1
|
Bracciamà V, Vaisitti T, Mioli F, Faini AC, Del Prever GMB, Martins VH, Camilla R, Mattozzi F, Pieretti S, Luca M, Romeo CM, Saglia C, Migliorero M, Arruga F, Carli D, Amoroso A, Lonardi P, Deaglio S, Peruzzi L. Matching clinical and genetic data in pediatric patients at risk of developing cystic kidney disease. Pediatr Nephrol 2025; 40:743-753. [PMID: 39384646 PMCID: PMC11747002 DOI: 10.1007/s00467-024-06548-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Cystic kidney disease is a heterogeneous group of hereditary and non-hereditary pathologic conditions, associated with the development of renal cysts. These conditions may be present both in children and adults. Cysts can even be observed already during the prenatal age, and pediatric patients with cysts need to be clinically monitored. An early clinical and genetic diagnosis is therefore mandatory for optimal patient management. The aim of this study was to perform genetic analyses in patients with echographic evidence of kidney cysts to provide an early molecular diagnosis. METHODS A cohort of 70 pediatric patients was enrolled and clinically studied at the time of first recruitment and at follow-up. Genetic testing by clinical exome sequencing was performed and a panel of genes responsible for "cystic kidneys" was analyzed to identify causative variants. Sanger validation and segregation studies were exploited for the final classification of the variants and accurate genetic counseling. RESULTS Data showed that 53/70 of pediatric patients referred with a clinical suspicion of cystic kidney disease presented a causative genetic variant. In a significant proportion of the cohort (24/70), evidence of hyper-echogenic/cystic kidneys was already present in the prenatal period, even in the absence of a positive family history. CONCLUSIONS This study suggests that cystic kidney disease may develop since the very early stages of life and that screening programs based on ultrasound scans and genetic testing play a critical role in diagnosis, allowing for better clinical management and tailored genetic counseling to the family.
Collapse
Affiliation(s)
- Valeria Bracciamà
- Immunogenetics and Transplant Biology, AOU Città della Salute e della Scienza, ERKNet Center & Department of Medical Sciences, University of Turin, Turin, Italy
| | - Tiziana Vaisitti
- Immunogenetics and Transplant Biology, AOU Città della Salute e della Scienza, ERKNet Center & Department of Medical Sciences, University of Turin, Turin, Italy.
| | - Fiorenza Mioli
- Immunogenetics and Transplant Biology, AOU Città della Salute e della Scienza, ERKNet Center & Department of Medical Sciences, University of Turin, Turin, Italy
| | - Angelo Corso Faini
- Immunogenetics and Transplant Biology, AOU Città della Salute e della Scienza, ERKNet Center & Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giulia Margherita Brach Del Prever
- Immunogenetics and Transplant Biology, AOU Città della Salute e della Scienza, ERKNet Center & Department of Medical Sciences, University of Turin, Turin, Italy
| | - Vitor Hugo Martins
- Nephrology Dialysis and Transplantation, ERKNet Center, Regina Margherita Children's Hospital, Turin, Italy
| | - Roberta Camilla
- Nephrology Dialysis and Transplantation, ERKNet Center, Regina Margherita Children's Hospital, Turin, Italy
| | - Francesca Mattozzi
- Nephrology Dialysis and Transplantation, ERKNet Center, Regina Margherita Children's Hospital, Turin, Italy
| | - Silvia Pieretti
- Nephrology Dialysis and Transplantation, ERKNet Center, Regina Margherita Children's Hospital, Turin, Italy
| | - Maria Luca
- Immunogenetics and Transplant Biology, AOU Città della Salute e della Scienza, ERKNet Center & Department of Medical Sciences, University of Turin, Turin, Italy
| | - Carmelo Maria Romeo
- Immunogenetics and Transplant Biology, AOU Città della Salute e della Scienza, ERKNet Center & Department of Medical Sciences, University of Turin, Turin, Italy
| | - Claudia Saglia
- Immunogenetics and Transplant Biology, AOU Città della Salute e della Scienza, ERKNet Center & Department of Medical Sciences, University of Turin, Turin, Italy
| | - Martina Migliorero
- Immunogenetics and Transplant Biology, AOU Città della Salute e della Scienza, ERKNet Center & Department of Medical Sciences, University of Turin, Turin, Italy
| | - Francesca Arruga
- Immunogenetics and Transplant Biology, AOU Città della Salute e della Scienza, ERKNet Center & Department of Medical Sciences, University of Turin, Turin, Italy
| | - Diana Carli
- Immunogenetics and Transplant Biology, AOU Città della Salute e della Scienza, ERKNet Center & Department of Medical Sciences, University of Turin, Turin, Italy
| | - Antonio Amoroso
- Immunogenetics and Transplant Biology, AOU Città della Salute e della Scienza, ERKNet Center & Department of Medical Sciences, University of Turin, Turin, Italy
| | - Pietro Lonardi
- Nephrology Dialysis and Transplantation, ERKNet Center, Regina Margherita Children's Hospital, Turin, Italy
| | - Silvia Deaglio
- Immunogenetics and Transplant Biology, AOU Città della Salute e della Scienza, ERKNet Center & Department of Medical Sciences, University of Turin, Turin, Italy
| | - Licia Peruzzi
- Nephrology Dialysis and Transplantation, ERKNet Center, Regina Margherita Children's Hospital, Turin, Italy
| |
Collapse
|
2
|
Devuyst O, Ahn C, Barten TR, Brosnahan G, Cadnapaphornchai MA, Chapman AB, Cornec-Le Gall E, Drenth JP, Gansevoort RT, Harris PC, Harris T, Horie S, Liebau MC, Liew M, Mallett AJ, Mei C, Mekahli D, Odland D, Ong AC, Onuchic LF, P-C Pei Y, Perrone RD, Rangan GK, Rayner B, Torra R, Mustafa R, Torres VE. KDIGO 2025 Clinical Practice Guideline for the Evaluation, Management, and Treatment of Autosomal Dominant Polycystic Kidney Disease (ADPKD). Kidney Int 2025; 107:S1-S239. [PMID: 39848759 DOI: 10.1016/j.kint.2024.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 01/25/2025]
|
3
|
Knoers NVAM. Prenatal and preimplantation genetic testing for monogenic kidney disorders. Kidney Int 2025; 107:255-261. [PMID: 39477068 DOI: 10.1016/j.kint.2024.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 11/17/2024]
Abstract
In recent years, advances in genetic sequencing techniques and in the analysis of sequencing data have significantly improved our ability to diagnose genetic kidney diseases. Identification of the disease-causing genetic variant(s) is crucial not only for prognostication and personalized management, but also for providing genetic counseling and guiding family planning decisions. It is particularly important that patients desiring children receive advice on their reproductive choices early, ideally before conception. This concise review focuses on the options available for prenatal and preimplantation genetic testing in the context of monogenic kidney diseases, including the latest progress and the legal and ethical issues associated with these reproductive technologies. Although these tests could be performed for all monogenic disorders where the disease-causing variant(s) has (have) been identified in the index patient, invasive prenatal testing is currently primarily performed for severe childhood-onset monogenic kidney disorders. Noninvasive prenatal diagnosis for monogenic disorders is a rapidly developing field that promises to provide an accurate and acceptable alternative to invasive procedures once several technical challenges have been addressed. Preimplantation genetic testing allows for the selection and implantation of embryos free from the disease-causing genetic variants, significantly lowering the risk of affected pregnancies. This option is becoming more popular among individuals with monogenic kidney diseases, particularly those with disorders that manifest later in life, such as autosomal dominant polycystic kidney disease. This review covers the procedure, its outcomes, and the technical, ethical and legal challenges of preimplantation genetic testing for monogenic kidney diseases.
Collapse
Affiliation(s)
- Nine V A M Knoers
- Department of Genetics, University Medical Center Groningen, The Netherlands.
| |
Collapse
|
4
|
Bodard S, Nabbout R, Hélénon O, Knebelmann B. Unusual familial cystic kidney disease: combining fine radiologic and genetic evaluation to solve the case. BMC Nephrol 2024; 25:325. [PMID: 39350077 PMCID: PMC11443641 DOI: 10.1186/s12882-024-03747-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent hereditary kidney disease, characterized by enlarged kidneys with numerous cysts, high blood pressure, and a variety of extrarenal complications. This disease is a significant cause of renal failure and requires accurate differentiation from other cystic kidney diseases, especially when family history does not clearly indicate ADPKD. This is crucial due to differences in prognosis, treatment, and familial implications. Advanced molecular genetics and imaging techniques are employed to diagnose and assess the prognosis of patients and their families. CASE PRESENTATION The case study revolves around three patients from the same family-two sisters and one daughter-referred to a nephrology department for ADPKD management. The initial proband, a 42-year-old woman, experienced abdominal discomfort leading to an ultrasound that suggested ADPKD. However, MRI findings indicated standard-sized kidneys with bilateral parapelvic cysts, and no genetic markers for ADPKD were found. Her sister, presenting with controlled hypertension and similar ultrasound findings, also had her initial ADPKD diagnosis refuted by MRI and genetic testing, which revealed no significant mutations. The daughter, however, exhibited a different scenario with enlarged kidneys and multiple cysts characteristic of early-stage ADPKD. Genetic testing confirmed a deleterious PKD1 mutation, suggesting a de novo mutation, as her father showed no signs of the disease. CONCLUSION This study highlights the complexity and necessity of thorough diagnostic processes in suspected ADPKD cases to prevent misdiagnosis. The initial symptoms and imaging might misleadingly suggest ADPKD, as seen in the cases of the two older patients. Still, further detailed imaging and genetic analyses revealed no ADPKD, preventing inappropriate treatment and stress. In contrast, the younger patient's distinctive clinical and genetic profile confirmed ADPKD, illustrating the variability within even closely related individuals. Such detailed assessments are crucial in guiding correct treatment decisions and providing accurate familial counseling, emphasizing the importance of considering a broader spectrum of renal cystic disorders before confirming a diagnosis of ADPKD.
Collapse
Affiliation(s)
- Sylvain Bodard
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
- AP-HP-Centre, Université de Paris Cité, Hôpital Necker Enfants Malades, Service d'Imagerie Adulte, 75015, Paris, France.
- Laboratoire d'Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, 75007, Paris, France.
- Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, MA, 02114, USA.
| | - Rim Nabbout
- Service de Néphrologie-Dialyse Adultes, AP-HP-Centre, Université Paris Cité, Hôpital Necker Enfants Malades, 75015, Paris, France
| | - Olivier Hélénon
- AP-HP-Centre, Université de Paris Cité, Hôpital Necker Enfants Malades, Service d'Imagerie Adulte, 75015, Paris, France
| | - Bertrand Knebelmann
- Service de Néphrologie-Dialyse Adultes, AP-HP-Centre, Université Paris Cité, Hôpital Necker Enfants Malades, 75015, Paris, France
| |
Collapse
|
5
|
Fujimaru T, Mori T, Sekine A, Chiga M, Mandai S, Kikuchi H, Mori Y, Hara Y, Fujiki T, Ando F, Susa K, Iimori S, Naito S, Hanazawa R, Hirakawa A, Mochizuki T, Suwabe T, Ubara Y, Uchida S, Sohara E. Importance of IFT140 in Patients with Polycystic Kidney Disease Without a Family History. Kidney Int Rep 2024; 9:2685-2694. [PMID: 39291187 PMCID: PMC11403091 DOI: 10.1016/j.ekir.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Recently, the monoallelic loss-of-function IFT140 variant was identified as a causative gene for autosomal dominant polycystic kidney disease (ADPKD). In patients with polycystic kidneys who have a positive family history, >90% have pathogenic variants in PKD1 or PKD2, whereas only 1% have IFT140. However, approximately 40% of patients with polycystic kidneys without a family history do not have any pathogenic variants in PKD1 and PKD2. Methods We conducted a comprehensive genetic analysis of 157 adult patients with polycystic kidneys whose parents did not have evident polycystic kidneys. We sequenced up to 92 genes associated with inherited cystic kidney disease, including IFT140. Results Of the 157 patients, 7 (4.5%) presented with monoallelic loss-of-function variants in the IFT140 gene, 51 (32.5%) with pathogenic variants in the PKD1 or PKD2 gene, and 7 (4.5%) with pathogenic variants in other genes related to inherited kidney cystic disease. The proportion of monoallelic loss-of-function IFT140 variants in this cohort was higher than that in previously reported cohorts with polycystic kidneys who had a positive family history. None of the patients with monoallelic loss-of-function IFT140 variants had polycystic liver disease (PLD). Furthermore, patients with IFT140 pathogenic variants had a significantly smaller kidney volume and a remarkably higher estimated glomerular filtration rate (eGFR) than those with PKD1 pathogenic variants (P = 0.01 and 0.03, respectively). Conclusion Because the phenotype of polycystic kidneys caused by the IFT140 gene is mild, parental kidney disease may be overlooked. Therefore, patients without a positive family history are more likely to carry pathogenic variants in IFT140.
Collapse
Affiliation(s)
- Takuya Fujimaru
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Nephrology, St Luke's International Hospital, Tokyo, Japan
| | - Takayasu Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akinari Sekine
- Nephrology Center, Toranomon Hospital, Tokyo, Japan
- Okinaka Memorial Institute for Medical Research, Toranomon Hospital, Tokyo, Japan
| | - Motoko Chiga
- Clinical Laboratory, Tokyo Medical and Dental University Hospital, Tokyo Japan
| | - Shintaro Mandai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroaki Kikuchi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yutaro Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yu Hara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tamami Fujiki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Fumiaki Ando
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koichiro Susa
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Soichiro Iimori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shotaro Naito
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryoichi Hanazawa
- Department of Clinical Biostatistics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akihiro Hirakawa
- Department of Clinical Biostatistics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Tatsuya Suwabe
- Nephrology Center, Toranomon Hospital, Tokyo, Japan
- Okinaka Memorial Institute for Medical Research, Toranomon Hospital, Tokyo, Japan
| | - Yoshifumi Ubara
- Nephrology Center, Toranomon Hospital, Tokyo, Japan
- Okinaka Memorial Institute for Medical Research, Toranomon Hospital, Tokyo, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
6
|
Mohib O, Vanhauwaert S, De Boeck L, Claes KBM, Janssens P. The Case | Asymmetric kidney cysts in a patient with negative family history. Kidney Int 2024; 106:323-324. [PMID: 39032973 DOI: 10.1016/j.kint.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 07/23/2024]
Affiliation(s)
- Othmane Mohib
- Department of Nephrology and Arterial Hypertension, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Lisanne De Boeck
- Department of Nephrology and Arterial Hypertension, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Peter Janssens
- Department of Nephrology and Arterial Hypertension, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
7
|
Dissanayake LV, Palygin O. Is there a role for uric acid in polycystic kidney disease progression? Am J Physiol Renal Physiol 2024; 327:F1-F3. [PMID: 38900704 DOI: 10.1152/ajprenal.00121.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 06/22/2024] Open
Affiliation(s)
- Lashodya V Dissanayake
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States
| |
Collapse
|
8
|
Nishimoto IH, Santos AG, Bianchini JM, Santos LGB, Martini MCR, Silva VDS, Martin LC. Predictors of autosomal dominant polycystic kidney disease progression: a Brazilian single-center cohort. J Bras Nefrol 2024; 46:e20230040. [PMID: 38935976 PMCID: PMC11210993 DOI: 10.1590/2175-8239-jbn-2023-0040en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/24/2024] [Indexed: 06/29/2024] Open
Abstract
INTRODUCTION Identifying risk factors for autosomal dominant polycystic kidney disease (ADPKD) progression is important. However, studies that have evaluated this subject using a Brazilian sample is sparce. Therefore, the aim of this study was to identify risk factors for renal outcomes and death in a Brazilian cohort of ADPKD patients. METHODS Patients had the first medical appointment between January 2002 and December 2014, and were followed up until December 2019. Associations between clinical and laboratory variables with the primary outcome (sustained decrease of at least 57% in the eGFR from baseline, need for dialysis or renal transplantation) and the secondary outcome (death from any cause) were analyzed using a multiple Cox regression model. Among 80 ADPKD patients, those under 18 years, with glomerular filtration rate <30 mL/min/1.73 m2, and/or those with missing data were excluded. There were 70 patients followed. RESULTS The factors independently associated with the renal outcomes were total kidney length - adjusted Hazard Ratio (HR) with a 95% confidence interval (95% CI): 1.137 (1.057-1.224), glomerular filtration rate - HR (95% CI): 0.970 (0.949-0.992), and serum uric acid level - HR (95% CI): 1.643 (1.118-2.415). Diabetes mellitus - HR (95% CI): 8.115 (1.985-33.180) and glomerular filtration rate - HR (95% CI): 0.957 (0.919-0.997) were associated with the secondary outcome. CONCLUSIONS These findings corroborate the hypothesis that total kidney length, glomerular filtration rate and serum uric acid level may be important prognostic predictors of ADPKD in a Brazilian cohort, which could help to select patients who require closer follow up.
