitalZhejiang University School of Medicine Hangzhou China
| | - Shan Jiang
- Kidney Disease Center of First Affiliated Hospital, and Department of Physiology, School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Yali Zheng
- Department of Nephrology Ningxia people’s hospital Yinchuan China
| | - Lingli Li
- Division of Nephrology and Hypertension, and Hypertension Research Center Georgetown University Washington DC USA
| | - Christopher S. Wilcox
- Division of Nephrology and Hypertension, and Hypertension Research Center Georgetown University Washington DC USA
| | - Pontus B. Persson
- Institute of Vegetative Physiology Charité–Universitätsmedizin Berlincorporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Andreas Patzak
- Institute of Vegetative Physiology Charité–Universitätsmedizin Berlincorporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Jiong Tian
- Kidney Disease Center of First Affiliated Hospital, and Department of Physiology, School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - En Yin Lai
- Kidney Disease Center of First Affiliated Hospital, and Department of Physiology, School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
- Institute of Vegetative Physiology Charité–Universitätsmedizin Berlincorporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of Health Berlin Germany
- Department of Physiology School of Basic Medical Sciences Guangzhou Medical University Guangzhou China
| |
Collapse
|
27
|
Studstill CJ, Pritzl CJ, Seo YJ, Kim DY, Xia C, Wolf JJ, Nistala R, Vijayan M, Cho YB, Kang KW, Lee SM, Hahm B. Sphingosine kinase 2 restricts T cell immunopathology but permits viral persistence. J Clin Invest 2021; 130:6523-6538. [PMID: 32897877 DOI: 10.1172/jci125297] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 09/02/2020] [Indexed: 01/04/2023] Open
Abstract
Chronic viral infections are often established by the exploitation of immune-regulatory mechanisms that result in nonfunctional T cell responses. Viruses that establish persistent infections remain a serious threat to human health. Sphingosine kinase 2 (SphK2) generates sphingosine 1-phosphate, which is a molecule known to regulate multiple cellular processes. However, little is known about SphK2's role during the host immune responses to viral infection. Here, we demonstrate that SphK2 functions during lymphocytic choriomeningitis virus Cl 13 (LCMV Cl 13) infection to limit T cell immune pathology, which subsequently aids in the establishment of virus-induced immunosuppression and the resultant viral persistence. The infection of Sphk2-deficient (Sphk2-/-) mice with LCMV Cl 13 led to the development of nephropathy and mortality via T cell-mediated immunopathology. Following LCMV infection, Sphk2-/- CD4+ T cells displayed increased activity and proliferation, and these cells promoted overactive LCMV Cl 13-specific CD8+ T cell responses. Notably, oral instillation of an SphK2-selective inhibitor promoted protective T cell responses and accelerated the termination of LCMV Cl 13 persistence in mice. Thus, SphK2 is indicated as an immunotherapeutic target for the control of persistent viral infections.
Collapse
Affiliation(s)
- Caleb J Studstill
- Departments of Surgery and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Curtis J Pritzl
- Departments of Surgery and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Dae Young Kim
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine
| | - Chuan Xia
- Departments of Surgery and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Jennifer J Wolf
- Departments of Surgery and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Ravi Nistala
- Division of Nephrology, Department of Medicine, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Madhuvanthi Vijayan
- Departments of Surgery and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Yong-Bin Cho
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Kyung Won Kang
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Korea
| | - Sang-Myeong Lee
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Korea.,College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Bumsuk Hahm
- Departments of Surgery and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, Missouri, USA
| |
Collapse
|
28
|
Bernacchioni C, Ciarmela P, Vannuzzi V, Greco S, Vannuccini S, Malentacchi F, Pellegrino P, Capezzuoli T, Sorbi F, Cencetti F, Bruni P, Donati C, Petraglia F. Sphingosine 1-phosphate signaling in uterine fibroids: implication in activin A pro-fibrotic effect. Fertil Steril 2021; 115:1576-1585. [PMID: 33500141 DOI: 10.1016/j.fertnstert.2020.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To explore the link between sphingosine 1-phosphate (S1P) signaling and leiomyoma and the possible S1P cross-talk with the fibrotic effect of activin A. DESIGN Case-control laboratory study. SETTING University institute and university hospital. PATIENT(S) Patients with uterine fibroids (n = 26). INTERVENTIONS(S) Tissue specimens of leiomyoma and normal myometrium were obtained from patients undergoing myomectomy or total hysterectomy. MAIN OUTCOME MEASURE(S) Expression of mRNA levels of the enzyme involved in S1P metabolism, S1P receptors, and S1P transporter Spns2 was evaluated in matched leiomyoma/myometrium specimens and cell populations. The effects of inhibition of S1P metabolism and signaling was evaluated on activin A-induced fibrotic action in leiomyoma cell lines. RESULT(S) The expression of the enzymes responsible for S1P formation, sphingosine kinase (SK) 1 and 2, and S1P2, S1P3, and S1P5 receptors was significantly augmented in leiomyomas compared with adjacent myometrium. In leiomyoma cells, but not in myometrial cells, activin A increased mRNA expression levels of SK1, SK2, and S1P2. The profibrotic action of activin A was abolished when SK1/2 were inhibited or S1P2/3 were blocked. Finally, S1P augmented by itself mRNA levels of fibrotic markers (fibronectin, collagen 1A1) and activin A in leiomyomas but not in myometrial cells. CONCLUSION(S) This study shows that S1P signaling is dysregulated in uterine fibroids and involved in activin A-induced fibrosis, opening new perspectives for uterine fibroid treatment.
Collapse
Affiliation(s)
- Caterina Bernacchioni
- Department of Experimental and Clinical Biomedical Sciences "M. Serio," University of Florence, Florence, Italy
| | - Pasquapina Ciarmela
- Department of Experimental and Clinical Medicine, Faculty of Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Valentina Vannuzzi
- Department of Experimental and Clinical Biomedical Sciences "M. Serio," University of Florence, Florence, Italy
| | - Stefania Greco
- Department of Experimental and Clinical Medicine, Faculty of Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Silvia Vannuccini
- Department of Experimental and Clinical Biomedical Sciences "M. Serio," University of Florence, Florence, Italy
| | - Francesca Malentacchi
- Department of Experimental and Clinical Biomedical Sciences "M. Serio," University of Florence, Florence, Italy
| | - Pamela Pellegrino
- Department of Experimental and Clinical Medicine, Faculty of Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Tommaso Capezzuoli
- Department of Experimental and Clinical Biomedical Sciences "M. Serio," University of Florence, Florence, Italy
| | - Flavia Sorbi
- Department of Experimental and Clinical Biomedical Sciences "M. Serio," University of Florence, Florence, Italy
| | - Francesca Cencetti
- Department of Experimental and Clinical Biomedical Sciences "M. Serio," University of Florence, Florence, Italy
| | - Paola Bruni
- Department of Experimental and Clinical Biomedical Sciences "M. Serio," University of Florence, Florence, Italy
| | - Chiara Donati
- Department of Experimental and Clinical Biomedical Sciences "M. Serio," University of Florence, Florence, Italy.
| | - Felice Petraglia
- Department of Experimental and Clinical Biomedical Sciences "M. Serio," University of Florence, Florence, Italy
| |
Collapse
|
29
|
Yokota R, Bhunu B, Toba H, Intapad S. Sphingolipids and Kidney Disease: Possible Role of Preeclampsia and Intrauterine Growth Restriction (IUGR). KIDNEY360 2021; 2:534-541. [PMID: 35369015 PMCID: PMC8786006 DOI: 10.34067/kid.0006322020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/06/2021] [Indexed: 02/04/2023]
Abstract
Sphingolipids are now considered not only as constitutional components of the cellular membrane but also as essential bioactive factors regulating development and physiologic functions. Ceramide is a vital intermediate of sphingolipid metabolism, synthesized by de novo and salvage pathways, producing multiple types of sphingolipids and their metabolites. Although mutations in gene-encoding enzymes regulating sphingolipid synthesis and metabolism cause distinct diseases, an abnormal sphingolipid metabolism contributes to various pathologic conditions, including kidney diseases. Excessive accumulation of glycosphingolipids and promotion of the ceramide salvage and sphingosine-1-phosphate (S1P) pathways are found in the damaged kidney. Acceleration of the sphingosine kinase/S1P/S1P receptor (SphK/S1P/S1PR) axis plays a central role in deteriorating kidney functions. The SphK/S1P/S1PR signaling impairment is also found during pregnancy complications, such as preeclampsia and intrauterine growth restriction (IUGR). This mini-review discusses the current state of knowledge regarding the role of sphingolipid metabolism on kidney diseases, and the possible involvement of preeclampsia and IUGR conditions.
Collapse
Affiliation(s)
- Rodrigo Yokota
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Benjamin Bhunu
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Hiroe Toba
- Division of Pathological Sciences, Department of Clinical Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Suttira Intapad
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
30
|
Stasi A, Castellano G, Ranieri E, Infante B, Stallone G, Gesualdo L, Netti GS. SARS-CoV-2 and Viral Sepsis: Immune Dysfunction and Implications in Kidney Failure. J Clin Med 2020; 9:E4057. [PMID: 33334050 PMCID: PMC7765555 DOI: 10.3390/jcm9124057] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 01/10/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of coronavirus disease 2019 (COVID-19), first emerged in Wuhan, China. The clinical manifestations of patients infected with COVID-19 include fever, cough, and dyspnea, up to acute respiratory distress syndrome (ARDS) and acute cardiac injury. Thus, a lot of severe patients had to be admitted to intensive care units (ICU). The pathogenic mechanisms of SARS-CoV-2 infection are mediated by the binding of SARS-CoV-2 spikes to the human angiotensin-converting enzyme 2 (ACE-2) receptor. The overexpression of human ACE-2 is associated with the disease severity in SARS-CoV-2 infection, demonstrating that viral entry into cells is a pivotal step. Although the lung is the organ that is most commonly affected by SARS-CoV-2 infection, acute kidney injury (AKI), heart dysfunction and abdominal pain are the most commonly reported co-morbidities of COVID-19. The occurrence of AKI in COVID-19 patients might be explained by several mechanisms that include viral cytopathic effects in renal cells and the host hyperinflammatory response. In addition, kidney dysfunction could exacerbate the inflammatory response started in the lungs and might cause further renal impairment and multi-organ failure. Mounting recent evidence supports the involvement of cardiovascular complications and endothelial dysfunction in COVID-19 syndrome, in addition to respiratory disease. To date, there is no vaccine, and no specific antiviral medicine has been shown to be effective in preventing or treating COVID-19. The removal of pro-inflammatory cytokines and the shutdown of the cytokine storm could ameliorate the clinical outcome in severe COVID-19 cases. Therefore, several interventions that inhibit viral replication and the systemic inflammatory response could modulate the severity of the renal dysfunction and increase the probability of a favorable outcome.
Collapse
Affiliation(s)
- Alessandra Stasi
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (A.S.); (L.G.)
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto, 71122 Foggia, Italy; (G.C.); (B.I.); (G.S.)
| | - Elena Ranieri
- Clinical Pathology, Department of Surgical and Medical Sciences, University of Foggia, Viale Luigi Pinto, 71122 Foggia, Italy;
| | - Barbara Infante
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto, 71122 Foggia, Italy; (G.C.); (B.I.); (G.S.)
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto, 71122 Foggia, Italy; (G.C.); (B.I.); (G.S.)
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (A.S.); (L.G.)
| | - Giuseppe Stefano Netti
- Clinical Pathology, Department of Surgical and Medical Sciences, University of Foggia, Viale Luigi Pinto, 71122 Foggia, Italy;
| |
Collapse
|
31
|
Donati C, Cencetti F, Bernacchioni C, Vannuzzi V, Bruni P. Role of sphingosine 1-phosphate signalling in tissue fibrosis. Cell Signal 2020; 78:109861. [PMID: 33253915 DOI: 10.1016/j.cellsig.2020.109861] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Fibrosis is characterized by the excessive accumulation of extracellular matrix components, leading to loss of tissue function in affected organs. Although the majority of fibrotic diseases have different origins, they have in common a persistent inflammatory stimulus and lymphocyte-monocyte interactions that determine the production of numerous fibrogenic cytokines. Treatment to contrast fibrosis is urgently needed, since some fibrotic diseases lead to systemic fibrosis and represent a major cause of death. In this article, the role of the bioactive sphingolipid sphingosine 1-phosphate (S1P) and its signalling pathway in the fibrosis of different tissue contexts is extensively reviewed, highlighting that it may represent an innovative and promising pharmacological therapeutic target for treating this devastating multifaceted disease. In multiple tissues S1P influences different aspects of fibrosis modulating the recruitment of inflammatory cells, as well as cell proliferation, migration and transdifferentiation into myofibroblasts, the cell type mainly involved in fibrosis development. Moreover, at the level of fibrotic lesions, S1P metabolism is profoundly influenced by multiple cross-talk with profibrotic mediators, such as transforming growth factor β, thus finely regulating the development of fibrosis. This article is part of a Special Issue entitled "Physiological and pathological roles of bioactive sphingolipids".