Collapse
Affiliation(s)
- Igor Hitoshi Nishimoto
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Escola de
Medicina, Botucatu, SP, Brazil
| | - Andrey Gonçalves Santos
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Escola de
Medicina, Botucatu, SP, Brazil
| | | | | | | | - Vanessa dos Santos Silva
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Escola de
Medicina, Departamento de Medicina Interna, Botucatu, SP, Brazil
| | - Luis Cuadrado Martin
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Escola de
Medicina, Departamento de Medicina Interna, Botucatu, SP, Brazil
| |
Collapse
|
9
|
Ciantar N, Zahra G, Delicata J, Sammut F, Calleja-Agius J, Farrugia E, Said E. Genotype-phenotype of autosomal dominant polycystic kidney disease in Malta. Eur J Med Genet 2024; 69:104934. [PMID: 38537868 DOI: 10.1016/j.ejmg.2024.104934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/14/2024] [Accepted: 03/10/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the development of multiple renal cysts causing kidney enlargement and end-stage renal disease (ESRD) in half the patients by 60 years of age. The aim of the study was to determine the genetic aetiology in Maltese patients clinically diagnosed with ADPKD and correlate the clinical features. METHODS A total of 60 patients over 18 years of age clinically diagnosed with ADPKD were studied using a customized panel of genes that had sufficient evidence of disease diagnosis using next generation sequencing (NGS). The genes studied were PKD1, PKD2, GANAB, DNAJB11, PKHD1 and DZIP1L. Selected variants were confirmed by bidirectional Sanger sequencing with specifically designed primers. Cases where no clinically significant variant was identified by the customized gene panel were then studied by Whole Exome Sequencing (WES). Microsatellite analysis was performed to determine the origin of an identified recurrent variant in the PKD2 gene. Clinical features were studied for statistical correlation with genetic results. RESULTS Genetic diagnosis was reached in 49 (82%) of cases studied. Pathogenic/likely pathogenic variants PKD1 and PKD2 gene were found in 25 and in 23 cases respectively. The relative proportion of genetically diagnosed PKD1:PKD2 cases was 42:38. A pathogenic variant in the GANAB gene was identified in 1 (2%) case. A potentially significant heterozygous likely pathogenic variant was identified in PKHD1 in 1 (2%) case. Potentially significant variants of uncertain significance were seen in 4 (7%) cases of the study cohort. No variants in DNAJB11 and DZIP1L were observed. Whole exome sequencing (WES) added the diagnostic yield by 10% over the gene panel analysis. Overall no clinically significant variant was detected in 6 (10%) cases of the study population by a customized gene panel and WES. One recurrent variant the PKD2 c.709+1G > A was observed in 19 (32%) cases. Microsatellite analysis showed that all variant cases shared the same haplotype indicating that their families may have originated from a common ancestor and confirmed it to be a founder variant in the Maltese population. The rate of decline in eGFR was steeper and progression to ESRD was earlier in cases with PKD1 variants when compared to cases with PKD2 variants. Cases segregating truncating variants in PKD1 showed a significantly earlier onset of ESRD and this was significantly worse in cases with frameshift variants. Overall extrarenal manifestations were commoner in cases segregating truncating variants in PKD1. CONCLUSIONS This study helps to show that a customized gene panel is the first-line method of choice for studying patients with ADPKD followed by WES which increased the detection of variants present in the PKD1 pseudogene region. A founder variant in the PKD2 gene was identified in our Maltese cohort with ADPKD. Phenotype of patients with ADPKD is significantly related to the genotype confirming the important role of molecular investigations in the diagnosis and prognosis of polycystic kidney disease. Moreover, the findings also highlight the variability in the clinical phenotype and indicate that other factors including epigenetic and environmental maybe be important determinants in Autosomal Dominant Polycystic Kidney Disease.
Collapse
Affiliation(s)
- Natalie Ciantar
- Department of Anatomy, Faculty of Medicine & Surgery, University of Malta,Malta
| | - Graziella Zahra
- Department of Pathology, Molecular Diagnostics Laboratory, Mater Dei Hospital, Malta
| | - Julian Delicata
- Department of Medicine, Nephrology and General Medicine Division, Mater Dei Hospital, Malta
| | - Fiona Sammut
- Department of Statistics and Operations Research, Faculty of Science, University of Malta, Malta
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine & Surgery, University of Malta,Malta
| | - Emanuel Farrugia
- Department of Medicine, Nephrology and General Medicine Division, Mater Dei Hospital, Malta
| | - Edith Said
- Department of Anatomy, Faculty of Medicine & Surgery, University of Malta,Malta; Section of Medical Genetics, Department of Pathology, Mater Dei Hospital, Malta.
| |
Collapse
|
10
|
Yeung KC, Fryml E, Lanktree MB. How Does ADPKD Severity Differ Between Family Members? Kidney Int Rep 2024; 9:1198-1209. [PMID: 38707833 PMCID: PMC11068977 DOI: 10.1016/j.ekir.2024.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 05/07/2024] Open
Abstract
Thousands of pathogenic variants in more than 100 genes can cause kidney cysts with substantial variability in phenotype and risk of subsequent kidney failure. Despite an established genotype-phenotype correlation in cystic kidney diseases, incomplete penetrance and variable disease expressivity are present as is the case in all monogenic diseases. In family members with autosomal dominant polycystic kidney disease (ADPKD), the same causal variant is responsible in all affected family members; however, there can still be striking discordance in phenotype severity. This narrative review explores contributors to within-family discordance in ADPKD severity. Cases of biallelic and digenic inheritance, where 2 rare pathogenic variants in cystogenic genes are coexistent in one family, account for a small proportion of within-family discordance. Genetic background, including cis and trans factors and the polygenic propensity for comorbid disease, also plays a role but has not yet been exhaustively quantified. Environmental exposures, including diet; smoking; alcohol, salt, and protein intake, and comorbid diseases, including obesity, diabetes, hypertension, kidney stones, dyslipidemia, and additional coexistent kidney diseases all contribute to ADPKD phenotypic variability among family members. Given that many of the factors contributing to phenotype variability are preventable, modifiable, or treatable, health care providers and patients need to be aware of these factors and address them in the treatment of ADPKD.
Collapse
Affiliation(s)
- Klement C. Yeung
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Elise Fryml
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew B. Lanktree
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Division of Nephrology, St. Joseph’s Healthcare Hamilton, Hamilton, Ontario, Canada
- Department of Health Research Methodology, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| |
Collapse
|
11
|
Fung WWS, Szeto CC, Chow KM, Cheng PMS, Kwong VWK, Lau SLF, Pang WF, Chu WCW, Ong ACM, Devuyst O, Li PKT. Clinical Characteristics and Kidney Outcomes in Chinese Patients with Autosomal Dominant Polycystic Kidney Disease. KIDNEY360 2024; 5:715-723. [PMID: 38556647 PMCID: PMC11146654 DOI: 10.34067/kid.0000000000000433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Key Points The Mayo clinic imaging classification allows more accurate risk stratification but is limited by the lack of data on non-White populations and on atypical imaging patterns. In this cohort of Chinese patients with autosomal dominant polycystic kidney disease, an atypical imaging pattern was observed in 17% of the cases, associated with later presentation and a milder disease course. There may be genotypic differences, especially among those with atypical imaging. Future genotyping studies will help to define the genetic basis for the phenotypic spectrum in Chinese patients. Background The management of autosomal dominant polycystic kidney disease (ADPKD) remains challenging with variable and uncertain genotype–phenotype correlations. The Mayo clinic imaging classification allows more accurate risk stratification but is limited by the atypical imaging patterns. We aim to assess the clinical characteristics and the morphology of the cystic kidneys in a cohort of Chinese patients with ADPKD. Methods Ninety-eight patients with ADPKD were recruited prospectively from August 2019 to December 2020 in Prince of Wales Hospital, Hong Kong. They were subsequently followed up every 6 months for a minimum of 2 years. We reviewed the clinical characteristics and magnetic resonance imaging patterns at baseline and the kidney outcome at the end of the follow-up. Atypical imaging patterns included unilateral, segmental, asymmetric, lopsided, and bilateral atrophy as defined by the Mayo Imaging Classification. Results The mean age was 51.5±14.3 years, and the mean eGFR 68.7±27.5 ml/min per 1.73 m2. The 98 patients included 36 male and 62 female. Seventy-six patients (77.6%) had a family history. Seventeen of the 98 (17.3%) patients had atypical imaging patterns. Compared with typical cases, atypical cases were older at the time of diagnosis (49.5±16.0 versus 33.0±13.0 years, P < 0.001) and at the time of starting antihypertensive medications (52.4±14.8 versus 39.7±11.0 years, P = 0.001) and were less likely to have a positive family history (58.8% versus 81.5%, P = 0.042). Patients with atypical patterns showed a lower eGFR decline compared with those with the typical pattern (−0.86±4.34 versus −3.44±4.07 ml/min per 1.73 m2 per year, P = 0.022). Conclusions In this cohort of Chinese patients with ADPKD, an atypical imaging pattern was observed in 17% of the cases, associated with later presentation and a milder disease course. Future genotyping studies will help to define the genetic architecture and the basis for the phenotypic spectrum in Chinese patients with ADPKD.
Collapse
Affiliation(s)
- Winston Wing-Shing Fung
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong, China
- CUHK Carol and Richard Yu Peritoneal Dialysis Research Centre, Hong Kong, China
| | - Cheuk-Chun Szeto
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong, China
- CUHK Carol and Richard Yu Peritoneal Dialysis Research Centre, Hong Kong, China
- Li Ka Shing Institute of Health Sciences (LiHS), The Chinese University of Hong Kong, Hong Kong, China
| | - Kai-Ming Chow
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong, China
- CUHK Carol and Richard Yu Peritoneal Dialysis Research Centre, Hong Kong, China
| | - Phyllis Mei-Shan Cheng
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong, China
- CUHK Carol and Richard Yu Peritoneal Dialysis Research Centre, Hong Kong, China
| | - Vickie Wai-Ki Kwong
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong, China
- CUHK Carol and Richard Yu Peritoneal Dialysis Research Centre, Hong Kong, China
| | - Sam Lik-Fung Lau
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong, China
- CUHK Carol and Richard Yu Peritoneal Dialysis Research Centre, Hong Kong, China
| | - Wing-Fai Pang
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong, China
- CUHK Carol and Richard Yu Peritoneal Dialysis Research Centre, Hong Kong, China
| | - Winnie Chiu-Wing Chu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Albert Chee Meng Ong
- Academic Nephrology Unit, The University of Sheffield Medical School, Sheffield, United Kingdom
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zürich, Switzerland
- Division of Nephrology, UCLouvain Medical School, Brussels, Belgium
| | - Philip Kam-Tao Li
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong, China
- CUHK Carol and Richard Yu Peritoneal Dialysis Research Centre, Hong Kong, China
| |
Collapse
|
12
|
Yen PW, Chen YA, Wang W, Mao FS, Chao CT, Chiang CK, Lin SH, Tarng DC, Chiu YW, Wu MJ, Chen YC, Kao JTW, Wu MS, Lin CL, Huang JW, Hung KY. The screening, diagnosis, and management of patients with autosomal dominant polycystic kidney disease: A national consensus statement from Taiwan. Nephrology (Carlton) 2024; 29:245-258. [PMID: 38462235 DOI: 10.1111/nep.14287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/29/2024] [Accepted: 02/25/2024] [Indexed: 03/12/2024]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited cause of end-stage kidney disease (ESKD) worldwide. Guidelines for the diagnosis and management of ADPKD in Taiwan remains unavailable. In this consensus statement, we summarize updated information on clinical features of international and domestic patients with ADPKD, followed by suggestions for optimal diagnosis and care in Taiwan. Specifically, counselling for at-risk minors and reproductive issues can be important, including ethical dilemmas surrounding prenatal diagnosis and pre-implantation genetic diagnosis. Studies reveal that ADPKD typically remains asymptomatic until the fourth decade of life, with symptoms resulting from cystic expansion with visceral compression, or rupture. The diagnosis can be made based on a detailed family history, followed by imaging studies (ultrasound, computed tomography, or magnetic resonance imaging). Genetic testing is reserved for atypical cases mostly. Common tools for prognosis prediction include total kidney volume, Mayo classification and PROPKD/genetic score. Screening and management of complications such as hypertension, proteinuria, urological infections, intracranial aneurysms, are also crucial for improving outcome. We suggest that the optimal management strategies of patients with ADPKD include general medical care, dietary recommendations and ADPKD-specific treatments. Key points include rigorous blood pressure control, dietary sodium restriction and Tolvaptan use, whereas the evidence for somatostatin analogues and mammalian target of rapamycin (mTOR) inhibitors remains limited. In summary, we outline an individualized care plan emphasizing careful monitoring of disease progression and highlight the need for shared decision-making among these patients.
Collapse
Affiliation(s)
- Pao-Wen Yen
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Yung-An Chen
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Wei Wang
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Fang-Sheng Mao
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Chia-Ter Chao
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan City, Taiwan
| | - Chih-Kang Chiang
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Der-Cherng Tarng
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Wen Chiu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Ju Wu
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Yung-Chang Chen
- Kidney Research Center, Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Juliana Tze-Wah Kao
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang-Ho Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
- Division of Nephrology, Department of Internal Medicine, Fu-Jen Catholic University Hospital, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Mai-Szu Wu
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang-Ho Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Liang Lin
- Division of Nephrology, Department of Internal Medicine, Chia-Yi Chang Gung Memorial Hospital, Chia-Yi County, Taiwan
| | - Jenq-Wen Huang
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Kuan-Yu Hung
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang-Ho Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
| |
Collapse
|
13
|
Sonner S, Reilly K, Woolf AS, Chandler N, Kilby MD, Maher ER, Flanagan C, McKnight AJ, Mone F. When should we offer antenatal sequencing for urinary tract malformations? A systematic review, cohort study and meta-analysis. Prenat Diagn 2024; 44:187-195. [PMID: 38056891 DOI: 10.1002/pd.6479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVE Determine the incremental yield of prenatal exome sequencing (PES) over chromosome microarray (CMA) and/or karyotype for urinary tract malformations (UTMs). METHOD A prospective cohort study encompassing data from the English Genomic Medicine Service North Thames Laboratory Hub for fetuses with bilateral echogenic kidneys (BEKs) was combined with data from a systematic review. MEDLINE, EMBASE, Web of Science, MedRxiv and GreyLit were searched from 01/2010-02/2023 for studies reporting on the yield of PES over CMA or karyotype in fetuses with UTMs. Pooled incremental yield was determined using a random effects model. PROSPERO CRD42023364544. RESULTS Fourteen studies (410 cases) were included. The incremental yield for multisystem UTMs, any isolated UTMs, and BEKs was 31% [95% CI, 18%-46%; I2 = 78%], 16% [95% CI, 6%-26%; I2 = 80%] and 51% [95% CI, 27%-75%; I2 = 34%]. The most common clinical diseases and syndromes identified, based on the variant genes detected, were Bardet-Biedl syndrome (BBS genes), dominant and recessive polycystic kidney diseases (PKD1, PKD2 and PKHD1) and renal cysts and diabetes syndrome (HNF1B). CONCLUSION There was a notable incremental genetic diagnostic yield when PES was applied to multisystem UTMs and BEKs. There was a modest incremental yield when this technique was used for UTMs other than BEKs.
Collapse
Affiliation(s)
- Sarah Sonner
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Kelly Reilly
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Natalie Chandler
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Mark D Kilby
- Fetal Medicine Centre, Birmingham Women's & Children's Foundation Trust, Birmingham, UK
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Medical Genomics Research Group, Illumina, Cambridge, UK
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Cheryl Flanagan
- Institute of Pathology, Belfast Health and Social Care Trust, Belfast, UK
| | | | - Fionnuala Mone
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| |
Collapse
|
14
|
Akther Z, Amee SS, Masum MM, Nishat L, Yesmin ZA. Pedigree Analysis of Polycystic Kidney Disease Patients: Bangladeshi Perspective. Indian J Nephrol 2023; 33:440-443. [PMID: 38174302 PMCID: PMC10752401 DOI: 10.4103/ijn.ijn_234_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/23/2022] [Accepted: 11/29/2022] [Indexed: 01/05/2024] Open
Abstract
Background Polycystic kidney disease (PKD), an inheritance disorder which is the fourth leading cause of the end-stage renal disease. The inheritance pattern can be diagnosed and confirmed by pedigree analysis. The aim of the present research was to determine the type and frequency of PKD using pedigree analysis. Materials and Methods The present research was designed as a cross-sectional descriptive study. Thirty-eight adult Bangladeshi PKD patients were recruited using a selection checklist from the Department of Nephrology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh. Data were collected using a data collection sheet after taking informed written consent. The pedigree was drawn using the genetic pedigree chart creation software f-tree V4.0.6. The percentage frequencies of different types of pedigree were calculated using the Statistical Package for the Social Sciences software, version 23. Results A total of 24 (63.20%) had a positive family history and 36.80% (14) had no positive family history. All of the patients with a positive family history had vertical transmission; male and female were equally inheriting the gene. Out of these 24 patients, 4.17% (one), 8.33% (two), and 16.67% (four) had a homozygous/heterozygous state, skip generation, and male to male transmission, respectively. Conclusions Pedigree analysis of PKD patients showed an increased value in early diagnosis and better management and prognosis of the disease.
Collapse
Affiliation(s)
- Zohora Akther
- Department of Anatomy, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Samira Sultana Amee
- Department of Anatomy, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Md. Mohiuddin Masum
- Department of Anatomy, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Latifa Nishat
- Department of Anatomy, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Zinnat Ara Yesmin
- Department of Anatomy, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| |
Collapse
|
15
|
Yang H, Sieben CJ, Schauer RS, Harris PC. Genetic Spectrum of Polycystic Kidney and Liver Diseases and the Resulting Phenotypes. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:397-406. [PMID: 38097330 PMCID: PMC10746289 DOI: 10.1053/j.akdh.2023.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 12/18/2023]
Abstract
Polycystic kidney diseases are a group of monogenically inherited disorders characterized by cyst development in the kidney with defects in primary cilia function central to pathogenesis. Autosomal dominant polycystic kidney disease (ADPKD) has progressive cystogenesis and accounts for 5-10% of kidney failure (KF) patients. There are two major ADPKD genes, PKD1 and PKD2, and seven minor loci. PKD1 accounts for ∼80% of patients and is associated with the most severe disease (KF is typically at 55-65 years); PKD2 accounts for ∼15% of families, with KF typically in the mid-70s. The minor genes are generally associated with milder kidney disease, but for DNAJB11 and ALG5, the age at KF is similar to PKD2. PKD1 and PKD2 have a high level of allelic heterogeneity, with no single pathogenic variant accounting for >2% of patients. Additional genetic complexity includes biallelic disease, sometimes causing very early-onset ADPKD, and mosaicism. Autosomal dominant polycystic liver disease is characterized by severe PLD but limited PKD. The two major genes are PRKCSH and SEC63, while GANAB, ALG8, and PKHD1 can present as ADPKD or autosomal dominant polycystic liver disease. Autosomal recessive polycystic kidney disease typically has an infantile onset, with PKHD1 being the major locus and DZIP1L and CYS1 being minor genes. In addition, there are a range of mainly recessive syndromic ciliopathies with PKD as part of the phenotype. Because of the phenotypic and genic overlap between the diseases, employing a next-generation sequencing panel containing all known PKD and ciliopathy genes is recommended for clinical testing.
Collapse
Affiliation(s)
- Hana Yang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester MN
| | - Cynthia J Sieben
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester MN
| | - Rachel S Schauer
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester MN
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester MN.
| |
Collapse
|
16
|
Lanktree MB, Kline T, Pei Y. Assessing the Risk of Progression to Kidney Failure in Patients With Autosomal Dominant Polycystic Kidney Disease. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:407-416. [PMID: 38097331 DOI: 10.1053/j.akdh.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 12/18/2023]
Abstract
While autosomal dominant polycystic kidney disease (ADPKD) is a dichotomous diagnosis, substantial variability in disease severity exists. Identification of inherited risk through family history, genetic testing, and environmental risk factors through clinical assessment are important components of risk assessment for optimal management of patients with ADPKD. Genetic testing is especially helpful in cases with diagnostic uncertainty, particularly in cases with no apparent family history, in young cases (age less than 25 years) where a definitive diagnosis is sought, or in atypical presentations with early, severe, or discordant findings. Currently, risk assessment in ADPKD may be performed with the use of age-adjusted estimated glomerular filtration rate thresholds, evidence of rapid estimated glomerular filtration rate decline on serial measurements, age- and height-adjusted total kidney volume by Mayo Clinic Imaging Classification, or evidence of early hypertension and urological complications combined with PKD1 or PKD2 mutation class; however, caveats exist with each of these approaches. Fine-tuning of risk stratification with advanced imaging features and biomarkers is the subject of research but is not yet ready for general clinical practice. While conservative treatment strategies will be advised for all patients, those with the greatest rate of disease progression will have the most benefit from aggressive disease-modifying therapy. In this narrative review, we will summarize the evidence behind the clinical assessment and risk stratification of patients with ADPKD.
Collapse
Affiliation(s)
- Matthew B Lanktree
- Division of Nephrology, Department of Medicine, St Joseph's Healthcare Hamilton, McMaster University, Hamilton, Ontario, Canada; Population Health Research Institute, Hamilton, Ontario, Canada
| | - Timothy Kline
- Mayo Clinic, Department of Radiology and Division of Nephrology and Hypertension, Rochester, MN
| | - York Pei
- Division of Nephrology, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Graziani L, Zampatti S, Carriero ML, Minotti C, Peconi C, Bengala M, Giardina E, Novelli G. Co-Inheritance of Pathogenic Variants in PKD1 and PKD2 Genes Determined by Parental Segregation and De Novo Origin: A Case Report. Genes (Basel) 2023; 14:1589. [PMID: 37628640 PMCID: PMC10454652 DOI: 10.3390/genes14081589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary renal disease, and it is typically caused by PKD1 and PKD2 heterozygous variants. Nonetheless, the extensive phenotypic variability observed among affected individuals, even within the same family, suggests a more complex pattern of inheritance. We describe an ADPKD family in which the proband presented with an earlier and more severe renal phenotype (clinical diagnosis at the age of 14 and end-stage renal disease aged 24), compared to the other affected family members. Next-generation sequencing (NGS)-based analysis of polycystic kidney disease (PKD)-associated genes in the proband revealed the presence of a pathogenic PKD2 variant and a likely pathogenic variant in PKD1, according to the American College of Medical Genetics and Genomics (ACMG) criteria. The PKD2 nonsense p.Arg872Ter variant was segregated from the proband's father, with a mild phenotype. A similar mild disease presentation was found in the proband's aunts and uncle (the father's siblings). The frameshift p.Asp3832ProfsTer128 novel variant within PKD1 carried by the proband in addition to the pathogenic PKD2 variant was not found in either parent. This report highlights that the co-inheritance of two or more PKD genes or alleles may explain the extensive phenotypic variability among affected family members, thus emphasizing the importance of NGS-based techniques in the definition of the prognostic course.
Collapse
Affiliation(s)
- Ludovico Graziani
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.L.C.); (C.M.); (E.G.); (G.N.)
| | - Stefania Zampatti
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.P.)
| | - Miriam Lucia Carriero
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.L.C.); (C.M.); (E.G.); (G.N.)
| | - Chiara Minotti
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.L.C.); (C.M.); (E.G.); (G.N.)
| | - Cristina Peconi
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.P.)
| | - Mario Bengala
- Medical Genetics Unit, Tor Vergata University Hospital, 00133 Rome, Italy;
| | - Emiliano Giardina
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.L.C.); (C.M.); (E.G.); (G.N.)
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.P.)
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.L.C.); (C.M.); (E.G.); (G.N.)
- Medical Genetics Unit, Tor Vergata University Hospital, 00133 Rome, Italy;
| |
Collapse
|
18
|
Hanna C, Iliuta IA, Besse W, Mekahli D, Chebib FT. Cystic Kidney Diseases in Children and Adults: Differences and Gaps in Clinical Management. Semin Nephrol 2023; 43:151434. [PMID: 37996359 DOI: 10.1016/j.semnephrol.2023.151434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Cystic kidney diseases, when broadly defined, have a wide differential diagnosis extending from recessive diseases with a prenatal or pediatric diagnosis, to the most common autosomal-dominant polycystic kidney disease primarily affecting adults, and several other genetic or acquired etiologies that can manifest with kidney cysts. The most likely diagnoses to consider when assessing a patient with cystic kidney disease differ depending on family history, age stratum, radiologic characteristics, and extrarenal features. Accurate identification of the underlying condition is crucial to estimate the prognosis and initiate the appropriate management, identification of extrarenal manifestations, and counseling on recurrence risk in future pregnancies. There are significant differences in the clinical approach to investigating and managing kidney cysts in children compared with adults. Next-generation sequencing has revolutionized the diagnosis of inherited disorders of the kidney, despite limitations in access and challenges in interpreting the data. Disease-modifying treatments are lacking in the majority of kidney cystic diseases. For adults with rapid progressive autosomal-dominant polycystic kidney disease, tolvaptan (V2-receptor antagonist) has been approved to slow the rate of decline in kidney function. In this article, we examine the differences in the differential diagnosis and clinical management of cystic kidney disease in children versus adults, and we highlight the progress in molecular diagnostics and therapeutics, as well as some of the gaps meriting further attention.
Collapse
Affiliation(s)
- Christian Hanna
- Division of Pediatric Nephrology and Hypertension, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN; Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN.
| | - Ioan-Andrei Iliuta
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, FL
| | - Whitney Besse
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Djalila Mekahli
- PKD Research Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Fouad T Chebib
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, FL.
| |
Collapse
|
19
|
Nigro E, Amicone M, D'Arco D, Sellitti G, De Marco O, Guarino M, Riccio E, Pisani A, Daniele A. Molecular Diagnosis and Identification of Novel Pathogenic Variants in a Large Cohort of Italian Patients Affected by Polycystic Kidney Diseases. Genes (Basel) 2023; 14:1236. [PMID: 37372416 DOI: 10.3390/genes14061236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Polycystic Kidney Diseases (PKDs) consist of a genetically and phenotypically heterogeneous group of inherited disorders characterized by numerous renal cysts. PKDs include autosomal dominant ADPKD, autosomal recessive ARPKD and atypical forms. Here, we analyzed 255 Italian patients using an NGS panel of 63 genes, plus Sanger sequencing of exon 1 of the PKD1 gene and MPLA (PKD1, PKD2 and PKHD1) analysis. Overall, 167 patients bore pathogenic/likely pathogenic variants in dominant genes, and 5 patients in recessive genes. Four patients were carriers of one pathogenic/likely pathogenic recessive variant. A total of 24 patients had a VUS variant in dominant genes, 8 patients in recessive genes and 15 patients were carriers of one VUS variant in recessive genes. Finally, in 32 patients we could not reveal any variant. Regarding the global diagnostic status, 69% of total patients bore pathogenic/likely pathogenic variants, 18.4% VUS variants and in 12.6% of patients we could not find any. PKD1 and PKD2 resulted to be the most mutated genes; additional genes were UMOD and GANAB. Among recessive genes, PKHD1 was the most mutated gene. An analysis of eGFR values showed that patients with truncating variants had a more severe phenotype. In conclusion, our study confirmed the high degree of genetic complexity at the basis of PKDs and highlighted the crucial role of molecular characterization in patients with suspicious clinical diagnosis. An accurate and early molecular diagnosis is essential to adopt the appropriate therapeutic protocol and represents a predictive factor for family members.
Collapse
Affiliation(s)
- Ersilia Nigro
- CEINGE-Biotecnologie Avanzate Scarl "Franco Salvatore", Via G. Salvatore 486, 80145 Napoli, Italy
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Maria Amicone
- Unità di Nefrologia, Dipartimento di Sanità Pubblica, Università di Napoli "Federico II", Via Pansini 5, 80131 Napoli, Italy
| | - Daniela D'Arco
- CEINGE-Biotecnologie Avanzate Scarl "Franco Salvatore", Via G. Salvatore 486, 80145 Napoli, Italy
| | - Gina Sellitti
- Unità di Nefrologia, Dipartimento di Sanità Pubblica, Università di Napoli "Federico II", Via Pansini 5, 80131 Napoli, Italy
| | - Oriana De Marco
- Unità di Nefrologia, Dipartimento di Sanità Pubblica, Università di Napoli "Federico II", Via Pansini 5, 80131 Napoli, Italy
| | - Maria Guarino
- Gastroenterology and Hepatology Unit, Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Eleonora Riccio
- Unità di Nefrologia, Dipartimento di Sanità Pubblica, Università di Napoli "Federico II", Via Pansini 5, 80131 Napoli, Italy
| | - Antonio Pisani
- Unità di Nefrologia, Dipartimento di Sanità Pubblica, Università di Napoli "Federico II", Via Pansini 5, 80131 Napoli, Italy
| | - Aurora Daniele
- CEINGE-Biotecnologie Avanzate Scarl "Franco Salvatore", Via G. Salvatore 486, 80145 Napoli, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi "Federico II", Via Pansini 5, 80131 Napoli, Italy
| |
Collapse
|
20
|
Orisio S, Noris M, Rigoldi M, Bresin E, Perico N, Trillini M, Donadelli R, Perna A, Benigni A, Remuzzi G. Mutation Analysis of PKD1 and PKD2 Genes in a Large Italian Cohort Reveals Novel Pathogenic Variants Including a Novel Complex Rearrangement. Nephron Clin Pract 2023; 148:273-291. [PMID: 37231942 DOI: 10.1159/000530657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 03/26/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited disease of the kidney. It occurs in adulthood but is also rarely diagnosed in early childhood. The majority of the disease-causing variants observed in ADPKD patients are in two genes: PKD1 and PKD2. METHODS 237 patients from 198 families with a clinical diagnosis of ADPKD were screened for PKD1 and PKD2 genetic variants using Sanger sequencing and multiple ligation-dependent probe amplification analysis. RESULTS Disease-causing (diagnostic) variants were identified in 173 families (211 patients), 156 on PKD1 and 17 on PKD2. Variants of unknown significance were detected in 6 additional families, while no mutations were found in the remaining 19 families. Among the diagnostic variants detected, 51 were novel. In ten families, seven large rearrangements were found and the molecular breakpoints of 3 rearrangements were identified. Renal survival was significantly worse for PKD1-mutated patients, particularly those carrying truncating mutations. In patients with PKD1 truncating (PKD1-T) mutations, disease onset was significantly earlier than in patients with PKD1 non-truncating variants or PKD2-mutated patients. CONCLUSIONS Comprehensive genetic testing confirms its utility in diagnosing patients with ADPKD and contributes to explaining the clinical heterogeneity observed in this disease. Moreover, the genotype-phenotype correlation can allow for a more accurate disease prognosis.