Collapse
Affiliation(s)
- Chiara Donati
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy.
| | - Francesca Cencetti
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy
| | - Caterina Bernacchioni
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy
| | - Valentina Vannuzzi
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy
| | - Paola Bruni
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy
| |
Collapse
|
32
|
Tumor necrosis factor superfamily 14 is critical for the development of renal fibrosis. Aging (Albany NY) 2020; 12:25469-25486. [PMID: 33231567 PMCID: PMC7803499 DOI: 10.18632/aging.104151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 08/29/2020] [Indexed: 01/13/2023]
Abstract
Objective: Tumor necrosis factor superfamily protein 14 (TNFSF14) was recently identified as a risk factor in some fibrosis diseases. However, the role of TNFSF14 in renal fibrosis pathogenesis remains unknown. Results: It was found that TNFSF14 levels were significantly increased both in UUO-induced renal fibrotic mice and in patients with fibrotic nephropathy, compared with those in controls. Accordingly, Tnfsf14 deficiency led to a marked reduction in renal fibrosis lesions and inflammatory cytokines expression in the UUO mice. Furthermore, the levels of Sphk1, a critical molecule that causes fibrotic nephropathy, were remarkably reduced in Tnfsf14 KO mice with UUO surgery. In vitro recombinant TNFSF14 administration markedly up-regulated the expression of Sphk1 of primary mouse renal tubular epithelial cells (mTECs). Conclusion: TNFSF14 is a novel pro-fibrotic factor of renal fibrosis, for which TNFSF14 up-regulates Sphk1 expression, which may be the underlying mechanism of TNFSF14-mediated renal fibrosis. Methods: We investigated the effect of TNFSF14 on renal fibrosis and the relationship between TNFSF14 and pro-fibrotic factor sphingosine kinase 1 (Sphk1) by using the unilateral urethral obstruction (UUO)-induced mice renal fibrosis as a model and the specimen of patients with fibrosis nephropathy, by Masson trichrome staining, immunohistochemistry, qRT-PCR, and western blot analysis.
Collapse
|
33
|
Hu ZJ, Xu J, Yin JM, Li L, Hou W, Zhang LL, Zhou Z, Yu YZ, Li HJ, Feng YM, Jin RH. Lower Circulating Interferon-Gamma Is a Risk Factor for Lung Fibrosis in COVID-19 Patients. Front Immunol 2020; 11:585647. [PMID: 33133104 PMCID: PMC7550399 DOI: 10.3389/fimmu.2020.585647] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Cytokine storm resulting from SARS-CoV-2 infection is one of the leading causes of acute respiratory distress syndrome (ARDS) and lung fibrosis. We investigated the effect of inflammatory molecules to identify any marker that is related to lung fibrosis in coronavirus disease 2019 (COVID-19). Seventy-six COVID-19 patients who were admitted to Youan Hospital between January 21 and March 20, 2020 and recovered were recruited for this study. Pulmonary fibrosis, represented as fibrotic volume on chest CT images, was computed by an artificial intelligence (AI)-assisted program. Plasma samples were collected from the participants shortly after admission, to measure the basal inflammatory molecules levels. At discharge, fibrosis was present in 46 (60.5%) patients whose plasma interferon-γ (IFN-γ) levels were twofold lower than those without fibrosis (p > 0.05). The multivariate-adjusted logistic regression analysis demonstrated the inverse association risk of having lung fibrosis and basal circulating IFN-γ levels with an estimate of 0.43 (p = 0.02). Per the 1-SD increase of basal IFN-γ level in circulation, the fibrosis volume decreased by 0.070% (p = 0.04) at the discharge of participants. The basal circulating IFN-γ levels were comparable with c-reactive protein in the discrimination of the occurrence of lung fibrosis among COVID-19 patients at discharge, unlike circulating IL-6 levels. In conclusion, these data indicate that decreased circulating IFN-γ is a risk factor of lung fibrosis in COVID-19.
Collapse
Affiliation(s)
- Zhong-Jie Hu
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jia Xu
- Department of Immunology, Centre for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ji-Ming Yin
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Li Li
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wei Hou
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Li-Li Zhang
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | | | | | - Hong-Jun Li
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ying-Mei Feng
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Rong-Hua Jin
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
34
|
Watanabe H, Paxton RL, Tolerico MR, Nagalakshmi VK, Tanaka S, Okusa MD, Goto S, Narita I, Watanabe S, Sequeira-Lοpez MLS, Gomez RA. Expression of Acsm2, a kidney-specific gene, parallels the function and maturation of proximal tubular cells. Am J Physiol Renal Physiol 2020; 319:F603-F611. [PMID: 32830538 DOI: 10.1152/ajprenal.00348.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The acyl-CoA synthetase medium-chain family member 2 (Acsm2) gene was first identified and cloned by our group as a kidney-specific "KS" gene. However, its expression pattern and function remain to be clarified. In the present study, we found that the Acsm2 gene was expressed specifically and at a high level in normal adult kidneys. Expression of Acsm2 in kidneys followed a maturational pattern: it was low in newborn mice and increased with kidney development and maturation. In situ hybridization and immunohistochemistry revealed that Acsm2 was expressed specifically in proximal tubular cells of adult kidneys. Data from the Encyclopedia of DNA Elements database revealed that the Acsm2 gene locus in the mouse has specific histone modifications related to the active transcription of the gene exclusively in kidney cells. Following acute kidney injury, partial unilateral ureteral obstruction, and chronic kidney diseases, expression of Acsm2 in the proximal tubules was significantly decreased. In human samples, the expression pattern of ACSM2A, a homolog of mouse Acsm2, was similar to that in mice, and its expression decreased with several types of renal injuries. These results indicate that the expression of Acsm2 parallels the structural and functional maturation of proximal tubular cells. Downregulation of its expression in several models of kidney disease suggests that Acms2 may serve as a novel marker of proximal tubular injury and/or dysfunction.