Collapse
Affiliation(s)
- Silvia Orisio
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Marina Noris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Miriam Rigoldi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Elena Bresin
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Norberto Perico
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Matias Trillini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Roberta Donadelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Annalisa Perna
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
21
|
Atypical Polycystic Kidney Disease as defined by Imaging. Sci Rep 2023; 13:2952. [PMID: 36807559 PMCID: PMC9941465 DOI: 10.1038/s41598-022-24104-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 11/10/2022] [Indexed: 02/22/2023] Open
Abstract
Using age- and height-adjusted total kidney volume, the Mayo Clinic Imaging Classification provides a validated approach to assess the risk of chronic kidney disease (CKD) progression in autosomal dominant polycystic kidney disease (ADPKD), but requires excluding patients with atypical imaging patterns, whose clinical characteristics have been poorly defined. We report an analysis of the prevalence, clinical and genetic characteristics of patients with atypical polycystic kidney disease by imaging. Patients from the extended Toronto Genetic Epidemiology Study of Polycystic Kidney Disease recruited between 2016 and 2018 completed a standardized clinical questionnaire, kidney function assessment, genetic testing, and kidney imaging by magnetic resonance or computed tomography. We compared the prevalence, clinical features, genetics, and renal prognosis of atypical versus typical polycystic kidney disease by imaging. Forty-six of the 523 (8.8%) patients displayed atypical polycystic kidney disease by imaging; they were older (55 vs. 43 years; P < 0.001), and less likely to have a family history of ADPKD (26.1% vs. 74.6%; P < 0.001), a detectable PKD1 or PKD2 mutation (9.2% vs. 80.4%; P < 0.001), or progression to CKD stage 3 or stage 5 (P < 0.001). Patients with atypical polycystic kidney disease by imaging represent a distinct prognostic group with a low likelihood of progression to CKD.
Collapse
|
22
|
Chang AR, Moore BS, Luo JZ, Sartori G, Fang B, Jacobs S, Abdalla Y, Taher M, Carey DJ, Triffo WJ, Singh G, Mirshahi T. Exome Sequencing of a Clinical Population for Autosomal Dominant Polycystic Kidney Disease. JAMA 2022; 328:2412-2421. [PMID: 36573973 PMCID: PMC9856880 DOI: 10.1001/jama.2022.22847] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
IMPORTANCE Most studies of autosomal dominant polycystic kidney disease (ADPKD) genetics have used kidney specialty cohorts, focusing on PKD1 and PKD2. These can lead to biased estimates of population prevalence of ADPKD-associated gene variants and their phenotypic expression. OBJECTIVE To determine the prevalence of ADPKD and contributions of PKD1, PKD2, and other genes related to cystic kidney disease in a large, unselected cohort. DESIGN, SETTING, AND PARTICIPANTS This retrospective observational study used an unselected health system-based cohort in central and northeast Pennsylvania with exome sequencing (enrolled from 2004 to 2020) and electronic health record data (up to October 2021). The genotype-first approach included the entire cohort and the phenotype-first approach focused on patients with ADPKD diagnosis codes, confirmed by chart and imaging review. EXPOSURES Loss-of-function (LOF) variants in PKD1, PKD2, and other genes associated with cystic kidney disease (ie, ALG8, ALG9, DNAJB11, GANAB, HNF1B, IFT140, SEC61B, PKHD1, PRKCSH, SEC63); likely pathogenic missense variants in PKD1 and PKD2. MAIN OUTCOMES AND MEASURES Genotype-first analysis: ADPKD diagnosis code (Q61.2, Q61.3, 753.13, 753.12); phenotype-first analysis: presence of a rare variant in PKD1, PKD2, or other genes associated with cystic kidney disease. RESULTS Of 174 172 patients (median age, 60 years; 60.6% female; 93% of European ancestry), 303 patients had ADPKD diagnosis codes, including 235 with sufficient chart review data for confirmation. In addition to PKD1 and PKD2, LOF variants in IFT140, GANAB, and HNF1B were associated with ADPKD diagnosis after correction for multiple comparisons. Among patients with LOF variants in PKD1, 66 of 68 (97%) had ADPKD; 43 of 43 patients (100%) with LOF variants in PKD2 had ADPKD. In contrast, only 24 of 77 patients (31.2%) with a PKD1 missense variant previously classified as "likely pathogenic" had ADPKD, suggesting misclassification or variable penetrance. Among patients with ADPKD diagnosis confirmed by chart review, 180 of 235 (76.6%) had a potential genetic cause, with the majority being rare variants in PKD1 (127 patients) or PKD2 (34 patients); 19 of 235 (8.1%) had variants in other genes associated with cystic kidney disease. Of these 235 patients with confirmed ADPKD, 150 (63.8%) had a family history of ADPKD. The yield for a genetic determinant of ADPKD was higher for those with a family history of ADPKD compared with those without family history (91.3% [137/150] vs 50.6% [43/85]; difference, 40.7% [95% CI, 29.2%-52.3%]; P < .001). Previously unreported PKD1, PKD2, and GANAB variants were identified with pedigree data suggesting pathogenicity, and several PKD1 missense variants previously reported as likely pathogenic appeared to be benign. CONCLUSIONS AND RELEVANCE This study demonstrates substantial genetic and phenotypic variability in ADPKD among patients within a regional health system in the US.
Collapse
Affiliation(s)
- Alexander R. Chang
- Center for Kidney Health Research, Department of Population Health Sciences, Geisinger, Danville, Pennsylvania
- Department of Nephrology, Geisinger, Danville, Pennsylvania
| | - Bryn S. Moore
- Department of Genomic Health, Geisinger, Danville, Pennsylvania
| | - Jonathan Z. Luo
- Department of Genomic Health, Geisinger, Danville, Pennsylvania
| | - Gino Sartori
- Department of Radiology, Geisinger, Danville, Pennsylvania
| | - Brian Fang
- Center for Kidney Health Research, Department of Population Health Sciences, Geisinger, Danville, Pennsylvania
| | - Steven Jacobs
- Department of Nephrology, Geisinger, Danville, Pennsylvania
| | - Yoosif Abdalla
- Department of Nephrology, Geisinger, Danville, Pennsylvania
| | - Mohammed Taher
- Center for Kidney Health Research, Department of Population Health Sciences, Geisinger, Danville, Pennsylvania
| | - David J. Carey
- Department of Genomic Health, Geisinger, Danville, Pennsylvania
| | | | - Gurmukteshwar Singh
- Center for Kidney Health Research, Department of Population Health Sciences, Geisinger, Danville, Pennsylvania
- Department of Nephrology, Geisinger, Danville, Pennsylvania
| | - Tooraj Mirshahi
- Department of Genomic Health, Geisinger, Danville, Pennsylvania
| |
Collapse
|
23
|
Identification and Characterization of Novel Mutations in Chronic Kidney Disease (CKD) and Autosomal Dominant Polycystic Kidney Disease (ADPKD) in Saudi Subjects by Whole-Exome Sequencing. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58111657. [PMID: 36422197 PMCID: PMC9692281 DOI: 10.3390/medicina58111657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Background: Autosomal dominant polycystic kidney disease (ADPKD) is a condition usually caused by a single gene mutation and manifested by both renal and extrarenal features, eventually leading to end-stage renal disease (ESRD) by the median age of 60 years worldwide. Approximately 89% of ADPKD patients had either PKD1 or PKD2 gene mutations. The majority (85%) of the mutations are in the PKD1 gene, especially in the context of family history. Objectives: This study investigated the genetic basis and the undiscovered genes that are involved in ADPKD development among the Saudi population. Materials and Methods: In this study, 11 patients with chronic kidney disease were enrolled. The diagnosis of ADPKD was based on history and diagnostic images: CT images include enlargement of renal outlines, renal echogenicity, and presence of multiple renal cysts with dilated collecting ducts, loss of corticomedullary differentiation, and changes in GFR and serum creatinine levels. Next-generation whole-exome sequencing was conducted using the Ion Torrent PGM platform. Results: Of the 11 Saudi patients diagnosed with chronic kidney disease (CKD) and ADPKD, the most common heterozygote nonsynonymous variant in the PKD1 gene was exon15: (c.4264G > A). Two missense mutations were identified with a PKD1 (c.1758A > C and c.9774T > G), and one patient had a PKD2 mutation (c.1445T > G). Three detected variants were novel, identified at PKD1 (c.1758A > C), PKD2L2 (c.1364A > T), and TSC2 (deletion of a’a at the 3’UTR, R1680C) genes. Other variants in PKD1L1 (c.3813_381 4delinsTG) and PKD1L2 (c.404C > T) were also detected. The median age of end-stage renal disease for ADPK patients in Saudi Arabia was 30 years. Conclusion: This study reported a common variant in the PKD1 gene in Saudi patients with typical ADPKD. We also reported (to our knowledge) for the first time two novel missense variants in PKD1 and PKD2L2 genes and one indel mutation at the 3’UTR of the TSC2 gene. This study establishes that the reported mutations in the affected genes resulted in ADPKD development in the Saudi population by a median age of 30. Nevertheless, future protein−protein interaction studies to investigate the influence of these mutations on PKD1 and PKD2 functions are required. Furthermore, large-scale population-based studies to verify these findings are recommended.
Collapse
|
24
|
Sekine A, Hidaka S, Moriyama T, Shikida Y, Shimazu K, Ishikawa E, Uchiyama K, Kataoka H, Kawano H, Kurashige M, Sato M, Suwabe T, Nakatani S, Otsuka T, Kai H, Katayama K, Makabe S, Manabe S, Shimabukuro W, Nakanishi K, Nishio S, Hattanda F, Hanaoka K, Miura K, Hayashi H, Hoshino J, Tsuchiya K, Mochizuki T, Horie S, Narita I, Muto S. Cystic Kidney Diseases That Require a Differential Diagnosis from Autosomal Dominant Polycystic Kidney Disease (ADPKD). J Clin Med 2022; 11:6528. [PMID: 36362756 PMCID: PMC9657046 DOI: 10.3390/jcm11216528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/14/2022] [Accepted: 11/01/2022] [Indexed: 09/05/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary cystic kidney disease, with patients often having a positive family history that is characterized by a similar phenotype. However, in atypical cases, particularly those in which family history is unclear, a differential diagnosis between ADPKD and other cystic kidney diseases is important. When diagnosing ADPKD, cystic kidney diseases that can easily be excluded using clinical information include: multiple simple renal cysts, acquired cystic kidney disease (ACKD), multilocular renal cyst/multilocular cystic nephroma/polycystic nephroma, multicystic kidney/multicystic dysplastic kidney (MCDK), and unilateral renal cystic disease (URCD). However, there are other cystic kidney diseases that usually require genetic testing, or another means of supplementing clinical information to enable a differential diagnosis of ADPKD. These include autosomal recessive polycystic kidney disease (ARPKD), autosomal dominant tubulointerstitial kidney disease (ADTKD), nephronophthisis (NPH), oral-facial-digital (OFD) syndrome type 1, and neoplastic cystic kidney disease, such as tuberous sclerosis (TSC) and Von Hippel-Lindau (VHL) syndrome. To help physicians evaluate cystic kidney diseases, this article provides a review of cystic kidney diseases for which a differential diagnosis is required for ADPKD.
Collapse
Affiliation(s)
- Akinari Sekine
- Nephrology Center, Toranomon Hospital, Tokyo 105-8470, Japan
| | - Sumi Hidaka
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kanagawa 247-8533, Japan
| | - Tomofumi Moriyama
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Fukuoka 830-0011, Japan
| | - Yasuto Shikida
- Department of Nephrology, Saiseikai Nakatsu Hospital, Osaka 530-0012, Japan
| | - Keiji Shimazu
- Department of Nephrology, Saiseikai Nakatsu Hospital, Osaka 530-0012, Japan
| | - Eiji Ishikawa
- Department of Nephrology, Saiseikai Matsusaka General Hospital, Mie 515-8557, Japan
| | - Kiyotaka Uchiyama
- Department of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroshi Kataoka
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | - Haruna Kawano
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan
- Department of Advanced Informatics for Genetic Disease, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan
| | - Mahiro Kurashige
- Division of Kidney and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Mai Sato
- Division of Nephrology and Rheumatology, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Tatsuya Suwabe
- Nephrology Center, Toranomon Hospital, Tokyo 105-8470, Japan
| | - Shinya Nakatani
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Tadashi Otsuka
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Hirayasu Kai
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Kan Katayama
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Shiho Makabe
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | - Shun Manabe
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | - Wataru Shimabukuro
- Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Koichi Nakanishi
- Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Saori Nishio
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Fumihiko Hattanda
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Kazushige Hanaoka
- Department of General Internal Medicine, Daisan Hospital, Jikei University, School of Medicine, Tokyo 105-8471, Japan
| | - Kenichiro Miura
- Department of Pediatric Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | - Hiroki Hayashi
- Department of Nephrology, Fujita Health University, Aichi 470-1192, Japan
| | - Junichi Hoshino
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | - Ken Tsuchiya
- Department of Blood Purification, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | | | - Shigeo Horie
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan
- Department of Advanced Informatics for Genetic Disease, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Satoru Muto
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan
- Department of Urology, Juntendo University Nerima Hospital, Tokyo 177-8521, Japan
| |
Collapse
|
25
|
Yan Z, Wang Y, Deng W, Zhou Y, Hu Y, Qi K, Liu D, Xia R, Liu R, Zeng W, Zhang W, Xu J, Xiong F, Miao Y. A single-center analysis of genotype–phenotype characteristics of Chinese patients with autosomal dominant polycystic kidney disease by targeted exome sequencing. Front Genet 2022; 13:934463. [PMID: 36186434 PMCID: PMC9520363 DOI: 10.3389/fgene.2022.934463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Autosomal dominant polycystic kidney disease (ADPKD) is mainly caused by PKD1 and PKD2 mutations. However, only a few studies have investigated the genotype and phenotype characteristics of Asian patients with ADPKD. This study aimed to investigate the relationship between the natural course of ADPKD genotype and phenotype. Methods: Genetic studies of PKD1/2 genes of Chinese patients with ADPKD in a single center were performed using targeted exome sequencing and next-generation sequencing on peripheral blood DNA. Results: Among the 140 patients analyzed, 80.00% (n = 112) harbored PKD1 mutations, 11.43% (n = 16) harbored PKD2 mutations, and 8.57% (n = 12) harbored neither PKD1 nor PKD2 mutations. The average age at dialysis was 52.60 ± 11.36, 60.67 ± 5.64, and 52.11 ± 14.63 years, respectively. The renal survival rate of ADPKD patients with PKD1 mutations (77/112) was significantly lower than that of those with PKD2 mutations (9/16), leading to an earlier onset of end-stage renal disease (ESRD). Renal prognosis was poor for those with nonsense mutations, and they required earlier renal replacement therapy. Conclusions: The genotype and phenotype characteristics of ADPKD patients potentially vary across ethnic groups. Our findings supplement the genetic profiles of Chinese ADPKD patients, could serve as a guide for therapy monitoring and prognosis assessment of ADPKD, and may improve the clinical diagnosis.