Collapse
Affiliation(s)
- Hirofumi Watanabe
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Robert L Paxton
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Matthew R Tolerico
- Department of Biology, University of Virginia, Charlottesville, Virginia
| | - Vidya K Nagalakshmi
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Shinji Tanaka
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Shin Goto
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Seiji Watanabe
- Department of Pediatrics, Izu Medical and Welfare Center, Shizuoka, Japan
| | - Maria Luisa S Sequeira-Lοpez
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - R Ariel Gomez
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
35
|
Cartier A, Hla T. Sphingosine 1-phosphate: Lipid signaling in pathology and therapy. Science 2020; 366:366/6463/eaar5551. [PMID: 31624181 DOI: 10.1126/science.aar5551] [Citation(s) in RCA: 341] [Impact Index Per Article: 85.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 07/30/2019] [Indexed: 12/13/2022]
Abstract
Sphingosine 1-phosphate (S1P), a metabolic product of cell membrane sphingolipids, is bound to extracellular chaperones, is enriched in circulatory fluids, and binds to G protein-coupled S1P receptors (S1PRs) to regulate embryonic development, postnatal organ function, and disease. S1PRs regulate essential processes such as adaptive immune cell trafficking, vascular development, and homeostasis. Moreover, S1PR signaling is a driver of multiple diseases. The past decade has witnessed an exponential growth in this field, in part because of multidisciplinary research focused on this lipid mediator and the application of S1PR-targeted drugs in clinical medicine. This has revealed fundamental principles of lysophospholipid mediator signaling that not only clarify the complex and wide ranging actions of S1P but also guide the development of therapeutics and translational directions in immunological, cardiovascular, neurological, inflammatory, and fibrotic diseases.
Collapse
Affiliation(s)
- Andreane Cartier
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Abstract
Renal fibrosis is the final pathological process common to any ongoing, chronic kidney injury or maladaptive repair. Renal fibrosis is considered to be closely related to various cell types, such as fibroblasts, myofibroblasts, T cells, and other inflammatory cells. Multiple types of cells regulate renal fibrosis through the recruitment, proliferation, and activation of fibroblasts, and the production of the extracellular matrix. Cell trafficking is orchestrated by a family of small proteins called chemokines. Chemokines are cytokines with chemotactic properties, which are classified into 4 groups: CXCL, CCL, CX3CL, and XCL. Similarly, chemokine receptors are G protein-coupled seven-transmembrane receptors classified into 4 groups: XCR, CCR, CXCR, and CX3CR. Chemokine receptors are also implicated in the infiltration, differentiation, and survival of functional cells, triggering inflammation that leads to fibrosis development. In this review, we summarize the different chemokine receptors involved in the processes of fibrosis in different cell types. Further studies are required to identify the molecular mechanisms of chemokine signaling that contribute to renal fibrosis.
Collapse
|
37
|
Abstract
There is substantial evidence that the enzymes, sphingosine kinase 1 and 2, which catalyse the formation of the bioactive lipid sphingosine 1-phosphate, are involved in pathophysiological processes. In this chapter, we appraise the evidence that both enzymes are druggable and describe how isoform-specific inhibitors can be developed based on the plasticity of the sphingosine-binding site. This is contextualised with the effect of sphingosine kinase inhibitors in cancer, pulmonary hypertension, neurodegeneration, inflammation and sickling.
Collapse
Affiliation(s)
- Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde , Glasgow, Scotland, UK
| | - David R Adams
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, Scotland, UK
| | - Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde , Glasgow, Scotland, UK.
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW The goal of this review is to review the role that renal parenchymal lipid accumulation plays in contributing to diabetic kidney disease (DKD), specifically contributing to the mitochondrial dysfunction observed in glomerular renal cells in the context of DKD development and progression. RECENT FINDINGS Mitochondrial dysfunction has been observed in experimental and clinical DKD. Recently, Ayanga et al. demonstrate that podocyte-specific deletion of a protein involved in mitochondrial dynamics protects from DKD progression. Furthermore, our group has recently shown that ATP-binding cassette A1 (a protein involved in cholesterol and phospholipid efflux) is significantly reduced in clinical and experimental DKD and that genetic or pharmacological induction of ABCA1 is sufficient to protect from DKD. ABCA1 deficiency in podocytes leads to mitochondrial dysfunction observed with alterations of mitochondrial lipids, in particular, cardiolipin (a mitochondrial-specific phospholipid). However, through pharmacological reduction of cardiolipin peroxidation DKD progression is reverted. Lipid metabolism is significantly altered in the diabetic kidney and renders cellular components, such as the podocyte, susceptible to injury leading to worsened DKD progression. Dysfunction of the lipid metabolism pathway can also lead to mitochondrial dysfunction and mitochondrial lipid alteration. Future research aimed at targeting mitochondrial lipids content and function could prove to be beneficial for the treatment of DKD.
Collapse
Affiliation(s)
- G Michelle Ducasa
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, 1580 NW 10th Avenue, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, 1580 NW 10th Avenue, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, 1580 NW 10th Avenue, Miami, FL, USA.
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
39
|
Mitrofanova A, Sosa MA, Fornoni A. Lipid mediators of insulin signaling in diabetic kidney disease. Am J Physiol Renal Physiol 2019; 317:F1241-F1252. [PMID: 31545927 PMCID: PMC6879940 DOI: 10.1152/ajprenal.00379.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 12/30/2022] Open
Abstract
Diabetic kidney disease (DKD) affects ∼40% of patients with diabetes and is associated with high mortality rates. Among different cellular targets in DKD, podocytes, highly specialized epithelial cells of the glomerular filtration barrier, are injured in the early stages of DKD. Both clinical and experimental data support the role of preserved insulin signaling as a major contributor to podocyte function and survival. However, little is known about the key modulators of podocyte insulin signaling. This review summarizes the novel knowledge that intracellular lipids such as cholesterol and sphingolipids are major determinants of podocyte insulin signaling. In particular, the implications of these lipids on DKD development, progression, and treatment will be addressed.
Collapse
Affiliation(s)
- Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, Florida
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida
| | - Marie Anne Sosa
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
40
|
Perry HM, Görldt N, Sung SSJ, Huang L, Rudnicka KP, Encarnacion IM, Bajwa A, Tanaka S, Poudel N, Yao J, Rosin DL, Schrader J, Okusa MD. Perivascular CD73 + cells attenuate inflammation and interstitial fibrosis in the kidney microenvironment. Am J Physiol Renal Physiol 2019; 317:F658-F669. [PMID: 31364375 PMCID: PMC6766625 DOI: 10.1152/ajprenal.00243.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023] Open
Abstract
Progressive tubulointerstitial fibrosis may occur after acute kidney injury due to persistent inflammation. Purinergic signaling by 5'-ectonucleotidase, CD73, an enzyme that converts AMP to adenosine on the extracellular surface, can suppress inflammation. The role of CD73 in progressive kidney fibrosis has not been elucidated. We evaluated the effect of deletion of CD73 from kidney perivascular cells (including pericytes and/or fibroblasts of the Foxd1+ lineage) on fibrosis. Perivascular cell expression of CD73 was necessary to suppress inflammation and prevent kidney fibrosis in Foxd1CreCD73fl/fl mice evaluated 14 days after unilateral ischemia-reperfusion injury or folic acid treatment (250 mg/kg). Kidneys of Foxd1CreCD73fl/fl mice had greater collagen deposition, expression of proinflammatory markers (including various macrophage markers), and platelet-derived growth factor recepetor-β immunoreactivity than CD73fl/fl mice. Kidney dysfunction and fibrosis were rescued by administration of soluble CD73 or by macrophage deletion. Isolated CD73-/- kidney pericytes displayed an activated phenotype (increased proliferation and α-smooth muscle actin mRNA expression) compared with wild-type controls. In conclusion, CD73 in perivascular cells may act to suppress myofibroblast transformation and influence macrophages to promote a wound healing response. These results suggest that the purinergic signaling pathway in the kidney interstitial microenvironment orchestrates perivascular cells and macrophages to suppress inflammation and prevent progressive fibrosis.
Collapse
MESH Headings
- 5'-Nucleotidase/deficiency
- 5'-Nucleotidase/genetics
- 5'-Nucleotidase/metabolism
- Actins/metabolism
- Animals
- Cell Proliferation
- Cells, Cultured
- Cellular Microenvironment
- Collagen/metabolism
- Disease Models, Animal
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Fibrosis
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- GPI-Linked Proteins/deficiency
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/metabolism
- Inflammation Mediators/metabolism
- Kidney/immunology
- Kidney/metabolism
- Kidney/pathology
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Nephritis, Interstitial/genetics
- Nephritis, Interstitial/immunology
- Nephritis, Interstitial/metabolism
- Nephritis, Interstitial/pathology
- Pericytes/metabolism
- Pericytes/pathology
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Reperfusion Injury/genetics
- Reperfusion Injury/immunology
- Reperfusion Injury/metabolism
- Reperfusion Injury/pathology
- Signal Transduction
- Wound Healing
Collapse
Affiliation(s)
- Heather M Perry
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Nicole Görldt
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
- Institute of Molecular Cardiology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Sun-Sang J Sung
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Liping Huang
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Kinga P Rudnicka
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Iain M Encarnacion
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Amandeep Bajwa
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Shinji Tanaka
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Nabin Poudel
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Junlan Yao
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Diane L Rosin
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Jürgen Schrader
- Institute of Molecular Cardiology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
41
|
Mitrofanova A, Mallela SK, Ducasa GM, Yoo TH, Rosenfeld-Gur E, Zelnik ID, Molina J, Varona Santos J, Ge M, Sloan A, Kim JJ, Pedigo C, Bryn J, Volosenco I, Faul C, Zeidan YH, Garcia Hernandez C, Mendez AJ, Leibiger I, Burke GW, Futerman AH, Barisoni L, Ishimoto Y, Inagi R, Merscher S, Fornoni A. SMPDL3b modulates insulin receptor signaling in diabetic kidney disease. Nat Commun 2019; 10:2692. [PMID: 31217420 PMCID: PMC6584700 DOI: 10.1038/s41467-019-10584-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 05/15/2019] [Indexed: 12/22/2022] Open
Abstract
Sphingomyelin phosphodiesterase acid-like 3b (SMPDL3b) is a lipid raft enzyme that regulates plasma membrane (PM) fluidity. Here we report that SMPDL3b excess, as observed in podocytes in diabetic kidney disease (DKD), impairs insulin receptor isoform B-dependent pro-survival insulin signaling by interfering with insulin receptor isoforms binding to caveolin-1 in the PM. SMPDL3b excess affects the production of active sphingolipids resulting in decreased ceramide-1-phosphate (C1P) content as observed in human podocytes in vitro and in kidney cortexes of diabetic db/db mice in vivo. Podocyte-specific Smpdl3b deficiency in db/db mice is sufficient to restore kidney cortex C1P content and to protect from DKD. Exogenous administration of C1P restores IR signaling in vitro and prevents established DKD progression in vivo. Taken together, we identify SMPDL3b as a modulator of insulin signaling and demonstrate that supplementation with exogenous C1P may represent a lipid therapeutic strategy to treat diabetic complications such as DKD.
Collapse
Affiliation(s)
- A Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
| | - S K Mallela
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
| | - G M Ducasa
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
| | - T H Yoo
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
- Department of Internal Medicine, College of Medicine, Yonsei University, Seoul, 03722, Korea
| | - E Rosenfeld-Gur
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - I D Zelnik
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - J Molina
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
| | - J Varona Santos
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
| | - M Ge
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
| | - A Sloan
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
| | - J J Kim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
| | - C Pedigo
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
- Department of Internal Medicine, Yale University School of Medicine, New Haven, 06510, CT, USA
| | - J Bryn
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
| | - I Volosenco
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
- Lewis Gale Medical Center, Salem, 24153, VI, USA
| | - C Faul
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, 35233, AL, USA
| | - Y H Zeidan
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
- Department of Radiation Oncology, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
- Department of Radiation Oncology, American University of Beirut, Beirut, 1107 2020, Lebanon
| | - C Garcia Hernandez
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
- Department of Radiation Oncology, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
| | - A J Mendez
- Diabetes Research Institute, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
| | - I Leibiger
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, 17176, Sweden
| | - G W Burke
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
- Diabetes Research Institute, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
| | - A H Futerman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - L Barisoni
- Department of Pathology, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
| | - Y Ishimoto
- Division of Nephrology and Endocrinology, University of Tokyo Graduate School of Medicine, Tokyo, 113-8654, Japan
- Division of CKD Pathophysiology, University of Tokyo Graduate School of Medicine, Tokyo, 113-8654, Japan
| | - R Inagi
- Division of Nephrology and Endocrinology, University of Tokyo Graduate School of Medicine, Tokyo, 113-8654, Japan
- Division of CKD Pathophysiology, University of Tokyo Graduate School of Medicine, Tokyo, 113-8654, Japan
| | - S Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA
| | - A Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA.