Collapse
Affiliation(s)
- Ziyan Yan
- Department of Transplantation, Nanfang Hospital, Southern Medical Univerisity, Guangzhou, China
| | - Yuchen Wang
- Department of Transplantation, Nanfang Hospital, Southern Medical Univerisity, Guangzhou, China
| | - Wenfeng Deng
- Department of Transplantation, Nanfang Hospital, Southern Medical Univerisity, Guangzhou, China
| | - Yi Zhou
- Department of Transplantation, Nanfang Hospital, Southern Medical Univerisity, Guangzhou, China
| | - Yangcheng Hu
- Department of Transplantation, Nanfang Hospital, Southern Medical Univerisity, Guangzhou, China
| | - Ka Qi
- Hemodialysis Center, Qinhuangdao Charity Hospital, Qinhuangdao, China
| | - Ding Liu
- Division of Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Renfei Xia
- Department of Transplantation, Nanfang Hospital, Southern Medical Univerisity, Guangzhou, China
| | - Rumin Liu
- Department of Transplantation, Nanfang Hospital, Southern Medical Univerisity, Guangzhou, China
| | - Wenli Zeng
- Department of Transplantation, Nanfang Hospital, Southern Medical Univerisity, Guangzhou, China
| | - Wei Zhang
- Guangzhou Jiajian Medical Testing Co Ltd, Guangzhou, China
| | - Jian Xu
- Department of Transplantation, Nanfang Hospital, Southern Medical Univerisity, Guangzhou, China
| | - Fu Xiong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- *Correspondence: Fu Xiong, ; Yun Miao,
| | - Yun Miao
- Department of Transplantation, Nanfang Hospital, Southern Medical Univerisity, Guangzhou, China
- *Correspondence: Fu Xiong, ; Yun Miao,
| |
Collapse
|
26
|
Raina R, Houry A, Rath P, Mangat G, Pandher D, Islam M, Khattab AG, Kalout JK, Bagga S. Clinical Utility and Tolerability of Tolvaptan in the Treatment of Autosomal Dominant Polycystic Kidney Disease (ADPKD). Drug Healthc Patient Saf 2022; 14:147-159. [PMID: 36105663 PMCID: PMC9467294 DOI: 10.2147/dhps.s338050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Rupesh Raina
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, OH, USA
- Department of Nephrology, Akron Children’s Hospital, Akron, OH, USA
- College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
- Correspondence: Rupesh Raina, Consultant Nephrologist, Adult-Pediatric Kidney Disease/Hypertension, Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, OH, USA, Tel +1 330-543-8950, Fax +1 330-543-3980, Email ;
| | - Ahmad Houry
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, OH, USA
- College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Pratik Rath
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, OH, USA
| | - Guneive Mangat
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, OH, USA
| | - Davinder Pandher
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, OH, USA
- Mount Sinai South Nassau, Oceanside, NY, 11570, USA
| | - Muhammad Islam
- College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | | | - Joseph K Kalout
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, OH, USA
| | - Sumedha Bagga
- Questrom School of Business, Boston University, Boston, MA, USA
| |
Collapse
|
27
|
Hay E, Cullup T, Barnicoat A. A practical approach to the genomics of kidney disorders. Pediatr Nephrol 2022; 37:21-35. [PMID: 33675412 DOI: 10.1007/s00467-021-04995-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/30/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
Rapid technological advances in genomic testing continue to increase our understanding of the genetic basis of a wide range of kidney disorders. Establishing a molecular diagnosis benefits the individual by bringing an end to what is often a protracted diagnostic odyssey, facilitates accurate reproductive counselling for families and, in the future, is likely to lead to the delivery of more targeted management and surveillance regimens. The selection of the most appropriate testing modality requires an understanding both of the technologies available and of the genetic architecture and heterogeneity of kidney disease. Whilst we are witnessing a far greater diagnostic yield with broader genetic testing, such approaches invariably generate variants of uncertain significance and secondary incidental findings, which are not only difficult to interpret but present ethical challenges with reporting and feeding back to patients and their families. Here, we review the spectrum of nephrogenetic disorders, consider the optimal approach to genetic testing, explore the clinical utility of obtaining a molecular diagnosis, reflect on the challenges of variant interpretation and look to the future of this dynamic field.
Collapse
Affiliation(s)
- Eleanor Hay
- Department of Clinical Genetics, Great Ormond Street Hospital, London, UK.
| | - Thomas Cullup
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital, London, UK
| | - Angela Barnicoat
- Department of Clinical Genetics, Great Ormond Street Hospital, London, UK
| |
Collapse
|
28
|
Kutky M, Cross E, Treleaven DJ, Alam A, Lanktree MB. The Impact of COVID-19 on Patients With ADPKD. Can J Kidney Health Dis 2021; 8:20543581211056479. [PMID: 34777845 PMCID: PMC8586165 DOI: 10.1177/20543581211056479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
PURPOSE OF REVIEW Patients with autosomal dominant polycystic kidney disease (ADPKD) have kidney cysts and kidney enlargement decades before progressing to advanced chronic kidney disease (CKD), meaning patients live most of their adult life with a chronic medical condition. The coronavirus disease 2019 (COVID-19) pandemic has created common questions among patients with ADPKD. In this review, we discuss COVID-19 concerns centered around a patient with a common clinical vignette. SOURCES OF INFORMATION We performed PubMed and Google scholar searches for English, peer-reviewed studies related to "COVID-19," "ADPKD," "CKD," "tolvaptan," "angiotensin-converting enzyme inhibitors" (ACEi), "angiotensin receptor blockers" (ARB), and "vaccination." We also evaluated transplant data provided by the Ontario Trillium Gift of Life Network. METHODS Following an assessment of available literature, this narrative review addresses common questions of patients with ADPKD in the context of the COVID-19 pandemic. KEY FINDINGS Data regarding the risk of developing COVID-19 and the risk of adverse COVID-19 outcomes in patients with ADPKD remain limited, but patients with ADPKD with impaired estimated glomerular filtration rate (eGFR), kidney transplants, or on dialysis are likely at similar increased risk as those with generally defined CKD. We provide strategies to improve virtual care, which is likely to persist after the pandemic. Current evidence suggests ACEi, ARB, and tolvaptan treatment should be continued unless contraindicated due to severe illness. When available, and in the absence of a severe allergy, vaccination is recommended for all patients with ADPKD. LIMITATIONS This narrative review is limited by a paucity of high-quality data on COVID-19 outcomes in patients specifically with ADPKD. IMPLICATIONS Patients with ADPKD who have developed advanced CKD, require dialysis, or who have received a kidney transplant are at elevated risk of COVID-19 complications.
Collapse
Affiliation(s)
- Meherzad Kutky
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Erin Cross
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Darin J. Treleaven
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Ahsan Alam
- Division of Nephrology, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Matthew B. Lanktree
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON, Canada
- St. Joseph’s Healthcare Hamilton, ON, Canada
| |
Collapse
|
29
|
Elliott MD, James LC, Simms EL, Sharma P, Girard LP, Cheema K, Elliott MJ, Lauzon JL, Chun J. Mainstreaming Genetic Testing for Adult Patients With Autosomal Dominant Polycystic Kidney Disease. Can J Kidney Health Dis 2021; 8:20543581211055001. [PMID: 34733539 PMCID: PMC8558595 DOI: 10.1177/20543581211055001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/28/2021] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Genetic testing results are currently obtained approximately 1 year after referral to a medical genetics team for autosomal dominant polycystic kidney disease (ADPKD). We evaluated a mainstream genetic testing (MGT) pathway whereby the nephrology team provided pre-test counseling and selection of patients with suspected ADPKD for genetic testing prior to direct patient interaction by a medical geneticist. SOURCES OF INFORMATION A multidisciplinary team of nephrologists, genetic counselors, and medical geneticists developed an MGT pathway for ADPKD using current testing criteria for adult patient with suspected ADPKD and literature from MGT in oncology. METHODS An MGT pathway was assessed using a prospective cohort and compared to a retrospective cohort of 56 patients with ADPKD who received genetic testing using the standard, traditional pathway prior to implementing the MGT for ADPKD. The mainstream pathway was evaluated using time to diagnosis, diagnostic yield, and a patient survey to assess patient perceptions of the MGT pathway. KEY FINDINGS We assessed 26 patients with ADPKD using the MGT and 18 underwent genetic testing with return of results. Of them, 52 patients had data available for analysis in the traditional control cohort. The time for return of results using our MGT pathway was significantly shorter with a median time to results of 6 months compared to 12 months for the traditional pathway. We identified causative variants in 61% of patients, variants of uncertain significance in 28%, and 10% had negative testing which is in line with expectations from the literature. The patient surveys showed high satisfaction rates with the MGT pathway. LIMITATIONS This report is an evaluation of a new genetic testing pathway restricted to a single, publicly funded health care center. The MGT pathway involved a prospective collection of a limited number of patients with ADPKD with comparison to a retrospective cohort of patients with ADPKD evaluated by standard testing. IMPLICATIONS A MGT pathway using clearly defined criteria and commercially available gene panels for ADPKD can be successfully implemented in a publicly funded health care system to reduce the time required to obtain genetic results.
Collapse
Affiliation(s)
- Mark D. Elliott
- Department of Medicine, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Leslie C. James
- Department of Medical Genetics, Alberta Children’s Hospital Research Institute, University of Calgary, AB, Canada
| | - Emily L. Simms
- Department of Medicine, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Priyana Sharma
- Department of Medical Genetics, Alberta Children’s Hospital Research Institute, University of Calgary, AB, Canada
| | - Louis P. Girard
- Department of Medicine, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Kim Cheema
- Department of Medicine, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Meghan J. Elliott
- Department of Medicine, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Julie L. Lauzon
- Department of Medical Genetics, Alberta Children’s Hospital Research Institute, University of Calgary, AB, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Justin Chun
- Department of Medicine, Cumming School of Medicine, University of Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, AB, Canada
| |
Collapse
|
30
|
Liu F, Feng C, Shen H, Fu H, Mao J. Tolvaptan in Pediatric Autosomal Dominant Polycystic Kidney Disease: From Here to Where? KIDNEY DISEASES 2021; 7:343-349. [PMID: 34604341 DOI: 10.1159/000517186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022]
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disorder, accounting for approximately 5% of all ESRD cases worldwide. As a vasopressin receptor 2 antagonist, tolvaptan is the FDA-approved therapeutic agent for ADPKD, which is only made available to a limited number of adult patients; however, its efficacy in pediatric patients has not been reported widely. Summary Tolvaptan was shown to delay ADPKD progression in the Tolvaptan Efficacy and Safety in Management of Autosomal Dominant Polycystic Kidney Disease and Its Outcomes (TEMPO) 3:4 study, Replicating Evidence of Preserved Renal Function: an Investigation of Tolvaptan Safety and Efficacy in ADPKD (REPRISE) trial, and other clinical studies. In addition to its effects on aquaretic adverse events and alanine aminotransferase elevation, the effect of tolvaptan on ADPKD is clear, sustained, and cumulative. While ADPKD is a progressive disease, the early intervention has been shown to be important and beneficial in hypotheses as well as in trials. The use of tolvaptan in pediatric ADPKD involves the following challenges: patient assessment, quality of life assessment, cost-effectiveness, safety, and tolerability. The ongoing, phase 3b, 2-part study (ClinicalTrials.gov identifier: NCT02964273) on the evaluation of tolvaptan in pediatric ADPKD (patients aged 12-17 years) may help obtain some insights. Key Messages This review focuses on the rationality of tolvaptan use in pediatric patients with ADPKD, the associated challenges, and the suggested therapeutic approaches.
Collapse
Affiliation(s)
- Fei Liu
- Department of Nephrology, National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunyue Feng
- Department of Nephrology, National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huijun Shen
- Department of Nephrology, National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huaidong Fu
- Department of Nephrology, National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
31
|
Delbarba E, Econimo L, Dordoni C, Martin E, Mazza C, Savoldi G, Alberici F, Scolari F, Izzi C. Expanding the variability of the ADPKD-GANAB clinical phenotype in a family of Italian ancestry. J Nephrol 2021; 35:645-652. [PMID: 34357571 DOI: 10.1007/s40620-021-01131-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/16/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Causative mutations in the GANAB gene have been described in only 14 families, 9 diagnosed with late-onset Autosomal Dominant Polycystic Kidney Disease (ADPKD) and 5 with Autosomal Dominant Polycystic Liver Disease (ADPLD). CASE Diagnosis of ADPKD was made in a 45-year old man during screening for hernia repair. CT scan showed enlarged cystic kidneys, nephrolithiasis and normal-sized liver with multiple cysts. Hematuria, hypertension and aortic root dilatation were also documented. Renal function was normal. Molecular analysis of PKD genes disclosed a heterozygous p.R839W GANAB variant inherited from the mother. Both his elderly parents presented normal-sized bilateral cystic kidneys but normal renal function. The GANAB-ADPKD mother had no liver cysts. The father was screened for PKD-related genes and no variant was found. GENETIC ANALYSIS We describe a new family with late-onset ADPKD due to the p.R839W GANAB variant, previously reported in a severe ADPLD patient, requiring liver transplantation. DISCUSSION Since ADPKD-GANAB is an ultrarare, recently described disease, reporting further patients may help unraveling gene-related phenotype. In our patients the p.R839W GANAB variant was not related to severe ADPLD, as previously reported, but with mild ADPKD and a plethora of renal and extrarenal manifestations, usually described in PKD1/PKD2 patients. The evidence that the GANAB variant may cause both ADPKD and ADPLD of variable severity supports that renal and hepatic cystogenesis are the result of a common defective polycystin-1 pathway.
Collapse
Affiliation(s)
- Elisa Delbarba
- Division of Nephrology and Dialysis, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Laura Econimo
- Division of Nephrology and Dialysis, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Chiara Dordoni
- Division of Nephrology and Dialysis, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy.,Prenatal Diagnosis Unit, Department of Obstetrics and Gynecology, ASST-Spedali Civili, Brescia, Italy
| | - Eva Martin
- Radiology Unit, Montichiari Hospital, ASST-Spedali Civili, Brescia, Italy
| | - Cinzia Mazza
- Medical Genetics Laboratory, ASST-Spedali Civili, Brescia, Italy
| | | | - Federico Alberici
- Division of Nephrology and Dialysis, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Francesco Scolari
- Division of Nephrology and Dialysis, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy.
| | - Claudia Izzi
- Division of Nephrology and Dialysis, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy.,Prenatal Diagnosis Unit, Department of Obstetrics and Gynecology, ASST-Spedali Civili, Brescia, Italy
| |
Collapse
|
32
|
Oh YK, Park HC, Ryu H, Kim YC, Oh KH. Clinical and genetic characteristics of Korean autosomal dominant polycystic kidney disease patients. Korean J Intern Med 2021; 36:767-779. [PMID: 34237823 PMCID: PMC8273813 DOI: 10.3904/kjim.2021.176] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease. It is characterized by cyst growth in the kidneys, resulting in kidney enlargement and end-stage kidney disease. The polycystic kidney disease 1 (PKD1) and PKD2 have been identified as genes related to ADPKD and their significance in the molecular pathology of the disease has been studied. A disease-modifying drug has been approved; therefore, it has become important to identify patients at a high risk of kidney disease progression. Genetic tests, image analysis methods, and clinical factors for kidney disease progression prediction have been established. This review describes genetic and clinical characteristics, and discusses ongoing studies in Korean ADPKD patients.
Collapse
Affiliation(s)
- Yun Kyu Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
- Correspondence to Yun Kyu Oh, M.D. Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul 07061, Korea Tel: +82-2-870-2219 Fax: +82-2-870-3863 E-mail:
| | - Hayne Cho Park
- Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Seoul, Korea
| | - Hyunjin Ryu
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Yong-Chul Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
33
|
de Fallois J, Schönauer R, Münch J, Nagel M, Popp B, Halbritter J. Challenging Disease Ontology by Instances of Atypical PKHD1 and PKD1 Genetics. Front Genet 2021; 12:682565. [PMID: 34249099 PMCID: PMC8267867 DOI: 10.3389/fgene.2021.682565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/05/2021] [Indexed: 12/03/2022] Open
Abstract
Background Autosomal polycystic kidney disease is distinguished into dominant (ADPKD) and recessive (ARPKD) inheritance usually caused by either monoallelic (PKD1/PKD2) or biallelic (PKHD1) germline variation. Clinical presentations are genotype-dependent ranging from fetal demise to mild chronic kidney disease (CKD) in adults. Additionally, exemptions from dominant and recessive inheritance have been reported in both disorders resulting in respective phenocopies. Here, we comparatively report three young adults with microcystic-hyperechogenic kidney morphology based on unexpected genetic alterations beyond typical inheritance. Methods Next-generation sequencing (NGS)-based gene panel analysis and multiplex ligation-dependent probe amplification (MLPA) of PKD-associated genes, familial segregation analysis, and reverse phenotyping. Results Three unrelated individuals presented in late adolescence for differential diagnosis of incidental microcystic-hyperechogenic kidneys with preserved kidney and liver function. Upon genetic analysis, we identified a homozygous hypomorphic PKHD1 missense variant causing pseudodominant inheritance in a family, a large monoallelic PKDH1-deletion with atypical transmission, and biallelic PKD1 missense hypomorphs with recessive inheritance. Conclusion By this report, we illustrate clinical presentations associated with atypical PKD-gene alterations beyond traditional modes of inheritance. Large monoallelic PKHD1-alterations as well as biallelic hypomorphs of both PKD1 and PKHD1 may lead to mild CKD in the absence of prominent macrocyst formation and functional liver impairment. The long-term renal prognosis throughout life, however, remains undetermined. Increased detection of atypical inheritance challenges our current thinking of disease ontology not only in PKD but also in Mendelian disorders in general.