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, 33136, FL, USA.
| |
Collapse
|
42
|
Weigert A, von Knethen A, Thomas D, Faria I, Namgaladze D, Zezina E, Fuhrmann D, Petcherski A, Heringdorf DMZ, Radeke HH, Brüne B. Sphingosine kinase 2 is a negative regulator of inflammatory macrophage activation. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1235-1246. [PMID: 31128248 DOI: 10.1016/j.bbalip.2019.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 01/25/2023]
Abstract
Sphingosine kinases (SPHK) generate the sphingolipid sphingosine-1-phosphate, which, among other functions, is a potent regulator of inflammation. While SPHK1 produces S1P to promote inflammatory signaling, the role of SPHK2 is unclear due to divergent findings in studies utilizing gene depletion versus inhibition of catalytic activity. We sought to clarify how SPHK2 affects inflammatory signaling in human macrophages, which are main regulators of inflammation. SPHK2 expression and activity were rapidly decreased within 6 h upon stimulating primary human macrophages with lipopolysaccharide (LPS), but was upregulated after 24 h. At 24 h following LPS stimulation, targeting SPHK2 with the inhibitor ABC294640, a specific siRNA or by using Sphk2-/- mouse peritoneal macrophages increased inflammatory cytokine production. Downregulation of SPHK2 in primary human macrophages within 6 h of LPS treatment was blocked by inhibiting autophagy. SPHK2 overexpression or inhibiting autophagy 6 h after human macrophage activation with LPS suppressed inflammatory cytokine release. Mechanistically, SPHK2 suppressed LPS-triggered NF-κB activation independent of its catalytic activity and prevented increased mitochondrial ROS formation downstream of LPS. In conclusion, SPHK2 is an anti-inflammatory protein in human macrophages that is inversely coupled to inflammatory cytokine production. This needs consideration when targeting SPHK2 with specific inhibitors.
Collapse
Affiliation(s)
- Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Andreas von Knethen
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Isabel Faria
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; Branch for Translational Medicine and Pharmacology TMP of the Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 60590 Frankfurt, Germany
| | - Dmitry Namgaladze
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Ekaterina Zezina
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Dominik Fuhrmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Anton Petcherski
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Dagmar Meyer Zu Heringdorf
- Institut für Allgemeine Pharmakologie und Toxikologie, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Heinfried H Radeke
- Institut für Allgemeine Pharmakologie und Toxikologie, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; Branch for Translational Medicine and Pharmacology TMP of the Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 60590 Frankfurt, Germany.
| |
Collapse
|
43
|
Zhu X, Shi D, Cao K, Ru D, Ren J, Rao Z, Chen Y, You Q, Dai C, Liu L, Zhou H. Sphingosine kinase 2 cooperating with Fyn promotes kidney fibroblast activation and fibrosis via STAT3 and AKT. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3824-3836. [DOI: 10.1016/j.bbadis.2018.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/25/2018] [Accepted: 09/08/2018] [Indexed: 12/12/2022]
|
44
|
Fan W, Hou J, Zhu W, Zhang S, Shao K, Quan F, Chen W. The mechanism of the preventive effect of Shen’an capsule on the calcium oxalate crystal-induced early renal injury based on metabolomics. Biomed Chromatogr 2018; 32:e4374. [PMID: 30141275 DOI: 10.1002/bmc.4374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 08/09/2018] [Accepted: 08/17/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Wei Fan
- No. 425 Hospital of PLA; Sanya China
| | - Jiebin Hou
- Changhai Hospital; Second Military Medical University; Shanghai China
| | - Weiye Zhu
- Changhai Hospital; Second Military Medical University; Shanghai China
| | - Shuyue Zhang
- Cadets Brigade; Second Military Medical University; Shanghai China
| | - Keda Shao
- Cadets Brigade; Second Military Medical University; Shanghai China
| | | | - Wei Chen
- Changhai Hospital; Second Military Medical University; Shanghai China
| |
Collapse
|
45
|
Mehaffey JH, Charles EJ, Narahari AK, Schubert S, Laubach VE, Teman NR, Lynch KR, Kron IL, Sharma AK. Increasing circulating sphingosine-1-phosphate attenuates lung injury during ex vivo lung perfusion. J Thorac Cardiovasc Surg 2018; 156:910-917. [PMID: 29609890 PMCID: PMC6056006 DOI: 10.1016/j.jtcvs.2018.02.090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/30/2018] [Accepted: 02/07/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND Sphingosine-1-phosphate regulates endothelial barrier integrity and promotes cell survival and proliferation. We hypothesized that upregulation of sphingosine-1-phosphate during ex vivo lung perfusion would attenuate acute lung injury and improve graft function. METHODS C57BL/6 mice (n = 4-8/group) were euthanized, followed by 1 hour of warm ischemia and 1 hour of cold preservation in a model of donation after cardiac death. Subsequently, mice underwent 1 hour of ex vivo lung perfusion with 1 of 4 different perfusion solutions: Steen solution (Steen, control arm), Steen with added sphingosine-1-phosphate (Steen + sphingosine-1-phosphate), Steen plus a selective sphingosine kinase 2 inhibitor (Steen + sphingosine kinase inhibitor), or Steen plus both additives (Steen + sphingosine-1-phosphate + sphingosine kinase inhibitor). During ex vivo lung perfusion, lung compliance and pulmonary artery pressure were continuously measured. Pulmonary vascular permeability was assessed with injection of Evans Blue dye. RESULTS The combination of 1 hour of warm ischemia, followed by 1 hour of cold ischemia created significant lung injury compared with lungs that were immediately harvested after circulatory death and put on ex vivo lung perfusion. Addition of sphingosine-1-phosphate or sphingosine kinase inhibitor alone did not significantly improve lung function during ex vivo lung perfusion compared with Steen without additives. However, group Steen + sphingosine-1-phosphate + sphingosine kinase inhibitor resulted in significantly increased compliance (110% ± 13.9% vs 57.7% ± 6.6%, P < .0001) and decreased pulmonary vascular permeability (33.1 ± 11.9 μg/g vs 75.8 ± 11.4 μg/g tissue, P = .04) compared with Steen alone. CONCLUSIONS Targeted drug therapy with a combination of sphingosine-1-phosphate + sphingosine kinase inhibitor during ex vivo lung perfusion improves lung function in a murine donation after cardiac death model. Elevation of circulating sphingosine-1-phosphate via specific pharmacologic modalities during ex vivo lung perfusion may provide endothelial protection in marginal donor lungs leading to successful lung rehabilitation for transplantation.
Collapse
Affiliation(s)
- J Hunter Mehaffey
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Eric J Charles
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Adishesh K Narahari
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Sarah Schubert
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Victor E Laubach
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Nicholas R Teman
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Kevin R Lynch
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Va
| | - Irving L Kron
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Ashish K Sharma
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va.
| |
Collapse
|
46
|
Hamzawy M, Gouda SAA, Rashed L, Morcos MA, Shoukry H, Sharawy N. 22-oxacalcitriol prevents acute kidney injury via inhibition of apoptosis and enhancement of autophagy. Clin Exp Nephrol 2018; 23:43-55. [PMID: 29968126 DOI: 10.1007/s10157-018-1614-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND The pathophysiology of ischemic acute kidney injury (AKI) is thought to include a complex interplay between tubular cell damage and regeneration. Several lines of evidences suggest a potential renoprotective effect of vitamin D. In this study, we investigated the effect of 22-oxacalcitriol (OCT), a synthetic vitamin D analogue, on renal fate in a rat model of ischemia reperfusion injury (IRI) induced acute kidney injury (AKI). METHODS 22-oxacalcitriol (OCT) was administered via intraperitoneal (IP) injection before ischemia, and continued after IRI that was performed through bilateral clamping of the renal pedicles. 96 h after reperfusion, rats were sacrificed for the evaluation of autophagy, apoptosis, and cell cycle arrest. Additionally, assessments of toll-like receptors (TLR), interferon gamma (IFN-g) and sodium-hydrogen exchanger-1 (NHE-1) were also performed to examine their relations to OCT-mediated cell response. RESULTS Treatment with OCT-attenuated functional deterioration and histological damage in IRI induced AKI, and significantly decreased cell apoptosis and fibrosis. In comparison with IRI rats, OCT + IRI rats manifested a significant exacerbation of autophagy as well as reduced cell cycle arrest. Moreover, the administration of OCT decreased IRI-induced upregulation of TLR4, IFN-g and NHE-1. CONCLUSION These results demonstrate that treatment with OCT has a renoprotective effect in ischemic AKI, possibly by suppressing cell loss. Changes in the expression of IFN-g and NHE-1 could partially link OCT to the cell survival-promoted effects.
Collapse
Affiliation(s)
- Magda Hamzawy
- Department of Physiology, Faculty of Medicine, Kasr El-Aini, Cairo University, AlSaray Street, Cairo, 11562, Egypt
| | - Sarah Ali Abdelhameed Gouda
- Department of Physiology, Faculty of Medicine, Kasr El-Aini, Cairo University, AlSaray Street, Cairo, 11562, Egypt
| | - Laila Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mary Attia Morcos
- Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Heba Shoukry
- Department of Physiology, Faculty of Medicine, Kasr El-Aini, Cairo University, AlSaray Street, Cairo, 11562, Egypt
| | - Nivin Sharawy
- Department of Physiology, Faculty of Medicine, Kasr El-Aini, Cairo University, AlSaray Street, Cairo, 11562, Egypt. .,Cairo University Hospitals, Cairo, Egypt.
| |
Collapse
|
47
|
Abstract
Sphingosine kinases (SK1 and SK2) are key, druggable targets within the sphingolipid metabolism pathway that promote tumor growth and pathologic inflammation. A variety of isozyme-selective and dual inhibitors of SK1 and SK2 have been described in the literature, and at least one compound has reached clinical testing in cancer patients. In this chapter, we will review the rationale for targeting SKs and summarize the preclinical and emerging clinical data for ABC294640 as the first-in-class selective inhibitor of SK2.
Collapse
|
48
|
Blanchard O, Stepanovska B, Starck M, Erhardt M, Römer I, Meyer Zu Heringdorf D, Pfeilschifter J, Zangemeister-Wittke U, Huwiler A. Downregulation of the S1P Transporter Spinster Homology Protein 2 (Spns2) Exerts an Anti-Fibrotic and Anti-Inflammatory Effect in Human Renal Proximal Tubular Epithelial Cells. Int J Mol Sci 2018; 19:ijms19051498. [PMID: 29772789 PMCID: PMC5983760 DOI: 10.3390/ijms19051498] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 01/09/2023] Open
Abstract
Sphingosine kinase (SK) catalyses the formation of sphingosine 1-phosphate (S1P), which acts as a key regulator of inflammatory and fibrotic reactions, mainly via S1P receptor activation. Here, we show that in the human renal proximal tubular epithelial cell line HK2, the profibrotic mediator transforming growth factor β (TGFβ) induces SK-1 mRNA and protein expression, and in parallel, it also upregulates the expression of the fibrotic markers connective tissue growth factor (CTGF) and fibronectin. Stable downregulation of SK-1 by RNAi resulted in the increased expression of CTGF, suggesting a suppressive effect of SK-1-derived intracellular S1P in the fibrotic process, which is lost when SK-1 is downregulated. In a further approach, the S1P transporter Spns2, which is known to export S1P and thereby reduces intracellular S1P levels, was stably downregulated in HK2 cells by RNAi. This treatment decreased TGFβ-induced CTGF and fibronectin expression, and it abolished the strong induction of the monocyte chemotactic protein 1 (MCP-1) by the pro-inflammatory cytokines tumor necrosis factor (TNF)α and interleukin (IL)-1β. Moreover, it enhanced the expression of aquaporin 1, which is an important water channel that is expressed in the proximal tubules, and reverted aquaporin 1 downregulation induced by IL-1β/TNFα. On the other hand, overexpression of a Spns2-GFP construct increased S1P secretion and it resulted in enhanced TGFβ-induced CTGF expression. In summary, our data demonstrate that in human renal proximal tubular epithelial cells, SK-1 downregulation accelerates an inflammatory and fibrotic reaction, whereas Spns2 downregulation has an opposite effect. We conclude that Spns2 represents a promising new target for the treatment of tubulointerstitial inflammation and fibrosis.