Collapse
Affiliation(s)
- Jonathan de Fallois
- Department of Endocrinology, Nephrology and Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Ria Schönauer
- Department of Endocrinology, Nephrology and Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Johannes Münch
- Department of Endocrinology, Nephrology and Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Mato Nagel
- Center for Nephrology and Metabolic Disorders, Weißwasser, Germany
| | - Bernt Popp
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Jan Halbritter
- Department of Endocrinology, Nephrology and Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
34
|
Nurmonen HJ, Huttunen T, Huttunen J, Kurtelius A, Kotikoski S, Junkkari A, Koivisto T, von Und Zu Fraunberg M, Kämäräinen OP, Lång M, Isoniemi H, Jääskeläinen JE, Lindgren AE. Lack of impact of polycystic kidney disease on the outcome of aneurysmal subarachnoid hemorrhage: a matched case-control study. J Neurosurg 2021; 134:1871-1878. [PMID: 32619983 DOI: 10.3171/2020.4.jns20544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/15/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The authors set out to study whether autosomal dominant polycystic kidney disease (ADPKD), an established risk factor for intracranial aneurysms (IAs), affects the acute course and long-term outcome of aneurysmal subarachnoid hemorrhage (aSAH). METHODS The outcomes of 32 ADPKD patients with aSAH between 1980 and 2015 (median age 43 years; 50% women) were compared with 160 matched (age, sex, and year of aSAH) non-ADPKD aSAH patients in the prospectively collected Kuopio Intracranial Aneurysm Patient and Family Database. RESULTS At 12 months, 75% of the aSAH patients with ADPKD versus 71% of the matched-control aSAH patients without ADPKD had good outcomes (Glasgow Outcome Scale score 4 or 5). There was no significant difference in condition at admission. Hypertension had been diagnosed before aSAH in 69% of the ADPKD patients versus 27% of controls (p < 0.001). Multiple IAs were present in 44% of patients in the ADPKD group versus 25% in the control group (p = 0.03). The most common sites of ruptured IAs were the anterior communicating artery (47% vs 29%, p = 0.05) and the middle cerebral artery bifurcation (28% vs 31%), and the median size was 6.0 mm versus 8.0 mm (p = 0.02). During the median follow-up of 11 years, a second aSAH occurred in 3 of 29 (10%) ADPKD patients and in 4 of 131 (3%) controls (p = 0.11). A fatal second aSAH due to a confirmed de novo aneurysm occurred in 2 (6%) of the ADPKD patients but in none of the controls (p = 0.027). CONCLUSIONS The outcomes of ADPKD patients with aSAH did not differ significantly from those of matched non-ADPKD aSAH patients. ADPKD patients had an increased risk of second aSAH from a de novo aneurysm, warranting long-term angiographic follow-up.
Collapse
Affiliation(s)
- Heidi J Nurmonen
- 1Neurosurgery of NeuroCenter, Kuopio University Hospital and University of Eastern Finland, Kuopio
- 2School of Medicine, Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio
- 3Kuopio Health Center, Kuopio
| | - Terhi Huttunen
- 1Neurosurgery of NeuroCenter, Kuopio University Hospital and University of Eastern Finland, Kuopio
| | - Jukka Huttunen
- 1Neurosurgery of NeuroCenter, Kuopio University Hospital and University of Eastern Finland, Kuopio
| | - Arttu Kurtelius
- 1Neurosurgery of NeuroCenter, Kuopio University Hospital and University of Eastern Finland, Kuopio
- 2School of Medicine, Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio
| | - Satu Kotikoski
- 1Neurosurgery of NeuroCenter, Kuopio University Hospital and University of Eastern Finland, Kuopio
- 2School of Medicine, Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio
| | - Antti Junkkari
- 1Neurosurgery of NeuroCenter, Kuopio University Hospital and University of Eastern Finland, Kuopio
| | - Timo Koivisto
- 1Neurosurgery of NeuroCenter, Kuopio University Hospital and University of Eastern Finland, Kuopio
- 2School of Medicine, Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio
| | - Mikael von Und Zu Fraunberg
- 1Neurosurgery of NeuroCenter, Kuopio University Hospital and University of Eastern Finland, Kuopio
- 2School of Medicine, Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio
| | - Olli-Pekka Kämäräinen
- 1Neurosurgery of NeuroCenter, Kuopio University Hospital and University of Eastern Finland, Kuopio
- 2School of Medicine, Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio
| | - Maarit Lång
- 2School of Medicine, Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio
- 4Neurointensive Care and
| | - Helena Isoniemi
- 6Transplantation and Liver Surgery Clinic, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Juha E Jääskeläinen
- 1Neurosurgery of NeuroCenter, Kuopio University Hospital and University of Eastern Finland, Kuopio
- 2School of Medicine, Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio
| | - Antti E Lindgren
- 1Neurosurgery of NeuroCenter, Kuopio University Hospital and University of Eastern Finland, Kuopio
- 2School of Medicine, Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio
- 5Department of Clinical Radiology, Kuopio University Hospital, Kuopio; and
| |
Collapse
|
35
|
Hu H, Zhang J, Qiu W, Liang C, Li C, Wei T, Feng Z, Guo Q, Yang K, Liu Z. Comprehensive strategy improves the genetic diagnosis of different polycystic kidney diseases. J Cell Mol Med 2021; 25:6318-6332. [PMID: 34032358 PMCID: PMC8256360 DOI: 10.1111/jcmm.16608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 04/26/2021] [Indexed: 12/16/2022] Open
Abstract
Polycystic kidney disease (PKD) is known to occur in three main forms, namely autosomal dominant PKD (ADPKD), autosomal recessive PKD (ARPKD) and syndromic PKD (SPKD), based on the clinical manifestations and genetic causes, which are diagnosable from the embryo stage to the later stages of life. Selection of the genetic test for the individuals with diagnostic imaging reports of cystic kidneys without a family history of the disease continues to be a challenge in clinical practice. With the objective of maintaining a limit on the time and medical cost of the procedure, a practical strategy for genotyping and targeted validation to resolve cystogene variations was developed in our clinical laboratory, which combined the techniques of whole-exome sequencing (WES), Long-range PCR (LR-PCR), Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA) to work in a stepwise approach. In this context, twenty-six families with renal polycystic disorders were enrolled in the present study. Thirty-two variants involving four ciliary genes (PKD1, PKHD1, TMEM67 and TMEM107) were identified and verified in 23 families (88.5%, 23/26), which expanded the variant spectrum by 16 novel variants. Pathogenic variations in five foetuses of six families diagnosed with PKD were identified using prenatal ultrasound imaging. Constitutional biallelic and digenic variations constituted the pathogenic patterns in these foetuses. The preliminary clinical data highlighted that the WES + LR PCR-based workflow followed in the present study is efficient in detecting divergent variations in PKD. The biallelic and digenic mutations were revealed as the main pathogenic patterns in the foetuses with PKD.
Collapse
Affiliation(s)
- Hua‐Ying Hu
- Department of OphthalmologyXiang'an Hospital of Xiamen UniversityFujian Provincial Key Laboratory of Ophthalmology and Visual ScienceSchool of Medicine, Xiamen UniversityFujian Engineering and Research Center of Eye Regenerative MedicineEye Institute of Xiamen UniversityXiamenChina
- Jiaen Genetics LaboratoryBeijing Jiaen HospitalBeijingChina
| | - Jing Zhang
- Prenatal Diagnosis CenterShijiazhuang Obstetrics and Gynecology HospitalHebeiChina
| | - Wei Qiu
- Department of UrologyBeijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Chao Liang
- Department of Pediatric OrthopedicsShijiazhuang Obstetrics and Gynecology HospitalHebeiChina
| | - Cun‐Xi Li
- Jiaen Genetics LaboratoryBeijing Jiaen HospitalBeijingChina
| | - Tian‐Ying Wei
- Jiaen Genetics LaboratoryBeijing Jiaen HospitalBeijingChina
| | - Zhan‐Ke Feng
- Jiaen Genetics LaboratoryBeijing Jiaen HospitalBeijingChina
| | - Qing Guo
- Prenatal Diagnosis CenterShijiazhuang Obstetrics and Gynecology HospitalHebeiChina
| | - Kai Yang
- Prenatal Diagnosis CenterBeijing Obstetrics and Gynecology Hospital, Capital Medical UniversityBeijingChina
| | - Zu‐Guo Liu
- Department of OphthalmologyXiang'an Hospital of Xiamen UniversityFujian Provincial Key Laboratory of Ophthalmology and Visual ScienceSchool of Medicine, Xiamen UniversityFujian Engineering and Research Center of Eye Regenerative MedicineEye Institute of Xiamen UniversityXiamenChina
| |
Collapse
|
36
|
Lanktree MB, Haghighi A, di Bari I, Song X, Pei Y. Insights into Autosomal Dominant Polycystic Kidney Disease from Genetic Studies. Clin J Am Soc Nephrol 2021; 16:790-799. [PMID: 32690722 PMCID: PMC8259493 DOI: 10.2215/cjn.02320220] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Autosomal dominant polycystic kidney disease is the most common monogenic cause of ESKD. Genetic studies from patients and animal models have informed disease pathobiology and strongly support a "threshold model" in which cyst formation is triggered by reduced functional polycystin dosage below a critical threshold within individual tubular epithelial cells due to (1) germline and somatic PKD1 and/or PKD2 mutations, (2) mutations of genes (e.g., SEC63, SEC61B, GANAB, PRKCSH, DNAJB11, ALG8, and ALG9) in the endoplasmic reticulum protein biosynthetic pathway, or (3) somatic mosaicism. Genetic testing has the potential to provide diagnostic and prognostic information in cystic kidney disease. However, mutation screening of PKD1 is challenging due to its large size and complexity, making it both costly and labor intensive. Moreover, conventional Sanger sequencing-based genetic testing is currently limited in elucidating the causes of atypical polycystic kidney disease, such as within-family disease discordance, atypical kidney imaging patterns, and discordant disease severity between total kidney volume and rate of eGFR decline. In addition, environmental factors, genetic modifiers, and somatic mosaicism also contribute to disease variability, further limiting prognostication by mutation class in individual patients. Recent innovations in next-generation sequencing are poised to transform and extend molecular diagnostics at reasonable costs. By comprehensive screening of multiple cystic disease and modifier genes, targeted gene panel, whole-exome, or whole-genome sequencing is expected to improve both diagnostic and prognostic accuracy to advance personalized medicine in autosomal dominant polycystic kidney disease.
Collapse
Affiliation(s)
- Matthew B. Lanktree
- Division of Nephrology, St. Joseph Healthcare Hamilton and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Amirreza Haghighi
- Division of Nephrology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Ighli di Bari
- Division of Nephrology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Xuewen Song
- Division of Nephrology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - York Pei
- Division of Nephrology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Wang Y, Zhai F, Guan S, Yan Z, Zhu X, Kuo Y, Wang N, Zhi X, Lian Y, Huang J, Jia J, Liu P, Li R, Qiao J, Yan L. A comprehensive PGT-M strategy for ADPKD patients with de novo PKD1 mutations using affected embryo or gametes as proband. J Assist Reprod Genet 2021; 38:2425-2434. [PMID: 33939064 DOI: 10.1007/s10815-021-02188-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/04/2021] [Indexed: 10/21/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease characterized by the development of renal cysts and progression to renal failure. Preimplantation genetic testing-monogenic disease (PGT-M) is an alternative option to obtain healthy babies. However, de novo PKD1 mutation of one of the spouses or the absence of a positive family history poses a serious challenge to PGT-M. Here, we described a comprehensive strategy which includes preimplantation genetic testing for aneuploidies (PGT-A) study and monogenic diagnosis study for ADPKD patients bearing de novo mutations. The innovation of our strategy is to use the gamete (polar body or single sperm) as proband for single-nucleotide polymorphism (SNP) linkage analysis to detect an embryo's carrier status. Nine ADPKD couples with either de novo mutation or without a positive family history were recruited and a total of 34 embryos from 13 PGT-M cycles were examined. Within these nine couples, two successfully delivered healthy babies had their genetic status confirmed by amniocentesis. This study provides a creative approach for embryo diagnosis of patients with de novo mutations or patients who lack essential family members for linkage analysis.
Collapse
Affiliation(s)
- Yuqian Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, People's Republic of China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100191, China
| | - Fan Zhai
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, People's Republic of China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Shuo Guan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, People's Republic of China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Zhiqiang Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, People's Republic of China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xiaohui Zhu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, People's Republic of China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Ying Kuo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, People's Republic of China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Nan Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, People's Republic of China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xu Zhi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, People's Republic of China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Ying Lian
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, People's Republic of China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Jin Huang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, People's Republic of China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Jialin Jia
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, People's Republic of China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Ping Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, People's Republic of China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, People's Republic of China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, People's Republic of China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100191, China.,Beijing Advanced Innovation Center for Genomics, Beijing, 100191, China
| | - Liying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, People's Republic of China. .,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China. .,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China. .,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| |
Collapse
|
38
|
Mallawaarachchi AC, Lundie B, Hort Y, Schonrock N, Senum SR, Gayevskiy V, Minoche AE, Hollway G, Ohnesorg T, Hinchcliffe M, Patel C, Tchan M, Mallett A, Dinger ME, Rangan G, Cowley MJ, Harris PC, Burnett L, Shine J, Furlong TJ. Genomic diagnostics in polycystic kidney disease: an assessment of real-world use of whole-genome sequencing. Eur J Hum Genet 2021; 29:760-770. [PMID: 33437033 PMCID: PMC8110527 DOI: 10.1038/s41431-020-00796-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 11/03/2020] [Accepted: 12/02/2020] [Indexed: 01/29/2023] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is common, with a prevalence of 1/1000 and predominantly caused by disease-causing variants in PKD1 or PKD2. Clinical diagnosis is usually by age-dependent imaging criteria, which is challenging in patients with atypical clinical features, without family history, or younger age. However, there is increasing need for definitive diagnosis of ADPKD with new treatments available. Sequencing is complicated by six pseudogenes that share 97% homology to PKD1 and by recently identified phenocopy genes. Whole-genome sequencing can definitively diagnose ADPKD, but requires validation for clinical use. We initially performed a validation study, in which 42 ADPKD patients underwent sequencing of PKD1 and PKD2 by both whole-genome and Sanger sequencing, using a blinded, cross-over method. Whole-genome sequencing identified all PKD1 and PKD2 germline pathogenic variants in the validation study (sensitivity and specificity 100%). Two mosaic variants outside pipeline thresholds were not detected. We then examined the first 144 samples referred to a clinically-accredited diagnostic laboratory for clinical whole-genome sequencing, with targeted-analysis to a polycystic kidney disease gene-panel. In this unselected, diagnostic cohort (71 males :73 females), the diagnostic rate was 70%, including a diagnostic rate of 81% in patients with typical ADPKD (98% with PKD1/PKD2 variants) and 60% in those with atypical features (56% PKD1/PKD2; 44% PKHD1/HNF1B/GANAB/ DNAJB11/PRKCSH/TSC2). Most patients with atypical disease did not have clinical features that predicted likelihood of a genetic diagnosis. These results suggest clinicians should consider diagnostic genomics as part of their assessment in polycystic kidney disease, particularly in atypical disease.
Collapse
Affiliation(s)
- Amali C. Mallawaarachchi
- Division of Genomics and Epigenetics, Garvan Institute of Medical Research, Sydney, NSW Australia ,Department of Medical Genomics, Royal Prince Alfred Hospital, Sydney, NSW Australia ,Genome.One, Sydney, NSW Australia
| | | | - Yvonne Hort
- Division of Genomics and Epigenetics, Garvan Institute of Medical Research, Sydney, NSW Australia
| | - Nicole Schonrock
- Genome.One, Sydney, NSW Australia ,Garvan Institute of Medical Research, Sydney, NSW Australia ,St Vincent’s Hospital Clinical School, University of New South Wales, Sydney, NSW Australia
| | - Sarah R. Senum
- Division of Nephrology and Hypertension, The Mayo Clinic, Rochester, MN USA
| | - Velimir Gayevskiy
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW Australia
| | - Andre E. Minoche
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW Australia
| | - Georgina Hollway
- Genome.One, Sydney, NSW Australia ,Garvan Institute of Medical Research, Sydney, NSW Australia ,St Vincent’s Hospital Clinical School, University of New South Wales, Sydney, NSW Australia
| | | | | | - Chirag Patel
- Genetic Health Queensland, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia
| | - Michel Tchan
- Department of Genetic Medicine, Westmead Hospital, Sydney, NSW Australia ,Sydney Medical School, The University of Sydney, Sydney, NSW Australia
| | - Andrew Mallett
- Kidney Health Service, Royal Brisbane and Women’s Hospital, Herston, QLD Australia ,Institute for Molecular Bioscience & Faculty of Medicine, The University of Queensland, Brisbane, QLD Australia ,KidGen Collaborative, Australian Genomics Health Alliance, Melbourne, VIC Australia
| | - Marcel E. Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW Australia
| | - Gopala Rangan
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW Australia ,Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW Australia
| | - Mark J. Cowley
- Garvan Institute of Medical Research, Sydney, NSW Australia ,St Vincent’s Hospital Clinical School, University of New South Wales, Sydney, NSW Australia ,Children’s Cancer Institute, Sydney, NSW Australia
| | - Peter C. Harris
- Division of Nephrology and Hypertension, The Mayo Clinic, Rochester, MN USA
| | - Leslie Burnett
- Genome.One, Sydney, NSW Australia ,St Vincent’s Hospital Clinical School, University of New South Wales, Sydney, NSW Australia ,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW Australia ,Sydney Medical School, The University of Sydney, Sydney, NSW Australia
| | - John Shine
- Division of Genomics and Epigenetics, Garvan Institute of Medical Research, Sydney, NSW Australia
| | - Timothy J. Furlong
- Division of Genomics and Epigenetics, Garvan Institute of Medical Research, Sydney, NSW Australia ,Department of Renal Medicine, St Vincent’s Hospital, Sydney, NSW Australia
| |
Collapse
|
39
|
Lanktree MB, Guiard E, Akbari P, Pourafkari M, Iliuta IA, Ahmed S, Haghighi A, He N, Song X, Paterson AD, Khalili K, Pei YPC. Patients with Protein-Truncating PKD1 Mutations and Mild ADPKD. Clin J Am Soc Nephrol 2021; 16:374-383. [PMID: 33602752 PMCID: PMC8011025 DOI: 10.2215/cjn.11100720] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/17/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVES Progression of autosomal dominant polycystic kidney disease (ADPKD) is highly variable. On average, protein-truncating PKD1 mutations are associated with the most severe kidney disease among all mutation classes. Here, we report that patients with protein-truncating PKD1 mutations may also have mild kidney disease, a finding not previously well recognized. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS From the extended Toronto Genetic Epidemiologic Study of Polycystic Kidney Disease, 487 patients had PKD1 and PKD2 sequencing and typical ADPKD imaging patterns by magnetic resonance imaging or computed tomography. Mayo Clinic Imaging Classification on the basis of age- and height-adjusted total kidney volume was used to assess their cystic disease severity; classes 1A or 1B were used as a proxy to define mild disease. Multivariable linear regression was performed to test the effects of age, sex, and mutation classes on log-transformed height-adjusted total kidney volume and eGFR. RESULTS Among 174 study patients with typical imaging patterns and protein-truncating PKD1 mutations, 32 (18%) were found to have mild disease on the basis of imaging results (i.e., Mayo Clinic Imaging class 1A-1B), with their mutations spanning the entire gene. By multivariable analyses of age, sex, and mutation class, they displayed mild disease similar to patients with PKD2 mutations and Mayo Clinic Imaging class 1A-1B. Most of these mildly affected patients with protein-truncating PKD1 mutations reported a positive family history of ADPKD in preceding generations and displayed significant intrafamilial disease variability. CONCLUSIONS Despite having the most severe mutation class, 18% of patients with protein-truncating PKD1 mutations had mild disease on the basis of clinical and imaging assessment. PODCAST This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2021_02_18_CJN11100720_final.mp3.
Collapse
Affiliation(s)
- Matthew B Lanktree
- Division of Nephrology, University Health Network and University of Toronto, Toronto, Ontario, Canada
- Division of Nephrology, St. Joseph's Healthcare Hamilton and McMaster University, Hamilton, Ontario, Canada
| | - Elsa Guiard
- Division of Nephrology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Pedram Akbari
- Division of Nephrology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Marina Pourafkari
- Department of Medical Imaging, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Ioan-Andrei Iliuta
- Division of Nephrology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Syed Ahmed
- Division of Nephrology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Amirreza Haghighi
- Division of Nephrology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Ning He
- Division of Nephrology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Xuewen Song
- Division of Nephrology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Andrew D Paterson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Ontario, Canada
- Division of Epidemiology and Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Korosh Khalili
- Department of Medical Imaging, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - York P C Pei
- Division of Nephrology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
40
|
Lanktree MB. Moving Nephrology Genetics into Clinical Care. KIDNEY360 2020; 1:1040-1041. [PMID: 35368787 PMCID: PMC8815480 DOI: 10.34067/kid.0005142020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/21/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Matthew B. Lanktree
- Division of Nephrology, Department of Medicine, McMaster University and St. Joseph’s Healthcare Hamilton, Hamilton, Ontario, Canada
| |
Collapse
|
41
|
K. Rangan G, Raghubanshi A, Chaitarvornkit A, Chandra AN, Gardos R, Munt A, Read MN, Saravanabavan S, Zhang JQ, Wong AT. Current and emerging treatment options to prevent renal failure due to autosomal dominant polycystic kidney disease. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1804859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gopala K. Rangan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead, Australia
| | - Aarya Raghubanshi
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - Alissa Chaitarvornkit
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
- Faculty of Engineering, The University of Sydney, Camperdown, Australia
| | - Ashley N. Chandra
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | | | - Alexandra Munt
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead, Australia
| | - Mark N. Read
- The School of Computer Science and the Westmead Initiative, The University of Sydney, Westmead, Australia
| | - Sayanthooran Saravanabavan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - Jennifer Q.J. Zhang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - Annette T.Y. Wong
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead, Australia
| |
Collapse
|
42
|
Theodorakopoulou M, Raptis V, Loutradis C, Sarafidis P. Hypoxia and Endothelial Dysfunction in Autosomal-Dominant Polycystic Kidney Disease. Semin Nephrol 2020; 39:599-612. [PMID: 31836042 DOI: 10.1016/j.semnephrol.2019.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is the most prevalent inherited kidney disease, characterized by growth of bilateral renal cysts, hypertension, and multiple extrarenal complications that eventually can lead to renal failure. It is caused by mutations in PKD1 or PKD2 genes encoding the proteins polycystin-1 and polycystin-2, respectively. Over the past few years, studies investigating the role of primary cilia and polycystins, present not only on the surface of renal tubular cells but also on vascular endothelial cells, have advanced our understanding of the pathogenesis of ADPKD and have shown that mechanisms other than cyst formation also contribute to renal functional decline in this disease. Among them, increased oxidative stress, endothelial dysfunction, and hypoxia may play central roles because they occur early in the disease process and precede the onset of hypertension and renal functional decline. Endothelial dysfunction is linked to higher asymmetric dimethylarginine levels and reduced nitric oxide bioavailability, which would cause regional vasoconstriction and impaired renal blood flow. The resulting hypoxia would increase the levels of hypoxia-inducible-transcription factor 1α and other angiogenetic factors, which, in turn, may drive cyst growth. In this review, we summarize the existing evidence for roles of endothelial dysfunction, oxidative stress, and hypoxia in the pathogenesis of ADPKD.
Collapse
Affiliation(s)
- Marieta Theodorakopoulou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasileios Raptis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Charalampos Loutradis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece..
| |
Collapse
|
43
|
Devuyst O, Pei Y. Next-generation sequencing for detection of somatic mosaicism in autosomal dominant polycystic kidney disease. Kidney Int 2020; 97:261-263. [PMID: 31980075 DOI: 10.1016/j.kint.2019.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/05/2019] [Indexed: 11/29/2022]
Abstract
Mosaicism is defined as the presence of 2 genetically different populations of cells in a single organism, resulting from a mutation during early embryogenesis. Hopp et al. characterized mosaicism in 20 unresolved ADPKD families, using next-generation sequencing techniques with DNA isolated from blood cells. Mosaicism may be involved in 1% of ADPKD families, and it may explain some atypical disease phenotypes.
Collapse
Affiliation(s)
- Olivier Devuyst
- Department of Physiology, Mechanisms of Inherited Kidney Diseases Group, University of Zurich, Zurich, Switzerland; Division of Nephrology, UCLouvain Medical School, Brussels, Belgium.
| | - York Pei
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada; Division of Nephrology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
44
|
Gimpel C, Bergmann C, Brinkert F, Cetiner M, Gembruch U, Haffner D, Kemper M, König J, Liebau M, Maier RF, Oh J, Pape L, Riechardt S, Rolle U, Rossi R, Stegmann J, Vester U, Kaisenberg CV, Weber S, Schaefer F. [Kidney Cysts and Cystic Nephropathies in Children - A Consensus Guideline by 10 German Medical Societies]. KLINISCHE PADIATRIE 2020; 232:228-248. [PMID: 32659844 DOI: 10.1055/a-1179-0728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This consensus-based guideline was developed by all relevant German pediatric medical societies. Ultrasound is the standard imaging modality for pre- and postnatal kidney cysts and should also exclude extrarenal manifestations in the abdomen and internal genital organs. MRI has selected indications. Suspicion of a cystic kidney disease should prompt consultation of a pediatric nephrologist. Prenatal management must be tailored to very different degrees of disease severity. After renal oligohydramnios, we recommend delivery in a perinatal center. Neonates should not be denied renal replacement therapy solely because of their age. Children with unilateral multicystic dysplastic kidney do not require routine further imaging or nephrectomy, but long-term nephrology follow-up (as do children with uni- or bilateral kidney hypo-/dysplasia with cysts). ARPKD (autosomal recessive polycystic kidney disease), nephronophthisis, Bardet-Biedl syndrome and HNF1B mutations cause relevant extrarenal disease and genetic testing is advisable. Children with tuberous sclerosis complex, tumor predisposition (e. g. von Hippel Lindau syndrome) or high risk of acquired kidney cysts should have regular ultrasounds. Even asymptomatic children of parents with ADPKD (autosomal dominant PKD) should be monitored for hypertension and proteinuria. Presymptomatic diagnostic ultrasound or genetic examination for ADPKD in minors should only be done after thorough counselling. Simple cysts are very rare in children and ADPKD in a parent should be excluded. Complex renal cysts require further investigation.
Collapse
Affiliation(s)
- Charlotte Gimpel
- Department of Internal Medicine IV, Medical Center - University of Freiburg, Freiburg.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau
| | - Carsten Bergmann
- Department of Internal Medicine IV, Medical Center - University of Freiburg, Freiburg.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau.,Medizinische Genetik Mainz, Limbach Genetics, Mainz
| | - Florian Brinkert
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg
| | - Metin Cetiner
- Department of Pediatrics II, University Hospital Essen, Essen
| | - Ulrich Gembruch
- Department of Obstetrics and Prenatal Medicine, University Hospital of Bonn, Bonn
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover
| | - Markus Kemper
- Department of Pediatrics, Asklepios Kliniken Hamburg GmbH, Asklepios Klinik Nord, Standort Heidberg, Hamburg
| | - Jens König
- Department of General Pediatrics, University Children's Hospital Münster, Münster
| | - Max Liebau
- Department of Pediatrics, University Hospital Cologne, Cologne.,Center for Molecular Medicine, University of Cologne, Cologne
| | - Rolf Felix Maier
- Department of Pediatrics, University Hospital of Giessen and Marburg, Campus Marburg, Marburg
| | - Jun Oh
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg
| | - Lars Pape
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover
| | - Silke Riechardt
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg
| | - Udo Rolle
- Department of Pediatric Surgery, Hospital of the Goethe University Frankfurt, Frankfurt am Main
| | - Rainer Rossi
- Department of Pediatrics, Vivantes Klinikum Neukölln, Berlin
| | - Joachim Stegmann
- Department of Radiology, Catholic Children's Hospital Wilhelmstift, Hamburg
| | - Udo Vester
- Department of Pediatrics, HELIOS Hospital Duisburg, Duisburg
| | - Constantin von Kaisenberg
- Department of Obstetrics and Gynaecology, Center for Perinatal Medicine, Hannover Medical School, Hannover
| | - Stefanie Weber
- Department of Pediatrics, University Hospital of Giessen and Marburg, Campus Marburg, Marburg
| | - Franz Schaefer
- Center for Pediatrics and Adolescent Medicine, Division of Pediatric Nephrology, University Hospital Heidelberg, Heidelberg
| |
Collapse
|
45
|
Lanktree MB, Iliuta IA, Haghighi A, Song X, Pei Y. Evolving role of genetic testing for the clinical management of autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 2020; 34:1453-1460. [PMID: 30165646 DOI: 10.1093/ndt/gfy261] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Indexed: 01/01/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused primarily by mutations of two genes, PKD1 and PKD2. In the presence of a positive family history of ADPKD, genetic testing is currently seldom indicated as the diagnosis is mostly based on imaging studies using well-established criteria. Moreover, PKD1 mutation screening is technically challenging due to its large size, complexity (i.e. presence of six pseudogenes with high levels of DNA sequence similarity) and extensive allelic heterogeneity. Despite these limitations, recent studies have delineated a strong genotype-phenotype correlation in ADPKD and begun to unravel the role of genetics underlying cases with atypical phenotypes. Furthermore, adaptation of next-generation sequencing (NGS) to clinical PKD genetic testing will provide a high-throughput, accurate and comprehensive screen of multiple cystic disease and modifier genes at a reduced cost. In this review, we discuss the evolving indications of genetic testing in ADPKD and how NGS-based screening promises to yield clinically important prognostic information for both typical as well as unusual genetic (e.g. allelic or genic interactions, somatic mosaicism, cystic kidney disease modifiers) cases to advance personalized medicine in the era of novel therapeutics for ADPKD.