Collapse
Affiliation(s)
- Olivier Blanchard
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland.
| | - Bisera Stepanovska
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland.
| | - Manuel Starck
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland.
| | - Martin Erhardt
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland.
| | - Isolde Römer
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt am Main, Goethe-University, Theodor-Stern Kai 7, D-60590 Frankfurt am Main, Germany.
| | - Dagmar Meyer Zu Heringdorf
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt am Main, Goethe-University, Theodor-Stern Kai 7, D-60590 Frankfurt am Main, Germany.
| | - Josef Pfeilschifter
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt am Main, Goethe-University, Theodor-Stern Kai 7, D-60590 Frankfurt am Main, Germany.
| | - Uwe Zangemeister-Wittke
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland.
| | - Andrea Huwiler
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland.
| |
Collapse
|
49
|
Ghosh M, Thangada S, Dasgupta O, Khanna KM, Yamase HT, Kashgarian M, Hla T, Shapiro LH, Ferrer FA. Cell-intrinsic sphingosine kinase 2 promotes macrophage polarization and renal inflammation in response to unilateral ureteral obstruction. PLoS One 2018. [PMID: 29518138 PMCID: PMC5843290 DOI: 10.1371/journal.pone.0194053] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sphingosine Kinase-2 (Sphk2) is responsible for the production of the bioactive lipid Sphingosine-1 Phosphate, a key regulator of tissue repair. Here we address the in vivo significance of Sphingosine Kinase -2 in renal inflammation/fibrosis in response to unilateral ureteral obstruction using both genetic and pharmacological strategies. Obstructed kidneys of Sphk2-/- mice showed reduced renal damage and diminished levels of the renal injury markers TGFβ1 and αSMA when compared to wild type controls. We found a consistently significant increase in anti-inflammatory (M2) macrophages in obstructed Sphk2-/- kidneys by flow cytometry and a decrease in mRNA levels of the inflammatory cytokines, MCP1, TNFα, CXCL1 and ILβ1, suggesting an anti-inflammatory bias in the absence of Sphk2. Indeed, metabolic profiling showed that the pro-inflammatory glycolytic pathway is largely inactive in Sphk2-/- bone marrow-derived macrophages. Furthermore, treatment with the M2-promoting cytokines IL-4 or IL-13 demonstrated that macrophages lacking Sphk2 polarized more efficiently to the M2 phenotype than wild type cells. Bone marrow transplant studies indicated that expression of Sphk2-/- on either the hematopoietic or parenchymal cells did not fully rescue the pro-healing phenotype, confirming that both infiltrating M2-macrophages and the kidney microenvironment contribute to the damaging Sphk2 effects. Importantly, obstructed kidneys from mice treated with an Sphk2 inhibitor recapitulated findings in the genetic model. These results demonstrate that reducing Sphk2 activity by genetic or pharmacological manipulation markedly decreases inflammatory and fibrotic responses to obstruction, resulting in diminished renal injury and supporting Sphk2 as a novel driver of the pro-inflammatory macrophage phenotype.
Collapse
Affiliation(s)
- Mallika Ghosh
- Center for Vascular Biology, University of Connecticut School of Medicine, Farmington, CT, United States of America
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, United States of America
| | - Shobha Thangada
- Center for Vascular Biology, University of Connecticut School of Medicine, Farmington, CT, United States of America
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, United States of America
| | - Oisharya Dasgupta
- Center for Vascular Biology, University of Connecticut School of Medicine, Farmington, CT, United States of America
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, United States of America
| | - Kamal M. Khanna
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, United States of America
| | - Harold T. Yamase
- Department of Pathology, University of Connecticut School of Medicine, Farmington, CT, United States of America
| | - Michael Kashgarian
- Department of Pathology, Yale University Cancer Research Center, New Haven, CT, United States of America
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, United States of America
| | - Linda H. Shapiro
- Center for Vascular Biology, University of Connecticut School of Medicine, Farmington, CT, United States of America
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, United States of America
- * E-mail: (FAF); (LHS)
| | - Fernando A. Ferrer
- Center for Vascular Biology, University of Connecticut School of Medicine, Farmington, CT, United States of America
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, United States of America
- Section of Pediatric Urology, Children's Hospital of Omaha, Department of Surgery, University of Nebraska School of Medicine, Omaha, NE, United States of America
- * E-mail: (FAF); (LHS)
| |
Collapse
|
50
|
Yu SMW, Bonventre JV. Acute Kidney Injury and Progression of Diabetic Kidney Disease. Adv Chronic Kidney Dis 2018; 25:166-180. [PMID: 29580581 DOI: 10.1053/j.ackd.2017.12.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/15/2017] [Accepted: 12/22/2017] [Indexed: 12/23/2022]
Abstract
Diabetic kidney disease, commonly termed diabetic nephropathy (DN), is the most common cause of end-stage kidney disease (ESKD) worldwide. The characteristic histopathology of DN includes glomerular basement membrane thickening, mesangial expansion, nodular glomerular sclerosis, and tubulointerstitial fibrosis. Diabetes is associated with a number of metabolic derangements, such as reactive oxygen species overproduction, hypoxic state, mitochondrial dysfunction, and inflammation. In the past few decades, our knowledge of DN has advanced considerably although much needs to be learned. The traditional paradigm of glomerulus-centered pathophysiology has expanded to the tubule-interstitium, the immune response and inflammation. Biomarkers of proximal tubule injury have been shown to correlate with DN progression, independent of traditional glomerular injury biomarkers such as albuminuria. In this review, we summarize mechanisms of increased susceptibility to acute kidney injury in diabetes mellitus and the roles played by many kidney cell types to facilitate maladaptive responses leading to chronic and end-stage kidney disease.
Collapse
|