Collapse
Affiliation(s)
- Matthew B Lanktree
- Division of Nephrology, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Ioan-Andrei Iliuta
- Division of Nephrology, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Amirreza Haghighi
- Division of Nephrology, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Xuewen Song
- Division of Nephrology, University Health Network and University of Toronto, Toronto, ON, Canada
| | - York Pei
- Division of Nephrology, University Health Network and University of Toronto, Toronto, ON, Canada
| |
Collapse
|
46
|
Yokoyama H, Sakaguchi M, Yamada Y, Kitamoto K, Okada S, Kanzaki S, Namba N. Successful Treatment of Cyst Infection in an Infant With Autosomal Dominant Polycystic Kidney Disease Using Trimethoprim/Sulfamethoxazole. Front Pediatr 2020; 8:216. [PMID: 32582581 PMCID: PMC7280440 DOI: 10.3389/fped.2020.00216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/14/2020] [Indexed: 01/13/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic disease causing renal cysts. Reports on kidney cyst infection in children are rare despite cyst infections being important complications of ADPKD. Here, we report a case of a child without any medical history who had a urinary tract infection with sepsis at 7 months. Leukocyturia persisted despite antibiotic therapy because the infection was treatment-resistant. Initial ultrasound and contrast computed tomography were inconclusive because cysts could not be detected clearly, and a family history of renal cysts was not determined. Subsequently, history of paternal renal cysts, thick walls in infectious cystic lesions on diffusion-weighted magnetic resonance imaging (MRI), and multiple small lesions with high signals on T2-weighted imaging in both kidneys became apparent. Upon diagnosis of ADPKD with cyst infection, antibiotic therapy was switched from cefotaxime to trimethoprim/sulfamethoxazole to achieve better cyst penetration, which successfully resolved the infection. In this patient, MRI was effective for clear visualization and diagnosis of infectious lesions and small cysts in undiagnosed ADPKD with cyst infection. Administering antibiotics with better cyst penetration is important. Trimethoprim/sulfamethoxazole is an option for use in children. This is the first case report that describes ADPKD with cyst infection in an infant in detail.
Collapse
Affiliation(s)
- Hiroki Yokoyama
- Division of Pediatrics and Perinatology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Mayumi Sakaguchi
- Department of Pediatrics, Tottori Prefectural Central Hospital, Tottori, Japan
| | - Yuko Yamada
- Division of Pediatrics and Perinatology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Koichi Kitamoto
- Division of Pediatrics and Perinatology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Shinichi Okada
- Division of Pediatrics and Perinatology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Susumu Kanzaki
- Asahigawaso Rehabilitation and Medical Center, Okayama, Japan
| | - Noriyuki Namba
- Division of Pediatrics and Perinatology, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
47
|
Gimpel C, Bergmann C, Bockenhauer D, Breysem L, Cadnapaphornchai MA, Cetiner M, Dudley J, Emma F, Konrad M, Harris T, Harris PC, König J, Liebau MC, Marlais M, Mekahli D, Metcalfe AM, Oh J, Perrone RD, Sinha MD, Titieni A, Torra R, Weber S, Winyard PJD, Schaefer F. International consensus statement on the diagnosis and management of autosomal dominant polycystic kidney disease in children and young people. Nat Rev Nephrol 2019; 15:713-726. [PMID: 31118499 PMCID: PMC7136168 DOI: 10.1038/s41581-019-0155-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
These recommendations were systematically developed on behalf of the Network for Early Onset Cystic Kidney Disease (NEOCYST) by an international group of experts in autosomal dominant polycystic kidney disease (ADPKD) from paediatric and adult nephrology, human genetics, paediatric radiology and ethics specialties together with patient representatives. They have been endorsed by the International Pediatric Nephrology Association (IPNA) and the European Society of Paediatric Nephrology (ESPN). For asymptomatic minors at risk of ADPKD, ongoing surveillance (repeated screening for treatable disease manifestations without diagnostic testing) or immediate diagnostic screening are equally valid clinical approaches. Ultrasonography is the current radiological method of choice for screening. Sonographic detection of one or more cysts in an at-risk child is highly suggestive of ADPKD, but a negative scan cannot rule out ADPKD in childhood. Genetic testing is recommended for infants with very-early-onset symptomatic disease and for children with a negative family history and progressive disease. Children with a positive family history and either confirmed or unknown disease status should be monitored for hypertension (preferably by ambulatory blood pressure monitoring) and albuminuria. Currently, vasopressin antagonists should not be offered routinely but off-label use can be considered in selected children. No consensus was reached on the use of statins, but mTOR inhibitors and somatostatin analogues are not recommended. Children with ADPKD should be strongly encouraged to achieve the low dietary salt intake that is recommended for all children.
Collapse
Affiliation(s)
- Charlotte Gimpel
- Division of Pediatric Nephrology, Department of General Pediatrics, Adolescent Medicine and Neonatology, Center for Pediatrics, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany.
| | - Carsten Bergmann
- Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Human Genetics, Bioscientia, Ingelheim, Germany
| | - Detlef Bockenhauer
- University College London, Great Ormond Street Hospital, Institute of Child Health, London, UK
| | - Luc Breysem
- Department of Pediatric Radiology, University Hospital of Leuven, Leuven, Belgium
| | - Melissa A Cadnapaphornchai
- Rocky Mountain Pediatric Kidney Center, Rocky Mountain Hospital for Children at Presbyterian St Luke's Medical Center, Denver, CO, USA
| | - Metin Cetiner
- Department of Pediatrics II, University Hospital Essen, Essen, Germany
| | - Jan Dudley
- Renal Department, Bristol Royal Hospital for Children, Bristol, UK
| | - Francesco Emma
- Division of Nephrology and Dialysis, Ospedale Pediatrico Bambino Gesù-IRCCS, Rome, Italy
| | - Martin Konrad
- Department of General Pediatrics, University Children's Hospital, Münster, Germany
| | - Tess Harris
- PKD International, Geneva, Switzerland
- PKD Charity, London, UK
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Jens König
- Department of General Pediatrics, University Children's Hospital, Münster, Germany
| | - Max C Liebau
- Department of Pediatrics and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Matko Marlais
- University College London, Great Ormond Street Hospital, Institute of Child Health, London, UK
| | - Djalila Mekahli
- Department of Pediatric Nephrology, University Hospital of Leuven, Leuven, Belgium
- PKD Research Group, Laboratory of Pediatrics, Department of Development and Regeneration, GPURE, KU Leuven, Leuven, Belgium
| | - Alison M Metcalfe
- Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, UK
| | - Jun Oh
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald D Perrone
- Division of Nephrology, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Manish D Sinha
- Kings College London, Department of Paediatric Nephrology, Evelina London Children's Hospital, London, UK
| | - Andrea Titieni
- Department of General Pediatrics, University Children's Hospital, Münster, Germany
| | - Roser Torra
- Department of Nephrology, University of Barcelona, Barcelona, Spain
| | - Stefanie Weber
- Department of Pediatrics, University of Marburg, Marburg, Germany
| | - Paul J D Winyard
- University College London, Great Ormond Street Hospital, Institute of Child Health, London, UK
| | - Franz Schaefer
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University Hospital, Heidelberg, Germany
| |
Collapse
|
48
|
Hopp K, Cornec-Le Gall E, Senum SR, Te Paske IBAW, Raj S, Lavu S, Baheti S, Edwards ME, Madsen CD, Heyer CM, Ong ACM, Bae KT, Fatica R, Steinman TI, Chapman AB, Gitomer B, Perrone RD, Rahbari-Oskoui FF, Torres VE, Harris PC. Detection and characterization of mosaicism in autosomal dominant polycystic kidney disease. Kidney Int 2019; 97:370-382. [PMID: 31874800 DOI: 10.1016/j.kint.2019.08.038] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/05/2019] [Accepted: 08/29/2019] [Indexed: 11/30/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is an inherited, progressive nephropathy accounting for 4-10% of end stage renal disease worldwide. PKD1 and PKD2 are the most common disease loci, but even accounting for other genetic causes, about 7% of families remain unresolved. Typically, these unsolved cases have relatively mild kidney disease and often have a negative family history. Mosaicism, due to de novo mutation in the early embryo, has rarely been identified by conventional genetic analysis of ADPKD families. Here we screened for mosaicism by employing two next generation sequencing screens, specific analysis of PKD1 and PKD2 employing long-range polymerase chain reaction, or targeted capture of cystogenes. We characterized mosaicism in 20 ADPKD families; the pathogenic variant was transmitted to the next generation in five families and sporadic in 15. The mosaic pathogenic variant was newly discovered by next generation sequencing in 13 families, and these methods precisely quantified the level of mosaicism in all. All of the mosaic cases had PKD1 mutations, 14 were deletions or insertions, and 16 occurred in females. Analysis of kidney size and function showed the mosaic cases had milder disease than a control PKD1 population, but only a few had clearly asymmetric disease. Thus, in a typical ADPKD population, readily detectable mosaicism by next generation sequencing accounts for about 1% of cases, and about 10% of genetically unresolved cases with an uncertain family history. Hence, identification of mosaicism is important to fully characterize ADPKD populations and provides informed prognostic information.
Collapse
Affiliation(s)
- Katharina Hopp
- Division of Renal Diseases and Hypertension, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Emilie Cornec-Le Gall
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA; Department of Nephrology, Centre Hospitalier Universitaire de Brest, Université de Brest, Brest, France; National Institute of Health and Medical Sciences, INSERM U1078, Brest, France
| | - Sarah R Senum
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Iris B A W Te Paske
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Sonam Raj
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Sravanthi Lavu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Saurabh Baheti
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Marie E Edwards
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Charles D Madsen
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Christina M Heyer
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Albert C M Ong
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield, Sheffield, UK
| | - Kyongtae T Bae
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Richard Fatica
- Department of Nephrology and Hypertension, Cleveland Clinic, Cleveland, Ohio, USA
| | - Theodore I Steinman
- Renal Division, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Arlene B Chapman
- Division of Nephrology, University of Chicago School of Medicine, Chicago, Illinois, USA; Department of Internal Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Berenice Gitomer
- Division of Renal Diseases and Hypertension, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ronald D Perrone
- Division of Nephrology, Tufts University Medical Center, Boston, Massachusetts, USA
| | | | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
49
|
Sorohan BM, Ismail G, Andronesi A, Micu G, Obrișcă B, Jurubiță R, Sinescu I, Baston C. A single-arm pilot study of metformin in patients with autosomal dominant polycystic kidney disease. BMC Nephrol 2019; 20:276. [PMID: 31337351 PMCID: PMC6651959 DOI: 10.1186/s12882-019-1463-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/11/2019] [Indexed: 12/21/2022] Open
Abstract
Background Metformin has shown promising results regarding cystogenesis inhibition in preclinical studies with autosomal dominant polycystic kidney disease (ADPKD) models. We designed a prospective, preliminary, single-arm study to evaluate the tolerability, safety and the effect of Metformin on kidney function and body mass index (BMI) in Romanian patients with ADPKD. Methods We enrolled 34 adult patients with ADPKD, chronic kidney disease (CKD) stages 1–5 not on dialysis and without diabetes mellitus. The primary endpoint was to assess the tolerability and safety of Metformin. The secondary endpoints evaluated changes in estimated glomerular filtration rate (eGFR), body mass index (BMI) and renal replacement therapy (RRT) necessity. Patients received an initial dose of Metformin of 500 mg/day within the first month that was increased to 1000 mg/day thereafter according to tolerability. Change in eGFR and BMI was expressed as mean difference with the corresponding 95% confidence intervals and as a percentage. For the primary endpoint, we included all 34 enrolled patients. To assess the secondary endpoint, intention-to-treat (ITT) and per-protocol (PP) analysis was performed. Results Sixteen patients out of 34 completed the follow-up period at 24 months. Eighteen patients developed adverse events and 63.6% of these events were gastrointestinal related. Nausea was the most common adverse event (17.6%). Two patients (5.8%) permanently discontinued medication due to adverse events. We recorded no case of hypoglycemia, lactic acidosis or death. Mean eGFR changed by − 1.57 ml/min/1.73m2 (95%CI:-22.28 to 19.14, P = 0.87) in ITT and by − 4.57 ml/min/1.73m2 (95%CI:-28.03 to 18.89, P = 0.69) in PP population. Mean BMI change was − 1.10 kg/m2 (95%CI:-3.22 to 1.02, P = 0.30) in ITT population and − 0.80 kg/m2 (95%CI:-3.27 to 1.67, P = 0.51) in PP analysis. Three patients (8.8%) needed RRT. Conclusions Metformin was well tolerated, had a good safety profile even in ADPKD patients with advanced CKD and it was not associated with change in eGFR or BMI across the follow-up period. Trial registration The study was retrospectively registered on https://www.isrctn.com (number ISRCTN 93749377); date registered: 02/25/2019.
Collapse
Affiliation(s)
- Bogdan Marian Sorohan
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Nephrology Department, Fundeni Clinical Institute, Fundeni Street No. 258, ZIP Code 022328, District No.2, Bucharest, Romania
| | - Gener Ismail
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania. .,Nephrology Department, Fundeni Clinical Institute, Fundeni Street No. 258, ZIP Code 022328, District No.2, Bucharest, Romania.
| | - Andreea Andronesi
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Nephrology Department, Fundeni Clinical Institute, Fundeni Street No. 258, ZIP Code 022328, District No.2, Bucharest, Romania
| | - Georgia Micu
- Nephrology Department, Fundeni Clinical Institute, Fundeni Street No. 258, ZIP Code 022328, District No.2, Bucharest, Romania
| | - Bogdan Obrișcă
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Nephrology Department, Fundeni Clinical Institute, Fundeni Street No. 258, ZIP Code 022328, District No.2, Bucharest, Romania
| | - Roxana Jurubiță
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Nephrology Department, Fundeni Clinical Institute, Fundeni Street No. 258, ZIP Code 022328, District No.2, Bucharest, Romania
| | - Ioanel Sinescu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Center of Uronephrology and Renal Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Cătălin Baston
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Center of Uronephrology and Renal Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| |
Collapse
|
50
|
Yu Y, Shumway KL, Matheson JS, Edwards ME, Kline TL, Lyons LA. Kidney and cystic volume imaging for disease presentation and progression in the cat autosomal dominant polycystic kidney disease large animal model. BMC Nephrol 2019; 20:259. [PMID: 31299928 PMCID: PMC6625046 DOI: 10.1186/s12882-019-1448-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/01/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Approximately 30% of Persian cats have a c.10063C > A variant in polycystin 1 (PKD1) homolog causing autosomal dominant polycystic kidney disease (ADPKD). The variant is lethal in utero when in the homozygous state and is the only ADPKD variant known in cats. Affected cats have a wide range of progression and disease severity. However, cats are an overlooked biomedical model and have not been used to test therapeutics and diets that may support human clinical trials. To reinvigorate the cat as a large animal model for ADPKD, the efficacy of imaging modalities was evaluated and estimates of kidney and fractional cystic volumes (FCV) determined. METHODS Three imaging modalities, ultrasonography, computed tomography (CT), and magnetic resonance imaging examined variation in disease presentation and disease progression in 11 felines with ADPKD. Imaging data was compared to well-known biomarkers for chronic kidney disease and glomerular filtration rate. Total kidney volume, total cystic volume, and FCV were determined for the first time in ADPKD cats. Two cats had follow-up examinations to evaluate progression. RESULTS FCV measurements were feasible in cats. CT was a rapid and an efficient modality for evaluating therapeutic effects that cause alterations in kidney volume and/or FCV. Biomarkers, including glomerular filtration rate and creatinine, were not predictive for disease progression in feline ADPKD. The wide variation in cystic presentation suggested genetic modifiers likely influence disease progression in cats. All imaging modalities had comparable resolutions to those acquired for humans, and software used for kidney and cystic volume estimates in humans proved useful for cats. CONCLUSIONS Routine imaging protocols used in veterinary medicine are as robust and efficient for evaluating ADPKD in cats as those used in human medicine. Cats can be identified as fast and slow progressors, thus, could assist with genetic modifier discovery. Software to measure kidney and cystic volume in human ADPKD kidney studies is applicable and efficient in cats. The longer life and larger kidney size span than rodents, similar genetics, disease presentation and progression as humans suggest cats are an efficient biomedical model for evaluation of ADPKD therapeutics.
Collapse
Affiliation(s)
- Yoshihiko Yu
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.,Laboratory of Veterinary Radiology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Kate L Shumway
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Jodi S Matheson
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Marie E Edwards
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Timothy L Kline
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.,Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Leslie A Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|